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ABSTRACT 
  
 
 

Water supply problems are ever increasing as populations grow and supplies are 

finite. Policy makers have many tools at their disposal to assist in their management of 

limited resources. One set of tools that are gaining popularity are hydrologic models of 

varying levels of complexity. Models allow predictions to be made for remote areas over 

long time periods using limited input data. In this work, we create a semi-distributed 

watershed model in the Powersim software environment. The model is applied to the 

semiarid Río Salado and tested with varying atmospheric forcing and climate change 

scenarios.  

The watershed model performed well at simulating point scale soil moisture. 

Plausible results were also demonstrated at the HRU scale when using different sets of 

vegetation and soil parameters. The watershed model was unable to reproduce the total 

discharge at the outlet of the Río Salado, however, and this is believed to be a result of 

lacking accurate precipitation data rather than a limitation related to model structure. The 

climate change scenarios provided encouraging results with regards to precipitation 

changes and built confidence in the capabilities of the model. We believe that this semi-

distributed watershed model will be a useful tool for making water supply predictions in 

semiarid regions, due to its ease of use, and minimal computational and data 

requirements.  
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CHAPTER 1 – INTRODUCTION  
 
 

 
The last decade has been marked by serious disputes over water resources. There 

are many factors that lead to and amplify water related conflicts making it an extremely 

difficult problem. Improved living conditions around the world have increased the 

demand for potable water supplies. Some urban communities are developing new 

methods for reusing wastewater, however, agricultural uses remain the largest consumer 

of water (Archibold, 2008). While technologies exist to improve irrigation efficiency, 

they are often too expensive to be employed by most small farmers, especially in 

developing countries, and in some cases these technologies can increase water shortages 

by eliminating recharge (Yardley, 2007). As the world population continues to increase 

and more people migrate from rural areas to larger cities conflicts over water allocation 

can become more intense. Additionally, recent climate change predictions suggest that 

changes in precipitation distribution (location, frequency and duration) will further tax 

the resources of water managers, making it more difficult to provide a consistent supply 

of water.  

The conflict over water has become an international problem, as trans-boundary 

watersheds lead to disputes among neighboring countries over the allocation of this 

precious resource. Soon these disagreements may lead to wars as already limited 

resources are further diminished (Toepfer, 1999).  As a consequence, the development of 

sensible water use plans that are able to maintain the delicate balance between all 
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interested parties (e.g. industrial, municipal, agricultural, and natural ecosystems), 

presents a challenge to both scientists and policy makers (Cox, 2004, Falkenmark and 

Rockstrom, 2004, YDP/Cienega Workgroup, 2005, POST, 2006).  

An accurate estimate of the available water resources (surface water and ground 

water) is necessary to correctly plan sustainable usage (Ward et al., 2006). While purely 

stochastic or empirical studies, which provide streamflow predictions based on simple 

relationships, are easy to implement, they fail to account for the physical processes 

necessary for runoff production (Singer, 2004). Improvements in the understanding of 

physical hydrological processes, as well as increases in the availability of computational 

resources, have resulted in the growing popularity of hydrological models as a tool for 

addressing this problem. However, when attempting to predict the amount and frequency 

of streamflow volumes over large areas, care must be taken to use a model that correctly 

represents hydrological processes at varying scales.  

Throughout the southwestern United States, aquifers that have long fed the 

growth of major cities are being reduced to alarmingly low levels. As a result, it often 

becomes necessary to use surface water to enhance these rapidly diminishing resources. 

Achieving estimates of these resources is hindered by the fact that most watersheds 

remain uninstrumented. The vast quantity of ungauged basins and the infrequency of 

streamflow within them make instrumentation an unrealistic and costly process. The goal 

of this project is to create a semi-distributed watershed model to predict hydrological 

processes in ungauged basins that incorporates the following objectives.  The model must 

be able to account for differences in vegetation and soil properties in semiarid regions. 

The model must be able to process large tributary basins quickly to allow for simulations 
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to be run “real time” to assist in the decision-making process. Such a model has been 

created using the Powersim system dynamics software package (www.powersim.com) 

and is applied to the Río Salado, a semiarid basin in New Mexico that is an important 

tributary to the Río Grande. This exercise provides us with an example of the models 

performance in an ungauged basin, building confidence in the use of the watershed model 

in similar areas around the world.  

The lack of high quality datasets is a problem often faced when using a 

hydrological model. To bypass this issue, most physical rainfall-runoff models use 

analytical equations to produce runoff from measured rainfall data (Beven, 2000). Often 

reasonable results are achieved when these point scale equations are applied to large 

watersheds (Burnash et al., 1973, USACE, 1994). Nijssen and Lettenmaier (1997) even 

created a continent scale model that incorporates these physical rainfall-runoff equations. 

We have chosen to describe the watershed as a collection of Hydrologic Response Units 

(HRUs) in order to approximate the physical processes in a semi-distributed manner. 

Each HRU is comprised of a unique soil and vegetation combination that responds 

similarly to precipitation forcing (Arnold et al., 2005). The use of HRUs reduces the 

number of individual units that must be modeled by lumping multiple small areas with 

similar properties together into a single uniform unit. 

 As previously stated, the model has been tested in the Río Salado, a currently 

ungauged semiarid basin. The Río Salado was selected because of the availability of a 

historical dataset nearly forty years in length, which ended in 1984. Currently, only large 

flood events are recorded at the basin outlet, and these are estimated by manual 

measurements. We will compare our model results to the historical measurements to 



    4 
 

 

evaluate the performance of the model in a semiarid region. Once we have gained 

confidence in the models abilities, we will be able to use it as a tool to assess potential 

changes in the responses of semiarid ungauged basins to climate variability and change.  

Through this work we aim to present the application of the watershed model at the 

HRU scale, using an event-based precipitation forcing scheme. The model will be created 

in the Powersim software environment to facilitate decision-making processes. The 

model will be tested at multiple scales (point, HRU, basin) to build confidence in the 

ability of the model to represent hydrological processes. Finally, climate variability and 

climate change scenarios will be examined to demonstrate the robustness of the model.  

The remainder of this thesis will be divided into three additional chapters. In 

Chapter 2 – Model Development, we describe the study area and provide a walk through 

of the hydrological processes and associated equations that are included in the watershed 

model. Chapter 3 – Model Application and Testing, describes application of the model at 

different scales and presents results that illustrate the capabilities of the model and its 

response to variations in climate forcing. The final chapter, Chapter 4 – Conclusions and 

Recommendations, provides a brief summary of the thesis, states the major conclusions 

that were reached, and offers recommendations for future exploration of this subject.  
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CHAPTER 2 – MODEL DEVELOPMENT 
 
 
 
2.1 Introduction 
 
 In this chapter, we introduce the Rio Salado and describe how the model domain 

was created for the study region. We then discuss in detail how different hydrological 

processes are treated in the watershed model, describing the underlying theory and 

presenting the set of equations that have been implemented. These processes include 

rainfall generation, interception by vegetation, infiltration into the soil, 

evapotranspiration, and the generation and routing of runoff. We illustrate the model 

physics with HRU scale examples over a limited set of conditions. Finally, we summarize 

the model development and its components, providing a reference for the presentation of 

model testing and sensitivity studies in Chapter 3.  

 
2.2 Watershed delineation and domain representation 
 

The Río Salado, located in central New Mexico, is part of the Middle Rio Grande 

drainage basin, and extends into Catron, Cibola, and Socorro counties (Figure 2.1.a). The 

basin was selected for this study due to its historical stream gauge located near its 

confluence with the Río Grande, its semiarid nature and its significant size (3,610 km2). 

The maximum elevation in the Río Salado is 3060 m in the Magdalena Mountains and 

drops to 1430 m near the outlet to the Río Grande. The stream network in the basin  
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Figure 2.1: (a) Río Salado reference map, showing New Mexico state boundary, 
county boundaries, and the highlighted counties of Catron, Cibola, and Socorro. (b) 
30-meter Digital Elevation Model of Middle Río Grande basin, with Río Salado 
watershed in dark blue and stream network in cyan. The cities of Albuquerque and 
Socorro, for spatial reference, are shown as red dots, Ottowi Bridge and Elephant 
Butte Reservoir are shown as red squares.  
 
 
 

consists of a wide braided channel near the outlet and narrow, highly incised channels in 

the headwaters. Stephens et al. (1988) stated that the mean annual discharge for the Río 

Salado is approximately 0.4 m3/s, with over 86% of the total runoff occurring during the 

summer monsoon. While the Río Salado does not contribute large volumes of water to 

the Río Grande, it does contribute a great deal of sediment (Simcox, 1983). The stream 

channel is made up of mostly sandy soils with occasional interbeds of gravels, cobbles, 

and shale and clay layers (Stephens et al., 1988). The saturated hydraulic conductivity of 



    7 
 

 

the streambed has been estimated to be on the order of 10-2 cm/s. (Byers and Stephens, 

1983; Stephens and Knowlton, 1984).  

 The basin extent for the Río Salado is delineated from U.S. Geological Survey 30-

meter digital elevation data. Figure 2.1.b shows the Río Salado watershed and stream 

network overlaying the 30-meter Digital Elevation Model (DEM) of the Middle Rio 

Grande. The process of deriving a stream network and basin boundary from the DEM 

begins with the creation of a flow direction map. The direction of flow is determined 

using a D8 single flow direction algorithm, which is widely accepted in the literature 

(Marks et al., 1984; Band, 1986; Jenson and Domingue, 1988; Morris and Heerdegen, 

1988; Tarboton et al., 1988; Jenson, 1991; Tarboton, 1997). The original D8 algorithm 

developed by O’Callaghan and Mark (1984) moves water from a cell to one of the eight 

surrounding cells depending on the steepest descent (Figure 2.2.a). The next step in 

watershed delineation is to determine the accumulation of flow, or the number of 

upstream cells that feed into each cell (Figure 2.2.b). The upstream area is often used to 

determine the channel network using a constant area threshold (O'Callaghan and Mark, 

1984; Jenson and Domingue, 1988; Morris and Heerdegen, 1988; Tarboton et al., 1991; 

Tarboton et al., 1992). In the Río Salado, the National Hydrography Dataset (NHD) blue 

lines have a drainage density of 1.1 (1/km). We found that a stream threshold of 0.5 km2 

matched the NHD drainage density well, while minimizing the introduction of new first 

order streams. For visualization purposes, a threshold of 40,000 upstream cells or 36 km2 

was used to delineate the stream network in the Río Salado (Figure 2.1). 

Figure 2.3 shows the products of the delineation steps, including the stream 

network and basin boundary. For the purpose of this modeling effort, the model domain  
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Figure 2.2: (a) Elevation values from the DEM for each cell from Bear Mountains 
located NW of Magdalena, NM. (b) Flow direction determined by following D8 
assignments: 1=E, 2=SE, 4=S, 8=SW, 16=W, 32=NW, 64=N, 128=NE. (c) Flow 
accumulation grid calculated from the number of upstream cells along flow path. 
Cells with 0 values have local 30 m by 30 m pixel as contributing area. (d) Flow 
path based on flow directions. (O’Callaghan and Mark, 1984) 

 
 
 

defined by the basin boundary is divided into Hydrological Response Units or HRUs. An 

HRU is defined as a contiguous (map, land, surface) unit with unique soil and vegetation 

class combination, each of which are treated as homogeneous within the HRU (e.g. Hay 

et al., 2006). The HRU concept is often used in models with large grid cells when a finer 

discretization of the model domain is desired (e.g. Arnold, 1998; Liang et al., 1994). The  
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Figure 2.3: (a) 30-meter Digital Elevation Map of Río Salado watershed, elevation 
ranges from 1430 to 3060 meters. (b) Flow direction map showing direction of 
steepest descent for each cell in the DEM. (c) Flow accumulation map displaying 
the number of upstream cells for each location in the basin, used to delineate the 
stream network. 
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Variable Infiltration Capacity (VIC) model provides an example of how HRUs can be 

used to address sub-grid variability of land surface characteristics (Liang et al., 1994). In 

their 2006 study, Hay et al. determined that their results using polygon-based HRUs are 

as good as results achieved using raster grids of finer resolution. Hay et al. (2006) forced 

the USGS Precipitation Runoff Modeling System (PRMS) with output from the MM5 

weather forecasting model. Comparable performance of the HRU and grid-based models 

in simulating stream flow discharge was determined using the Nash-Sutcliffe goodness of 

fit (Nash and Sutcliffe, 1970) and the root mean square error (RMSE).  

Hydrologic response units are also useful when computational efficiency is 

important in a hydrological model. For example, a grid-based simulation in the Río 

Salado would require calculations be performed on over 4 million grid cells at 30-m 

resolution, whereas only 68 HRUs are required for the same domain. Gurtz et al. (1999) 

and others have found similar comparisons in other regions. However, the computational 

efficiency is gained at the expense of losing information, such as the topographic 

distribution. Another weakness of the HRU concept is that uniform parameters are 

applied to each unit, introducing uncertainties in parameter estimates due to potential 

sub-HRU variability (Gurtz et al., 1999; Liang et al., 1994). In the process of aggregation, 

detailed information on soil and land cover may also be lost. Finally, HRUs typically do 

not interact with each other, but directly route produced runoff to the basin outlet 

(Arnold, 1998).  The lack of lateral connectivity is enforced to simplify model 

representations and facilitate rapid computations over large regions.  
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Figure 2.4: Reclassification of (a) STATSGO soil texture map to (b) a coarser soil 
class map, and (c) the percentages of area for each new soil class in the Río Salado. 

 
 
 

The HRU concept is adapted in this study to capture the internal landscape 

variability present in a large, complex, and semiarid watershed. Intersecting coarse-

resolution soil class and land cover maps resulted in the creation of an HRU map for the 

Río Salado basin. The State Soil Geographic (STATSGO) database for New Mexico and 

the General Vegetation Map of New Mexico were used to create the HRUs in this model 

application.  The number of HRUs is dependent on the original resolution and variability 

of the two parent maps. To reduce the computational burden of the model, the soils map 

was reclassified and then dissolved, a GIS process that combines adjacent features that 

share similar properties (Figure 2.4). This process captured the major soil regions in the  

Soil Class Percent of 
area 

Bedrock 38.43 
Sand  0.22 
Loamy sand 3.08 
Sandy loam 28.67 
Loam 27.46 
Silt loam 1.01 
Clay loam 1.03 
Silty clay loam 0.10 
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         (c) 

 
 
 
 
 
 
 
 
 
 

Figure 2.5: Reclassification of (a) the General Vegetation Map of New Mexico to 
(b) a coarser vegetation class map, and (c) the percentages of area for each new 
land use class in the Río Salado. 
 
 
 

Río Salado and minimized the need for extensive parameter estimation. For example, if 

the following three units were adjacent on the map, a gravely sand, fine sand, and very 

fine sand, the resulting soil unit would be classified as simply a sand unit. Similarly, the 

coarse-resolution General Vegetation Map of New Mexico was used instead of the high-

resolution (30-m) National Land Cover Database (NLCD) map to minimize the number 

of HRUs in the domain. Reclassification was also performed on the General Vegetation 

Map to reduce the number of HRUs that would be produced when combining the parent 

maps (Figure 2.5). Since each HRU has distinct soil and vegetation characteristics, we 

make the assumption that the landscape properties (e.g., soil hydraulic conductivity,  

Land Use 
Class 

Percent of 
area 

Forest 23.73 
Grass 23.83 
Shrub 55.44 
Urban/Water 0.002 

L a n d  U se  C la ss  
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(a) 

(b) 

(c) 

 
Figure 2.6: Reclassified (a) vegetation and (b) soil maps are combined to produce 
(c) the final HRU map. Properties from respective classes are associated with each 
HRU.  

 
 
 
 
porosity, rooting depth, and leaf area index (LAI)) within each HRU are uniform. This 

assumption is appropriate when HRUs are of a scale at which hydrologic processes can 

be treated as homogeneous (Singh, 1995). Our desire to decrease the computational 

burden of the watershed model led us to use the coarser scale definition of an HRU in this 

study. This was particularly needed to allow long-term simulations of the large tributary 

basin to be run quickly on a personal computer, for the purpose of use in a decision 

support system. Figure 2.6 shows the creation of the HRU map for the Río Salado, with 

the final HRU map containing 68 HRUs of various sizes. Using HRUs in the Río Salado  
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Figure 2.7: Frequency histogram of the HRU areas in the Río Salado basin.  

 
 
 
allows for the capture of properties from four major land cover types (Figure 2.6.a) and 

eight major soil classes (Figure 2.6.b).  In general, the basin land surface is dominated by 

shrubland underlain by clay loam soil (19%), and grassland underlain by sandy loam soil 

(9.5%).  

Figure 2.7 shows the distribution of HRU areas within the Rio Salado, the majority 

of the HRUs are small in size, each with an area less than 1% (e.g. <0.01) of the total Río 

Salado watershed. However, when the seven largest HRUs are combined, ~10% of total 

number of HRUs, these cover nearly 65% of the total basin area. This inequality in HRU 

sizes led us to a perform field validation exercise to examine the approach of using large 

uniform HRUs to represent the landscape. The entire set of verification locations are  
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Figure 2.8: (a) Rio Salado HRU map with photo validation sites (triangles). (b) 
Photographic examples of HRU vegetation: (1) and (2) are shrubland sites, (3) is a 
forest, and (4) is a grassland location.  
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shown as 28 green triangles in Figure 2.8.a, while the four yellow triangles are the sites 

pictured in Figure 2.8.b. The site visits showed that the coarse land cover description 

from the general vegetation map was generally, but not always, representative of the 

actual environment. In the majority of cases, the descriptions are suitable, such as those 

pictured in Figure 2.8.b.2 and 2.8.b.4, where a shrubland and grassland sites are found, 

respectively. However, Figure 2.8.b.1 is labeled as shrubland on the vegetation map, but 

there is almost no vegetation cover, while Figure 2.8.b.3 appears more like grassland with 

scattered trees (e.g. savanna) than closed canopy forest. Since few locations were very 

different from their land cover descriptions, we felt confident in the use of the coarse 

vegetation map in creating the HRUs used by the model. 

 In summary, the Río Salado watershed was delineated from the USGS 30-m 

DEM. Next, the watershed boundary was further divided into uniform soil and vegetation 

units called HRUs, used to supply land surface characteristics to the watershed model. 

Finally, field visits were performed to verify the accuracy of the land cover descriptions 

used to determine the HRUs, allowing for the rainfall and other hydrological processes 

described in the next sections to be applied uniformly to each HRU.  

 
2.3 Rainfall time-series generation using a stochastic approach 

Due to the scarcity of long-term rainfall observations, watershed models often 

create synthetic rainfall time series to use as model forcing.  Synthetic rainfall generation 

techniques provide a means of estimating rainfall characteristics (depth, duration, arrival 

time) in areas that lack rain gauges or other observation data for extended periods. In this 

study, a stochastic rainfall model based on the work by Eagleson (1978) is used as part of  
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Figure 2.9: Schematic illustration of Poisson rectangular pulse model (after 
Eagleson, 1978). 

 
 
 

the Rio Salado watershed model to create a time series of rainfall input. The rainfall 

model has been widely used in earlier studies in hydrology and geomorphology (e.g., 

Rodríguez-Iturbe and Eagleson, 1987; Tucker and Bras, 2000). Figure 2.9 shows how 

continuous precipitation time series are converted into discrete storm and inter-storm 

events, modeled as rectangular pulses (Eagleson, 1978). It should be noted that only non-

zero intensity events are used to calculate storm intensity and duration values, while the 

zero intensity events make up the inter-storm period. The rectangular pulse model is an 

example of a Poisson rainfall model that provides a simple and general method of 

simulating the randomness of discrete storm events with inter-storm durations that are 

large when compared to the storm duration (Eagleson, 1978). An exponential distribution 

is often used to simulate the time between rainfall events as it fits the distribution of the 

actual data from surrounding gauges (Haan, 1977). We are also using the exponential 

distribution to simulate the amount of rain in each event, since most rainfall events are 

small in both intensity and duration, while very large storms are rare. 
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The stochastic model samples separate exponential distributions of the storm 

intensity (P), storm duration (DS) and inter-storm duration (DIS) as follows: 
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where P , SD , and ISD  represent the mean values, in units of mm/hr for precipitation 

intensity, and days for durations. Using parameters derived from historical datasets 

reduces the degrees of freedom in the model compared to the approach of treating rainfall 

as a free parameter that can be adjusted to produce a desired output (Tucker and Bras, 

2000). Thus, the stochastic approach attempts to mimic local conditions using the 

available historical rainfall data.  

The ability to create synthetic rainfall time series is extremely useful in the Rio 

Salado, since data is only available for one rain gauge within the extent of the basin. 

Rather than using this single gauge to apply uniform rainfall over the entire watershed, 

synthetically generated rainfall can provide each HRU with a time rainfall series, 

conditioned on nearby, long-term historical records. This procedure introduces 

randomness to the precipitation forcing and increases the spatial variability of the model 

input, while maintaining some spatial correlation for adjoining HRUs. Synthetic datasets 

allow the model to be forced with one of five unique rainfall time series derived from a  
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Rain gauge  Augustine Brushy 
Mountain Datil Laguna Socorro 

Record 
length 

1948 to 
2007 

1992 to 
2007 

2003 to 
2007 

1946 to 
2006 

1948 to 
2006 

Minimum 
resolution 0.01 in 0.01 in 0.01 in 0.01 in 0.01 in 

Long 
Lat 

Elevation 
(m) 

-107.617 
34.083 
2133.6 

-107.848 
34.719 
2670.7 

-107.766 
34.289 
2316.5 

-107.367 
35.033 
1773.3 

-106.883 
34.083 
1397.5 

Data set 
source NCDC WRCC WRCC NCDC NCDC 

 
Table 2.1: Characteristics of rain gauges surrounding Rio Salado collected from 
National Climatic Data Center (NCDC) and Western Regional Climate Center 
(WRCC). 

 
 
 
set of rain gauges that border the watershed. The five gauges that were used to condition 

the stochastic model are named Augustine, Brushy Mountain, Datil, Laguna, and 

Socorro, their locations are shown in Figure 2.13. Table 2.1 provides a list of the rain 

gauge characteristics such as record length and rain gauge resolution. Each gauge 

provides hourly rainfall measurements with time series lengths varying from 4 to 30 

years. The Augustine, Laguna, and Socorro gauges are National Climatic Data Center 

Cooperative (NCDC-COOP) stations, while the Brushy Mountain and Datil gauges are 

Remote Automated Weather Stations (RAWS) stations. The NCDC-COOP stations are 

standard National Weather Service, 8 in., Fisher-Porter weighing rain gauges, while the 

RAWS gauges are 8 in. Forest Technology Systems tipping bucket rain gauges. Some of 

the datasets are of limited lengths and may not be completely representative of the 

historical rainfall behavior at their respective locations.  

The Socorro rain gauge provides an example of how a historical record of hourly 

rainfall measurements can be used to determine the parameters of the stochastic model. 

The Socorro rain gauge has an hourly dataset that spans from 1948 to present. Prior to 
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1978, the rain gauge consisted of a 12 in. dual traverse rain gauge with a paper chart, 

which required frequent changing. This was replaced by the current Fisher-Porter rain 

gauge in late 1978, however this resulted in a reduction of accuracy from 0.01 in. to 0.1 

in. (J. Alfieri, personal communication, 2007). Changing gauge resolution caused an 

underestimation of the frequency of small rainfall events, recording them only when the 

cumulative rainfall volume surpassed the 0.1 in. threshold. As a result of higher rain 

gauge precision, the 30-year period from 1948 to 1978 is used to establish the required 

parameters at the Socorro gauge. The mean values of each parameter (P, DS, DIS) are 

extracted from this dataset to determine if the rainfall observations fit the exponential 

distributions defined above. A simple arithmetic mean is used to compute the mean value 

for each variable:   

  
1

1 n

i
i

x x
n =

= ∑ ,               (2.4) 

where x  is the mean value, xi is the individual record, and n is the number of samples in 

the time series. 

Having estimated the mean value for each parameter, Equation 2.1 is used to plot 

the distribution of rainfall depths for the entire period. Figure 2.10 shows the probability 

distribution function (PDF) of the rainfall data for the Socorro rain gauge, compared to an 

exponential distribution using the mean value. The extensive period of record for the 

Socorro rain gauge shows a good visual fit to the exponential distribution, suggesting that 

the exponential distribution reasonably captures the observed variations in rainfall. 

However, the exponential distribution underestimates the frequency of very low-intensity 

events by a factor of 2 and at times overestimates the moderate events. A visual 

comparison of the data from the Datil rain gauge (Figure 2.11), which has a much smaller  
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Figure 2.10: Probability density function of rainfall intensity for the Socorro rain 
gauge, along with the exponential distribution generated using mean values 
estimated from the historical record (1948 – 1978). 
 
 
 

 
Figure 2.11: Probability density function of rainfall intensity for the Datil rain 
gauge, along with the exponential distribution generated using mean values 
estimated from the historical record (2003 – 2007). 
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Figure 2.12: Semi-log plot of PDF of non-zero rainfall events, showing that events 
with intensity of less than 10 mm/hr fit well with an exponential distribution.  

 
 
 
sampling period (2003-2007), suggests that the exponential distribution is also an 

accurate distribution for the short duration records in the study area.  

In order to evaluate how well the probability distribution function of the rainfall 

data fits to an exponential distribution based on the mean value of the historical data, the 

two functions are plotted on a semi-log plot (Figure 2.12). The PDF has a value of 1/N 

(single event) in each bin for high intensity rainfall events. These infrequent events cause 

the tail of the distribution to flatten out in semi-log space toward a value of log(F) = -4. 

Figure 2.12 shows that the frequency of the non-zero events below 10 mm/hr is almost 

linear (R2 = 0.7658). This implies that sampling rainfall intensities from exponential 

distribution will provide a good estimate of small volume events, however, it will  
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Figure 2.13: Thiessen polygons of rain gauges surrounding the Rio Salado basin. 
  
 
 

 underestimate the occurrence of larger events, which typically occur in the summer for 

this region. 

The assignment of each HRU to a particular rain gauge is determined by creating 

Thiessen polygons (nearest neighbor) around each rain gauge location. The Thiessen 

polygon approach to the distribution of rainfall is frequently used, including for 

comparisons of distributed and HRU-based models (El- Nasr et al., 2005). The majority 

of the watershed is located within the boundaries of the polygons for the Augustine 

(24.3%), Datil (37.3%), and Socorro (22.2%) rain gauges, with a small percentage 

associated with the Brushy Mountain (11.0%) and Laguna (5.2%) sites. Figure 2.13 

shows the distribution of HRUs with their assigned rain gauges. HRUs that are overlain  
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Figure 2.14: Comparison of the monthly mean values of estimated parameters 
from the historical record used for the generation of stochastic rainfall time series 
at rain gauges surrounding the Río Salado basin. 
 
 
 

by more than one gauge are given the parameters of the rain gauge associated to the 

polygon with the largest percentage of the HRU area within its boundaries.  

Individual HRUs are forced with a stochastic rainfall time series for each month 

based on the rain gauge they are linked to. The parameters used to generate these time 

series are assigned to the HRU based on the Thiessen polygon association described 

above. A comparison of the mean stochastic parameters for each gauge can be seen in 

Figure 2.14. Strong seasonality in storm intensity and frequency (inter-storm length) is 

apparent in all five rain gauges. The seasonality is best observed when comparing the 

winter months (Dec. to Feb.) with the late summer months (Jul. to Sep.).  While the mean  
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Monthly Mean Storm Intensity (mm/hr) 

Gauge Augustine 
P 

Laguna 
P 

Datil 
P 

Brushy 
Mountain 

P 

Socorro 
P 

Jan 1.05 0.82 0.81 0.37 0.88 
Feb 1.10 0.72 0.68 0.53 1.01 
Mar 0.92 1.08 0.76 2.48 0.89 
Apr 1.24 0.98 1.27 0.85 1.17 
May 0.93 1.51 1.13 0.94 1.37 
Jun 1.27 1.54 1.18 0.92 2.01 
Jul 2.05 1.76 1.98 1.54 1.83 
Aug 2.23 1.79 2.15 1.78 1.86 
Sep 2.28 1.53 1.46 1.41 1.64 
Oct 1.61 1.33 0.94 1.67 1.39 
Nov 1.22 1.07 0.96 0.65 1.53 
Dec 1.13 0.89 0.70 0.40 1.70 

 
Table 2.2: Comparison of monthly mean values of storm intensity (P). Highlighted 
values show differences between summer and winter events.  

 
 
 
value for rainfall intensity at the Brushy Mountain gauge does seem to be anomalous in 

the month of March, the data fits well with the other gauges the rest of the year. Tables 

2.2, 2.3, and 2.4 present the numerical values of the mean stochastic parameters for each 

rain gauge, for reference purposes, as well as to highlight the differences between 

summer and winter values.   

The rainfall time series that are produced by the stochastic model are dependent 

on the parameter values used. Figure 2.15 shows the effects of different forcing 

parameters on the generation of storm events. As shown by the highlighted values in 

Tables 2.2-2.4, the July storms should occur nearly twice as often and are twice as intense 

as the January storms. The marked increase in larger rainfall events can be seen visually 

by comparing Figures 2.15a,b to Figures 2.15c,d with the second pair showing a greater 

frequency of large rainfall events.  The effects of a long inter-storm duration are best seen 

in the decrease in the number of rainfall events in Figure 2.15a for January at the 
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Monthly Mean Storm Duration (hr) 

Gauge Augustine 
DS 

Laguna 
DS 

Datil 
DS 

Brushy 
Mountain 

DS 

Socorro 
DS 

Jan 2.23 2.38 2.32 2.29 2.70 
Feb 2.12 2.94 2.50 2.31 2.41 
Mar 2.34 2.63 2.23 2.48 2.69 
Apr 2.21 2.65 1.95 2.15 2.29 
May 2.19 2.21 2.08 1.99 1.99 
Jun 2.20 1.99 2.00 1.80 1.94 
Jul 1.98 2.08 1.89 1.82 2.03 
Aug 1.97 2.10 1.80 1.98 2.12 
Sep 2.29 2.14 1.82 1.89 2.24 
Oct 2.26 2.60 1.95 2.42 2.79 
Nov 2.53 3.02 3.31 2.14 2.84 
Dec 2.56 2.77 3.00 2.32 2.74 

 
Table 2.3: Comparison of monthly mean values of storm duration (DS). 
Highlighted values show differences between summer and winter events.  

 
 
 

Monthly Mean Inter-Storm Duration (hr) 

Gauge Augustine 
DIS 

Laguna 
DIS 

Datil 
DIS 

Brushy 
Mountain 

DIS 

Socorro 
DIS 

Jan 159.99 121.31 76.24 71.84 185.52 
Feb 167.82 137.65 56.15 66.97 166.18 
Mar 144.00 119.77 65.61 72.17 138.19 
Apr 157.09 168.02 63.68 87.37 171.06 
May 195.88 157.66 100.83 103.56 201.46 
Jun 186.46 157.38 118.33 110.96 205.35 
Jul 78.81 99.64 43.99 44.60 84.05 
Aug 53.55 60.59 27.15 30.36 61.29 
Sep 66.49 71.05 37.91 45.73 71.46 
Oct 108.54 100.15 32.32 60.84 113.87 
Nov 136.40 115.51 166.88 70.56 169.22 
Dec 142.87 142.71 163.00 89.44 177.92 

 
Table 2.4: Comparison of monthly mean values of inter-storm duration (DIS). 
Highlighted values show differences between summer and winter events.  
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(a) 

(c) 

(b) 

(d) 

 
Figure 2.15: Ten-year simulation of stochastic rainfall time series using monthly 
mean values (a) Augustine rain gauge with January parameters, (b) Datil rain gauge 
with January parameters, (c) Augustine rain gauge with July parameters, and (d) 
Datil rain gauge with July parameters. 
 
 
 

Augustine rain gauge. The rain gauge at Datil receives more rainfall than the Augustine 

gauge when using the July means due to a decrease in the inter-storm duration.  In order 

to better visualize the difference between rainfall time series, Figure 2.16 shows the 

Cumulative Distribution Function (CDF) of rainfall depth, for the selected months and 

rain gauges. The CDF shows that large rainfall events are more likely to occur when the 

July parameters are used for both gauges, due to the increase in the mean rainfall 

intensity for July events when compared to January events. Therefore, this suggests that 

rainfall is more dependent on seasonal changes as compared to spatial variations across 

the region. 
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Figure 2.16: Cumulative density function of stochastic rainfall time series at 
Augustine (solid line) and Datil (dotted line) rain gauges, using monthly mean 
values for January (blue) and July (red).   

 
 
 

In order to verify that the higher elevation Datil and Brushy Mountain gauges 

receive more precipitation than the other three gauges, we compared the measured gauge 

data to a spatially-distributed product known as Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) data. PRISIM provides a measure of spatial 

variability in precipitation caused by orographic effects through its elevation-based 

regression model. Figure 2.17 shows a map of the mean 30-yr annual precipitation data 

from PRISM clipped to the rain gauge thiessen polygons for each gauge in the Rio  
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Figure 2.17: 30-yr mean annual PRISM precipitation data clipped to 
thiessen polygons of rain gauges surrounding the Rio Salado basin. “PRISM 
Group, Oregon State University, http://www.prismclimate.org, created 4 Feb 
2004.”  

 

Salado region. According to the PRISM data the Datil and Brushy Mountain gauges both 

receive about 100 mm/yr more precipitation that the Augustine gauge and nearly 

200mm/yr more than the Socorro or Laguna gauges.  This confirms that the Datil and 

Brushy Mountain gauges receive larger amounts of rainfall and that excluding these 

gauges from a model simulation would lead to underestimations of precipitation. Clearly, 

the PRISM data show spatial variations in precipitation due to elevation differences that 

cannot be captured through Thiessen polygon interpolations. Using the two high 

elevation rain gauges, however, will reduce the underestimation for the simulations 

presented here.  
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In summary, we have shown that rainfall events are effectively generated using a 

stochastic method with an exponential distribution, which provides a good fit to actual 

rain gauge data. The generated rainfall time series are linked to HRUs associated with 

each rain gauge in the area using a Thiessen polygon method. The rainfall parameters 

determined from historical records are shown to produce storm events that are plausible 

for the semiarid environment in the Río Salado. Finally, the spatial variability of 

precipitation was examined using PRISM data.  

 
2.4 Hydrological processes in the watershed model 
 

This section describes the hydrological processes that are represented in the HRU-

based watershed model of semiarid basins. The processes begin with the partitioning of 

precipitation into rainfall and snow, and proceed to interception of precipitation by the 

vegetation canopy. Water that is able to bypass the canopy and reach the land surface 

then either infiltrates into the soil column or becomes runoff that is routed to the basin 

outlet. Losses to evapotranspiration affect each portion of the hydrologic system, which is 

treated as a set of water balance equations. A final summary will complete the description 

of the hydrological processes implemented in the HRU-based watershed model.  

 
2.4.1 Snow accumulation and melt 
 

Snow accumulation in the snow pack is treated as a simple water balance, where 

the change in storage in the snow pack (∆SSnow) over time is the difference between the 

volume of new snow that falls (VNS) and the volume of melt from the snow pack (VM).  

                               Snow NS MS V V
t t

∆ −=
∆ ∆

,               (2.5)            
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To determine the volume of snow that falls on each HRU, a temperature-based allocation 

method was used to partition a portion of the precipitation as snowfall (Federer, 2003). In 

the same way that random precipitation events are generated, the minimum and 

maximum temperatures for each event are taken from an exponential distribution. 
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T

 
 
 = ,               (2.6)         

where T  represents the mean temperature value for each month of the historical dataset. 

Average monthly temperature values (minimum, maximum, mean values in each month) 

in degrees C for each HRU are taken from monthly dataset summaries associated with 

each rain gauge.  Figure 2.18 shows how the average monthly maximum and minimum 

temperature varies throughout a year, for a representative HRU. When the maximum 

temperature for an event drops below a threshold value Tb = -0.5 oC, all of the 

precipitation will fall in the form of snow (Federer, 2003). Similarly, if the minimum 

temperature rises above the same threshold, rain is the exclusive form of precipitation. In 

the case when the air temperature is between the maximum and minimum for the event, 

precipitation is partitioned between rainfall and snowfall as: 

  b min
f

ma x min

T TS
T T

−=
−

,              (2.7)            

               1,  if  f ma x bS T T= ≤ , and                      (2.8)            

         0,  if f min bS T T= ≥ ,              (2.9)    

 where Sf is the fraction of precipitation that falls as snow, and Tmax and Tmin are sampled 

from an exponential distribution for each event in the manner described above for the 

storm parameters, based on historical monthly temperature observations.  

Melting of the snow is based on the degree-day method developed by Martinec  



    32 
 

 

 
Figure 2.18: Plot of average monthly temperature data (maximum and minimum) 
for HRU #20 (Forest, Sandy Loam).  

 
 
 

(a) 

(b) 

 
Figure 2.19: Plot of snow dynamics for a representative March, for HRU #2 
(Forest, Bedrock). (a) Shows snow pack depth (mm), dotted line, and precipitation 
depth in (mm), solid line, and (b) and maximum and minimum air temperature for 
each event (C). 
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et al. (1983) as: 

( )M f i bV M T T= − ,               (2.10) 

where VM is the melt volume (m3), Mf is an empirical melt factor Mf = 0.011 ρs (m3/oC), 

Tb is the threshold temperature (oC), Ti is the index air temperature (oC) set to the average 

of the stochastically generated maximum and minimum air temperatures for each event, 

and ρs is the snow density (100 kg/m3) (Dingman, 2002). The snow dynamics for a 

representative period (March), including the accumulation and melting of a snow pack, 

based on the input of precipitation for each event, are shown in Figure 2.19a. Figure 

2.19b shows the air temperature time series for the same month. Note how the low 

temperatures between hour 320 and 726 allows the snow pack to persist and increase with 

new snowfall inputs. Additionally, the high maximum temperature at the end of the 

month results in a melting of the snow pack. Future work may include an improved snow 

model, which accounts for a multiple-layer snow pack and canopy interception of snow. 

 
2.4.2 Canopy Interception  
 

Rainfall interception by the vegetation canopy is also treated as a water balance, 

where the change in storage in the canopy (∆SC) over time is the difference between 

canopy inputs (intercepted water, VInt) and canopy outputs (evaporation, VCE, and 

drainage, VD): 

( )C Int CE DS V V V
t t

∆ − +=
∆ ∆

.                            (2.11) 

Figure 2.20 shows the canopy interception processes. Since interception of rainfall  
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Figure 2.20: Precipitation (VP) is divided into intercepted (VInt) and un-intercepted 
(VU) volumes. The intercepted water that fills the canopy storage space is 
eventually lost to evaporation (VCE), water that bypasses the canopy as drainage 
(VD) then reaches the soil surface. 
 
 
 

requires a canopy, the vegetated area within an HRU (m2) must be calculated as:   

 veg vegA p A= ,                (2.12) 
where pveg is the fraction of the HRU that contains vegetation [0 to 1] and A is the total 

area (m2) of the HRU. Once the vegetated portion of the HRU has been assigned, the 

maximum interception capacity of the canopy (ICMax), or the depth of water (mm) that the 

canopy can hold, is calculated as:  

CMax CLI I LAI= ,               (2.13) 



    35 
 

 

where LAI is the leaf area index (cm2/cm2) and ICL is the leaf interception capacity (mm) 

for a particular vegetation type. To determine the amount of rainfall captured by the 

canopy, the rate at which rainfall is intercepted by leaves (IR) in the canopy (mm/hr), is 

treated as a linear function of LAI, as: 

R IntLI F RLAI= ,               (2.14) 

where FIntL is the fraction of rainfall intercepted by leaves, assumed to be 0.1pveg, and R is 

the rainfall rate (mm/hr) (Federer, 2003). 

The total volume of water intercepted during a storm event (VInt) is computed as: 

Int R vegV I A D= ,               (2.15) 

where D is the duration of the rainfall event (hr). The intercepted volume VInt (m3) is 

added to water currently stored in the canopy up to the maximum canopy storage volume 

(VCS) (m3) defined as: 

     CS CMax vegV I A= ,                                    (2.16)        

where ICMax is the maximum interception capacity (mm), which is the leaf interception 

capacity (ICL) multiplied by the leaf area index (LAI). ICL has been estimated to be about 

1 mm for pine forests (Rutter et al., 1971). The average of the available values of ICL, 

provided in a table by Breuer et al. (2003), for each vegetation type is used in the model. 

Once the canopy is completely full, any further input of water to the canopy is released to 

the ground surface as drainage (VD). The un-intercepted volume of water (VU) or free 

throughfall, falls over non- vegetated areas and immediately reaches the ground. VU is the 

difference between the total precipitation volume (VP) and the intercepted volume (VInt) 

calculated as:   

  U P IntV V V= − .               (2.17) 
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 Vegetation 
Percent 

(pveg) (%) 

Leaf 
Interception 
capacity (ICL) 

(mm) 

Fraction 
intercepted by 
leaves (FIntL) 

Interception 
Fraction 

(FIntLLAI) 

Rooting 
Depth 
(cm) 

LAI 

Forest 60 4.5 .06 0.18-0.36 150 3-6 
Shrub 30 1.1 .03 0.48-.09 150 1.6-3 
Grass 50 1.9 .05 0.065-0.15 150 1.3-3 

Urban/
Water 0 0 0 0 0 0 

 
Table 2.5: Mean parameter values based on vegetation class (Breuer et al., 2003, 
Federer, 1996, Wigmosta et al., 1994, Gutierrez et al., 2006). 
 

 
 
Table 2.5 shows the values of interception parameters for each vegetation class used in 

the Río Salado. Figure 2.21 shows model output of each of the interception processes for 

a forest canopy for the typical rainfall input during the months of July and August. In 

Figure 2.21b, the canopy storage volume responds quickly to inputs from precipitation 

(Figure 2.21a) and losses from evaporation (Figure 2.21c). The water stored in the 

canopy persists over multiple events until the rate of evaporation is large enough to dry it 

completely. The lack of drainage from the canopy (Figure 2.21d) is a result of the canopy 

not being filled to capacity at any time during this period. 
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(a) 

(b) 

(c) 

(d) 

 

Figure 2.21: Event-scale canopy output from HRU #20 for a representative year. 
(a) Rate of interception by the canopy (mm/hr). (b) Volume of water stored in the 
canopy (mm3). (c) Rate of evaporation from the canopy (mm/hr). (d) Rate of 
drainage from the canopy (mm/hr).  
 
 
 

2.4.3 Vadose zone processes 

Water inputs in the form of free throughfall, drainage, and snowmelt, which reach 

the soil surface, are allocated depending on the state of the hydrologic system. The water 

balance at the land surface is modeled after the Three-Layer Variable Infiltration 

Capacity (VIC-3L) model of Liang et al. (1994, 1996). VIC-3L divides a watershed into 

land cover units based on vegetation type and calculates runoff using a three-layer 

infiltration model. For the purpose of this modeling study, the VIC-3L model was applied 

to each HRU in the Río Salado basin. The components of the water balance equations for  
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Figure 2.22: Three-layer soil column depicting flows between layers, adapted from 
the VIC-3L model (Liang et al., 1994, 1996). Layer thicknesses are indicated on 
the left hand side.  
 
 
 

each soil layer are shown in Figure 2.22. Water that reaches the land surface of an HRU 

is able to infiltrate into all three layer of the soil, filling the column from top to bottom. 

 The generation of runoff for each HRU begins with the calculation of infiltration-

excess runoff. If the rate that the available water infiltrates is greater than the saturated 

hydraulic conductivity of the soil (KS), then infiltration-excess runoff (RI) will occur.  The 

rate at which infiltration-excess runoff is produced is determined by: 

                               
,

I RS S

RS S

R I K

for I K

= −

≥
                              (2.18) 
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 Ks (cm/hr) BP φ θr 

Bed Rock 0.05 0.05 0.10 0.01 
Sand 23.56 0.69 0.42 0.02 

Loamy sand 5.98 0.55 0.40 0.04 
Sandy loam 2.18 0.38 0.41 0.04 

Loam 1.32 0.25 0.43 0.03 
Silt loam 0.68 0.23 0.49 0.02 

Clay loam 0.20 0.24 0.39 0.08 
Silty clay loam 0.20 0.18 0.43 0.04 

 
Table 2.6: Parameter values based on soil class (Rawls et al., 1993). 
 
 
 

where IRS is the infiltration rate of the top layer in cm/hr and KS is the saturated hydraulic 

conductivity of the soil in cm/hr. Next the VIC method is used to produce saturation-

excess runoff.  

The VIC method assumes that the degree of saturation over the HRU area varies 

spatially (Liang, 1994). To accomplish this, the water in each layer is redistributed, so 

that a portion of the HRU area is completely saturated, while the remaining area remains 

at some lower degree of saturation. The consumed infiltration capacity (io) of the soil 

column (m3) is calculated using the variable infiltration capacity curve described as: 

        ( )
1

1 1o b
sf

m

i A
i

 
− = − 

 
,    (2.19) 

where io is the consumed infiltration capacity (mm), im is the maximum infiltration 

capacity (mm), Asf is the fraction of the area that is saturated, and b is the saturation shape 

parameter (-). This equation can be solved for the infiltration capacity, io, or the saturated 

fraction, Asf, as: 

       ( )
1

1 1 b
o m sfi i A

 
= − − 

 
, or    (2.20) 
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          1 1
b

o
sf

m

iA
i

 
= − − 

 
.    (2.21) 

To find the maximum infiltration capacity, im, we use the following expression: 

        
0

1m

b
i

m
m

iV di
i

 
= − 

 
∫ ,    (2.22) 

where Vm is the maximum water volume in the top two layers of the soil column, defined 

as Aφzu, where zu is the depth of the top two layers.(see Appendix 1 for a full derivation) 

Using a u substitution of 1
m

iu
i

= −  we arrive at:   

        ( )
0

mi b
m mV i u du= ∫ ,    (2.23) 

Integrating, resubstituting and evaluating at the limits i = 0 to i = im, we calculate the 

maximum infiltration capacity: 

            ( )1m mi V b= + .     (2.24) 

Solving Equation 2.22 with the limits of i = 0 to i = io, results in the consumed 

infiltration capacity (io): 

        ( )
1
1

1 1 1
b

o
o m

m

Vi V b
V

+ 
  = + − −     

,   (2.25) 

where Vo is the current volume of water in the soil column. Subtracting io from im, we get 

the current infiltration capacity (ic): 

 

                 
1
1

1 1
b

o
c

m

Vi
V

+ 
  = − −     

.                      (2.26) 
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 Representing the water volumes as a difference in volumetric water contents (Vm = 

(φ −θr), Vo = (θi −θr)), results in an expression for the current infiltration capacity in terms 

of soil moisture: 

              

1
1

1 1
b

i r
c

r

i θ θ
φ θ

+
 

 − = − −  −   

,                                        (2.27) 

where φ  is the soil porosity, θi is the current soil moisture (volumetric water content, 

m3/m3) and θr is the residual soil moisture (m3/m3).  

As shown in Figure 2.23, the amount of saturation-excess runoff that is produced 

by an HRU, controlled by the infiltration capacity, is dependent on the amount of the 

HRU area that is currently saturated (Asf )(Equation 2.21). As water is added to the soil 

column, increasing the current volume Vo, a new amount of consumed infiltration 

capacity (io) is calculated using Equation 2.25, moving io toward im. The remaining 

infiltration capacity is the unshaded region under the curve. Figure 2.23 also shows that 

an increase in the saturated area (As) will result in an increase io or a decrease in the 

infiltration capacity of the soil (Equation 2.20). Figure 2.24 shows the control of the 

parameter b on the shape of the infiltration capacity curve for different values (b = 0.6, 1, 

1.4). b describes the distribution of storage capacity in an HRU and is set to 1.4 for this 

study following Liang et al,. (2001). Since the VIC method accounts for the spatial 

variability in soil moisture, a more realistic estimate of the amount of water produced by 

saturation-excess runoff (RS) is obtained using an HRU-averaged value (Liang et al., 

2001).  As a result, the watershed model used in this study includes both major  
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Figure 2.23: Schematic of infiltration capacity curve: im is the maximum 
infiltration capacity (mm), io is the current infiltration capacity (mm), and As is the 
fraction of the area that is saturated (m2).   
 
 
 

mechanisms for runoff generation to more accurately depict the potential runoff 

processes in semiarid regions. 

 In each HRU, a single soil column is divided into three layers with soil layer 

depths adopted from the VIC-3L model (Liang et al., 1996), which are assumed to be 

uniform over all HRUs. Table 2.6 shows the soil parameters for each soil class. Direct 

evaporation from the soil can occur from the top layer (10 cm) and the middle layer (40 

cm). The lower layer (1 m) accounts for long-term storage of water and provides drainage 

to the regional aquifer. Each layer loses water to transpiration depending on the degree  
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Figure 2.24: Plot showing the effect of b on the infiltration capacity of the soil 
column. Each line represents the same control volume.  
 
 
 

of saturation of the layer, the plant root distribution, and the threshold that each 

vegetation type transpires at. 

Movement of water between layers is calculated using a modified form of the 

Brooks-Corey equation (see Appendix 2 for a full derivation): 

    Q AKθ= ,                     (2.28) 

where Q is the flow rate between layers (m3/hr), A is the HRU area (m2), and Kθ is 

unsaturated hydraulic conductivity defined as:  

      ( )
2 3
b

final rK Bzθ θ θ
+

= − ,              (2.29) 



    44 
 

 

where θfinal is the adjusted water content at the end of a storm or interstorm period 

defined as: 

            ( )( ) ( ) ( ){ }( )2 2

1
1 1

21m m
final r i r m B tθ θ θ θ − − = + − − − ∆  ,  (2.30) 

 

and B is defined as: 

       
2( )

S
m

r

KB
z φ θ

=
 − 

,    (2.31) 

where KS is the saturated hydraulic conductivity (cm/hr), θi is the current volumetric 

water content (m3/m3), φ is the porosity of the soil, z is the depth below the ground 

surface, ∆t is the duration of the event, θr is the residual water content (m3/m3), and m2 is 

defined as: 

  2
2 3

P

m
B

= + ,     (2.32) 

where BP is the pore size distribution index (Liang et al., 1994). For each layer, the 

current volumetric water content θi, is calculated as: 

    i
i

T

V
V

θ = ,      (2.33) 

where Vi is the current volume of water in the layer, and VT is the maximum possible 

volume of water for the layer, defined as: 

  max iV A zφ= ,     (2.34) 

where A is the HRU area, φ is the soil porosity, and zi is the depth of the soil layer.  

 

 



    45 
 

 

The water balance equation for the top layer is: 

 
( ) ( )

T TInf DiM E T DM RTop V V V V V VV
t t

+ − + + +∆
=

∆ ∆
,                       (2.35) 

where VInf  is the volume of water that infiltrates into the top layer, VDiM is the volume 

that diffuses into the top layer from the middle layer, 
TEV is the volume lost from the top 

layer to evaporation, 
TTV is the volume lost from the top layer to transpiration, VDM is the 

volume that drains from the top layer to the middle layer, and VR  is the volume of runoff 

produced by each HRU (sum of RS and RI). All volumes are expressed in m3. 

The water balance equation for the middle layer is: 

         
( ) ( )

MDM DiL T DLMid
V V V VV

t t
+ − +∆ =

∆ ∆
,                            (2.36) 

where VDiL is the volume that diffuses into the middle layer from the lower layer, 
MTV is 

the volume lost from the middle layer to transpiration, and VDL is the volume that drains 

from the middle layer to the lower layer.  

The water balance equation for the lower layer is: 

  
( )

LDL T DDLow
V V VV

t t
− +∆ =

∆ ∆
,                               (2.37) 

where 
LTV is the volume lost from the lower layer to transpiration, and  VDD is the volume 

that drains from the lower layer to the regional aquifer.  

As the top soil layer fills, water can either drain to the lower layers, evaporate 

directly from the top layer of soil, or be transpired by vegetation. Figure 2.25 provides a 

visual example of the response of the three soil layers to precipitation forcing. The top 

layer (Figure 2.25b) shows rapid filling in line with the precipitation inputs as well as 

rapid drying caused by evapotranspiration, and drainage to the layers below. The middle  



    46 
 

 

      

(a) 

(b) 

(c) 

(d) 

(e) 

 
Figure 2.25: Model output of event scale soil moisture for each layer in HRU #20 
for the year 1948. (a) Rainfall rate (mm/hr). (b) Volumetric water content of the top 
layer (m3/m3). (c) Volumetric water content of the middle layer (m3/m3). (d) 
Volumetric water content of the lower layer (m3/m3). (e) Drainage from the lower 
layer to the regional aquifer (mm/hr), note that the scale of the y-axis for the 
drainage is 0-5x10-3 mm/hr. 
 
 
 

layer (Figure 2.25c) is muted in comparison to the top layer, the increases are coincident 

with the precipitation forcing but the moisture is able to persist beyond the initial input 

event. The lower layer (Figure 2.25d) shows an even less pronounced response to 

precipitation and maintains its level of saturation over many events, resulting in long term 

drainage into the regional aquifer at a very low rate (Figure 2.25e).    
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2.4.4 Evapotranspiration processes  
 

Several methods exist for estimating the amount of water that is lost to 

evapotranspiration (ET), the combination of soil evaporation and plant transpiration. 

However, most methods such as the Penman-Monteith and Priestley-Taylor approaches 

require a great deal of atmospheric data (e.g. air temperature, vapor pressure, wind speed, 

and radiation). To simplify the model and reduce the data requirements, the temperature-

based Hargreaves evapotranspiration model was implemented. This method provides a 

reasonable estimate of the potential evapotranspiration (EH) for each HRU (Shuttleworth, 

1993). The Hargreaves equation is defined as: 

          ( )
1
20.0023 17.8H o RE S T T= +   ,                       (2.38) 

where EH is based on the amount of incoming solar radiation (So) (mm/day) and monthly 

air temperature values (Hargreaves 1975; Hargreaves et al., 1985; Hargreaves et al., 

2003). For the purpose of this study temperatures used in calculating the potential ET are 

sampled monthly from an exponential distribution. Thus T  is the mean air temperature 

(oC), and TR is the difference between the monthly minimum and monthly maximum air 

temperatures (oC) defined as: 

TR = Tmax – Tmin .                (2.39) 

The amount of incoming solar radiation that reaches the land surface and is thus available 

for evaporation is estimated using the method described by Shuttleworth (1993): 

                    [ ]{ }15.392 sin( )sin( ) cos( ) cos( )sin( )o r S SS d ω φ δ φ δ ω= + ,                  (2.40) 

where dr is the relative distance between the Earth and the Sun, ωS is the sunset hour 

angle (radians), φ is the latitude of the study area (radians), δ is the solar declination 
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angle (radians). The following equations describe the computation of the solar radiation 

factors: 

           21 0.033cos
365rd Jπ = +  

 
,                        (2.41) 

        arccos( tan( ) tan( ))Sω φ δ= − , and                        (2.42) 

           20.4093sin 1.405
365

Jπδ  = − 
 

,                        (2.43) 

where and J is the Julian day. We set J to the 15th day of each month to simulate the 

average monthly ET.  

The actual ET for each HRU is limited by the water available in the soil and by 

the ability of the vegetation to remove that water from the lower soil layers. Actual 

evaporation from the top layer (Ea) occurs at a reduced rate for unsaturated soils as: 

       ( ) i r
a p s p s

s r

E ET A ET A A θ θ
θ θ
 −= + −  − 

,   (2.44) 

where ETp is the Hargreaves potential ET (EH), A is the total HRU area, As is the 

saturated area, θi is the current water content, θr is the residual water content, and θs is the 

water content at which the soil is considered saturated. Following the method of Salvucci 

(1997), the value of Ea is reduced to ER when the interstorm period is greater than two 

days, shown by: 

          
( )2

2
48

a
R

E ET
E

if T hrs

+
=

>
,    (2.45) 

where ET2 is defined as: 

       2
480.811 aET E
T

 =  
 

.    (2.46) 
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Figure 2.26: Monthly potential ET for Augustine gauge. 
 
 
 

where Ea is the ET without the two day reduction, and T is the current interstorm 

duration. This reduction is implemented because, as the soil dries, Ea is controlled by the 

rate at which the soil can conduct water to the surface.  

The volume that is transpired from the lower layers is controlled by the rooting 

depth of the plants and the degree of saturation in the soil. To further simulate the effects 

of dry soils, the transpiration rate is also reduced for long interstorm periods (>2 days). 

The seasonal changes in monthly potential ET generated using the parameters from the 

Augustine gauge, showing high potential ET in the summer and lower potential ET in the 

winter, are shown in Figure 2.26. A comparison of the potential and actual ET for HRU 

#20, calculated using stochastic temperature values for each event, can be seen in  
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Figure 2.27: Comparison of potential ET (black) and actual ET (red) for HRU #20 
for a representative year.  
 
 

Figure 2.27. A lack of available water in the soil causes the actual ET for each event to be 

much smaller than the potential ET. ET calculations are only performed during the 

interstorm periods. 

 
2.4.5 Routing processes 
 

Water is routed to the basin outlet using simple hydrologic routing along the 

different flow-paths computed from the DEM (Figure 2.28). To reduce computations, the 

average flow distance for each HRU is used to route the water. The residence time of 

water in the channel (tc) is defined as:  

       Out
c

L
t

V
 =  
 

      (2.47) 
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Figure 2.28: Examples of possible flow paths for three different HRUs in the Río 
Salado basin. 
 
 
 

where LOut is the average distance to the outlet for each HRU, and V is the average flow 

velocity, set to 0.5 m/s for this study. This mimics the average residence time in the 

surface streams that link each HRU to the basin outlet. The channel bed is treated as a 

soil with variable properties and the volume of water lost within the channel (VLoss) is 

calculated as: 

             Loss S C Out WV K t L c= ,                         (2.48) 

where KS is the saturated hydraulic conductivity, and cW is the average channel width, set 

to 5 m. This simple calculation assumes independent flow paths from each HRU to the 

outlet. Realistically the flow paths from different HRUs merge along the main stem of the 

Río Salado. This simplification may lead to overestimates of channel losses, but allows 

channel routing to be handled in a parsimonious fashion for the semi distributed 

watershed model.  Figure 2.29 shows the distribution of residence times for runoff routed  
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Figure 2.29: Histogram of residence times for HRUs in the Río Salado basin. 
 
 
 

from every HRU in the Río Salado to the basin outlet. It is important to note that all of 

the water will exit the basin in under 90 hours (3.75 days), indicating that monthly total 

runoff volumes may account for multiple events. The variability of the routing times 

shown in Figure 2.29 causes the model to behave more realistically at sub-monthly time 

scales than if all HRUs delivered runoff to the basin outlet at the same time.            

 
2.5 Summary 
 
 This concludes the description of the model development, which has included a 

detailed explanation of the hydrologic processes used in the watershed model. The 

description has focused on the aspects of the water balance necessary to transform 

precipitation into runoff (e.g. interception, evapotranspiration, and infiltration). The 
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following chapter will present the model results at different spatial and temporal scales, 

compare the model results to historical observations, and test the sensitivity of the model 

to changes in both climate forcing and parameter values.  

 
 



    54 
 

 

 
 
 
 
 
 

CHAPTER 3 - MODEL APPLICATION AND TESTING 
 
 
 
3.1 Introduction  
 

In this chapter we describe the watershed model results at different spatial and 

temporal scales for applications in central New Mexico. We begin by comparing modeled 

soil moisture values for the top two soil layers to measurements from the Deep Well site 

in the Sevilleta National Wildlife Refuge to build confidence in the model physics. In the 

following section, we examine storm event scale results for individual HRUs, in order to 

compare the effects of soil and vegetation properties on runoff generation during wet and 

dry periods. Subsequently, we increase the spatial scale to encompass the entire Río 

Salado basin at the monthly timescale over a long (~60-yr) sequence of different years. 

At the monthly scale, we compare modeled basin runoff to the historical streamflow 

measurements at the Río Salado gauge. In the final section, the sensitivity of the 

watershed model to different climate forcing is tested. This is carried out using a range of 

different stochastic precipitation scenarios in order to capture the potential effects of 

climate variations on the semiarid basin response.  

 
3.2 Comparison of model simulations at the point scale 

To build confidence in the abilities of the watershed model, we first examine the 

model behavior at the point scale. This is accomplished by comparing observed data from 

three soil pits at the Deep Well site in the Sevilleta National Wildlife Refuge (Moore, 
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TDR-1996-2001). Soil and vegetation properties for the Deep Well site are derived from 

the site description included with the Time-Domain Reflectometry (TDR) and 

meteorological (MET) datasets. Deep Well is treated as a sandy soil for the first 10 cm 

and as a sandy-loam soil for the remaining 1.4 meters, and is overlain by a mixture of 

shrubs and grasses. We do not attempt to explicitly capture the potential impact of the 

calcium carbonate (caliche) layer on the soil hydraulic properties at the site. The focus of 

the point scale study is to inspect the simulated values of soil water content for the top 

and middle layers in the model and compare it to conditions observed in the field, 

averaged over the three soil pits. 

We used the average soil moisture values from three different sensors installed at 

similar depths, but placed 1 to 5 meters apart, to account for potential variations at the 

point scale among the sampling sites (e.g. microtopography or vegetation differences 

between sites). For the purpose of the point scale tests, the interception of water by plants 

was not considered since the Deep Well site is a sparse grassland/shrubland site with 

open bare soil patches. Additionally, the depth of the middle layer in the model was 

modified to 10-40 cm from 10-50 cm to improve the correspondence with the observation 

depths. 

The wettest (1997 with 325 mm of total rainfall) and driest (2001 with 214 mm of 

total rainfall) years of the record were selected from a six-year dataset at the Deep Well 

site collected by the Sevilleta Long-Term Ecological Research program (Moore, MET-

1996-2001). In order to account for initialization effects, the model was run for a 10-year 

spin-up created by duplicating each of the selected historical years. The first ten years are 

used to bring the model to a quasi-steady state in terms of the soil moisture values for 
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(a) 

(b) 

 
Figure 3.1: Comparison of volumetric water content for the top soil layer (0-10 
cm). Model results are shown in red, with the gray shaded area representing the 
actual data from the Deep Well site (at 5 cm depth), depicted as ±2 standard 
deviations. Results are shown for a (a) wet year (1997) and (b) dry year (2001). 
 
 
 

the three layers, and the water content results from the eleventh year (after the model 

spin-up time) are compared to the Deep Well data. We use these same two years (1997 

and 2001) for subsequent runs performed in section 3.3. 

Figure 3.1 shows that the modeled water content of the top layer (0-10 cm) falls 

within two standard deviations of the mean values calculated over the three sensors in the 

Deep Well dataset. The model performs well in simulating soil moisture in both the wet 

and dry years with a few differences that may be caused by variations in soil properties 

between the sampling locations and the model. We are encouraged by the model’s 
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Figure 3.2: Comparison of volumetric water content for the middle soil layer (10-
40 cm) from field observations and model simulations. Model results are shown in 
red, with the gray shaded area representing the actual data from the Deep Well site 
(at 20 cm depth), depicted as ±2 standard deviations. Results are shown for a (a) 
wet year (1997) and (b) dry year (2001). 
 
 
 

capability for capturing both the timing and magnitude of the soil moisture pulses, and 

believe that event-based time step in our model results in the differences that occur while 

drying. Comparisons of the middle layer (10-40 cm), shown in Figure 3.2, exhibit a 

similar behavior as the top layer, albeit with a less flashy response to precipitation inputs. 

The initial conditions induced by the spin up period provide a better fit for the 1997 

dataset as compared to the 2001 dataset. However, in the latter part of each year, as more 

precipitation is input, the model is able to match the measured conditions. In each year, 

there are instances where the model simulates the actual soil water content within two 

standard deviations.  
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Year θtop modeled θtop observed θmid modeled θmid observed 

1997 0.09 0.14 0.09 0.12 
2001 0.05 0.13 0.06 0.10 

 
Table 3.1: Mean volumetric soil moisture values, modeled and observed, 
for years 1997 and 2001.  

 
 
 

Additionally, the model structure required to improve the basin-scale results (Section 

3.4), including evaporation from the middle layer, may cause excessive drying at the 

point scale for the middle layer. The mean volumetric water content values for 1997 and 

2001, observed and modeled, are shown in Table 3.1 for each layer. A comparison of the 

lower layer was not included because there are no actual measurements at a depth that 

corresponded with the lower layer.   

 
3.3 Comparison of model simulations at the HRU scale 
  

This section examines how soil and vegetation properties control the hydrologic 

dynamics of the canopy layer and soil column. Two representative HRUs in the Río 

Salado were selected (Forest–Sand and Grass-Clay loam), based on the large differences 

in the combined soil and vegetation parameter values associated with each. The 

differences in hydrologic dynamics for each HRU over the wet (1997) and dry (2001) 

years demonstrate the importance of vegetation and soil parameters in controlling the 

response to precipitation forcing.  

We begin our comparison of the HRU hydrologic response by inspecting the 

canopy dynamics of a forest and a grassland over the same two time periods used for the 

point scale comparison. The forest canopy (Figure 3.3, left column) is able to capture a  
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(e) 

 
Figure 3.3: Comparison of canopy interception dynamics for a forest (HRU 12) 
and grassland (HRU 66) for 1997, the wettest year of the dataset. (a) Rainfall time 
series, (b) Canopy interception rates (RInt), (c) Canopy storage (VCS), (d) 
Evaporation rates from the canopy (RCE), and (e) Drainage from the canopy to the 
ground surface (RD).  
 
 
 

large amount of the rainfall, as shown by the high interception rates in Figure 3.3.b, 

which have the same temporal distribution as the rainfall events. This leads to high water, 

storage in the canopy with a maximum storage depth of approximately 20 mm shown in 

Figure 3.3.c lasting 54 hrs, from hours 6312 to 6366. The canopy evaporation removes all 

the available water from storage leaving the canopy dry at the end of long interstorm 

events. The lack of drainage from the canopy (Figure 3.3.d) is due to the large canopy 

interception capacity depth (ICMax) of the forest (27 mm), which allows the forest to 

capture and store all but the largest rainfall events in the record. It is important to note 
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that free throughfall, defined as water that bypasses the canopy and goes directly to the 

ground surface (not shown), is the difference between the rainfall and interception rates. 

Similar dynamics are observed for the grass HRU (Figure 3.3, right column). 

Interception again follows the pattern of the rainfall events although at lower rates 

(Figure 3.3.b). Less water is captured by the grass, causing the depth of water stored in 

the canopy to be lower than in the forest (Figure 3.3.c). As in the case of the forest, any 

water put into storage is lost to canopy evaporation (Figure 3.3.d), and there is drainage 

near hour 6000 as the canopy storage volume of the grass (5.7 mm) is exceeded. The 

results presented in Figure 3.3 imply that the model is able to capture the anticipated 

differences in interception dynamics for varying land cover types.  

Figure 3.4 examines forest and grassland canopy dynamics over the span of a dry 

year (2001). In contrast to the nearly three months of low intensity storms (~5 mm/hr) in 

1997, the rainfall time series in 2001 is dominated by a pronounced monsoon season 

(July/August) with maximum rainfall rates exceeding 10 mm/hr. Only small amounts of 

rainfall are observed during the rest of the year (Figure 3.4.a). The interception in the 

canopy for the dry year behaves in the same fashion as for the wet year, capturing a 

percentage of the rainfall and storing it in the canopy (Figure 3.4.b). It is interesting to 

note that even in the very large intensity storm near hour 5000, the canopy is not filled to 

capacity. This is primarily due to the short duration of the storm (1 hour) and the long 

inter-storm periods before and after the event (12 hours and 119 hours, respectively). 

Figures 3.4.d and 3.4.e indicate that all of the water that is intercepted is eventually lost to 

evaporation and that no drainage from the canopy occurs. This clearly shows that the 

model captures the differences in canopy dynamics of the forest and grassland.  
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Figure 3.4: Comparison of canopy interception dynamics for a forest (HRU 12) 
and grassland (HRU 66) for 2001, the driest year of the dataset. (a) Rainfall time 
series, (b) Canopy interception rates (RInt), (c) Canopy storage (VCS),  (d) 
Evaporation rates from the canopy (RCE), and (e) Drainage from the canopy to the 
ground surface (RD).  
 
 
 
To illustrate the effect of soil and vegetation properties on the HRU dynamics, we 

inspect the soil moisture conditions in the three-layer soil column used in the watershed 

model. As stated previously, we are examining two HRUs found in the Río Salado: (1) a 

forested, sandy soil and (2) a grass covered, clay loam soil. The rainfall time series for 

each year are shown to provide a reference for the timing of storm and interstorm events. 

Recall that free throughfall (un-intercepted rainfall), drainage from the canopy, and snow 

melt waters are applied to the soil surface. We begin with a discussion of the sandy soil  
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Figure 3.5: Comparison of soil moisture dynamics for a sandy soil (HRU 12) and a 
clay loam soil (HRU 66) for 1997, the wettest year of the dataset. (a) Rainfall time 
series. Volumetric water contents of the (b) top layer (θTop) (10 cm), (c) middle 
layer (θMid) (40 cm), and (d) lower layer (θLow) (100 cm), as well as (e) the drainage 
to the regional aquifer.  
 
 
 

dynamics (Figure 3.5, left column) and subsequently compare these to the clay loam soil 

dynamics (Figure 3.5, right column). The high hydraulic conductivity (23.56 cm/hr) of 

the sandy soil enables the top layer (0-10 cm) to fill and drain quickly in response to 

inputs from storm events (Figure 3.5.b). The middle layer shows a more muted response 

to rainfall inputs and is able to store water through long interstorm periods, as seen after 

the concentrated events after hour 6000. The middle layer is more isolated from the 

atmosphere, and loses water slower due to drainage to the lower layer and through 

evaporation and transpiration losses (Figure 3.5.c). The lower layer, shown in Figure 

3.5.d, is influenced slightly by the precipitation that reaches the ground surface, and 
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remains very close to the residual water content value of 0.03 m3/m3. While the water 

content of the lower layer is primarily controlled by drainage to the regional aquifer, the 

drainage rate is very small (Figure 3.5.e). The water content of the lower layer is also 

dependent on the antecedent moisture conditions from the preceding year. The clay loam 

soil (Figure 3.5, right column) exhibits significantly different soil-moisture dynamics in 

response to the rainfall inputs. Note that this soil type receives slightly greater water 

inputs, as the interception rate of the grassland is lower than that of the forest. The lower 

hydraulic conductivity of the clay loam (0.20 cm/hr) reduces the soils ability to move 

water to the lower layers causing increases in the water content of the top layer (Figure 

3.5.b). Due to its hydraulic properties, the clay loam is more sensitive to the initial 

conditions of the model, causing the middle and lower layers to remain wetter than the 

sandy soil (Figure 3.5.c,d). Drainage occurs from the lower layer in the clay loam soil at a 

higher rate than in the sand due to the wetter conditions of the soil (Figure 3.5.e). Having 

described the soil dynamics of the wet year (1997), we now proceed to examine the 

behavior of these soils during the drier and more monsoonal year (2001).  

When comparing the soil column response for each HRU, one notices similarities 

among the different years. For example, the sandy soil exhibits a quick response to 

precipitation inputs in the top layer and increasingly muted responses deeper into the soil 

column (Figure 3.6, left column). The lower layers of the clay loam are insulated from 

the effects of precipitation and evapotranspiration, due to the low conductivity of the soil 

(Figure 3.6, right column). The high initial water content of the lower layer controls the 

state of the middle and lower layers in the clay loam. Next we will examine components 
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Figure 3.6: Comparison of soil moisture dynamics for a sandy soil (HRU 12) and a 
clay loam soil (HRU 66) for 2001, the driest year of the dataset. (a) Rainfall time 
series. Volumetric water contents of the (b) top layer (θTop) (10 cm), (c) middle 
layer (θMid) (40 cm), and (d) lower layer (θLow) (100 cm), as well as (e) drainage to 
the regional aquifer.    
 
 
 

of the water balance at the HRU scale to provide a link to the basin scale results that will 

be presented in the following section.  

We begin our discussion of the water balance by examining the two HRUs for the 

wet year (1997) in Figure 3.7. The volume of water lost to ET in the sandy soil is 

generally greater than in the clay loam soil (Figure 3.7.b). This is due to the clay loam’s 

increased ability to retain water (e.g. higher residual water content and wilting point 

water content). However, the pattern of the ET during the year is similar for both HRUs. 

The high hydraulic conductivity of the sandy soil results in negligible runoff, while the  
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Figure 3.7: Comparison of water balance dynamics for a sandy soil (HRU 12) and 
a clay loam soil (HRU 66) for 1997. Depicting volumetric time series of (a) 
rainfall, (b) evapotranspiration, (c) total runoff, (d) infiltration-excess runoff (RI), 
and (e) saturation-excess runoff (RS).    
 
 
 

clay loam produces runoff on several occasions throughout the year, typically during the 

summer (Figure 3.7.c). Figures 3.7.d and 3.7.e, illustrate that all of the runoff for clay 

loam soil is in the form of infiltration-excess runoff as the soils do not remain saturated 

long enough to generate saturation-excess runoff. Note that infiltration-excess runoff only 

occurs during periods of high rainfall intensity.   

Figure 3.8 presents the water balance dynamics for the two HRUs during the dry 

year (2001). Again, the volume of water lost to ET in the sandy soil is greater than in the 

clay loam soil (Figure 3.8.b), and the temporal patterns remain similar in the two HRUs 
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Figure 3.8: Comparison of water balance dynamics for a sandy soil (HRU 12) and 
a clay loam soil (HRU 66) for 2001. Depicting volumetric time series of (a) 
rainfall, (b) evapotranspiration, (c) total runoff, (d) infiltration-excess runoff (RI), 
and (e) saturation-excess runoff (RS).  
 
 
 

Note how the stronger seasonality in rainfall during 2001 (as compared to 1997) induces 

a seasonal pattern in ET with higher values during the summer monsoon period. Runoff 

is produced only in the clay loam soil, and it remains in the form of infiltration-excess 

runoff (Figures 3.8.c, 3.7.d and 3.7.e). Clearly, the runoff production occurred in the 

summer period and was more intense in 2001 (dry year) as compared to 1996 (wet year). 

This illustrates how the watershed model as applied to the HRU scale captures the 

nonlinear behavior in the rainfall runoff transformation.  

 This concludes the HRU scale results and shows that the model is able to capture 

differences in output caused by soil and vegetation properties at varying time intervals 
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(e.g. dry and wet years). In the next section, we will compare model results at the basin 

scale to historical data from the Río Salado stream gauge located near the outlet. 

 
3.4 Comparison of model simulations at the basin scale to historical data 

In this section, we compare the model simulations at the basin scale to stream 

gauge measurements at the outlet of the Río Salado over the period 1949-1978. This 

period was selected based upon the availability of streamflow measurements (1948-1984) 

and the limitations of the precision of rain gauge forcing after 1978 (see section 2.3). We 

begin with a comparison of the total streamflow volume (km3) at the basin outlet for the 

period of record using different rain gauge data. Next, we inspect the total streamflow 

volume for each year in the time series to examine the inter-annual variability induced by 

precipitation. Finally, we inspect the mean monthly streamflow volumes in order to 

compare observed and simulated seasonal patterns in the regional basin response (e.g. 

summer monsoon streamflow versus winter runoff events). 

To compare total streamflow volumes in the record, the Río Salado basin was 

forced with spatially uniform rainfall from three different rain gauges (Augustine, 

Laguna, Socorro). These rain gauges were selected since the individual record lengths 

overlapped with the historical streamflow observations. No other rainfall observations are 

available from this historical period, limiting our ability to provide distributed rainfall 

forcing in the watershed model. The rainfall amounts at these sites should underestimate 

the total rainfall in the basin, as they are located in the lower elevations of the region. For 

example, Figure 2.14 indicates that while the mean rainfall intensities for the Brushy 

Mountain and Datil rain gauges, located at higher elevations, are similar to the other 

gauges, the interstorm periods are significantly shorter. This suggests that the lack of data 
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from the rain gauges located in the basin headwaters (Brushy Mountain and Datil) will 

lead to an underestimation of rainfall inputs during the historical period when forcing the 

model with data from Augustine, Laguna or Socorro. 

Figure 3.9 shows the total streamflow volume obtained from simulations using 

each rain gauge forcing uniformly over the entire basin. Clearly, running the model using 

the three rain gauges results in an underestimation of the total streamflow volume 

produced in the basin when compared to historical data. We believe this is primarily due 

to an underestimation of rainfall in the upper parts of the basin, where we lack 

observation data. In order to achieve a cumulative streamflow volume of 12.96 km3 

observed in the historical data, while maintaining an annual runoff ratio of 15% (a 

reasonable approximation for semiarid environments), a cumulative precipitation volume 

equal to 86.39 km3 is needed. The total volume of precipitation captured at the 

Augustine, Laguna or Socorro rain gauges over the study period (1949-1978) are 21.60 

km3, 21.18 km3, and 21.24 km3, respectively and assumed uniform over the basin. This 

reinforces the idea that these lower elevation rain gauges underestimate the volume of 

precipitation falling on the Río Salado basin by 75.0%, 75.5% and 75.4%, respectively. 

This leads us to believe that a large percentage of the precipitation within the Río Salado 

falls in the upper elevation headwaters. Because of the lack of data from these locations 

we are unable to precisely compare the model results to the historical data. Introducing 

channel transmission losses further reduces the modeled streamflow volumes reaching 

the basin outlet. The modeled streamflow after imposing transmission losses from a 

loamy sand bed is approximately 30% of the total streamflow volume. 
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Figure 3.9: Cumulative streamflow volumes for the Río Salado basin from the 
historical stream gauge observations and model simulations generated using 
uniform rainfall forcing from the various rain gauges over the period 1949-1978. 
Produced runoff indicates total streamflow without considering transmission losses 
in the Río Salado. Routed runoff represents streamflow volumes after applying the 
channel losses for a loamy sand bed.  
 
 
 

  Inter-annual variability of tributary runoff is important for determining water 

resource availability in main stem rivers of the Southwestern United States (Grimm et al., 

1997, Molles and Dahm, 1992). Periods with multiple high-flow years allow for the 

storage of water in reservoirs, such as Elephant Butte, while extended low-flow periods 

may signify regional drought conditions (Ellis et al., 1993). Figure 3.10.a shows the 

cumulative annual streamflow simulated by the watershed model in the Río Salado when 

forced with rainfall data from the Socorro rain gauge. Recall that these model simulations 

should yield underestimations of runoff due to the use of uniform rainfall forcing from  
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Figure 3.10: Annual streamflow volumes for Río Salado basin. (a) Comparing 
stream gauge to model results generated using rainfall forcing from the Socorro 
gauge, 1949-1978. Mean values: Historic = 0.432 km3 (blue dotted line), Model = 
0.077 km3 (red solid line). (b) Close up view of model results to illustrate inter-
annual variations.  
 
 
 

the Socorro rain gauge. The differences between wet and dry years are more apparent in 

the historical data due to the scale required to show the 1972 event. When examining the 

close-up view of the modeled time series in Figure 3.10.b, we observe that there are 

obvious wet and dry periods in the model simulations, yet they differ from the historical 

flows in magnitude. The simulated mean runoff over the record is closer to the observed 

mean value because these values are less affected by the extreme streamflows that occur 

in 1972 in the historical dataset. 

In addition to the inter-annual variability of streamflows, we are also interested in 

the seasonal variations in runoff volumes at the basin outlet. Knowledge of the 
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Figure 3.11: Monthly average streamflow volumes for Río Salado basin, 
comparing stream gauge to model results generated using rainfall forcing from the 
Socorro gauge, 1949-1978. The year 1972 is removed from historical data in order 
to limit the effect of the extreme year on the average values.  
 
 
 

seasonality of tributary streamflows is beneficial in planning water use strategies. 

Figure 3.11 shows the strong seasonality present in historical monthly streamflows of 

the Río Salado. Notice the high flow volumes from July to September, indicating the 

flood pulses during the summer monsoon season. While the monsoon signal is not as 

distinct in the modeled results, it is still recognizable. The remaining months in the 

modeled data have larger flows than were recorded historically. This suggests that the 

use of the Socorro rain gauge as uniform forcing to the watershed model primarily 

underestimates summer precipitation in the basin headwaters. The overestimation of 

winter streamflows may be a result of the streambed selected for this simulation (e.g. 
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not enough transmission losses). The next section explores the effect of different 

parameterizations of channel losses in the long-term simulations of the Río Salado.  

 
3.5 Long term simulation using synthetic climate forcing  

In this section, we examine a synthetic run of the model over a 60-year period to 

provide insights into the capabilities of the model when using stochastic rainfall forcing. 

It should be noted that each HRU is forced with a precipitation dataset that is directly 

related to the nearest rain gauge (e.g. Augustine, Brushy Mountain, Datil, Laguna, or 

Socorro). A representative model run (seed value of 25) for a 60-yr period resulted in a 

cumulative evapotranspiration ratio (ET/P) of 84.0% and a cumulative runoff ratio (R/P) 

of 11.0%, with the remaining 5.0% leading to drainage to the regional aquifer and 

changes in soil moisture levels. This is consistent with the semiarid nature of the Río 

Salado where evapotranspiration should be the primary loss mechanism. As a result, the 

overall water balance in the semiarid basin is considered to be comparable to observed 

conditions.    

We start by examining the differences between precipitation and runoff time 

series for the 60-year simulation, allowing for model spin-up during the first 10 years 

(Figure 3.12, left column). The time series of the monthly total precipitation volumes, 

which are applied to the Río Salado basin, is shown in Figure 3.12.a. The interception 

and infiltration mechanisms capture much of the precipitation, resulting in runoff 

volumes that are greatly reduced and show greater monthly variability (Figure 3.12.b). 

The right column of Figure 3.12 shows the cumulative volumes for each of the time 

series. The cumulative runoff volume (7.86 km3) is 11.0% of the total precipitation 

(71.62 km3). Since runoff is produced by both saturation-excess and infiltration-excess  
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(b) 

 
Figure 3.12: Synthetic 60-year simulation applied to all HRUs in the Río Salado. 
Monthly time series (left) and cumulative volumes (right) of (a) precipitation and 
(b) total runoff.  
 
 
 

mechanisms within the model, we explore how these two runoff types differ over the Río 

Salado basin in the following section. 

The majority of the runoff produced by the watershed model is in the form of 

infiltration-excess runoff. Due to the threshold behavior occurring when rainfall 

intensities exceed the saturated hydraulic conductivity of the soil, a large portion of the 

rainfall that reaches the ground surface during high intensity storms becomes infiltration-

excess runoff. This leaves a smaller amount of water available to fill the soil column and 

subsequently result in saturation-excess runoff.  The left column of Figure 3.13 shows the 

monthly time series of the two runoff types. Notice that infiltration-excess runoff occurs 

with greater frequency and magnitude than saturation-excess runoff. The right column of  
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Figure 3.13: Synthetic 60-year simulation applied to all HRUs in the Río Salado. 
Monthly time series (left) and cumulative volumes (right) of runoff produced via 
(a) saturation-excess and (b) infiltration-excess mechanisms.  
 
 
 

Figure 3.13 shows the accumulation of runoff volumes over the 60 years of the 

simulation. Infiltration-excess runoff (7.32 km3) makes up 93.1% of the total runoff 

volume produced, whereas the remaining 6.9% (0.54 km3) is in the form of saturation-

excess runoff. 

 Our next comparison will be of the remaining terms in the water balance, 

evapotranspiration and drainage to the regional aquifer, using basin-averaged monthly 

values. The basin-averaged volumes are computed by multiplying the volume for each 

HRU by the area of the HRU, then summing these values over the entire basin. Finally, 

the summation is divided by the total basin area, which results in a basin-averaged 

volume. The basin averaging procedure results in less frequent rainfall events with lower  



    75 
 

 

 

(a) 

(b) 

(c) 

 
Figure 3.14: Synthetic 60-year simulation applied to all HRUs in the Río Salado. 
Monthly time series (left) and cumulative volumes (right) of (a) basin-averaged 
precipitation volume, (b) basin-averaged evapotranspiration volume, and (c) basin-
averaged drainage volume.  
 
 
 

monthly volumes (Figure 3.14.a), as compared to basin totals (see Figure 3.12.a). This 

may be a result of the large area HRUs, which are weighted more heavily, receiving less 

precipitation in this example run as compared to smaller HRUs. The basin-averaged 

evapotranspiration (ET) shown in Figure 3.14.b follows a similar temporal pattern as the 

precipitation, but with smaller volumes. The minimum values of ET (~5x106 m3) are 

greater than the minimum precipitation, as evapotranspiration is a continuous process 

occurring over long interstorm periods, in contrast to the more sporadic storm events. 

Drainage from the soil column (Figure 3.14.c) is less responsive to precipitation inputs 

than the ET, primarily due to the dampening affect caused by the soil (1.5 m depth) that 



    76 
 

 

the water must move through before draining to the regional aquifer. Nevertheless, 

drainage patterns increase when precipitation is high for consecutive periods, for example 

near months 200 and 600 in the model simulation. From Figure 3.14 (right column), the 

fraction of the water losses going into evapotranspiration and drainage can be easily 

identified. The total volume for the basin-averaged precipitation is 5.38 km3, which is 

smaller than the total precipitation produced by simple summation. This supports the 

argument that some large-area HRUs do not receive high amounts of precipitation. The 

basin-averaged ET (4.57 km3) accounts for 84.8% of the basin-averaged precipitation, 

while the basin-averaged drainage (0.14 km3) accounts for only 2.6%. The remaining 

12.6% leaves the basin primarily as runoff or becomes long-term (but small) increases in 

the soil moisture storage or snow pack volume.  

We examine the basin-averaged soil moisture for each layer as a time series in 

Figure 3.15. Figure 3.15.a shows the basin-averaged soil moisture in the top 10 cm for 

the entire basin. Clearly, this layer is very responsive to atmospheric forcing, and remains 

fairly dry for the duration of the simulation. The observed variability in soil moisture is 

caused by the shallow nature of the top layer and its exposure to precipitation, 

evaporation and transpiration. The middle layer is equally responsive, but is able to 

maintain higher moisture levels throughout many of the long interstorm periods (Figure 

3.15.b), due to its increased depth. The lower layer is affected to a smaller degree due to 

its increased separation from the atmosphere. Losses from the lower layer are limited to 

transpiration, drainage, and diffusion to the middle layer. This relative isolation allows 

the lower layer to retain moisture for extended periods of time encompassing multiple  
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Figure 3.15: Synthetic 60-year simulation applied to all HRUs in the Río Salado. 
Monthly time series of volumetric water content for the (a) top layer, (b) middle 
layer, and (c) lower layer.   
 
 
 

storm and interstorm events. Note from these soil moisture time series that an effective 

spin-up period for the watershed model is approximately 100 months.  

To examine the effects of channel losses on the volume of runoff measured at the 

outlet, we used three different soil classes for the stream channel bottom applied 

uniformly over the stream network. Figure 3.16 shows that as the hydraulic conductivity 

of the streambed increases the amount of water that reaches the outlet is greatly reduced. 

The channel losses are 8.3% of the total runoff for the sandy loam streambed, 17.5% for 

the loamy sand streambed and 40.3% for the sand streambed. Increasing the hydraulic 

conductivity of the channel reduces the runoff ratio (R/P) to 10.1%, 9.1%,  
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(a) 

(b) 

(c) 

(d) 

 
Figure 3.16: Comparison of (a) total runoff and routed runoff with channel 
transmission losses for stream channels with different saturated hydraulic 
conductivities, (b) sandy loam (2.18 cm/hr), (c) loamy sand (5.98 cm/hr), and (d) 
sand (23.56 cm/hr). Note that the total runoff from (a) is repeated in (b-d).  

 
 

  
and 6.6% for each stream bed type, respectively. The water lost in the channel is drained 

into the regional aquifer and not tracked further in the model.  

 This concludes our examination of the model performance for a long-term 

synthetic case using stochastic forcing. These results have increased our confidence in the 

model’s capability to simulate the water balance at the monthly scale, over the entire Río 

Salado. In particular, it is clear that long–term simulations are possible over the large Río 

Salado basin and can capture anticipated behavior in terms of water-balance metrics such 

as the runoff ratio and evapotranspiration ratio.  
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3.6 Comparison of ensemble simulations using stochastic climate forcing  
 
 Studies of the long-term impacts of climate trends require understanding of how 

variations in precipitation will affect the watershed model response. This section is an 

attempt to quantify the variability introduced into the model response through random 

sampling of the stochastic climate forcing. We examine alternative scenarios in an 

ensemble approach to assess the response of the watershed model to the uncertainty in 

climate forcing. We attempt to capture this uncertainty by changing the seed value used 

in the random number generation of the precipitation and temperature time series. The 

forcing for the simulations are conditioned on the five rain gauges surrounding the Río 

Salado and preserve the spatial and seasonal variations in precipitation event intensity, 

duration and frequency, as well as the temperature seasonality.  Twenty-five realizations 

are used, allowing us to examine how stochastic climate forcing influences the 

hydrologic response. We first examine the water balance (runoff generation, ET, and 

drainage), and then inspect the runoff partitioning for the ensemble of twenty-five long-

term (60-yr) model runs.  

 Figures 3.17 and 3.18 show the ensemble of 25 simulations for each variable in 

the water balance as well as the ensemble mean. The ensemble mean is a more stable 

representation of the performance of the watershed model, because it averages over the 

variability that is possible within individual realizations. Notice that the differences 

among the ensemble members tend to grow in time as more randomness is introduced in 

the climate forcing. Clearly, differences occur in the propagation of the precipitation 

uncertainty into the various hydrological processes. However, it is somewhat difficult to 

precisely determine differences in the magnitude of the variability in Figures 3.17 and  
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(a) 

(b) 

(c) 

(d) 

 
Figure 3.17: Ensemble of synthetic 60-year simulations (25 total) applied to all 
HRUs in the Río Salado. Cumulative volumes of (a) total precipitation, (b) total 
runoff, (c) ET, and (d) drainage. Note the different scales used to improve 
visualization. The thick lines denote the ensemble mean.  
 
 
 

Figure 3.18, due to the variations in the scale of the y-axis.  As a result, we will examine 

the difference in uncertainty for each variable by looking at the coefficient of variation 

(CV = σ/µ) computed at the end of the long–term simulations. Smaller CV values for a 

particular variable indicate less uncertainty or difference among realizations (or ensemble 

members). Table 3.2 indicates that the runoff mechanisms have greater ensemble 

variability (CV) than the precipitation forcing, with the largest variability observed for 

saturation-excess runoff. The drainage from the bottom soil layer is nearly five times as 

variable as the precipitation forcing and the modeled evapotranspiration. This analysis 

shows that the manner in which the precipitation uncertainty propagates through the 

watershed model differs depending on the processes involved. Threshold processes that  
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(a) 

(b) 

 
Figure 3.18: Ensemble of synthetic 60-year simulations (25 total) applied to all 
HRUs in the Río Salado. Cumulative volumes of runoff partitioning: (a) saturation-
excess runoff and (b) infiltration-excess runoff. Note the different scales used to 
improve visualization. Thick lines denote the ensemble mean.  
 
 
 

Variable     µ (m3)      σ (m3) CV 

Precipitation 77.02  3.22  0.04 
Total Runoff 11.51  1.12  0.10 

Infiltration-excess Runoff 10.19  0.68  0.07 
Saturation-excess Runoff 1.31  0.69  0.53 

ET 58.01  2.51      0.04  
Drainage 4.90  0.93      0.19  

  
Table 3.2: Statistical variables for each output variable, mean (µ), standard 
deviation (σ), and coefficient of variation (CV), showing differences in uncertainty 
among the 25 ensemble simulations.  
 
 
 

are dependent on both precipitation and on the degree of saturation of the soil, 

which both vary with time (e.g. saturation-excess runoff and drainage), have greater 

variability in a semiarid region where the soils are usually dry. Processes such as 
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infiltration-excess runoff and ET that respond to only one time-dependent variable 

(precipitation) have less variability. Furthermore, evapotranspiration exhibits 

ensemble variability close to the precipitation forcing, suggesting that temperature 

and soil moisture changes have a smaller effect on ET than on other processes. 

Clearly, this analysis reveals that the basin hydrologic response to precipitation 

uncertainty is complex and non-linear. Different hydrological processes can amplify 

precipitation variability by differing amounts. Thus, the HRU-based watershed 

model is capable of reproducing the nonlinear response anticipated in natural 

basins. 

 Using stochastic precipitation forcing allowed us to better address 

the issue of runoff underestimation identified in Section 3.4. Figure 3.19 compares 

the mean total runoff volume at the Río Salado outlet (over 30 yrs) for the ensemble 

of 25 runs using different seed values with the measured historical data. The 

maximum and minimum runoff volumes are also shown to emphasize that the 

realizations of the model vary greatly in terms of the amount of runoff produced. 

Clearly, the stochastic nature of the precipitation forcing greatly improves the 

runoff comparison between the model simulations and the historical observations. 

This is primarily due to the inclusion of data from the Datil and Brushy Mountain 

sites, which have large mean annual precipitations (see Figure 2.17). Thus, while 

we do not explicitly account for the elevation effect on precipitation, by adding 

these two stations we significantly improve the performance of the model. In 

addition, summing the large volume of water measured in 1972 at the stream gauge  
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Figure 3.19:  Cumulative stream flow volumes for the Río Salado basin from the 
historical stream gauge observations and model simulations generated using 
uniform rainfall forcing from the various rain gauges over the period 1949-1978. 
The ensemble model simulations using stochastic data result in less 
underestimation of total runoff. Note that adding the 3 km3 of runoff generated by 
the extreme events in 1972 would further improve the estimation.  
 
 
 

(3 km3) to the maximum volume from the ensemble (7.8 km3) brings us within 20% 

of the measured historical volume (13 km3). These results increase our confidence 

in the model formulation despite the limitations already discussed regarding 

precipitation forcing.  

In the next section we will test the ability of the watershed model as a tool to 

explore the potential impacts of climate change. We will accomplish this by varying 

the precipitation forcing. In particular, we examine the effects of increasing and 
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decreasing both summer and winter precipitation under conditions of both constant 

temperature and increasing temperature. This will allow us to simulate the effects of 

climate change on large semiarid basins such as the Río Salado. 

 
3.7 Sensitivity to climate change scenarios  

 Knowledge of the effects of climate change on river basins will be important for 

future water resources management. However, there are differing ideas about how these 

changes will manifest themselves in terms of precipitation frequency and intensity. For 

example, Seager et al. (2007) state that southwestern North America will become 

generally more arid as the 21st century progresses. On the other hand, several studies 

indicate that increases in precipitation intensity (i.e. extreme events) may occur for 

certain regions of the southwestern United States (Diffenbaugh et al., 2007, McCabe and 

Hay, 1995, Nash and Gleick, 1991, Peterson et al., 2008). Additionally, climate models 

used to generate precipitation predictions can result in a wide range of scenarios that 

differ significantly (e.g. IPCC-AR3, 2001, IPCC-AR4, 2007, Serrat-Capdevila et al., 

2007). 

 We will examine two cases where the total precipitation volume increases through 

different mechanisms. In the first case, we reduce the interstorm duration of the winter 

season (Dec. – Feb.), resulting in an increase in winter precipitation. This winter 

precipitation increase is consistent with on-going trends of increasing cold season 

precipitation observed by Hamlet and Lettenmaier (2007) and Molnar and Ramirez 

(2001) for the 20th century. In the second case, we increase the intensity of summer 

storms, to simulate an increase in the number of extreme events (Madsen and Figdor, 

2007, Peterson et al., 2008). Figure 3.20.a shows that decreasing the mean interstorm 
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duration of the winter months has a non-linear effect on the total precipitation volume 

produced by the model. This is because changing the length of interstorm events affects 

the number of storms that occur in a given month. This is different from the linear change 

in precipitation volume caused by increasing the storm intensity (Figure 3.20.c).  The 

linear or non-linear trends in the precipitation forcing propagate into the other water 

balance variables at different degrees (Figures 3.20.b and 3.20.d) as well as into the 

allocation of runoff (Figure 3.21). Clearly, the increase in winter precipitation induced by 

smaller interstorm lengths leads to an increase in the drainage (e.g. regional recharge), a 

decrease in the evapotranspiration and a small decrease in the runoff volume. This 

suggests that the additional light-intensity rainfall has primarily led to higher volumetric 

soil moisture contents (not shown). This is supported by the greater amount of saturation-

excess runoff evident in the winter months. The responses in the summer scenario are 

quite different. Increases in summer precipitation induced by higher rainfall intensities 

lead to a large increase in runoff volumes, a small rise in drainage and a corresponding 

decrease in evapotranspiration. The runoff increase, surprisingly, is a result of higher soil 

moistures levels generating greater amounts of saturation-excess runoff during smaller 

storm periods.  

 For the winter and summer scenarios, we chose two cases that each had an equal 

increase in the total precipitation volume for the 60-yr simulation (-82% interstorm 

duration for winter scenarios and +100% rainfall intensity for summer scenarios, 

respectively) and then compared ensemble simulations (25 simulations) for each case 

(Figure 3.22). Note that the precipitation ensembles (Figure 3.22.a) are similar by design. 
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(a) 

(b) 

(c) 

(d) 

∆DIS 

∆P 
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Figure 3.20:  Change in precipitation volume and water balance ratios (ET/P, Q/P, 
D/P) as a result of (a and b) a decrease in winter (DJF) interstorm duration and (c 
and d) an increase in summer (JAS) storm intensity, both expressed as percentage 
changes from parameters of the base case. The change in interstorm duration (∆DIS) 
and storm intensity (∆P) are also illustrated for the various scenarios. 
 
 
 

 
(a) (b) 

 

Figure 3.21: Change in runoff partitioning as a result of (a) a decrease in winter 
(DJF) interstorm duration and (b) an increase in summer (JAS) storm intensity, 
both expressed as percentage changes from parameters of the base case. RI is the 
fraction of the total runoff that is in the form of infiltration-excess runoff and RS is 
the fraction of the total runoff that is in the form of saturation-excess runoff. 
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(a) 

(b) 

(c) 

(d) 

 
Figure 3.22: Comparison of ensemble simulations for a decrease in winter (DJF) 
interstorm duration (-82%, light blue) and an increase in summer (JAS) storm 
intensity (+100%, light red). Cumulative volumes of (a) total precipitation, (b) total 
runoff, (c) ET, and (d) drainage. Note the different scales used to improve 
visualization. The thick lines denote the ensemble mean (summer = dark red, 
winter = dark blue).  
 
 
 
The effects of the different precipitation forcing scenarios are apparent in the 

runoff and drainage amounts (Figures 3.22.b and 3.22.d). Apparently, despite having 

nearly identical total precipitation amounts, the two scenarios lead to distinct runoff and 

drainage responses that do not overlap, even when accounting for climate forcing 

variability. When examining the ensembles of runoff generation, the variability 

associated with the saturation-excess runoff is less distinct between the winter and 
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(a) 

(b) 

 
Figure 3.23: Comparison of ensemble simulations for a decrease in winter (DJF) 
interstorm duration (-82%, light blue) and an increase in summer (JAS) storm 
intensity (+100%, light red). Cumulative volumes of runoff partitioning: (a) 
saturation-excess runoff and (b) infiltration-excess runoff. Note the different scales 
used to improve visualization. The thick lines denote the ensemble mean (summer 
= dark red, winter = dark blue).  

 
 
 
 

Season Winter Scenarios  Summer Scenarios 
Variable µ (m3) σ (m3) CV  µ (m3) σ (m3) CV 

Precipitation 112.99 4.09 0.04  117.51 5.90 0.05 
Total Runoff 12.54 1.11 0.09  32.19 2.99 0.09 

Infiltration-excess Runoff 11.11 0.67 0.06  27.30 1.88 0.07 
Saturation-excess Runoff 1.43 0.68 0.48  4.89 1.61 0.33 

ET 80.78 3.31 0.04  75.05 3.42 0.05 
Drainage 5.21 1.07 0.21  8.27 1.08 0.13 

 
Table 3.3: Statistical variables for each output variable, mean (µ), standard 
deviation (σ), and coefficient of variation (CV), showing differences in uncertainty 
among the 25 ensemble simulations. 
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(a) (b) 

 
Figure 3.24: Change in precipitation volume and water balance ratios (ET/P, Q/P, 
D/P) as a result of temperature increases for (a) a decrease in winter (DJF) 
interstorm duration (82%) and (b) an increase in summer (JAS) storm intensity 
(100%). 

 
 
 
summer simulations, as compared to the infiltration-excess runoff (Figure 3.23). Table 

3.3 displays the statistical information (mean, standard deviation, coefficient of variation) 

for the winter and summer simulations. Notice that in both cases the runoff is more than 

twice as variable as the precipitation forcing, while the drainage is over five times as 

variable as the precipitation in the winter but just over twice as variable in the summer. It 

is also important to note that the statistical properties of the two ensembles are 

significantly different such that whether winter or summer precipitation changes occur 

affects the overall basin response. If both precipitation changes were to occur 

simultaneously, we should expect a superposition of the simulated hydrologic changes. 

The final experiment performed in this study was to examine the effects of 

imposing increases on the temperature parameters (maximum, minimum and mean 

monthly values) for each scenario (winter and summer). In each case, we increased 

theparameters that are used in the stochastic temperature generator from 0 to 4 degrees C 

in 1-degree increments. As shown in Figure 3.24, these temperature increases have a  
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(a) 

(b) 

 
Figure 3.25: Difference in top layer soil moisture for temperature based climate 
change scenarios, base case (blue) and +4oC (red).  

 
 
 
limited but discernable effect on the model outputs at the end of the 60-yr 

simulations. There is a slight increase in the evapotranspiration ratio, with a 5% 

increase for the winter simulations and 2% increase for the summer scenarios. The 

ratios (Q/P, D/P) only change by 1% or less. We believe that this lack of response 

to temperature change is consistent with the limited propagation of uncertainty into 

the evapotranspiration response in the watershed model. Increases in air 

temperature only moderately affect the potential evapotranspiration, primarily in the 

winter, and seem to have minimal propagation to actual evapotranspiration given 

the water limited conditions in the basin.  Figure 3.25 shows that the 4-degree 
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increase in temperature results in a very small change in the soil moisture levels 

over time. In addition, the relatively minor snow packs in the Río Salado have a 

limited impact on the water balance changes induced by higher air temperatures.  A 

lack of coupling between air temperature, surface conditions and subsequent 

precipitation in the model also diminished the overall effects of the imposed 

temperature increases. 

 
3.8 Summary 

This concludes the presentation of the model application and testing section, 

which has included a detailed explanation of the capabilities of the watershed 

model. The model’s performance at the point scale allowed for comparison with 

soil moisture data, and helped build confidence in the model physics. At the HRU 

scale, model output provided a view of the effects of vegetation and soil parameters 

on the water balance dynamics. Performance at the basin scale was evaluated in 

comparison to historical streamflow measurements at the basin outlet, and while the 

model underestimated the total volumes the results helped us gain insight into the 

need for accurate precipitation forcing parameters. The final set of results dealt with 

climate variability and imposed climate changes. The response of the watershed 

model to these climate scenarios reinforces the belief that we have a robust semi-

distributed hydrological model that can aid decision makers in semiarid regions.  
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CHAPTER 4 – CONCLUSIONS AND RECOMMENDATIONS  
 
 
 

4.1 Summary 
 

With populations across the globe continuing to increase, the risks of water 

related conflicts becoming violent also grow. Water policy makers attempt to diminish 

these conflicts by balancing the needs of all interested parties. A well-developed 

hydrologic model is a tool that can be useful in the water related decision-making 

processes.  

The goal of this project was to create a semi-distributed watershed model that 

incorporated the following objectives.  The model must be usable in semiarid areas and 

able to account for differences in vegetation and soil properties. The primary 

hydrological predictions of interest include tributary basin runoff, soil moisture, 

evapotranspiration and deep drainage. These variables allow understanding of the 

hydrological or water balance components and their variations to imposed changes or 

trends in climate forcing. It was also necessary that the model be capable of processing 

large basins quickly to provide “real time” results for decision-making purposes. To 

accomplish these objectives, we created a watershed model using the Powersim system 

dynamics software package and applied it to the Río Salado due to its semiarid nature and 

the availability of historical data for model testing purposes. The application in the Río 

Salado serves as a prototype for modeling ungauged and gauged tributaries in the entire 

Río Grande basin.   
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4.2 Major conclusions 

  
This section describes the major conclusions reached upon completion of this 

study. These conclusions encompass the entirety of the project from the development of 

the watershed model to testing at different scales and the analysis of model sensitivity to 

changes in atmospheric forcing.  

(1) The model domain is discretized into Hydrologic Response Units 

(HRUs) allowing us to represent the watershed using physical 

equations applied to areas with relatively uniform soil and vegetation 

properties. The watershed model implements relativity simple 

equations to solve the water balance and account for hydrological 

states and fluxes. To simulate precipitation forcing, we implemented a 

Poisson rectangular pulse model. Hydrological processes such as 

snow, interception, evapotranspiration and runoff are accounted for. 

Runoff is generated via both infiltration-excess and saturation-excess 

mechanisms and routed through the channel network to the basin 

outlet.  

(2) To reduce the model computational load, we have implemented an 

event based time scale that accounts for storm and interstorm periods 

within a monthly time step. The storm/interstorm event scheme was 

implemented as a sub-routine within the Powersim model framework. 

This event scheme allowed us to capture important processes in 

semiarid regions that would have been missed by performing 

calculations on a monthly time step.  
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(3) Powersim facilitates user interaction and thus decision-making through 

a graphical user interface by allowing users to change parameter 

values. These changes can be made using toggles and input fields, 

while the model provides real time visual displays of model output. As 

a result, the watershed model is fairly easy to use by non-experts.  

(4) Point scale soil moisture tests at the Deep Well site in the Sevilleta 

National Wildlife Refuge reveal that the watershed model is capable of 

suitably simulating changes in soil moisture at the event scale. As seen 

in Figure 3.1 and Figure 3.2, the watershed model performs reasonably 

well at the point scale, especially with regard to the timing of soil 

moisture pulses. Some accuracy at the point scale was eventually 

sacrificed to improve performance at the basin scale, in particular for 

the deeper soil layers, which are consistently drier in the model as 

compared to the measured data.  

(5) HRU scale tests were performed to test the watershed model response 

to changes in vegetation and soil parameters. The model was tested for 

a forest/sand HRU and a grass/clay loam HRU over a wet and dry 

year. Plausible model results helped build confidence in the 

capabilities of the model at the HRU scale and demonstrate the model 

sensitivity to soil and vegetation parameters. 

(6) Basin-scale simulations from the watershed model were compared to 

historical stream gauge data (1949-1978) for the Río Salado at the 

monthly, yearly and decadal time scales. While the model 
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underestimated the volume of water reaching the basin outlet, this is 

primarily a result of the scarcity of precipitation data for the upper 

elevations of the basin. At the basin scale, the watershed model was 

able to simulate both inter-annual and seasonal variability reasonably 

well. As shown in Figure 3.11, the model captures increases in 

summer month precipitation in a manner similar to the actual data, 

albeit with lower volumes. This shows that the stochastic precipitation 

generator provides a reasonable estimate of possible precipitation 

scenarios. 

(7) Climate variability was subsequently introduced into the model from 

the stochastic nature of the precipitation and temperature forcing. Soil- 

moisture levels in the top two soil layers closely mimic the 

precipitation patterns, while evapotranspiration, runoff and drainage 

each exhibit increasingly variable responses. Ensemble simulations 

were performed to analyze the effects of different realizations of the 

stochastic model. This test provides an example of model performance 

by accounting for the randomness in climate forcing encountered in 

nature.  

(8) Climate-change scenarios in the form of increased precipitation and 

temperature were also evaluated. The watershed model was able to 

capture the non-linearity inherent in nature when simulating changes 

in precipitation forcing. The non-linear behaviors induced by the 

model can be seen in Figure 3.19 in the different path that can be taken 
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to reach an almost identical increase in total precipitation. The distinct 

differences in the ensemble simulations with regard to runoff 

production and deep drainage further emphasize the unique behaviors 

induced by changes in the precipitation forcing. Increases in the 

temperature parameters in line with IPCC predictions had little 

influence on model performance, suggesting that the Río Salado may 

be less affected by temperature changes as compared to precipitation 

changes. This is a consequence of the fact that the bulk of the basin 

streamflow is in response to extreme precipitation events, which are 

not as sensitive to the soil moisture state of the system.  

 
4.3 Limitations of current study and future work 

In this section we describe current limitations of this research project and the 

watershed model in particular and propose potential avenues for future work. 

(1) Portability of the model to new regions is hindered by the large 

amount of preprocessing (ArcGIS, Matlab, EXCEL) required to setup 

the model. Preprocessing includes watershed delineation, creation of 

HRUs, conversion of precipitation data into forcing parameters, and 

construction of spreadsheet datasets for model input. To remedy this, 

an automated set of tools for basin, HRU and forcing preprocessing 

should be created. For example, the application of the model to the Río 

Grande will require pre-processing of 190 tributary basins. In addition, 

improved methods for model output visualization are needed.  
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(2) The application of the watershed model at the event timescale reduces 

the models ability to precisely replicate field measurements. While 

using finer resolution temporal data to force the model will improve 

results, the cost will be in increased processing time.  

(3) The use of coarse soil/vegetation class maps in the HRUs and the 

application hydrological processes in a uniform manner within each 

HRU reduce the reality of the model representation of the natural 

landscape. While higher resolution data is available, a model with finer 

spatial discretization will require additional computing resources.  

(4) Connectivity of the stream channel to the shallow aquifer or regional 

groundwater system in the form of base flow is not included in the 

model at this time. The lack of connection between the stream network 

and groundwater affects both the timing and magnitude of streamflow 

measured at the basin outlet. To remedy this, the watershed model 

needs to be fully integrated to the Sandia system dynamics toolbox, 

which contains a groundwater module. In addition, a more 

sophisticated channel routing may improve the basin scale results by 

more properly treating HRU flow paths.  

(5) Areas with limited availability of input data in the form of 

precipitation measurements will experience diminished ability of the 

model to produce accurate results. Additionally, locations with limited 

historical data (streamflow, evapotranspiration, and soil moisture) will 

have difficulties associated with model verification. A possible 
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approach for future studies is to apply the model to a more 

instrumented watershed with long-term historical data.  

(6) The employment of simple climate change scenarios in this study only 

provide preliminary assessments which should be further investigated 

by tying the model simulations to more accurate climate change 

predictions for the southwestern United States.   

(7) An improved snow model, which accounts for a multiple-layer snow 

pack and canopy interception of snow, is necessary to properly capture 

snow dynamics.  
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APPENDIX 1 – VARIABLE INFILTRATION CAPACITY CURVE 
 
 
 
Calculation of infiltration capacity using b-curve begins with Equation A.1.1 
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1

1 1o b
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 
.         (A.1.1) 

 
Rearranging Equation A.1.1 allows us to find the fraction of the area that is saturated (Asf) 

in terms of the maximum infiltration capacity of the soil, im, and the consumed infiltration 

capacity, io, as: 
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We can also rearrange Equation A.1.1 in order to solve for the consumed infiltration 

capacity:  
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In order to find im, we use the following expression: 
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where Vm is the maximum volume of storage space for the soil. Equation A.1.4 represents 

the area under the infiltration capacity curve when integrating with respect to the y-axis.  
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Using the following u substitution:       
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and changing the limits of integration:  
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we arrive at the integral below: 
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Integrating the right side and evaluating with the new limits results in Equation A.1.10 

which expresses Vm in terms of im and b, and can be rearranged to solve for the maximum 

infiltration capacity of the soil im.  
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( )1m mi V b= + .                   (A.1.11) 

  
Finding the consumed infiltration capacity io requires the same integration described in 

Equations A.1.4 – A.1.6, using the volume consumed (Vo) in place of Vm. The limits of 

integration change as follows:  
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which gives us the following integral: 
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Integrating the right side and evaluating with the new limits results in Equation A.1.15, 

which expresses Vo in terms of im and b, and can be rearranged to solve for the maximum 

infiltration capacity of the soil im. 
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Equations A.1.16 – A.1.22 show algebraic manipulation necessary to arrive at Equation 

A.1.23 which describes the consumed infiltration capacity io in terms of the maximum 

and consumed volumes (Vm and Vo). 
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To find the consumed infiltration capacity as a function of the volumetric water content 

(Equation A.1.26), we simply put the volumes in terms of soil moisture. 
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APPENDIX 2 – EFFECTIVE HYDRAULIC CONDUCTIVITY 
 
This appendix describes a modification of the Brooks-Corey equation to calculate 

drainage using an effective hydraulic conductivity. We begin with the original Brooks- 

Corey equation: 

( )m

i r
out s

r

Q K A θ θ
φ θ

 −= −  − 
         (A.2.1) 

 
where KS is the saturated hydraulic conductivity (cm/hr), A is the area, θi is the current 

volumetric water content (m3/m3), φ is the porosity of the soil, θr is the residual water 

content (m3/m3), and m is defined as: 

2 3
P

m
B

 
= + 
 

.          (A.2.2) 

 
The volumetric flow rate out of the soil can also be described as a change in volume of 

water over time: 

out
dVQ
dt

= ,           (A.2.3) 

 
With:   
 

i iV Az θ= ,          (A.2.4) 
 
where zi is the depth of the soil layer. Substituting Equation A.2.4 in to Equation A.2.3 

gives us Equation A.2.5, which relates the flow rate to the change in volumetric water 

content with time.  
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Setting Equation A.2.5 equal to Equation A.2.1 gives us the following: 
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Rearranging Equation A.2.5 we arrive at: 
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where: 
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To solve Equation A.2.7, we must perform a series of integrations beginning with: 
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By combining like terms, we get Equation A.2.10  
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which we can integrate and evaluate the right side easily because B is constant. Using a u 

substitution of ( )ru θ θ= −  and du dθ= , and changing the limits of integration on the 

left side we get: 
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By integrating the left side, evaluating for the new limits gives us Equation A.2.12, which 

can be rearranged to Equation A.2.13.  
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A final algebraic manipulation provides us with a saturation adjusted water content in the 

form of equation A.2.14.  
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This new water content is used to calculate the effective hydraulic conductivity of the soil 
using the Brooks Corey definition:  
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or  
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APPENDIX 3 – POWERSIM IMPLEMENTATION 
 
 
 

This appendix will guide a user through the Powersim model. We will first 

describe the input requirements, and then show model screen shots. Next we will discuss 

computational efficiency. Finally, we will describe the contents of the included data CD.  

 
A-3.1 Input requirements 
 

After the watershed in a study area is delineated using GIS and the HRUs have 

been created, the soil and vegetation parameter data from each HRU must be input into 

an EXCEL spreadsheet (rain.xls). This spreadsheet contains all input and output files 

used by the model. HRU parameters are inserted into the “JUNK” sheet in the rain.xls 

file. Stochastic rainfall forcing parameters can be derived by running the 

(GAUGE)eventrain.m file for each gauge in Matlab, (GAUGE) is a keyword that is 

replaced by the name of the rain gauge to be used, and inserted into the “RainGauges” 

sheet. Stochastic temperature forcing parameters can be derived by running the 

(GAUGE)Temp.m file for each gauge in Matlab, and inserted into the Temperatures 

sheet. Actual precipitation data used for model testing is inserted into the “Socorro 

Raingauge” sheet. Precipitation data from the Deep Well site is located in the “Deep Well 

Rainfall” sheet. Each of these input sheets is used by Powersim to deliver data to the 

watershed model.  
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A-3.2 Model screenshots 
 
 This section provides the reader with screenshots from Powersim showing the  
 
components of the model.  
 
 

 
Figure A.1 – Parameter inputs for HRUs linked to rain.xls  
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Figure A.2 – Stochastic temperature generator, which uses parameters from the five 
surrounding gauges.  
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Figure A.3 – Stochastic precipitation generator, which uses parameters from the five 
surrounding gauges.  
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Figure A.4 – Seed generator used for stochastic simulations. 
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Figure A.5 – Calculates potential ET using Hargreaves method.  
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Figure A.6 – Links to send event scale output to rain.xls 
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Figure A.7 – Main module for the watershed model. The shaded circles contain  

VB-script code to run the model using either stochastic or gauge forcing 
data.  

 
 
A-3.3 Computational efficiency  
 

The watershed model requires a great amount of preprocessing both with HRU 

generation and calculation of parameter values for vegetation, soil, and atmospheric 

forcing. However, in contrast to the long set-up time, the model is currently capable of 

performing a 50yr run using stochastically generated precipitation data in 11min. This 

makes it possible to test the models response to changes in atmospheric forcing quickly, 

which is ideal for decision-making settings.  All output data is put into either the “Event 

Theta" tab or the “Runoff” tab in the rain.xls spreadsheet.  
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A-3.4 Data CD 

This section lists the contents of the included CD.   
 
Watershed model – Final_WatershedModel_5gauge_20080623.sip 
Copies of thesis in .doc and .pdf format (Carlos_Aragon_MS_Thesis) 
Input/Output spreadsheet – rain.xls (must be kept in Rain folder) 
Precipitation Matlab files – (Gauge)eventrain.m 
Temperature Matlab files – (Gauge)Temp.m 
Soil Moisture Matlab file – DWSM.m 
Data text files used in Matlab 

  AugustineRain_49_78.txt 
  AugustineTempdatmatlab.txt 
  BrushymtnRain.txt 
  BrushyTempdatmatlab.txt 
  DatilRain.txt 
  DatilTempdatmatlab.txt 
  DeepWellRainmatlab.txt 
  DWSM1997new.txt 
  DWSM2001new.txt 
  DWSMmatlab.txt 
  HRU12Doutput.txt 
  HRU12Woutput.txt 
  LagunaRain_49_78.txt 
  LagunaTempdatmatlab.txt 
  SocorroRain_49_78.txt 
  SocorroTempdatmatlab.txt 

  
A-3.5 VB-script code 
 
The following are the contents of the main VB-script code used in the model. 
 
VBFUNCTION( "result" = HRU,1..102,1..24|  
            "WBArray"= Water_Balance_inputs_1,  
            "Rain" = 'HRU_Rainfall allocator', 
      "Timecounter" = 'Time Counter', 
            "ET" ='Potential ET'*1<<da/mm>>, 
      "CoArray"='Carry Over level', 
      "toggle" = 'Precip toggle' 
      | 
 
"if toggle = 1 then" 
// Initialize output arrays 
 
"For m = 0 to 69 "   
 "For j = 0 to 99" 
 "For h = 0 to 4" 
    "result(m,j,0) = -1" //A (-1) in the ST column indicates the end of data series 
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   "Next" 
 "Next" 
"Next" 
 
// Initialize watershed cumulative variables 
 
"WsRunoff = 0" 
"WsPrecip = 0" 
"WsET = 0" 
"WsMelt = 0" 
"WsSoilStorage_change = 0" 
"WsCanopyW_Change = 0" 
"WsInfil = 0" 
"Ws_count = 0" 
"WsDrainage = 0" 
"WsSatExR = 0" 
"WsIntExR = 0" 
"WsSnow = 0" 
"WsA = 0" 
"Ws_Trans = 0" 
"WSE = 0" 
"WsRain = 0" 
"WsWVmax = 0" 
 
"Ws_theta_top_avg =0" 
"Ws_theta_mid_avg = 0" 
"Ws_theta_low_avg = 0" 
"Ws_CanopyW_avg = 0" 
"Ws_ET_avg = 0" 
"Ws_SatExR_avg = 0" 
"Ws_IntExR_avg = 0" 
"Ws_Drainage_avg = 0" 
"Ws_Rain_avg = 0" 
 
 
"TLWV = 0 "//Top layer m^3 
"MLWV = 0"//Middle layer m^3 
"LLWV = 0"//Lower layer m^3 
"ULWV = 0"//Upper two layers water volume m^3 
 
//Begining of loop over HRU's imputs 
"For m = 0 to 67"//when using simulated rainfall change to (0 to HRU-2) 
      
//Fill variables for each HRU based on data from WBArray 
"A = WBArray(m,0)" //Area <<m^2>> 
"FrintL = WBArray(m,14)" // Fraction of precip intercepted by leafs 
"Ks = WBArray(m,19)/(100)" // Hydraulic conductivity of soil <<m/hr>> 4 orig, 19 new, 20 
effective 
"LAI = WBArray(m,10)"// Leaf Area Index 
"IntcapL = WBArray(m,13)" // Interception capacity of leafs <<mm>> 
"z1 = WBArray(m,7)/100" // Top layer soil depth <<m>> 
"z2 = WBArray(m,8)/100" // Upper Layer soul depth <<m>> 
"z3 = WBArray(m,9)/100" // Lower Layer soil depth <<m>> 
"Bp = WBArray(m,5)" // Pore size distribution Index 
"n = WBArray(m,6)" // Porosity of soil 
"RootingDepth = WBArray(m,12)/100" //Rooting depth of plant cm 
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"VegPercent = WBArray(m,11)"// Percent of HRU that is covered by vegetation 
"HRUnumber = m" // number of HRU 
"Pack_A = A" // area of snow pack, when =A, snow is evenly distributed over HRU 
"Duration = 0"// Length of storm or interstorm period 
 
"cumRain=0" 
"CumCanopyW_change = 0" 
"CumSoilStorage_change = 0" 
"CumDrainage = 0" 
"CumRunoff = 0" 
"CumPrecip = 0" 
"CumET = 0" 
"CumMelt = 0" 
"CumInfil = 0" 
"CumSatExR = 0" 
"CumIntExR = 0" 
"CumSnow = 0" 
"CumE = 0" 
"CumTrans =0" 
"CumCanopyW = 0" 
"cumtime = 0" 
 
"Theta_top = 0" 
"Theta_mid = 0" 
"Theta_low = 0" 
"Theta_Final = 0" 
"Theta_Final_Top =0" 
"Theta_mt = 0" 
"Theta_lm = 0" 
"Area_unsat = 0" 
"Aras_sat = 0" 
 
"ntop=n" 
"Kstop = ks"// set to Sand for Deep well simulations 
"Bptop = bp" 
 
 
//Soil Water 
 
//Maximum water volume 
"TLWVmax = A*n*z1"//Top layer m^3 limits evaporation 
"MLWVmax = A*n*z2"//Middle layer m^3 
"LLWVmax = A*n*z3"//Lower layer m^3 
"ULWVmax = TLWVmax+MLWVmax+LLWVmax"// The top and middle layers are combined 
and treated as single (upper) layer to prevent over estimation of runoff 
 
"WVmax = TLWVmax+MLWVmax+LLWVmax"//maximum volume of water in entire soil 
column 
 
//Soil column volume 
"TLV = A*z1"//Top layer m^3 
"MLV = A*z2"//Upper layer m^3 
"LLV = A*z3"//Lower layer m^3 
"ULV = TLV+MLV+LLV"//Upper layer top + mid used in saturatation excess runoff m^3 
 
//need for each HRU 
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"theta_s_star = WBArray(m,17)"// star soil moisture replaces theta f 
"theta_r = WBArray(m,15)" // hydroscopic soil moisture content 
"theta_s = theta_s_star"// threshold soil moisture content  
"theta_w = WBArray(m,16)" // wilting point soil moisture content 
"theta_f = theta_s_star"// field capacity soil moisture content 
"theta_sat = n "//saturated  soil moisture contentWBArray(m,18) 
 
//for deep well test 
"theta_s_startop = theta_s_star"// star soil moisture replaces theta f 
"theta_rtop = theta_r" // hydroscopic soil moisture content 
"theta_stop = theta_s_startop"// threshold soil moisture content  
"theta_wtop = theta_w" // wilting point soil moisture content 
"theta_ftop = theta_s_startop"// field capacity soil moisture content 
"theta_sattop = Theta_sat "//saturated  soil moisture contentWBArray(m,18) 
"rainpercent = CoArray(m,0)"  
 
"if theta_r> CoArray(m,1) then" 
"theta_topP = theta_r" 
"else" 
"theta_topP = CoArray(m,1)" 
"end if" 
 
"if  theta_r> CoArray(m,2) then" 
"theta_midP = theta_r" 
"else" 
"theta_midP = CoArray(m,2)" 
"end if " 
 
"if theta_r > CoArray(m,3) then" 
"theta_lowP = theta_r"  
"else" 
"theta_lowP = CoArray(m,3)" 
"end if " 
 
"CanopyWP = CoArray(m,4)"  
 
"if theta_topP<theta_r then" 
 "theta_topP = theta_r" 
"end if" 
 
"if theta_midP<theta_r then" 
 "theta_midP = theta_r" 
"end if" 
 
"if theta_lowP<theta_r then" 
 "theta_lowP = theta_r" 
"end if" 
 
 
"TLWVP = theta_topP*TLV" //Top layer m^3 
"MLWVP = theta_midP*MLV"//Middle layer m^3 
"LLWVP = theta_lowP*LLV"//Lower layer m^3 
"ULWVP = TLWVP+MLWVP+LLWVP"//Upper two layers water volume m^3 
 
///////////infamous b parameter 
"bi = 1.4" // shape parameter for VIC model ??shape of hillslope?? 
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//Initial Soil water volume  reset soil to residual at end of each month  
//need to use previous months theta for each HRU this will require output of theta 
//for each layer 
 
//Initalization from previous month 
"CanopyW = CanopyWP" 
"CanopyWI = CanopyWP" 
"TLWV = TLWVP "//Top layer m^3 
"MLWV = MLWVP"//Middle layer m^3 
"LLWV = LLWVP"//Lower layer m^3 
"ULWV = ULWVP"//Upper two layers water volume m^3 
"TLWVI = TLWVP "//Top layer m^3 
"MLWVI = MLWVP"//Middle layer m^3 
"LLWVI = LLWVP"//Lower layer m^3 
"ULWVI = ULWVP"//Upper two layers water volume m^3 
"theta_top = theta_topP" //Top layer m^3 
"theta_mid = theta_midP"//Middle layer m^3 
"theta_low = theta_lowP"//Lower layer m^3 
 
 
"potentialET = ET(m)/24000 "//<<m/hr> converted from mm/da 
"RhoW = 1000"//density of water  
 
 
//Initalization of variables 
 
"Available_water = 0" 
"theta_top_avg = 0" 
"theta_mid_avg = 0" 
"theta_low_avg = 0" 
"count = 0" 
"Rain_avg = 0" 
 
" " 
//event loop 
"FOR i = 0 to 99" 
 
  "IF Rain(m,i,0) < 0 then" 
 "IF i = 0 then" 
 "result(m,0,0) = rainpercent" 
 "result(m,0,1) = theta_mid" 
 "result(m,0,2) = theta_low" 
 "result(m,0,3) = CanopyW" 
 "result(m,0,6) = theta_top" 
 "End IF" 
 
       "exit FOR" 
 
   "else" 
 "IF Rain(m,i,0) > 0 then"  
     "potentialET = 0"//ET is turned off during storm events 
    "else" 
  "potentialET = ET(m)/24000"// EvapTrans rate m/hr 
    "end IF" 
   "End IF" 
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//more initalization 
"P=0" 
"A_veg = 0" 
"Throughfall = 0" 
"Available_water = 0" 
"Available_space = 0" 
"SatEx_Runoff = 0" 
"IntEx_Runoff = 0" 
"RainPercent = 0" 
"UnIntVol = 0" 
"IntVol = 0" 
"IntC = 0" 
"IntR = 0" 
"K_theta = 0" 
"Runoff = 0" 
"rainfall = 0" 
"rainvol = 0" 
"precipvol = 0" 
"meltrate = 0" 
"meltvol = 0" 
"Q_TM = 0" 
"Q_MT = 0" 
"Q_ML = 0" 
"Q_LM = 0" 
"Q_deep = 0" 
"Q_base = 0" 
"DeepDrainage = 0" 
"CanopyIN = 0" 
"CanopyEvap = 0" 
"Impervious_vol = 0" 
"InfiltrationRate = 0" 
"Infil = 0" 
"Inflow_vol = 0" 
"EvapTop = 0" 
"EvapMid = 0" 
"TransTop = 0" 
"TransMid = 0" 
"TransLow = 0" 
"Transpiration = 0" 
"ActualET = 0" 
"ET2 =0" 
"B = 0" 
"m2 = 0" 
"ic = 0" 
"ic_max = 0" 
 
//input of precipitation timeseries 
"Rainfall = Rain(m,i,0)/1000"//Rainfall rate in m/hr 
"Duration = 24*Rain(m,i,1)"//length of storm in hours 
"Snow = Rain(m,i,2)/1000" // snowfall rate in m/hr 
"Snowpack = Rain(m,i,3)/1000" // snowpack depth in mm 
"Meltrate = Rain(m,i,4)/1000"// melt rate in m/hr 
"Precip = Rain(m,i,5)/1000"// melt rate in m/hr 
"P = Rainfall+Snow"//  precip rate m/hr 
"Rainvol = Rainfall*A*Duration" 
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"Precipvol = Precip*A*Duration"//m^3 
"Meltvol = Meltrate*A*Duration"//m^3 ??need value for area covered by snow pack??? 
"cumtime = cumtime + Duration"//cumulative time in hrs 
 
"if Timecounter > 2005 then" 
"Rainfall = 0" 
"Rainvol = 0" 
"Precipvol =0"//m^3 
"Meltvol =0" 
"End IF" 
 
 
//Interception by vegetated area 
"A_veg = A*VegPercent" 
 
"IntC = (LAI*IntcapL*.001)*A_veg" 
 
//Interception rate  
//??only rainfall is intercepted what happens to snow that falls on canopy?? 
"IntR = (FrintL*LAI)*Rainfall" 
 "If Rainfall <= 0 then" 
  "IntR=0" 
 "end IF" 
 
 "IF IntR>=Rainfall then" 
  "IntR = Rainfall" 
 "else" 
  "IntR = (FrintL*LAI)*Rainfall"// m/hr 
 "end IF" 
 
////////////////// 
//"IntR = 0" test for increasing soilmoisture by removing interception 
////////////////// 
 
//Potential Interception volume  
"Intvol = IntR*A_veg*Duration"//m^3 ??portion of vegetated area doesnt recieve rainfall??? 
 
//Un-intercepted volume automatically gets to ground 
"UnIntvol = Rainvol-Intvol"//this is rain only 
 
//input of water to the canopy  
 "IF (IntR*Duration*A_veg+CanopyW)>=IntC then" 
  "CanopyIN = (IntC - CanopyW)"  
  "Throughfall = (IntR*Duration*A_veg-CanopyIn)" //m^3 
  "CanopyW = IntC"  //m^3 
  "IntVol = CanopyIN" 
 "else"   
  "CanopyIN = IntR*Duration*A_veg" //m^3 check this it doesnt look right???? 
  "CanopyW = CanopyW+Intvol" //m^3 
  "Throughfall = 0" 
 "end IF" 
 
//Canopy Evap 
 "IF potentialET*A_veg*duration =< CanopyW then" 
  "CanopyEvap = potentialET*A_veg*duration" //m^3/hr 
 "else" 
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  "CanopyEvap = CanopyW" //m^3/hr 
 "end IF" 
 
"CanopyW = CanopyW - CanopyEvap" 
 
 "IF CanopyW <= 0 then" 
  "CanopyW = 0" //m^3 
 "end IF" 
 
//Start new structure for VIC: throughfall reaching soil -> calculate runoff -> infiltration 
//-> fill upper layer -> ET -> drainage -> diffusion/reallocation of water -> loop 
" " 
 
//Add melt water from snowpack to throughfall 
"Available_water = Throughfall + UnIntVol+ MeltVol"//m^3  water is now distributed evenly 
over area 
 
"Area_unsat = A-Area_sat" 
 
"IF Area_unsat = 0 then" 
"Area_unsat = 0.00001" 
"end IF" 
 
//infiltration excess runoff is calculated by comparing throughfall  
//rate to hydraulic conductivity for soil 
"if Duration>0 then" 
"InfiltrationRate = Available_water/((Area_unsat)*Duration)"//m/hr 
"else" 
"InfiltrationRate = 0" 
"end if" 
 
//"InfiltrationRate =0" testing remove later 
 "IF InfiltrationRate<=Ks then" 
  "IntEx_Runoff = 0" 
 "else" 
  "IntEx_Runoff = Available_water-Ks*(Area_unsat)*Duration"//m^3  
  "Available_water = Ks*(Area_unsat)*Duration" 
 "end IF" 
 
//Volume of void space in soil column that can be filled  
"Available_space = ULV*theta_sat - ULWV" 
 
//Saturation excess runoff  
 "IF Available_water>=Available_space then" 
  "SatEx_Runoff = Available_water - Available_space"//m^3 
  "Available_water=Available_space" 
  "ULWV = ULWVmax" 
 "else" 
  "SatEx_Runoff = 0" 
 "end IF" 
 
// compare infiltration capacity (ic) from previous time step to icmax 
"ic = ULWVmax*(1+bi)*(1-(1-(ULWV/ULWVmax))^(1/(1+bi)))" 
"ic_max = (ULWVmax)*(1+bi)" // maximum infiltration capacity  
"Area_sat = (1-(1 - (ic/ic_max))^bi)*A"//new saturated area based on VIC moisture re-distribution 
"Area_unsat = A-Area_sat" 
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//Total runoff 
"Runoff = IntEx_Runoff + SatEx_Runoff"//m^3 
"Inflow_vol =  Available_water" 
"Available_water = 0" 
"Infil = Inflow_vol"//needed for output dont remove 
 
 "IF Inflow_vol >=0 then" 
  "if Inflow_vol > (TLWVmax - TLWV)+ (MLWVmax - MLWV) then" 
      
   "LLWV = LLWV + (Inflow_vol-((TLWVmax - TLWV)+ (MLWVmax 
- MLWV)))" 
   "TLWV = TLWVmax" 
   "MLWV = MLWVmax" 
   "Inflow_vol = 0" 
  "else" 
   "if Inflow_vol > (TLWVmax - TLWV) then" 
   "MLWV = MLWV + (Inflow_vol-(TLWVmax - TLWV))" 
   "TLWV = TLWVmax" 
   "Inflow_vol = 0" 
   "else" 
    
   "TLWV = TLWV + Inflow_vol" // Top layer m^3 
   "Inflow_vol = 0" 
   "end IF" 
  "end IF" 
 "end IF" 
 
 
//Soil moisture  
"theta_top = TLWV/(TLV)" //Top layer  
"theta_mid = MLWV/(MLV)" //Upper layer  
"theta_low = LLWV/(LLV)" //Lower layer  
 
//Top layer evap 
 "IF theta_top <= theta_rtop then" 
  "EvapTop = 0" 
 "else"  
  "EvapTop = (potentialET*Area_sat +potentialET*(A-Area_sat)*(theta_top - 
theta_rtop)/(ntop - theta_rtop)) *duration " 
   
  "IF Duration > 48 then" 
  "ET2 = 0.811*Evaptop*(48/Duration)" 
  "Evaptop = 0.5*(Evaptop+ET2)" 
  "end if"   
    
  "IF TLWV < EvapTop then" 
   "EvapTop = TLWV - A*z1*theta_rtop" 
    
  "End IF" 
 
  "if TLWV < A*z1*theta_rtop then" 
   "EvapTop = 0" 
  "end IF" 
 "End IF" 
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"TLWV = TLWV - EvapTop" 
 
"theta_top = TLWV/(TLV)" //Top layer  
 
//Mid layer evap 
 "IF theta_mid <= theta_r then" 
  "EvapMid = 0" 
 "else"  
  "EvapMid = (potentialET*Area_sat +potentialET*(A-Area_sat)*(theta_mid - 
theta_r)/(n - theta_r)) *duration "//)*duration" 
 
  "IF Duration > 48 then" 
  "ET2 = 0.811*EvapMid*(48/Duration)" 
  "EvapMid = 0.5*(EvapMid+ET2)" 
  "end if"   
    
  "IF MLWV< EvapMid then" 
   "EvapMid = MLWV - A*z2*theta_r" 
    
  "End IF" 
  "if MLWV < A*z2*theta_r then" 
   "EvapMid = 0" 
  "end IF" 
 
 "End IF" 
 
"MLWV = MLWV - EvapMid" 
"theta_mid = MLWV/(MLV)" //Mid layer  
 
//percentage of root depth in each soil layer 
 "IF RootingDepth < z1 then" 
  "r1 = 1" 
  "r2 = 0" 
  "r3 = 0" 
 "else" 
  "r1=z1/RootingDepth" 
 
  "IF RootingDepth < z2+z1 then" 
   "r2 = (RootingDepth - z1)/RootingDepth" 
   "r3 = 0" 
  "else"  
   "r2 = z2/RootingDepth" 
   "r3 = (RootingDepth - (z2+z1))/RootingDepth" 
 
  "end IF" 
 "end IF" 
 
//Top layer trans Add seasonal component turn off transpiration in winter. Decide which 
//of ET components should be applied first.  
 "IF theta_top< theta_rtop then" 
  "TransTop = 0" 
 "End IF" 
 
 "IF theta_top > theta_ftop then" 
  "TransTop = potentialET*r1*A_veg*duration" //m^3 
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  "IF Duration > 48 then" 
  "ET2 = 0.811*TransTop*(48/Duration)" 
  "Transtop = 0.5*(TransTop+ET2)" 
  "end if" 
 "else" 
  "IF theta_top < theta_wtop then" 
   "TransTop = 0" 
  "else" 
   "TransTop = (potentialET*A_veg*r1*duration*(theta_top - 
theta_wtop)/(theta_ftop - theta_wtop))"  
    
    
   "IF Duration > 48 then" 
   "ET2 = 0.811*Transtop*(48/Duration)" 
   "Transtop = 0.5*(Transtop+ET2)" 
   "end if" 
  
  "end IF" 
 "End IF" 
  
 "IF TLWV-A*z1*theta_rtop < TransTop then" 
  "IF TLWV > A*z1*theta_rtop then"   
   "TransTop = TLWV - A*z1*theta_rtop" 
  "else" 
   "TransTop = 0" 
  "End IF" 
 "End IF" 
 
 "TLWV = TLWV - TransTop" 
  
 "theta_top = TLWV/(TLV)" //Top layer 
 
//Middle layer trans 
 "IF theta_mid< theta_w then" 
  "TransMid = 0" 
 "End IF" 
 
 "IF theta_mid > theta_f then" 
  "TransMid = potentialET*r2*A_veg*duration"//m^3/hr 
   
  "IF Duration > 48 then" 
  "ET2 = 0.811*TransMid*(48/Duration)" 
  "TransMid = 0.5*(TransMid+ET2)" 
  "end if" 
 
 "else" 
  "IF theta_mid < theta_w then" 
   "TransMid = 0" 
  "else" 
   "TransMid=(potentialET*A_veg*r2*duration*(theta_mid - 
theta_w)/(theta_f - theta_w))"//)" 
       
   "IF Duration > 48 then" 
   "ET2 = 0.811*TransMid*(48/Duration)" 
   "TransMid = 0.5*(TransMid+ET2)" 
   "end if" 
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  "end IF" 
 "End IF" 
   
 "IF MLWV-A*z2*theta_w < TransMid then" 
  "IF MLWV > A*z2*theta_w then"   
   "TransMid = MLWV - A*z2*theta_w" 
    
  "else" 
   "TransMid = 0" 
  "End IF" 
 "End IF" 
 
 "Output_test= theta_mid" 
  "MLWV = MLWV - TransMid" 
  "theta_mid = MLWV/(MLV)"  
 
 
//Lower layer trans 
 "IF theta_low< theta_r then" 
  "TransLow = 0" 
 "End IF" 
 
 "IF theta_low > theta_f then" 
  "TransLow = potentialET*r3*A_veg*duration"//m^3/hr 
 
  "IF Duration > 48 then" 
  "ET2 = 0.811*TransLow*(48/Duration)" 
  "TransLow = 0.5*(TransLow+ET2)" 
  "end if" 
 
 
 "else" 
  "IF theta_low < theta_w then" 
   "TransLow = 0" 
  "else" 
   "TransLow = (potentialET*A_veg*r3*duration*(theta_low - 
theta_w)/(theta_f - theta_w))" 
    
   "IF Duration > 48 then" 
   "ET2 = 0.811*TransLow*(48/Duration)" 
   "TransLow = 0.5*(TransLow+ET2)" 
   "end if" 
 
  "end IF" 
 "End IF" 
 
 "IF LLWV- A*z3*theta_w < TransLow then" 
  "IF LLWV > A*z3*theta_w then"   
   "TransLow = LLWV - A*z3*theta_w" 
  
  "else" 
   "TransLow = 0" 
  "End IF" 
 "End IF" 
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"LLWV = LLWV - TransLow" 
"theta_Low = LLWV/(LLV)"  
 
 
"IF Theta_top-Theta_rtop<0.001 then" 
 "theta_top = Theta_rtop" 
"end IF" 
 
"IF Theta_mid-Theta_r<0.001 then" 
 "theta_mid = Theta_r" 
"end IF" 
 
"IF Theta_low-Theta_r<0.001 then" 
 "theta_low = Theta_r" 
"end IF" 
 
"IF abs(Theta_top-Theta_mid)<0.001 then" 
 "theta_top = Theta_mid" 
"end IF" 
 
"IF abs(Theta_mid-Theta_low)<0.001 then" 
 "theta_mid = Theta_low" 
"end IF" 
 
// Flows between layers 
//Q_TM downward flow from top layer to middle 
"IF theta_top > theta_mid then" 
 "m2 = (2/Bptop)+3" 
 "B = Ks/(z1*((n-theta_r)^m2))" 
 "Theta_Final_top = Theta_r +((((Theta_top-Theta_r)^(1-m2))-(1-m2)*B*duration)^(1/(1-
m2)))"  
 "K_theta = B*z1*(Theta_final_top - Theta_r)^m2" //new effective hydraulic conductivity 
 "Q_TM = Ks*A*duration"   
 
 "IF Q_TM> TLWV - A*z1*theta_mid  then" 
  "Q_TM = TLWV - A*z1*theta_mid" 
   
 "End IF"  
 "If TLWV<A*z1*theta_rtop then" 
  "Q_TM = 0" 
 "End IF" 
 
  
 "MLWV = MLWV + Q_TM" 
 "TLWV = TLWV - Q_TM" 
"else" 
 "Q_TM = 0" 
"end IF" 
 
"theta_top = TLWV/(TLV)" //Top layer  
"theta_mid = MLWV/(MLV)" //Upper layer  
 
"IF abs(Theta_mid-Theta_low)<0.001 then" 
 "theta_mid = Theta_low" 
"end IF" 
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"IF Theta_mid-Theta_r<0.001 then" 
 "theta_mid = Theta_r" 
"end IF" 
 
//Q_mid2low  downward flow from middle to lower 
"IF theta_mid > theta_low then" 
  
 "m2 = (2/Bp)+3" 
 "B = Ks/(z2*((n-theta_r)^m2))" 
 "Theta_Final_mid = Theta_r+((((Theta_mid-Theta_r)^(1-m2))-(1-
m2)*B*duration)^(1/(1-m2)))"  
 "K_theta = B*z2*(Theta_final_mid - Theta_r)^m2" // new effective hydraulic 
conductivity 
 "Q_ML = K_theta*A*duration"  //m^3 
 
 "IF Q_ML> MLWV - A*z2*theta_low  then" 
  "Q_ML = MLWV - A*z2*theta_low" 
 "End IF"  
 "IF MLWV<A*z2*theta_r then" 
  "Q_ML = 0" 
 "End IF" 
 
 
 "MLWV = MLWV - Q_ML" 
 "LLWV = LLWV + Q_ML" 
"else" 
 "Q_ML = 0" 
"end IF" 
 
"theta_mid = MLWV/(MLV)" //Upper layer  
"theta_low = LLWV/(LLV)" //Lower layer  
 
"IF Theta_top-Theta_r<0.001 then" 
 "theta_top = Theta_r" 
"end IF" 
 
"IF ABS(Theta_mid-Theta_top)<0.001 then" 
 "theta_mid = Theta_top" 
"end IF" 
 
"IF Theta_mid-Theta_r<0.001 then" 
 "theta_mid = Theta_r" 
"end IF" 
 
//Upward diffusion from Middle layer to Top layer 
"IF theta_mid > theta_top then" 
 "m2 = (2/Bp)+3" 
 "theta_mt = (theta_top+theta_mid)/2" 
 "B = Ks/(z2*((n-theta_mt)^m2))" 
 "Theta_Final= Theta_mt+((((Theta_mid-Theta_mt)^(1-m2))-(1-m2)*B*duration)^(1/(1-
m2)))"  
 "K_theta = B*z2*(Theta_Final - Theta_mt)^m2"// new effective hydraulic conductivity 
 "Q_MT =K_theta*A*duration" 
 
 "IF Q_MT> MLWV - A*z2*theta_top  then" 
  "Q_MT = MLWV - A*z2*theta_top" 
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 "End IF" 
 "If MLWV<A*z2*theta_r then" 
  "Q_MT = 0" 
 "End IF" 
 
 "TLWV = TLWV + Q_MT" 
 "MLWV = MLWV - Q_MT" 
"end IF" 
 
"theta_top = TLWV/(TLV)" //Top layer  
"theta_mid = MLWV/(MLV)" //Upper layer  
 
 
"IF Theta_low-Theta_r<0.001 then" 
 "theta_low = Theta_r" 
"end IF" 
 
//Deep Drainage and Base flow 
"IF theta_low > theta_r then" 
 "d_fract = 1"// fraction of volume leaving layer 3 as drainage 
 "b_fract = 1-d_fract"// fraction of volume leaving layer 3 as base flow to stream network 
 "m2 = (2/Bp)+3" 
 "B = Ks/(z3*((n-theta_r)^m2))" 
 "Theta_Final = Theta_r+((((Theta_low-Theta_r)^(1-m2))-(1-m2)*B*duration)^(1/(1-
m2)))"  
 "K_theta = B*z3*(Theta_final - Theta_r)^m2"// new effective hydraulic conductivity 
 "Q_deep = d_fract*K_theta*A*duration" // m^3 
 "Q_base = b_fract*K_theta*A*duration" 
 
 "IF (Q_deep + Q_base) > LLWV - A*z3*theta_r  then" 
   
  "IF Q_deep > 0 then" 
  "Q_deep = d_fract*LLWV - A*z3*theta_r/2" // m^3 
  "end IF" 
  "IF Q_base > 0 then" 
  "Q_base = b_fract*LLWV - A*z3*theta_r/2" 
  "end IF" 
 
 "End IF"  
  
"else" 
 "Q_deep = 0" // m^3 
 "Q_base = 0" 
"end IF" 
 
"IF Theta_low-Theta_r<0.001 then" 
 "theta_low = Theta_r" 
"end IF" 
"IF LLWV>A*z3*theta_r then" 
 "IF LLWV-A*z3*theta_r<Q_deep + Q_base then" 
  "Q_deep = d_fract*(LLWV-A*z3*theta_r)" // m^3 drainage to aquifer 
  "Q_base = b_fract*(LLWV-A*z3*theta_r)" 
  "LLWV = A*z3*theta_r" 
 "else" 
 "LLWV = LLWV - (Q_deep+Q_base)" //Lower layer m^3  
 "end IF" 
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"else" 
 "Q_deep = 0" 
 "Q_base = 0" 
"End IF" 
 
"theta_low = LLWV/(LLV)" //Lower layer  
 
"Runoff = Runoff + Q_base" 
 
"IF Theta_mid-Theta_r<0.001 then" 
 "theta_mid = Theta_r" 
"end IF" 
 
"IF abs(Theta_low-Theta_mid)<0.001 then" 
 "theta_low = Theta_mid" 
"end IF" 
 
"IF Theta_low-Theta_r<0.001 then" 
 "theta_low = Theta_r" 
"end IF" 
 
//Upward diffusion from lower layer to middle layer 
"IF theta_low > theta_mid then " 
 "m2 = (2/Bp)+3" 
 "theta_lm = (theta_low+theta_mid)/2" 
 "B= Ks/(z3*((n-theta_r)^m2))" 
 "Theta_Final = theta_r+((((theta_low-Theta_r)^(1-m2))-(1-m2)*B*duration)^(1/(1-
m2)))"  
 "K_theta = B*z3*(Theta_Final - Theta_r)^m2" //new effective hydraulic conductivity 
 "Q_LM = K_theta*A*duration"// 0" m^3 
 
 "IF Q_LM> LLWV - A*z3*theta_mid  then" 
  "Q_LM = LLWV - A*z3*theta_mid" 
 "End IF" 
 
 "If LLWV<A*z3*theta_r then" 
  "Q_Lm = 0" 
 "End IF" 
 
 "MLWV = MLWV + Q_LM" 
 "LLWV = LLWV - Q_LM" 
"end IF" 
 
"ULWV = TLWV + MLWV + LLWV" 
//Water volume 
 
//recalculate thetas based on new water volumes 
"theta_top = TLWV/TLV" //Top layer  
"theta_mid = MLWV/MLV" //Upper layer  
"theta_low = LLWV/LLV" //Lower layer  
 
"if theta_top<theta_r then" 
"theta_top = theta_r" 
"End If" 
 
"if theta_mid<theta_r then" 
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"theta_mid = theta_r" 
"End If" 
 
"if theta_low<theta_r then" 
"theta_low = theta_r" 
"End If" 
 
//HRU theta summation 
"theta_top_avg = theta_top_avg + theta_top" 
"theta_mid_avg = theta_mid_avg + theta_mid" 
"theta_low_avg = theta_low_avg + theta_low" 
 
 
"ActualET =(EvapTop+EvapMid+TransTop+TransMid+CanopyEvap+TransLow)" 
//potentialET*A*Duration" 
"Transpiration = (TransTop+TransMid+TransLow)" 
"Esc = (CanopyEvap+ EvapTop+EvapMid)" 
" " 
 
// to output results set “result (m,i) = desired output variable”   
"result(m,i,0) = rainpercent" 
"result(m,i,1) = theta_mid" 
"result(m,i,2) = theta_low" 
"result(m,i,3) = CanopyW" 
"result(m,i,4) = A" 
"result(m,i,5) = Runoff" 
"result(m,i,6) = theta_top" 
"result(m,i,7) = Q_TM" 
"result(m,i,8) = Q_MT" 
"result(m,i,9) = Q_ML" 
"result(m,i,10) = Duration" 
"result(m,i,11) = ActualET" 
"result(m,i,12) = Rainvol" 
"result(m,i,13) = Infil" 
"result(m,i,16) = Q_deep" 
"result(m,i,15) = Q_LM" 
"result(m,i,14) = Intvol" 
"result(m,i,17) = Transpiration" 
"result(m,i,18) = CanopyEvap" 
"result(m,i,19) = Throughfall" 
"result(m,i,20) = TransMid" 
"result(m,i,21) = Precipvol" 
"result(m,i,22) =IntEx_Runoff" 
"result(m,i,23) =SatEx_Runoff" 
 
//cululative volumes for events 
"CumMelt = CumMelt + Meltvol" 
"CumCanopyW_Change = CanopyW - CanopyWI" 
"CumSoilStorage_Change =(TLWV + MLWV+ LLWV) -(TLWVI+MLWVI+LLWVI) "//" 
"CumDrainage = CumDrainage + Q_deep" 
"CumRunoff = CumRunoff+Runoff"//m^3 
"CumRain = CumRain + Rainvol"//m^3 
"CumPrecip = CumPrecip + Precipvol" 
"CumET = CumET + ActualET"//m^3 
"CumInfil = CumInfil + Infil" 
"CumSatExR = CumSatExR + SatEx_Runoff" 
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"CumIntExR = CumIntExR + IntEx_Runoff" 
 
"CumCanopyW = CumCanopyW + CanopyW" 
"CumTrans = CumTrans + Transpiration" 
"CumE = CumE + Esc" 
 
//Carry over values 
"result(m,101,0) = rainpercent" 
"result(m,101,1) = theta_mid" 
"result(m,101,2) = theta_low" 
"result(m,101,3) = CanopyW" 
"result(m,101,6) = theta_top" 
"count = count+1" 
"next" 
 
 
"theta_top_avg = theta_top_avg/count" 
"theta_mid_avg = theta_mid_avg/count" 
"theta_low_avg = theta_low_avg/count" 
 
//HRU Monthly times HRU areas for basin averaging 
"theta_top_avg = theta_top_avg*A" 
"theta_mid_avg = theta_mid_avg*A" 
"theta_low_avg = theta_low_avg*A" 
"CanopyW_avg = CumCanopyW*A" 
"ET_avg = CumET*A" 
"SatExR_avg = CumSatExR*A" 
"IntExR_avg = CumIntExR*A" 
"Drainage_avg = CumDrainage*A" 
"Rain_avg = CumRain*A" 
"Precip_avg = CumPrecip*A" 
 
 
"Ws_theta_top_avg = Ws_theta_top_avg + theta_top_avg" 
"Ws_theta_mid_avg = Ws_theta_mid_avg + theta_mid_avg" 
"Ws_theta_low_avg = Ws_theta_low_avg + theta_low_avg" 
"Ws_CanopyW_avg = Ws_CanopyW_avg + CanopyW_avg" 
"Ws_ET_avg = Ws_ET_avg + ET_avg" 
"Ws_Precip_avg = Ws_Precip_avg + Precip_avg" 
"Ws_SatExR_avg = Ws_SatExR_avg + SatExR_avg" 
"Ws_IntExR_avg = Ws_IntExR_avg + IntExR_avg" 
"Ws_Drainage_avg = Ws_Drainage_avg + Drainage_avg" 
"Ws_count = Ws_count + 1" 
"Ws_Rain_avg = Ws_Rain_avg + Rain_avg" 
 
//Initial values stored to check change in storage volume for water balance 
"TLWVI = TLWV" //Top layer m^3 
"MLWVI = MLWV"//Middle layer m^3 
"LLWVI = LLWV"//Lower layer m^3 
"ULWVI = ULWV"//Upper two layers water volume m^3 
 
//cumulative volumes for watershed 
"WsDrainage = WsDrainage + CumDrainage" 
"WsRain =WsRain + CumRain" 
"WsPrecip = WsPrecip + CumPrecip" 
"WsET = WsET + CumET" 
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"WsRunoff = WsRunoff + CumRunoff" 
"WsCanopyW_Change = WsCanopyW_Change + CumCanopyW_Change" 
"WsSoilStorage_Change = WsSoilStorage_Change + CumSoilStorage_Change" 
"WsWVmax = WsWVmax + WVmax" 
"WsMelt = WsMelt + CumMelt" 
"WsInfil = WsInfil + CumInfil" 
"WsA = WsA + A" 
"WsSatExR = WsSatExR + CumSatExR" 
"WsIntExR = WsIntExR + CumIntExR" 
 
"Ws_Trans = Ws_Trans + CumTrans" 
"WSE = WSE + CumE" 
"next" 
 
//Basin averaged results theta 
"Ws_theta_top_avg = Ws_theta_top_avg/WsA" 
"Ws_theta_mid_avg = Ws_theta_mid_avg/WsA" 
"Ws_theta_low_avg = Ws_theta_low_avg/WsA" 
"Ws_CanopyW_avg = Ws_CanopyW_avg/WsA" 
"Ws_ET_avg = Ws_ET_avg/WsA" 
"Ws_SatExR_avg = Ws_SatExR_avg/WsA" 
"Ws_IntExR_avg = Ws_IntExR_avg/WsA" 
"Ws_Drainage_avg = Ws_Drainage_avg/WsA" 
"Ws_Rain_avg = Ws_Rain_avg/WsA" 
"Ws_Precip_avg = Ws_Precip_avg/WsA" 
 
//watershed scale outputs 
"result(0,0,0) = output_test"//change to match others0 remove 
"result(68,100,0) = RainPercent" 
"result(68,100,1) = Ws_theta_mid_avg" 
"result(68,100,2) = Ws_theta_low_avg" 
"result(68,100,3) = Ws_CanopyW_avg" 
"result(68,100,4) = WsA" 
"result(68,100,5) = WsRunoff" 
"result(68,100,6) = Ws_theta_top_avg" 
"result(68,100,7) = WsMelt" 
"result(68,100,8) = WsWVmax" 
"result(68,100,9) = WsCanopyW_Change" 
"result(68,100,10) = WsSoilStorage_change" 
"result(68,100,11) = WsDrainage" 
"result(68,100,12) = WsRain" 
"result(68,100,13) = WsInfil" 
"result(68,100,14) = WsET" 
"result(68,100,15) = Ws_SatExR_avg" 
"result(68,100,16) = WsPrecip" 
"result(68,100,17) = Ws_ET_avg" 
"result(68,100,18) = Ws_Drainage_avg" 
"result(68,100,19) = Ws_IntExR_avg" 
"result(68,100,20) = Ws_Precip_avg" 
"result(68,100,21) = Ws_Trans" 
"result(68,100,22) = WsIntExR" 
"result(68,100,23) = WsSatExR" 
 
"end if" 
) 
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The following are the contents of the VB-script code used to calculate potential 
evapotranspiration. 
 
VBFUNCTION("Storm" = HRU| 
           "Seed"=Seeds, 
           "Month" = 'Days in Month',  
     "Tmeanb" = 'Tmean Parameters', 
           "So" = 'Solar Radiation So'*1<<da/mm>>, 
     "TrArray" = TR 
     | 
 
"Tempseed = Seed(0,0)" 
"t=Seed(4,4)" 
 
"rnd(-1)" 
"randomize(t)" 
 
"For k = 0 to 69" // initialize variables Set K, when using simulated rainfall change to (0 to HRU-
2) 
 "Tr = TrArray(k,0)" 
 "Tmean = TrArray(k,1)" 
  
 "Trand = rnd(Tempseed)" // set random temp value 
 
 "ET_H = (0.0023*So*(Tmean+17.8)*(Tr)^(0.5)) "//Hargreaves ET equation mm/da 
  
 "Storm(k) = ET_H"  
   
  "next" // HRU loop 
)*1<<mm/da>> 
 
 
The following are the contents of the VB-script code used to calculate the stochastic 
precipitation forcing 
 
VBFUNCTION("Storm" = 1..5,1..100,1..9| 
           "Pbar"='Stochastic P',//mm/hr 
           "SDbar"='Stochastic SD', 
           "ISDbar"='Stochastic ISD', 
           "Seed"=Seeds, 
           "Month" = 'Days in Month',  
     "Tmaxb" = 'Tmax Parameters', 
     "Tminb" = 'Tmin Parameters', 
     "Tb" = 'Base Temperature parameter RSTEMP'*1<<1/C>>| 
 
"For k = 0 to 4" // initialize variables Set K K, when using simulated rainfall change to (0 to HRU-
2) 
 
   "for j = 0 to 99" 
     "Storm(k,j,0) = -1" 
     "Storm(k,j,1) = -1" 
     "Storm(k,j,2) = -1" 
     "Storm(k,j,3) = -1" 
     "Storm(k,j,4) = -1" 
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     "Storm(k,j,5) = -1" 
     "Storm(k,j,6) = -1" 
     "Storm(k,j,7) = -1" 
     "Storm(k,j,8) = -1" 
   "next" 
"next" 
 
"Snowpack = 0" 
"Snow = Snowpack" 
"Mf = 0.0011 * 100"  //should not be > 1 update snow density (100) 
 
"m2 = Month(0)" 
 
"For k = 0 to 4 " // initialize variables 
 
"Tempseed = Seed(0,k)" 
"SDseed = Seed(1,k)" 
"Rseed = Seed(2,k)" 
"ISDseed = Seed(3,k)" 
"t=Seed(4,k)" 
//"t = (250207) " 
 
"rnd(-1)" 
"randomize(t)" 
 
  "rain = 0" 
  "precip = 0" 
  "timesum = 0" 
  "Prand = 0" 
  "SDrand = 0" 
  "ISDrand = 0" 
  "Trand = 0" 
  "P = 0" 
  "SnowFrac = 0" 
  "SD = 0" 
  "ISD = 0" 
  "i = 0" 
  "MeltFrac = 0" 
  "MeltVol = 0" 
  "Melt=0" 
  "SnowpackP = 0" 
 
// begin loop for storms 
  "For i = 0 to 99" 
 
     "Prand = rnd(Rseed)" // set random precipitation value 
     "SDrand = rnd(SDseed)" // set random storm duration value 
     "ISDrand = rnd(ISDseed)" // set random interstorm duration value 
     "Trand = rnd(Tempseed)" // set random temp value 
     "Snowpack = SnowpackP" // previous snow pack level 
 "P=0" 
 "TrandI = rnd(Tempseed)"// set random temp value for interstorm period 
 "ISD = -ISDbar(k,Month(0))*LOG(ISDrand)" // calculate new interstorm duration (days) 
      
 "timesum = timesum+ISD" // calculate current elapsed time 
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 "Tmax = -Tmaxb(k,Month(0))*LOG(TrandI)" 
 "Tmin = -Tminb(k,Month(0))*LOG(TrandI)"  
 "Tavg = (Tmax+Tmin)/2"//2  
 
     "If Tmin>= Tb then" 
  "SnowFrac = 0" 
     "else" 
  "if Tmax<= Tb then" 
  "SnowFrac = 1" 
        "else"  
              "if Tmax > Tmin then" 
  "SnowFrac = (Tb-Tmin)/(Tmax-Tmin)" 
              "else" 
  "SnowFrac = (Tb-Tmax)/(Tmin-Tmax)" 
              "end if" 
        "end if" 
     "end if" 
 
     "If Tavg>= Tb then"  
 "MeltFrac = Mf*(Tavg-Tb)" 
      "else" 
 "MeltFrac = 0" 
     "end if"  
  

"Rain = P*(1-SnowFrac)" //mm/hr 
 "Snow = P*SnowFrac" //mm/hr 
 "Snowpack = SnowPack+Snow*ISD*24"//mm 
 
 "MeltVol = Snowpack*MeltFrac"// Maximum volume that could melt given temperatures 
mm 
 "Precip = p"//mm/hr 
  
       "if Snowpack >= MeltVol then" 
          "Snowpack = Snowpack - MeltVol"//mm 
          "Melt =  MeltVol/(ISD*24)"//mm/hr 
       "else" 
           
    "Melt = Snowpack/(ISD*24)" 
    "Snowpack = 0" 
       "end if"  
 
  "If timesum > month(m2) then" // check that total time does not exceed 30 days in a month 
      
 "Tr =  Month(m2) - (timesum-ISD)" 
 "Storm(k,i,0) = Rain" //mm/hr 
 "Storm(k,i,1) = Tr"//days  
 "Storm(k,i,2) =Snow" 
 "Storm(k,i,3) =Snowpack"     
 "Storm(k,i,4) = Melt/(Tr*24)" 
 "Storm(k,i,5) = Precip" 
 "Storm(k,i,6) = Tmax" 
 "Storm(k,i,7) = Tmin" 
 "Storm(k,i,8) = MeltVol" 
 "SnowpackP = Snowpack" 
 "exit for" 
     "end if" 
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       "Storm(k,i,0) = Rain"//mm/hr 
       "Storm(k,i,1) = ISD"//days 
       "Storm(k,i,2) =Snow" 
       "Storm(k,i,3) =Snowpack" 
       "Storm(k,i,4) = Melt" 
       "Storm(k,i,5) = Precip" 
       "Storm(k,i,6) = Tmax" 
 "Storm(k,i,7) = Tmin" 
 "Storm(k,i,8) = MeltVol" 
 "SnowpackP = Snowpack" 
     "i=i+1" 
 
     "P = -Pbar(k,Month(0))*LOG(Prand)" // calculate new rainfall intensity mm/hr 
     "SD = -SDbar(k,Month(0))*LOG(SDrand)" // calculate new storm duration (days) 
      
     "timesum = timesum+SD" // calculate current elapsed time in days 
      
     "if Tmaxb(k,Month(0))<= -Tmaxb(k,Month(0))*LOG(Trand) then" 
        "Tmax = Tmaxb(k,Month(0))" 
     "else" 
        "Tmax =-Tmaxb(k,Month(0))*LOG(Trand)" 
     "end if" 
 
     "if Tminb(k,Month(0)) >= -Tminb(k,Month(0))*LOG(Trand) then" 
        "Tmin = Tminb(k,Month(0))" 
     "else" 
        "Tmin = -Tminb(k,Month(0))*LOG(Trand)" 
     "end if" 
 
     "Tavg = (Tmax+Tmin)/2" 
 
     "If Tmin > Tb then" 
  "SnowFrac = 0" 
     "else" 
  "if Tmax <= Tb then" 
  "SnowFrac = 1" 
        "else" 
              "if Tmax > Tmin then" 
  "SnowFrac = (Tb-Tmin)/(Tmax-Tmin)" 
              "else" 
  "SnowFrac = (Tb-Tmax)/(Tmin-Tmax)" 
              "end if" 
        "end if" 
     "end if" 
 
     "If Tavg>= Tb then"  
 "MeltFrac = Mf*(Tavg-Tb)" 
      "else" 
 "MeltFrac = 0" 
     "end if" 
  
 "Rain = P*(1-SnowFrac)" //mm/hr 
 "Snow = P*SnowFrac" //mm/hr 
 "Snowpack = Snowpack+Snow*SD*24" //mm 
 



    143 
 

 

 "MeltVol = Snowpack*MeltFrac"// Maximum volume that could melt given temperatures 
mm 
       "Precip = p" //mm/hr 
  
       "if Snowpack >= MeltVol then" 
          "Snowpack = Snowpack - MeltVol"//mm 
          "Melt = MeltVol/(SD*24)" //mm/hr 
       "else" 
          "Melt = SnowPack/(SD*24)" 
    "Snowpack = 0" 
     
       "end if" 
  
     "If timesum > month(m2) then" // check that total time does not exceed 30 days in a mont h 
 "Tr =  Month(m2) - (timesum-SD)"// time remaining in days 
 // Output to storm array 
 "Storm(k,i,0) = Rain"//mm/hr 
 "Storm(k,i,1) = Tr" //days 
 "Storm(k,i,2) = Snow" 
 "Storm(k,i,3) = Snowpack" 
 "Storm(k,i,4) = Melt/(Tr*24)" 
 "Storm(k,i,5) = Precip" 
 "Storm(k,i,6) = Tmax" 
 "Storm(k,i,7) = Tmin" 
 "Storm(k,i,8) = MeltVol" 
 "SnowpackP = Snowpack" 
 "exit for" 
     "end if" 
 
// Output to storm array 
     "Storm(k,i,0) = Rain"//mm/hr 
     "Storm(k,i,1) = SD" //days 
     "Storm(k,i,2) = Snow" 
     "Storm(k,i,3) = Snowpack" 
     "Storm(k,i,4) = Melt" 
     "Storm(k,i,5) = Precip" 
     "Storm(k,i,6) = Tmax" 
     "Storm(k,i,7) = Tmin" 
     "Storm(k,i,8) = MeltVol"  
     "SnowpackP = Snowpack" 
 
  "next" // end of loop 
"next" // HRU loop 
 
) 




