Evaporative Cooler Controller Design Troy Boggs, Quincy Bradfield, McKenna Gold, Jordan Tesillo Department of Electrical Engineering, New Mexico Institute of Mining and Technology

Goal

Goal: Develop a system that can control an evaporative cooler and maintain within +/-1 degree of set temperature 90% of the time, and within +/- 2 degrees 95% of the time, when outside temperature is higher than inside temperature

Background

Advantages of Evaporative Coolers:

- More Environmentally Friendly than AC
- Lower cost
- Easier to install and maintain

In developing a low cost control system for most evaporative coolers, consumers will be able to buy something less expensive that will also keep their house cool.

Objectives

- $\pm 1^{\circ}$ F 90% of the time
- $\pm 2^{\circ}F$ 95% of the time
- Rechargeable / Recyclable Batteries
- Minimal Sensors
- Low Cost
- Able to add Flash Storage
- Able to replace existing thermostat
- No larger than client provided hardware
- Bluetooth Low Energy (BLE) Compatibility
- Wifi compatibility
- Updatability

Objective Met

	The model plot shows that the $2^{\circ}F$ target is hit, but not the $1^{\circ}F$	No Yes
eries	Batteries are recyclable	Yes
	2 sensors are required for an accurate algorithm to function	Yes
	The production cost is \$70.53	Yes
	Additional flash storage not possible	No
-	Uses the same wires as conventional evaporative cooler thermostat	Yes
d	This is client provided hardware	Yes
	Connects to Bluestooth Sensor	Yes
	Wifi was not implemented	No
	Pico D4 updatable through micro USB port	Yes

ve Cooler an algorithm ardware hm sensor	 Objectives not met: The 1°F was not achieved for houses above 2000 sq. ft. due to oscillations Wifi took a backseat to BLE Unable to add flash storage because we used client hardware What we would do differently: Use Arduino sensors Manage time more efficiently

Professor
sor
ections

Dr. Varela, Thermodynamic Model Nancy Nangeroni, Project Sponsor