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ABSTRACT

The world class Questa porphyry molybdenum deposit occurs in northern New
Mexico and belongs to a unique Climax-type class of ore deposit. Several deposits of the
same genre (Climax, Henderson, Silver Creek, and Mount Emmons) occur in Colorado
along the Colorado Mineral Belt (COMB). The genetic origin of Climax-type deposits
has been debated throughout the economic geology community in terms of source of
mineralizing fluids, temperature of mineralization, and fluid evolution. A detailed
geochemical study of the Goat Hill orebody of the Questa Climax-type porphyry
molybdenum deposit provided evidence from three complimentary analyses (fluid
inclusion microthermometry, stable isotope analyses, and fluid inclusion gas analyses) for
the genetic origin and fluid evolution of the Questa system.

The Goat Hill orebody at Questa is comprised of a stratified magmatic-
hydrothermal breccia (MHBX) and later quartz-molybdenite (qtz-mo) stockwork
veinlets. The MHBX consists of five facies (A-E) based upon a distinct mineralogic and
alteration evolution within the breccia. It was revealed by fluid inclusion
microthermometry, stable isotope analyses, and fluid inclusion gas analyses that no fluid
evolution based upon MHBX facies was evident in quartz to correlate with the
mineralogic/alteration evolution. Fluid inclusion microthermometry resulted in similar
wide ranges of homogenization temperatures (Tlv = 81-520°C) and salinities (0-64 eq.
wt.% NaCIl+KClI+CaCl,) for quartz from all of the MHBX facies. The later qtz-mo
veinlet data was essentially analytically indistinguishable from the MHBX quartz (Tlv
range of 62-560°C and salinity range of 0-63 eq. wt.% NaCl+KCI+CaCl,) with only

minor differences, demonstrating that the veinlets experienced a similar evolutionary



history as the MHBX. The minor differences between the veinlets and the MHBX (fluid
inclusion size, abundance, and type) may indicate that the veinlets began as a slightly
more evolved magmatic-hydrothermal fluid. Even though no evidence of fluid evolution
based upon facies was revealed in the quartz fluid inclusion data, four stages (1-4) of
fluid evolution independent of facies were identified in the MHBX and veinlet fluid
inclusion data. The earliest, most pristine fluid (Stage 1) with a mode temperature of
460°C evolved to the later stages (2-4) by phase separation, simple cooling, and meteoric
mixing. The main stage of molybdenite mineralization occurred in Stage 2 (mode Tlv of
380°C) and a secondary mineralization phase in Stage 3 (mode Tlv of 280°C), both due to
temperature decrease from simple cooling and meteoric mixing. Meteoric influx and
fluorite/calcite precipitation occurred in Stage 4 (mode Tlv of 200°C).

Despite the lack of evolutionary pattern based upon facies in the quartz stable
isotope data, a fluid evolution was evident, however, in the §"®020 and 8Dy0 values
between the different mineral phases of the MHBX matrix paragenetic sequence
(fluorophlogopite =>quartz > fluorite—>calcite) with the fluid evolving from a marginally
magmatic to magmatic-dominant mixed magmatic-meteoric to meteoric-dominant mixed
magmatic-meteoric source. Water isotope values for molybdenite-associated
fluorophlogopite (8180H20 and 6Dy0 values of 3.8-7.4%o and -89 t0 -63%o) and quartz
(8020 range of 1.5-3.7%o) were calculated at the main mineralization mode
temperature of 380°C. Fluid inclusion 8Dyy0 values from quartz ranged from -101 to -
71%o. Post-mineralization fluorite yielded fluid inclusion §*®Op0 and 8Dyyo Values of -
4.0 10 -1.7%o and -109 to -106%o, respectively. 8**Oppo values for calcite (-4.3 to -1.3%o)

were calculated utilizing the associated Stage 4 mode temperature of 200°C. Similar to



the fluid inclusion microthermetry data, the veinlet quartz was essentially analytically
indistinguishable from the MHBX for calculated §'Op,0 values (1.6-3.9%o at 380°C),
further supporting that the veinlets underwent the same evolutionary history as the
MHBX. The veinlets exhibited widespread fluid inclusion 8Dp,o values (-143 to -52%o)
compared to the MHBX matrix, possibly due to an interstitial water contribution or
analytical error associated with smaller, less abundant fluid inclusions and associated
small sample peaks.

Sulfur stable isotope analyses on molybdenite, pyrite, and anhydrite and carbon
stable isotope analysis on calcite revealed a magmatic source for Questa sulfur and
carbon with 8S ranges of 0.4-2.3%o, 1.6-2.5%o, and 6.6-10.0%o, respectfully, and
calculated 8"*Ccop values of -6.0 to -4.9%. at 200°C. Despite a meteoric component of
varying degrees to the fluid associated with these minerals, a magmatic source is possible
for these two species due to the fact that meteoric water is low in sulfur or carbon, hence
allowing the magmatic signature to remain with the fluid.

Similar to the fluid inclusion microthermometry and stable isotope data, the fluid
inclusion gas analyses showed a similar evolution on the fluid source diagrams of
Norman and Moore (1999) and Blamey and Norman (2002) with Na/Ar vs. CO,/CH,4 and
N/Ar vs. Ar/He ratios that plotted in near magmatic to meteoric source fields for MHBX
quartz and meteoric to evolved (crustal) source fields for later MHBX fluorite. The
veinlet fluid inclusion gas analysis data was also essentially analytically indistinguishable
from MHBX quartz, with only a minor difference that suggests that the veinlets began

from a slightly more evolved magmatic-hydrothermal fluid.



A comparison of the geochemical data of Questa with the Climax-type deposits of
the COMB revealed that these deposits not only possess common physical characteristics,
but also similar genetic fluid evolution histories, that render them members of this unique
deposit class. Similar to Questa, the Climax-type deposits of the COMB possess
common fluid inclusion types, non-magmatic raw homogenization temperature modes
ranging from 320-400°C, and magmatic to mixed magmatic-meteoric §*Op0 and 8Dpo
ranges of 2-9.7%o and -140 to -83%o associated with molybdenite mineralization.

Another similarity between the deposits is a magmatic source for sulfur with a
834Smo|ybdenite range of 0.4-5.3%o for all of the deposits. In comparison of the different
deposits, it was also found that the difference in reported fluid origins (magmatic vs. a
meteoric component) between the deposits was not necessarily due to data differences,
but often the interpretation of TshI>>Tlv fluid inclusions or the lack of complimentary
data sets.

Keywords: Climax-type porphyry molybdenum deposit; fluid inclusion analysis;

stable isotope analysis; fluid inclusion gas analysis; Questa, New Mexico; ore
genesis.
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PREFACE

This dissertation is separated into three chapters (I-111), with each chapter consisting of a
paper written in scientific journal format for publication. Chapter I involves the fluid
inclusion microthermometry of Questa, Chapter Il involves stable isotope and gas
analyses on Questa, and Chapter 111 integrates the findings of the first two papers on
Questa with a comparison of those findings to the Climax-type deposits of the Colorado
Mineral Belt. Please note that due to the scientific paper format of this dissertation where
each chapter was composed to be a stand-alone paper, some redundancy will be

encountered between the chapters.

xii



CHAPTER I

Genetic Fluid Evolution of the Magmatic-hydrothermal
Breccia and Stockwork Veinlets of the Goat Hill Orebody, Questa
Climax-type Porphyry-Mo System, New Mexico — A Fluid Inclusion Study

ABSTRACT

The Goat Hill orebody of the Questa Climax-type porphyry molybdenum system
is composed of a magmatic-hydrothermal breccia (MHBX) and later quartz-molybdenite
(gtz-mo) stockwork veinlets. Ross (2002) defined five distinct stratified facies (A-E)
within the Goat Hill MHBX based upon matrix mineralogy, and clast alteration and
texture. Higher temperature mineralogic and alteration assemblages occur in the facies
closest to the source intrusion (facies A and B), and lower temperature mineralogic and
alteration assemblages occur in the facies most distal to the source (facies D and E). It
was proposed by Ross (2002) that evolution of the magmatic-hydrothermal fluid away
from its source is a plausible mechanism for these differences in the breccia facies.

A spatially and temporally constrained fluid inclusion study was performed on
MHBX matrix and veinlet quartz in order to delineate the source of the ore-bearing
fluids, the mechanism for molybdenite mineralization, and if there was a fluid evolution
that occurred in association with the mineralogic/alteration evolution of the Goat Hill
MHBX. Two MHBX matrix fluorite samples were also analyzed. Four major fluid
inclusion types were identified in both the MHBX matrix and veinlets of the Goat Hill:
liquid-vapor type | inclusions, halite-bearing type Il inclusions, halite+sylvite-bearing
type I11 inclusions, and CO,-rich type IV inclusions. A large number of the halite-

bearing fluid inclusions homogenized by halite dissolution at temperatures much greater



than the homogenization temperatures of the liquid-vapor phase. Based upon phase
equilibria constraints and various evidence reported in this study, it is concluded that
these inclusions are a result of entrapment of a halite crystal during heterogeneous
trapping rather than in-situ precipitation. Consequently, fluid inclusion temperature data
is reported in terms of homogenization of the liquid-vapor phase (TIv) rather than the
final temperature of homogenization.

No fluid evolutionary pattern based upon MHBX facies in quartz was evident,
with similar wide ranges in temperatures and salinities in all facies. However, an
evolution was evident between MHBX matrix quartz (paragenetically early) and fluorite
(paragenetically late), with fluorite reflecting meteoric influx into the system with low
temperatures and salinities. This evidence suggests that sampling and analysis of
different mineral phases of the MHBX paragenetic sequence would most likely reflect the
mineralogic/alteration of the MHBX.

The MHBX matrix and gtz-mo veinlet data was essentially analytically
indistinguishable, and most likely followed a similar fluid evolution history. The MHBX
matrix (quartz and fluorite) exhibited a wide TIv range of 81-520°C, with modes at
180°C, 280°C, 380°C, and 460°C and a salinity range of a salinity range of 0-64 eq. wt.%
NaCl+KCI+CaCl,. The gtz-mo veinlets exhibited a wide Tlv range of 62-560°C, with
modes at 200°C, 280°C, and 380°C and a salinity range of 0-63 eq. wt.%
NaCIl+KCI+CaCl,. Four stages (1-4) of fluid evolution were identified to explain the
broad ranges in temperature and salinity (T-X) data for the MHBX matrix and gtz-mo
stockwork veinlets, and are associated with the Tlv modes in the fluid inclusion data.

The earliest, most pristine fluid (Stage 1) evolved to the later stages (2-4) by phase



separation, simple cooling, and meteoric mixing. In addition, meteoric influx occurred in
Stage 4. Molybdenite deposition occurred in Stages 2 and 3 as a result of temperature

decrease.



INTRODUCTION

The genetic origin of Climax-type porphyry molybdenum deposits (i.e. Questa,
NM and Mt. Emmons, Silver Creek, Climax, and Henderson/Urad, CO) has been debated
throughout the economic geology community. Various previous fluid inclusion studies
on Climax-type deposits have concluded magmatic (Kamilli, 1978; White et al., 1981,
Cline and Bodnar, 1994; Cline and Vanko, 1995; Seedorff and Einaudi, 2004), magmatic
and meteoric mixing (Hall 1974; Smith, 1983), or evolution from magmatic to meteoric
(Bloom, 1981), as the origin of the molybdenum-bearing fluids and associated
molybdenite mineralization. Fluid inclusion analyses yielding different types,
temperatures of homogenization, and salinities, have been utilized to determine the
genetic origin of Climax-type deposits. High salinity fluid inclusions with a temperature
of halite dissolution much greater than the temperature of liquid-vapor homogenization
have been identified and are common in this type of deposit (Hall, 1974; Kamilli, 1978;
Bloom, 1981; White et al., 1981; Smith, 1983; Carten 1987; Cline and Bodnar, 1994;
Cline and Vanko, 1995; Ross, 2002; Ross et al., 2002; Seedorff and Einaudi, 2004;
Klemm et al., 2004; Klemm et al., 2008). Several authors have used these high salinity
brines as a justification for a magmatic origin for the ore fluids, in that the fluids exsolved
from the silicic melt (Kamilli, 1978; White et al., 1981; Cline and Bodnar, 1994; Cline
and Vanko, 1995). Other authors debate that this type of fluid inclusion is a result of the
captured halite phenomenon and is not representative of a real fluid (Eastoe, 1978;
Wilson, 1978; Erwood et al., 1979; Bloom, 1981; Campbell et al., 1995; and Kodera et
al., 2004). Lastly, some authors have attributed this phenomenon to post-entrapment

modification of fluid inclusions (Klemm et al., 2004; Klemm et al., 2008).



At the Questa Climax-type porphyry molybdenum system, the Goat Hill orebody
consists of a magmatic-hydrothermal breccia (MHBX) and cross-cutting quartz-
molybdenite stockwork veinlets. The Goat Hill MHBX is composed of five distinct
stratified facies (A-E), which are defined by matrix mineralogy, and clast alteration and
textures. Higher temperature mineralogic and alteration assemblages occur at the base of
the breccia and closest to the source intrusion (facies A), and lower temperature
mineralogic and alteration assemblages occur at the upper and distal edges of the MHBX
(facies D and E). The facies closest to the source intrusion (A) contains recognizable
magmatic textures, in addition to higher temperature assemblages (Ross, 2002; Ross et
al., 2002).

The purpose of this study was to perform a spatially and temporally constrained
fluid inclusion microthermometric analysis of the Questa Goat Hill orebody to determine
the genetic origin of the MHBX and veinlet ore fluids, the mechanism for molybdenite
mineralization, and if there was a fluid evolution for the Goat Hill MHBX that coincided
with the mineralogic/alteration zonation of the MHBX facies. The spatial and temporal
constraint of this study proves significant, in that previous studies did not constrain
samples in terms of space and time (Bloom, 1981; Cline and Bodnar, 1994; Cline and
Vanko, 1995; Klemm et al., 2004; Klemm et al., 2008). In addition, this study focuses on
the origin of the much debated high salinity fluid inclusions, where the temperature of

halite dissolution is much greater than the temperature of liquid-vapor homogenization.



BACKGROUND

Climax-type vs. Quartz Monzonite Type Porphyry-Mo Deposits

Porphyry molybdenum deposits are the a significant source of the world’s
molybdenum. These deposits are genetically related to porphyritic intrusions ranging
from quartz-monzonite to granite in composition. Based upon the composition of the
source intrusion and their fluorine content, porphyry molybdenum deposits are divided
into two subclasses, the low-fluorine quartz monzonite-type (which has a quartz-
monzonite source intrusion) and the high-fluorine Climax-type (name originating from
Climax, CO, a world-class porphyry Mo deposit which has a high-silica, alkali-rich
granite source intrusion). In addition to having different source intrusion whole-rock
compositions and fluorine content, quartz monzonite-type and Climax-type porphyry-Mo
deposits vary in other characteristics as well, such as average deposit grade (0.1-0.2%
MoS; and 0.3-0.45% MoS,, respectively), Cu: Mo ratio (1:30 to 1:1 and 1:100 to 1:50,
respectively), tectonic setting (subduction zones/orogenic belts and rift zones,
respectively), age (most commonly Mesozoic and Tertiary and mainly Mid-Tertiary,
respectively), mineralogy, geochemical signature, ore controls, etc. Questa is classified
as a Climax-type porphyry Mo deposit (White et al., 1981; Cox and Singer, 1986;

Guilbert and Park, 1986; White et al., 1990; Carten et al., 1993; Donahue, 2002).

Location

The Questa Climax-type porphyry molybdenum system (Questa system) is
located in north-central New Mexico in the Taos Range of the Sangre de Cristo

Mountains (Figure 1). The Questa system is sited on the southern flank of the Tertiary
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Figure 1. Mine location map showing the relative location of the Climax-type deposits of
NM and CO that occur along the Rio Grande Rift. Not to scale.




Questa Caldera in the Latir volcanic field. Mineralization of the Questa system follows a
structural trend along the southern flank of the caldera, referred to as the Red River
Trench, with a N70°E to N75°E orientation (Figure 2) (Lipman, 1992; Ross, 2002; Ross
etal., 2002). Mineralization occurs as three distinct Mo deposits from west to east — the
Log Cabin, Central, and Spring Gulch deposits. The Central deposit is the only site of
molybdenum mining in the district. It is horseshoe-shaped and consists of two distinct
ore zones, the Northeast and Southwest. Several distinct orebodies exist within these ore
zones and are defined by a 0.2% MoS; grade cutoff (Figure 3) (Ross, 2002; Ross et al.,

2002).

Mining History

The Questa and Red River mining districts were mined for gold, silver, copper,
and molybdenum since the late 1800s (Carpenter, 1968; Schilling, 1956; Ross, 2002;
McLemore and Mullen, 2004). Molybdenum is the only commodity being mined in the
Questa and Red River mining districts at the present time (New Mexico Energy,
Minerals, and Natural Resources, 2010).

Ferrimolybdite (Fe2(M0QO4)3nH,0) and molybdenite were discovered along the
Sulphur Gulch drainage of the Red River in 1916-1917 (Martineau et al., 1977; Schilling,
1956). Underground lode mining commenced in 1923 on the Old Underground Mine,
with a production of 50 tons/day at >4% MoS, (Carpenter, 1968; Ross, 2002; Ross et al.,
2002). Production ceased due to the exhaustion of veins in the Old Underground Mine
by 1958, with a total production of 0.375 million tons (Mt) of ore at >4% MoS;

(Carpenter, 1968; Schilling, 1956; Ross et al., 2001; Ross, 2002; Ross et al., 2002).
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Exploration efforts soared by 1956, which led to the 1957 discovery and delineation of a
low-grade, large tonnage molybdenite orebody, mineable by the open-pit method
(Carpenter, 1968; Schilling, 1956). Open-pit mining of stockwork veins of the Central
deposit commenced in 1965 and ceased in 1982 (Schilling, 1956; Bloom, 1981; Walker,
pers. comm., 2004). Between 1965 and 1982, the open pit produced 81 Mt of
molybdenum ore at 0.191% MoS; (Ross, 2002; Ross et al., 2002; Walker, pers. comm.,
2004).

In 1975, exploration efforts led to the discovery and delineation of several, deeper
mineable orebodies in the Southwest ore zone and Northeast ore zone (Schilling, 1956;
Martineau et al., 1977; Bloom 1981). Development of a large underground mine below
the Goat Hill Gulch in the Southwest ore zone was initiated, leading to the
commencement of underground mining of the Goat Hill orebody by the blockcaving
method in 1983. Mining ceased in 1986 due to a dip in the market prices for
molybdenum, but by 1989, production recommenced in the underground mine. Mining
of a magmatic-hydrothermal breccia (MHBX), and cross-cutting stockwork veinlets, of
the Goat Hill orebody ceased in 2000 with a total production of 21.11 Mt of ore at
0.318% MoS,. The Goat Hill orebody has not been exhausted (Ross, 2002; Ross et al.,
2002).

Presently, underground mining is in the D-orebody of the Southwest ore zone,
which is adjacent to and east of the Goat Hill orebody. Blockcaving mining commenced
in 2001 on the D-orebody, producing an average ore grade of 0.338% MoS, and

consisting of MHBX and crosscutting stockwork veinlets (Ross, 2002; Ross et al., 2002).
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Future mining may consist of proven and probable reserves, including the currently
mined D-orebody, of 63.54 Mt of ore at 0.338% MoS; with a 0.25% MoS, cutoff grade

(Ross, 2002; Ross et al., 2002).

Geologic History of the Questa Area

Precambrian felsic intrusions and amphibolite grade metamorphic rocks (1750-
1610 Ma) comprise the basement complex of the Questa area (Figure 4) (Carpenter,
1968; Smith, 1983; Meyer, 1991; Ross, 2002; Ross et al., 2002). A steeply dipping
Precambrian shear zone along the present day Red River valley separates two
Precambrian terranes - the Taos terrane metaigneous suite to the south (mafic schists and
gneisses, amphibolite, and felsic schist) and the younger metasediments of the Questa
terrane to the north (Meyer, 1991; Ross, 2002; Ross et al., 2002). Precambrian quartz-
monzonite to granite plutons that intruded the accreted package also occur in the area
(Meyer, 1991).

Shallow subduction of the Farallon oceanic plate underneath the North American
continental plate during the late Cretaceous-early Eocene prompted uplift in northern
New Mexico and southern Colorado forming the Sangre de Cristo Mountains (Meyer,
1991; Kelley et al., 1992). Erosion of the Laramide highlands during the Paleocene and
Eocene produced the locally derived sandstones and conglomerates of the Sangre de
Cristo formation in the Questa area (Meyer, 1991). The Sangre de Cristo formation only
occurs in a few locations in the mine area.

During the mid-Oligocene to early Miocene, subduction of the Farallon plate
provided a source for the calc-alkaline intermediate volcanism of the Latir volcanic field

(28-26 Ma) (Leonardson et al., 1983; Johnson and Lipman, 1988; Meyer, 1991). The
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Quaternary rift-filling sediments

Lamprophyre to latite dikes

Tertiary Sulphur Gulch, Red River, and Bear
Canyon phitons (24.8-24.3 Ma) - granite to aplite;
MHBX mineralization of G H. orebody (24 2+/-0.3
Ma)

Tertiary Amalia Tuff (25.28 Ma) and gtz-latite to
rhyolite porphyry intrusions

Tertiary composite granitic hatholith

Tertiary andesite to qtz-latite flows interbedded with
volcaniclastic sediments (28-26 Ma)

Cretaceous-Tertiary sandstones and
conglomerates

Precambrian metamorphic and igneous rocks (1730~
1610 Ma)

Figure 4. General stratigraphic column of the Questa-Red River area. Thicknesses not to scale. In
part modified from Ross, 2002, Thicknesses and dates from Leonardson et al. (1983), Johnson et al.
(1989), Czamanske et al. (1990}, Mever (1991), and Zimmerer (2008).
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volcanic rocks of the Latir field are andesite to quartz-latite and are interbedded with
volcanically derived sedimentary rocks. In the Questa area, the andesite volcanic
package (both flows and volcaniclastics) that overlies the Precambrian basement is
approximately 1 to 2 km thick (Martineau et al., 1977; Meyer, 1991; Ross, 2002; Ross et
al., 2002).

Thermal weakening of the crust by Oligocene volcanism caused the late
Oligocene onset of a NE-SW trend of regional crustal extension from the Southern Rocky
Mountains to Mexico - the Rio Grande Rift (Leonardson et al., 1983; Meyer, 1991). The
onset of peralkaline magmatism (26 Ma) in the Questa area coincided with the initiation
of the Rio Grande Rift (32 Ma) (Johnson and Lipman, 1988; Johnson et al., 1990; Meyer,
1991). Extensional rift-related fractures aided in localizing the emplacement of a 20x35
km composite batholith that underlies the entire mining district (Leonardson et al., 1983;
Meyer, 1991). Following emplacement of the batholith, eruption of the >500 km? high
silica rhyolite ashflow Amalia Tuff (25.28 Ma) initiated collapse of the Questa caldera
(Leonardson et al., 1983; Johnson and Lipman, 1988; Meyer, 1991; Ross, 2002; Ross et
al., 2002; Zimmerer, 2008). Penecontemporaneous with eruption of Amalia Tuff, a
genetically related intrusive suite consisting of quartz latite to rhyolite in composition
intruded the margins and floor of the caldera (Meyer and Foland, 1991; Meyer, 1991).

Approximately one million years following the eruption of the Amalia Tuff, three
syn-mineralization, high silica granite plutons (24.8-24.3 Ma; Zimmerer, 2008) intruded
the southern margin of the Questa caldera — the Bear Canyon, Sulphur Gulch and Red
River plutons, respectively from west to east (Leonardson et al., 1983; Czamanske et al.,

1990; Ross, 2002; Ross et al., 2002). These plutons are cupolas of the massive batholith
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underlying the mining district (Czamanske et al., 1990). The intrusions consist of distinct
granitic to aplitic phases (Czamanske et al., 1990). The aplitic phase of the Sulphur
Gulch pluton is believed to be the source intrusion for the molybdenum mineralization of
the Central deposit (24.2+/-0.3 Ma) (Czamanske et al., 1990; Meyer and Foland, 1991).

Following mineralization, rhyolite porphyry intruded the mine area. In addition,
lamprophyre to latite dikes intruded the area, post-dating all rocks, mineralization, and
alteration in the area. The western margin of the Questa caldera was normal-faulted into
the rift by a rift-front fault (Meyer, 1991). Quaternary rift-filling sediments are the

youngest in the area (Meyer and Foland, 1991).

The Goat Hill Orebody

The Goat Hill orebody, located in the Southwest ore zone of the Central deposit at
the Questa Mine, occurs between the western-most orebody (Southwest Extension) and
the D-orebody of the Southwest ore zone (Figure 3). The Goat Hill orebody is hosted in
Tertiary andesite (Tan) and partially in an aplitic source intrusion. Molybdenite
mineralization within the Goat Hill orebody occurs within a magmatic-hydrothermal
breccia (MHBX) and later quartz-molybdenite (qtz-mo) stockwork veinlets that exceed
the confines of the MHBX (Figure 5). MHBX-related molybdenite mineralization
contributed approximately 40% of grade (0.2% MoS, cutoff) to the orebody, whereas the
later stockwork veinlets contributed the remaining 60% of the molybdenite
mineralization (Ross, 2002; Ross et al., 2002). The Goat Hill orebody exhibits typical
Climax-type porphyry alteration with that is centered on the orebody and evolves above
and outward of the source intrusion. The earliest alteration occurs farthest from the

source intrusion and is a regional pre-mineralization/pre-brecciation propylitization of the
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Figure 5. Hand sample photographs showing the two different types of ore and the difference between the MHBX
facies. Scale in inches. Note the differences in the two end-members of the MHBX (A and E facies) and the
C-facies that is intermediate between the two. (A) MHBX from A3-facies with quartz(qtz)-potassium
feldspar(kspar)-trace molybdenite(mo) matrix and aplite and biotite altered andesite clasts. A qtz-mo veinlet
crosscuts the MHBX. (B) MHBX from the C-facies with fluorophlogopite(flphlog)-kspar-qtz-mo-trace calcite(ca)-
anydrite(anhy) matrix and biotite altered and quartz-sericite-pyrite(qsp) overprinting biotite altered andesite clasts.
(C) MHBX from the E-facies with qtz-flphlog-mo-ca matrix and corroded gsp altered andesite clasts. (D) qtz-
mo veinlet from unbrecciated andesite from within the orebody but outside of the MHBX.
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Tertiary andesite, associated with interaction of the country rock with meteoric water.
The first alteration type associated with the intrusion of the source aplite and release of
magmatic hydrothermal fluids is a poorly defined high silica zone closest to the source
intrusion. Moving outward from the source intrusion in spatial and temporal order are
potassic and phyllic alteration. Lastly, local argillic alteration occurred in fracture zones

(Leonardson et al., 1983; Meyer, 1991).

The Magmatic-hydrothermal Breccia (MHBX)

The Goat Hill MHBX was formed by hydraulic fracturing of andesite and
premineral dikes by ore-bearing fluids that evolved from a crystallizing water-saturated
granitic magma which was emplaced at depths of 3 to 5 km (lithostatic pressures of 0.8-
1.4 kbars) below surface (Ross, 2002; Ross et al., 2002; Molling, 1989; Cline and

Bodnar, 1994). Volumetrically, the breccia body is >6x10° m°.

It is located above and
southward of the apex of an aplitic stock, which is believed to be the source for the
mineralizing fluids (Figures 6 and 7). The upper contact of the breccia dips 18° to the
north and is thought to follow a pre-breccia fabric, either representing a fracture zone or

volcanic bedding, in which the magmatic-hydrothermal fluids were focused (Ross, 2002;

Ross et al., 2002).

Ross (2002) defined 5 distinct stratified facies (A-E) within the MHBX based
upon matrix mineralogy, clast alteration, and breccia textures (Table 1; Figure 5). Facies
A occurs at the bottom of the MHBX, adjacent to the source aplite intrusion, and is
divided into 3 subfacies (A, Az, and A3). Facies D and E occur at the top of the MHBX,
most distal to the source intrusion. The MHBX matrix evolves mineralogically from the

bottom of the breccia and closest to the source intrusion to the top and distal edges of the
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breccia. The major matrix constituents of the MHBX consist of aplite, quartz, potassium
feldspar and trace molybdenite in the A facies; quartz, potassium feldspar and trace
molybdenite in the B facies; quartz, potassium feldspar, fluorophlogopite, calcite,
molybdenite and fluorite in the C facies; quartz, fluorophlogopite, calcite, molybdenite
and fluorite D and E facies. The MHBX clast alteration also evolves from the base of the
breccia to the upper and distal edges. The major alteration types in the MHBX consist of
biotite and potassium feldspar alteration in the A facies; biotite alteration in the B facies;
biotite alteration and quartz-sericite-pyrite (QSP) alteration in the C facies; QSP
alteration overprinting biotite alteration in the D facies; and QSP alteration in the E
facies. It was proposed that the differences in the breccia facies is due to evolution of the
magmatic-hydrothermal fluid away from its source, differing intensities of water/rock

interaction, and/or differing breccia forming processes (Ross, 2002; Ross et al., 2002).

Previous Fluid Inclusion Studies on Questa

Bloom (1981) performed a fluid inclusion reconnaissance study on samples
related to mineralization and associated alteration at Questa, and Hudson Bay Mountain
and Endako in British Columbia. The samples collected and analyzed at Questa were
from the open pit. Bloom identified five distinct fluid inclusion types at Questa:
[liquid(l)>vapor(v)+/-hematite(hm)] type A, [I<v+/-hm+/-halite(hl)] type B, [I>v+hl+/-
hm] type C, [I>v+hl+sylvite(sylv)+/-hm+/-molybdenite (mo)+/-unknowns] type D, and
[lh20+lco2tveoz] type E. Hypersaline (33.5-51 eq. wt.% NaCl; 10-19% eq. wt. % KClI;
40-70% NaCl+KCI) Type D fluid inclusions are suggested to be associated with early,
fluorine-rich biotite-stable potassic alteration. Type D inclusions predominantly

exhibited final homogenization (Ty,) by halite dissolution with a range of 320°C to
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>600°C and a mode at 390°C. Bloom suggests that the bulk of molybdenite
mineralization coincided with quartz-sericite-pyrite, or phyllic, alteration and with the
moderately saline (30-60 eqg. wt.% NaCl) type C fluid inclusions or the low to moderately
saline (5-15 eqg. wt.% NaCl) type A fluid inclusions. Type C fluid inclusions
homogenized by the dissolution of halite (Tshl) or vapor bubble disappearance (vbd) with
a range from 300 to >600°C and a mode at 390°C. Type A inclusions homogenized by
vapor bubble disappearance and also exhibited a final Ty, of 300 to >600°C with a mode at
390°C. Pressures varied during mineralization from lithostatic to hydrostatic load with
intermittent overpressures. Hence, a universal pressure correction could not be applied.
Local or intermittent boiling was evident, however Bloom (1981) concluded that
significant boiling was not probable due to low abundance of co-existing vapor-rich
inclusions.

Bloom (1981) suggested that the various fluid inclusion data are evidence for
evolution from magmatic to meteoric conditions. The hypersaline type D solution was a
precursor to the bulk of mineralization and evolved directly from the granitic source
magma. Fluids re-equilibrated with the granitic source intrusion, or the dissolution of
halite precipitated by earlier hypersaline type D solutions along the halite trend, are
possible origins of saline type C inclusion fluids. Fracturing events causing adiabatic
cooling may be a possible mechanism of cooling the hydrothermal solutions from near
magmatic temperatures (390°C mode). Further fracturing in the system permitted the
influx of meteoric water, a source for the low salinity type A fluid inclusions.

Smith (1983) performed a reconnaissance fluid inclusion study and a study on the

solution geochemistry of molybdenum at Questa. Four types of primary fluid inclusions
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were observed: two-phase 1>v that homogenize by vapor bubble disappearance, two-
phase I<v that homogenize by liquid disappearance, three-phase I>v+hlxhmzmo that
homogenize by vapor disappearance or dissolution of halite, and multiphase
I>v+hl+sylvthmtmozanhydritetopaques(op). A wide range of homogenization
temperatures were measured (300-600°C) with three distinct histogram populations of
300-500°C, 520-555°C, and 580-600°C. Salinities demonstrated broad distribution of 5-
20 eqg. wt.% NaCl and 25-65 eq. wt.% NaCl. Liquid-rich secondary inclusions were
observed in almost every sample with a T}, range of 200-370°C.

Smith (1983) found that the hypersaline inclusions containing halite and sylvite
only occurred in quartz-biotite veins which predate molybdenite mineralization and
therefore represent the earliest fluids. Smith concluded that halite-bearing saline
inclusions found in quartz veins associated with potassic and sericitic alteration may
represent fluids generated from earlier hypersaline fluids by the exchange of K for Na
during potassic alteration. The halite-bearing saline inclusions and the liquid-rich two-
phase inclusions are believed to be associated with molybdenite mineralization. Smith
could not establish the paragenesis of the vapor-rich inclusions due to their coexistence
with all other inclusion types. Co-existence of liquid-rich and vapor-rich fluid inclusions
was interpreted to represent boiling. In the case of boiling fluids, Th=Tt (temperature of
trapping) and no pressure correction was necessary. The pressure of the boiling fluids
was approximately 180 bars for this case. Smith states that local or sporadic boiling is
evident, however most inclusions were not trapped at P-T-V conditions that allowed
boiling. For the inclusions that represented non-boiling fluids, pressures were calculated

to range from less than 100 bars to 500 bars. Temperatures of halite dissolution occurred
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within 40°C of vapor bubble disappearance in fluid inclusions which homogenized by
halite dissolution. Smith calculated a pressure of approximately 330 bars for these
inclusions.

Smith (1983) delineated the following geochemical factors that would favor
molybdenite mineralization. Molybdenite is transported in saline, high temperature
fluids. A decrease in the temperature of the fluid from 350 °C-250°C would result in a
98% decrease in molybdenite solubility. A decrease in pressure from 500 bars to 65 bars
at 350°C would decrease molybdenite solubility by 60%. An increase in pH and decrease
in oxygen fugacity would aid in molybdenite deposition. Dilution of saline hydrothermal
fluids by meteoric water would decrease molybdenite solubility. Molybdenite deposition
would occur in response to wall-rock interaction with the fluids associated with potassic
alteration, i.e. the formation of fluorine-rich micas, or the alteration of igneous biotite to
magnesium-rich hydrothermal biotite.

Cline and Bodnar (1994) performed a fluid inclusion study on samples collected
from andesite in the MHBX footwall at the 7120 ft haulage level of the Deep “D”-
orebody. Cline and Bodnar chose these samples because they were thought to be
representative of system sealing following brecciation and aqueous fluid exsolution that
prohibited fluid influx following ore deposition. These samples were also chosen due to
the high fluorine content of the MHBX matrix phlogopite, which is interpreted by Cline
and Bodnar to be an indicator that no alteration by post magmatic, fluorine-poor fluids
has occurred. Cline and Bodnar only analyzed inclusions in the quartz-biotite-
molybdenite matrix zone with silica- and potassium feldspar-flooded clasts (Ross et al.,

2002 - C, D or E zones), which excludes other zones of the MHBX. In addition,
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predominantly only large inclusions in clear quartz adjacent to the fluorophlogopite were
analyzed.

Three fluid inclusion types representing three distinct fluids were identified in this
study at Questa: liquid-rich low salinity type I inclusions that homogenize by vapor
bubble disappearance, vapor-rich type Il that homogenize to liquid, vapor, or by critical
behavior, and high salinity liquid-rich type Il1 fluid inclusions in which approximately
80% homogenize by halite dissolution and the remainder homogenize by vapor bubble
disappearance. Type I fluid inclusions exhibited a final Ty range of 150-370°C and a
salinity range of 0-12 eq. wt.% NaCl. Near critical type Il fluid inclusions exhibited a
wide range of homogenization temperatures and salinities of 360-500°C and 2-26 eq.
wt.% NaCl, respectively. Saline type 111 fluid inclusions homogenized between 200° and
500°C with a mode at 360° to 400°C. Type IlI salinities varied from 31 to 57 eq. wt. %
NaCl.

Based upon phase equilibria constraints (inclusions that homogenize by halite
dissolution are required to have been trapped in the liquid-stable, vapor-absent field) and
lack of low-density inclusions co-existing with liquid-rich brine inclusions, Cline and
Bodnar concluded that these fluids were not boiling and the different fluid inclusion types
were not formed by aqueous fluid immiscibility. Instead, Cline and Bodnar suggest that
the fluids originated by exsolution directly from the crystallizing silicic melt and different
pressure regimes yielded the three different fluid types with their respective
homogenization temperatures and salinities. The system consisted of an increasing
pressure regime with MHBX formation which yielded the moderate salinity fluids and

moderate pressures, system sealing causing a high pressure setting and high salinity
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inclusions, overpressures yielding high salinity inclusions where Tlv<<Tshl, and a low
pressure post-brecciation setting which yielded the low salinity fluids and/or the low
salinity. Lower temperature fluids may have exsolved directly from the silicic melt prior
to MHBX formation. Based upon all of these criteria, Cline and Bodnar suggest that the
system at Questa was purely magmatic, with no meteoric input.

Klemm et al. (2004) and Klemm et al. (2008) performed a preliminary fluid
inclusion study on “deep” and “upper” MHBX and stockwork veinlets from one drillhole
in the Goat Hill orebody and also from the D-orebody stockpile. Klemm et al. (2008)
observed only very small liquid-vapor fluid inclusions in the “deep” portion of the Goat
Hill MHBX and no thermometric data was reported for these inclusions. Observed fluid
inclusions were divided into 3 groups: i) I=v, variable CO,, low to moderate salinity,
opaque daughters present; ii) high salinity brine with several daughters (both opaques and
other translucent daughters); and iii) vapor-rich inclusions (Klemm et al. 2004 and 2008).
Klemm et al. (2004) identified two distinct brine fluids: an early brine with a salinity of
38-46 eq. wt.% NaCl and Th>450°C, and a late brine with a salinity of 32-40 eq. wt.%
NaCl with a Th range of 270-350°C. The early brine co-exists with the vapor-rich fluid
inclusions, evidence of boiling. Klemm et al. (2004) analyzed individual fluid inclusions
with an LA-ICPMS for Mo. The early brines contained up to 1000 ppm of Mo (Klemm
etal., 2004). Mo was below detection limits in the late brines. Early single-phase low
salinity inclusions (group i) were concluded to represent fluid that exsolved directly from
the crystallizing magma. In addition, it was concluded that Mo precipitated from the
brine by temperature decrease, since Mo concentrations decrease dramatically by over an

order of magnitude with decreasing Ty, (Klemm et al., 2004; Klemm et al., 2008).
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METHODS

Two matrix and two veinlet samples from each of the MHBX facies (A1, Az, As,
B-E), were collected from among 5 different drillholes (19.9-12.1, 21.7-15.5, 22.0-14.0,
23.4-11.8G, 23.5-11.8G) in the eastern portion of the Goat Hill MHBX for petrographic
and fluid inclusion microthermometric analysis (Figure 6 and Figure 7). The presence of
quartz was the primary criteria for sample selection. Quartz was the main mineral of
interest due to its abundance in the orebody, known association/cogenesis with
molybdenite, general transparency, abundant preservation of fluid inclusions in all the
facies in quartz, and low susceptibility to leakage and necking-down of the fluid
inclusions. Two fluorite samples were collected from facies C and D for petrographic
and fluid inclusion analysis as well. In addition, three background samples from the
source intrusion (one gtz-mo veinlet [SAV] and two barren magmatic-hydrothermal

quartz [SABQ]) were collected for petrographic and fluid inclusion analysis.

Petrographic Analysis

Prior to fluid inclusion analysis, a detailed petrographic analysis was performed
on each of the samples for mineralogy, alteration, and paragenetic relationships. The
petrographic thin sections were analyzed under both reflected and transmitted light with a

petrographic microscope.

Fluid Inclusion Microthermometry Analysis

After analyzing the samples petrographically, fluid inclusion microthermometry
analyses were performed on a mirror slice thick section of the corresponding petrographic

section. The fluid inclusion samples were also analyzed petrographically for fluid
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inclusion paragenetic relationships, distribution, content or phases present, size and shape
prior to microthermometric measurements.

Microthermometric measurements were made using a Linkam THMS-600
heating/freezing stage that was mounted on a petrographic microscope and associated
automatic temperature controller. The calibration of the heating/freezing stage was
checked in the beginning of each session on the fluid inclusion stage utilizing a pure
water standard. In addition, each week the instrument calibration was checked using a
pure water standard (mid temperature, Tm;e= 0°C ), CO,-water standard (low
temperature, Tmco, =-56.6°C), and potassium chromate standard (high temperature,
Tskacros = 398°C). The analytical error of the instrument is +/-0.1°C for temperatures at
or below 25°C and +/-2.0°C for temperatures around 400°C.

Microthermometric measurements were performed on 434 fluid inclusions (FIs)
(194 FIs from veinlets, 239 FIs from matrix). Due to the possibility of stretching of the
fluid inclusions during the heating process, freezing measurements were taken first.
Freezing measurements were performed on fluid inclusions that did not contain a halite
or sylvite daughter mineral, and any inclusion suspected or known to contain a CO,
phase. Inclusions were cooled rapidly to -110°C and warmed at a 20-0.1°C/min ramp
speed, depending on the proximity to the target temperatures. The slowest ramp speed
was used when approaching the target temperature. After freezing measurements were
obtained, the fluid inclusions were heated until the final phase change (final Th) or
decrepitation occurred. The inclusions were heated at a ramp speed of 2-0.5°C/min.

Salinity was calculated from either the temperature of final ice melting (Tmic) or the
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temperature of halite dissolution (Tshl) utilizing the MacFlinCor computer program of

Brown and Hagemann (1994).

RESULTS

Petrography

MHBX

The MHBX clast alteration and matrix were found to evolve from the base of the
breccia (A-facies) to the upper and distal edges (E-facies) as similarly noted by Ross et
al. (2002) with a few minor differences noted below in matrix composition (Table 2).
Trace biotite is found in the B-facies matrix. Anhydrite is a major matrix constituent in
facies C, D, and E and occurs late paragenetically (Figure 8). Trace matrix potassium
feldspar occurs in facies D and E. Gypsum noted as a matrix constituent in facies C and
D could be a primary matrix constituent or a result of post-mineralization alteration of
anhydrite. Both of these cases have been observed. Pyrite was noted as a minor late
matrix constituent in facies C, D, and E. Minor late hypogene kaolinite occurs as a vug
filling in facies C, D, and E. Microscopic fluorite is almost always associated with
molybdenite. Other matrix minerals that were observed in thin section are rutile, sericite

(as an alteration product of potassium feldspar and fluorophlogopite), topaz and apatite.

Veins
The major constituents of the later stockwork veinets are quartz, molybdenite,
pyrite and calcite (Figure 9). The veinlets are often composite in nature. Microscopic

fluorite is almost always associated with vein molybdenite as well. Other vein minerals
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that were observed in thin section are apatite, fluorophlogopite, potassium feldspar, rutile,

sericite, topaz and zircon.

Fluid Inclusions

Paragenesis

Due to the ambiguity of superimposed fluid inclusion populations, classifying
individual fluid inclusions as primary, pseudosecondary, or secondary proved to be
difficult, leading to an indeterminable paragenetic origin for most inclusions. However,
fluid inclusion paragenetic origin was identified whenever possible based upon criteria
summarized by Roedder (1979, 1984).

Microthermometric measurements on MHBX primary, pseudosecondary, and
inclusions of indeterminate origin revealed a broad range of Tlvs and salinities of 68-
520°C and 0-64 eq. wt.% NaCl+KCI+CaCl,, respectively. MHBX secondaries
demonstrated a Tlv and salinity range of 88-241°C and 0-6 eq. wt.% NaCl+KCI+CaCl,,
respectively.

Microthermometric measurements on veinlet primary, pseudosecondary and
inclusions of indeterminate origin also revealed a broad range of Tlvs and salinities of 62-
560°C and 0-63 eq. wt.% NaCl+KCI+CaCl,, respectively. Secondary fluid inclusions
from the veinlets demonstrated a Tlv and salinity range of 183-277°C and 1-5 eq. wt.%

NaCl+KCI+CaCly,, respectively.

Types
Based upon visible phases at room temperature, four major fluid inclusion types
(I-1V) were identified at Questa (Figure 10). Type I inclusions contain liquid and vapor,

and are divided into three subtypes (a, b, and c¢) (Table 3). Type la fluid inclusions are
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Figure 10. Microphotographs of fluid inclusion types. A) Type Ia B)
Type Ib C) Type Ic D) Type Ila E) Type IIb F) Type Ilc G) Type
[ITa H) Type IV. White bar is approximately 5 pm. No pictures are
available for types IId and IIIb.
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liquid-rich and contain either opaque (op) and/or hematite (hm) and/or unknown other
translucent (ot) daughter minerals (Figure 10). The opaque daughter minerals may be
molybdenite, fluorophlogopite or rutile. Pyrite was identified as an opaque daughter
mineral species as well. The unknown ot daughter minerals could be anhydrite,
nahcolite, fluorite, or calcite. Type Ib inclusions, the most abundant of the fluid inclusion
types, are liquid-rich with no daughter minerals present. Type Ic inclusions are vapor-
rich and may contain one or more op, ot, or hm daughter minerals. Type Il fluid
inclusions contain liquid, vapor and halite, and are subdivided into four subtypes (a, b, c,
and d). Type lla, llb, and llc inclusions are liquid-rich and contain no additional
daughters, contain op and/or hm daughters, and contain otxhmzop daughters,
respectively. Type Ild are vapor-rich inclusions containing halite and possible op, hm,
and ot daughter minerals. Type Il fluid inclusions are divided into two subtypes (a and
b). Type llla and I1Ib are liquid-rich and vapor-rich aqueous inclusions, respectively and
contain a halite crystal and sylvitexthmzop=ot daughter minerals. Types Ild and Il1b
were not used in this study due to the difficulty in observing any phase changes with
these inclusions and the minimal number of these inclusions observed in the samples.
Type 1V fluid inclusions, the least abundant of the fluid inclusion types, are carbonic-
bearing inclusions that contain liquid water, liquid CO,, and vapor CO, (double bubble).
The water phase is greater than the carbonic phases in Type IV inclusions.

Type la and Ib inclusions homogenize by vapor bubble disappearance (vbd) with
a TIv range of 88-520°C, and 105-540°C, respectively. Type Ic fluid inclusions
homogenize by liquid disappearance (Id) or critical behavior (cb) with a Tlv range of

240-560°C. All type I inclusions demonstrated a salinity range of 0-25 eq. wt.%
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NaCl+KCI+CaCl,. Due to the minute amount of liquid that exists in type Ic fluid
inclusions, difficulty in observing the final ice melting temperatures (Tmice) resulted in
minimal salinity data for this type inclusion. Five type I inclusions (two la and three Ib)
from the MHBX exhibited a Tmjce (-24.1 to -21.7°C) that was below the eutectic
temperature of -20.8°C for a pure H,O-NaCl system, suggesting CaCl, content. The two
criteria needed to report the salinity in terms of wt.% NaCl and CaCl, (melting
temperatures of hydrohalite and ice) were only observed in two of the five inclusions,
resulting in salinities of 6% NaCl and 19% CaCl, and 12% NaCl and 13% CacCl,, with a
bulk salinity of 25 wt.% NaCl+CaCl; equivalent for both inclusions. The NaCl/CaCl,
ratios for the two inclusions are both 0.79 (Shepherd et al., 1985).

Type lla and IIb fluid inclusions homogenized by halite dissolution (hd) or vbd
with a TIv range of 145-520°C and 62-480°C and salinity range of 30-59 and 24-64 eq.
wt.% NaCl+KCl+CaCl,, respectively. Type lic inclusions homogenized by vbd, hd, or
other translucent daughter dissolution (otd) with a Tlv range of 68-560°C and a salinity
range of 32-64 eq. wt.% NaCl+KCl+CaCls,.

Sylvite-bearing type Illa fluid inclusions homogenized by halite dissolution or
other translucent daughter dissolution with a Tlv range of 178-325°C. The salinity for
sylvite-bearing type Illa inclusions ranged from 21-47% NaCl and 14-21% KCI, with
bulk salinities of 39-63 wt.% NaCl+KClI(+CaCl,) equivalent. The K/Na ratios for type
I1la inclusions range from 0.35-0.82 (Roedder, 1984). Carbonic type IV fluid inclusions
homogenized to liquid water with a Tlv and salinity range of 130-260°C and 0-9 eq. wt.%

NaCl+KCI+CaCly,, respectively.

37



All four fluid inclusion types were observed in the MHBX matrix and only types I
and Il were observed in the qtz-mo veinlets, source aplite veinlets (SAV) and source
aplite barren quartz (SABQ). Types la, Ib, and Ic were observed in the gqtz-mo veinlets
and all of the MHBX facies (Table 3). Types Ib and Ic were also observed in the SABQ.
The CaCl,-bearing inclusions of types la and Ib occurred in facies A;, Az, B, and E.
Type lla inclusions were observed in the gtz-mo veinlets, SABQ and all MHBX facies
except facies B. Types Ilb and Ilc occurred in the gtz-mo veinlets, SABQ and all of the
MHBX facies. Type Ild was noted in facies A, A, C, and D. This inclusion type may
have occurred in other MHBX facies, SABQ or qtz-mo veinlets, but since this type was
not to be analyzed, minor attention was applied to this type. Sylvite-bearing Type Illa
occurred in facies A,, As, B, C, and D. Type Illb was noted in A, and C, but similarly to
I1d, was only given minor attention and may have occurred in other MHBX facies or

SABQ as well. Carbonic type IV inclusions occurred in facies As, B, and C only.

MHBX Facies and Qtz-Mo Veinlets

The MHBX matrix (qtz and fl) exhibited a wide Tlv range of 81-520°C, with the
largest mode at 380°C, the second largest mode at 180°C, the smallest mode at 460°C,
and the second smallest mode at 280°C (Figure 11). The MHBX matrix (qtz and fl)
exhibited a salinity range of 0-64 eq. wt.% NaCIl+KCI+CaCl, (Figure 12). Similarly, the
qtz-mo veinlets exhibited a wide TIv range of 62-560°C, with the largest mode at 380°C,
the second largest mode at 200°C, and the smallest mode at 280°C (Figures 11 and 12;
Table 4). The gtz-mo veinlets exhibited a salinity range of 0-63 eq. wt.%

NaCl+KCI+CaCl, (Figure 12).
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Table 4. MHEX and gtz-mo veinlet microthermometry data.

Phase Facies® TIvin"C Salinity**

Al 109-475 0-51
A2 88-472 0-52
A3 81-520 0-33
B 188-429 2-64
MHBX C 130-372 0-63
05| 139-211 0-1
D 68-468 0-51
D1 105-180 0
E 117-490 0-61
Veinlets All 62-560 0-63

* All data is for quartz, except C fl and D fl are fluorite.
*%* Salinity is in eq. wt.% NaCHEKCHCaCl;.
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The A facies exhibited a wide range of Tlvs of 109-475°C, 88-472°C, and 81-520°C for
Ai, Ay, and Ags, respectively (Figure 13 and Table 4). Facies A exhibited a salinity range
of 0-51, 0-52, and 0-53 eq. wt.% NaCl+KCI+CaCl, for A;, Az, and Ags, respectively. The
B facies exhibited a tighter TIv range of 188-429°C and a salinity range of 2-64 eq. wt. %
NaCl+KCl+CaCl,. Facies C also exhibited a tighter Tlv range of 130-372°C and a
salinity range of 0-63 eq. wt.% NaCl+KCI+CaCl,. Facies D and E exhibited Tlv ranges
of 68-468°C and 117-490°C and salinity ranges of 0-51 and 0-61 eq. wt.%
NaCl+KCI+CaCly, respectively. The C and D facies fluorite exhibited Tlv ranges of 139-

211 and 105-180°C, and a salinity of 0-1 and 0 eq. wt.% NaCl+KCI+CaCl,, respectively.

DATA ANALYSIS AND INTERPRETATION

Heterogeneous Trapping - Captured Halite

The majority of the fluid inclusions that contained halite daughter minerals (types
I1 and 111) demonstrated final Th by halite dissolution (Figure 14). There are several
instances where the dissolution of halite occurred well above (over 50°C) that of vapor
bubble disappearance. According to the phase relations in the NaCl-H,O system
(Roedder, 1984; Bodnar, 2003; Shephard et al., 1985), homogeneous trapping of these
fluids would require pressures of 2 kbars and above (Bodnar, 1994; Bodnar & Vityk,
1994; Cline & Bodnar, 1994; Gunter et al., 1983; Bodnar, 2003; Kamilli, 1978; Becker et
al., 2008), which are “much greater than any reasonable lithostatic load” (Kamilli, 1978).
Such pressures would place the Goat Hill orebody at an unreasonable depth of
emplacement of > 7 km depth, an unreasonable depth given other geologic constraints.

Based upon stratigraphic reconstruction, Molling (1989) determined that the source
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granitic magma was emplaced at depths of 3 to 5 km, corresponding to lithostatic
pressures of 0.8-1.4 kbars. Based upon fluid inclusion analyses, Smith (1983) determined
a lithostatic pressure of 180-550 bars for the Goat Hill orebody, with a corresponding
depth of 0.7-2 km, assuming lithostatic load.

Previous studies on Climax-type deposits have suggested three possibilities for
the origin of the inclusions that exhibited a final homogenization by TshI>>Tlv —
overpressures, caused by exsolution and evolution of the hydrothermal fluid (Kamilli,
1978) or by system sealing (Cline & Bodnar, 1994), post-entrapment modification of
fluid inclusions (Klemm et al., 2004; Klemm et al., 2008), or captured halite crystals
(Bloom, 1981). The generation of overpressure is unreasonable given the host lithologies
of the Goat Hill orebody at Questa. The tensile strength of the altered andesite and
volcaniclastic country rock is very low (average of 35 bars) (Calle & Nicholas, Inc.,
2008), therefore fracturing likely occurred before overpressures could develop. If
exsolution and hydrothermal fluid evolution were the mechanism for overpressures, and
accounted for the TshI>>TIv inclusions, it would be reasonable to expect an evolutionary
pattern would be evident from the quartz fluid inclusion data in terms of MHBX facies
and veins from the bottom of the orebody to the top. This is not the case. Inclusions that
have a final Th by TshI>>Tlv occur in all of the MHBX facies and all the veins from the
bottom of the breccia to the top, with no evident pattern (Figure 14), hence ruling out
exsolution as a control on fluid inclusion P-T-X. Post-entrapment modification of fluid
inclusions is ruled out in this study due to the significant number of TshI>>Tlv fluid

inclusions, a number too high to be solely from post-entrapment modification, and the
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fact that only fluid inclusions that appeared to be intact and have no evidence of necking
down were analyzed.

Entrapment or capture of halite crystals from a heterogeneous fluid that is
saturated with respect to halite is the favored mechanism for producing the TshI>>Tlv
inclusions in this study. Entrapment of a halite crystal in an inclusion would provide an
over-estimate in salinity and final Th, hence giving way to unrealistic PTX conditions.
Several previous studies on other ore deposits such as Naica (Erwood et al., 1979),
Capitan Mountains (Campbell et al., 1995), Panguna (Eastoe, 1978), Granisle-Bell
(Wilson, 1978), and the Banska Stiavnica district (Kodera et al., 2004), concluded that
heterogeneous trapping, or entrapment of halite crystals, is the mechanism for producing
this fluid inclusion type. Evidence for the trapped halite phenomenon would be solid
inclusions of halite in quartz. This feature is hard to recognize due to a close index of
refraction (n) for both quartz (1.55) and halite (1.54) (Ford, 1966). There were several
instances in this study where solid inclusions in quartz were observed and suspected to be
halite (Figure 15). However, unless the suspected solid inclusions are analyzed for
chemistry their composition cannot truly be known. Campbell et al. (2001) documented
several solid inclusions of halite in quartz from the Capitan Mountains, NM with electron
microprobe analyses. Daughter minerals that did not dissolve upon heating (other
translucent daughters, hematite, and opaques) can also be an indication of capture rather
than in-situ precipitation (Kodera et al., 2004). Only 14 of 75 other translucent daughter
bearing inclusions contained other translucent daughter minerals that dissolved. In
addition, no opaque or hematite daughter minerals were observed to dissolve. Both of

these facts further support heterogeneous trapping.
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Figure 15. Photograph of suspected solid inclusion of halite in quartz that occurs
adjacent to multi-solid fluid inclusions, evidence of heterogeneous trapping.
Photo taken at 25°C prior to heating.
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A fluid saturated with respect to NaCl is not an unlikely occurrence in a
magmatic-hydrothermal system. This is a result of direct exsolution of a two-phase fluid
from the magma and/or boiling in the system. Pervasive boiling and/or simple cooling of
a high salinity fluid can result in these fluids becoming oversaturated with respect to
halite. Drillcore filled with halite crystals from pervasive boiling of geothermal fluids
have been observed in geothermal systems (Norman, D.I. — NMT E&ES, pers. comm.,
2004). Coexisting vapor-rich and hl-bearing liquid-rich fluid inclusions (Ic, 11d, and I11b)
were found in several instances in the Goat Hill, evidence of boiling. Based upon phase
equilibria constraints, if an inclusion homogenizes by halite dissolution, it had to have
formed in the vapor absent field (Figure 16). Therefore, the presence of co-genetic
liquid-rich brines and vapor-rich inclusions indicate that the liquid-rich brine inclusions
could not have precipitated halite in-situ, but rather are a result of heterogeneous
trapping. Types Ild and I11b inclusions (vapor-rich, but contain halite and/or other
minerals) can be a result of boiling and trapping of minerals (heterogeneous trapping) or
leakage of fluid inclusions. The latter does not seem likely considering that Type Ild and
I11b inclusions were identified in several instances in this study. Bloom (1981) also
found vapor-rich halite-bearing fluid inclusions, equivalent to type I11d of this study.
Additional evidence of captured halite in this system is variable halite to liquid phase
ratios and an inclusion containing three suspected halite crystals, rather than one (Figure
17). If the halite was precipitated from the fluid after trapping of the inclusion, the
inclusion would contain only one halite crystal based upon surface free energy constraints
(White et al., 1981). In the instance of an over-saturated fluid containing halite crystals,

it is possible to trap more than one halite crystal in an inclusion.
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Figure 16. Schematic P-T diagram for the water-NaCl system demonstrating the
steepness of the liquidus (I+hl) for 30-70 wt.% NaCl and the three different modes
of halite dissolution for a 40 wt.% NaCl solution. Upon heating, a fluid inclusion
with Tsh1>>Tlv will follow the path A (Tlv) - B (Tshl) - a (isochoric path after final
Th). Note the high pressure associated with point B that when to scale can demonstrate
unrealistic pressures. A fluid inclusion with Tshl=Tlv will homogenize at C and
follow the isochoric path b after homogenization. Note the low pressures associated
with point C. An inclusion with Tshl<Tlv will follow the path C (Tshl) - D (Tlv) -
¢ (isochoric path after final Th). Note the moderate pressure for D relative to the
pressures of B and C. Modified from Bodnar, 1994 and Shephard et al., 1985.

49



Figure 17. Microphotograph of liquid-rich fluid inclusion containing
three suspected halite crystals, suggestive of heterogeneous trapping.
The three daughter minerals labeled hl were suspected to be halite
crystals due to shape, birefringence, and they did not dissolve at T,svivite
temperatures. Inclusion was heated with intention of homogenizing and
allowing to go back to room temperature. If the three suspected halite
crystals became one upon cooling, this would be supportive that they
were indeed halite. However, the sample decrepitated before the

suspected crystals homogenized.
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Due to the plausibility of heterogeneous trapping and the entrapment of halite, the
fluid inclusion data is reported in terms of the homogenization of the liquid-vapor phase
(T1v) rather than in terms of the final homogenization temperature. Reporting in terms of
Tlv is more representative of the fluid temperature at the time of trapping. The fluid
inclusions above the halite saturation curve (HSC) are not representative of a real fluid,
due to the captured halite phenomenon (Figure 12). The inclusions above the HSC are
the result of a halite saturated fluid along the HSC at the same homogenization
temperature, and a captured halite crystal. The salinities of the inclusions above the
HSC are a function of the size of the halite crystal that was entrained. The fluid
inclusions above the HSC can be projected down to the HSC at their same temperature of
homogenization, represented by the dark line on the HSC in Figure 12, in order to denote

the real fluid in which they originated.

Fluid Evolution

MHBX Facies

There is a pronounced mineralogic/alteration evolution that occurred in this
system, on which the facies classifications are based (Ross, 2002). It was hypothesized
that the fluid inclusions in quartz from each facies would reflect the
mineralogic/alteration zonation in terms of an evolutionary pattern in the temperature and
salinity data, i.e. facies closest to the source intrusion would have higher temperatures
and salinities and facies distal to the source intrusion would have lower temperatures and
salinities. This is not the case, however. There is no distinct evolutionary pattern based
upon facies in the quartz data (Figure 13). All facies quartz reflect similar wide ranges in

temperatures and salinities. A Pearson’s correlation was used in an attempt to identify a
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Facies

00618 Correlation coefficient

Tyvpe 153 valid cases
0.22395 | one-tailed significance
-0.06347 | Correlation coefficient

Thv 153 valid cases
021784 one-tailed significance
0.05721 Correlation coefficient

Final Th 153 valid cazes
0.24117 one-tailed significance
0.05653 Correlation coefficient

Salinity 153 valid cases
0.24378 one-tailed significance

Table 5. Pearson's correlation data between facies and type, Thv, final Th, and salinity.
Pearsons correlations were obtained utilizing the WinSTAT Statistics for Windows Version

3.1 computer program distributed by Kalmia Co. Inc._ 1991-1996.
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correlation between facies and type, Tlv, final Th, and salinity, or the lack thereof (Table
5). If the absolute value of a correlation coefficient (|cc|) is 0.5 and greater, then it is
considered to represent a correlation between the variables. All |cc|s between facies and
other variables were well below 0.5, with values of 0.056-0.063, demonstrating that there
is no facies correlation with type, Tlv, final Th, and salinity.

An evolution is evident between the different mineral phases of the MHBX matrix
paragenetic sequence, however, as reflected by early quartz and later fluorite (Figure 8).
The two fluorite samples from the C and D facies did not exhibit the wide ranges of
temperatures and salinities, nor the high temperatures and salinities, that were exhibited
by quartz (Figure 13). Fluorite fluid inclusion data indicates that the fluorite was
precipitated at low temperatures (105-211°C) and salinities (0-1 eq. wt.%
NaCl+KCI+CaCl,). These temperatures and salinities most likely reflect an evolution
from magmatic-hydrothermal to meteoric waters entering the system. This is further
supported by known secondary fluid inclusions in quartz with similar T-X (88-241°C, 0-6
eq. wt.% NaCl+KCI+CaCl,), most likely a result of meteoric influx into the system that is
associated with fluorite precipitation.

When looking at the data in terms of different mineral phases, the evolution does
correspond to matrix facies, as fluorite only occurs in the C, D, and E facies and quartz
occurs in all facies. Based upon the differences in fluorite and quartz, it appears that
performing fluid inclusion microthermometry on all of the different mineral phases
(quartz, fluorophlogopite, fluorite, calcite, and anhydrite) in each of the facies, rather than
just quartz, would most likely reflect the mineralogic/alteration evolution of the MHBX.

Similar to the quartz and fluorite data, it is likely that the data from the earlier mineral
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phases (quartz and fluorophlogopite) would exhibit higher temperatures and salinities
associated with potassic alteration and the later mineral phases (fluorite, calcite, and
anhydrite), which only occur in the C, D, and E facies, would exhibit lower temperatures
and salinities associated with retrograde collapse of isotherms onto the system, influx of

meteoric water, and the onset of QSP alteration.

MHBX Matrix and Veinlets

MHBX matrix and veinlet quartz data, including the background Source Aplite
Veinlet and Source Aplite Barren Quartz, is essentially indistinguishable, with a few
minor differences. Fluid inclusions in the veinlets were less abundant and, on average,
smaller than the fluid inclusions in the MHBX matrix. This is most likely due to the
smaller sized quartz grains in the veinlets compared to the MHBX matrix, a possible
result of extensive boiling. In addition, the pre-vein mineralization fractures allotted
much less space for veinlet precipitation, producing smaller grains, and hence smaller
inclusions, then the much more voluminous MHBX. The veinlets contain less halite-
bearing fluid inclusions than the matrix. This is most likely related to the smaller
inclusion size in the veinlets, where it would be harder to entrain a halite crystal or
nucleate a halite daughter. Lastly, the veinlets did not contain any sylvite-bearing type
[11, carbonic type 1V, or CaCl; fluid inclusions. The lack of K, Ca, and CO,-bearing
inclusions may be an indicator that the veinlets are from a slightly more evolved or
fractionated magmatic-hydrothermal fluid than the MHBX matrix. This is not unlikely
since the veinlets are later than the MHBX and they do not contain the coarse-grained K-

feldspar, biotite, anhydrite, fluorite, and calcite mineral phases that occur in the MHBX.
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As previously discussed, an evolutionary pattern is not evident from facies quartz
data, whereas an evolution is evident by the different mineral phases quartz and fluorite.
No major evolutionary difference is reflected by the MHBX matrix and veinlet quartz,
since their data are essentially indistinguishable. However, since there is such a broad
range in the quartz T-X data, there must be an evolutionary history of the fluid
contributing to such broad ranges in data. Since the MHBX and the veinlets have data
that is essentially indistinguishable from one another, each phase most likely followed
similar fluid evolution history. This history has been broken up into four main stages (1-
4) (Figures 11 and 12).

The first stage in fluid evolution is Stage 1 at 540-420°C, with a mode at 460°C
(Figures 11 and 12). This stage represents the parent fluid that exsolved directly from the
magma. Three types of fluids are represented in Stage 1, and are the precursors to all
other fluids in the later stages. The first is a single phase critical fluid of low to moderate
salinity that exsolved directly from the magma at the hydrofracturing phase (Williams-
Jones and Heinrich, 2005). These fluids are represented by those inclusions on or below
the critical curve (CC) (Figure 12). Secondly, a near-critical transition period between
critical and non-critical conditions occurs, causing phase separation of the exsolving
fluid, with only a moderate difference in total salinity between the two phases (Williams-
Jones and Heinrich, 2005). This is represented by inclusions with low salinities (0-10 eq.
wt.% NaCl) and moderate salinities (11-25 eq. wt.% NaCl) (within (a) of Figure 12).
These moderate salinity inclusions may also be due to the introduction of meteoric fluid
into the system. Lastly, a two-phase fluid consisting of a brine and low salinity vapor

separated simultaneously from the magma and/or were produced by phase separation of
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the exsolving fluid. Since boiling, or phase separation, is indicated in Stage 1, no
pressure correction is necessary. Based upon fluid inclusion temperatures, it is
concluded that early potassic alteration with little to no molybdenite mineralization is
associated with this stage in the system. Molybdenum is soluble at these high
temperatures, and hence would remain in the fluid rather than precipitate out (Smith,
1983). This is supported by Klemm et al. (2004), in which LA-ICPMS results on early,
high T brines were up to 1000 ppm Mo, indicating that molybdenite remained in the
fluid.

Stage 2 is represented by fluid inclusions with temperatures from 420-340°C, with
a mode at 380°C (Figures 11 and 12). This stage is a result of heat loss from initial
boiling (Stage 1), but also continued boiling or phase separation. At 400°C, fluid became
oversaturated with respect to halite due to boiling and cooling, resulting in halite capture
(Figure 12, above the HSC). This stage is considered to be representative of potassic
alteration associated with molybdenite mineralization due to the temperature range.
Based upon FI petrography, molybdenite mineralization commenced at <420°C due to
temperature decrease. In addition, molybdenite mineralization is associated with
inclusions of all salinities — low, moderate, and brine. Boiling ceased at 350°C as
indicated by the lack of vapor inclusions below 350°C. Due to boiling in Stage 2, no
pressure corrections are necessary. The moderate salinity inclusions may also be a result
of meteoric mixing with the parent fluids in this stage.

Stage 3 occurred at 340-240°C, with a mode at 280°C (Figures 11 and 12). This
stage is representative of simple cooling of the phase separated fluids in Stage 2 and

possible continued mixing with meteoric fluids. Based upon the fluid inclusion
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temperatures, this stage is considered to be representative of isothermal collapse of the
system due to magma cooling and retreat. In this stage, QSP alteration is prevalent,
overprinting potassic alteration associated with the previous two stages. Molybdenite
deposition is prevalent in this stage due to temperature decrease from simple cooling.
This is supported by Klemm et al. (2004) LA-ICPMS results, in which Mo in moderate
temperature late brines was below detection limits, an indicator that molybdenite is no
longer in solution. The last bit of molybdenite came out of solution at 220°C, as
indicated by Fls with a known association to molybdenite.

Stage 4 is the last stage of the system, is in two parts (a and b) and occurs at
<240°C, with a mode at 200°C (Figures 11 and 12). Stage 4a is considered to be
representative of continued simple cooling from the previous stage as a result of
continued collapse of the isotherms onto the system. Possible continued meteoric mixing
may have occurred in this stage as well. QSP alteration is associated with Stage 4a.
Stage 4b (Figure 12 — e) is representative of a meteoric influx being the dominant fluid in
the system, as indicated by secondary and carbonic inclusions (Figure 12 — c). Carbonic
inclusions also occur in Stage 4b (Figure 12 — c), which correlates with the precipitation
of the lower temperature late-stage mineral calcite. An additional lower temperature late-
stage mineral phase that is associated with Stage 4b (Figure 12 —d) is fluorite. QSP and

minor argillic alteration are also associated with Stage 4b.

COMPARISON WITH PREVIOUS QUESTA FI STUDIES

The data set from this study exhibited similarities and differences to the previous

fluid inclusion studies on Questa (Bloom, 1981; Smith, 1983; Cline & Bodnar, 1994;
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Cline & Vanko, 1995; Klemm et al., 2004; and Klemm et al., 2008) in terms of fluid
inclusion types, temperature of homogenization ranges and modes, and salinity ranges.
In addition, there are similarities and differences in the data interpretation between
various authors and this study. Comparing previous fluid inclusion study data sets and
interpretations with those of this study will aid in deriving an ore genesis model for the

Questa system.

Fluid Inclusion Types Comparison

Fluid inclusion types observed in this study are essentially the same as those
reported by the previous fluid inclusion studies on Questa, with a few minor differences,
despite the fact that this study analyzed from almost two times to six times the number of
fluid inclusions of previous studies (Table 6). Carbonic (Type IV) inclusions were not
observed by Smith (1983) or either Cline study (1994, 1995), however only four carbonic
(Type 1V) fluid inclusions were observed in this study. Klemm (2004 and 2008) also
observed minimal carbonic (Type V) fluid inclusions as well. The lack of significant
liquid CO,-bearing inclusions in the Questa fluid inclusion data sets reveals that the
system is fairly low in CO, (<5%) (Shephard et al., 1985). Another difference is that no
vapor-rich halite-bearing Type Ild inclusions were observed in any previous study, with
the exception of Bloom (1981), as well as no vapor-rich multi-solid Type I1Ib fluid
inclusions. These inclusions were likely overlooked by previous studies due to the vapor-
rich property and the inability to observe phase-changes in this type of inclusion. None
the less, this type of inclusion is deemed important in supporting the heterogeneous

trapping or trapped halite phenomenon mechanism for the TshI>>Tlv fluid inclusions.
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Fluid Inclusion Temperatures Comparison

When considering all studies at Questa, fluid inclusion homogenization
temperatures exhibited a variable range; however, the reported modes are in agreement
between the Questa studies at 380-390°C (Figure 18 and Table 6). This study exhibited
the widest range of fluid inclusion homogenization temperatures out of the Questa fluid
inclusion studies (Figure 18). However, as previously mentioned, the data for this study
is reported in terms of Tlv rather than Final Th. Note the temperature and salinity
distribution differences when reporting in terms of Tlv versus Final Th (Figure 19).
Reporting temperatures in Tlv allowed for more data on the lower temperature end and
less data on the higher temperature end when comparing Tlv and Final Th methods. This
might be a possible explanation why this study reveals lower temperatures compared to
the previous Questa studies that reported their data in terms of Final Th (Figure 18). If
the homogenization temperature data is looked at in terms of Tlv rather than the reported
Final Th for Cline & Bodnar (1994) and Cline & Vanko (1995), the temperature range is
55-490°C (as opposed to 150-500°C for Final Th), a range that is similar to this study.
Again, this reveals that lower temperatures are brought out from reporting Tlv rather than
Final Th on the TshI>>Tlv fluid inclusions.

Other factors that may have contributed to the larger range in fluid inclusion
homogenization temperatures for this study compared to previous studies are the number
and type of inclusions that were analyzed, as well as temporal-spatial relationships. This
study has the highest number of fluid inclusions analyzed, 434 compared to 70 to 251 for
the other Questa studies (Figure 18 and Table 6). As discussed previously, the utmost

care was taken in choosing primary or pseudosecondary, intact fluid inclusions for
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analysis. Hence, the data from this study is considered accurate and real. All types of
fluid inclusions that appeared to be primary/pseudosecondary in origin were considered
representative of the fluid and not eliminated from this study. Fluid inclusion analysis
was not biased to easily measured, large fluid inclusions since they were not always
available in all of the MHBX facies and/or veinlets. Also, as previously mentioned, this
study was performed with rigorous temporal-spatial constraints. All of the samples were
taken from several drillholes in very well defined facies within one orebody, the
GoatHill. All of the above (the higher number of fluid inclusions analyzed, all primary
fluid inclusions analyzed, and established temporal-spatial constraints from sampling)
can give way to a larger temperature range compared to previous studies who have less
fluid inclusions that were analyzed at Questa (Bloom, 1981; Smith, 1983; Cline &
Bodnar, 1994; Cline & Vanko, 1995; Klemm et al., 2004; and Klemm et al., 2008),
limited temporal-spatial constraints (Bloom, 1981; Smith, 1983; Cline & Bodnar, 1994;
Cline & Vanko, 1995; Klemm et al., 2004; and Klemm et al., 2008), and sampling bias to
only large, easily measured fluid inclusions (Cline & Bodnar, 1994; Cline & Vanko,
1995; Klemm et al., 2004; and Klemm et al., 2008) and/or only fluid inclusions that have

TshI<TIv (Klemm et al., 2004; and Klemm et al., 2008).

Fluid Inclusion Salinities Comparison

Similarly to the variability in homogenization temperatures between studies, a
variety of salinity ranges were reported by the previous Questa studies (Figure 18 and
Table 6). Despite the salinity variability between studies, the salinity results from each
study reveal that there are low to moderate salinity (<27 eq. wt.% NaCl+KCl+ CaCl,)

inclusions and hypersaline (>30 eq. wt.% NaCIl=KCl+CaCl,) inclusions. This study and
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the studies of Cline (1994, 1995) are the only studies who reported salinities on the very
low end, whereas Klemm (2004, 2008) did not observed any inclusions with less than 2
eq. wt.% NaCl+KClxCaCl,, and Bloom (1981) and Smith (1983) did not observe any
inclusions with a salinity of less than 5 eq. wt.% NaCIltKCI+CaCl,. This study and
Smith (1983) reported the same upper limit (65 eq. wt.% NaCIlxzKCI+CaCl2) for the
hypersaline inclusions, whereas Bloom (1981) reported the highest fluid inclusion
salinities (70 eq. wt.% NaCl+KCI+CaCl,), Cline (1994, 1995) reported slightly lower
upper salinity limit (57 eq. wt.% NaCl+KCI+CaCl,), and Klemm (2004, 2008) reported
the lowest upper salinity limit (50 eg. wt.% NaClxKCI+CaCl2) with the greatest
difference from this study. Klemm (2004, 2008) considered fluid inclusions with
TshI>>Tlv to have undergone post-entrapment modification and were not reported. This
is the likely reason for the considerable lower upper salinity limit of Klemm (2004, 2008)
compared to this and other previous studies.

This study and Smith (1983) are the only Questa studies that reported a large,
continuous range of salinities (0-65 and 5-65 eq. wt.% NaCl+KCI+CaCl,, respectively).
Cline & Bodnar (1994) and Cline & Vanko (1995) reported a salinity range similar to this
study (0-57 eq. wt.% NaClxKCl+CaCl,), but with a gap from 26-30 eq. wt.%
NaCl+KCI+CaCl,. This gap is quite common in fluid inclusion data and often extends
from 20 to 35 eq. wt.% NaCl. This gap is not real, but rather a result of the difficulty of
recognizing phases and phase changes at these particular salinities. From 20-23.2 eq.
wt.% NaCl, the final ice melting is so close to the eutectic temperature and the final
melting of hydrohalite (-21.2°C) that it is often missed. From 23.2 to 26.3 eq. wt.% NaCl,

it is very hard to recognize phase changes with hydrohalite and it is often misidentified
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asice. From 26.3 to 35 eq. wt.% NaCl, the nucleated halite crystal is often too small to
see within the fluid inclusion and/or the halite crystal itself often fails to nucleate. Once
at 30 eq. wt.% NaCl, halite daughters are larger and easier to identify. With that being
said, the gap from 26-31 eq. wt.% NaCltKClx+CaCl, in the data of Cline & Bodnar
(1994) and Cline & Vanko (1995) is likely not real and the salinity data sets can be

considered to be continuous through these salinities (0-57 eq. wt.% NaCIzKCI+CaCl,).

Data Interpretation Comparison

Boiling, indicated by cogenetic liquid-rich (xhalite) and vapor-rich fluid
inclusions, was reported in all of the Questa studies with the exception of Cline & Bodnar
(1994) and Cline & Vanko (1995) (Table 6). Hence, no pressure corrections were
applied to the fluid inclusion temperatures by the studies that reported boiling in the
system. Conversely, Cline & Bodnar (1994) and Cline & Vanko (1995) did apply
pressure corrections to get the reported homogenization temperatures summarized in the
previous section.

The concluded temperature of mineralization by the Questa studies shows some
variation (420-240°C for this study; 500-300°C for Bloom, 1981; 550-350°C for Smith,
1983; 500-150°C for Cline & Bodnar, 1994 and Cline & Vanko, 1995; and 420-350°C for
Klemm et al., 2004 and 2008), however the mode temperature of mineralization is from
380°C for four of the seven studies (this study; Smith, 1983; Cline & Bodnar, 1994;
Cline & Vanko, 1995), 390°C for one of the studies (Bloom, 1981), and for the two
studies without a reported mode (Klemm et al., 2004 and 2008), the mid-point of the
reported range for mineralization is 385°C (Figure 18 and Table 6). Both this study and

Smith (1983) concluded that molybdenite mineralization is associated with both potassic
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and phyllic alteration, however the temperatures associated with those alteration types are
different (420-340°C and 550-450°C, respectively, for potassic alteration; and 340-240°C
and 450-350°C, respectively, for QSP alteration) (Table 6). Bloom (1981) concluded
molybdenite mineralization to be associated with phyllic alteration at 500-300°C and that
potassic alteration (at >500°C) had no association with mineralization. All of the Questa
studies, with the exception of Klemm et al. (2004 and 2008), reported a very wide range
of salinities (0-64 eq. wt.% NaCltKCl+CaCl, for this study; 5-15 and 30-60 eq.wt.%
NaCIl+KCI for Bloom, 1981; 5-57 eq. wt.% NaCl+KCI for Smith, 1983; 0-26 and 31-57
eq. wt.% NaCl+KClI for Cline & Bodnar, 1994 and Cline & Bodnar, 1995) to be
associated with molybdenite mineralization (Figure 18 and Table 6).

The origin of the molydenite-bearing fluids presented by all of the Questa fluid
inclusion studies can be categorized into two schools of thought — purely magmatic
(Cline & Bodnar, 1994; Cline & Vanko, 1995; Klemm et al., 2004 and 2008) and
magmatic with meteoric input (this study; Bloom, 1981; Smith, 1983). The evolutionary
history of the mineralizing fluid described by each study is quite variable, despite the fact
that all studies reported essentially the same fluid inclusion types and the main mode
temperature for molybdenite mineralization , as well as all studies but Klemm et al. (2004
and 2008) concluding that molybdenite mineralization can be attributed to basically all
salinities (Table 6) (please see Previous Studies and Fluid Evolution sections of this
paper for more details on fluid evolution). Interpreting the origin of the fluids
represented by the wide-spread T-X fluid inclusion data sets reported by the Questa fluid
inclusion studies is no easy feat. However, based upon the similarities between the

Questa FI studies and major interpretations made in this study, it is concluded that the
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mineralization model for Questa includes a main mode of mineralization at 380°C,
mineralization is associated with a very wide range of salinities (0-64 eq. wt.%

NaCl+xKCIxCaCly), and the system is magmatic with a meteoric input.

CONCLUSIONS

Based upon phase equilibria constraints and various evidences reported in this
study, it has been concluded that the halite-bearing fluid inclusions demonstrating a
TshI>>Tlv did not precipitate halite in-situ, but rather are a result of the captured halite
phenomenon. Hence, it has been suggested that for fluid inclusion studies, reporting
fluid inclusion temperatures in terms of the homogenization of the liquid-vapor phase
rather than final homogenization temperature is more representative of the fluid
temperature at the time of trapping.

Contrary to the hypothesis, no evolutionary pattern based upon facies was evident
in the fluid inclusion data from MHBX matrix quartz. An evolution was evident between
the mineral phases (early quartz and later fluorite) of the MHBX matrix paragenetic
sequence, however, which in turn does reflect the mineralogic evolution of the Goat Hill
MHBX. Results indicate that the quartz evolved from a magmatic fluid, whereas an
evolution from magmatic to meteoric is the source of the fluorite producing fluids.
Consequently, findings suggest that performing fluid inclusion microthermometry on the
different mineral phases of the MHBX matrix paragenetic sequence would demonstrate
the mineralogic evolution of the Goat Hill MHBX. In other words, the earlier mineral
phases (quartz, fluorophlogopite) would most likely exhibit higher T-X associated with

potassic alteration, and the later mineral phases (fluorite, calcite, anhydrite) would exhibit
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lower T-X associated with retrograde collapse of isotherms, the onset of QSP alteration,
and the influx of meteoric water into the system.

An evolutionary pattern based upon facies was not evident in the MHBX quartz,
however the MHBX quartz data did reflect an evolutionary history independent of facies.
The essentially analytically indistinguishable MHBX and veinlet quartz fluid inclusion
data exhibited only minor differences, which suggests that the veinlets are from a slightly
more evolved magmatic-hydrothermal fluid, but likely followed a similar fluid
evolutionary history as the MHBX — four main stages (1-4). Stage 1 represents the parent
fluid that exsolved from the magma and is associated with early potassic alteration with
little to no molybdenite mineralization. Stage 2 fluids evolved directly from Stage 1 as a
result of heat loss from initial boiling of Stage 1, in addition to continued phase
separation. The halite phenomenon first occurs in this stage. Stage 2 is representative of
potassic alteration associated with molybdenite mineralization. Stage 3 represents
retrograde isothermal collapse of the system resulting in simple cooling from Stage 2,
QSP alteration, and high grade molybdenite deposition. Stage 4 of the fluid evolution of
the Goat Hill orebody is representative of continued simple cooling from Stage 3,
meteoric influx onto the system, and QSP and minor argillic alteration. Meteoric mixing
likely occurred in Stages 1-4 as well, until meteoric fluids become dominant in Stage 4.
Based upon fluid inclusion petrography and supporting LA-ICMS data of Klemm et al.
(2004), molybdenite mineralization commenced at <420°C and ceased at 220°C, and was
a result of temperature decrease caused by boiling, meteoric mixing, and simple cooling

in the system.
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CHAPTER II.

Genetic Fluid Evolution of the Magmatic-hydrothermal Breccia and
Stockwork Veinlets of the Goat Hill Orebody, Questa Climax-type Porphyry-
Mo System, New Mexico — A Stable Isotope and Fluid Inclusion Gas Analysis

Study

ABSTRACT

The Goat Hill orebody of the Questa Climax-type porphyry molybdenum system
is composed of a stratified magmatic-hydrothermal breccia (MHBX) and later quartz-
molybdenite (gtz-mo) stockwork veinlets. The MHBX consists of five distinct facies (A-
E) that display an evolution in matrix mineralogy and clast alteration. Oxygen and
hydrogen stable isotope and fluid inclusion gas analysis on MHBX matrix quartz
revealed that there is no fluid evolution pattern based upon facies that could be associated
with the mineralogic/alteration evolution of the breccia. A fluid evolution was evident,
however, between the different mineral phases of the MHBX matrix paragenetic
sequence (fluorophlogopite—> quartz->fluorite->calcite). Fluorophlogopite demonstrated
the most magmatic signature to magmatic-dominant magmatic-meteoric mixing with
calculated 38 0y,0 and 8Dy,0 Values of 3.8-7.4%o and -89 to -63%o, respectively, at
380°C. Paragenetically after fluorophlogopite, quartz exhibited a less magmatic-
dominant magmatic-meteoric mixing signature with a calculated §'0Oy,0 range of 1.5-
3.7%o at 380°C and fluid inclusion Dy,o range of -101 to -71%.. Fluorophlogopite and
quartz are both associated with molybdenite mineralization, hence revealing a meteoric
component to the Questa mineralizing fluid. Next in the paragenetic sequence, post-
mineralization fluorite revealed a meteoric-dominant magmatic-meteoric mixing

signature with fluid inclusion 818OH20 and 6Dy.,o values of -4.0 to -1.7%o and -109 to -
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106%o, respectively. Late stage post-mineralization calcite also exhibited a meteoric-
dominant fluid with calculated "®Ow,o values of -4.3 to -1.3%o at 200°C. Fluid inclusion
gas analyses showed a similar evolution on the fluid source diagrams of Norman and
Moore (1999) and Blamey and Norman (2002) with No/Ar vs. CO,/CH,4 and No/Ar vs.
Ar/He ratios that plotted in near magmatic to meteoric source fields for earlier quartz and
meteoric to evolved (crustal) source fields for later fluorite.

The data for the later gtz-mo veinlets that crosscut the MHBX was essentially
analytically indistinguishable from the MHBX quartz for both the oxygen stable isotopes
(calculated 50,0 values of 1.6-3.9%o at 380°C) and the fluid inclusion gas analyses,
therefore the veinlets experienced the same fluid evolution history as the MHBX. The
veinlets exhibited widespread fluid inclusion 6Dy,o values (-143 to -52%o) compared to
the MHBX matrix, possibly due to an interstitial water contribution or analytical error
associated with smaller, less abundant fluid inclusions and associated small sample
peaks.

Sulfur stable isotope analyses on molybdenite, pyrite, and anhydrite revealed a
pure magmatic source for Questa sulfur with 8**S ranges of 0.4-2.3%o, 1.6-2.5%o, and 6.6-
10.0%o, respectfully. Similarly, carbon stable isotope analysis on calcite revealed a
magmatic source for carbon with calculated §3Ccop values of -6.0 to -4.9%. at 200°C.
Despite a meteoric component of varying degrees to the fluid associated with these
minerals, a magmatic source is possible for these two species due to the fact that meteoric
water is low in sulfur or carbon, hence allowing the magmatic signature to remain with

the fluid.
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INTRODUCTION

The genetic origin of Climax-type porphyry molybdenum deposits (i.e. Questa,
NM and Mt. Emmons, Climax, and Henderson/Urad, CO) has been debated throughout
the economic geology community. Various previous fluid inclusion and/or stable isotope
studies on Climax-type deposits have concluded magmatic (Kamilli, 1978; White et al.,
1981, Stein & Hannah, 1985; Hannah & Stein, 1986; Carten, 1987; Stein, 1988; Carten,
1988; Cline and Bodnar, 1994; Cline and Vanko, 1995; Ross, 2002; Klemm, 2004;
Seedorff and Einaudi, 2004; Klemm et al., 2008), magmatic and meteoric mixing (Hall,
1974; Smith, 1983), or evolution from magmatic to meteoric (Bloom, 1981; Rowe, 2011
or Chapter 1), as the fluid origin of the system and associated molybdenite mineralization.
Often, in these studies, a conclusion is made as to the origin of the system with only one
data set, i.e. fluid inclusions only or stable isotopes without corresponding fluid inclusion
data.

At the Questa Climax-type porphyry molybdenum system, the Goat Hill orebody
consists of a magmatic-hydrothermal breccia (MHBX) and cross-cutting quartz-
molybdenite stockwork veinlets. The Goat Hill MHBX is composed of five distinct
stratified facies (A-E), which are defined by matrix mineralogy, and clast alteration and
textures. A mineralogic and alteration zonation occurs from the bottom of the breccia
and closest to the source intrusion (facies A) to the top and distal edges of the MHBX
(facies D and E).

The purpose of this study was to perform a spatially and temporally constrained
stable isotope and fluid inclusion gas analyses study, in combination with the fluid

inclusion microthermometry of Rowe (2011) or Chapter I, of the Questa Goat Hill
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orebody to determine the genetic origin of the MHBX and veinlet ore fluids, the
mechanism for molybdenite mineralization, and if there was a fluid evolution for the
Goat Hill MHBX that coincided with the mineralogic/alteration zonation of the MHBX
facies. The spatial and temporal constraint of this study proves significant, in that
previous studies did not constrain samples in terms of space and time (Bloom, 1981,
Cline and Bodnar, 1994; Cline and Vanko, 1995; Klemm et al., 2004; Klemm et al.,
2008). This study has additional significance in that it combines the fluid inclusion
microthermometry data of Rowe (2011) or Chapter | with the corresponding stable
isotope analyses and an additional data set from the fluid inclusion gas analyses. Hence,
three data sets are utilized to determine the origin of the Questa Climax-type porphyry

molybdenum system and its associated molybdenite mineralization.

BACKGROUND

Climax-type deposits

Climax-type deposits are high fluorine (> 0.1% F), low copper (Cu:Mo=1:100 to
1:50) porphyry molybdenum deposits that are genetically related to rhyolite/granite
source intrusions of mainly mid-Tertiary age. Climax-type porphyry molybdenum
deposits occur in rift zones rather than the subduction zone/orogenic belt setting of the
low fluorine, higher copper (Cu:Mo=1:30 to 1:1) Quartz Monzonite-type porphyry-Mo
deposits. In addition, Climax-type deposits have a higher grade (0.3-0.45% MoS;) than
the subduction related Quartz Monzonite-type (0.1-0.2% MoS,). Climax,
Henderson/Urad, and Mount Emmons, CO and Questa, NM (area of study) are classified

as Climax-type porphyry-Mo deposits (White et al., 1981; Cox and Singer, 1986;
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Guilbert and Park, 1986; White et al., 1990; Carten et al., 1993; Sinclair, 1995; Donahue,

2002).

Location

The Questa Climax-type porphyry molybdenum system (Questa system) is
located in north-central New Mexico in the Taos Range of the Sangre de Cristo
Mountains (Figure 1). The Questa system is sited on the southern flank of the Tertiary
Questa Caldera in the Latir volcanic field. Mineralization of the Questa system follows a
structural trend along the southern flank of the caldera, referred to as the Red River
Trench, with a N70°E to N75°E orientation (Figure 2) (Lipman, 1992; Ross, 2002; Ross
et al., 2002). Mineralization occurs as three distinct Mo deposits from west to east — the
Log Cabin, Central, and Spring Gulch deposits. The Central deposit is the only site of
molybdenum mining in the district. It is horseshoe-shaped and consists of two distinct
ore zones, the Northeast and Southwest. Several distinct orebodies exist within these ore
zones and are defined by a 0.2% MoS; grade cutoff (Figure 3) (Ross, 2002; Ross et al.,

2002).

The Goat Hill Orebody

The Goat Hill orebody (area of study), located in the Southwest ore zone of the
Central deposit at the Questa Mine, occurs between the western-most orebody (Southwest
Extension) and the D-orebody of the Southwest ore zone (Figure 3). Underground
mining of the Goat Hill orebody occurred from 1983 to 2000 by the block-caving method
with a total production of 21.11 Mt of ore at 0.318% MoS; (Schilling, 1956; Bloom,

1981).
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Figure 1. Mine location map showing the relative location of the Climax-type deposits of
NM and CO that occur along the Rio Grande Rift. Not to scale.
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The Goat Hill orebody is hosted in a Tertiary volcanic package (Tan) consisting
of interbedded andesite flows and volcaniclastic sediments, and partially in an aplitic
source intrusion. Molybdenite mineralization within the Goat Hill orebody occurs within
a magmatic-hydrothermal breccia (MHBX) and later quartz-molybdenite (qtz-mo)
stockwork veinlets that exceed the confines of the MHBX (Figure 4). MHBX-related
molybdenite mineralization contributed approximately 40% of grade (0.2% MoS; cutoff)
to the orebody, whereas the later stockwork veinlets contributed the remaining 60% of
the molybdenite mineralization (Ross, 2002; Ross et al., 2002). The Goat Hill orebody
exhibits typical Climax-type porphyry alteration with that is centered on the orebody and
evolves above and outward of the source intrusion. The earliest alteration occurs farthest
from the source intrusion and is a regional pre-mineralization/pre-brecciation
propylitization of the Tertiary andesite, associated with interaction of the country rock
with meteoric water. The first alteration type associated with the intrusion of the source
aplite and release of magmatic hydrothermal fluids is a poorly defined high silica zone
closest to the source intrusion. Moving outward from the source intrusion in spatial and
temporal order are potassic and phyllic alteration. Lastly, local argillic alteration

occurred in fracture zones (Leonardson et al., 1983; Meyer, 1991).

The Magmatic-hydrothermal Breccia (MHBX)

The MHBX was formed by hydraulic fracturing of andesite and premineral dikes
by ore-bearing fluids that evolved from a crystallizing water-saturated granitic magma
which was emplaced at depths of 3 to 5 km (lithostatic pressures of 0.8-1.4 kbars) below

surface (Ross, 2002; Ross et al., 2002; Molling, 1989; Cline and Bodnar, 1994).
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Figure 4. Hand sample photographs showing the two different types of ore and the difference between the MHBX
facies. Scale in inches. Note the differences in the two end-members of the MHBX (A and E facies) and the
C-facies that is intermediate between the two. (A) MHBX from A3-facies with quartz(qtz)-potassium
feldspar(kspar)-trace molybdenite(mo) matrix and aplite and biotite altered andesite clasts. A qtz-mo veinlet
crosscuts the MHBX. (B) MHBX from the C-facies with fluorophlogopite(flphlog)-kspar-qtz-mo-trace calcite(ca)-
anydrite(anhy) matrix and biotite altered and quartz-sericite-pyrite(qsp) overprinting biotite altered andesite clasts.
(C) MHBX from the E-facies with qtz-flphlog-mo-ca matrix and corroded gsp altered andesite clasts. (D) qtz-
mo veinlet from unbrecciated andesite from within the orebody but outside of the MHBX.
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Volumetrically, the breccia body is >6x10° m®. It is located above and southward
of the apex of an aplitic stock, which is believed to be the source for the mineralizing
fluids (Figures 5 and 6). The upper contact of the breccia dips 18° to the north and is
thought to follow a pre-breccia fabric, either representing a fracture zone or volcanic
bedding, in which the magmatic-hydrothermal fluids were focused (Ross, 2002; Ross et

al., 2002).

Ross (2002) defined 5 distinct stratified facies (A-E) within the MHBX based
upon matrix mineralogy, and clast alteration and textures (Table 1; Fig. 5 and 6). Facies
A occurs at the bottom of the MHBX, adjacent to the source aplite intrusion, and is
divided into 3 subfacies (A, Az, and A3). Facies D and E occur at the top of the MHBX,
most distal to the source intrusion. The MHBX matrix is mineralogically zoned from the
bottom of the breccia and closest to the source intrusion to the top and distal edges of the
breccia. The major matrix constituents of the MHBX consist of aplite, quartz, potassium
feldspar and trace molybdenite in the A facies; quartz, potassium feldspar and trace
molybdenite in the B facies; quartz, potassium feldspar, fluorophlogopite, calcite,
molybdenite and fluorite in the C facies; quartz, fluorophlogopite, calcite, molybdenite
and fluorite D and E facies. The MHBX clast alteration also evolves from the bottom of
the breccia to the top and distal edges. The major alteration types in the MHBX consist
of biotite and potassium feldspar alteration in the A facies; biotite alteration in the B
facies; biotite alteration and quartz-sericite-pyrite (QSP) alteration in the C facies; QSP
alteration overprinting biotite alteration in the D facies; and QSP alteration in the E

facies. It was proposed that the differences in the breccia facies is due to evolution of the
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magmatic-hydrothermal fluid away from its source, differing intensities of water/rock

interaction, and/or differing breccia forming processes (Ross, 2002; Ross et al., 2002).
Previous Stable Isotope and Fluid Inclusion Gas Analysis Studies on Questa

Smith (1983) performed a stable isotope and fluid inclusion gas analysis study at
Questa, NM. Quartz, potassium feldspar, and biotite associated with vein mineralization
were analyzed for oxygen and hydrogen stable isotopes. The sampling was not spatially
or temporally constrained for this study and the MHBX was not as understood at the time
of this study as it is today and was lumped in with vein mineralization. Quartz,
potassium feldspar, and biotite associated with the potassic alteration stage of
mineralization yielded 20 values of 6.8-12%s, 1.8-8.5%o, and 1.2-5.4%o, respectively.
Quartz associated with QSP alteration yielded §'%0 values of 9.3 and 9.7 Biotites yielded
a 8D range of -110 t0 -117%o. The 8" Owater from quartz associated with potassic
alteration was calculated using fluid inclusion temperatures of 550°C and 400°C with
slgowater values of 7.8%o and 1.6-7.6%o, respectively. The éSlSO\,\,ater from quartz
associated with sericitic alteration was calculated using the fluid inclusion temperature of
320°C with values of 2.3 and 1.9%o. As observed at Climax in Hall et al. (1979), quartz
and potassium feldspar were not found to be in isotopic equilibrium due to tendency of
K-feldspar to exhibit isotopic exchange with later, lighter meteoric water. The stable
isotope data revealed oxygen and hydrogen values that are not purely magmatic, but
intermediate between magmatic and Oligocene meteoric water. Based upon this
observation, Smith (1983) concluded that molybdenum mineralization originated from a

mixture of magmatic and exchanged meteoric fluids.
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Fluid inclusion gas analyses were performed by Smith (1983) utilizing an older
method (thermal decrepitation) and older quadrupole mass spectrometer model than what
was used for this study. The methods of Smith (1983) only allow for analysis of He, H,
CO,, CO, H,0, H,S, N2, and mole% water. In addition, the Smith (1983) study occurred
prior to new methods on reporting fluid inclusion gas analysis data as developed by later
authors (Norman et al., 1997; Norman and Moore, 1999; Moore et al., 2001; Norman and
Blamey, 2001; Blamey and Norman, 2002; Norman et al., 2002). Results indicated a
lower concentration in H,S in quartz associated with potassic alteration than the quartz
associated with sericitic alteration.

Stein and Hannah (1985) and Stein (1988) reported the 5**S for four molybdenite
samples from Questa for Climax-type comparison studies. The four molybdenite samples
had a narrow §**S range of 1.0-1.1%o. These values are consistent with a magmatic
reservoir for the sulfur contributing to molybdenite mineralization at Questa.

Ross et al. (2002) performed a limited oxygen and hydrogen stable isotope study
on the Goat Hill MHBX matrix quartz (9 samples) and fluorophlogopite (3 samples).
The MHBX matrix quartz and fluorophlogopite exhibited a narrow 820 range of 6.8-
8.6%0 and 3.2-5.7%o, respectively. The three matrix fluorophlogopites that were also
analyzed for hydrogen resulted in 6D values of -112, -137, and -138%o, a fairly wide
range. Ross et al. (2002) calculated fractionation temperatures using quartz-mica pairs,
yielding a temperature range of 380-620°C assuming a phlogopite composition or 305-
515°C assuming a fluorophlogpite composition. Ross et al. (2002) did not perform a
fluid inclusion study to correspond with the stable isotope study performed, but instead

chose 550°C to use for §*®0p0 and 8Dyyo calculations. The 550°C temperature was
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chosen based upon the quartz-phlogopite fractionation temperatures, the biotite-apatite
geothermometer of Molling (1989), fluid inclusion temperatures (300-600°C) of Smith
(1983) and experimental studies on the liquidus of water- and F-rich granitic melts (550-
600°C) of Manning (1981) and Manning and Pichavant (1984). The calculated
8'80w20from gtz and biotite ranged from 5.1 to 8.6%o and 5.2 to 8.1%o, respectively. The
calculated 3Dy,0 from biotite exhibited a range of -93 to -121%.. Based upon magmatic
textures of the A-facies, the proximity to the source intrusion, and the §'*Oy0 and 8Dizo
values, Ross et al. (2002) concluded a magmatic origin to the ore-forming fluids with

little to no meteoric contribution.
METHODS

Stable Isotopes

Oxygen, hydrogen, carbon, and sulfur stable isotope analyses were performed on
various appropriate phases (quartz, fluorophlogopite, potassium feldspar, fluorite, calcite,
molybdenite, pyrite, anhydrite, and whole rocks) from the MHBX and stockwork veinlets
of the Goat Hill orebody. Stable isotope samples were collected from among five
different drillholes (19.9-12.1, 21.7-15.5, 22.0-14.0, 23.4-11.8G, 23.5-11.8G) in the
eastern portion of the Goat Hill MHBX (Figures 5 and 6). Three background samples
(one gtz-mo veinlet and two barren pegmatitic quartz) outside of the MHBX were also
taken within the source aplite stock. Paragenetic relationships between mineral phases
were determined in Rowe (2011) or Chapter I prior to stable isotope sample preparations
and laboratory analysis (Figure 7). In addition, quartz oxygen and hydrogen stable

isotope samples are matching pairs to those utilized in the fluid inclusion study of Rowe
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(2011) or Chapter I (two matrix and two veinlet samples from each of the MHBX facies
and three background samples) in order to be able to apply temperatures to oxygen and
hydrogen water calculations. With the exception of quartz, which occurs in all facies of
the MHBX and in veinlets, mineral phase and alteration sample locations were limited by
the mineralogic and alteration evolution within the MHBX and by veinlet mineralogy.
All stable isotope analyses were performed utilizing either a FinniganMAT Delta E or
FinniganMAT Delta Plus XP isotope ratio mass spectrometer at the New Mexico Tech
Stable Isotope Laboratory, except for hydrogen on fluorophlogopite and whole rocks,
which were run by the Stable Isotope Laboratory of the University of New Mexico’s

Department of Earth & Planetary Sciences.

Oxygen

Oxygen stable isotope analyses were performed on 15 veinlet and 19 MHBX
matrix quartz (facies A-E, Source Aplite Barren Quartz, Source Aplite veinlet), seven
MHBX matrix potassium feldspar (facies A2, B, and C), 18 MHBX matrix
fluorophlogopite (facies C-E), two MHBX matrix fluorite (facies C and D), 10 MHBX
matrix calcite (facies C-E), and seven MHBX clast whole rocks (bt alteration from A and
B facies, QSP overprinting bt alteration from C and D facies, and QSP alteration from D
and E facies). Reproducibility of '20 isotope values for all mineral species analyzed

was +0.15%. or less.

Silicates
Sample preparation for silicates (quartz, potassium feldspar, fluorophlogopite, and
whole rocks) involved separation of mineral species from undesirable material, crushing

with a mortar and pestle, sieving, and placing a predetermined weight of sample based
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upon percent of oxygen in respective mineral in a sample vessel for analysis. Reference
samples were similarly prepared and include NBS-28 (National Bureau of Standards
quartz standard), NBS-30 (biotite standard) and various in-house standards. The known
reference values were used to make a correction factor that was applied to the unknown
samples for correction to their actual stable isotope values. The samples are baked for 8
hours at 60°C to drive off atmospheric water. After baking, the samples were reacted
with CIF; for 8 hours at 450°C on a silicate extraction line and the oxygen converted to
CO; by reacting with a hot carbon rod. CO; is transferred to the dual inlet system of
either the FinniganMAT Delta E or FinniganMAT Delta Plus XP isotope ratio mass
spectrometer and measured with reference to a Oztech CO, reference gas (Velador, 2010;

Earthman, 2010).

Calcite

Calcite was reacted on a heating block at 45°C by the standard acidification
technique involving 100% phosphoric acid. CO, was then extracted from the samples
into the Gasbench system with autosampler and ran on the Finnigan MAT Delta Plus XP
isotope ratio mass spectrometer in continuous flow mode. The samples are corrected to

mineral standards analyzed in each run (Velador, 2010).

Fluorite

Fluid inclusion waters in fluorite were analyzed for oxygen stable isotopes.
Sample preparation for fluorite involved mineral separation, baking to drive off
atmospheric water, and loading small chips (40 mg) of fluorite into 3x5 mm Costech
silver cups. Reference samples were also loaded into silver cups and include benzoic

acid (HEKA isotope standard), NBS BaSO, standard and Hansonburg Fluorite in-house
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standard. The filled sample cups were loaded into an automated turret and individually
dropped into a Finnigan MAT TC/EA (high temperature carbon reduction elemental
analyzer) at 1450°C. When the sample is dropped into the carbon reactor, the fluid
inclusions decrepitate and release their water, which is quickly converted to H, and CO
by the hot glassy carbon in the reactor tube. H, and CO are swept into the FinniganMAT
Delta Plus XP isotope ratio mass spectrometer by a He carrier gas and analyzed in
continuous flow mode against a carbon monoxide reference gas standard. The known
reference values were used to make a correction factor that was applied to the unknown
samples for correction to their actual oxygen isotope values. Due to the variability of the
abundance of fluid inclusions, and hence fluid inclusion water, that exist in any given
sample, the samples were also corrected for peak height/size. This ensures proper

comparison to standard peak height and the most accurate stable isotope values.

Hydrogen

Hydrogen stable isotope analyses were performed on the same quartz (fluid
inclusion waters), fluorophlogopite, whole rock, and fluorite (fluid inclusion waters)
samples that oxygen stable isotopes were performed, for the purpose of producing
oxygen and hydrogen pairs. Sample preparation for quartz and fluorite involved mineral
separation, baking to drive off atmospheric water, and loading grains or small chips (~40
mg) into 3x5 mm Costech silver cups. Reference samples were also loaded into silver
cups and include CH7 (IAEA isotope standard) and benzoic acid (HEKA isotope
standard). The known reference values were used to make a correction factor that was
applied to the unknown samples for correction to their actual hydrogen isotope values.

The analytical procedure for fluid inclusion water hydrogen stable isotope analysis is
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almost exactly the same for the oxygen as described for fluorite in the previous section.
The only difference is that the hydrogen is analyzed by the FinniganMAT Delta Plus XP
isotope ratio mass spectrometer against a hydrogen reference gas standard. A peak
height/size correction was similarly applied to the samples for hydrogen as it was for the
fluid inclusion water oxygen analyses. Reproducibility of 6D isotope values for fluid
inclusion water analyses was quite variable. Matrix fluid inclusion 8D analysis yielded a
reproducibility range of 0.7 to 22.0%o, with an average of 11.8%o. Veinlet fluid inclusion
dD analysis yielded a reproducibility range of 0.7 to 62.1%o with an average of 16.5%o.
Eliminating the three duplicates that yielded differences of 38.31, 38.97, and 62.1%eo
would show reproducibility in veinlet fluid inclusion 6D analysis of 0.7 to 19.1%o with an
average of 8.4%o.

The hydrogen stable isotope analyses on fluorophlogopite and whole rocks were
performed by the Stable Isotope Laboratory of the University of New Mexico’s
Department of Earth & Planetary Sciences. Reproducibility of 6D isotope values for

fluorophlogopite and whole rocks was 1.5%o to 7.1%o.

Carbon

Carbon stable isotopes are obtained from calcites in the same run as the oxygen.

Sulfur

Sulfur stable isotope analyses were performed on seven veinlet and 13 MHBX
matrix (facies B-E) molybdenite, five veinlet and one MHBX matrix (facies B) pyrite,
and seven MHBX matrix (facies C-E) anhydrite in the New Mexico Tech Stable Isotopes
Laboratory. Sample preparation involved separation of mineral species from undesirable

material, crushing with a mortar and pestle, and placing a predetermined weight of
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sample based upon percent of sulfur in respective mineral into Costech 3x5 mm pressed
tin cups. Vanadium pentaoxide (V,0s) (6.0 mg) was added to the anhydrite, as well as
the sulfate standard, to aid in the combustion process. Reference samples were similarly
prepared and include in-house pyrite, pyrrhotite, barite, and sphalerite standards. The
known reference values were used to make a correction factor that was applied to the
unknown samples for correction to their actual stable isotope values.

The filled tin cups were loaded into an automated turret and individually dropped
into a Costech Elemental Combustion System (EA) at 1020°C and combusted to SO,
with a pulse of high purity oxygen. The SO, gas is carried through a gas chromatograph
and into the FinniganMAT Delta Plus XP isotope ratio mass spectrometer through a
continuous flow of helium. The sample is then measured with reference to an SO,

reference gas. Reproducibility of 8**S isotope values is +0.3%o (Earthman, 2010).

Fluid Inclusion Gas Analysis

Fluid inclusion gas analyses were performed on the same quartz and fluorite
samples in which oxygen and hydrogen stable isotope analyses and fluid inclusion
microthermometry of Rowe (2011) or Chapter | were performed. Fluid inclusion
volatiles were analyzed utilizing the crush-fast-scan (CFS) method as described in
Norman et al. (1996) on a dual (Balzers QME125 and Pfeiffer Vacuum Prisma)
quadrupole mass spectrometer system. Samples were prepared to weigh approximately
0.2g, which is about the size of the head of a matchstick. The samples were cleaned with
a 10% NaOH solution and distilled water, then dried at approximately 60°C to remove
any atmospheric water from the sample. An individual sample is loaded in the crusher

and evacuated to a pressure of <10” Torr. Crushing of the sample then involves opening
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fluid inclusions with a swift crush, which in turn releases fluid inclusion volatiles. The
volatiles are then quickly vacuumed to the mass spectrometer and analyzed by the dual
mass spectrometer system in fast scan mode. Each sample is crushed and analyzed 5 to
20 times. The gas species analyzed are H,, He, CHy4, H20, N2, Oy, H,S, Ar, CO,, SOy,

and C,.; organic compounds. The data is reported in mol.%.

The mass spectrometers are calibrated using commercial gas mixtures, synthetic
fluid inclusions, and in-house standards. Based upon instrument calibrations, the gas-
water ratios are measured better than 0.2%, and measurement precision for major gas

species is <5% and approximately 10% for the minor gas species.
RESULTS

Stable Isotopes

Oxygen stable isotope analyses of MHBX matrix quartz, fluorophlogopite, K-
feldspar, and calcite yielded a 5'%0 range of 6.0-8.2%, 2.0-5.6%o, 1.5-5.4%o, and 5.4-
8.5%o, respectively (Table 2). Fluorite fluid inclusion waters produced §'%0 values of
-4.0 and -1.7%o. Similar to the fluid inclusion data of Rowe (2011) or Chapter I, oxygen
stable isotope analyses on veinlet quartz yielded 520 range (6.1-8.4%o) that was
essentially analytically indistinguishable from the é‘)lgoo,tZ for the MHBX. Whole rock
820 values for biotite altered andesite, QSP overprinting biotite altered andesite, and

QSP altered andesite are -0.4-5.7%o, 0.9-3.5%0, and 0.9-3.7%o, respectively.

Hydrogen stable isotope analyses performed on MHBX matrix fluorophlogopite
produced results with a 8D range of -115 to -59%o (Table 2). Fluid inclusion water 6D
values from MHBX matrix quartz and fluorite ranged from -101 to -71%o and -109 to
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Table 2. Oxygen and hydrogen stable isotope data for whole rocks, quartz, K-feldspar, fluorophlogopite, fluorite, and calcite. 5%0m0
and dDgng measured directly from fluid inclusions for fluorite. 8Dgp measured directly from fluid inclusions for quartz. Temperatures
used for H,O calculations are 380°C for quartz, fluorophlogopite, and Kspar (main mode of mineralization from Rowe, 2011 or Ch. T)
and 200°C for calcite due its association with this temperature from Rowe, 2011 or Ch. T (Clayton et al., 1972; Zheng,1993; Zheng,
1993a; Zheng, 1999). Abbreviations: WR - whole rock gtz - quartz  Kspar - potassium feldspar  flphlog - fluorophlogopite 1l -
fluorite ca - calcite bt alt Tan - biotite altered Tertiary andesite QSP ovrpmt bt - quartz-sericite-pyrite alteration overprinting biotite
alteration QSP alt Tan - quartz-sericite-pyrite altered Tertiary andesite BQ - barren quartz  SA - source aplite M - mafrix V-
veinlet min - mineral meas - measured calc - calculated

-18 SWOH:G - 8Dmo 51301.]30 calc 51301.]30 calc Do cale
- . g [17) .

Sample ID  Sample Media Facies Phase %:‘"‘ meas oy meas @ 200°C @ 180°C @ 180°C
%o %o %o %o %o
AR-90WER WER As Bt alt Tan -04 - -122 -- - - --
AR-14WR WR As Bt alt Tan 57 -- -117 - . - -
AR-169WER WR B Bt alt Tan 23 - -118 -- -- - .
AR-86WR WR C QSP ovrprat bt 18 - -106 -- -- - .
AR-83WR WR C QSP ovrprat bt 0.9 - -108 -- -- - .
AR-146WR WR D QSP ovrprat bt 0.9 - -112 -- -- - .
AR-164WER WR D QSP alt Tan 3.7 - -117 -- -- - .
AR-64WR WR E QSP ovrprat bt 35 - -106 -- -- - .
AR-3IWR WR E QSP alt Tan 09 - -123 -- -- - .
AR-97 qtz SA BQ 74 - -- -93 -- 29 -
AR-173 qtz SA BQ 7.2 - -- -92 -- 27 -
AR-105 qtz Ay M 79 - - -71 - 33 -
AR-112 qtz Ay M 7.9 -- - -85 -- 34 --
AR-106 qtz Ay M 7.8 -- - -71 -- 33 --
AR-118 qtz Ay M 7.5 - -- -84 -- 3.0 -
AR-91 qtz Az M 7.5 - -- -95 -- 3.0 -
AR-93 qtz Az M 7.2 - -- -101 -- 27 -
AR-12 qtz B M 80 - - - - 35 -
AR-13 qtz B M 7.7 -- - -90 -- 32 -
AR-169 qtz B M 82 -- - - -- 37 --
AR-131 qtz C M 7.7 - -- -91 -- 32 -
AR-8 qtz c M 7.9 - -- -73 -- 34 -
AR-10 qtz D M 7.7 - -- -92 -- 32 -
AR-164 qtz D M 6.0 - -- -72 -- 15 -
AR-6A qtz D M 7.6 -- -- -- - 3.0 .
AR-T8 qtz D M 8.0 - -- -89 -- 35 -
AR-5 qtz E M 76 - -- -72 - 31 .
AR-64 qtz E M 81 - - -77 - 36 -
AR-174 qtz SA A 7.9 - -- -81 -- 34 -
AR-102 qtz Ay v 6.6 -- -- -- - 2.0 .
AR-115 qtz Ay A 6.1 -- -- -- - 1.6 .
AR-110 qtz Ay A 7.5 - -- -52 -- 3.0 -
AR-119 qtz Ay A 8.1 - -- -64 -- 3.6 -
AR-14 qtz As v 73 - -- -113 -- 28 -
AR-90 qtz As v 7.5 - -- -99 -- 3.0 -
AR-147 qtz B v 73 - -- -97 -- 28 -
AR-167 qtz B A 7.9 - -- -103 -- 33 -
AR-11 qtz c A 74 - -- -66 -- 29 -
AR-81 qtz C A 7.6 -- -- -- - 31 .
AR-143 qtz D V 7.0 - -- -143 -- 24 -
AR-146 qtz D v 74 - -- -98 -- 29 -
AR-138 qtz E v 75 - -- -123 -- 30 -
AR-3 qtz E v 84 - -- -94 -- 39 -
AR-106kspar Kspar Ay M 15 -- - - - 11 -
AR-118kspar Kspar Ay M 1.5 - - - - -1.1 -
AR-169%kspar Kspar B M 27 - - - - 0.2 -
AR-130kspar Kspar C M 54 - - - - 2.9 .
AR-131kspar Kspar C M 48 - - - - 23 .
AR-132kspar Kspar C M 23 - - - - 02 .
AR-83kspar Kspar C M 15 -- - - - 11 -




18, 3"%0m0 Do 5°0mocale  8%0g cale  8Dmo cale

Sample ID  Sample Media Facies Phase ° %:‘i“ meas D];G':i“ meas @ 200°C @ 380°C @ 380°C
%o %0 %o %o %0
AR-130bt fliphlog C M 42 - -105 - - 6.0 -79.3
AR-131bt fiphlog C M 44 -- -109 -- - 6.2 -84
AR-166bt fiphlog C M 39 -- -59 -- - 57 -33
AR-81bt fiphlog C M 56 - -103 - - 74 =77
AR-83bt fiphlog C M 51 -- -100 -- - 69 -74
AR-84bt fiphlog C M 27 -- -93 -- - 45 -68
AR-163bt fiphlog D M 4.1 - -102 - - 59 =77
AR-164bt fiphlog D M 44 -- -113 -- - 6.1 -88
AR-69bt fiphlog D M 45 -- -96 -- - 6.3 -71
AR-6ADbt fiphlog D M 2.0 -- -107 -- - 38 -82
AR-78bt fiphlog D M 50 -- -89 -- - 6.7 -63
AR-137bt fiphlog E M 4.0 -- -107 -- - 58 -82
AR-160bt fiphlog E M 39 -- -100 -- - 57 =75
AR-3bt fiphlog E M 38 - -115 — - 36 -89
AR-4bt fiphlog E M 33 -- -102 -- - 51 =77
AR-64bt fiphlog E M 4.1 -- -109 -- - 59 -83
AR-166 fl C M -- -1.7 -- -106 - - --
AR-1648 il D M -- -4.0 -- -109 - - --
AR-8ca ca C M 54 -- -- - -43 -- --
AR-82ca ca C M 77 -- -- - -2.1 -- --
AR-166ca ca C M 7.5 - - - -23 - -
AR-10ca ca D M 74 -- -- - -24 -- --
AR-144ca ca D M 85 -- -- -- -13 - --
AR-146ca ca D M 83 - - - -1.5 - -
AR-164ca ca D M 78 -- -- -- -2.0 - --
AR-4ca ca E M 81 -- -- -- -1.7 -- --
AR-5ca ca E M 6.9 -- -- -- -28 -- --
AR-142ca ca E M 84 -- -- -- -14 - --
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-106, respectively. Whole rock 6D values from biotite altered andesite, QSP overprinting
biotite altered andesite, and QSP altered andesite ranged from -122 to -117%., -112 to
-106%o, and -123 to -117%o, respectively. Unlike the quartz 820, fluid inclusion water
oD values from veinlet quartz (-143 to -52%o) exhibited a larger range of values than the
MHBX matrix quartz. It is intriguing that the veinlet 6Ds are so different considering
that the fluid inclusion (Rowe, 2011 or Chapter 1) and 5'®0 data between the MHBX and
veinlets exhibit no analytical differences. A couple of minor differences exist between
the MHBX and veinlet quartz when looking at the fluid inclusions petrographically that
might explain the difference in 6Ds between the two quartz phases: the veinlet fluid
inclusions were smaller and less abundant than the fluid inclusions in the MHBX matrix.
Smaller and less abundant fluid inclusions in the veinlets resulted in smaller sample
peaks during analysis. As previously mentioned in the Methods section of this paper, the
reproducibility of the fluid inclusion 6Ds in veinlet quartz was much more variable (0.7-
62.1%o) than the MHBX quartz (0.7-22.0%o), hence the sporadic and widespread range in
veinlet 6Ds could very well be attributed to analytical error associated with small sample
peaks. Two other possibilities exist for the veinlet 6D variability - these ranges are real
or there is a geologic role in the range of values — and will be discussed in the Data

Interpretation section of this paper.

Carbon stable isotope analyses performed on MHBX matrix calcite and sulfur
stable isotope analyses performed on MHBX matrix anhydrite, molybdenite, and pyrite
demonstrated a §"*C range of -6.2 to -5.0%o (Table 3) and a §**S range of 6.6-10%o, 0.4-
2.3%o, and 1.6-2.5% (Table 4), respectively. 5**S values from veinlet molybdenite and

pyrite ranged from 1.1-2.0%o and 1.7-2.5%o, respectively.
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Table 3. Carbon stable isotope data. Temperature used for CO,

calculation (Ohmoto and Rye, 1979) is from mode temperature (200°C)
of Stage 4 of Rowe (2009) in which calcite is associated.
Abbreviations: min - mineral calc - calculated

8°C coz cale @

. EISC )

Sample Facies Phase I 200°C
%ﬂ %n
AR-8ca C matrix -5.5 -53
AR-82ca C matrix -39 -5.7
AR-166ca C matrix -54 -5.2
AR-10ca D matrix -5.5 -53
AR-144ca D matrix -39 -5.7
AR-146ca D matrix -6.2 -6.0
AR-164ca D matrix 5.8 -5.6
AR-4ca E matrix -39 -5.7
AR-5ca E matrix -39 -5.7
AR-142ca E matrix -5.0 -49
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Table 4. Sulfur stable isotope data. Abbreviations: anhy - anhydrite
mo - molybdenite  py - pyrite M - matrix V- veinlets  min -
mineral SA - source aplite

: : d**S
Sample Mineral Facies Phase min

1]

AR-134anhy anhy C M 04
AR-89%anhy anhy C M 06
AR-163anhy anhy D M 80
AR.-165anhy anhy D M 6.6
AR -6Aanhy anhy D M a8

AR-13%anhy anhy E M 10.0
AR-141anhy anhy E M 85
AR-150mo mo B M 1.1
AR-149mo mo B M 0.8
AR-130mo mo C M 1.5
AR-131mo mo C M 1.2
AR-80mo mo C M 23
AR.-8mo mo C M 04
AR-163mo mo D M 13
AR-164mo mo D M 1.1
AR-T8mo mo D M 1.2
AR-T6mo mo D M 21
AR-165mo mo D M 1.8
AR -4mo mo E M 14
AR-64mo mo E M 1.1
AR-98mo mo SA WV 20
AR-113mo mo A, vV 1.1
AR-110mo mo A AY 13
AR-119%mo mo A AY 1.6
AR-81lmo mo C vV 1.3
AR-143mo mo D vV 13
AR-3mo mo E AY 1.7
AR-14%9%py Py B M 1.6
AR-110py Py A vV 22
AR.-90py Py Al vV 2.5
AR-166py Py C W 1.7
AR-B2py Py C W 22
AR-161py Py E W 19
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Fluid Inclusion Gas Analysis

Two important criteria need to be established in order for a fluid inclusion volatile
analysis to be relevant: inclusions have not leaked since the fluids were trapped and the
compositions of the volatile phases were not modified during analysis (Smith, 1983;
Norman et al., 1996). Due to the high diffusion rates of H, and He through various
minerals, the occurrence of measurable amounts of H, and He in fluid inclusions is
evidence that there has been little to no loss of fluids from inclusions after trapping
(Smith, 1983; Norman and Musgrave, 1994; Norman et al., 1996). Measurable amounts
of H, and He were detected in all the samples analyzed (Table 5), evidence that the fluid
inclusions at Questa have not experienced post-entrapment modification through leakage.
Predetermined sensitivity factors, peak-stripping algorithms, and in-house designed
matrix-inversion programs are used to determine the concentration of each volatile
species. This method, in combination with instrument calibration and QA/QC analyses,
ensures that there was no modification of the fluid inclusion gases during analysis. The
averages of the crushes for each sample for the fluid inclusion volatiles analyzed are

presented in Table 5.

DATA ANALYSIS AND INTERPRETATION

Oxygen and Hydrogen Stable Isotopes

Oxygen Isotope Geothermometry
Oxygen mineral pairs were utilized to calculate fractionation temperatures for
MHBX matrix quartz-potassium feldspar, fluorophlogopite-potassium feldspar and

quartz-fluorophlogopite. Four mineral pairs were available for oxygen isotope
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geothermometry using quartz and potassium feldspar. The resultant temperatures,
calculated utilizing Zheng (1993), O’Neil and Taylor (1969), Zheng (1993) and Clayton
et al. (1972), were too low (<125°C) and/or too high (>>600°C) for the system, indicating
that quartz and K-feldspar were not in isotopic equilibrium. The disequilibrium
demonstrated by the temperatures that were too low can most likely be attributed to the
susceptibility of feldspars to post-deposition alteration and corresponding isotopic

exchange.

Six quartz-fluorophlogpite mineral pairs were utilized to calculate fractionation
temperatures utilizing quartz-fluorophlogopite and quartz-phlogopite fractionation
equations. The calculated quartz-fluorophlogopite fractionation temperatures ranged
from 270-475°C with one outlier of >600°C (370°C average) (Clayton and Keiffer ,1991
and Chacko, 1996), 250-402°C (311°C average) (Fortier, 1994 and Sharp and Kirchner,
1994), and 200-350°C (265°C average) (Zheng, 1999 and Fortier, 1994). All of the
temperature ranges derived from the quartz-fluorophlogopite equations correlate with
fluid inclusion temperatures and Stages 1 through 3 of Rowe (2011) or Chapter I,
however the temperatures (270-475°C, 370°C average) of Clayton & Keiffer (1991) and
Chacko (1996) best correlated with established temperatures for the system (Rowe, 2011
or Chapter I) (Figure 8). The temperatures calculated for quartz-phlogopite, rather than
fluorophlogopite, where too high with an average temperature of 740°C (Zheng 1993 and

1993a).

MHBX Facies
It was hypothesized that the oxygen stable isotope data would reflect the

mineralogic/alteration evolution that occurs within the Goat Hill MHBX (Ross, 2002),

104



UORERIE g5 30 oqiyd yate palelcossE AIE §PUE § S25E1S PUE UONEIRIE Msseled

Ui PRIEIDOSSE I8  PUE | S25E15 "WOHEZNEISUNLE JO PO WHEW 31} 2Q 01 paipIsuod 51 PUE J3s EJEP aU3 W 2pow ] 1525k

3l ST P ASNEISq PAPEYS 51 3POW p)fE "S2EEIS URPLM SIPOW ] WOISTIW P[J 31EMPLE S0y T Y30 (1107) a0y wor
UOREZEIAUNG a1mapqAjow Jo sa5e)s are sease papeys  (pgg1) w0 pue (g561) Susyz (DPwe (9641) 0dEU)PUE (1561)
RIpeY % uoldEry (g Yge51) Feunposy 3 deys pue (F451) Jenio J (% WOl pRIEMaED saSuer amyerdina) uoneuonoely adojost
ajgels weEixe apdoEomdosong-zaenb a1 Yoy 3o (1107) 203 Jo sapow puE ‘saEE)s ‘samyeraduwe] wolsnow pmyy g amErg

n saalbag ul ainjesadwa]
009 005 00%F 00g 00 001 0

J

o

| _ |
4 T |

2P0l 14 002 I

O

L JOVILS
¢ JOVLS
£ JOVLS
y JOVILS

A S

05 08E 08E 00Z

105




with the heaviest, most magmatic values occurring closest to the source intrusion (Facies
A and B) and the lightest, more meteoric stable isotope values occurring most distal to
the source intrusion (Facies D and E). Whole rock analysis results for MHBX clasts of
the three major alteration types (biotite, QSP overprinting biotite, and QSP) from bottom
of the MHBX to the top (facies As-E) did not support this hypothesis (Table 2 and Figure
9). The biotite (facies Az and B)(-0.4-2.3%o) and QSP (facies D and E)(0.9-3.7%o) altered
clasts do not demonstrate the heaviest and lightest values, respectively, but rather a
variable range. In addition, the intermediate QSP overprinting biotite alteration (0.9-
3.5%o0) does not fall in between the two end member alteration values, but rather overlaps
the other two alteration types. The lack of any evolutionary pattern in the clast stable
isotope values based upon alteration type and/or facies may be due to the fact that the
samples were whole rock bulk analysis and may contain variable amounts of relict
potassium feldspar from early potassic alteration or accessory minerals such as magnetite,
etc. that contributed to a result that was different than expected. It may also be that this
hypothesis is wrong. A Pearson’s correlation was used in an attempt to quantify the
degree of correlation between facies and alteration types, §**0Owg, and 8Dwg, or the lack
thereof. If the absolute value of a correlation coefficient (|cc|) is 0.5 and greater, then it is
considered to represent a correlation between the variables. All |cc|s between facies and
other variables were <0.5, with values of 0.05-0.28, demonstrating that there is no facies

correlation with alteration type, 8*®0Owg, or SDwr.

Oxygen and hydrogen stable isotopes are especially valuable when they are used
in conjunction with fluid inclusion temperatures to calculate the §**0Op,0 and 8D.0

values of the mineralizing fluids which can constrain the source (magmatic, meteoric, or
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both) and evolution of the fluid in the ore-forming system (Table 2). The 80,0 values
for MHBX quartz (1.5-3.7%o), fluorophlogopite (3.8-6.9%o), and K-feldspar (-1.1-2.9%)
were calculated at 380°C, using the equations of Clayton et al. (1972), Zheng (1993), and
Zheng (1993a), respectively. 380°C was chosen because it is the main mode temperature
for the associated fluid inclusion data of Rowe (2011) or Chapter | and is related to Stage
2 of Rowe (2011) or Chapter I, a main stage of molybdenite mineralization that is also
associated with those minerals (Figure 8). Similarly, 380°C was also chosen to calculate
the dDy,0 for the fluorophlogopites (-89 to -33%o) using the equation of Suzuoki &
Epstein (1976). The §'®0n,0 for fluorite was taken directly from fluid inclusion waters,
as mentioned in the previous sections. The associated fluid inclusion temperature for
those same fluorite samples is 200°C from Stage 4 of Rowe (2011) or Chapter I. 200°C
was used to calculate the 8*®0y,0 of calcite (-4.3 to -1.3%o) using the equation of Zheng
(1999), due to it being syn-genetic or post-genetic with fluorite in the Goat Hill MHBX
paragenetic sequence (Figure 7 and 10). Hence, calcite would have a similar, if not
lower, temperature of deposition. The dDy,o for quartz and fluorite were taken directly

from fluid inclusion waters, as mentioned in the previous sections.

No evolutionary pattern is evident in the quartz 50 and 5D calculated waters
based upon facies, opposite of what was hypothesized (Figure 11). The quartz data
exhibit a very tight range of §"®0y.0 and a slight variation in 8Dj,0, With a random
distribution of the facies. A Pearson’s correlation was performed on the quartz hydrogen
and oxygen data to determine if the data has a correlation between facies. The |cc| was
0.02 for the oxygen data and 0.23 for the hydrogen data, revealing there is no facies

correlation with the quartz oxygen and hydrogen stable isotope data. In addition, there is
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Figure 10. Sample AR-164 demonstrating mineral paragenesis:
kf—>flphlog—qtz—>fl>ca. Scale is in inches.
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no facies correlation with the fluorophlogpite oxygen and hydrogen stable isotope data
(Figure 11). The fluorophlogopite §'®0Oy,0 data is slightly wider spread than the §®Oy,0
data of quartz. The fluorophlogopite 8®0p,0 data also exhibits a random facies
distribution with the C-facies containing the heaviest and one of the lightest §**O0
values and the D-facies containing the lightest 50,0 value. The 8Dy,0 Values have a
similar spread as the quartz, also with a random facies distribution. A Pearson’s
correlation was also performed on the fluorophlogpite 820 and 5D data versus facies,
with a |cc| of 0.33 and 0.43, respectively. This indicates no facies correlation with the

oxygen and hydrogen stable isotope data for fluorophlogopites.

Similarly to the stable isotope data of this study, the associated fluid inclusion
data in Rowe (2011) or Chapter | demonstrated no evolutionary pattern in quartz based
upon facies. Rowe (2011) or Chapter | did conclude however, that there is an evolution
between the mineral phases of the MHBX matrix paragenetic sequence (quartz and
fluorite), which in turn does reflect the mineralogic evolution of the Goat Hill MHBX.
Likewise, the evolution between the different mineral phases is evident in the oxygen and
hydrogen stable isotope data of fluorophlogopite, quartz, K-feldspar, fluorite, and calcite,
where the minerals that are first in the paragenetic sequence (fluorophlogopite, quartz,
and K-feldspar) are the heaviest, most magmatic, and the minerals last in the paragenetic
sequence (fluorite and calcite) are the lightest, least magmatic with meteoric input
(Figure 11). K-feldspar is lighter than would be expected, however, especially since it is
first in the paragenetic sequence and occurs in the facies closest to the source intrusion.
The lighter values are most likely due to the susceptibility of feldspars to post-deposition

alteration and isotopic exchange.
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A good example of the oxygen and hydrogen isotope data reflecting the
mineralogic evolution of the MHBX is AR-164, which has results for fluorophlogopite
(8"01,0=6.1 and 8Dr,0=-88%b), quartz (8®0Op,0=1.5 and 8Dp,0=-72%o), fluorite
(8"®0n,0=-4 and 8D1,0=-109%o), and calcite (5*On.0=-4.3%0) (Figure 10, Figure 11, and
Table 2). As you can see, fluorophlogopite is first in the paragenetic sequence and has
the most magmatic values, with minimal magmatic-meteoric mixing. Quartz, which is
next in the paragenetic sequence, is less magmatic with more meteoric input than the
fluorophlogopite and is evolving towards Questa paleo-meteoric water (Johnson et al.,
1990). Fluorite, next in mineral paragenesis, resulted in values that reflect even more of a
meteoric input, placing these values even closer to Questa paleo-meteoric water. Lastly,
calcite had the lightest, most meteoric "800 values and is last in the mineral

paragenesis.

In summary, an evolution is apparent demonstrating that the minerals that are first
in the paragenesis of the Goat Hill orebody are the most magmatic, and as paragenesis
evolves, so do the isotopic values of the fluid from predominantly magmatic to
magmatic-dominant magmatic-meteoric mixing to a meteoric-dominant mixed
magmatic-meteoric fluid (Figure 12). In addition, based upon the fact that there is no
correlation or evolutionary pattern in the quartz data based upon facies, but there is an
evolution evident between the different mineral phases of the MHBX, it appears that
performing oxygen and hydrogen stable isotope analyses on the different mineral phases
of the MHBX is what reflects the mineral evolution of this system. The main mode of
molybdenite mineralization is associated with Stage 2 of Rowe (2011) or Chapter | at

380°C and a 5"®0y,0 and 8Dy.0 range of 7.4%o (from fluorophlogopite) to 1.5%o (from
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quartz) and -63%o (from fluorophlogpite) to -101%o (from measured dDy,0 in quartz).
Fluorophlogopite data produced an outlier (AR-166bt) that was excluded from the above

conclusion, due to the dissimilarity to the dataset.
Veinlets

It was concluded by Rowe (2011) or Chapter | that the fluid inclusion temperature
and salinity data for the veinlets are essentially indistinguishable from the MHBX, and
hence both the MHBX matrix and veinlet fluids underwent a similar evolutionary history.
Due to the similar evolutionary history, the 50,0 values for veinlet quartz were also
calculated using the main mineralization mode temperature of 380°C, as was done for the
MHBX (Table 2 and Figure 12). The veinlet quartz exhibited a tight range of §**0Op.0
values, both similar in the value and the narrow range as the MHBX matrix quartz
51800 values for 380°C. As discussed in the previous section, the 6Dy,o for veinlet
quartz was taken directly from fluid inclusion waters and exhibited a wide range of
values that exceed the range of 6Dy,0 values for the MHBX quartz. If analytical error is
not the cause for this broad range and dissimilarity in veinlet 6Dy,0 values, then the range
is either real or attributed to a geologic factor. The previous studies performed on Questa
did not analyze fluid inclusion water 6D in quartz, therefore comparison Questa data is
unavailable to aid the argument that the veinlet 6D values are real. A possible geologic
contributor to the large veinlet quartz 6Dy,o range is interstitial water. A small amount of
structurally-bonded molecular water can occur in a quartz crystal, fractionate with the
hydrothermal fluid and/or be released during thermal decrepitation, producing sporadic
and widespread, typically lighter, 6D values (Hoefs, 1997). The veinlet quartz is

different than the MHBX matrix in that the veinlets have smaller, more abundant quartz
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grains. This could perhaps contribute to a higher amount of interstitial water in the
veinlets compared to the MHBX. Another possibility is that the lesser amount of fluid
that was produced by the smaller and less abundant veinlet fluid inclusions was more
susceptible to exchange and dilution by interstitial water hydrogen, resulting in variable
veinlet quartz 6Dy,o values compared to the MHBX. In other words, the fluid inclusion
water to quartz interstitial water ratio is higher in the matrix and lower in the veinlets,
hence the interstitial water having more of an effect isotopically on the veinlets. The
widespread range of veinlet fluid inclusion 6Ds could also be a result of both analytical
error, as discussed in the Results section, and any combination of the geologic factors

discussed above.

Based upon the veinlet §*®0y,0 values and the fluid inclusion data of Rowe
(2011) or Chapter I, it is likely that the quartz-molybdenite veinlets underwent the same
isotopic evolutionary history as the Goat Hill MHBX matrix. The variable 8Dy,0 values
may, in part, not accurately represent the veinlet fluid. Similar to the MHBX, veinlet
molybdenite mineralization is associated with Stage 2 of Rowe (2011) or Chapter | at

380°C and 8*80y,0 values of 3.9%o to 1.6%o.

Carbon Stable Isotopes

The dominant carbon-bearing aqueous species from Climax-type magmas is CO,
(Ohmoto & Goldhaber, 1997), hence the §'*Cco, was calculated for calcites at 200°C
(Ohmoto and Rye, 1979)(Table 3). The temperature was determined by the association
of calcite with Stage 4 of Rowe (2011) or Chapter | and fluorite, as previously
mentioned. The calculation revealed a tight range in §*Cco, 0f -6.0 to -4.9%o. Typically,

the §°Cco,and 5800 for calcite would be plotted on an X-Y diagram in order to
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identify trends attributed to degassing, fluid/rock interaction, and/or fluid mixing,
however this study does not offer such an opportunity due to such a small range in the
8"Ccoz (1.1%0) and the 5'®0y,0 (3%0) values. Bicarbonate '*C was not calculated due to
the fact that the HCO3™ content of hydrothermal fluid is negligible at temperatures
>100°C (Hoefs, 1997) and all low salinity fluid inclusions associated with calcite
precipitation and meteoric influx in Stage 4 (Rowe, 2011 or Chapter I) demonstrated

homogenization temperatures at >100°C.

The §'3Cco, data demonstrates that the carbon in all facies analyzed (C-E) came
from a magmatic source (Deines and Gold, 1973) Hoefs, 1997; Ohmoto & Goldhaber,
1997). The source is different for carbon (magmatic) compared to oxygen (mixed
meteoric/magmatic with meteoric dominance) for Questa calcites. This is possible
because the amount of carbon in meteoric fluid is negligible. Hence, the magmatic
signature of the carbon remains in the meteoric-dominant mixed magmatic-meteoric fluid
despite the fact that the oxygen has evolved to reflect the meteoric-dominant fluid
(Ohmoto, 1986). A Pearson’s correlation was performed to determine if there is a
correlation between §"3Cco,, §'®0n.0, and facies. The |cc| was 0.03 to 0.42, showing
there is no correlation between 8*3Cco,, 50,0, and facies. Lastly, due to the reverse
solubility of calcite, precipitation cannot occur by simple cooling (Hoefs, 1997). Fluid
mixing, which was determined to have occurred at Questa based upon 50,0 and 8Dy.0
data and fluid inclusion microthermometry data, is the probable mechanism of calcite

precipitation (Rowe, 2011 or Chapter I).
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Sulfur Stable Isotopes

Sulfur stable isotopes were analyzed for MHBX matrix anhydrite, molybdenite,
and pyrite, and veinlet molybdenite and pyrite. Molybdenite and pyrite mineral pairs
could not be used for geothermometry due to the fact that these minerals exhibit little
fractionation at temperatures greater than 200°C (Ohmoto & Goldhaber, 1997) and
molybdenite mineralization in the Goat Hill orebody commenced at <420°C and ceased at
220°C (Rowe, 2011 or Chapter 1). Also, sulfide-sulfate (i.e., molybdenite/pyrite-
anhydrite) mineral pairs could not be utilized for geothermometry because they are not in
equilibrium at temperatures below 350°C (Hoefs, 1997; Ohmoto & Lasaga, 1982) and
MHBX anhydrite is paragenetically associated with Stage 4 of Rowe (2011) or Chapter I,
which has a mode temperature of 200°C. In addition, molybdenite deposition occurred at
240-420°C (Rowe, 2011 or Chapter 1). MHBX matrix and veinlet molybdenite and pyrite
have a very narrow 8*S range of 0.8-2.5%o, compatible with a magmatic source for sulfur
(Table 4) (Hoefs, 1997 and Ohmoto & Goldhaber, 1997). MHBX matrix anhydrite also
has a narrow range of 6.6-10.0%o, also demonstrating a magmatic source (Hoefs, 1997
and Ohmoto & Goldhaber, 1997). Similar to carbon, the magmatic signature of sulfur
can remain despite any meteoric component to the mineralizing fluid (as reflected in
80,0 and 8Dy.0 values) because of the negligible amount of sulfur in meteoric fluid.
A Pearson’s correlation was performed to determine if there is a correlation between
8%*Sanny, 6>*Smo, and facies. The absolute values of the correlation coefficients for §**Sanny
and 5**Sp,o Vs. facies were 0.08 to 0.22, respectively, showing there is no correlation

between 8*Sahy, 8°*Smo, and facies.
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Fluid Inclusion Gas Analysis

Fluid inclusion gas analysis is a bulk assay of the fluid inclusion gases in a given
sample, which means primary, pseudosecondary, and secondary inclusions are subject to
extraction during crushing. Based upon fluid inclusion microthermometry analyses in
Rowe (2011) or Chapter I, primary and pseudosecondaries are dominant in the samples
compared to secondary inclusions. Consequently, the results of the fluid inclusion gas
analyses of this study are principally representative of the primary fluids of the system.
This is supported by the fact that the results of the fluid inclusion gas analyses are in
intimate correspondence with the fluid inclusion data of Rowe (2011) or Chapter I and

the oxygen and hydrogen stable isotope data of this study.

Certain species of fluid inclusion gas analysis, specifically CO,/CH,, No/Ar, and
Ar/He ratios, can be indicators of fluid sources and evolution within the system. The gas
data in this paper is reported in terms of two data plots by Norman and Moore (1999) and
Blamey and Norman (2002) - No/Ar vs. CO,/CH, (Figure 13) and No/Ar vs. Ar/He
(Figure 14), respectively. The data is plotted in this fashion to show both processes and
sources for a number of reasons pertaining to geologic factors, corresponding gas species
behaviors, and the relationships of these factors and behaviors with known fluid source
reservoirs. The Ny/Ar vs. CO,/CHy plot of Norman and Moore (1999) identifies the ratio
values for magmatic, shallow meteoric, evolved (crustal), organic (crustal), and evolved
magmatic fluid sources. On the N,/Ar vs. Ar/He plot of Blamey and Norman (2002), the

interior of the 5-sided box represents the calc-alkaline magmatic gas compilation of
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Giggenbach (1996). On this diagram, meteoric fluids occur to the left and above the 5-
sided box (Blamey and Norman, 2002). A caveat in utilizing the 5-sided magmatic plot
for data interpretation in this study is that the source intrusion for the Questa system is
peralkaline/granitic not calc-alkaline. Therefore, due to lack of fluid inclusion gas
analysis data on Climax-type systems, it is unknown whether the calc-alkaline magmatic
box would apply. Look to Norman and Moore (1999) and Blamey & Norman (2002) for

more details on how these diagrams were derived.

MHBX Facies

Similar to the oxygen and hydrogen stable isotopes, it was hypothesized that the
fluid inclusions gases in quartz from each facies would reflect the mineralogic/alteration
zonation in terms of an evolutionary pattern in the fluid inclusion gas analysis data, i.e.
facies closest to the source intrusion would have a magmatic gas signature and facies
distal to the source intrusion would have a gas signature signifying meteoric input. This
IS not the case, however. There is no distinct evolutionary pattern based upon facies in
the quartz data (Figures 13 and 14). All facies quartz is randomly placed in near
magmatic and/or shallow meteoric box of the N,/Ar vs. CO,/CH,4 diagram. Similarly, all
facies quartz occurs randomly from just within to outside of the calc-alkaline magmatic
box of the N,/Arvs. Ar/He plot. A Pearson’s correlation was used for quartz and fluorite
in attempts to identify a correlation between facies and H,, He, CHy4, H,O, N, H,S, Ar,
COg,, SOy, Oy, and alkane/alkene organic compounds to see if there is a geochemical
evolution that corresponds to the mineralogic/alteration evolution of the MHBX (Table
5). If the absolute value of a correlation coefficient (|cc|) is 0.5 and greater, then it is

considered to represent a correlation between the variables. All |cc|s between facies and
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the various gas species were below 0.5, with values of 0.07-0.43, demonstrating that there
is no facies correlation with the analyzed fluid inclusion gas species in quartz and

fluorite.

Analogous to the oxygen and hydrogen stable isotope data of this study and the
fluid inclusion data of Rowe (2011) or Chapter I, an evolution is evident between the
different mineral phases of the matrix paragenetic sequence - early quartz and later
fluorite (Figures 13 and 14). The two MHBX fluorite samples contained less CO; (not
more CH,) than the quartz samples of the MHBX (Table 5) and occur in the evolved
(crustal) box of the CO,/CHy,4 vs. No/Ar plot, along the border of shallow meteoric (Figure
13). The lack of CO; in the fluorites, which occur in the last stage of evolution (Stage 4
of Rowe (2011) or Chapter I fluid inclusion data and last in hydrogen and oxygen stable
isotope evolution of this study), is a possible indicator of CO, degassing or mixing at the
very end of evolution of the MHBX when quartz and calcite were deposited. This
degassing, in combination with magmatic and meteoric fluid mixing (per oxygen and
hydrogen stable isotope data of this study and Stage 4 of Rowe (2011) or Chapter I), are
the probable mechanisms for precipitation of reversely soluble calcite in the Goat Hill
MHBX. On the Ar/He vs. N/Ar diagram, the fluorites have the lowest N,/Ar ratios and
are somewhat set apart from the quartz samples, although it is not as obvious on this plot
as it is on the No/Ar vs. CO,/CH,4 diagram. On both plots, samples of quartz and fluorite
from AR-164 have very different ratios (Figures 13 and 14). The quartz sample from
AR-164 plots in the magmatic field in both diagrams. The AR-164 fluorite sample plots
in the evolved (crustal) gas field of the N,/Ar vs. CO,/CH,4 diagram and to the left, in the

meteoric gas field, of the calc-alkaline magmatic gas box on the N,/Ar vs. Ar/He
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diagram. The fluorite samples also demonstrated a significantly higher amount of C,H,4
(50.07-113.23 mole %) and C4H1o (1203.92-1145.55 mole %) hydrocarbons than the
MHBX quartz with a range of 0-3.11 and 3.27-85 mole %, respectively (Table 5). The
presence of significant C,.; hydrocarbons in fluid inclusions is evidence for evolved
crustal waters that have underwent significant wall-rock reactions (Moore et al., 2001).

All of the above clearly reflect the mineralogic evolution of the system.

The Goat Hill MHBX quartz fluid inclusion gas analysis data displays a magmatic
to meteoric source, with samples occurring in and/or along the magmatic gas field to well
into the shallow meteoric field of the N/Ar vs. CO,/CH, plot (Figure 13). Likewise,
quartz samples occur within or along the calc-alkaline magmatic gases box to well out of
the magmatic box and into the meteoric input area for the N2/Ar vs. Ar/He diagram
(Figure 14). Both FIGA diagrams are comparable to the fluid source demonstrated by
the hydrogen and oxygen stable isotope data. The difference in comparison of the
oxygen/hydrogen stable isotope and fluid inclusion gas analysis data sets is that the gas
data yields an interpretation of magmatic-meteoric mixing with primarily a meteoric
source to the system, whereas the oxygen/hydrogen stable isotope data shows an
evolution of a mixed fluid from a predominantly magmatic to a predominantly meteoric
source (Figure 12). Two possible mechanisms could explain the interpreted meteoric
dominance of the gas analysis data. First, fluid inclusion gas analysis is a bulk method
which may obtain all types of inclusions that occur in samples, including often
meteorically-derived secondaries. As mentioned previously however, in samples for this
study, secondaries are minute in abundance compared to fluid inclusions that represent

primary fluids, so they would not influence the results significantly. A second possible
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explanation for the meteoric dominance of the gas analysis is that it is a newer method,
with newer reporting techniques based upon limited data, and perhaps peralkaline and/or
granite-related ore deposit systems occur in a genre separate from the established fields
of Norman and Moore (1999) and Blamey and Norman (2002). In other words, perhaps
granite-related systems have a lower N,/Ar ratio in reference to the magmatic gas sources
used for deriving the No/Ar vs. CO,/CH, and No/Ar vs. Ar/He diagrams. Despite the
questionable meteoric dominance displayed by the gas analysis data, the importance is
that there is a meteoric input to the system with magmatic-meteoric mixing indicated and
evolution from magmatic to meteoric is displayed with a definite difference in the quartz
and fluorite, most importantly in the same sample. Since fluid inclusion gas analysis is a
fairly new technique with little ore deposit data reported, and the §'®Oy,0 Vs. 8Dj.0 is a
well-established and reported method, more confidence is allotted to the
oxygen/hydrogen isotope results that indicate magmatic-dominant magmatic-meteoric

mixing for the quartz.

The fluid inclusion microthermometry data of Rowe (2011) or Chapter | indicates
boiling was a dominant occurrence at Questa and was a mechanism for molybdenite
deposition. The total gas content of the fluid inclusions can also be a gauge for whether
boiling has occurred in the system or not. Total gas content is calculated by taking the
amount of H,O detected in the fluid inclusions and subtracting it from 100. If the total
gas content is greater than 1.5 mole %, then excess gas levels due to boiling are indicated
(Norman et al., 2002). The average total gas content for the MHBX is 2.32 mole %,
demonstrating that boiling of the fluids occurred. This supports the same conclusion

from the fluid inclusion microthermometry data in Rowe (2011) or Chapter I.
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Veinlets

Veinlet quartz analyzed for fluid inclusion gases was essentially analytically
indistinguishable from the fluid inclusion gas analyses of the MHBX quartz (Figure 15
and 16), again similar to the fluid inclusion data (Rowe, 2011 or Chapter I) and the
oxygen stable isotope data of this study. On the N,/Ar vs. CO,/CH, diagram, the veinlet
data plotted mainly in the shallow meteoric field with a few samples bordering magmatic
and evolved crustal. On the N,/Ar vs. Ar/He diagram, the veinlet data occurs from
slightly in the magmatic box to meteoric input area (above and left of box), indicating an
evolution from magmatic to meteoric sources to the system. Similar to the MHBX, the
veinlet gas analysis data also indicates boiling occurred with an average total gas content
of 1.76 mole %. The total gas content of the veinlets is slightly lower than that for the
MHBX, but is still greater than 1.5 mole %. The difference in fluid inclusion gas content
may indicate that the veinlets originated from a slightly more evolved magmatic-
hydrothermal fluid than the MHBX, as was also suggested in Chapter | or Rowe (2011)
based upon minor differences in fluid inclusion size, type, and abundance between the
MHBX and veinlets. Since the veinlet fluid inclusion gas analysis data is essentially
analytical indistinguishable from the MHBX matrix quartz data with only a slight
difference in gas content, it is concluded that the veinlets underwent the same
evolutionary history as the Goat Hill MHBX. This is in conjunction with the conclusions
derived from the corresponding fluid inclusion microthermometry data of Rowe (2011)
or Chapter | and oxygen/hydrogen stable isotope data of this study. Hence, the meteoric
dominance argument applied to the MHBX matrix quartz in the previous section also

applies to the Goat Hill quartz-molybdenite veinlets.

125



‘(666T) 24100\ 72 UeWION woJ) weibelrq ‘uoieuejdxa
10J 1X3] 985 'S18|UIdA - sa|Bueln uado Aeib Maep ‘18julaA a11jde 824N0S - ySLIaise
%0e|q :SJOQWIAS "94’|OW U] "SIBJUIdA o) Wwelbelp THD/€OD "SA IV/SN ST ainbi4

NN
0000T 000T 00T 0]
IrTrr T | | _______ | | __________ [ .._H '
e MSe
o

- (l1sno)
E oLebIO (le1sno)

i arewBew panong pANT | 1
MW hm H v_ID\N8
E- Sot
_ml oG % QHOSIN MOJRUS [
M_____ | | _______ | | _______ | |

126



g

000T

NN

‘(Z002) uewuoN 7 Aswe|g wol) weibelq
‘uoljeur|dxa 10J 1X81 89S "S19|UIdA - Sa|buels) uado Aeib Jep ‘19|ualA alljde 82in0s
- YSLIBISe YIB|q :S|OQWAS 04’ |OW U] "SIBJUISA J0J Welbelp aH/IV 'SA IV/N 9T ainbiq

00T

0]

IR

olreGe
aulexe-oeD

Jlo.

SHAV

127



COMPARISON WITH PREVIOUS QUESTA SI AND FIGA STUDIES

The data set from this study exhibited similarities and differences to the previous
stable isotope and fluid inclusion gas analysis studies on Questa (Smith, 1983; Stein &

Hannah, 1985; Stein, 1988; Ross et al., 2002) in terms of oxygen and hydrogen stable

isotope values, oxygen isotope geothermometry, sulfur stable isotopes, and fluid
inclusion gas analysis results. In addition, there are similarities and differences in the
data interpretation between the various authors and this study. Comparing previous
stable isotope and fluid inclusion gas analysis data sets and interpretations with those of
this study will aid in deriving an ore genesis model for the Questa system. In addition,
incorporating the ore genesis conclusions from the fluid inclusion microthermometry
study (Rowe, 2011 or Chapter I) with those of this study can offer an ore genesis model

derived from three supporting data sets and several different studies.

Stable Isotopes

Oxygen and Hydrogen

The 80k values of Smith (1983) correlate well with this study with ranges of
1.8-8.5%o0 and 1.5-5.4%o, respectively (Figure 17 and Table 6). Smith (1983) obtained a
value up to 3.1%o heavier than this study for potassium feldspar, however. A possible
explanation for this variable range in 5Ok values is the susceptibility of potassium
feldspar to alteration and fractionation from later stage, isotopically lighter waters. Smith
(1983) may have sampled more pristine, less altered K-feldspar as well as K-feldspars
that were similarly altered to those sampled in this study. Support of this theory would

be disequilibrium between cogenetic quartz-KF mineral pairs demonstrated by
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fractionation temperatures that were either too high or too low for this type of system.
This was the case for five out of six quartz-KF mineral pairs for Smith (1983), where the
fractionation temperatures are <200°C for the system. Similarly, this study found that
quartz and K-feldspar are not in equilibrium as well. As previously mentioned, the
disequilibrium is most likely attributed to post-depositional alteration of K-feldspar by
isotopically lighter water and quartz being resistant to this process.

The biotite 80 values of Smith (1983) and Ross et al. (2002) correlate well with
this study (Figure 17 and Table 6). Ross et al. (2002) obtained a slightly smaller §'%0
range (3.3-5.7%o) and the range of Smith (1.2-5.4%0) extends slightly lighter than this
study (2.0-5.6%o) for biotite. The quartz oxygen values of Smith (1983) and Ross et al.
(2002) are also quite comparable to the values of this study with ranges of 6.8-12.8%o,
6.8-8.6%o0, and 6.0-8.4%., respectively (Figure 17 and Table 6). A difference is that
Smith (1983) reported a larger slsoqtz range compared to this study and Ross et al. (2002)
with values up to 4.4%o heavier. It is unknown why Smith (1983) obtained heavier
values for slsoqtz, but what is most important is that the range of this study and of Ross et
al. (2002) fall within that of Smith (1983). Based upon this fact and the overlapping
ranges for %Oy, it is concluded that Questa has a 8'0q, value of 6.0-8.6%o and 'Oy,
value of 1.2-5.7%o associated with molybdenite mineralization.

Differences in biotite 3D values are revealed by the data comparison of Smith
(1983) (-117 to -110%o) and Ross et al. (2002) (-138 to -112%o) to this study (-115 to -89
%o0) (Figure 17 and Table 6). First, the oDy values for this study ranged up to 21%o
heavier than the upper limit of 8Dy of Smith (1983) and Ross et al. (2002) (Figure 17).
Second, the lower limits of the Dy range of Ross extends up to 23%o lighter than the
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lower limits of the biotite 3D range for this study and that of Smith (1983). Lastly, a
much tighter biotite 3D range was reported by Smith (1983), which falls in the middle of
the data set for this study and that of Ross et al. (2002). The variation in the biotite 5D
data for Questa reported by Smith (1983) and Ross et al. (2002) is puzzling, since the
biotite 50 values correlate well between the studies. It may be that this study sampled
more pristine, less sericitically altered biotites than the other studies on Questa, which
would reveal heavier values for this study. Also, hydrogen isotopes are more readily
susceptible to fractionation than oxygen stable isotopes, which could cause such a large
range in 8Dy values from the same deposit. Another factor to keep in mind is that this
study analyzed 18 biotites for oxygen and hydrogen stable isotopes, whereas Smith
(1983) and Ross et al. (2002) only analyzed five and four biotite samples, respectively.
This study exemplifies a more statistically representative data set that could possibly be
viewed with more weight than the other studies. Also for consideration is the fact that
the biotite Dy,0 values calculated for this study at the established mode temperature of
380°C do fit well with the calculated quartz SDy20 values and the fluid evolution story for
the system (Figure 12). Despite the biotite 6D differences, the most important factor is
that all three data sets do overlap for the biotite 6Ds. Based upon this fact, the number of
samples analyzed in this study compared to the other authors, and the fluid evolution
stages of Rowe (2011) or Chapter I, it is concluded that Questa has a biotite 3D value of -
117 to -89%o. No 6Ds were analyzed from quartz fluid inclusion waters in either Smith
(1983) or Ross et al. (2002).

The temperatures utilized to calculate the §**0p20 and D20 Values, how those
temperatures were derived, and the interpretation of the origin of the fluids varied
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between this study, Smith (1983), and Ross et al. (2002). Smith (1983) utilized 400°C for
calculating most of the quartz 8**0Ow,0 values and calculated one sample at 550°C (Table
6 and Figure 18). These two temperatures were applied to samples considered to be
associated with potassic alteration. 400°C was based upon the largest mode in fluid
inclusion homogenization temperatures of Smith (1983), which is comparable to the
380°C main mode of this study that is also associated with potassic alteration (Rowe,
2011 or Chapter I). The temperature of 550°C for Smith (1983) came from the
fractionation temperature revealed by mineral pairs (qtz-KF, qtz-bt, KF-bt) in one
sample. The temperature obtained from fluid inclusion microthermometry on 70
inclusions is likely more reliable than a fractionation temperature from mineral pairs in
one sample. Smith also utilized the 550°C to calculate biotite 50,0 and 8Dy, values
(Table 6 and Figure 18). Smith (1983) also applied a temperature of 320°C to calculate
8'®0n,0 from quartz associated with sericitic alteration (Table 6 and Figure 18).

Similar to the oxygen and hydrogen mineral values of Smith (1983) being fairly
comparable to this study, so are the calculated 580n0 and 8Dy,0 Values despite the
variation in temperatures used (Figure 18 and Table 6). However, since 550°C was
utilized to calculate the biotite §*Op20 and Dyyo values for Smith (1983), and that
temperature is based solely on mineral pairs from one sample, the main mode
temperature from this study (380°C) was applied to demonstrate its effects (Table 6 and
Figure 18). This temperature change puts the biotites entirely within range of the 8020
and dDyyo values for this study. Another interesting fact to note is regarding the fluid
evolution Stages of Rowe (2011) or Chapter | (Figure 8). Even though the second main

mode temperature (280°C) for molybdenite mineralization from Stage 3 of Rowe (2011)
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or Chapter | was not applied to the stable isotope data, the temperature of 320°C from
Smith (1983) is in agreement with the temperature range (340-240°C) for Stage 3, which
is also associated with sericitic alteration. The quartz §'®Opyo values calculated from
320°C of Smith (1983) are pulled closer to the meteoric water line and further support the
evolution of the system in terms of mineralogy and Stages 1-4 of Rowe (2011) or Chapter
| (Figures 8 and 18). Not only was the data of Smith (1983) fairly comparable to this
study, but the conclusion of the source for mineralizing fluid source is also comparable
with this study - mixed magmatic and meteoric.

Ross et al. (2002) applied a temperature of 550°C to the quartz and biotite §®Opa0
and the biotite 8Dy, calculations (Table 6 and Figure 18). This temperature was not
obtained from a complimentary fluid inclusion study. Instead, 550°C was chosen based
upon temperatures derived by previous studies (biotite-apatite geothermometer for
temperature of crystallization from Molling, 1989; fractionation temperature from
mineral pairs of Smith, 1983; liquidus temperature in water and fluorine-rich granitic
melts from Manning, 1981 and Manning & Pichavant, 1984) and from his fractionation
temperatures derived from quartz-biotite mineral pairs. Ross et al. (2002) calculated
fractionation temperatures between quartz and biotite assuming a phlogopite composition
for biotites (380-620°C) and a fluorophlogopite composition for biotites (305-515°C).
Despite the fact that the MHBX matrix biotites at Questa are fluorophlogopite in
composition (Molling, 1989; Cline & Bodnar, 1994), Ross chose the quartz-phlogopite
(rather than quartz-fluorophlogopite) temperature because it fit with the above mentioned
previous studies to make a temperature determination of 550°C. Based upon the fluid

inclusion studies at Questa (Rowe, 2011 or Chapter I; Bloom, 1981; Smith, 1983; Cline
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& Bodnar, 1994; Cline & Vanko, 1995; Klemm et al., 2004), the quartz-fluorophlogopite
geothermometer of Ross et al. (2002) and Rowe (2011) or Chapter I, and the aqueous
geochemistry of Smith (1983), 550°C is considered too high a temperature to be
associated with molybdenite mineralization. Applying a temperature that is too high
(550°C) is going to result in 8**0y0 values that are heavier than what is representative of
the system. Hence, the main mineralization mode temperature for this study (380°C) was
applied to calculate the 8200 of Ross et al. (2002) and demonstrates that the 52040
values for both quartz and fluorophlogopite (i.e. biotite) are in the same range as reported
for this study at 380°C (Figure 18). These values are considered by this study to be more
representative of the ore fluid. The mode temperature of 380°C was also applied to the
dDy20 calculations of Ross et al. (2002), however the 6Dy,0 values are still much lighter
than this study with minor overlap (Figure 18).

Ross et al. (2002) concluded a magmatic origin with little to no meteoric
contribution based upon calculated 5'80u0 values from quartz and biotite, 6Dy,0 values
from biotite, and the temperature (550°C) that was chosen for the isotope water
calculations. Unlike this study where the biotites range from magmatic to lighter than
magmatic values, the biotite 6Dy0 values of Ross are definitely not magmatic, regardless
of the temperature used in the calculation (Figure 18). Ross attributed the non-magmatic
dDw20 Values to either post-depositional hydrogen exchange with meteoric water or a
previously degassed magma chamber. If either of these were the case, this would likely
be reflected in the hydrogen data for this study, which is not the case. At 550°C, the
quartz §'®Oyz0 values of Ross et al. (2002) are mostly magmatic, however it has been

established that 550°C is too high for the system and 380°C should be applied. At 380°C,
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the quartz 8**0O0 values of Ross et al. (2002) are definitely mixed magmatic-meteoric,

similarly to this study.
Sulfur

The 5**S values for molybdenite (0.4-2.3%o) in this study are comparable to the
molybdenite sulfur values of Stein & Hannah (1985) and Stein (1988) (1.0-1.1%o) (Table
6). Despite the fact that the 5**S values from this study have a slightly broader range than
those of Stein & Hannah (1985) and Stein (1988), the source for the molybdenite sulfur is

in agreement between the studies — a magmatic source.
Fluid Inclusion Gas Analysis

The fluid inclusion gas analysis of Smith (1983) did not include Ar or CHy, so the
data cannot be plotted on the No/Ar vs. CO,/CH,4 and N,-Ar-He and diagrams for
comparison to this study in terms of fluid origin (Table 5, Figures 15 and 16). In terms of
the gas constituents that were analyzed by both studies (Hz, He, H,0O, N2, H.S, CO,, SO,
and calculated Total Gas), there are some similarities and differences. As previously
mentioned, a total gas content of >1.5 mol% is an indicator of boiling. The average total
gas content of quartz associated with potassic alteration of Smith (1983) (0.80 mole %)
shows no boiling occurred and is much less than that of this study (2.10 mole%) where
boiling is indicated by the total gas. Conversely, the average total gas content for quartz
associated with QSP alteration (2.45 mole %) for Smith (1983) is similar to this study and
indicates boiling as well. The hydrogen content from the gas analysis of Smith (1983) is
comparable to that of this study. As previously mentioned, measurable H; in fluid
inclusion volatile analysis is significant as supporting evidence that the fluid inclusions

have not experienced post-entrapment modification through leakage. H, content being
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the same between the gas analyses of each study further demonstrates that no leakage or
gas modification has occurred at Questa, which aids in supporting the Trapped Halite
Phenomenon of Rowe (2011) or Chapter | and the gas analysis data of this study. The
CO; content of Smith (1983) (0.64-0.9 mole%) is comparable to this study (1.13 mole%),
however the N2 content of Smith (1983) (0.03-0.09 mole%) is significantly lower than
this study (0.482 mole%). Without Ar and CH4 however, it is not possible to determine
if there is any significance to these relationships regarding fluid source. Lastly, the gas
analysis data of Smith (1983) reveals substantially more sulfur-bearing gases (H,S and
S0,) than this study (Table 6). Smith (1983) stated that the SO, reading is not reliable
and is therefore disregarded. Lower H,S values can be a result of the sulfur being
removed from the system by sulfide mineralization (i.e. molybdenitetpyrite). The
lower H,S values of this study (0.001 mole%) compared to Smith (1983) (0.041 to 0.84
mole%) may be an indicator that the sampling that was based on rigorous temporal-
spatial constraints for this study more accurately sampled quartz that was associated with

molybdenite mineralization.
CONCLUSIONS

Although the Goat Hill orebody MHBX consists of a defined mineralogic and
alteration zonation, the quartz 5'®*Oy,0, D20, and fluid inclusion gas analysis data do not
reflect a fluid evolution based upon facies. The 50,0, 8Dh20, and fluid inclusion gas
analysis data do reflect an evolution between the different mineral phases of the MHBX
matrix paragenetic sequence, however. With the §'®Oy,0 Vs. 8D.0 data, the evolution
follows the paragenetic sequence (fluorophlogopite—>quartz—>fluorite—>calcite) where

the minerals that are first in the paragenetic sequence exhibit the heaviest, most magmatic
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signature with the least amount of meteoric mixing and the minerals that are last in the
paragenetic sequence are the lightest, least magmatic fluids with the most amount of
meteoric mixing. The fluid evolution is also evident by quartz and fluorite in the fluid
inclusion volatile analyses. Paragentically earlier quartz demonstrates magmatic to
predominantly meteoric CO,/CH,4, No/Ar, and Ar/He gas ratios, whereas later fluorite has
significantly less CO, and lower N/Ar ratios indicating an even more evolved fluid
(from shallow meteoric to evolved crustal). All of the above is complimentary to the data

and conclusions of the fluid inclusion microthermometry of Rowe, 2011 or Chapter I.

Due to the fact that the §®0p,0 and fluid inclusion gas analysis data is essentially
analytically indistinguishable between MHBX and the later veinlets that crosscut the
MHBX, it is concluded that the MHBX matrix and veinlet fluid underwent the same fluid
evolution history. The one minor difference between the MHBX and veinlets (total gas
content) may indicate that the veinlets originated from a slightly more evolved magmatic-
hydrothermal fluid, but still underwent a similar fluid evolution history as the MHBX.
Based upon the oxygen and hydrogen stable isotope data of this study, Smith (1983), and
Ross et al. (2002), factors discussed in this section, the fluid inclusion microthermometry
of Rowe (2011) or Chapter | and Smith (1983), and the fluid inclusion gas analyses of
this study, it is concluded that both phases of molybdenite mineralization are from similar
source fluids that evolved from magmatic to mixed magmatic-meteoric of variable
degrees with a §'®0p,0 range of 1.5-7.6%o and a 8D range of -113 to -63%o and are
associated with both potassic and phyllic alteration (Smith, 1983 and Rowe, 2011 or
Chapter I). The veinlets are paragenetically later, demonstrating that the system evolved

this way at least twice.
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CHAPTER III.

A Comparison of Genetic Fluid Origin of the Questa Climax-type Porphyry
Molybdenum System, New Mexico with the Climax-type Deposits of the
Colorado Mineral Belt, Colorado

ABSTRACT

The Climax-type porphyry molybdenum systems of New Mexico (Questa) and
the Colorado Mineral Belt (COMB) (Climax, Henderson, Mount Emmons, and Silver
Creek) possess a unique set of physical characteristics that set them apart from other
porphyry-Mo deposits and put them together in a class of their own. The genetic origin
of Climax-type deposits has been debated throughout the economic geology community
with only a magmatic source as the predominantly accepted origin (Cline & Bodnar,
1994; Cline & Vityk, 1995; Ross et al., 2002; Klemm et al, 2004; Klemm et al., 2008;
Kamilli, 1978; White et al., 1981; Carten, 1987; Carten et al., 1988; Seedorff & Einaudi,
2008) followed by mixed magmatic-meteoric origin (Bloom, 1981; Smith, 1983; Hall et
al., 1974; Larson, 1987).

Fluid inclusion microthermometry, stable isotope analysis, and fluid inclusion gas
analysis data of the Questa Climax-type deposit indicate a magmatic to mixed magmatic-
meteoric genetic origin of the molybdenite-mineralizing fluids with a §**Oy20 and D20
range of 1.5-7.6%o and -53 to -143%., @ mode temperature of mineralization at 380-
400°C, salinities of 0-64 eq. wt.% NaCl, and N,-Ar-He and CO,-CHy-N,-Ar fluid
inclusion gas ratios plotting in near-magmatic to meteoric source fields on diagrams of
Blamey & Norman (2002) and Norman & Moore (1999) . A comparison of the
geochemical data of Questa with the data of the Climax-type deposits of the COMB
revealed that the deposits of the COMB do indeed possess similar genetic origins and
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fluid evolution histories to Questa with common fluid inclusion types, non-magmatic raw
homogenization temperature modes ranging from 320-400°C, and magmatic to mixed
magmatic-meteoric 8'*On20 and 8Dpgzo ranges of 2-9.7%o and -140 to -83%o associated
with molybdenite mineralization. Another similarity between the deposits is a magmatic
source for sulfur with a 8**Spoiybaenite range of 0.4-5.3%o for all of the deposits.

As to be expected, minor differences exist between Questa and some of the
COMB deposits as well, i.e. boiling, TshI>>Tlv fluid inclusions, and source of carbon in
post-mineralization calcites. These differences are minimal compared to the similarities

that demonstrate a mixed magmatic-meteoric fluid source for Climax-type deposits.
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INTRODUCTION

Despite the recent economic downturn, the elevated price of molybdenum in the
past 8 years has amplified interest in the world-class high-grade porphyry molybdenum
deposits of the Climax-type (Figure 1). Amplified interest often calls for a re-visitation
of past data and interpretations, in addition to performing and reporting new studies.
Various interpretations have been made about the genetic origin of Climax-type porphyry
molybdenum systems and the characteristics that define them as a Climax-type (Bloom,
1981, Carten, 1981; Carten et al., 1988; Carten et al., 1993; Cline & Bodnar 1994; Cline
& Vanko, 1995; Hall et al., 1974; Hannah & Stein, 1986; Kamilli, 1978; Klemm &
Pettke, 2004; Klemm et al., 2008; Ross et al., 2002; Seedorff & Einaudi, 2004; Smith,
1983; Stein, 1988; Stein & Hannah, 1985; White et al., 1990; White et al., 1981). These
interpretations reflect similarities and differences from deposit to deposit, analysis to
analysis, and author to author. This paper is a summary and comparison of the geology
and geochemistry of the Questa Climax-type porphyry molybdenum system (Questa)
with the Climax-type deposits of the Colorado Mineral Belt (COMB) — Climax,

Henderson, Mt. Emmons, and Silver Creek.

BACKGROUND
Climax-type Deposits
Climax-type deposits are set apart from the traditional quartz monzonite-type
porphyry-Mo deposits by their high grade and distinctive characteristics, most
significantly the tectonic setting, age range, source intrusion composition, geochemistry,
and copper to molybdenum ratio (Table 1). The tectonic setting that is unique to Climax-

type deposits is a rift environment. Not all rift zones have potential for Climax-type
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Figure 1. Molybdenum price (10 year). Modified from Infomine, Inc., 1990-2011.
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mineralization, however. Climax-type deposits occur in areas of shallow subduction
where the tectonic environment shifts from compression to atectonic to rifting (Wallace,
1995). Shallow subduction promotes fractional partial melting of upper mantle and lower
crust which causes thermal weakening of the crust, resulting in rifting (Meyer, 1991,
White et al., 1981).

The age range for Climax-type deposits is Paleozoic to Tertiary. However, the
majority of Climax-type deposits are concentrated in the Mid-Tertiary, when their unique
tectonic environment was prevalent on earth. The high-silica peralkaline granite source
intrusions for Climax-type deposits are extreme differentiates of the upper mantle and
lower crust parent magmas that began their partial melting process during shallow
subduction. These granitic source magmas are cupolas of stocks that belong to a larger,
deeper batholith. The cupolas coarsen with depth (aplite to granite), where the shallower
aplite/rhyolite to aplite/rhyolite porphyry is the phase associated with mineralization.
Multiple stages of intrusion of the source magmas are directly associated with multiple
stages of mineralization for Climax-type deposits. Typically, there is a younging of
intrusions with depth, where the oldest intrusion is the shallowest, and the youngest is the
deepest intrusion.

Due to the highly evolved nature of the source magma, these deposits are high
silica, alkali-rich and calcium poor. The extreme differentiation process of these magmas
also resulted in other unique geochemical aspects of these deposits. The source plutons
have elevated concentrations of incompatible elements: fluorine (0.1 to >1%), rubidium,
cesium, beryllium, lithium, niobium, tantalum, and most importantly molybdenum (Cox

& Singer, 1986; Ludington, 1986; Ludington, 1995; Sinclair, 1995; Theodore, 1986;
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Ludington, 1986; Ludington & Plumlee, 2009; Donahue, 2002; White et al., 1981; White
et al., 1990; Carten et al., 1993; Ross et al., 2002; Lipman, 1992). The fluorine plays an
important role in molybdenum mineralization as a complex for the Mo rather than the
chlorine complex in traditional Cu-Mo deposits (Smith, 1983). Climax-type deposits are
also elevated in tin, thorium, uranium, and tungsten. Tin and tungsten were actually
recovered as a by-product of mining at the Climax mine in Colorado. Additionally, the
evolution process of the source magmas results in clean and homogeneous ore with a
very low copper to molybdenum ratio (Cu:Mo = 1:100 to 1:50).

Climax-type deposits possess additional common features from deposit to deposit
as well. An important structural feature that occurs in Climax-type systems controlled
the emplacement of the highly evolved magmas - the juxtaposition of a Precambrian
shear zone with rift centers. The molybdenum ore zones are draped about the apex of the
stock or cupola. Alteration types follow a similar pattern with high silica zones closest to
source intrusion, then potassic, phyllic, and argillic alteration zoned sequentially outward
from the source intrusion. Local argillic alteration also occurs along structures.
Propylitic alteration occurs distally both above and outward from the intrusive center. In
some cases, a tungsten ore shell will mimic the molybdenum ore shell and occur both
within and above the Mo zone. Base-metal (Zn, Pb, and Cu) mineralization occurs
outward and distally from the source intrusion and molybdenum ore shell (Cox & Singer,
1986; Ludington, 1986; Ludington, 1995; Sinclair, 1995; Theodore, 1986; Ludington,
1986; Ludington & Plumlee, 2009; Donahue, 2002; White et al., 1981; White et al., 1990;

Carten et al., 1993; Ross et al., 2002; Lipman, 1992).
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Molybdenum mineralization in Climax-type deposits occurs as open-space filling
stockwork veinlets, replacement veinlet stockworks, magmatic-hydrothermal breccias,
and minimal disseminations. Some vein minerals that occur in Climax-type systems are
quartz, potassium feldspar, fluorine-rich biotite, fluorite, molybdenite, anhydrite, calcite,
pyrite, magnetite, hubnerite, wolframite, cassiterite, beryl, rutile, apatite, rare earth
oxides, rhodochrosite, dolomite, fluorine-rich topaz, and creedite.

Questa and the COMB

This paper focuses on the most well-known Climax-type systems — Questa in
New Mexico and those of the COMB (Climax, Henderson, Mt. Emmons, and Silver
Creek) (Figure 2). All of the NM and CO deposits occur along the Rio Grande Rift. As
mentioned in the previous section, Precambrian shear zones are additional necessary
structural features that occur in Climax-type areas. The deposits in CO occur along the
Precambrian shear zone similarly termed the Colorado Mineral Belt (Carten et al., 1993;
White et al., 1981). Questa in NM does not occur along this particular shear zone, but
does occur along a shear zone of similar age and named the Jemez Lineament (Lipman,
1992; Meyer and Leonardson, 1990; Meyer and Foland, 1991; Ross et al., 2002). Both of
these Precambrian shear zones helped control emplacement of the large-scale batholiths
of highly evolved source magmas for the Climax-type systems. Magmatism for all of the
Climax-type deposits of the NM and CO occurred during the Tertiary period. The oldest
deposits are those in closest proximity to the Rio Grande Rift (Climax, Henderson, and
Questa), with Oligocene ages of 33-24 Ma, 30-27 Ma, and 25-24 Ma, respectively (White
et al., 1990; White et al., 1981; Czmanske, 1990; Zimmerer, 2008; Shannon et al., 2004;

Ludington & Plumlee, 2009). The next youngest is the Miocene-aged Mt. Emmons (17
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Ma) (White et al., 1981; Thomas and Galey, 1982). The youngest of the NM and CO
Climax-type deposits is Silver Creek at a Pliocene age of 5 Ma (Larson et al., 1987,
Larson, 1994; Cameron et al., 1985). For the COMB, the age of the Climax-type
deposits appears to be proportional to the distance from the rift center. New Mexico’s
Questa deposit is an exception to this trend.

Molybdenum mineralization in Climax-type systems is independent of host rock
lithology since the source of Mo in Climax-type deposits is the extreme differentiates of
the upper mantle and lower crust. Host rock lithology is variable from deposit to deposit
in the COMB and NM, where each deposit has a different country rock type (Table 2).
Despite the fact that host rock lithology is not related to Mo mineralization, host rock
lithology may be a possible contributor to some differences between the deposits. For
instance, at Climax, the only deposit where tungsten was recovered (0.027-0.030% WO3),
half of the host rocks are mostly Precambrian meta-igneous schists and gneisses which
were already anomalous with respect to tungsten. The other deposits do not have
metamorphic basement rocks that are anomalous in tungsten (Wallace, 1995). Another
difference that is likely attributable to host rock lithology is mineralization style. Questa
is the only deposit that has prevalent magmatic-hydrothermal breccia (MHBX)
mineralization style (Table 2). The weak, deuterically altered, volcanic and volcaniclastic
host rocks at Questa could not withstand the pressures caused by the magmatic-
hydrothermal system, resulting in substantial MHBX formation. Climax and Henderson
country rocks are competent igneous or meta-igneous rocks which are not as favorable to
MHBX formation as the weak volcanics of Questa. There is a smaller, lower grade

deposit (Redwell) neighboring Mt. Emmons that has a post-Mo mineralization MHBX,
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but for whatever reasons, the sedimentary hosted Mt. Emmons deposit favored open-
space veinlet formation for mineralization phase (Thomas & Galey, 1982). The same
goes for the meta-sedimentary and sedimentary hosted Silver Creek deposit.

In Climax-type deposits, multiple stages of intrusion and associated ore shells
often occur, as at Climax, Henderson, and Questa. These multiple stages of intrusion,
with their associated ore shells, provide these deposits with their large tonnages and
render them economically desirable. The difference between Questa and
Climax/Henderson is that the source intrusions and associated ore shells at Questa mostly
occur laterally, whereas at Climax/Henderson they are stacked (Table 2). A pre-existing
structural fabric associated with the Tertiary Questa caldera is the likely culprit for the
lateral source intrusion morphology and orebody distribution at Questa. There is
evidence of some stacking of source intrusions at Questa by minor vertical ore shell
stacking, but the dominant morphology is lateral, not vertical. The Mt. Emmons deposit
is considered to be the result of a single intrusive event, which would explain its small
size (Wallace et al.,1968; Hall et al.,1974; Seedorff & Einaudi, 2004; Larson, 1987,
Carten et al., 1993; Thomas and Galey, 1982; Larson et al.,1994; Cameron et al., 1985;
Ludington and Plumlee, 2009) (Table 2). At the Redwell deposit, despite both lateral and
vertical source intrusion morphology and orebody distribution, the grades and volumes
are subeconomic. Little is known about the source intrusion of the Silver Creek deposit
in the Rico district. What minimal exploration drilling that has been done has not
intersected the source intrusion, only dikes of alaskite porphyry that are believed to be the
source of the mineralization. Silver Creek appears to be one orebody from one intrusive

event based upon drilling and its small size (Table 2) (Cameron et al., 1985).
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GEOCHEMISTRY OF CLIMAX-TYPE DEPOSITS

An ore genesis geochemical study was performed on the Goat Hill orebody at
Questa (2011a and b or Ch. I and Il) utilizing three supporting data sets (fluid inclusion
(FI) microthermometry, stable isotope (SI) analysis, and fluid inclusion gas analysis) and
well-defined temporal and spatial constraints. Fluid inclusion microthermometry and gas
analyses were performed on MHBX matrix quartz and fluorite, and quartz from later
stockwork veinlets. Oxygen, hydrogen, carbon, and sulfur stable isotope analyses were
performed on the respective MHBX matrix mineral species of quartz, fluorophlogopite,
K-feldspar, calcite, and molybdenite and on stockwork veinlet quartz and molybdenite.
Oxygen stable isotope analyses were also performed on fluid inclusion waters in MHBX
matrix fluorite. Hydrogen stable isotope analyses were performed on fluid inclusion
waters in MHBX matrix quartz and fluorite and stockwork veinlet quartz. Please refer to
Rowe (2011a and b or Ch I and II) for detailed methodologies.

This paper will focus on the interpretation of the geochemistry and the ore genesis
model for Questa derived from this study and previous studies on Questa in comparison
to data interpretations and models for the Climax-type deposits of the COMB. Note that
fluid inclusion gas analyses were not performed on any of the COMB deposits and hence
are not available for comparison to Questa. The fluid inclusion gas analyses are an
important aspect in telling the fluid evolution and ore genesis story for Questa, however,
and will be included in the summary on Questa. Comparison between Questa and the
Climax-type deposits of the COMB is invaluable in determining the fluid evolution of

this type of system, what geochemical conditions are associated with molybdenite
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mineralization, and generating an ore genesis model for Climax-type porphyry Mo

deposits.

Fluid Inclusion Microthermometry
Fluid Inclusion Types

Based upon visible phases at room temperature, four major fluid inclusion types
(I-1V) were identified at Questa (Figure 3, Table 3, Table 4). Type I inclusions contain
liquid and vapor, and are divided into three subtypes (a, b, and c). Type la fluid
inclusions are liquid-rich and contain opaque (op) and/or hematite (hm) and/or unknown
other translucent (ot) daughter minerals. The opaque daughter minerals may be
molybdenite, fluorophlogopite, pyrite, or rutile. The unknown ot daughter minerals could
be anhydrite, nahcolite, fluorite, or calcite. Type Ib inclusions, the most abundant of the
fluid inclusion types, are liquid-rich with no daughter minerals present. Type Ic
inclusions are vapor-rich and may contain one or more op, ot, or hm daughter minerals.
Type 1l fluid inclusions contain liquid, vapor and halite, and are subdivided into four
subtypes (a, b, ¢, and d). Type lla, Ilb, and Ilc inclusions are liquid-rich and contain no
additional daughters, contain op and/or hm daughters, and contain otthmzop daughters,
respectively. Type Ild are vapor-rich inclusions containing halite and possible op, hm,
and ot daughter minerals. Type 111 fluid inclusions are divided into two subtypes (a and
b). Type Illa and I1Ib are liquid-rich and vapor-rich aqueous inclusions, respectively and
contain a halite crystal and sylvitexhmzopzot daughter minerals. No microthermometry
was performed on types I1d and 111b due to the difficulty in observing any phase changes
with these inclusions and the minimal number of these inclusions observed in the

samples. Type IV fluid inclusions, the least abundant of the fluid inclusion types, are
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Figure 3. Microphotographs of fluid inclusion types. A) Type [a B)
Type Ib C) Type Ic D) Type Ila E) Type IIb F) Type Ilc G) Type
[ITa H) Type IV. White bar is approximately 5 pm. No pictures are
available for types IId and IIIb.
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Table 3. Questa fluid inclusion types and their microthermometric data from Rowe (2011 or Chapter ).

FI | #of Tl Salinity Range in Mode of
T F; Phases Range in eq. wt.% 'F_" leTnh
YVpe 5 - na
P °C | NaCHKCECaCly
Ia il Hv+s; I=v; s=hm op, ot 38-520 0-25 vbd
Ib 114 v v 105-540 025 vbd
Ic 87 I+v=s; w21 s=op, hin, ot 240-560 0-23 ld orcb
Ia 41 I+v+s; I=v; s=hl 145-520 30-59 hd orvbd
b 76 v+s; I>v; s=hlzopzhm 62480 24 64 hd orvbd
Ic 67 v+s; I=v; s=hl+ots=hm=+op 63-360 3264 hd, vbd, or otd
Imd#* 111 Hv+s: v351; s=hixhm=op=ot [ _ _
JLIE] 14 v+s; I=v; s=hi+sylvshm=op=ot 178-323 39-63 hd or otd
Mk* | min | Hv+s: veERl; s=hi+sylvshm=op=ot e e e
v 4 moHeortveon: morloortven 130-260 0-2 lmo
Fliquid v=vapor s=solid hm=hematite op—opaque(s) hl=halite ot=other translucent

daughter(s) syb=sylvite vbd=vapor bubble disappearance hd=halite dissolution 1d=lquid
disappearance ch=critical behavior otd=other transhicent danghter dissolition SABQ=source

aplite barren gtz SAV=source aplite veinlet

min. =minimal # observed

* 11d and I1Ib were observed in some samples, but were not used in this study due to the mability to

observe phase changes with these types of inclusions.
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carbonic-bearing inclusions that contain liquid water, liquid CO,, and vapor CO, (double
bubble). The water phase is greater than the carbonic phases in Type IV inclusions.
Comparable fluid inclusion types to this study were identified in all of the
Climax-type deposits of the COMB that had fluid inclusion microthermometry studies
performed (Climax, Henderson, and Silver Creek), with a few minor differences (Table
4). No vapor-rich halite-bearing Type Ild or vapor-rich multi-solid Type 111b fluid
inclusions were identified in the COMB deposits. It is a possibility however, that these
inclusions were overlooked due to the vapor-rich property and the inability to observe
phase changes in this type of inclusion as was the likely case in some previous studies on
Questa. Also, carbonic fluid inclusions were not identified at Henderson. The lack of
liquid CO,-bearing inclusions at Henderson reveals that the system is low in CO; (<5%),

since 5% CO, is required for Type IV inclusions to exist (Shepherd et al., 1985).

TshI>>Tlv Inclusions

Before discussing fluid inclusion temperatures, it is important to first convey that
the temperature data for this Questa study is reported in terms of homogenization
temperature of the liquid-vapor phase (Tlv) rather than by final homogenization
temperature (Final Th) due to the trapped halite phenomenon (Rowe, 2011a or Chapter ).
The majority of the fluid inclusions that contained halite daughter minerals (Types Il and
I11) at Questa demonstrated Final Th by halite dissolution (Tshl), with a significant
number of inclusions exhibiting halite dissolution temperatures substantially higher (up to
339°C) than homogenization of the liquid-vapor phase. Based upon phase equilibria
constraints, homogeneous trapping of this type of fluid inclusion would require lithostatic

pressures much too great for any system (Bodnar, 1994; Bodnar & Vityk, 1994; Cline &
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Bodnar, 1994; Gunter et al., 1983; Bodnar, 2003; Kamilli, 1978; Becker et al., 2008),
which corresponds to an unrealistic depth of emplacement for the Goat Hill orebody.
This study has determined that heterogeneous trapping, or the entrapment or capture of
halite crystals from a heterogeneous fluid that is saturated with respect to halite (trapped
halite phenomenon), is the favored mechanism for producing the TshI>>Tlv fluid
inclusions at Questa. A two-phase fluid that was exsolved directly from the parent
magma (Figure 4A - Stage 1) became saturated with respect to halite by pervasive boiling
(Figure 4A — Stage 2) and/or simple cooling (Figure 4A — Stages 2, 3, and 4) in the latter
stages of fluid evolution at Questa. The fluid inclusions that exhibit TshI>>Tlv are a
result of heterogenous trapping, i.e. a saturated saline fluid and a halite crystal. Hence,
reporting the temperature in terms of Tlv rather than Final Th is more representative of
the real fluid from which these inclusions originated. In Figure 4A, the fluid inclusions
above the Halite Saturation Curve (HSC) homogenized by TshI>>TIlv and represent this
saturated saline fluid and a trapped halite crystal. The true representation of the fluid
would be the salinity on the HSC for those fluid inclusions at their Tlv temperature, as
represented by the dark gray line along the HSC (also see the schematic diagram in
Figure 5). The inclusions along the HSC in Figure 4B are those same fluid inclusions
that are above the HSC in Figure 4A, but at the temperature in which the trapped halite
crystal dissolved (Final Th), rather than Tlv, and the false fluid salinity that is calculated
from that temperature. This is how data is typically reported in fluid inclusion studies,
even when these types of inclusions occur. The fluid inclusions above the HSC in Figure

4B contain sylvite, placing them above the HSC. They also represent temperatures and
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Figure 4. - Temperature vs. salinity diagrams demonstrating differences when reporting in
terms of Tlvvs. Final Th. A) Temperature of homaogenization in terms of Tiv vs. Salinity. Al
of the Fls above the Halite Saturation Curve (HSC) homogenized by Tshl and do not
represent the true salinity of the fluid due to the Trapped Halite Phenomenon. The real
salinity of the fluid is the same temperature, but projected down to the HSC (thick gray line).
B) Temperature of homogenization in terms of Final Th vs. Salinity. All of the Fls on the HSC
homogenized by Tshl. Fls above the HSC contain sylvite. The Fls on or above the H5C
represent temperatures and salinities that higher than real fluid due to the Trapped Halite
Phenomenon. Also see related Figure 5. Note the differences between these two
diagrams: the Tiv diagram has more Fls at lower temperatures and less Fls at higher
temperatures than the Final Th diagram. This demonstrates how the data can be skewed
depending on how it is reported.
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salinities that are not real when plotted in terms of Final Th. TshI>>Tlv fluid inclusions
were noted at Henderson, but not at Climax or Silver Creek, and the suggested
mechanism for their origin was not the trapped halite phenomenon as at Questa. Kamilli
(1978), Carten (1987), Carten et al. (1988), and White et al. (1988) concluded that
overpressures caused by exsolution and evolution of the hydrothermal fluid from the
source magma, produced this type of fluid inclusion at Henderson. Overpressures are
discounted by this study for Questa based upon the low tensile strength (35 bars average)
of the altered andesite and volcaniclastic country rock at Questa that would fracture
before significant

overpressures could occur (Rowe, 2011a or Chapter 1) and various supporting evidence
for the trapped halite phenomenon at Questa (solid inclusions of halite, other daughter
minerals that do not dissolve upon heating, cogenetic liquid-rich brine inclusions and v-
rich inclusions, Type Ild and Type Il1b inclusions, variable halite to liquid phase ratios,
and inclusions containing more than one halite crystal). In contrast, the tensile strength
of the competent rhyolite porphyry country rock at Henderson is much higher than the
altered andesite and volcaniclastics of Questa and could possibly withstand the calculated
overpressures from the TshI>>Tlv inclusions at Henderson (White et al., 1981). Due to
this fact, and without reported evidence for Henderson that would support the trapped
halite phenomenon as the origin of the TshI>>TIv fluid inclusions, overpressures cannot
be discounted for the origin of this type of fluid inclusion at the Henderson deposit.
However, based upon evidences described by various authors on this type of fluid
inclusion (Erwood et al., 1979; Campbell et al., 1995; Eastoe, 1978; Wilson, 1978;

Kodera et al., 2004; Campbell et al., 2001; Becker et al., 2008), the trapped halite
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phenomenon cannot be discounted for this type of fluid inclusion at Henderson either.
Further investigation to identify if any evidence of trapped halite phenomenon exists at
Henderson is warranted to determine which mechanism created the TshI>>Tlv fluid

inclusions.

Fluid Inclusion Temperatures

The various fluid inclusion microthermometry studies at Questa reflected a
variable and wide range of homogenization temperatures (62 to >600°C), however the
main mode was similar for each study at 380-400°C (Figure 6) (Rowe, 2011a or Chapter
I; Bloom, 1981; Smith, 1983; Cline & Bodnar, 1994; Cline & Vanko, 1995; Klemm et
al., 2004; Klemm et al., 2008). Homogenization temperatures for Climax were similar to
Questa with a range of 200-600°C, however Climax did not exhibit any temperatures
corresponding to the lower range of Questa (62-200°C) (Hall et al., 1974). The
temperature mode for Climax was 250-350°C, which is different than the 380-400°C
mode for Questa. The lower end of the Climax mode is comparable, however, to the
Stage 3 temperature mode associated with Mo mineralization at Questa of 280°C and the
upper end of the Climax mode is comparable to the temperature mode (380-400°C )
associated with the main stage of mineralization (Stage 2) at Questa (Figure 7a) (Rowe,
2011 or Chapter I). Henderson exhibited a similar homogenization temperature range to
Climax (250 to >600°C), which is also comparable to Questa (Kamilli, 1978; White et al.,
1981; Carten, 1987; Carten et al., 1988; Seedorff & Einaudi, 2004). The only
temperature mode that was reported for Henderson was 500-650°C (White et al., 1981).
However, this temperature range was a pressure correction based upon the TshI>>Tlv

fluid inclusions and the actual measured raw temperature mode was 400°C. If the
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trapped halite phenomenon was considered for the Tshi>>Tlv fluid inclusions at
Henderson, then the 400°C mode would correspond with the 380-400°C mode of Questa
and the upper limit of the temperature mode (350°C) for Climax. Silver Creek exhibited
a narrower temperature range of 225-425°C compared to Questa and the other COMB
deposits (Larson, 1987).

Questa exhibited the widest range of fluid inclusion temperatures compared to the
Climax-type deposits of the COMB (Figure 6). However, as previously mentioned, the
data for this study is reported in terms of Tlv rather than Final Th and the lower
temperatures for Questa are mostly attributed to this study. Note the temperature and
salinity distribution differences when reporting in terms of Tlv versus Final Th (Figure 4
and Figure 7). Reporting temperatures in Tlv allowed for more data on the lower
temperature end and less data on the higher temperature end when comparing Tlv and
Final Th methods. This might be a possible explanation why this study reveals lower
temperatures compared to several other studies (Bloom, 1981; Smith, 1983; Klemm,
2008; Hall, 1974; Kamilli, 1978; White et al., 1981; Seedorff & Einaudi, 2004) that
reported their data in terms of Final Th (all except Carten,1987; Carten et al., 1988; and
Larson,1987) (Figure 6). If the homogenization temperature data is looked at in terms of
Tlv for Cline & Bodnar (1994) and Cline & Vanko (1995), rather than the reported Final
Th, the temperature range is 55-490°C (as opposed to 150-500°C for Final Th), similar to
this study. Again, this reveals that lower temperatures are brought out from reporting Tlv

rather than Final Th on the TshI>>Tlv fluid inclusions.
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Fluid Inclusion Salinities

Questa exhibited a large range of fluid inclusion salinities with eq. wt.% NacCl
measurements from 0-70 (Figure 6) (Rowe, 2011a or Chapter I; Bloom, 1981; Smith,
1983; Cline & Bodnar, 1994; Cline & Vanko, 1995; Klemm et al., 2004; Klemm et al.,
2008). The salinities exhibited by Climax fluid inclusions reflected a bimodal
distribution with values of 0-12 and 35-45 eq. wt.% NacCl, rather than a continuous range
as at Questa (Hall et al., 1974). The upper salinity limit for Climax (45 eq. wt. % NaCl)
is much lower than the upper limit for Questa (70 eq. wt.% NaCl) as well. These
differences between Questa and Climax salinities may prove to be a significant
dissimilarity. As previously mentioned, Tshi>>Tlv fluid inclusions were not observed at
Climax. The lack of Tshl>>Tlv inclusions is the reason that the upper salinity limit for
Climax is so much lower than Questa’s. Climax equivalent Type II and III (halite-
bearing) fluid inclusions needed to be on or below the halite saturation curve (Tshl<Tlv)
to have a salinity of 35-43 eq. wt.% NaCl at 200-400°C. As established by this study,
boiling is the mechanism for fluid oversaturation with respect to halite, which in turn
gives way to the trapped halite phenomenon and TshI>>Tlv fluid inclusions (Rowe,
2011a or Chapter I). It was reported that boiling did not occur at Climax (Hall et al.,
1974), which supports the lack of TshI>>Tlv inclusions and the lower salinities than
Questa (Table 4). The bimodality of the Climax salinities is also likely due to the
absence of boiling, heterogeneous trapping, and the trapped halite phenomenon, since
both of these mechanisms give way to variable salinities from low to moderate to brines

such as at Questa (Rowe, 2011a or Chapter I).
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Fluid inclusion salinities for Henderson are very similar to those of Questa with a
continuous range of 0-65 eq. wt.% NaCl (Figure 6) (Kamilli, 1978; White et al., 1981;
Carten, 1987; Carten et al., 1988; Seedorff & Einaudi, 2004). Boiling was indicated by
one study on Henderson (Kamilli, 1978) and could likely be the cause of the variable
salinities as was at Questa (Table 4). The salinity range (0-7 eq. wt.%NaCl) for Silver
Creek is much smaller and lower compared to Questa and the other COMBs (Figure 6)
(Larson, 1987). Higher salinities do exist for the Silver Creek deposit since halite-
bearing comparable Type Il and Il inclusions were reported, however they were not
measured for Tshl to get the brine salinities (Larson, 1987). Due to this fact, it is difficult
to compare salinities between Silver Creek and Questa. What can be compared is that
there are low-moderate salinity inclusions and high salinity brines, similar to all of the

Climax-type systems.

Molybdenite Mineralization and Fluid Origin

At Questa, it was determined that the main mode of molybdenite mineralization
occurred at 380°C and 0-64 eq. wt.%NaCl+KCl+CaCl, as a result of heat loss from
boiling. Boiling was evident by cogenetic I-rich and v-rich fluid inclusions that
homogenized at the 380°C mode. Based upon a mixing pattern in the temperature vs.
salinity fluid inclusion data, it was also concluded that meteoric mixing with the evolved
parent magmatic fluid occurred during this mode as well, causing a temperature decrease
and subsequent molybdenite mineralization. A temperature of mineralization of 380°C is
too low to be entirely magmatic, and with the supporting evidence from T-X data and the
concept of the trapped halite phenomenon, it was concluded that the Questa system is

magmatic with significant meteoric input. As is common in porphyry systems, a post-
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mineralization late-stage meteoric influx also occurred in the system at 200°C with a
salinities of <1 eq. wt.% NaCl and is associated with secondary inclusions and fluorite
and calcite mineralization (Chapter | or Rowe, 2011a).

Fluid inclusion evidence reported by Hall et al., (1974) for Climax revealed a
temperature of 360+25°C and low to moderate (0-12 eq. wt.% NaCl) to brine (35-40 eq.
wt.% NaCl) salinities for molybdenite mineralization. Similar to Questa, Hall et al.
(1974) concluded that molybdenite mineralization was a result of temperature decrease at
Climax. The temperature decrease was solely the result of meteoric mixing with primary
magmatic fluids however, rather than both a heat loss and temperature decrease due to
boiling and magmatic-meteoric mixing as was at Questa. Also similar to Questa, Climax
FI data demonstrated a late-stage meteoric-dominant fluid source for fluorite
mineralization at 190-275°C and <1 eq. wt.% NaCl (Hall et al., 1974). Despite the lack
of boiling, these conclusions make Climax exceptionally comparable to Questa.

A magmatic source was concluded to be the origin of the mineralizing fluids at
Henderson (Kamilli, 1978; White et al., 1982; Carten , 1987; Carten et al., 1988; Seedorff
& Einaudi, 2004). This conclusion was mostly based upon a pressure corrected
temperature range of 460-650°C from a raw data mode of approximately 400°C (Kamilli,
1978; White et al., 1982; Seedorff & Einaudi, 2004). The temperatures were pressure
corrected to the higher temperatures not because of the lack of evidence of boiling, but to
explain the TshI>>TlIv fluid inclusions. As previously mentioned, the TshI>>Tlv fluid
inclusions at Henderson were defined as being a result of overpressures, however the
trapped halite phenomenon could also be a likely mechanism in creating this type of

inclusion. If further investigation revealed the trapped halite phenomenon as the cause

173



for the TshI>>Tlv fluid inclusions at Henderson, no pressure correction would be
necessary and the raw mode temperature of 400°C, which is too low to be entirely
magmatic, would be the temperature of molybdenite mineralization. This indicates that
Henderson is comparable to Questa. If overpressure was the mechanism for TshI>>Tlv
fluid inclusions at Henderson, this would set Henderson apart from Questa with a much
higher temperature of mineralization (460-650°C). One author did however, report a
temperature of mineralization at 316-376°C at Henderson, with no pressure correction
and a suggested magmatic source (Carten, 1987 and Carten et al., 1988). Again, this
temperature is too low to be entirely magmatic as was reported and the temperature is
comparable to Questa mineralization temperatures. In summary, with the recent
interpretations of the trapped halite phenomenon to explain TshI>>Tlv inclusions
(Campbell et al., 2001; Becker et al., 2008; Kodera et al., 2004; Bodnar, 2003) in
combination with the temperatures of mineralization reported by Carten (1987) and
Carten et al. (1988) for Henderson and similar temperatures for Questa and Climax, it
may be that the temperature of mineralization at Henderson is the 400°C raw mode.
The salinities that were reported to be associated with molybdenite mineralization
at Henderson were quite variable (30-65 eq. wt.% NaCl from White et al., 1981; 2-7 eq.
wt.% NaCl from Carten, 1987 and Carten et al., 1988; and <29 eq. wt.% NaCl from
Seedorff & Einaudi, 2004), inhibiting the ability to conclude a summarized salinity for
Henderson (Figure 6 and Table 4). Based upon this fact, it may be that all reported
salinities are associated with mineralization (2-65 eg. wt.% NaCl), which would indicate

that Henderson is comparable to Questa.
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Fluid inclusions at Silver Creek revealed a temperature and salinity range of 350-
420°C and 0-7 eq. wt.% NaCl for the primary mineralizing fluid, conducive to a mixed
magmatic-meteoric source for the origin of Silver Creek (Figure 6) (Larson, 1987). The
mineralization temperature range is compatible with Questa, along with Henderson’s raw
temperature mode and the temperatures of Climax, as well. However, the salinity that
was reported to be associated with molybdenite mineralization at Silver Creek is an
exceptionally low and narrow range compared to Questa and the COMB (Figure 6).
Halite-bearing inclusions that would produce higher salinities were observed at Silver
Creek, but Tshl measurements were not taken on these inclusions to obtain the NaCl
concentration (Larson, 1987). Boiling was indicated by the cogenesis of liquid- and
vapor-rich fluid inclusions at Silver Creek, so no pressure correction was applied to the
data to derive the 350-420°C temperature range. A late stage, lower temperature (225-
350°C), low salinity fluid that represents meteoric influx onto the system was indicated
by secondary inclusions at Silver Creek. The temperature range for this stage of the
Silver Creek Climax-type system is slightly higher, but comparable, to similar stages for

Questa and Climax.
Stable Isotopes

Oxygen and Hydrogen Analyses and Fluid Evolution

8" Omineral Values associated with molybdenite mineralization at Questa ranged
from 6.0 to 8.6%o for quartz, 1.2-5.7%o for biotite, and 1.5-8.5%o for K-feldspar (Table 5
and Figure 8). dDmineral Values for Questa fluorophlogopite (biotite) ranged from -117 to -

89%o. The 5™®Or20 and 8Dyz0 values associated with the molybdenite-bearing fluid
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(8020 = 1.5-7.6%o for quartz and biotite and -1.1 to 6%o for K-feldspar; 8Dy0 = -112
to -63%o) were calculated from these mineral values utilizing the main mineralization
mode temperature of 380-400°C (Table 5 and Figure 9). 8D,0 values in quartz were
obtained directly from fluid inclusion waters revealing 3Dy20 values of -101 to -71%o for
MHBX quartz and -143 to -53%. for veinlet quartz (Rowe, 2011b or Chapter II; Smith,
1983; Ross et al., 2002).

The 8*0420 and 8Dy0 values for quartz and biotite at Questa reveal that the
molybdenite mineralizing fluids are not of a purely magmatic origin, but rather evolved
from a magmatic to mixed magmatic-meteoric origin, as demonstrated by the a shift to
lighter oxygen and hydrogen values. The 6Dy0 range for the veinlet quartz is
significantly larger than the MHBX matrix quartz or biotite at Questa (Table 5 and Figure
9). This difference in the veinlets may be attributed to low water/rock ratios, small
sample peaks due to smaller and less abundant fluid inclusions than the MHBX matrix
quartz, a higher amount of interstitial fractionated water in the veinlets as a result of
smaller and more abundant quartz grains than the MHBX matrix quartz, or a lower fluid
inclusion water to quartz interstitial water ratio than the MHBX (Rowe 2010b or Ch. I1).
Another option is that the veinlet fluid may actually be different isotopically for hydrogen
than the MHBX matrix quartz. Based upon mineral paragenesis and quartz and biotite
oxygen values, the §*®0p0 values for K-feldspar were isotopically too light and variable
for a Climax-type system. This is likely a result of subjection of K-feldspar to post-
mineralization alteration and isotope fractionation. K-feldspar at Questa also revealed

unrealistic mineral pair fractionation temperatures, further supporting that this mineral
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was not in equilibrium with this system (Rowe, 2011b or Chapter Il; Smith, 1983; Ross et
al., 2002).

Fluid inclusion waters from post-mineralization fluorite exhibited a meteoric-
dominant fluid source with a §"®0n0 and 8Dw20 range of -4.0 to -1.7%o and -109 to -
106%o, respectively (Table 5 and Figure 10). Post-mineralization Questa calcites
produced a S Omineral range of 5.4-8.5%o. The calcite at Questa is associated with the
same stage of fluid evolution (Stage 4 of Chapter Il or Rowe, 2011b) as fluorite, hence
the mode temperature (200°C) associated with Stage 4 and fluorite was applied to
calculate the §'®0p,0 values for calcite (Figure 4a and Figure 7a). Calcite at Questa
exhibited a meteoric-dominant source with 80,0 values of -4.3 to -1.3%o, almost
identical to fluorite. The isotope values for quartz, biotite, calcite and fluorite
demonstrate the evolution of the Questa system from a magmatic to magmatic-dominant
magmatic-meteoric mixed fluid to a meteoric-dominant mixed magmatic-meteoric fluid
(Figure 9).

Climax 8'®Onineral Values are fairly comparable to Questa for quartz and K-
feldspar with ranges of 8.4-10.9%o and -4.5-7.5% (Table 5 and Figure 8). The 020
values associated with the molybdenite-bearing fluid at Climax (§'®020 = 3.0-5.2%o for
quartz and -8.5-3.5%. for K-feldspar) were calculated utilizing the main mineralization
mode temperature of 350°C (Table 5 and Figure 9). Fluid inclusion water $Dy0 ranged
from -140 to -88%o for Climax. Similar to Questa, the Climax K-feldspars likely
underwent isotope fractionation associated with post-mineralization alteration, hence the
extremely light oxygen isotope values for Climax K-feldspars and unreasonable

fractionation temperatures for cogenetic quartz-K-feldspar mineral pairs (Hall et al.,
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1974). Climax 8*®0y0 values from quartz are comparable to Questa, with values
overlapping in part with both Questa MHBX and veinlet quartz (Table 5 and Figure 9).
Climax 8Dy values from quartz are fairly comparable to Questa with a D0 range
overlapping with Questa veinlets and overlapping in part and extending to lighter 6Dy20
values than Questa MHBX. The 8Dyy0 values that are lighter than Questa MHBX may
be attributed to lighter paleo meteoric water for the COMB compared to Questa (Figure 9
- Silver Creek and Climax paleo meteoric water) (Johnson et al., 1990; Larson et al.,
1987; Hall et al., 1974). Another possible contributor to the lighter Dy,0 range at
Climax is that the quartz 8Dy, values were obtained from fluid inclusions in veinlets (no
MHBX) and therefore may be a result of similar factors as Questa veinlet 5Ds involving
fluid inclusion size and/or interstitial water. Regardless of this minor difference, Climax
is analogous to Questa in that the oxygen and hydrogen stable isotope values for Climax
demonstrate that the mineralizing fluid is not from a purely magmatic source, but is
rather mixed magmatic-meteoric in origin.

Sericite associated with post-mineralization alteration at Climax revealed
8" Onminerat aNd SDmineras Values of -0.8-7.4 and -116 to -168%o, respectively (Table 5 and
Figure 8). The §"®040and 8Dpao values for this post-mineralization fluid ranged from -
3.1-5.0%o0 and -144 to -92%o at 275°C, respectively and revealed a meteoric-dominant
source (Hall et al., 1974) (Table 5 and Figure 9). Sericite was not analyzed for oxygen or
hydrogen stable isotopes at Questa; however, this post-mineralization Climax fluid is
comparable to the meteoric-dominant post-mineralization fluid at Questa that was
recorded by fluorite and calcite. The Climax water values from sericite also overlap in

part with Climax and Questa quartz water values, but again have lower Dy0 values
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which is likely attributable to a lighter paleo meteoric water for Climax. The overlapping
with Questa quartz may demonstrate that Climax sericite is associated with molybdenite
mineralization and post-mineralization fluids. This could be possible, since there is
evidence of a molybdenite mineralization stage at Questa (Stage 3) that is associated with
phyllic alteration and a temperature mode of 280°C.

Henderson quartz and biotite associated with molybdenite mineralization
exhibited §0mineral Values of 9.5-10.2%o and 5.5-8.0%o, respectively and biotite dDmineral
values of -165 to -141%o. (Table 5 and Figure 8)(Carten et al., 1988). The mineral oxygen
and hydrogen isotope values for Henderson are fairly different than Questa with slightly
heavier 820 values and significantly lighter 8D values. The calculated water values
from Henderson at the mineralization temperature of 350°C exhibited §'®0y,0 values of
4.2-4.9%o and 7.2-9.7%o for quartz and biotite, respectively, and dDy,0 Values of -107 to -
83%o for biotite (Table 5 and Figure 9) (Carten, 1987; Carten et al., 1988). Fluid
inclusion waters from quartz at Henderson exhibited a 6Dy20 range of -137 to -92%o
(Carten et al., 1988). The Henderson biotite values are magmatic for §*%0 and are shifted
to lighter than magmatic water for 6Du20, but still correlate slightly with Questa. The
Henderson quartz values are shifted to lighter than magmatic water for both 30,0 and
dDn20 and also correlate slightly with Questa. Similar to Climax, the 6Dy, values for
Henderson quartz ranges lighter than Questa MHBX and correlates best with Questa
veinlets. As with Climax, this may be attributed to the lighter paleo meteoric water for
the COMB region (Figure 9) or to the fact that Henderson quartz samples are veinlets and

may have effects from small, less abundant fluid inclusions and/or interstitial water.
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The 8" 0420 and 8Dwzo Values for Henderson biotite and quartz demonstrate a
fluid evolution similar to Questa (Chapter 11 or Rowe, 2011b), where the biotite is mostly
magmatic and the quartz is mixed magmatic-meteoric (Figure 9). The molybdenite
mineralizing fluids at Henderson have been concluded to be magmatic in origin, despite
non-magmatic temperatures of mineralization and mixed magmatic-meteoric origin for
molybdenite-associated quartz (Carten, 1987; Carten et al., 1988).

Mount Emmons 8*®Oineral Values for quartz and K-feldspar associated with
molybdenite mineralization are 6.4 and 10.1%., respectively (Table 5 and Figure 8)(Stein
& Hannah, 1985; Stein, 1988). These values are compatible with the §®Opinera Values
for Questa. No fluid inclusion temperatures were available to calculate the §®0u0
values for this deposit.

Silver Creek 8"®Omineral Values for quartz are comparable to Questa with a range of
7.5-8.7%o (Table 5 and Figure 8). Calculated water values from quartz revealed a
§80up0 of 2% at 320-360°C and fluid inclusion waters revealed a SDyz0 range of -104 to
-90%o for Silver Creek (Table 5 and Figure 9)(Larson, 1987). These temperatures and
values make Silver Creek genetically similar to Questa with a mixed magmatic-meteoric
source for mineralizing fluids.

Silver Creek post-mineralization calcites exhibited a very large §"®Opmineral range of
-5.1-12.3%o (Table 5 and Figure 8) (Wareham, 1998). The calcite 5180minera| range for
Silver Creek is significantly larger than Questa, with 5'%0, values of up to 4.1%o heavier
and 11.1%o lighter than this study. Fluid inclusion homogenization temperatures indicate
a deposition temperature of 200°C for Silver Creek calcites (Larson, 1987; Wareham,

1998). The associated calculated §*®0p0 values at this temperature for calcite ranged
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from -14.9 to 2.5%o (Figure 9). This wide range of '®0Oy,0 values reflects several
different sources from purely meteoric to meteoric-dominant mixed magmatic-meteoric
to magmatic-dominant mixed magmatic-meteoric. It is unlikely that all of these different
sources are the origin of the oxygen in the calcite-depositing fluids for Silver Creek. The
large 5020 range for calcite at Silver Creek is likely due to post-depositional isotopic
re-equilibration with later meteoric-sourced epithermal fluids or the calcite was not

deposited in isotopic equilibrium with the hydrothermal waters (Wareham, 1998).
Carbon

Carbon stable isotope values from calcite at Questa revealed a narrow 8"C range
of -6.2 t0 -5.0%o (Table 5). Similar to §*Ocoy, 8°Cco2 values (-6.0 to -4.9%o) for Questa
calcites were calculated using 200°C using the fractionation equation of Ohmoto & Rye
(1979) due to the association of calcites with Stage 4 of Rowe (2011a) or Chapter I,
fluorite, and meteoric-dominant secondary fluids. The narrow carbon stable isotope
range for Questa is conducive to a magmatic source for carbon, despite the fact that
oxygen stable isotopes in calcites are associated with meteoric-dominant hydrothermal
CO,. This is possible because the calcite parent fluid evolved from a magmatic to mixed
magmatic-meteoric to meteoric-dominant, but not pure meteoric, fluid. The carbon was
hence inherited from the magmatic-dominant portion and the oxygen from the meteoric-
dominant portion of the system. The magmatic carbon signature can remain due to the
low concentration of carbon in meteoric fluid and the oxygen evolved due to the
abundance of light oxygen in meteoric water.

Silver Creek calcites demonstrated a much broader span of carbon stable isotope

values compared to Questa, with a 8*3C range of -7.5 to 1.1%o (Table 5) (Wareham et al.,
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1998). The calcite at Silver Creek is associated with an average temperature of 200°C
(similar to Questa), revealing calculated §*3Ccop values of -7.3 to 1.3%o (Larson, 1987;
Wareham et al., 1998; Ohmoto & Rye, 1979). Due to the variability in the Silver Creek
carbon stable isotope values, the calcites are a result of multiple sources for carbon. A
magmatic component is present as demonstrated by the lighter carbon isotopes, however
a variable sedimentary source of carbon is dominant for this system (Wareham et al.,
1998). This reveals a significant difference between Questa and Silver Creek.
Precambrian metasediments, Cretaceous sedimentary rocks, and tertiary volcaniclastic
sediments do exist in the Questa area, however they were not contributors to the source of

carbon in Questa calcites.
Sulfur

Sulfur isotope values for Questa molybdenite ranged from a §**S of 0.4 to 2.3%o,
which is conducive to a magmatic source for sulfur (Table 5) (Chapter 11 or Rowe,
2011b; Stein & Hannah, 1985; Stein, 1988). All of the COMB Climax-type deposits,
with the exception of Silver Creek, revealed a magmatic sulfur source with higher 5**S
values than Questa at 2.5-3.6%o for Climax, 4.7-5.3%o for Henderson, and 3.7-4.6%. for
Mount Emmons (Stein & Hannah, 1985; Stein, 1988; Wareham et al., 1998). Silver
Creek demonstrated the largest range out of the Climax-type deposits with a §**S range of
0.5-4.6%o, which spans the ranges of Questa, Climax, and Mount Emmons, but not
Henderson, but also reflects a magmatic source. If the source of the Climax-type sulfur
was not purely magmatic, but rather was evolved from the variable country rocks at each
deposit, then the 5*S values would be highly variable between the deposits and is not the

case (Stein and Hannah, 1985). Sulfur can be of a magmatic source, despite the fact that
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the mineralizing fluids were of mixed magmatic-meteoric origin, due to the fact that the
sulfur originated from the magmatic portion of the fluids (Wareham, 1998). Also, the
fluid can keep the magmatic sulfur signature due to the low concentration of sulfur in
meteoric water. The minor variation in magmatic 5**S values between the deposits,

despite the fact that they are all magmatic in origin, could be attributed to magma source,

fractionation, or fO, (Wareham, 1998; Stein & Hannah, 1985).

Fluid Inclusion Gas Analysis

An additional data set (fluid inclusion gas analysis) that identifies fluid source is
available for Questa, but not for the Climax-type deposits of the COMB. The Ar-He-N,
diagram of Blamey & Norman (2002) demonstrates that Questa MHBX matrix (open
circles) and veinlet quartz (crosses) are not purely magmatic, since the majority of the
samples did not plot within the Calc-Alkaline magmatic box (Figure 10). Instead, the
majority of the samples at Questa plotted to the left of the magmatic box, demonstrating
that there is a strong meteoric component to the gases associated with mineralization.
The MHBX matrix fluorite (solid circles) plots the farthest to left, indicating that the
fluorites are the most meteoric and evolved fluids. The N2/Ar vs. CO,/CH,4 diagram of
Norman & Moore (1999) also demonstrates that Questa MHBX matrix and veinlet quartz
associated with mineralization are not purely magmatic, but have a strong shallow
meteoric input (Figure 11). Similar to the Ar-He-N, diagram, MHBX matrix fluorite
plots apart from the quartz samples, demonstrating a further evolved fluid than the quartz.
The difference between the fluid inclusion gas analysis and the oxygen/hydrogen stable
isotope results for Questa is that the gas analyses demonstrate a greater meteoric

component to the magmatic-meteoric mixed source for the mineralizing fluids, whereas
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the oxygen and hydrogen stable isotope analyses exhibit a mixed magmatic-meteoric
source with a more dominant magmatic contribution to the mineralizing fluids. Both
analyses do demonstrate, however, that the system further evolves to meteoric for post-
mineralization fluorite (Chapter Il or Rowe, 2011b). The importance of the fluid
inclusion gas analysis is that it is an additional analysis that supports the conclusions
derived from fluid inclusion microthermometry and oxygen/hydrogen stable isotope
analyses that the Questa Climax-type mineralizing fluid is not from a purely magmatic

source.

SUMMARY

Fluid inclusion microthermometry, oxygen and hydrogen stable isotope analyses,
and fluid inclusion gas analysis at Questa all revealed that the genetic origin of the
Questa Climax-type mineralizing fluids evolved from magmatic to mixed magmatic-
meteoric origin with a §'®0n0 and Do range of 1.5-7.6%o and -53 to -143%o, a
temperature of mineralization at approximately 380-400°C, and a large range of salinities
from 0-64 eq. wt.% NaCl. Temperature decrease caused by both mixing with meteoric
fluids and simple cooling due to boiling is the mechanism for molybdenite mineralization
at this temperature. Following mineralization, the fluids further evolved to a meteoric-
dominant mixed magmatic-meteoric fluid at temperature of 200°C, a low salinity of <1%
eq. wt.% NaCl, and a 8*®0y20 and D0 range of -4.3 to -1.3%o and -109 to -106%o.
Carbon and sulfur isotope analyses revealed a magmatic source of carbon for late-stage
calcite and sulfur for molybdenite for the Questa system, which further demonstrates that

the fluids evolved from a magmatic to meteoric-dominant mixed magmatic-meteoric
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fluid. These conclusions prove significant because many previous authors on Questa
(Cline & Bodnar, 1994; Cline & Vityk, 1995; Ross et al., 2002; Klemm et al., 2004;
Klemm et al., 2008) and COMB Climax-type deposits (Kamilli, 1978; White et al., 1981;
Carten, 1987; Carten et al., 1988; Seedorff & Einaudi, 2004) have deemed molybdenite
mineralizing fluids to be purely magmatic in origin, with a post-mineralization meteoric
contribution to the system only. An additional significance is that three complimentary
data sets (fluid inclusion microthermometry, stable isotope analyses, and fluid inclusion
gas analyses) support the conclusions of this study, whereas the previous studies on
Questa or the Climax-type deposits of the COMB derived their conclusions from only
one or two data sets (fluid inclusion microthermometry and/or stable isotope analyses).

In comparison of Questa fluid inclusion microthermometry and stable isotope data
with the Climax-type deposits of the Colorado Mineral Belt (Climax, Henderson, Mount
Emmons, and Silver Creek), it was found that these deposits are very genetically similar
to Questa in terms of fluid inclusion types, temperature of mineralization, source of the
mineralizing fluids, fluid evolution, and source for sulfur. This finding proves
significant in that not only do Climax-type deposits possess similar characteristics listed
in Table 1 that place them in a deposit class together, but these deposits also possess
similar genetic origins and fluid evolution histories. Most significantly, the genetic
model for not just Questa, but also for the Climax-types of the COMB, includes a
meteoric component to molybdenite mineralization rather than the purely magmatic
origin concluded by many previous authors (Cline & Bodnar, 1994; Cline & Vityk, 1995;
Ross et al., 2002; Klemm et al., 2004; Klemm et al., 2008; Kamilli, 1978; White et al.,

1981; Carten, 1987; Carten et al., 1988; Seedorff & Einaudi, 2004).
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There are also some minor differences between Questa and the some of the
Climax-type deposits of the COMB, that add a factor of uniqueness to some of the
COMB deposits. For Climax, Tshl>>Tlv fluid inclusions and boiling were not identified
and the overall salinity was lower. Climax also reflected bimodal salinities associated
with mineralization. These differences between Climax and Questa are likely interrelated
in that the lack in boiling at Climax would explain the deficiency of both intermediate
salinities and TshI>>Tlv fluid inclusions, as well as the overall lower salinity for the
system due to no TshI>>Tlv fluid inclusions. For Henderson, the §*%00 values for
biotite are heavier than Questa, indicating that the fluid source was more magmatic to
start with compared to Questa. Lastly, the Silver Creek calcites are different than Questa.
The source of "800 for Silver Creek calcites is questionable, likely because of post-
deposition fractionation and re-equilibration with later, cooler, epithermal fluids.
Additionally, the source of carbon for Silver Creek calcite is primarily sedimentary host
rocks, whereas Questa carbon is magmatic. These differences between Questa and the
Climax-type deposits of the COMB are minimal compared to the prominent similarities
that render all of these deposits members of the same genre that possesses a distinctive

genetic model.
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APPENDIX B — FLUID INCLUSION RAW DATA - MHBX
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APPENDIX B and C ABBREVIATIONS

Abbreviation

Meaning

bt

ch
clath
COzd
d
decrep.
hd

hh

hl

hm
Incl.
MD

Id
loc.
o
op(s)
ot(s)
otd

PS
rtl

sylv
Te
Th
Tl
Tm

vb
vbhd

biotite

critical behavior

clatherate

CO2 disappearance
decripitation

decripitation

halite dissolution

hydrohalite

halite

hematite

inclusion

indeterminate

liquid

liquid disappearance

location

maolybdenite

opague(s)

other translucent daughter(s)
other translucent daughter dissolution
primary

pseudosecondary

rutile

secondary

solid

sylvite

temperature of the eutectic
temperature of homogenization
temperature of liquid/vapor homogenization
temperature of melting

vapor

vapor bubble

vapor bubble disappearance
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APPENDIX C - FLUID INCLUSION RAW DATA - VEINS
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APPENDIX B and C ABBREVIATIONS

Abbreviation

Meaning

bt

ch
clath
COzd
d
decrep.
hd

hh

hl

hm
Incl.
MD

Id
loc.
o
op(s)
ot(s)
otd

PS
rtl

sylv
Te
Th
Tl
Tm

vb
vbd

biotite

critical behavior

clatherate

CO2 disappearance
decripitation

decripitation

halite dissolution

hydrohalite

halite

hematite

inclusion

indeterminate

liquid

liquid disappearance

location

maolybdenite

opague(s)

other translucent daughter(s)
other translucent daughter dissolution
primary

pseudosecondary

rutile

secondary

solid

sylvite

temperature of the eutectic
temperature of homogenization
temperature of liquid/vapor homogenization
temperature of melting

vapor

vapor bubble

vapor bubble disappearance
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