

Background

Baja SAE® is a series of international collegiate design competitions. Teams gain real-world engineering experience in automotive processes by designing and building a single seat off-road vehicle.

2012-2013 NMT Baja Car

Objectives

The purpose of our project is to apply sound engineering practices to design and fabricate an off-road vehicle. We will create a design that will be competitive in the dynamic competitions. The team will develop and manufacture a cost-effective design that will be presented at the design and sales competition while managing a 2,500 person hour project.

Design Criteria

- Meet or exceed requirements of SAE rulebook
- Incorporate the SAE® provided 10 HP Briggs & Stratton Engine in design
- Accelerate over 100' from stationary in 5.5 seconds
- Top speed of approximately 40 MPH
- Bump steer reduced to 0.05" of bump per 1" of travel
- Ground clearance between 12" and 14"
- Total vehicle weight less than 310 lbs
- Weight distribution should be 40% front, 60% rear
- Vehicle to accommodate individuals from 75" tall and 250 lbs to 60" tall and 110 lbs

NMT Baja SAE Racing Team

Joseph Carrillo (Team Lead), Cory Jenkins, Brock Williams, Cole Dunning, David Kunkel, Brisa Garcia, Sean Harrington, Ana Fuentes

Frame

- Selected 1.25" OD 4130N Chromoly Steel based on its strength to weight ratio
- Maximized durability and driver safety in the frame design
- Designed the frame to also maximize manufacturability while reducing weight to ~65 lbs

Model of Frame

Driver Controls

- Verified compliance of all designs with SAE technical specifications
- Researched and validated designs
- Planned a Vehicle Monitoring System to provide driver with instantaneous feedback on engine performance, speed, fuel level, and vehicle structural health

Vehicle Monitoring System Concept

Completed Work

Suspension

• Developed mathematical model for A-arm geometry to optimize suspension properties • Consideration given to spring rate, ride frequency, roll center, jacking, ride comfort, and jump trajectory • Focused on high ground clearance and long control arms • Completed front and rear suspension geometry

2D Front A-arm Model

Drivetrain

- Developed and ran MATLAB simulation for testing gear ratios to identify optimal torque to speed ratio as a function
- of acceleration • Optimized transmission components for various loading scenarios and material selection using Goodman fatigue criteria

Acknowledgements and Sponsors Project Advisor: Hollis Dinwiddie **Sponsors:** NMT Mechanical Engineering Department

Output-Shaft

Spring Goals

• Finish frame prototype by 01/09/2021 • Finish suspension prototype by 02/13/2021 • Have a rolling chassis completed by 02/14/2021 • Prepare business presentations & reports by 02/15/2021 • Complete vehicle assembly by 03/14/2021 • Test vehicle from 3/21/21 through 4/25/21

2018-2019 NMT Baja Car

More About Us

2020-2021 Team in Action

Scan this QR Code to visit the NMT Baja SAE Facebook Page