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ABSTRACT

Millioné of dollars have been spent in New Mexico to remove tamarisk
from riparian lands along the Rio Grande and restore previously monotypic
tamarisk areas with native species such as cqttonwood and willow. Elevated
-evapotranspiration (ET) rates of tamarisk are a main factor in motivating the
invasive species’ control. One of the tamarisk removal techniques is through the
use of controlled burning. In this study, Landsat and MODIS satellite imagery
was used in conjunction with the Surface Energy Balance Algorithm for Land
(SEBAL) computer model to compare ET and Normalized Differenced Vegetation
Index (NDVI) of tamarisk covered riparian areas before and after three recent
fires: 1. Mitchell Fire of April 9-16, 2005, which burned 414 hectares; 2. Marcial
Fire of May 3-10, 2006, which burned 2,250 hectares; and 3. Bosquecito Fire of
June 6-‘9, 2006, which burned 260 hectares. By comparing the remote sensing
results to field point measurements, groundwater and soil data, we evaluate the
spat/iél and temporal ET and NDVI as a proxy for vegetation recovery after fires.
Our results demonstrate: 1. Tamarisk ET rebounds much faster after fire than
previously thought; tamarisk ET is established as early as one month after fire,
and one year after fire tamarisk density and ET returns to pre-fire conditions; 2.
The use of herbicide-burn followed by flooding is highly effective in long-term
tamarisk eradication; 3. MODIS NDVI data products are able to detect the signal

of fire when the fire occurs in the middle of the growing season rather than in the

beginning. Concerning environmental factors such as soil regimes and ground




water levels on post-fire ET, the presence of a thick clay layer, versus a shallow
lense, appeared to induce capillary rise of soil moisture to reach the soil surface
within an area of elevated ET at the Marcial Fire site, and there appears to be a
- link between elevated groundwater levels and elevated SEBAL-generated values
for instantaneous and daily ET and Crop Coefficient data.

This thesis project will ultimately inform hydrological and ecological
managers around the globe on tamarisk regenerative behavior and changes in
ET post-fire, and will evaluate the effectiveness of the use of fire in river
restoration projects. In addition, this thesis project illustrates the power of remote
sensing of vegetation regeneration as a sophisticated, cost-effective and
accurate alternative to the costly, conventional vegetation monitoring method of

point source data collection in the field by individuals.
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1. INTRODUCTION

1.1 Motivation

Evapotranspiration (ET) is defined as the total amount of water that is
transferred from the earth's surface to the atmosphere by evaporation from soil
and water surfaces and transpiration from growing vegetation. ET is a major
component in the hydrologic cycle of semi-arid regions with scarce water
supplies, such as New Mexico and the Southwestern USA. In arid and semi-arid
basins, water loss to the atmosphere from riparian corridors generally dominates
the components of a basin’s water budget. For example, in the Middle Rio
Grande basin well over 90% of surface water depletions are due to open water
evaporation, soil evaporation, riparian and agricultural ET (Cleverly et al., 2002;
Dahm et al., 2002). ET from riparian vegetation has been estimated to represent
30% of the total depletions in the Middle Rio Grande water budget (Cleverly et
al., 2006).

Within the study region, the Socorro Reach of the Middle Rio Grande,
there are various water demands including agricultural, riparian, wildlife, and
municipal needs (Figure 1.1). This reach of the Rio Grande historically runs dry in
the summer, which may strain agricultural and environmental needs. Low river
flows may result in New Mexico defaulting on obligations legislated in the Rio

Grande Compact of 1938 (Middle Rio Grande Regional Water Plan, 2004).




Mean Depletions for the Socorro Reach

10%

48%

34%

& Agriculture 3400 acre-feetlyear
@ Riparian 11560 acre-feetiyear
O Opan Water 2720 acra-feetyaar

O Elephant Butte 16320 acre-feetiyvear

Figure 1.1 Mean depletions for the Socorro Reach of the Rio Grande River (NM OSE,

2006).

1.2 Tamarisk ET

The vegetation species in focus within this thesis which is of great concern
to the citizens of New Mexico, and produces immense evaporative losses in the
Middle Rio Grande Basin, is the tamarisk (Tamarix ramosissima), otherwise
known as the salt cedar. ET rates of tamarisk are amongst the highest of
southwestern phreatophytes (Brotherson et al., 1984), deep-rooted plants often
found in arid environments that obtain water a permanent ground supply or from
the water table. Tamarisk water consumption has the ability to drain pools and
dry up perennial springs (Brotherson et al., 1984). On an individual basis,
tamarisk stands have transpiration rates similar to native riparian plants such as
cottonwood and willow (Anderson, 1982); however, tamarisk tends to grow at

higher densities than native riparian vegetation and as a result uses more water

_—




per unit area (Sala et al., 1996). The Iohger a community has been invaded by
tamarisk, the greater the capacity to decrease groundwater levels and decrease
water resource availabilit‘y.‘

The Qrowth of tamarisk infestation depénds on the water table depth and
_the hydrologic history of an area. Tafharisk’s deeply penetréting roots bportrayed
in Fiélure 1.2 are observed at depths as great as 30 meters (Robinson 1958) and
gives it the ability to access more available water than plants with shallow root
systems (Everitt, 1980). When the IWétér table is high, tamarisk develop a taproot
and secondary roots that occupy all zones of tﬁe soil profile above the water
tabié (Robiﬁson, 1958). As water table depth increases, tamarisk must send its
roots down further to reach the capillary fringe; thus water use decreases with
increasing wéter table depth. Water tables can fluctuate considerably due to
seasonal and annual changes in inflows as well as fluvial processes (Shafroth et‘
al. 2000) and transpiration by riparian vegetation. Horton et al. (2001) found that
a water table decline of 1.1 m from the pfevious yéar level of 2.0 m resulted in

- 92-100% mortality of cottonwood and willow sap'l/ings, whereas, only 0-13% of

tamarisk stems died.
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Figure 1.2. Tamarisk extensive root system (UNM, 2006).

Evapotranspiratiop is very site specific due to differenc-es‘ in water table
depth, salinity, and hydraulic conductivity of the soil, as well as due to differences
in vegetation characteristi“cs, atmospheric conditions, .time of day, and method
used to calculate water use (White et al., 2003). At the Bosque del Apache .
National Wildlife Refuge‘N»étional Wildlife Refu‘g";e (BDA NWR), ET rates from a
dense stand of tamarisk was 1.2 m/yr during the growing season.of April 5 to
November 21 (Bawazi'r,IZOOO). In comparison, a sparse stand of cottonwood
used 0.8 m/yr during the same growing season. Alsd a.t the BDA,‘ average ET |
rates at flooded tamarisk sites from December to March were 5.4 + 0.2 mm/day,

with a maximum of 9.8 mm/day in the 'g&rowing season (Cleverly et al., 2002).

James Cleverly of the University of New Mexico compiled a comprehensive table

on published Tamarisk ramosissima ET figures “that is first of its kind” and




provided below in Table 1.1. The table states the various methods and ranges in

the determination of tamarisk ET.

Stady Method ET range
Loeaf-lepel
Anderson, 1982 I situ 2:2-2-5 mmolm s~ !
Busch & Smith, 1995 In situ ) 3-8 mmolm 25!
Canopy-evel
Gay &  Frrschen, Lysimeter 6+2-9-4 mm day‘l
1879 .
Sala et ol., 1096 Sap flux 0-3-0-6 kg (m* leaf area) 'h!
Cleverly et al., 1997 Sap flux G00-1000 Lg {m® sapwcod area) " h?
Devitt ez al., 1997a Sap flux 0-2:1 kg {m leaf area) *h™!
Devite ez al, 1997a “Sap flux 0-21 kg (m” leaf area)" h!
Devitt et al., 19975 Sap flux 200-2,000 kg (m” sapwood area) 'h~!
Glenn er ol., 1998 Lysimeter 129+ 0-67 g (g fresh weight) ™! day™?
Xu et al., 1998 Lysimeter 3-1-3-8 mm day™!
Sund-level -
Caller e1 2L, 1976 Near-IR 1:3-3-1 mm day"
Gay & Frischen,  Bowen Ratio 7-2-9-5 mm day ! .
1979
Davenport et al,  Lysimeter® 2-2-15-8 mm day™!
1982
Sala & al, 1996 . Sap flux* 5-4-20-2 mm day
‘Sala e al., 1996 Penman- 3+1-8:2 mm day ™’
Monteith
Devitr e al., 19972 Penman— 3-5-8-0 mm day™?
Monteith
Hansen & Gorbach, BlaneyCriddle  2-0-2-7 mm day™'
1997
Devitt ez o, 1998 Bowen Ratio 0-12-5 mm day™?

Leatlevel dota were collected using a leaf charnber on ivaser planes in the Seld (7 sim).
*Scaled up frown the canopy level.

Table 1.1 Pubhshed data sources, management method, spatial scale, and ET measure for .
Tamarisk ramosissima (Cleverly et al., 2002).

1.3 Tamarisk-Fire Control

n recent years, fire has been used as a natural and cost effective
mechanism in the control of tamarisk infestation at the local Bosque Del Apache
National Wildlife Refuge (BDA NWR) and within riparian corridors of the

SouthWest. Tamarisk is a fire adapted species—it regrows early after fire—but little

is known about the timing of tamarisk regrowth after wildfires. Even less is




known about regrowth during the crucial first few weeks to 2 months after a fire,
fhe critical time when the process of tamarisk succession begins. A canopy fire
at Lees Ferry, Arizona, killed 10% of mature tamarisk plants, and surviving plants
produced shoots that exceeded 1.8 m (6 feet) in height within 5 months (Stevens,
1989). Regrowth of surviving tamarisk plants after a July wildfire at Lake
Meredith National Recreation Aréa, Texas, exceeded 1.8 m (6 feet) at the end of
that growing season (Fox et al, 2001). Tamarisk recovery has been studied in
the time frame of 6-months and years, but this thesis IS the first to quantitatively
examine post-fire recovery jn a time series fashion of weeks to 2 years after fire,
using ET as a proxy for vegetation regeneration. |

Monitoring post-fire tamarisk ET and vegetation recovery is important to
establish 'post-,fire tamarisk management, such as spraying the tamarisk with.
herbicide after a burn, an integrative technique that has been proven to be up to
93% effectiye (McDaniel and Taylor, 2003) in tamarisk eradication. The Bosque
del Apache NWR has implemented highly effective intégrated tamarisk
management approaches including combinations of herbicide, burning and
mechanical-control treatmént. The final goal is to replant previously tamarisk ..
infested areas with nativé vegetation species such as cottonwood and - willow,
vegetation with comparatively lower ET rates in sparsely populated communities.
The revegetation with native species will serve to improve habitat for several
species of birds, small mammals, reptiles, and amphibians in the Bosque del

Apache National Wildlife Refuge. This thesis will demonstrate that the use of fire

alone to control tamarisk is generally ineffective, and will provide additional




information pertinent to the timing of regrowth after wild fires, an area of study
where much is unknown.

Junming Wang of the New Mexico State University was the “first, and
only” researcher to use SEBAL to estimate and contrast ET at burned and non-
burned areas to infer the spatial-temporal vegetation recovery after fires (Wang
et al.,‘ 2005). His work revealed ET maps from before and after the Los Alamos
Fire of May 2000 and found 47% recovery of the pifion-juniper woodland biota 3
years aftér the fire (Wang et al., 2005). His paper was the sole source formally

relating SEBAL, ET and vegetation recovery.

1.4 Objectives

The overall goal of this thesis is to quantify how wild fires affect the ET
~and vegetation regeneration of tamarisk in the Middle Rio Grande Valley. The

specific objectives are the following:

1. Quantify changes in ET and vegetation cover due to wild fires using

Landsat and MODIS satellite imagery.

2. Use observations on ET and vegetation cover changes before and after

wild fires to determine the optimal timing for the elimination of Tamarisk

re-sprouts using herbicides and mechanical removal.




2, TAMARISK LITERATURE REVIEW

2.1 Tamarisk Ecology

Among the most well known non-native invasive plant species in the
southwestern United States are trees of the family Tamaricaceae (Genus
Tamarix), also referred to as tamarisk or salt cedar. Tamarisk is native to
southern Europe and Asia, where it occurs from the Near East to the Caspian
Sea and across Asia to China and Korea. An estimated eight to twelve Tamarix
species were introduced into North America in the 1800’s as means of flood and
stream bank erosion control, as protective barriers against wind, and in some
cases, as ornamental shrubbery (USDA-NRCS, 2006). These introduced
species have long since become naturalized and hybridized into species that are
now considered to vbe highly invasive tﬁroughout the U.S., particularly in the
Southwest. Tamarisk species currently line many rivers, streams, and lakes in
the Southwest and are common along the shores of Texas, extending to
Southern North Carolina and down into the Gulf of Mexico (USDA-NRCS,‘ 2006),
and some species may be capable of invading colder climates in the U.S.
(Séxtpn et al., 2002).

Four species 6f Tamarisk are reportedly found in New Mexico: Tamarix
ramosissima (ramosissima rheaning "most densely branched") or tamarisk,

Tamarix chinensis or five stamen tamarisk, Tamarix parviflora or small flower

tamarisk, and Tamarix gallica or French tamarisk. Together, these four species




cover 20 counties of New Mexico, the distribution of which is shown in purple in
’Figure 2.1 (USDA, 2006). Tamarisk is currently considered a Class C Noxious
Weed in New Mexico by the United States Department of Agriculture (USDA,
2006). This listing implies that tamarisk is considered a widespread invasive
plant, and that laws are currently being considered or implemented to gain

control over its spread and environmental consequences.

Figure 2.1. Tamarisk distribution (in purple) throughout New Mexico (USDA, 2006).

Long term meaéures have been executed by local government agencies,
such as The Socorro Soil Water Conservation District (SSWCD), the Fish and
~ Wildlife Service (FWS), United States Department of Agriculture (USDA), and
United States Forest Service (USFS) to eradicate tamarisk on public and private
lands and revegetate previously-tamarisk éreas with local riparian vegetation
species»such nativevRio Grande cottonwood (Populus deltoids var. wislenzii and
Godding’é willow (Salix gooddingii), as well as vegetation that fosters habitat to
the federally endangered Southwestern willow flycatcher (WIFL) (Empidonax
trai/ii extimus). The measures serve for restoration and legislative purposes.

The Supreme Court Decree of 1988 set conditions that New Mexico must

meet compact obligations with delivery of water to Texas. The Soil and Water




Conservation Districts, through the New Mexicp Association of Conservation
’Districts, have worked with thel New Mexico State Legislature on opportunities to
enhance flows on the Rio Grande. The Legislature approved funding during the
2002, 2003, 2004, and 2005 legislative sessions. The Lower Rio Grande Salt
Cedar Control Project (SSWCD) has used this funding to treat tamarisk, aid in
restoration and monitor treatments in Socorro, Sierra, Caballo and La Union Soil
and Water Conservation Districts in Socorro, Sierra, and Dona Ana counties
(SSWCD, 2007).

The USDA, USFS8, and FWS have joined together to create $64.4 million
dollar Integrated Vegetation Management (IVM) 10-year program to prevent the
spread‘ of non-natives such as the "Tamarisk, Russian olive (Elaeagnus
angustifolia) and Siberian elm (Ulmus pumila), to control existing infestations,
maintain the health of native plant communities, and restore native piant
communities throughout the five major river systems in New Mexico (Parker et
al., 2005). The agencies believe that the dense sténds of exotic species have
limited recréational value, increase the chance of wildfire, decrease water
availability, and degrade biologiéal diversity. The IVM propbses the use of
chemical, biological, mechanical and fire management techniques in order to

control present non-native infestations (Parker et. al 2005).

2.2 Tamarisk Control Methods
Techniques used to control tamarisk have included various combinations

of herbicide application, mechanical control, burning and biological control.
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Photos of aerial herbicide treatment, cut-stump 'biomass clearing, and
mechanical removal via bulldozer are provided in Figure 2.2 to ekplore the range
in spatial scale in herbicide treatment, from large application via herbicide to
cutting stump-by-stump. Tréatments have proven satisfactory primarily due to the
flexibility in employingy one or éeveral of these techniqués if and when required.
Arsenal herbicide (American Cyanamid, 1994) has been used in both ground and
aerial applications. Contrqlled ‘burning may be used to decrease tamarisk
biorrx\ass, and in preparatibn for revegetation following aerial spraying.
Mechanical control involves root plowing and raking using heavy equipment._
Bulldozers pull large plows aboutr45 cm beiow the ground surface, sheering root
crowns from the remaiﬁder of the root mass. The root crown is the underground
podion of the plant from whi;:h resprouts arise. Root crowns are then pulled from
the ground using large rakes and then stacked for burning with front-end loaders
equipped with brush rakes. The operatlon leaves an even surface which
facilitates ﬂoodmg or plantlng Combinations of mechamcal and chemical control
have also been used (FWS, 2004). Decisions for the type of control can depend
on soil type, equipment availability, time constraints, fire danger, environmental
sensitivity, and the degree of infestation. Costs for tamarisk control range from
less than $125/acre for hérbicide—plus-burn control to $395/acre for mechanical
control (FWS, 2004). Regardulvess of tﬁe control measure empléyed, monitoring

should occur to assess control and cost effectiveness.

One of fhe tamarisk removal techniques is through the use of controlled

burning. Tamarisk is early sucbessional after fire, but little is known about




succession rates to full maturity. Knowledge of succession rates will provide
écological managers with a timetable for the implementation of combined control
' techniques, such as burning followed by herbicide treatment, that have been
proven to maximize tamarisk clearing of up to 93% (McDaniel and Taylor 2003).
In addition, the project aims to pkovide a time table for the implementation of
co:mbihed burn-herbicide control techniques, as an alternative to costly tamariék
removal methods such as mechanical removal or cut-stump  herbicide

appl.ication.

Figure 2.2. Examples of tamarisk control techniques (left to right): herbicide spraying via
helicopter, cut-stump biomass clearing, and mechanical removal via bulldozer (SSWCD,
2007). - ,

Fire as a Management Tool

In some areas, prescribed fire. can be used to manage faﬁarisl;:.ﬁy-
eliminating the cldsed 7canopy, slowing the rate of invasion, and allowing
desirable vegetation to respond, thereby increasing diversity in monotypic
tamarisk stands. Burning these communities under controlled conditions can also
reduce the potential for costly wildfires that must be suppressed to avoid property

loss (Rascher et al. 2001).
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Fire in Conjunction with Herbicide

Use of fire alone to control tamarisk is generally ineffective. Prescribed
fire can be used to thin dense tanﬁarisk infestations prior to follow up application
of herbicide (Lovich 2000) as a dual-control method. Experiments at the Ouray
National Wildlife Refuge in Randlett, Utah, indicate that prescribed burning
coupled with herbicide application in the spring, Jfall and winter are ineffective at
controlling tamarisk; while prescribed burning coupled with herbicide application
in July can be effective.- Burning in late July prevented 64% of tamarisk plants
from resﬂprouting the following year, while spraying resprouts with the herbicide
2,4-Dichlorophenoxyacetic acid (2,4-D) one month after thé July_ burn prevented
99% of the plants from resprouting. Burning and spraying with 2,4-D in |
September and October resLﬂfed in 12% and 5% tamarisk plant moﬁality,
respec;tively. Using Triclopyr-ester as a stump treatment or as a basal bark s‘prrayv
_also prevented resprouts by 99%, while Triclopyr-amine provided poor control
(Howard et al., 1983). Basal abplications qf imazapyr did not effectively control
burned, re_sprouting} tamarisk one growing season after treatment at Lake

Meredith National Recreation Area, Texas (Fox, 2000).
Fire in Conjunction with Herbicide and Mechanical Control

A summer wildfire af Lake Meredith National Recreation Area, Texas,

provided an opportunity to investigate tamarisk response to wildfire and to
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mechanical and chemical control following fire. Many tamarisks were completely
Vconsumed by the wildfire. Regrowth of surviving plants exceeded 1.8 m at the
end of that growing season. About 20.2 hectares (50 acres) of the burned
tamarisk were roller-chopped fche following June. Triclopyr was applied in
February and again in March as individual plant basal treatments to 100 fire
generated resprouts each mbhth; Treatment efficacy was evaluated 12 months
after treatment. Tamarisk mortality was 60%. The combined effect of summer
wilgfire and roller chopping was 85% mortality. Herbicide applications resulted in
90% and 95% mortality from February and March treatments, respectively.
Preliminary results indicate that dormant season individual plant treatment with
25% Triclopyr following burning is an effective method for managing tamarisk

infestations (Fox, 2001).

2.3 Tamarisk-Fire Ecology

Fire Importance

Fire has a powerful influence on ecosystem dynamics and function across
a large variety of biomes. Fire-induced changes ih ecosystem functioning and in
plant and animal species composition mostly occur as a consequence of
biomass loss and alterations of soil properties (Seastedt et al., 1991). These
changes imply increasing light arriving to the soil surface, loss of carbon and
other nutrients from the overall ecosystem, and an effect on the fertilization of .
soils (Seastedt et al.,, 1991). In recent yeérs, the fundamental role of fire in
maintaining ecosystem function has been recognized, which has led to

subsequent concern about the consequences of human impacts in altering the
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natural cycles of wildfire disturbances. Monitoring postfire regeneration is
’important to establish postfire resource management and to design revegetation
programs.

Fires also have profound effects on land use, production, local economies,
global trace gas emissions and health. Fire potential depends on the amount of
dead and live vegetation, the moisture in t'hev live veg.etation,r and the fmoisturé in
the dead vegetation. Uncontrolled wildfires can have an immense impact on the
human population and the environment, as was witnéssed in the wildfires in Utah
and South Tahoe, California during July of 2007, and the Southern California
| wildfires of October of 2007. A fire analysis cycle can be deﬁn.éd that moves from
mapping the potential for a fire start if thre’re- is ignition, to detecting the start of a
fire, through monitoring the progression of a fire, to bmapping the extent of the fire
scars and the progression of vegetation regeneration. Such information is useful
to managers, policy makers aﬁd scientists interested in mitigating and evaluating
the effects of wildfires.

. Local firefighters quickly control most fires while they are still fairly small.
However, a significant number of fires exceed the a_bility of the first fire
suppression forces to contain them and spread to cause loss of life and
substantial damage to natural resources and property. To minimize this threat of
loss from wildfires, fire managers must be able to plan protection stratégies that
are approbriate for local areas. A prerequisite for this planning is the ability to
assess and map, for large areas, the local potential for a major fire to occur.

Using such geospatial information, mahagers can establish priorities for
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prevention activities to reduce the risk of wildfire spread and for allocating
suppression forces to improve the probability of quickly controlling fires in areas
of high concern (Klaver et al., 2003).

Fires in semi-arid regions can result in complete consumption of
vegetation cover, ground litter and fuels, in addition to the exposure and/or
darkening and brightening of soil due to ash deposition (Rogan and Yool, 2001).
Light or moderate fires can result in the partial consumption of vegetation cover,
litter, and fuels with little soil exposure or ash deposition. The post-fire

appearance of burned sites may be used to estimate the severity of a burn.

Tamarisk Fire-Adaptation

Tarﬁaﬁsk is’ a fire-adapted species with ‘more efficient fire recovery
mechanisms than nearly all native riparian species<(Anderson et al., 1982).
Tam_arigk can form new plants by sprouting from the root crown and stem -
segments (Brotherson et al., 1987). Following fire, tamarisk is better able to
utilize available soil moisture, higher soil concentrations of mineral elements, and
increased soil pH than native woody riparian species (Anderson et al., 1982).
The ability of tamarisk to tolerate high levels of soil salinity may also fav_or it in the'
post-fire environment, as soil salinity tends to increase after fire (Anderson et al.,
1982). The adaptations have likely been a significant factor promoting its rapid
colonization of waterways. In native riparian plant communities dominated by
cottonWéod, willows, or mesquite, wildfires are infrequent V(Busrch and Smith,

1993). In contrast, intervals between fires are considerably shorter in tamarisk-
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infested areas. It has been hypothesized that tamarisk, like other plant species
that readily resprout, might have developed adaptive characteristics that enhance
flammability of plant communities where they grow (Busch and Smith, 1993).
This can lead to replacement of cottonwood and willow that are not adapted to
fire. In support of this, Anderson et al. (1982) demonstrated that 21 of 25
tafnarisk étands along the lower Colorado River burned within a 15-yr period.
Fires burned 35% of tamarisk-dominated vegetation on the lower Colorado River
'flopdplain between 1981 and 1992, compared to only 2% of communities of
honey mesquite or screw bean mesquite during the same time period (Busch,
1995). Increased incidence of fire in tamarisk stands has been attributed td
substantial accumulation of leaf litter, as well as dead and senesced woody
material. Fuel buildup by tamarisk promotes fire every J10» to 20 yr in North

American desert riparian settings (Lovich et al., 1994).

Fire Effects

Tamarisk is usually top-killed by fire, and severe fire may also Kkill the root
crown (Ellis et al., 2006). Tamarisk seeds withstand a dry heat of 212 °F (100
°C) for 20 minutes; higher temperatures kill seeds within a few minutes (Horton et
al.,, 1960). A photo example of thé fierce nafure of tamarisk fire charring above
ground biomass is provided in Figure 2.3, as shot locally at the Bosque del
Apache National Wildlife Refuge. The immediate effect of fire on tamariskr
depends on fire severity, which is largely a function of the quantity and quality of
fuels present. Tamarisk leaves are not highly flammable due to high moisture

content, even though the'y»contéin volatile oils. Tamarisk flammability increases
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Figure 2.3. Image of a prescribed fire in a Tamarisk-infested area at the Bosque del Apache
NWR (BDA NWR, 2004).

with the build-up of dead and senescent woody material within the plant (Busch,
1995). When plants burn under high fuel loads, fire tends to be more severe--
top-killing many plants»vénd increasing the likelihood of killing the root crown of
some individuals (Ellis et al., 2006).

Timing of fire can affect tamarisk response due to its effectsron Afire
severity, subsequent climate conditions, or phenological stage. Under stressed
conditions, as many as half of the shrubs may not survive burning (Horton,
1977). Ongoing research in eastern New Mexico is being conducted to
determine the best phenological stage to burn and reburn tamarisk to reduce |
density, canopy, and hazardous fuel load. Phenological stagesu at which
treatments have been applied include: dormancy, leaf elongation, first bloom, full
canopy, and leaf senescence (Holdt et al., 2002). A review by Grace (2001)
suggests that burning during the peak of summer has the strongest adverse

effect on tamarisk, présumably due to subsequent water stress. Ellis et al.
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(2001) suggested that tamarisk étands are highly susceptible to fires due to
raccumulation of organic débris in the absence of flooding.

Short-term responses of riparian vegetation to a wildfire were monitored at
two study sites at the BDA NWR. Fire severity reflected the amount of organic
debris present before thé fire, which reflected flooding history at the two sites.
Fire severity was lower at the site :with a more extensive flooding history and less
debris. Resprouting was prevalent among cottonwoods at both burn sites
in}ﬂuding basal stem sprouts, root crown sprouts, and root suckering. However,
of the native Rio Grande cottonwoods in the area, only those located in an area
that experienced lower fire severity (the area had been regularly ﬂooderad)r
retained viable aboveground tissue two years after the fire. Considering the fuel
accumulations'alonrg the Middle Rio Grande Valley it is likely that fire severity will
continue to be.high and the loss of mature cottonwoods may be extensive.
Reducing current fuel load, either by restoring flooding or by mechanical removal,
-~ is needed to lessen the impact of fires on riparian forests along the Rio Grande

(Ellis et al., 2008).

2.4 Socorro County Fire History

To provide a generalized assessment of fire occurrence in ‘the vicinity, a
review was conducted of a Socorro Fire database from 1987 to 2006 made |
available by Doug Boykin of New Mexico State Forestry. For reference, a map of -
the counties within the state of New Mexico is found in Figure 2.4. Exclusive of

the 2005 Mitchell Fire and 2006 Marcial and Bosquecito Fires, there have been
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744 fires during the 20 year period. The 20-year average within Socorro County
was approxirﬁately 35.4 fires per year; a histogram of number of fires per year for
a 20 year period in Socorro County is provided in Figure 2.5. Average annual
acreage-burned was approximately 39.2 hectares (96.8 acres); a histogram of
average hectares burned for a 20 year period in Socorro County is provided in

Figure 2.6.

RIO ARRIBA

Figure 2.4. Map of New Mexico within the United States. In addition, map of the
counties within New Mexico with Socorro County within the red square.
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Figure 2.5. Number of fires per year for Socorro County (1987-2006). Courtesy of Doug
Boykin, NM State Forestry.
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Figure 2.6. Average hectares per fire per year for Socorro County (71 987-2006)

Wildland Urban Interface (WUI) Areas

Socorro County receives an abnormally high-number of lightning storms

and ground strikes, due mainly to the topographical change from desert to
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mountains; and receives only v25 cm (10 inchés) of rainfall, annually in

Vlower elevations, to 76 cm (30 inches) in the higher elevations above 3,048 m

(10,000 feet), annually (NM State Forestry, 2006). With increased residential
" 7growth in or near the forest boundary and the bosque areas (Wildland Urban
Interface or WUI), risk from catastrophic wildfire has increased. Private holdings
are being developed with mUltipIe structures and limited access. This growth has
also increased the traffic on our roadways, resulting in safety concerns both for
emergency response and urban interface fire evacuations (NM State Forestry,
2006).

The Socorro County Rural Fire District compiles information on rural
communities located within the Wildland Urban Interface (WUI) acres,
construction materials, roads, bridges, driveways, roads, turnarounds, water
availability, and -closest Interface, gathering data on vegetation fuels, terrain,
slope, aspect, number of lots, estimated human density, total fire departme_nt.
The data was analyzed and an Average Hazard Rating is determined for each
community. Table 2.1 identifies the number of communitibes“.in each hazardr

rating, with écreage (NM State Forestry, 2008).

Number of WUI Average Hazard Acreage
Areas _
9 Low 95,650
11 Medium 151,140
14 - High 126,960
Total Acres 373,750

Table 2.1. Count of WUl Communities and Average Hazard Rating (NM State Forestry,
2006) '
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3. METHODS AND MATERIALS

3.1 Description of the 3 Fires Investigated

Three recent fires were chosen for this study due to their proximity to New

Mexico Tech, high proportion of tamarisk infestation and their relatively large
size: 1. Mitchell Fire of April 9-16, 2005, which burned 414 hectares: 2. Marcial
Fire of May 3-10, 2006, which burned 2,250 hectares; and 3. Bosquecito Fire of
June 6-9, 2006, which burned 260 hectares. The three fires can be seen below

in Figure 3.1.

Socorro Area with Burn Sites
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Figure 3.1. Mitchell, Marcial and Bosquecito Fire locations within the state of New Mexico.
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1. Mitchell Fire

The Mitchell Fire ignited on April 9, 2005 in the riparian corridor along the
Middle Rio Grande in San Antonio New Mexico, due north of Highway 380
(Figure 3.2). The blaze started when a private landowner operating a grinder
sent sparks into some grass, resulting in a fire of 414 hectares (1,024 acres).
Properties in danger included homes, residential storage, agricultural cultivation
and livestock. The fire burned a mixture of non-native and native floodplain
bosque vegetation. Overstory vegetation at the burn site was dominated by non-
native tamarisk (Tamarix ramossissima) with large patches of native Rio Grande
cottonwood (Populus deltoids var. wislenzii), and Godding's willow (Salix
gooddingii). Understory vegetation was dominated by native willows (Salix
exigua), honey mesquite (Prosopis glandulosa), and other native and non-native
shrubs, forbs, and grasses. Fire suppression consisted of burnout and holding
with fire engine crews on established roads and fire-line construction with
bulldozers. The fire was 70% contained on April 11 and controlled on April 16,
2005; between 60 and 70 firefighters were involved in battling the fire

(Associated Press, 2005).
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Mitchell Fire (April 9 - 16, 2005)
Field Sampling Locations
Sampling Performed in October of 2006
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Figure 3.2, Mitchell Fire site field sampling transects and macroplot locations.

25




Herbicide Treatment

Aerial herbicide treatments occurred on the Mandeville Track (Figure 3.3)
in September of 2003 as funded by the SSWCD. Spraying is always done in the
fall to prevent from the herbicide interacting with the nesting season of the
endangered Southwest Willow Flycatcher (WIFL). According to the herbicide
manufacturers, the land was to remain intact for 3 years before being followed up
by additional control methods such as root plowing, cut-stump or burning. The
herbicide killed all the above-ground tamarisk biomass but did not sufficiently kill
the root crown nor below ground root matter prior to the Mitchell Fire. After the
Mitchell Fire, in May of 2006, the SSCWD followed up with root plowing within
the Mandeville track and finished in May of 2007 (Troxel-Stowe, Nyleen.

Personal Interview. 7 March 2008). In February of 2008 replanting and seeding

with native vegetation was performed within the plot.




Mitchell Fire
Aerial Herbicide Spraying in September of 2003
Mandeville Property

Figure 3.3, Herbicide spraying in the Mandeville track in September of 2003
(SSWCD, 2007).
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Mitchell Fire Photos

Photos of the Mitchell Fire were obtained from the Socorro Soil Water
Conservation District (Figures 3.4-3.6). The fire charred the basal bark portion of
the tamarisk and the leaves were incinerated (Figure 3.4, top row). If the fire was
of higher intensity it would have incinerated all the above-ground basal biomass
and would likely kill the root crown below. The bottom photos in Figure 3.4
portray the charring to ash that occurred in the herbicide-treated portion of the
Mandeville track. The dark brown portions are likely tamarisk-blackened and

charred remnants from the fire.

1. During fire, April 11, 2005

At e AN (YT #\m 24 '
Ffpure 3.4. Top row: Images taken during the Mitchell Fire, on April 11, 2005. Bottom row.
1% image: Sprayed (light brown soil, left) versus non-sprayed (dark brown soil, right); 2™

image: Non-sprayed (left, dark brown soil) versus sprayed (right, light soil) (SSWCD, 2008).
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One month after the fire, tamarisk resprouts appear at the Mitchell Fire site

(Figure 3.5), growing from the root crown which was not impacted by the fire.

2. One Month after the fire, May 16, 2005
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Figure 3.5. Top row: Images taken 1 month after the Mltchell F[re (SSWCD 2008)

Two months after the fire the tamarisk rigorously resprouts (Figures 3.6), likely
due to the shallow groundwater table, soils with high capillary forces, and the

nature of fire as serving as a catalyst in “furious” regeneration.
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3. Two Months after the Mitchell fire, June 29, 2005
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Figure 3.6. Top row: 0 Montt ST the tamndia reenorits
Bottom row: Tamarisk resprouts with cottonwood grove two months after the fire
(SSWCD, 2008).
2. Marcial Fire

The Marcial Fire ignited on May 3, 2006 near the historic town of San
Marcial, Socorro County, New Mexico, and Fort Craig (Figure 3.7). Properties in
danger included 4 structures, a Bureau of Reclamation storage yard, a railroad
trellis, 2 railroad bridges, and critical habitat for the endangered species the
Southwestern Willow Flycatcher (WIFL) (Parametrix, 2006). The fire burned a
mixture of non-native and native floodplain bosque vegetation. Overstory

vegetation at the burn site was dominated by non-native tamarisk with large

patches of native Rio Grande cottonwood and Godding's willow. Understory
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vegetation was dominated by native willows, honey mesquite, and other native
and non-native shrubs, forbs, and grasses (Parametrix, 2006). Fire suppression
consisted of burnout and holding with fire engine crews on established roads and
indirect fire-line construction with bulldozers. Containment was difficult due to
limited access, heavy fuel loading, and extreme fire behavior including fire
heights greater than 60 m (200 feet) (Parametrix, 2006). The fire was contained
on May 6 and controlled on May 10, 2006. More than 60 firefighters from the
FWS, San Antonio (NM) Volunteer Fire Department, New Mexico State Forestry
Division, Bureau of Land Management, U.S. Forest Service and contractors were
involved in fighting the fire. The fire burned 1,966 hectares (4,857 acres) with an

estimated suppression cost of $265,000 (Parametrix, 2006).

Marcial Fire History

The Marcial Fire was not the first fire to have occurred in the area
(Parametrix, 2006). In March of 1994, a fire above San Marcial and Road 178
consumed approximately 120 hectares (300 acres) of mixed vegetation (mostly
tamarisk). In 1997, approximately 809 hectares (2,000 acres) of tamarisk and
other vegetation burned in the northern portion of the Armendaris Ranch, owned
by Ted Turner. This fire was similar to the Marcial Fire, although it did not burn
100% “clean” and there was considerable dead standing vegetation remaining.
In 2005, a fire north of the Low Flow Conveyance Channel (LFCC) channel near

Tiffany burned approximately 8 hectares (20 acres) (Parametrix 2006).
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Marcial Fire (May 3 - 10, 2006)
Field Sampling Locations
Sampling Performed in August 2006
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Figure 3.7. Marcial Fire site with field sampling transects and macroplot locations.
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Marcial Fire Photos

The first 4 photos are taken west of the fire, near the entrance to
Armadaris Ranch. Photos immediately following the fire display charred basal

bark and tamarisk basal bark that has been incinerated due to the higher

intensity burn in that area. Note the cottonwood grove that was spared.




. Durmg flre, May 4 and May 10, 2006
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Figure 3.8. Images taken durlng the Marcial Flra Top 2 rows from May 4 2006, last row
from May 10, 2006, immediately following the fire (SSWCD, 2008).

Photos below, taken 1 month after the Marcial Fire, show rigorous tamarisk

regeneration, with resprout heights that appear to be less than 30 cm.




2. Photos from 1 Month after the Fire, June 16, 2006
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3. Bosquecito Fire

The Bosquecito Fire ignited on June 6, 2006 along the riparian corridor of
the Rio Grande, approximately six miles south of Socorro, New Mexico, as a
result of lightening (Figure 3.10). The fire was estimated to be 260 hectares (640
acres), burning on the east and west sides of the river. The fuels that were
consumed include predominantly tamarisk, grass and cottonwood.  An
evacuation was in effect for twelve homes on the north side of Bosquecito as a
precaution, but there were no homes in immediate danger. State Forestry, U.S.

Fish and Wildlife, San Antonio, Abeytas and The Middle Rio Grande




Conservancy District all had crews on the fire. There were 45 firefighters were
assigned, supported by fire engines and a bulldozer. A Type 1 helicopter was at
the fire to make water drops. Governor Bill Richardson was scheduled to be in
Socorro on June 7, 2006 for a news conference where he was to sign executive
orders to authorize the release of $3 million for firefighting, fire prevention and
post-fire cleanup. The fire was controlled on June 9, 2006 (Albuquerque Journal,

2006).

Herbicide Treatment

In September of 2003 the Rhodes tract (Figure 3.11) received aerial
herbicide treatments; the cottonwood groves were excluded. The above-ground
tamarisk biomass was killed by the herbicide. Unfortunately, the root crown and
below ground root matter were not impacted. The SSWCD was advised by the
herbicide manufacturers to wait three years before extracting the roots and

mulching the residual biomass.
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Bosquecito Fire (June 6 - 9, 2006)
Field Sampling Locations
Sampling Performed in September of 2006
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Figure 3.10. Bosquecito Fire site field sampling transects and macroplot locations.
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Bosquecito Fire
Aerial Herbicide Spraying in September of 2003
Rhodes Property
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Figure 3.11. Herbicide sprayed areas (in orange) in the Rhodes tract of the
Bosquecito Fire (outlined in red) during September of 2003 (SSWCD, 2007).




Bosquecito Fire Photos

' The SSWCD only had photos during the fire on file. This fire was the only
natural, lightning-caused fire and burned the hottest. Note the white ash in the
top-right photo and how eradicated is most of the above ground biomass in the

bottom photo, except for large tamarisk stands (Figure 3.12).

1. During fire, June 7, 2006

Figure 3.12. Images taken during the Bosquecito Fire, on June 16, 2006 (SSWCD, 2008).
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3.2 Field Sampling Methods
3.2.1 Vegetation Monitoring and Sampling

The purpose of the sampling was to obtain quantitative estimates of
vegetation recovery in the Tamarisk bosque woodland habitat 3 months after the
Bosquecito and Marcial Fires, and 18 months after the Mitchell Fire. Five
transects, with 10 macroplots along each transect were selected for intensive
sampling within each of the 3 burn sites. The sampling was performed under the

guidance of Mr. Jerry Hess and FIREMON Protocol from August to October of

2006.

Figure 3.13. Marcial Fire site, Summer 2006 Field Campaign, Nicole (left) and Jerry Hess
(right).

Fire Effects Monitoring and Inventory System (FIREMON)

FIREMON is a Joint Fire Sciences Project that provides fire managers and

scientists from all agencies with a comprehensive set of fire effects monitoring




and inventory protocols. It was developed by USFS Rocky Mountain Research
Station, Missoula Fire Sciences Laboratory, the USGS Northern Rocky Mountain
Science Center, and Systems for Environmental Management. It is designed to
help the fire manager determine how plots should be placed on the landscape
and what sampling methods should be used at each plot location based on the
project funding and objectives. FIREMON’s biggest asset is that it is highly
flexible with only four required fields. Fire managers can select a simple sampling
scheme — for instance, taking only photographs at every plot, at one point in time
— to an intensive, statistical scheme requiring detailed sampling over multiple
visits. FIREMON has been extensively reviewed in the field — across a number
of ecosystems — and by station statisticians to ensure a useful, tested product

(Lutes et al., 2003).

FIREMON consists of four main components. First, the Integrated
Sampling Strategy leads the fire manager through text, guides and keys to
suggest the appropriate sampling approach (relevé or statistical), sampling
intensity (detailed, alternative or simple) and sampling methods based on project
funding and objectives. Second, FIREMON includes a number of sampling
methods allowing the fire manager to assess many ecosystem attributes. The
sampling methods provide data for the following components: plot description,
trees, fire severity, fire behavior and vegetation cover. Third, data is stored in the
Microsoft Access or Excel database. Data entry forms are field forms that are
filled out in short-hand notation that is queried according to designated

percentage classes (Figure 3.14). Last, the data can be imported into ArcGIS or
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the FIREMON Analysis Toolbox for statistical comparison and analysis (Lutes et

al., 2003).

Site Selection

The sites where the Mitchell, Bosquecito and San Marcial Fires occurred
were considered for sampling. Five transects, each of 1 km in length, were
chosen and evenly spaced within each fire site (Figures 3.1, 3.7 and 3.10). 10
macroplots, with 110-m separation distance, were positioned along each
transect. The azimuth of each starting macroplot location was measured and

recorded, along with its location in UTM.
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Macroplot

' Quadrat 3 | Quadrat 2
Start Here
-q-——
l Quadrat 1 l
Sampling
Locanon

60 meters
Macroplot

Figure 3.14. lllustration of field sampling using the Line Transect method and Macroplots.
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Required Materials

» Compass
GPS
2-meter measuring rod
Field sampling form
Writing utensils
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Field Procedures

Macroplot 1, Transect 1 of each of the 3 fire sites was traveled to by means of
GPS. Upon arrival to the center point of the first macroplot of the first transect,
the following site data was collected:

e Transect Number

* Macroplot Number

e GPS Waypoint Number
e GPS Location (UTM)

e GPS Elevation

e Soil Texture

e Erosion Type

¢ Erosion Severity

e Crust Description

Macroplot Layout

The macroplot is 60 x 60 meters (Figure 3.14), four times the area of a
Landsat pixel of 30 x 30 meters. Within each macroplot are 4 quadrats, each of
30 x 30 meter dimensions. Starting from the center point of the first macroplot,
the four quadrats were transversed using the following directions: 1. Head south
30 meters, east 30 meters and north 30 meters, reaching Sampling Location 1; 2.
North 30 meters and west 30 meters, reaching Sampling Location 2; 3. West 30
meters and south 30 meters, reaching Stop 3; 4. South 30 meters and northeast
42 meters, reaching Stop 4, the center point of the macroplot. The distances
transversed while walking were measured and monitoried using a 2-meter

measuring rod.
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At each sampling location, the following environmental data was collected on
a field sampling form:

1. Tamarisk Maturity
e Seedling Cover (tree height below 4.5 feet)
e Sapling Cover (tree height greater than 4.5 feet)
s« Tamarisk Seasonal Stage

2. Dominant Species
e Species Classification
e Stand Height

3. Vegetation Cover Percentages

e Tamarisk

e Cottonwood

e Grass

e Forb

¢ Graminoid
4. Soll

* Bare Soil Cover
e Soil Texture
e Crust Discription

5. Erosion
e Erosion Type
e Erosion Severity

6. Fire
e Fire Severity
Data for each parameter was averaged over the four quadrats, resulting in one

value per macroplot and can be found in tabular form in Appendix B.

Cover (%)

Cover means vegetation cover and is expressed as the percentage of the
surface area over which a plant exerts its influence upon other components of

the ecosystem. Cover values presented for each species are average amongst
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the quadrats within each macroplot. Total vegetation cover is a separate variable

representing observations of gross cover of the vegetation in its entirety.

Line Transects

In the culmination of data collection at one macroplot, the azimuth of the
line transect was determined and measured with a compass. The line transect
(Figures 3.1, 3.7 and 3.10) was transversed along the selected azimuth for 110
meters to the center point of macroplot number 2 using a compass, 2-meter
measuring stick and a USGS 7.5 map. Data collection for each of the four
quadrats within the macroplot was repeated for each macroplot, until reaching
the 10" macroplot along each transect.

At the culmination of one transect, the following transect was traveled to
via GPS navigation. The macroplot data collection was then repeated for the
further macroplots along the 5 transects, for each of the 3 fire site locations.
Data was transferred into Excel databases, and linked to macroplot locations in

ArcGIS.

Control Site

In order to minimize the effect of the remaining scene-dependent factors
(atmospheric, topographic, and climatic effects and changes in detector gain or
offset), vegetated control areas, “reference areas” were chosen. The areas were
selected from the non-burnt bosque tamarisk woodland because it was spatially

near the burns and because its general characteristics (soil, humidity, topography
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and type of vegetation) were representative of pre-burnt areas. Satellite data can
be acquired over the test and reference area; thus the existing differences
between the burnt and un-burnt forests may be obtained. In this way, the scene-
dependent effects will not affect the results because they could be considered to

be the same for both areas.

Map Creation
Maps for the burn sites were prepared with the use of ArcGIS, USGS

Topographic Quadrangles and maps from the NM Bureau of Geology.

Treatment of Data

During vegetation sampling, raw data for each quadrat were recorded on
printed field sheets and subsequently transferred to an Excel database. Each
database record consisted of one sampling event for one macroplot (containing 4
quadrats). Data in each record included Transect Number, Macroplot Number,
GPS, Waypoint Number, GPS Location (UTM), GPS Elevation, Soil Texture,
Erosion Type, Erosion Severity, Crust Description, Seedling Cover (tree height
below 4.5 feet), Sapling Cover (tree height greater than 4.5 feet), Tamarisk
Seasonal Stage, Dominant Species, stand height of the dominant species, tree
cover, grass cover, forb cover, graminoiod cover, and bare soil cover and type.
An example of types of vegetation encountered other than tamarisk, cottonwood

and willow (Figure 3.15).
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Firemon Codes for Field Sampling

Short hand notation was used in the field to denote soil type, erosion type
and erosion severity, following the guidelines of FIREMON protocol (Figures 3.16
and 3.17). When estimating cover, percentages were estimated occularly and
recorded as pertinent to the FIREMON guidelines for Cover Classes. For
example, a quadrat with approximately 80% of tamarisk would be recorded as

80% because it falls within the range of 75-85% (Figure 3.18).

|
Sail Types

Code Description Code Description
C Clay S Sand
€L Clay loam s5C Sandy clay
cos Coarse sand SCL Sandy clay loam
COsL Coarse sandy loam sI Salt
FS Fine sand SIC Silty clay
FSL Fine sandy loam SICL Silty clay loam
L Loam SIL Silt loam
LCOs Loamy coarse sand SL Sandy loam
LFS Loamy fine sand VES Very fine sand
LS Loamy sand VEsL Very fine sandy loam
LVES Loamy very fine sand X Did not assess

Erosion Type Types

Code Erosion type

S Stable. no erosion evident
R Water erosion. rill

H Water erosion. sheet

G Water erosion. gully

T Water erosion. tunnel

W Wind erosion

O Other type of erosion

X Did not assess

Figure 3.16. FIREMON Codes for field sampling form (NBII, 2004).
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Erosion Severity Codes

Code  Erosion severity

Q0 Stable, no erosion is evident,

1 Low erosion severity: small amounts of material are lost from the plot. On average
less than 25 percent of the upper 8 in. (20 e¢m) of soil surface have been lost across
the macroplot. Throughout most of the area the thickness of the soil surface layer is
within the normal range of variability of the uneroded soil,

2 Moderate erosion severity: moderate amounts of material are lost from the plot. On
average between 25 and 75 percent of the upper 8 in, (20 cm) of soil surface have
been lost across the macroplot, Erosion patterns may range from small. unerodad
areas to small areas of severely eroded sites.

3 High erosion severity: Large amounts of material are lost from the plot. On average
75 percent or more of the upper 8 in, (20 cm) of soil surface have been lost across the
macroplot. Material from deeper horizons in the soil profile is visible.

4 Very high erosion severity; Very large amounts of material are lost from the plot,
All of the upper 8 in. (20 em) of soil swrface have been lost across the macroplot,
Erosion has removed material from deeper horizons of the soil profile throughout
most of the area.

=1 Unable to assess

Figure 3.17. FIREMON Codes and percentages for field sampling form (NBII, 2004).

, Cover Classes

Code Canopy cover

0 Zero percent canopy cover
0.5 ~0-1 percent of canopy cover
3 >1-5 percent canopy cover
10 =5=13 percent canopy cover
, 20 =15-25 percent canopy cover
30 »25-35 percent canopy cover
40 »35-45 percent canopy cover
50 ~45-55 percent canopy cover
60 »55-05 percent canopy cover
75 percent canopy cover

70 >G5~
30 »75-85 percent canopy cover
90 >85-95 percent canopy cover
08 >95-100 percent canopy cover

Figure 3.18. FIREMON percentages for field sampling form (NBII, 2004).




. Erosion Severity Codes

Code

Erosion severity

0
1

-1

Stable, no erosion is evident.

Low erosion severity; small amounts of material are lost from the plot. On average
less than 25 percent of the upper 8 in. (20 cm) of soil surface have been lost across
the macroplot. Throughout most of the area the thickness of the soil surface layer is

- within the normal range of variability of the uneroded soil.

Moderate erosion severity; moderate amounts of material are lost from the plot. On
average between 25 and 75 percent of the upper 8 in. (20 cm} of scil surface have
been lost across the macroplot. Erosion patterns may range from small, uneroded
areas to small areas of severely eroded sites.

High erosion severity: Large amounts of material are lost from the plot. On average
75 percent or more of the upper 8 in. (20 cm) of soil surface have been lost across the
macroplot. Material from deeper horizons in the soil profile is visible.

Very high erosion severity; Very large amounts of material are lost from the plot.
All of the upper 8 in. (20 cm) of soil surface have been lost across the macroplot.
Erosion has removed material from deeper horizons of the soil profile throughout
most of the area.

Unable fo assess

Figure 3.17. FIREMON Codes and percentages for field sampling form (NBII, 2004).

Cover Classes
Code Canopy cover
0 Zero percent canopy cover
0.5 =>0-1 percent of canopy cover
3 =1-5 percent canopy cover
10 >3-15 percent canopy cover
20 =15-25 percent canopy cover
30 =25-35 percent canopy cover
40 =>35-45 percent canopy cover
30 =>45-35 percent canopy cover
60 =55-65 percent canopy cover
70 >65-75 percent canopy cover
30 =75-85 percent canopy cover
G0 =85-95 percent canopy cover
o8 >05-100 percent Canopy cover

Figure 3.18. FIREMON percentages for field sampling form (NBIl, 2004).




3.2.2 Soil Hydrology Observations

Professor Bruce Harrison and Nicole Alkov traveled to specific areas
within the Mitchell, Marcial and Bosquecito Fires which had consistently low
Instantaneous-and Daily ET values, before and after the fire—independent of the
fire. Soil sampling and characterization was performed to the groundwater table
at one location within the Mitchell Fire with characteristically low Instantaneously
and Daily ET rates. For the Marcial Fire, two locations were sampled, one inside
and one outside of the low Instantaneous and Daily ET areas. Concerning the
Bosquecito Fire, sampling was conducted during a field trip including Bruce
Harrison’s Soils Class, and occurred along a North-South transect encompassing
areas with high and low Instantaneous and Daily ET rates. They used a hand
auger to determine soil types and stratigraphy as well as to find a depth to the

ground water table. Findings from the field trips can be found in Section 4.5.3.

3.3 Surface Energy Balance Algorithm For Land (SEBAL)

SEBAL is a remote sensing flux algorithm that solves the instantaneous
surface energy balance for every pixel of a satellite image (Bastiaanssen et al.,
1998, 2005) such as Landsat or MODIS (Moderate Resolution Imaging
Spectrorédiometer). The software ERDAS IMAGINE (Lefca Geosystems) is used -
to process every pixel of the satellite image through the SEBAL algorith\m via the
ERDAS IMAGINE Model Maker tool. ERDAS IMAGINE is a raster graphics
éditor and remote sensing application that allows the user to display, enhance

‘and model digital images. It is a toolbox él‘iowing the userto
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perform numerous operations on an image and answer geographical questions.
| The SEBAL method is based on the computation of surface albedo,
surfaée temperature and vegetation index from multi-spectral satellite data. The
surface albedo is used to calculate net short wave radiation, and surface
temperature for the calculation of net long wave radiation, soil heat flux and
i’ , sensible heat flux. The vegetation index governs the soil heat flux by
incorporating light interception by canopies, and is used to express the aerody-
namic roughness of the landscape. The latent heat flux is computed as the
residual of the surface energy balance. Air humidity measurements are not
needed because. evaporation is computed from the latent heat flux. SEBAL has
been applied for water balance estimations, irrigation performance assessment
studies (Roerink et al., 1997), and for weather prediction studies (Van de Hurk et

al., 1997).

The components of the energy balance are:

R —-G-H=AE : (1)

where R, is the net incoming radiation flux (W m?), G is the ground heat flux (W

m?), H is the sensible heat flux (W m?), and AEis the latent heat flux (W m),
w’hich is the evapotranspiration rate. The parameteriis the latent heat of
vaporization of water (J kg') and E is the vapor flux (kg m? s7).
Evapotranspiration E includes both bare soil evaporation and vegetation

- transpiration.
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The net radiation R, is estimated from the remotely sensed  surface

albedo, surface temperature, and solar radiation calculated from meteorological
formulas (Igbal, 1983). The ground heat flux G is determined through semi-

empirical relationships with R, surface albedo, surface temperature, and

vegetation index (Bastiaanssen et al.,, 1998, 2005). The sensible heat H is
calculated from the following formula:

H=paC ];ero —Ta (2)

p
rah

where p, is the density of air (kg m™), C,, is the specific heat of air (J kg™ K™,

a

lan is the aerodynamic resistance to heat transfer (s m"), T - 1S the surface
aerodynamic temperature, and T, is the air temperature either measured at a

standard screen height or the potential temperature in the mixed tayer (Brutsaert
et al., 1993). The aerodynamic resistance to heat transfer is affected by
windspeed, atmospheric stability and surface roughness (Brutsaert, 1982). The

apparent simplicity of Eq. (2) is deceptive since T

zro Ca@nnot be measured by
remote sensing. Remote sensing techniques measure the radiometric surface
temperature T,y which is not the same as the aerodynamic témperature.

The two temperatures usually differ by 1-5 °C. SEBAL is a pracﬁcél method that
overr:omes the problem of inferring the aerodynamic temperature from the

radiometric temperature and the need for near-surface air temperature

measurements by directly estimating the temperature difference between T, and

T, taken at two arbitrary elevations z; and z, without explicitly solving for the




absolute temperature at a given height. The temperature difference for a dry
surface without evaporation is obtained from the inversion of the sensible heat

transfer equation setting latent heat flux AE= 0, so that H=R -G

(Bastiaanssen et al., 1998, 2005).

Hrah

,0an

T,-T,=AT,= 3)

For a wet surface all available energy (R,—G) is used for evaporatioﬁ AE so that

H=0and AT,=0.

Field measurements (Bastiaanssen et al., 1998) have shown that the

relationship between Tr.g and AT, is approximately linear

AT, =T =6 | 4)

where ¢, and c, are the linear regression coefficients valid for one particular
moment (the time and date the image is taken) and landscape. By using the
minimum and maximum val-ues of AT, as calculated for the coldest and warmest
pixel, the extremes of H are used to find the regression céefficient e and c,

~ which will prevent outliers of H-fluxes. Thus, the empirical Eq. (4) relies on spatial
differences in the radiometric surface temperature rather than absolute surface
temperatures to minimize the influence of atmospheric corrections and surface

emissivity uncertainties (Compaoré et al., 2007).
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Eq. (3) has two unknowns: AT, and the aerodynamic resistance to heat
transferr,, , which is affected by wind speed, atmospheric stability, and surface

roughness. To find a wind speed representative over a heterogeneous
landscape, first wind speed at a height 20(5 m above the ground surface is
considered and assumed to be spatially constant. The wind speed at 200 m can
be obtained by an upward extrapoAIation ofa wind speed measurement at 2 or 10
m assuming a logarithmic wind profile or from mesoscale atmospheric model
simulations (Compaoré et al., 2007). The wind speed at each pixel is obtained by
a downward extrapolation using the surface roughness, which is determined for
each pixel using an empirical relationship between surface momentum
roughness z,m and the Normalized Difference Vegetation Index (NDVI) (Huette,
1988). The end result of these calculations is the determination of final values for

r, and AT, for each pixel using an iterative approach that takes into account

the stability of the atmosphere. After replacing T, T, in Eq. (2) by AT, the

sensible heat flux H is calculated for each pixel. Then, the latent heat flux AE or
evaporation rate is derived for each pixel using Eq. (1).

vThe correct selection of the temperatures of the cold and hot pixel for the
derivation of parameters ¢ and ¢, in Eq. (4) is the most critical step in the entire
SEBAL process. An error of a few degrees will cause serious distortion of the
distribution of the sensible and latent heat fluxes over an image. The ranking of
the heat fluxes from smallest to largest will still be correct but their absolute
values can be considerably flawed. The cold pixel is selected in areas with well-

watered healthy crops with full soil cover or in shallow water bodies
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(Bastiaanssen et al., 2005). The cold pixel is chosen as the coldest pixel within

this area. Over the cold pixel it is assumed AT, = 0, which implies that
H=0and\E = R,—G. The hot pixel is selected from a dry bare agricultural field

with'negligible E. There are hotter pixels in the scene (e.g. a parking lot or
sparsely-vegetated desert), but the E over fhe cooler dry bare agricultural field is
already expected to be zero. Thué, for any pixel cooler than the hot pixel, E > 0,
and for any pixel warmer than the hot pixel, E = 0.

SEBAL yields an estimate of the instantaneousr evaporation E at the time
Qf the Landsat overpass around 10:30 a.m. This instantaneous evaporation rate
must then be extrapolated to obtain the daily evaporation. The extrapolation is
done using the evaporative fraction EF (i.e., the ratio of latent heat over the sum
of latent and sensible heat) which has been shown to be approximately constant

during the day (Brutsaert and Sugita, 1992; Shuttleworth et al., 1989).

' — RnRZ—?gH — AEAE/'HSIH ~ EF;4 (5)

inst inst

inst

Therefore, multiplication of the instantaneous EF = determined from SEBAL

with the total daily available energy yields the daily evaporation rate J,EM

(Bastiaanssen et al.,1998a).

iEM = EFinst (R, —Gy,)




EFinst-(R ,, —G,,)
E24 - 3 24 24

()

where AE,, is daily latent heat flux (MJ m? day™), E,, is daily evaporation (mm
d"), G,,is daily soil heat flux (MJ m? day™). The daily net radiation R ,, (MJ m?

day™) for a clear day is obtained by a semi-empirical expression (de Bruin, 1987):

R, =00864-[(1-a) Ry, 7, ~110,,] ®
48 R
R ,,=(05/24)-G, -d, Y cos(®)i ,, ©)

i=1
T, =075+2:10% 2 (10)

where 0.0864 is the conversion parameter from W m? to MJ m? day™, R ,,is
the daily-averaged extraterrestrial shortwave radiation (W m?) which is daily-

averaged incoming solar radiation unadjusted for atmospheric transmittance 7,
(=), G, is the solar constant (1367 W m?), & is solar incident angle (degree), d,

is the inverse squared relative earth-sun distance (-), and z is the elevation

above sea level (m) (Tasumi and Allen, 2000).
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Energy Balance for ET

ET is calculated as a “residual” of the energy
balance

Rn  H ET

ET=R, -G - U
Basic Truth:

Evapecration
consumes The energy balance

includes all major
sources (R,) and
consumers (ET, G, H)
of energy

Figure 3.19. The Surface Energy Balance.
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3.4 Satellite Imagery

3.4.1 LANDSAT Imagery

Post-fire regeneration was monitored by means of 15 images from
Landsat 5 TM (Thematic Mapper) with spatial resolution of 30 m x 30 m covering
the period of May 2002 - July 2007, before and after the three fires. The data was
subsetted to include the fire areas and control areas outside the fire. The images
had low amounts of cloud cover and were of high quality (Figure 3.20). The data
was professionally georectified or georectified to a previously accredited
georectified image with 30 m x 30 m resolution. The TM image dates for the fire

analyses are the following:

. May 31, 2002

. May 12, 2004

. May 28, 2004
.June 13, 2004
.July 6, 2004
.July 31, 2004

. September 17, 2004
. May 22, 2005
.July 2, 2005

10. August 3, 2005
11. July 21, 2006
12. May 18, 2006
13. June 19, 2006
14. May 21, 2007
15. July 8, 2007

CoO~NOOhWN—
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4 LANDSAT 5 TM Images
Row/Path 33/37
from 2006 and 2007

e 8

 May 21, 2007

Figure 3.20. Four LANDSAT 5 TM Images from 2006 and 2007.
Free Landsat Imagery

Under a transition toward a National Land Imaging Program sponsored by
the Secretary of the Interior, the USGS is pursuing an aggressive schedule to
provide users with electronic access to any Landsat scene held in the USGS
managed national archive of global scenes dating back to Landsat 1 launched in
1972. By February 2009, any archive scene selected by a user will be processed

automatically to a standard product recipe and available for electronic retrieval, at
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no cost. All Landsat data purchasing options from the USGS will be discontinued
by February 2009, once the entire Landsat archive can be accessed at no
charge. Landsat scenes can be previewed and downloaded using the USGS

online Global Visualization Viewer (USGS, 2008).

3.4.2 MODIS Imagery

The MODIS multi-temporal images used in this research were acquired
from the NASA Terra Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite sensor. The relative size of a MODIS image compared to the size of a
LANDSAT image and the state of New Mexico is portrayed in Figure 3.21. The
MODIS 250 m NDVI product (MOD13Q1) provided the needed pre- and post-fire
vegetation data. The spatial resolution of 250 meters is coarser than the Landsat
resolution of 30 meters (Figures 3.22 and 3.23), but Hong (2008) proved high
correlation between the two products when upscaling/downscaling between the
data sets. The MOD13Q1 product represents spatial aggregates of the
MODIS/Terra Vegetation Indices 16-day global 250 m sinusoidal-projection grid.
The product contains two vegetation indices, the NDVI and Enhanced Vegetation
Index (EVI). MODIS NDVI scenes were acquired for calendar years 2003
through mid-August 2007 (n = 46, 2003-2004; n = 56, 2005-August, 2007) from
the NASA Earth Observing System (EOS) online data gateway (Table 3.1).
Details documenting the MODIS NDVI compositing process and Quality
Assessment Science Data Sets (QASDS) can be found at NASA's MODIS web

site (MODIS, 1999).
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LANDSAT Image Superimposed on a
MODIS NDVI 16-Day Composite Image

wr;i!ra -

MODIS NDVI
Value

- 0.994

B 020

Figure 3.21. Image size comparison of a LANDSAT Image and MODIS image with the state
of New Mexico outlined in red.
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MODIS Image Dates
2003 2004 2005 2006 2007
1/1/03 1/1/04 1/1/05 1/1/06 11107
1/117/03 117104 1/17/05 1/17/06 117107
2/2/03 2/2/04 2/2/05 2/2106 2/2107
2/18/03 | 2/18/04 2/18/05 2/18/06 | 2/18/07
3/6/03 3/5/04 3/6/05 3/6/06 3/6/07
| 3/22/03 | 3/21/04 3/22/05 3/22/06 | 3/22/07
. 4/7/03 4/6/04 4/7/05 4/7/06 4/7107
4/23/03 | 4/22/04 4/23/05 | 4/23/06 | 4/23/07
5/9/03 5/8/04 5/9/05 5/9/06 5/9/07
5/25/03 | 5/24/04 5/25/05 5/25/068 | 5/25/07
6/10/03 | 6/9/04 6/10/05 | 6/10/06 | 6/10/07
6/26/03 | 6/25/04 6/26/05 | 6/26/06 | 6/26/07
7/12/03 | 7/11/04 7112/05 7M12/06 | 7M12/07
i 7/28/03 | 7/27/04 7/28/05 7/28/06
8/13/03 | 8/12/04 8/13/05 8/13/06
8/29/03 8/28/04 8/29/05 8/29/06
9/14/03 | 9/13/04 9/14/05 9/14/06
9/30/03 9/29/04 9/30/05 9/30/06
10/16/03 | 10/15/04 | 10/16/05 | 10/16/06
11/1/03 | 10/31/04 | 11/1/05 11/1/06
11/17/03 | 11/16/04 | 11/17/05 | 11/17/06
12/3/03 1212104 12/3/05 12/3/06
12/19/03 | 12/18/04 | 12/19/05 | 12/19/06
Table 3.1. MODIS Image dates, every 16 days, used for NDVI| analysis.

The MODIS NDVI algorithm operates on a per-pixel basis and relies on
multiple observations over a 16-day period to generate a composite image. The
vegetation index compositing objective is to combine multiple images into a
single cloud-free NDVI map, taking into account the variable atmosphere
conditions, residual clouds, and a wide range of sensor view and sun angle
conditions. The original images (dimensions 1200 km x 1200 km) were
resampled using a nearest neighbor operator from their native Sinusoidal
! projection to the World Geodetic System 1984 (WGS 84). The individual scenes

were subset to the Bosquecito, Mitchell and Marcial Fire sites. The subsets were
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then run through the Zonal Statistics tool using a 250 m x 250 m grid cell in the
Spatial Analyst application in ArcGIS. The Zonal Statistics tool was able to
extract statistical information such as the mean, minimum, maximum and
standard deviation of the NDVI| amongst the 250 m x 250 m pixels comprised in
each fire site from the time span of 2003 to August of 2007. Once the statistics
were acquired, time series plots of the mean and standard deviation of NDVI
over time were created for each of the three fire sites.

Post-fire regeneration was monitored by means of 102 MODIS NDVI 16-
day Composite images with spatial resolution of 250 m x 250 m covering the
period of January 1, 2003 to July 12, 2007, before and after the three fires. The
data was subset to include the fire areas and data on the mean and standard
deviation of NDVI was extracted for each date for each fire site using the Zonal
Statistics tool in ArcGIS. The data was professionally georectified by NASA with

250 m x 250 m pixel resolution.
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LANDSAT 5 TM Image

May 21, 2007
30 Meter Resolutlo
[ Mitchell Fire
l___] Bosqueailo Fire
I:I San Marcial Fire

2,100 4,200 8,400

Figure 3.22. Subset of a LANDSAT Image from May 21, 2007 with the 3 fire sites to
illustrate 30-meter pixel resolution.
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MODIS NDVI 16-Day Composite Image
1 May 10-25, 2007
250 Meter Resolutlon

o, 2

| Mitchell Fire
[:] Bosquecito Fire
:’ San Marcial Fire

NDVI
Value

. 08435

I 00353

Meters
0 2100 4,200 8.400 12,600

Figure 3.23. Subset of a 16-Day Composited MODIS Image from May 10-25, 2007 with the 3
fire sites to illustrate 250 meter pixel resolution.
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3.5 ArcGIS - 9 Pixel Analysis

Spectral response data was obtained from 15 Landsat TM images. The
purpose of the imagery analysis was to track changes in albedo («), daily and
instantaneous ET, ground heat flux (G), Leaf Area Index (LAIl), NDVI, and
surface temperature (Ts) after fire at the 3 fire locations. This was done by
extracting data on the above parameters from 3x3 “9-Pixel Plots” Landsat TM
super-pixel groupings from SEBAL output which is calculated for each 30x30
meter pixel in a TM image. The location and size of the 9-Pixel Plots for each of
the 3 fires is portrayed in Figures 3.24-3.26. Specifically, the data (mean and
standard deviation of the parameters) is extracted using the Zonal Statistics tool
in ArcGIS. The target coordinates for each of these pixel groups representing
the center points of the 126 macroplot study sites on the ground. This analysis
was also useful in comparing Landsat data on the above stated parameters to
ground data collected in the field campaign from August — October, 2006. The
areal dimensions of the study sites in relation to the corresponding target pixels
and super-pixels are based on an assessment of map location accuracy as well
as the character of tamarisk woodland and its variability over space. Associating
ground points and pixel data can introduce geometric error; however, many
authors suggest using 3x3 or 5x5 TM pixel window as a way of reducing the
chance variability due to the location of the target pixel (Ahern et al., 1998, White
et al., 19986).

In general, there is a trade off to be made when seeking an acceptable

location accuracy while, at the same time, trying to obtain an accurate

67




assessment of tamarisk character for a specific study site. By increasing the size
of the areas on the TM image that correspond to the coordinates of the target
sites on the ground, the likelihood of overlap is increased, but the potential for
collecting extraneous spectral data for each of the sites is also increased. If the
processes under investigation are taking place at smaller spatial scales, then
inclusion of this extraneous data may dilute or generalize the spectral signatures
to an acceptable degree (Pratt, 2001).

The character of tamarisk woodland, however, appears to change quite
gradually over space with the more abrupt changes being associated with
topographic features or amongst clumps of cottonwood communities. The
changes associated with topography are usually evident even on the TM imagery
and therefore are avoidable. Fortunately most--except Transect 1 of the Mitchell
Fire, which was excluded from 9-Pixel analysis--of the 9-Pixel Plots are
unaffected by edge effects caused by topography, roads, construction and

human intervention.
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Mitchell Fire
9-Pixel Plot Locations for SEBAL Analysis

L

L

e

— ,_--__- v Ty

Malar
0 155 310 620 930 1,240

Figure 3.24. 9-Pixel Plots at the Mitchell Fire Site.
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Marcial Fire Map
9-Pixel Plot Locations

N il 457 £ 4
Meters
0 255 510 1,020 1,530 2,040

Figure 3.25. 9-Pixel Plots at the Marcial Fire Site.
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Bosquecito Fire Map
9-Pixel Plot Locations

N
0 110 220 440 660 880

Figure 3.26. 9-Pixel Plots at the Marcial Fire Site.
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4. RESULTS AND DISCUSSION

4.1 Dynamics of Albedo, NDVI, ET and Surface temperature

The following figures portray spatial and temporal changes in four key
hydrological parameters—albedo, NDVI, Instantaneous and Daily ET—in order to
assess changes in tamarisk water use before and after the Mitchell, Marcial and
Bosquecito Fire. The maps presented below were generated via the SEBAL
algorithm using weather data, satellite data and ERDAS IMAGINE. Albedo and
NDVI give us a specific viewpoint of physical conditions on the ground: albedo is
related to the reflectivity of the ground surface, which has characteristic values
for particular materials, for example 0.17 for bare soil (Markvart, 2003) and 0.25
for green grass (Markvart, 2003). NDVI is related to the “greenness” or density
of vegetation within the three sites. The NDVI of an area containing a light to
dense vegetation canopy will tend to have values ranging from 0.3 to 0.8 while
bare soils tend to generate rather small NDVI values of 0.1 to 0.2 (Gates, 1980).

The parameters of instantaneous and daily ET portray the nature of
evapotranspiration, water consumption, and plant biomass growth for the
vegetation located within the three sites. In addition, the ET parameters are used
as a proxy for vegetation regeneration and recovery. Used together—albedo,
NDVI, instantaneous and daily ET—one is able to deduce a time series of the

recovery of tamarisk after fire.
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The Mitchell Fire

Figures 4.1-4.4 in the following pages present the albedo, NDVI,
instantaneous and daily ET before and after the Mitchell Fire. The figures
presented allow us to assess ground conditions at the Mitchell Site and present
snapshots on the return to pre-fire conditions due to vigorous tamarisk
regeneration and environmental conditions. The dramatic impact of the Mitchell
fire is evident by the comparison of the instantaneous ET (ET), daily
Evapotranspiration (ETz4) and NDVI plots (Figures 4.1-4.3) before the fire and
one month after the fire. The instantaneous and daily ET maps look similar but in
fact they are different; the total daily available energy at every pixel within a
Landsat image is taken into consideration when outputting data towards the daily
ET map (Bastiaanssen et al.,(1998a). The Instantaneous ET maps only account
for ET at the exact moment of the satellite overpass time.

ET (Figures 4.1 and 4.2) is an excellent indicator of post-fire conditions, it
mimics dramatic environmental changes better than NDVI, seen in Figure 4.3.
One month after the fire, the ET maps indicate that there is zero ET—soil
evaporation and transpiration—for the majority of the site. We assume there is
little to negligible transpiration from the small tamarisk resprouts evident in
photographs one month after the fire (Figure 3.4). We also assume that there is
negligible soil eraporation soon after fire due to fire-induced hydrophobicity, or
water repellency. Water repellant surfaces can reduce evaporation by disrupting
the forces of capillary rise (DeBano, 1981) of moisture from the shallow ground

water table up through the soil column. Researchers claim that coarse textured
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sandy soils are more likely to become repellent as they have a relatively low
surface area compared to finer materials. However, certain clay soils have been
found to become repellent as the coatings have formed on aggregates of fine
material. The NDVI maps in 4.3 do not portray the hydrophobic nature of post-fire
clayey soils. In addition, the dramatic progression of tamarisk growth and
regeneration from immediately after to two years after fire is not as pronounced
as in the ET maps, photographs and field observations incorporated into this
report.

Concerning changes in albedo post-fire, the grayish-black charring of the soil
surface directly after fire is evident in the reduced-albedo portions of the site
located within the Northern and Southern portions (Figure 4.4). One would
expect more reduced-albedo conditions due to the blackening and charring of the
soil as perceived during the Summer 2006 Field Campaign. However, some of
the albedo decrease remained within the same albedo class (0.12-0.08) and,
therefore, doesn't reveal itself on the map. For example, an albedo decrease of
0.12 to 0.09 would not be visualized by a color change in Figure 4.4. Another
reason may be that immediately after the fire, in May 2005, the ash contained
more white-gray materials (leading to an albedo increase) than was observed
one year later in the field.

The middle portion of the site, the Mandeville Plot, was the most highly
affected within the first few months after the fire because it was previously
treated with herbicide in September of 2003—any remaining above-ground

vegetation activity was eradicated by the fire. From the examination of
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photographs from the SSWCD, it is apparent that tamarisk regeneration started
occurring one month after the fire (Figure 3.4) from the root crown below ground
surface. The fire was not intense enough to sear and destruct the root crown
below, thereby allowing regeneration to occur. Regenerative activity two months
after the fire is portrayed in Figures 3.5 and 3.6. One year later, May 18, 2006,
there has been significant regeneration along the western and southern portion
of the fire area (Figure 4.2). Two years later, July 8, 2007, the site looks similar
to the conditions before the fire, except that the Mandeville Plot exhibits little to
no daily ET (Figure 4.2) due to treatment with herbicide.

Following the fire, the Mandeville Plot was exposed to flooding during the
record rainfall of the summer of 2006, and underwent mechanical removal of
tamarisk root mass from the spring of 2006 to the spring of 2007. The exhibition
of little to no daily and instantaneous ET as well as reduction in NDVI two years
after the fire at the Mandeville Plot displays the efficacy of using the combination
of herbicide, burn, flooding and mechanical removal in controlling tamarisk.
Flooding from the torrential rains of the summer of 2006 suffocated the tamarisk
by preventing exposure of oxygen from the atmosphere to leaf surfaces due to
elevated surface water levels.

For the NDVI plots (Figure 4.2), there is an increase in NDVI 1 year and 2
years after the fire for the northern and southern portions of the Mitchell Fire site.
Since the site is comprised of homogeneous tamarisk thickets—there are no
other dominant vegetation types—the NDVI increase can be correlated to

tamarisk regeneration because the tamarisk is the dominant vegetation type that
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would produce the “greenness” signal.  Tamarisk was the dominant species
type during the Summer 2006 Field Campaign (Figure C.1). In addition, only two

of the 16 9-Pixel Plots sampled during the field campaign displayed notable

coverages of combined shrubs, graminoids and forbs, from 4 — 44% (Figure C.5).




L

L

“K1aBew) ayjajes jespueT o} paidde [apow yEIS aUl WO PAALIAP Bl [[YSNUIN dY3 Joye pue atoyeq sdew opaq)y *|'v ainbig

RNCED

0w opeey

00z ‘g Ane

all4 U} JaYy SIBIA Z

i

a
i

PRI G ceeary
3002 ‘g1 Lew

all4 8y} Jayy Jeaj |

314 ay3 18y Yuol |

20> - _
ovo> [
20> [ |
soo> [
vo0> [N
<3NTVA>
§0-22-S op=qIv

all4 9] alojag Jeaj |

opaq|y :12jaweled
S00Z ‘91-6 |UdYy :81eQq a1l
CHERIEN T




8L

*faaBewn ayijjeles jespue] o} paijdde
[2poW YE3S 9U) WOl paAuap alld [|9YdNN 2yl Jaye pue alojeq sdew (JAQN) xepu| uonejabap aouslayiq pazijeuuoN ‘T'p 2nbid

Envl
so-
so- N |
L0»
90>
S50
ro>
E0>
zo- I
vo- I
<3INTYA>
F0-82-5 INON

ACCHN

o g -
5 = 2
i= i £
e 500z ‘22 hem bkl biad e
al14 3y} 1YY SIBdA Z all4 3y} ISPy JedA | 2114 2y} JoUY UIUOW L al14 8y} alojog Jeap |

IAQN :1818wWweled
S00Z ‘91-6 Iudy :ajeq aai4
CHERIEI T




6.

*faaBeuwn ayjjeles Jespue]
0} paljdde |spow Tyg3S 2yl Woll paALap alid [|2You 2yl Jaye pue alojaq sdew uonendsuesjodea] snoauejuelsu] "¢y a4nbiy

ot >
50>
eo> [
zo>
o~ [
0%

ro=

co> [
zo- [l
o>
<IMVA>

yO-82-5 15Ul 13

T |

- » -

h
=

b 3 T
Lo is Lo P

i

TR
el g T R B ]

et g ]

i3

00T '8T Al

9002 ‘gt Aew S00Z 'z Kew

2114 9y} JOYY SIBdA Z alld ay) Jayy Jes) | alld Y] JoYy YUuoW | all4 ayj alojag Jeaj |

_Looz'sdmr

13 snosauejuelsu| :1ajaweled
5002 ‘91-6 114dY :8)e(Q 8414
alid [IPYSNI




08

‘faaBeun
ajij|2jes jespue 0} paijdde |spow Jyg3S ay) wouy paauap aJid [[9Ys3N ay) Jaye pue alojaq sdew uopendsuesnjodeag Ajieqg ¢ 2inbig

oo > [
os-
oe> I
o>
00> [

05>

1
DE=>
[ k-£3
o1 [
[Aepjunu) <3N TWA>
»0-82-5 13 freg

[ 1]

| . -
- - -
8 _iE
-1 17 Aemg — ..u - [P — i gy oo roass 10 Asea .-.SN.H.N -
ai14 3Y3 1YY SIEAA Z oN4BUIJOPV JROA | Ol SU3 ISRV UIUOW | 3iI4 3U} 2409 Jeaj |

13 Ajieq :1sjoweled
5002 ‘91-6 [HdYy :23eQ 2414
alid [IPY21IN




Marcial Fire

The Summer 2006 Field Campaign included the Tiffany Basin within the
Marcial Fire site. Due to the site’s location on the Armendaris Ranch and
separation from the Bosque del Apache to the north, no site augmentation such
as herbicide treatment, mechanical removal, or cottonwood pole plantings
occurred before the fire (SSWCD, 2008). Before the fire, the site was in a natural
state and populated by homogeneous tamarisk thickets with small clumps of
cottonwood groves interspersed. Therefore, the discussion on Figures 4.5-4.8
portrays tamarisk regenerative behavior at a site that was previously undisturbed.

Figures 4.5-4.8 present the albedo, NDVI, instantaneous and daily ET before
and after the Marcial Fire. The data generated eight days after the Marcial Fire
displays a reduction in albedo within the Tiffany Basin study site area due to
blackening and charring of the tamarisk bark and soil (Figure 4.5). Daily ET,
instantaneous ET and NDVI| have been dramatically reduced—ET rates are close
to zero—for the entire portion of the site one month after the fire (Figures 4.6-
4.8). These images were not able to detect the small amounts of ET produced
from the very short tamarisk resprouts evident in photos from one month after the
Marcial Fire (Figure 3.9).

Two months after the fire, July 21, 2006, albedo, NDVI, daily and
instantaneous ET have all started to recover, but do not match pre-fire conditions
(Figures 4.5-4.8). The findings from SEBAL data are concurrent with
photographs taken at the Marcial Fire site one month after the fire (Figure 3.9).

One year later, for dates May 21, 2007 and July 8, 2007, spatial instantaneous
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and daily ET rates for the Tiffany Basin surpass the pre-fire ET images dated
May 31, 2002 (Figure 4.8). The images for NDVI portray a decrease in NDVI for
the images one and two months after the fire (Figure 4.6). For the image one
year after the fire, NDVI has surpassed that of the image from four years before
the fire, suggesting that the fire encouraged the tamarisk to regrow at a thicker,

denser rate than pre-fire conditions.
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Bosquecito Fire

Figures 4.9-4.12 present the albedo, NDVI, instantaneous and daily ET
before and after the lightening-induced Bosquecito fire that burned the hottest of
the three fires, fully consuming above-ground tamarisk biomass and bark in
portions of the site. The fully-consumed portions of the site were left with a layer
of light grey charred ash deposited on the ground surface, as evident during the
Summer 2006 Field Campaign. The light grey deposit areas, which are patchy in
nature and have a high reflectivity, are evident in the sporadic dark green
portions of the image for albedo one month after the fire (Figure 4.9). 2008,

The increase in albedo perceived one year after the fire for the majority of
the site (Figure 4.9) is most likely an overestimation in the model, as the
vegetation regeneration occurred in patchy sections of the site, as perceived
during the Summer 2006 Field Campaign and portrayed in the Bosquecito maps
in upcoming Section 4.4.1. The data 10 days after the Bosquecito Fire displays
the whole site strongly reduced in NDVI, daily and instantaneous ET (Figures
4.10-4.12). One month later, July 21, 2006, there remain great reductions in
NDVI, daily and instantaneous ET throughout the site, with areas of regeneration
occurring in the northwest and southwest boundaries of the fire (Figures 4.10-
4.12). One year later, July 8, 2007, the central portion of the site is still greatly
affected by the fire, as seen in reduced instantaneous and daily ET values in that
section (Figures 4.11 and 4.12), due to the extremely high fire severity; high
severity areas were observed during the field campaign of the summer of 20086.

Regeneration predominantly occurs within the field-observed medium to low fire
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severity areas in the Northern and Western boundaries of the fire (Figures 4.10-
4.12). Fire severity greatly influenced the tamarisk’s ability to re-sprout, degree of
canopy degeneration and the biological environment for the tamarisk to re-
establishment.

NDVI, a proxy for "greenness”, displays the return to pre-fire conditions
one year after the fire, with increased vegetation densities in the central portion
of the site. The increased average NDVI of 0.4 in the central portion of the fire
proposes the notion that the fire encouraged the tamarisk to regrow with a
greater thickness and resilience than before the fire, when there was an average
NDVI of 0.3 in that same region. The reduction in NDVI in the southwest portion
of the site one year after the fire may be due to fire effects on different vegetation
communities, such as cottonwood and willow, which may have been fully
eradicated by the fire. The increase in NDVI in the northwest portion of the site
may portray newfound tamarisk domination in secondary succession in areas
which may have previously been occupied by cottonwood and willow. Due to
tamarisk adaptation to fire, it is able to colonize areas previously occupied by
native species that lack the fire adaptation, thus increasing NDVI due to the
dense, thicket nature of tamarisk communities, compared to clumps of

cottonwood and willow stands.
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4.2 9-Pixel Bar Graphs

9-Pixel Bar Graphs (Figures 4.13-4.16) were generated in order to do a
comparison between the Summer 2006 Field Campaign data and the Landsat or
MODIS maps discussed in Section 4.1. The 9-Pixel Bar Graphs provide a pin-
pointed, micro- perspective following select 9-pixels located within each fire over
time, from one or two years before fire to one or two years after. The 9-Pixel Plot
locations for each fire site are presented in Figures 3.24-3.26. The 4 or 5 dates in
the bar graphs were selected from plots from 15 image dates in the available
SEBAL/Landsat data explored in this project, and such data plots can be found in
Appendix A in the form of 9-Pixel Plots. The image dates chosen for the bar
graphs in this section best represent tamarisk regeneration post-fire.

The bar graphs portray changes in albedo, daily ET (ET.4), instantaneous
ET (ETins), ground heat flux (G), Leaf Area Index (LAl), Normalized Difference
Vegetation Index (NDVI), and Surface temperature (Ts) and Crop Coefficient (Ke)
at the 9-Pixel Plot for the 4 or 5 image dates per fire. Crop Coefficients (K.) are
used with the reference ET (ET,) to estimate specific crop evapotranspiration
rates. Reference evapotranspiration is defined as the ET from an extensive
surface of clipped grass or alfalfa that is well-watered, and fully shades the
ground (Allen, 2000). The Crop Coefficient is a dimensionless number (usually
between 0.1 and 1.2) that is multiplied by the ET, value to arrive at a crop ET
(ETc) estimate. The resulting ET, is useful to hydrologists and can be used to

help an irrigation manager schedule when
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irrigation should occur and how much water should be put back into the soil
(USDA, 2006).

On the 9-Pixel Bar Graphs each date is represented as a certain color.
The 9-Pixel Plots correspond to field sampling locations, with the exact field
sampling location corresponding to a location within the center pixel in each 9-
Pixel Plot. Data was extracted for each 3x3 "9-Pixel Plot" from SEBAL output

data using the Zonal Statistics tool in ArcGIS.

Mitchell Fire

Figures 4.13-4.16 present the changes of albedo, ground heat flux (G),
surface temperature (Ts), Normalized Differenced Vegetation Index (NDVI), Leaf
Area Index (LAl), instantaneous Evapotranspiration (ETine) and daily ET (ETazs),
and Crop Coefficient (K¢) at the Mitchell fire. Pre-fire “baseline” conditions are
represented by the date May 28, 2004 (in green). The fire has caused a large
change in all the parameters as displayed by the first image after the fire, May
22, 2005 (in red) for all of the 9-Pixel Bar Graphs (Figures 4.13-4.16). The fire
eradicated all above ground green basal vegetation; the pronounced change in
the post-fire environment caused the most distinctive signal of change in the
energy balance parameters. In addition, the tamarisk bark stumps left standing
did not have potential for evapotranspiration. Strong indicators of the fire are the
plots of ground heat flux (Figure 4.13) and surface temperature (Figure 4.14) that
display elevated values due to the large proportion of exposed soil that was

previously occupied by dense tamarisk thickets.
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Four months after the fire, August 3, 2005 (in orange), all the parameters
have started to move back to pre-fire conditions (Figures 4.13-4.16) as the
tamarisk regenerates from the root crown below which was not destroyed by the
fire. From photographs from the SSWCD, it is apparent that tamarisk regrowth
started to appear as early as one month after the fire (Figure 3.4). Along with
tamarisk, the Summer 2006 Field Campaign documented small populations of
shrub, graminoid and forb species regrowing in the understory of the tamarisk,
(Figure C.5), adding the response by the energy balance parameters. A year
later, June 19, 2006 (in yellow) the energy balance parameters are still reduced
compared to pre-fire conditions (Figures 4.13-4.16). A full return to pre-fire
conditions is apparent two years later, July 8, 2007 (in blue), specifically in the
ETinst, ET24 and K¢ plots (Figures 4.15 and 4.16). This suggests that it took about
two years after the Mitchell Fire for the tamarisk and small populations of shrub,

graminoid and forb species to return to baseline, pre-fire conditions.
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Mitchell Fire
Fire Date: April 9-16, 2005

Albedo
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Figure 4.13. Plots of Albedo and Ground heat flux derived from the SEBAL model and the
stated image dates. Each 9-Pixel represents a macroplot sampling location from the

Summer 2006 Field Campaign.
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Mitchell Fire
Fire Date: April 9-16, 2005

Surface Temperature (Ts)
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Figure 4.14. Plots of Su;'_face tempt;r_ature and NDVI derivec-i_fr;:m the SEBAL model and
the stated image dates. Each 9-Pixel represents a macroplot sampling location from the
Summer 2006 Field Campaign.




Mitchell Fire
Fire Date: April 9-16, 2005

Leaf Area Index (LAl)
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Figure 4.15. Plots of LAl and Instantaneous Evapotranspiration derived from the SEBAL
model and the stated image dates. Each 9-Pixel represents a macroplot sampling location
from the Summer 2006 Field Campaign.
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Mitchell Fire
Fire Date: April 9-16, 2005
Daily ET (ETz)
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Figure 4.16. Plots of Daily Evapotranspiration and the Crop Coefficient derived from the
SEBAL model and the stated image dates. Each 9-Pixel represents a macroplot sampling
location from the Summer 2006 Field Campaign.
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Marcial Fire

Figures 4.17-4.20 present bar graphs of albedo, ground heat flux (G),
surface temperature (Ts), Normalized Differenced Vegetation Index (NDVI), Leaf
Area Index (LAl), instantaneous ET (ETi.s) and daily ET (ET.) and Crop
Coefficient (K;) for the 9-Pixel Plots before and after the Marcial Fire. The
SEBAL model failed to produce LAl output for May 31, 2002.

As with the Mitchell Fire, there is a large change in all energy balance
parameters in the first and second image after the fire, May 18 and July 21, 2006
(in red and yellow, respectively) for all of the 9-Pixels (Figures 4.17-4.20). Eight
days after the fire, May 18, 2006 (in red), there is a high proportion of zero values
for the bar graphs of LAI, instantaneous and daily ET as well as the Crop
Coefficient (Figures 4.19 and 4.20) which substantiates the eradication of all ET-
producing above ground basal vegetation. The greater-than-zero peaks in the
graphs for LAI, instantaneous and daily ET as well as the Crop Coefficient most
likely are indicative of surficial soil evaporation.

Two months after the fire, July 21, 2006, the parameters have started to
approach pre-fire background conditions (Figures 4.17-4.20). The background
data image date is May 31, 2002, early on in the growing season and from a year
with low precipitation which may explain why the plots for daily ET, instantaneous
ET, and Crop Coefficient for that date are reduced compared to those from July
8, 2007 (Figure 4.21). One year later on all the plots, May 21 and July 8, 2007,

the parameters approach the natural pre-fire conditions (Figures 4.17-4.20).
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Socorro County Monthly Precipitation
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Figure 4.21. Plot of Socorro County monthly precipitation for 2000-2007 (DRI, 2007)

Bosquecito Fire

Figures 4.22-4.25 present albedo, ground heat flux (G), surface
temperature (Ts), Normalized Differenced Vegetation Index (NDVI), Leaf Area
Index (LAI), instantaneous Evapotranspiration (ETiey and daily ET (ETz2s) and
Crop Ceoefficient (K¢) for the 9-Pixel plots that were generated for 4 dates before
and after the Bosquecito Fire.

There is a dramatic increase or decrease in the parameters in the first
image (10 days) after the fire, June 19, 2006 (in red), for all of the 9-Pixel Plots
(Figures 4.22-4.25). One month after the fire, July 21, 2006 (in yellow), the Crop
Coefficient (K.) starts to approach the pre-fire background conditions (Figure
4.25), postulating rapid tamarisk regeneration after only one month after fire, as
well as populations of graminoids, forbs, shrubs and cottonwood groves were

also encountered during the Summer 2006 Field Campaign, three months after
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the fire (Figures C.14 and C.20). The data is an exaggeration of what was
perceived during the field campaign three months after the fire: tamarisk
coverages were low, from 0 to 0.5 % (Figure C.10), with the majority of the site
occupied by bare soil (Figure C.12).

The disparity between the field and SEBAL data may be due to the complex
nature of the post-fire vegetation communities within the site. The Bosquecito site
has a greater distribution of dominant vegetation types such as cottonwood, forb,
graminoids and shrubs (Figure C.14). The site also has less homogeneous
tamarisk densities compared to the uniformly dense tamarisk thickets seen at the
Mitchell and Marcial locations—the vegetation communities are gathered in
clumps and are patchy with diverse soil and vegetation regimes and thus cause
more variant profiles. The graph for Crop Coefficient (Figure 4.25) most likely
best represents the post-fire regenerative behavior for the tamarisk within the site
for the first few months after the fire. The Crop Coefficient standardizes the data
for changes in daily weather conditions and is the best representative of

evapotranspiration as a proxy for tamarisk regeneration.

106




101

‘uBredwes plal4 900z J2WWING Y3 woly uoneso| Buidwes jojdosoew e sjuasaidal [axid-6 Y2eg
"sajep abew! pajels ayj pue [spouw Jyg3S aUl WO} PAALISP XN} Jeay punols) pue opaq|y 1o s10|d ZZ' 2inbi4

[ 1aquINN |2XId-6

6F UL¥ S EF LF BE JE GSE EE LE BZ hN mN ﬂN _.N 6L Ll

I

£

SL €L Ll B
{ . 5
._ | oz
| | |
[ _ [ Hid| of
_ | 09 o
| _ ¥ oo 2
il 3
W 0oL —

MW”MNM_ | | ey [ 4 oz
I ____:_:_ IR ___ _:_ _
90519 || — .
pO-gZ-S B | o

(9) xnj43e3Y punocig

lagquinp |aXid-§
OSErer rSrCr P ER CP LPOP BEBE LAESEGEVEEEZE LEOE BT RE L I GCYTRECTLZOCEL AL LLOLGLFLELZLLLOL G B L 9 C P E 2 L

_ T T
| i i =
| |
A : 0L IRIF) : [l
| FII o L 1 LIRS
o
L | - — i = m_._cm.
Lo-Lz-cH || —
|oo-tz-2a|| i 0z'0
|o0-6L-0m|
| vo-sz-c B |
| S0

opaqiv

9002 '6-9 aunr :8jeQ a4
ali4 oyoenbsog

H\




801

‘ubiedweq pjai4 900z Jewwng ayy woly uopeso] Buyjdwes jojdossew e sjuasaidal [axid-6 Yoeg
*sajep abew| pajels syl pue [spow Jyg3S 9yl WOL) paALap |AQN Pue ainjeladwal 82eUNG 10 S10jd €2t 24nbig

12NN [3X1d-6
DS EGrBrirSr S pv EP X POV BEBE LECESEVEEE ZELEDEGZBZ LCOZ SV ETZTIZOZG6L AL AL GLSLPLELZL LLOL 6 B L 9 G P £E 2 L
| _ | Il [ I TN TET m °0
1M | T | 1
_ _ _ . e
_ I | i 1 ” _ SRS o
| Wil N | | _
1l | 1
TR H{F1A IR AL .
| i Il I e L | (TSP ©°
| ir’ (1] 1 [d8 L] | e
|1 R TIA Aot E
| i
I LRl L = i i ” vo
[to-izsm]| | oy | ___ '
90-1z-10| . }
| 50
.mc-me-_i
|po-gz-sm || )
‘ _ 90
IAGN
19qunN [aXid-6
OSEP BrLPOPSh PP EP TP P OP BERE IEOESEPEEECE LEOCBEOZ [ZOEGZPEEZ ZZ IZOZHL B Ll oL SEPLELCHLLOL B B L 9 S F € 2 L
e 082
- 06T
00g
~ - - - - - oLe -
-
=
. | L oze
1l HIBILIIL 1Im |
;o;mlm-.m.___ _ __-_ :|__- __ﬁ oe
jao-Z-La) |
|90-6L-9m || I ore
|porgz-s® _
! ose
(51) aamesadwa ] soepng

8002 '6-9 sunr :sjeq a4
all4 oyiaanbsog




601

‘ubiedwes pjsi4 gooz Jawwing ay} woly uopeso] Bujjdwes jojdoisew e sjussaidad [aXig-g yoeg
"sejep abewn pajeys sy} pue [ppow Tyg3S ay) WOy PaALIap | 3 SNOAUBUBISU| PUB X8pu| BalY JeaT 1O S10|d pZ'¥ a4nbig

Jaquunp [@Xid-6
05 B8P 8F Ly O St P EF 2F L OF GE BE JEOE CEVE ECZE LEOEGEBE LE X GEVEEZ EZIZOZ6LAL LLOLGLELELELLLOLE 8 L 9 S ¥ £ T L

.._.__ i __

Bt

so-+z-,a||| | _ - ! | *°
sosl-om|— il | W H+- | e
vo-gzcm||

oo

o)
o

o
o o

T
u
o

-
o
(au ) o g

(sv113) 13 snosuguelsy|

Jaquiny |3X1d-§
OSGrer Lr PSP yPEP IV WOPGEBCLEQESE PECEZE IEQE GZOZLCOEST PEEC T ICOTGLBLLL OLGLPLELZL LLOL G 8 L 9 S P € 2 )
: : : 0D
- - I z0
e B - ¥0
— = : g0
1 —
=
= I Lago
| Y 1
[Lo-tzcm]| — oL
_mo.:“.mn_ |
90-6l-gm| | o o ct
vo-gE-c@ | |
|

(V1) xapuj easy jea

9002 '6-9 aunr :3jeq aud
all4 ojvanbsog




oLl

-uBledwes pjai4 900z JoWwWNg ay) Wwolj uoneso] Buidwes jojdolsew e syussaidal [aXid-6 Yoes
‘sa)ep abew pajels ay) pue [apow TyYg3S Sy} WOL) PaALBP JuaIiya0n doin ayj pue uonesidsuesjodeas Ajie( 10 s10ld "SZ'y @inbi4

13quInN [9Xid-6
DS Er O v Or P PP EP ZP LV DF BEBE JEOE SEFECE L ICDEGZ BT LC OECE P EC ZCEZOCGLBL LLOLSLPLEL ZLLLOL G @ L 9 5 P E 2 L

, ‘;_—_— . ___”.
i |

{ao-1z-2a|
|o0-5L-om ||
|pO-8Z-GH ||

.
a
o

y
=
o

o
p =

{°y) watoygeoy doin

———

$ '
/& mn s o M
-~ O 0 O O o o O

{*s)uaioeos doig

13quUINy [aXid-6
S EhBR O SrPrEr I LPOPGEBELE SECEPECCTE LICOE GZ BT LEEGZWIETCZ IZOT 6L BL LE QR GL #LEETLLIOL B @ L 9 S # E 2 &

A

e
o

a
-

e
]

[=]
o™

Q
=

e
e

(Repjuu) vz 13

a:
.ma.m.hn___
90-6L-0m ||

|
E.QN.m-:

=
L
L
s
[
I
(=]
o

=
Q
[

08
(**13) 13 Arreg

900¢ '6-9 aunr :aje(q sl
all4 oyvanbsog




4.3 Crop Coefficient Over Time
Mitchell Fire

The Crop Coefficient (K:) negates out the effects of daily weather
differences and provides a more concrete estimate of ET for a crop and is a
strong proxy for regeneration.  Three control sites in close proximity to the
Mitchell and Bosquecito Fires, containing similar soil and vegetation classes but
unaffected by fire, were chosen for comparison to the data produced from the 9-
Pixel Plots for all the SEBAL data/image dates on record (Figure 4.26). Crop
Coefficient data was evaluated at three control sites, Control Sites 1, 2 and 3.
Due to the consistency and strength of the data at Control Site 2, that site was
chosen as the representative Control Site for comparison to Crop Coefficient
data from the three fire sites.

From Figure 4.26, the 9-Pixel Plot Mitchell Fire data closely matches the
Control Site data up until the data from the first image after the fire dated May 22,
2006. The 9-Pixel Plot data from the first image post-fire displays two 9-Pixel
Plots with a Crop Coefficient of zero, meaning that there is no evapotranspiration
occurring at those sites and the sites have been the most dramatically impacted
by the fire. All of the 9-Pixel Plots are below the normal baseline K. range of 0.6
to 1.2, but many 9-Pixel plots approach the K. value of 0.6 meaning that
regeneration is already beginning to occur 1 month after the fire. The 9-Pixels
approach the ET behavior of the Control Site and become in synch on June 19,

2006, 14 months after the fire. Two years after the fire, May 21, 2007, the 9-
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Pixel Plot K. data has surpassed the Control Site data and K. data for 1 year
before the fire, May 12, 2004, postulating the notion that the tamarisk has

regrown at a greater thickness and density that was present before the fire.

Mitchell Fire

Crop Coefficient (Kc) Over Time for 9-Pixel Plots
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Figure 4.26. Kc over time for the 9-Pixel Plots, including Control Site data,

Marcial Fire

Figure 4.27 displays post-fire Crop Coefficient data for the Control Site
and 9-Pixels within the Marcial site. Due to limited Landsat data for the Marcial
Fire, the plot starts two years later than the plots for the Mitchell and Bosquecito
Fires. The 9-Pixel data for the first image after fire, 8 days later, displays plots

with Crop Coefficients greater than zero; such data can be related to elevated
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ground water levels in May of 2006 (Figure 4.28). With an elevated groundwater
table, water may have risen to the ground surface due to capillary forces and
detected by the Landsat satellite. Crop Coefficient data for the 9-Pixel Plots on
June 19, 2006 is zero and does not take into account evapotranspiration
occurring from the small tamarisk resprouts that are evident in the photos takes
by the SSWCD (Figure 3.9). The 9-Pixel Plot data for July 21, 2006, two months
after the fire, displays rapid Crop Coefficient recovery towards the Control Plot
data and is indicative of rapid tamarisk regrowth. One year after the fire, July 8,
2007, the tamarisk Crop Coefficient reaches levels similar to the Control Plot. An
interesting facet of the plot is that the Crop Coefficient rebound has similar
behavior for all the 50 9-Pixel Plots through time--the lines parallel each other
and points are consistently high or low. This suggest a consistent tamarisk
regenerative behavior for the site as a whole, reaching beyond the behavior of

the individual 9-Pixel Plots.
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Figure 4.27. Kc over time for the 9-Pixel Plots, including Control Site data.
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Figure 4.28. Representative groundwater well in proximity to the Maréial Fire, Total_well
depth is 19.5 feet, The blue circles represent elevated groundwater table levels in May of
each year (I1SC, 2007).
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Bosquecito Fire

Figure 4.29 displays Crop Coefficient behavior for the Bosquecito site to
be continually less than, and similar to, the data for the Control Plot up until the
first image after fire. The first image after the fire, June 19, 2006, displays a
decreased Crop Coefficient for all the 9-Pixel Plots. Although the tamarisk and
vegetation appears to rebound post-fire, the Bosquecito Site experienced the
most intense burn and the majority of the tamarisk at the site was eradicated, as
evident during the Summer 2006 Field Campaign while sampling the site in
September of 2006, three months after the fire. The rebound in the Crop
Coefficient, and hence evapotranspiration, may be due to the Landsat sensor
detecting soil evaporation at the exposed bare surface rather than plant

transpiration with regrowth after fire.
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Bosquecito Fire
Crop Coefficient (Kc) Over Time for 9-Pixel Plots
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4.4 MODIS NDVI 16-Day Composite Plots

The original MODIS NDVI images (dimensions 1200 km x 1200 km) were
subset to the Bosquecito, Mitchell and Marcial Fire sites and the Zonal Statistics
tool in ArcGIS extracted the mean, minimum, maximum and standard deviation
of the NDVI amongst the 250 m x 250 m pixels comprised in each fire site from
the time span of 2003 to August of 2007. Once the statistics were acquired, time
series plots of the mean and standard deviation of NDVI over time were created
for each of the three fire sites to monitor vegetation regeneration after fire.

Multitemporal extracts of 16-day MODIS NDVI composites were made
over 3 fire sites to assess MODIS capability to depict phenology and seasonal

variations in vegetation activity after fire (Figures 4.30-4.33). The MODIS VI
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composited products include four MODIS band reflectances (bands 1, 2, 3, and
6) and the sun and view angle geometry, corresponding to the selected pixel
over the composite period. Missing composite periods, due to MODIS instrument
and production related difficulties, are not displayed. The seasonality of the
slender branched, scale-like leaves of the deciduous shrubs is depicted by the
MODIS NDVIs as shown in Figures 4.30-4.33. The NDVI profiles show the
growing season commencing in April and maximum green foliage over the
months from June through September. There appeared to be less erratic
variations in the NDVI data in the first half of the growing season compared to the
second half. There is much less variation in the NDVI| data during the dry down
phase starting in October. The NDVI responds similarly to broad leaf and needle
leaf forests with a gradual dry-down phase (Huete et al., 2002).

The NDVI indices depicted the important phenology events, such as onset
of greenness (early May), peak greenness (August), and the dry down period
(early October) (Figures 4.30-4.33). The dynamic range in NDVI for all the fire
sites varied from 0.18 to 0.64 (Figure 4.33). The Marcial site produced the
highest NDVI values, followed by the Mitchell site and the Bosquecito site,
respectively (Figure 4.33). Maximum contrast among all the sites occurred
during the summer growing season when all of the sites became separable, as
based on their NDVI values. The Marcial site displayed the highest summer
NDVI values because it is the site with the densest vegetation canopy with the

least amount of soil visible from space. The highest NDVI values during the
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summer were an expression of vegetation response during the summertime
Southwestern North American Monsoon.

Soils generally exhibit a near-infrared spectral reflectance somewhat
larger than the red, and thus tend to also generate rather small positive NDVI
values (0.1 to 0.2) (Huete et. al, 2002), contributing to an overall decreased NDVI
value for a site with a large soil regime. The Mitchell and Bosquecito profiles
exhibit similar behavior since they are located in close proximity to each other
and are within the same ecological environment and soils regime (Figure 4.33).

The NDVI seasonal curves appeared the most symmetrical at the Marcial
site, but exhibit the closest down-sloping decrease in NDVI during the dry season
of October to April (Figure 4.33). Vegetation assessment through MODIS data
for the burned areas of the Mitchell, Marcial and Bosquecito fire sites showed
both the important effect of seasonal variation and the strong impact of the fires
on vegetation dynamics. Immediately following the fires there were signs of
vegetation recovery (Figures 4.30-4.33). The Bosquecito Fire site displays a
drastic drop in Average NDVI during the time of fire, followed by recovery within
two months (Figure 4.32). This is most likely due to the timing of the fire,
occurring in the middle of the growing season (June 6-9, 2006), during the time
frame of rapid growth and rapidly increasing biomass. The Mitchell and Marcial
Fires occurred in the beginning of the growing season, in April and May,
respectively, during a period of slowly increasing biomass, and thus do not show
evidence of much impact from the fire due to the lack of substantial green

biomass. In addition, the regeneration recovery occurs in the timeframe of
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weeks rather than months. The annual peak in NDVI around mid-August was

reduced in the Marcial peak in the year following the fire,
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Figure 4.30. MODIS-derived Average NDVI seasonal profile with standard deviation bars
for the Mitchell Fire Site. The red circle indicates the composite dates that were
immediately impacted by the fire.
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Figure 4.31. MODIS-derived Average NDV| seasonal profile with standard deviation bars

for the Marcial Fire Site. The red circle indicates the composite dates that were
immediately impacted by the fire.
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Bosquecito Fire
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Figure 4.32. MODIS-derived Average NDVI seasonal profile for the Bosquecito Fire Site.
The red circle indicates the composite dates that were immediately impacted by the fire.
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4.5 Field Observations

4.5.1 Summer 2006 Field Sampling Results

The field data with location and ocular measurement data can be found in
tabular form in Appendix B. Maps from the Summer 2006 Field Campaign were
created to visually portray ocular measurements of various vegetation, soil and
fire parameters data and can be found in Appendix C. The sampling followed the
FIREMON protocol and was performed under the guidance of Mr. Jerry Hess.
The sampling locations correspond to locations of the 9-Pixel Plots. The 9-Pixel
Plot numbers have been labeled on the maps in the figures below in ordered to

correlate with the 9-Pixel Bar Graphs presented in Section 4.2.

Field Sampling Summary

Tamarisk readily re-sprouted from its root crown after the three fires.
During the Summer 2006 Field Campaign, average stand heights were observed
to be 1.1 meters three months after the Bosquecito Fire, 2.1 meters 3 months
\ after the Marcial Fire, and 3.7 meters 1 year and 4 months after the Mitchell Fire.
Average Sapling Cover was observed to be 87% during the Mitchell field
campaign, 52% during the Marcial field campaign and 4% during the Bosquecito
field campaign. Average Bare Soil Cover was observed to be 10% during the
Mitchell field campaign, 44% during the Marcial field campaign and 79% during
the Bosquecito field campaign. Average tamarisk stage was observed to be
scenescent at the Mitchell site, growth/biomass production stage at the Marcial

site and growth/biomass production at the Bosquecito Site. The fire intensity at
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the Bosquecito Fire was much greater than at the other two fires, which produced
an immediate effect on aerial vegetation; this was evident as observed total plant
death within the majority of the site and partial destruction of the cottonwood

communities.

Field Sampling Maps for each Site

Mitchell Fire

Site sampling occurred 1 year and 4 months after the Mitchell Fire along
line transects. Maps that pictorially depict the sampling data are provided in
Appendix C. The dominant species along Transect 2, 3 and 4 was tamarisk.
) Transect 1 will not be considered because it is along the edge of the road and
thus experiences edge affects and is not occupied by representative tamarisk
populations. There were high tamarisk densities, from 41-100% of each
sampling macroplot, for the 3 transects. The map of tamarisk cover can be found
in Figure 4.34 as well as in Appendix C. Half of the tamarisk along the three
transects were approximately 3 meters in height and the other half were greater
' than 3 meters and up to 8 meters in height. The map of tamarisk height can be
found in Figure 4.35 as well as in Appendix C. For bare soil in each macroplot,
20% of the plots had 0-3% bare soil, 60% of the plots had 4-10% and 20% of the
plots had 11-20% bare soil. There were low populations of Comboveg
(Combination of shrubs, forbs and graminoids (%)), around 0-3%. The tamarisk

vegetation within all the plots was “4" or scenescent. The top soil (0-0.1 meters

123

| R —




below ground surface) was clay, underlain by sand or silt. The fire was

accidental, man-made, and the overall fire intensity was medium.

Comparison to SEBAL Fire Maps

Field sampling at the Mitchell Fire site occurred 1 year and 4 months after
the fire, from October 11-25, 2006. The SEBAL Mitchell Fire maps dated May 18,
2006 (one year after the fire) have the closest date to the field sampling
campaign (Figures 4.1-4.4). Instantaneous and daily ET maps dated May 18,
2006 display significant regeneration along the southern portion of the site where
the Field Sampling Campaign took place (Figures 4.3-4.4). The NDVI plots
(Figure 4.2) also display an increase in NDVI or “greenness” in the southern
region, 1 year after the fire. Tamarisk was the dominant species type during the
Summer 2006 Field Campaign (Figure C.1) and had grown to significant stand
heights; even the shortest tamarisk macroplot had a significant height of 2.4

meters (Figure C.3).
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Mitchell Fire Macroplot Sampling
Tamarisk Cover (%)
October 2006
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Figure 4.34. Ocular measurements of tamarisk cover from the Summer 2006 Field
Campaign. Additional figures can be found in Appendix C.
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Mitchell Fire Macroplot Sampling
Dominant Vegetation Stand Height (meters)
October 2006
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Figure 4.35. Ocular measurements of dominant vegetation (tamarisk) stand height from
the Summer 2006 Field Campaign. Additional figures can be found in Appendix C.
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Marcial Fire

Site sampling occurred 3 months after the Marcial Fire along line
transects. Maps that pictorially depict the sampling data are provided in
Appendix C. Site sampling occurred within the Tiffany Basin of the Marical Fire.
The area was consistently blanketed with tamarisk thickets with a low proportion
of cottonwood groves with the site. The dominant species at the Marcial Fire site
was also tamarisk. The highest tamarisk densities were located along the
Eastern boundary at the fire, at Transects 3 and 4. Transects 1 and 2 had
variable tamarisk densities, from 1-90%. The map of tamarisk cover can be
found in Figure 4.36 as well as in Appendix C. The height of the tamarisk was
: predominantly in the range of 1.3 to 2.4 meters. The map of tamarisk height can
be found in Figure 4.37 as well as in Appendix C. The bare soil cover was
extremely variable except at the Northeast Transect 4, which had a consistent
bare soil cover from 11 - 30%. The surficial soils were mainly silt along
Transects 1, 2, 3 and 5, with fine sand overlying Transect 4. The fire intensity

was also medium.

Comparison to SEBAL Fire Maps

Field sampling at the Marcial Fire site occurred three months after the fire,
from August 7-23, 2006. The Landsat image/SEBAL data closest to that of the
field sampling campaign date is from July 21, 2006, corresponding to Figures
, 4.5-4.8. From field sampling data, there was fairly thick and homogenous

resprouting occurring, with some areas denser than others. The average
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resprout height was 2.1 meters. Figure 4.5-4.8 display SEBAL data for July 21,
2006, the date closest to the field sampling campaign. Two months after the
fire, July 21, 2006, albedo, NDVI, daily and instantaneous ET have all started to
recover, but do not match pre-fire conditions (Figures 4.5-4.8), which matches
the homogeneous tamarisk that was approaching heights of pre-fire conditions
(Figure C.11). The findings from SEBAL data are concurrent with photographs

taken at the Marcial Fire site one month after the fire (Figure 3.9) as well as Field

Sampling Campaign data (Figures C.9-C.13).




Marcial Fire
Macroplot Sampling Map
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Figure 4.36. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Marcial Fire
Macroplot Sampling Map
Tamarisk Height (m)
Sampling Performed in August of 2006
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Figure 4.37. Ocular measurements of vegetation and environmental parameters from
The Summer 2006 Field Campaign.
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Bosquecito Fire

Site sampling occurred 3 months after the Bosquecito Fire along line
transects. Maps that pictorially depict the sampling data are provided in
Appendix C. The dominant species at the Bosquecito Fire site is tamarisk, with
cottonwood dominant in the southern portion of the site. Forbs were evident in
10% of the macroplots in the Northern portion of the site, around Transect 4. The
fire burned extremely hot, consuming the above-ground tamarisk biomass of all
the tamarisk populations and all that was left were short blackened stumps. The
tamarisk populations that survived the fire (root crowns below intact) were
located in the northwestern and southern portions. The map of tamarisk cover
can be found in Figure 4.38 as well as in Appendix C. These populations were
regenerating and reached a height up to 1.7 meters. The map of tamarisk height
can be found in Figure 4.39 as well as in Appendix C. For the majority of the
Bosquecito site, bare soil percentages were very high at 80-100%. There were
low populations of Comboveg (Combination of shrubs, forbs and graminoids
(%)); 20% of the macroplots had Comboveg cover around 4-20%:; the rest of the
site had very low Comboveg cover, around 0-3%. The tamarisk stands that
survived and regenerated after the fire were in an early, young, growing stage.
The site had variable soil types but predominantly silt, sandy clay and sand.

The field sampling campaign occurred between August and October of 20086,
during a period of elevated precipitation throughout the state of New Mexico
(Figure 4.21). For the year, 2006 New Mexico precipitation was above normal,

with a January through November ranking of the 90th wettest year of 112 years.
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The period January through May saw precipitation totals well below normal.
However, the active monsoon season is evident in all climate divisions with July
and August precipitation nearly double the normal across all but the northwest
plateau. Statewide, summer precipitation ranked well above normal at 110"
wettest of 112. The fall season, September through November, remained above
normal (86" wettest of 112), even though November was exceptionally dry
| across the state (NOAA, 2006).

Elevated precipitation had two effects on tamarisk regeneration: 1.
Encouraging succession in areas where flooding was not occurring and 2.
Annihilating succession by drowning tamarisk in flooded areas where the ground
water table was above the surface. The later occurred at the Mandeville site
where herbicide spraying occurred in September of 2003. The aboveground
basal tamarisk was killed by the herbicide but the below ground root crowd
remained intact until the flooding in the summer in 2006. The tamarisk drowned
due to the flooding, and as of March 2008, wild spinach, sunflower and kochia
have occupied the site that was previously dominated by tamarisk (Troxel Stowe,

2008).

Comparison to SEBAL Fire Maps

Field sampling at the Bosquecito Fire site occurred three months after the
fire, from September 1-29, 2006. The Landsat image/SEBAL data closest to that
of the field sampling campaign date is from July 21, 2006, one month after the

fire, corresponding to Figures 4.9-4.12. The tamarisk resprouting after the fire
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was spotty and there was mostly bare soil cover due to the high intensity of the
fire. The Bosquecito Fire burned the hottest of the three and engulfed most
basal tamarisk biomass. The high bare soil at field macroplots 1-10 and 39-41
(Figure C.19) is apparent in the NDVI map (Figure 4.10) and the central-portion
of the instantaneous ET map (Figure 4.11). For the northern and southern
portions of the ET maps (Figures 4.11-4.12), most of the ET occurring is most
likely due to soil evaporation at the surface. Tamarisk cover was low in almost all
the field macroplots except for numbers 10 to 14 (Figure C.15). The albedo map
(Figure 4.9) with high albedo for the whole site, may be detecting the white-grey

ash deposited on the surface.
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Bosquecito Fire
Macroplot Sampling Map
Tamarisk Cover (%)
Sampling Performed in September of

2006
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Figure 4.38. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Bosquecito Fire
Macroplot Sampling Map
Tamarisk Stand Height (%)

Sampling Performed in September of 2006

Iranseéect £

18
Jransect 2

b 1Y

[ == == 220202 =aee——— |
¢ 1:? o Tamarisk Stand Height (m)

0.00
L— B 001-091
l‘ [ 092-168

169 - 4.57
458 - 1524

|
Ej Fire Perimeter

1 8-Piugl Pla! Location

Orthoquads from 8/05, courlesy of RGIS, UNM.

Figure 4.39. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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4.5.2 Soils

Professor Bruce Harrison and Nicole Alkov traveled to 9-Pixel Plots within
the Mitchell, Marcial and Bosquecito Fires which had consistently high or low
Instantaneous and Daily ET values, before and after the fire—independent of the
fire. Soil sampling and characterization was performed to the groundwater table
at the following locations: 1. Mitchell Fire site, 9-Pixel Number 10; Marcial Fire, 9-
Pixel Number 42 and 312 meters west of 9-Pixel Number 42; and 3. Bosquecito
Fire, at 9-Pixel Number 43, located within a cottonwood grove (Figures 4.40, 4.42
and 4.44). The following figures pictorially depict soil data accumulated from the
NM Bureau of Geology (Figures 4.40, 4.42 and 4.44), as well as data collected in

the field and composed into cross sections (Figures 4.41, 4.43 and 4.45).

Mitchell Fire Site

Hand augering was performed at the Mitchell Fire site, 9-Pixel Number 10,
a pixel with consistently low ET before and after the fire. The augering spot was
designated as MIT1 and occurred within the "Hch"” area of Recent/Holocene
channel deposits from the Rio Grande River (Figure 4.40). The lithology was
comprised sand, silt and very fine silt; the cross section is provided in Figure
4.41. The absence of any clay layering may be the culprit for the consistently low
ET at the site. Clay has a higher water storage capacity than silt and sand, as
well as a higher matric potential. The lowered matric potentials due to silt and
sand may not be able to induce capillary rise of moisture up to the ground
surface, hence reflecting a lowered ET rate for that 9-Pixel. In addition, soil type

is the main culprit since the ground water table behavior is normal, with respect
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to the data from the well HWY E-3A, the "Representative Well” (Figures 4.47 and
4.48) that will be discussed in a future section. Another factor to consider is
vegetation type and percent bare soil. The hand-augering (and hence 9-Pixel
Number 10) occurred in an area with relatively high bare soil cover of
approximately 30% with 70% tamarisk cover. The elevated percent of bare soil
is also a factor in decreased ET. In addition, during the Summer 2006 Field
Campaign, this 9-Pixel was one of the two to be overlain by very fine sand

instead of a shallow layer of clay, decreasing surficial evaporative potential.
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Surficial Geology within the Mitchell Fire

Fire Perim

: rg-surf-geol-2001

-

~ - -

| Figure 4.40. Surficial Geology map courtesy of the NM Bureau of Geology. The circled
macroplot represents a 9-Pixel Plot with anomalously low daily and instantaneous ET
values over time, independent of the fire.
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Figure 4.41. Cross section created from soil sampling performed in February 2008.
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Marcial Fire Site

Hand augering was performed at the Mitchell Fire site, 9-Pixel Number 42,
a pixel with consistently low ET before and after the fire (SM1), and at a site 312
meters west of SM1 with higher ET (SM2). Surficial soil mapping was not done
exactly at the spot of 9-Pixel Number 42, but it is presumed that the site is
overlain by “Hal", Recent/Holocene undifferentiated alluvial deposits that are in
proximity to the 9-Pixel site (Figure 4.42). The lithology at SM1 and SM2 was
comprised of silt, clay and sand and the cross sections are provided in Figure
443,

The 9-Pixel Plot 42 located at SM1 had much lower Instantaneous and
Daily ET rates that that at SM2, located 312 meters west of SM1. SM2 has a
much thicker clay layer (0.6 meters thick) at the groundwater table than SM1
which has two thin clay lenses 10 cm in depth (Figure 4.43). SM2's thick clay
layer has a higher water storage capacity as well as matric potential, and may
cause strong capillary rise up through the overlying silt layer, resulting in
moisture reachjng the surface which is detectable by the Landsat sensor and
hence reflect elevated ET rate for that pixel. The hand-augering (and hence 9-
Pixel Number 42) occurred in an area with relatively high bare soil cover of
approximately 40% with 50% tamarisk and 10% cottonwood cover. The elevated
percent of bare soil is also a factor in decreased ET. Unfortunately no ground

water wells are located near 9-Pixel Number 42 for consideration.
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Figure 4.43. Cross section created from soil sampling performed in February 2008.
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Bosquecito Fire Site

Hand augering was performed at the Bosquecito Fire site, 9-Pixel Number
43/BQC1, a pixel with consistently high ET before and after the fire. Hand
augering was also performed at 9-Pixel Number 43/BQC1 and occurred within
the “Hch" area of Recent/Holocene channel deposits from the Rio Grande River
(Figure 4.44). The lithology at BQC1 was comprised of silt, clay and sand and the
cross section is provided in Figure 4.45.

Hand augering was performed in a standing, live cottonwood grove at 9-
Pixel Plot 43 within the Bosquecito Fire that has a high daily and instantaneous
ET values for all image dates. The lithology was comprised of a 0.2 meter thick
layer of silt at the surface. Below the silt was predominantly comprised of very
fine sand with two layers of clay, one located from 0.23-0.69 meters of clay and a
second thin clay layer located from 0.82-0.76 meters below ground surface. The
thick clay layer from 0.23-0.69 meters has a higher water storage capacity as
well as matric potential, and may cause strong capillary rise up through the
overlying silt layer, resulting in moisture reaching the surface which is detectable
by the Landsat sensor and hence reflect an elevated ET rate for that pixel. The
hand-augering (and hence 9-Pixel Number 43) occurred in an area with relatively
high bare soil cover of approximately 60% with 20% tamarisk and 20%
cottonwood cover. In this case the elevated percent bare soil may have
contributed towards the increase in ET, for there was more surface area for the
moisture in the clay layer to percolate up to and become detected by the satellite.

Ground water well BRN-EO5A (Figure 4.54) is located near this 9-Pixel Plot and
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has characteristically mid-level ground water levels that served a consistent

f supply of water to the layers above, which contributed towards percolating

moisture up to the ground surface.
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Surficial Geology within the Bosquecito Fire
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Figure 4.44. Surficial Geology map courtesy of the NM Bureau of Geology. 9-Pixel Plot
43/BQC 1 is located within the black square and represents a 9-Pixel Plot with
anomalously high daily and instantaneous ET values over time, independent of the fire.
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Figure 4.45. Cross section created from soil sampling performed in February 2008.
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4.6 Groundwater Data from the Interstate Stream Commission
(ISC)

Groundwater data was obtained from the NM Interstate Stream
Commission (NM ISC) to determine the effect of groundwater table elevation on
tamarisk post-fire regeneration. Well locations in proximity to the Mitchell, Marcial
and Bosquecito Fire were mapped in ArcGIS (Figures 4.46, 4.49, 4.50, 4.53).
Groundwater elevation data was plotted over time for the wells within the
proximity of the fire sites to detect groundwater seasonal patterns, expose peaks
due to the record rainfall during the summer of 2006 (Figures 4.47, 4,51, 4.54).

One “A" ground water observation well, screened at the ground water
table (ISC, 2007) was determined to be the ‘Representative Well” for each fire
site (Figures 4.48, 4.52, 4.55). Such wells are representative in that they display
median groundwater elevation behavior with respect to the abundance of well
data for each fire site. Sinusoidal behavior is evident for all three of the
Representative Wells, with the peaks in the curves occurring during the peak of
the tamarisk growing season, from May to July (Figures 4.48, 4.52, 4.55).
Smooth, sinusoidal behavior is not as evident as the profile for the MODIS NDVI
16-Day Composite Plots for the 3 fire sites (Figure 4.56). The NDVI Composite
plots portray and upward development of the curve from May to November with a
peak in August, and low lying curve development from November to May. The
cycles are continuous and consistent amongst the years (Figure 4.56). The
groundwater elevation plots in Figures 4.48, 4.52 and 4.55 appear to have a

‘peak and crash” jagged behavior that is less sinusoidal in nature. Climatic
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effects on groundwater table are drastic and definite while phonological and
seasonal effects on the NDVI pattern are slower and more gradual. The NDVI-
,l groundwater elevation plots appear to be linked during the peak of the tamarisk

growing season, from May to July.
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Mitchell Fire Site

Groundwater Monitoring Well Locations
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Figure 4.46. Groundwater wells near the Mitchell Fire (ISC, 2007).
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Grcim_tlvlater Elevations for Wells at the HWY Transect
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Figure 4.47. Groundwater wells at the HWY Transect, near the M_itc_hell Fire (ISC, 2007). o
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Marcial Fire Site
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Figure 4.49. Groundwater wells near the Marcial Fire (ISC, 2007).




Groundwater Monitoring Well Locations
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Figure 4.50. Groundwater wells near the Mitchell Fire, focusing on the wells near the
Northwest portion of the fire (ISC, 2007).
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Groundwater Elevations for Wells at the SMC Transect
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Figure 4.51. Groundwater wells at the SMC Transect, near the Marcial Fire (ISC,_Z(}OT].

! Representative Well at the Marcial Fire Site
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Figure 4.52. Representative groundwater well in proximity to the Marcial Fire. Total well
depth is 19.5 feet. The blue circles represent elevated groundwater table levels in May of
each year (ISC, 2007).
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Bosquecito Fire Site
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Figure 4.53. Groundwater wells near the Bosquecito Fire (ISC, 2007).
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Groundwater Elevations for Wells at the BRN Transect
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Figure 4.54. Groundwater wells at the BRN Transect, near the Marcial Fire (ISC, 2007).
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Figure 4.55. Representative gro[l;dwatar well in proximity to the Bosquecito Fire. Total
! well depth is 16.7 feet (ISC, 2007).
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MODIS NDVI 16-Day Composite Plots
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Figure 4.56. MODIS-derived Average NDVI seasonal profiles for the 3 fire sites.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

In recent years, fires have been used in the local Bosque Del Apache
National Wildlife Refuge (BDA NWR) and the Southwest to remove invasive
tamarisk vegetation which often has elevated evapotranspiration (ET) rates in
dense homogenous communities that lack biodiversity. Such fire-based control
methods have proven to be ineffective in tamarisk eradication—tamarisk is a fire
adapted species—it regenerates early after fire as part of secondary ecological
succession. Little is known about post-fire tamarisk regenerative behavior and
less data is available on tamarisk post-fire regeneration rates to maturity.

In this project, tamarisk regeneration was studied by using tamarisk
evapotranspiration (ET) as a proxy for post-fire tamarisk recovery. ET maps for
three fires in study were created for before and after fire using Landsat imagery
in association with the SEBAL computer algorithm in order to assess changes in
post-fire ET post-fire as indicative of tamarisk recovery. Data from MODIS NDVI
products, groundwater and soil sampling data also aided in explaining post-fire
regenerative behavior at the three fire sites in study.

This project illustrated that tamarisk regenerates much faster than previously
anticipated.  Therefore, ecological managers would have to treat post-fire
tamarisk sites within the span of a few months in order to obtain effective,
permanent tamarisk management control before the tamarisk returns to pre-fire

conditions as soon as one year after fire, as perceived at the three fire sites in
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study. The final goal of tamarisk elimination is to replant previously tamarisk
infested areas with vegetation that is native to New Mexico, such as the
cottonwood and willow. From a hydrological standpoint, cottonwood and willow
have comparatively lower ET rates than tamarisk in sparsely populated
communities (Sala et al., 1996).

Satellite derived estimates of spatial ET computed using SEBAL computer
model provide an accurate means for monitoring vegetation change and water
consumption before and after fire. In this project, SEBAL was used to compare
ET at the burned and unburned tamarisk covered areas of three recent fires: 1.
Mitchell Fire of April 10-16, 2005, which burned 1,100 acres of private land, 2.
Marcial Fire of May 3-6, 2006, which burned 4,819 acres of private land and 755
acres of the southern end of Bosque del Apache NWR, and 3. Bosquecito Fire of
June 6-11, 2006, which burned 640 acres of private land. By comparing the
SEBAL model results to field point measurements, the method evaluated its
effectiveness of estimating spatial and temporal ET and vegetation recovery after
fires. The following paragraphs will provide an overview from findings from the 3

fire sites.

Mitchell Fire

Concerning the Mitchell Fire which occurred in natural, non-disturbed
homogeneous tamarisk thickets, it is apparent that regeneration may have
started as early as one month after the fire; SEBAL data for the 9-Pixel Plots

portrayed a rebound in NDVI, albedo and LAl for May 22, 2005, one month after
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the fire, compared to pre-fire data from May 28, 2004. One year later there was
significant regeneration, but overall the Crop Coefficient was reduced, with an
average Crop Coefficient of 0.63 (June 19, 2006) rather than 0.95 one year
before the fire (May 28, 2004). Two years later the average Crop Coefficient
rebounded to pre-fire conditions, 0.89 for July 8, 2007, compared to 0.95 for May
28, 2004, one year before the fire. Hence, the natural, non-treated tamarisk
areas within the Mitchell fire return to pre-fire conditions approximately two years

after the fire.

Marcial Fire

For the Tiffany Basin within Marcial Fire, where field sampling occurred, two
months after the fire, albedo, NDVI, LAl and the Crop Coefficient all started to
recover at the 9-Pixel Plots but did not match the stated parameters’ behavior for
pre-fire conditions. The Marcial fire happened during the record rainfall year of
2006, encouraging succession in areas where flooding was not occurring. One
year later, the average Crop Coefficient for the 9-Pixel Plots within the Marcial
Fire, 0.80 for May 21, 2007, surpassed the pre-fire Crop Coefficient of 0.67 for
the image dated May 31, 2002. The tamarisk may have regrown to a thicker
population density with a greater evaporative potential than was evident before

the fire.
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Bosquecito Fire

For the Bosquecito Fire, the highest intensity burn, one month after the fire
there appeared to be recovery in albedo, NDVI, LAl and the Crop Coefficient at
the all of 9-Pixel Plots. This contradicts perceived field conditions of high soil/low
tamarisk coverages recorded during the field campaign at the site three months
after the high severity fire.  High fire severity at the Bosquecito Fire greatly
influenced the plant community’s ability to resprout, degree of canopy
degeneration, and biological environment for plant to establishment. The
disparity between the field and SEBAL data may be due to the complex interplay
of additional non-tamarisk communities of cottonwood, forb, graminoid and shrub
species located within the site. Thus, SEBAL data presented may not be
representative of tamarisk post-fire behavior, but representative of the behavior
of the diversity of vegetation communities that occur on the periphery of the
tamarisk communities. Low values for the tamarisk Crop Coefficient for 10 days
after the fire most likely represent post-fire regenerative behavior for the tamarisk
within the site for the first few months after the fire. One year later, the average
Crop Coefficient for the 9-Pixel Plots within the Bosquecito Fire, 0.81 for May 21,
2007 surpassed the pre-fire Crop Coefficient of 0.72 for the image dated May 28,
2004. Tamarisk regeneration was evident during the soil sampling campaign of
February of 2008, but the tamarisk had not regrown to heights and densities that

were evident before the fire. Once again this may be due to the variable nature of
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the vegetation communities at the site and postulates that SEBAL is a more-

accurate model at sites with homogenous vegetation types before and after fire.

MODIS Data

In addition to studying Landsat imagery, MODIS NDVI image products were
also utilized in this study, using NDVI as a proxy for vegetation recovery.
Multitemporal extracts of 16-day MODIS NDVI composites were made over 3 fire
sites to assess MODIS capability to depict phenology and seasonal variations in
vegetation activity after fire. The NDVI indices depicted the important phenology
events, such as onset of greenness (early May), peak greenness (August), and
the dry down period (early October). Vegetation assessment through MODIS
data for the burned areas of the Mitchell, Marcial and Bosquecito fire sites
showed both the important effect of seasonal variation and the strong impact of
the fires on vegetation dynamics. Immediately following the fires there were
signs of vegetation recovery and these findings are consistent with the behavior
of SEBAL ET results from Landsat imagery.

MODIS NDVI data for the Bosquecito Fire site displayed a drastic drop in
Average NDVI during the time of fire, followed by recovery within two months.
This is most likely due to the timing of the fire, occurring in the middle of the
growing season (June 6-9, 2006), during the time frame of rapid growth and
rapidly increasing biomass. The Mitchell and Marcial Fires occurred in the
beginning of the growing season, in April and May respectively, during a period

of slowly increasing biomass, and thus do not show evidence of much impact
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from the fire due to the lack of substantial green biomass in the period early

growing season.

Soil and Groundwater Data

In addition to NDVI, soil and groundwater data was gathered in order to
assess the environmental hydro/geologic effect on evapotranspiration and
vegetation regeneration. With respect to groundwater data we will focus on the
data for the Marcial fire site. Groundwater elevations for the representative well
for the Marcial site, SMW-WO2A, were high around the date of the fire, with a
measured ground water elevation on the day of the fire, May 10, 2006, of
4465.18 ft above sea level (asl). This elevation is 2.5 feet higher than the lower
ground water elevation of 4462.67 ft-asl for June 14, 2006, one month after the
fire. At the annual peak time of groundwater levels for the Marcial site--May of
each year--the elevated groundwater levels may have induced moisture to reach
the surface via capillary rise, resulting in unusual elevated SEBAL-generated
values for the ETns, ET24 and K. data for the first image taken 8 days after the
fire compared to the second image taken 1 month after the fire. With an elevated
groundwater table, water may have risen to the ground surface due to capillary
forces and thus detected by the Landsat satellite and SEBAL model.

As for lithology effects, the presence or absence of a thick clay layer had an
effect on surficial soil moisture and thus satellite-detectable evapotranspiration at
the ground surface exposed in the aftermath of fire. The presence of a thick clay

layer, versus a shallow lense, appeared to induce capillary rise of soil moisture to
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reach the soil surface within an area of elevated ET at the Marcial fire site. The
surficial moisture was detectable by the Landsat satellite and was reflected in
elevated ET values produced by the SEBAL algorithm. In contrast, a pixel in
proximity to the high ET pixel, but underlain by two thin clay lenses, did not
exhibit elevated ET values. The thin clay layers may not have produced enough
of a matric potential gradient to induce capillary rise of moisture to the surface,
thus less surficial moisture was detected by the Landsat sensor, leading to
lowered ET rates for that pixel. This postulation was made by holding all other
environmental parameters constant.

Overall, this project found tamarisk regeneration rates to be much faster than
had previously been accepted for tamarisk post-fire succession. For example, a
canopy fire at Lees Ferry, Arizona, killed 10% of mature tamarisk plants, and
surviving plants produced shoots that exceeded 1.8 meters (6 feet) in height
within 5 months (Stevens, 1989). In comparison, the Marcial Fire Site explored
in this project exposed surviving tamarisk shoots that exceeded 2.1 meters (7
feet) in height within 3 months after the fire. The Bosquecito Fire Site explored in
this project exposed surviving tamarisk shoots that exceeded 1.5 meters (5 feet)
in height within 3 months after the fire and the Mitchell Fire Site exposed
surviving tamarisk shoots that exceeded 6 meters (20 feet) in height within 18
months after the fire.

The above-stated regeneration rates suggest that following a tamarisk burn,
ecological managers must immediately execute integrated control methods such

as post-burn herbicide treatment, mechanical removal or flooding in order to
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facilitate long term and widespread tamarisk eradication. The integrated control
mechanism of herbicide-burn followed by flooding was 100% effective in tamarisk
control within the Mandeville Plot of the Mitchell Fire, as the plot was exposed to
herbicide treatment in 2003, burn in 2005, and extensive flooding in the summer
of 2006--completely eradicating all tamarisk. As evidence to the success of
herbicide-burn-flooding, in February of 2008 the SSWCD replanted portions of
the Mandeville plot with cottonwood poles, and will begin seeding with native
vegetation in the summer of 2008.

The final goal of this project is to stress the importance of attacking tamarisk
resprouts after one or two months after fire after fire with an integrated control
approach utilizing fire, herbicide, mechanical removal and flooding, in conjunction
with analysis from remote sensing. The power of remote sensing of vegetation
regeneration serves as a sophisticated, cost-effective and accurate alternative to
the costly, conventional vegetation monitoring method of point source data
collection in the field by individuals. With the assimilation of remote sensing into
the everyday life—Google Maps, GPS, ArcGIS in the public and private sector,
free Landsat imagery in 2009—remote sensing is the way of the future and must
be integrated into tamarisk management programs within the local wildlife
refuges, providing the link between local environmental managers and cutting-
edge, innovative university-lead research. For innovation in science and
technology ultimately is the only way to win the fight with invasive species,

ensuring natural, pristine and sustainable ecosystems for generations to come.
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5.2 Future Research

1

Install permanent macroplots from the 2006 Field Campaign in order to
observe changes in vegetation, groundwater and soil properties from a

long-term prospective.

Obtain additional Landsat images, before and after the Marcial fire, in
order to compare to pre-fire conditions and fine tune the available data, as
well as strengthen the data set. Consequently, Landsat images will be
available at no cost in February 2009 as released by the USGS via the
USGS Global Visualization Viewer or USGS Earth Explorer image

viewers.

Explore the water savings, if any, in the burning of tamarisk. This is done

by comparing Crop Coefficient figures from before and after the fire.

Extend the MODIS data set in order to have a comprehensive, up-to-date,

data set on NDV| 16-day Composite Plots extending to the present.

Study fires that occurred 5 and 10 years ago in order to study long term

effects of post-fire succession on tamarisk ET and water use.

Become involved with the Bosque Del Apache and SSWCD with current

tamarisk-related control and revegetation projects.
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APPENDIX A. 9-PIXEL PLOTS

The 9-Pixel Plot data was génerated in order to do a comparison between

the Summer 2006 Field Campaign data and the SEBAL maps discussed in

Section 4.1. The 9-Pixel Plot data provides a pin-pointed, micro- perspective
| with vdéta from 15 image dates in'contrastAto a mécro-perspective of the SEBAL
maps in ’Section 4.1 from only 4 image dates. The 9-Pixel Plot locations for each
fire site are presented in Figures 31-33. Changes in albedo, Daily (ET24) and'
Instantaneous ET (ET;nst), ground heat flux (G), Leaf Area Index (LAI),
Normalized Difference Vegetation Index (NDVI), and Surface Te’mperature (Ts)
were tracked at the 9-Pixel Plots that corresponded to field sampling locations.
This was done by extractiyng data on the abbve parameters from 3x3 “9-Pixel
Plot” SEBAL output which is calculated for each 30x30 meter pixel in a
LandsatTM image. Specifically, the data (mean and standard deviation of the
parameters) is extracted using the Zonal Statistics tool in ArcGIS. The follow 9-
Pixel Plot Figures are plots of mean values of energy balance pararyhé‘ters of |
interest (y-axis) for each respective 9-Pixel Number (x-axis) for data extracted
from 15 SEBAL image dates—one line represents data for one date. The target
center coordinate for each of the 9-Pixels was centered on the center coordinate

of each macroplot sampled during the summer of 2006 field campaign.
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Mitchell Fire
Fire Date: April 9-16, 2005
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i Figure A.1. Plots of Albedo and Ground Heat Flux derived from the SEBAL model and the

stated image dates. Each 9-Pixel represents a macroplot sampling location from the
Summer 2006 Field Campaign.
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Mitchell Fire
Fire Date: April 9-16, 2005
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Figure A.2. Plots of Surface Temperature and NDVI derived from the SEBAL model and
the stated image dates. Each 9-Pixel represents a macroplot sampling location from the
Summer 2006 Field Campaign.
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Mitchell Fire
Fire Date: April 9-16, 2005
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Figure A.3. Plots of LAl and Instantaneous Evapotranspiration derived from the SEBAL
model and the stated image dates. Each 9-Pixel represents a macroplot sampling location
from the Summer 2006 Field Campaign.
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Mitchell Fire
Fire Date: April 9-16, 2005
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Figure A.4. Plots of Daily Evapotranspiration and the Crop Coefficient derived from the
SEBAL model and the stated image dates. Each 9-Pixel represents a macroplot sampling
location from the Summer 2006 Field Campaign.
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Marcial Fire
Fire Date: May 3-10, 2006
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Figure A.5. Plots of Albedo and Ground Heat Flux derived from the SEBAL model and the
stated image dates. Each 9-Pixel represents a macroplot sampling location from the

Summer 2006 Field Campaign.
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Marcial Fire
Fire Date: May 3-10, 2006
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Figure A.6. Plots of Surface Temperature and NDVI derived from the SEBAL model and
the stated image dates. Each 9-Pixel represents a macroplot sampling location from the
Summer 2006 Field Campaign.
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l Marcial Fire

Fire Date: May 3-10, 2006
LAl (Leaf Area Index)
1.6 e —— =
—5-18-06
1.4 ~6-19-06
7-21-06
14 5-21-07
1.0 —7-8-07
<
=108 -
06 +——
0.4
0.2
0.0
0 10 20 30 40 50
9-Pixel Plot Number
Instantaneous ET (ETinst)

. 0.9 ~ef— - —— -4
| —5-31-02
| ek — 5-18-06

E 0.7 -6-19-06
g 06 7-21-06
( .:E: 0.5 5-21-07
l_.._E 04 —T7-8-07
0.2 |
0.1 -p— / \ -
0.0 y ! ’_7_ i _T 1 nT T e
0 5 10 15 20 25 30 35 40 45 50
9-Pixel Plot Number
FiQEA_.T. Plots of Leaf Area Index and Instantaneous Evapotranspiration derived from
the SEBAL model and the stated image dates. Each 9-Pixel represents a macroplot
sampling location from the Summer 2006 Field Campaign.
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' Marcial Fire
Fire Date: May 3-10, 2006
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Figure A.8. Plots of Daily Evapotranspiration and Crop Coefficient derived from the
SEBAL model and the stated image dates. Each 9-Pixel represents a macroplot sampling

location from the Summer 2006 Field Campaign.
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Bosquecito Fire
Fire Date: June 6-9, 2006
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Figure A.9. Plots of Albedo and Ground Heat Flux derived from the SEBAL model and the

stated image dates. Each 9-Pixel represents a macroplot sampling location from the
Summer 2006 Field Campaign.
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Bosquecito Fire

Fir_e Date: June 6-9, 2006

Surface Temperature (Ts)

350
340 |
330
320
310

Ts (°K)

290

300 _______._.;'__._ . . us _ _.

—5-31-02
|| =——5-12-04
5-28-04
6-13-04

——7-6-04
—7-31-04
——9-17-04
§5-22-05

| ——7-2-05

|| =——8-3-05
~——5-18-06
~—6-19-06
——7-21-06
-5-21-07

280
0
|

i

5 10 15 20 25 30 35 40 45

9-Pixel Plot Number

1 7-8-07
50

0.7

0

S

10

I T T T T

15 20 25 30 35 40 45 50
9-Pixel Plot Number

Normalized Differenced Vegetation Index (NDVI)

—5-31-02
~—5-12-04
5-28-04
6-13-04
= 7-6-04
~——7-31-04
—9-17-04
5-22-05
7-2-05
- 8-3-05
~5-18-06
e §-19-06
—T7-21-06
-5-21-07
—T7-8-07

Figure A.10. Plots of Surface Temperature and NDVI derived from the SEBAL model and
the stated image dates. Each 9-Pixel represents a macroplot sampling location from the
Summer 2006 Field Campaign.
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Bosquecito Fire
Fire Date: June 6-9, 2006
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Figure A.11. Plots of LAl and Instantaneous Evapotranspiration derived from the SEBAL
model and the stated image dates. Each 9-Pixel represents a macroplot sampling location
from the Summer 2006 Field Campaign.
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Fire Date: June 6-9, 2006
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Figure A.12. Plots of Daily Evapotranspiration and the Crop Coefficient derived from the

SEBAL model and the stated image dates. Each 9-Pixel represents a macroplot sampling

location from the Summer 2006 Field Campaign.
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APPENDIX B. SUMMER 2006 FIELD SAMPLING DATA

The following data was recorded from August 7 to October 25, 2007 from
ocular measurements of various fire and vegetation parameters to obtain a
representation of actual conditions in the field after each of the three fire sites.
Data for each parameter was averaged over the four quadrats, resulting in one
value per macroplot, and there were up to 10 macroplots per line transect within
each fire site. Cover means vegetation cover and is expressed as the
percentage of the surface area over which a plant exerts its influence upon other

components of the ecosystem.
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MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

LATITUD

TRANS | PLOT | WAYPT
DATE | DATUM | ELEV | NUM | NUM | NuMm E LONGITUDE
8/7/06 | WGS 84 | 4487 1 1 9 33.69 -106.98
8/7/06 | WGS 84 | 4490 1 2 10 33.69 -106.98
8/7/06 | WGS 84 | 4479 1 3 11 33.69 -106.97
8/7/06 | WGS 84 | 4477 1 4 12 33.69 106.97
8/8/06 | WGS 84 | 4480 1 5 13 33.69 -106.97
8/8/06 | WGS 84 | 4475 1 6 15 33.60 -106.97
8/8/06 | WGS 84 | 4490 1 7 16 33.69 -106.97
8/8/06 | WGS 84 | 4475 1 8 17 33.69 -106.97
8/8/06 | WGS 84 | 4771 1 9 20 33.60 106.97
8/8/06 | WGS 84 | 4485 1 10 21 33.69 ~106.97
B8/9/06 | WGS 84 | 4475 2 1 24 33.69 -106.97
8/9/06 | WGS 84 | 4489 2 2 25 33.69 -106.96
8/9/06 | WGS 84 | 4476 2 3 27 33.69 -106.96
8/9/06 | WGS 84 | 4482 2 4 30 33.69 -106.96
8/9/06 | WGS 84 | 4496 2 5 31 33.69 ~106.96
8/10/06 | WGS 84 | 4488 2 6 32 33.69 -106.96
8/10/06 | WGS 84 | 4488 2 7 34 33.69 -106.96
8/10/06 | WGS 84 | 4480 2 8 35 33.69 -106.96
8/10/06 | WGS 84 | 4485 2 9 36 33.69 -106.96
8/10/06 | WGS 84 | 4484 2 10 37 33.69 -106.95
8/10/06 | WGS 84 | 4491 3 7 38 33.69 ~106.95
8/10/06 | WGS 84 | 4502 3 2 39 33.69 -106.95
8/10/06 | WGS 84 | 4495 3 3 40 33.69 -106.95
8/10/06 | WGS 84 | 4480 3 4 a1 33.60 -106.95
8/10/06 | WGS 84 | 4503 3 5 42 33.69 -106.95
8/10/06 | WGS 84 | 4448 3 6 43 33.70 -106.95
8/17/06 | WGS 84 | 4506 3 7 a4 33.70 -106.95
8/17/06 | WGS 84 | 4485 3 8 45 33.70 -106.95
8/17/06 | WGS 84 | 4475 3 9 46 33.70 -106.95
8/17/106 | WGS 84 | 4485 3 10 47 33.70 -106.95
8/17/06 | WGS 84 | 4487 4 1 49 33.70 -106.95
8/17/06 | WGS 84 | . 4485 4 2 50 33.70 -106.94
8/17/06 | WGS 84 | 4492 4 3 51 33.70 -106.94
8/17/06 | WGS 84 | 4476 4 4 52 33.70 -108.94
817106 | WGS 84 | 4492 7] 5 53 733.70 106.94
8/17/106 | WGS 84 | 4496 2 6 54 33.70 -106.94
8/17/06 | WGS 84 | 4499 4 7 55 33.70 -106.94
' 8/17/06 | WGS 84 | 4516 4 8 56 33.70 -106.94
8/17/06 | WGS 84 | 4498 4 9 57 33.70 -106.94
8/17/06 | WGS 84 | 4503 4 10 58 33.70 -106.94

Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006.
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MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

TRANS | PLOT | WAYPT | LATITUD
DATE DATUM | ELEV NUM | NUM NUM E LONGITUDE
8/23/06 | WGS 84 | 4495 5 2 61 33.71 -106.96
8/23/06 | WGS 84 | 4490 5 3 62 33.71 -106.96
8/23/06 | WGS 84 [ 4490 5 4 83 33.71 -106.95
8/23/06 | WGS 84 | 4489 5 5 64 33.71 -106.95
8/23/06 | WGS 84 | 4492 5 8 65 33.71 -106.95
8/23/06 | WGS 84 | 4495 5 7 66 33.71 -106.95
8/23/06 | WGS 84 | 4495 5 8 67 33.71 -106.85
- 8/23/06 | WGS 84| 4494 5 9 68 33.71 -106.95
8/23/06 | WGS 84 [ 4483 5 10 69 33.71 -106.95

Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006.




MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

TRANS NUM| PLOTNUM | UTME UTMN |TTL TREE %| DOM SPECIES

1 1 316763.51| 3729566.29 30 Tamarisk
1 2 316864.91] 3729534.40 70 Tamarisk
1 3 316975.20| 3729482.36 50 Tamarisk
1 4 317094.37]3729410.19 60 Tamarisk
1 5 317272.27{ 3729498.88 90 Tamarisk
1 6 317382.60{ 3729449.07 40 Tamarisk
1 7 317475.58| 3729461.71 10 Tamarisk
1 8 317586.13] 3729423.00 20 Tamarisk
1 9 317706.12| 3729392.98 20 Tamarisk
1 10 317807.04] 3729335.59 05 Tamarisk
2 1 317800.17| 3729949.20 80 Tamarisk
2 2 317911.4513729949.30 90 Tamarisk
2 3 318022.65] 3729944.97 60 Tamarisk
2 4 318161.47( 3729930.13 80 Tamarisk
2 5 318281.76) 3729916.75 60 Tamarisk
2 6 318735.88] 3729902.59 80 Tamarisk
2 7 318503.72| 3729884.80 10 Tamarisk
2 8 318614.77| 3729872.71 10 Tamarisk
2 9 318725.80] 3729859.51 20 Tamarisk
2 10 318846.28] 3729856.12 3 Tamarisk
3 1 319122.79] 3729521.41 40 - Tamarisk
3 2 319148.06| 3729631.87 30 Tamarisk
3 3 319214.90{ 3729733.78 80 Tamarisk
3 . 4 319263.28| 3729840.47 90 Tamarisk
3 5 319320.73| 3729935.90 70 Tamarisk
3 6 319375.61| 3730043.58 90 Tamarisk
3 7 319373.92} 3730135.69 90 Tamarisk
3 8 "1 319419.35| 3730247.99 80 ~ Tamarisk
3 9 319476.89] 3730348.97 80 Tamarisk
3 10 319516.12[ 373046249 90 Tamarisk
4 1 319731.75] 3730095.66 90 Tamarisk
4 2 . |319780.34[3730213.45|. 80 " “Tamarisk
4 3 319828.92]3730331.24 80 Tamarisk
4 4 319877.31[ 3730439.04 80 Tamarisk
4 5 319925.64| 3730543.52 80 Tamarisk
4 6 320001.82] 3730649.70 70 Tamarisk
4 7 320013.13[ 3730758.20 70 Tamarisk
4 8 320043.09] 3730871.91 70 Tamarisk
4 9 320082.23] 3730981.00 60 Tamarisk
4 10 320112.12{ 3731091.37 50 Tamarisk

Tabie B.2. Summary of data collected at the Marcial Fire Site in August of 2006.
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MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

TRANS NUM| PLOTNUM | UTME UTMN |TTL TREE %| DOM SPECIES
5 2 318658.68)3731210.89 3 Tamarisk
5 3 318779.45] 3731223.03 20 Tamarisk
5 4 318900.08| 3731228.51 30 Tamarisk
5 5 319013.34] 3731333.97 20 Tamarisk
5 6 319123.31(3731265.33 10 Tamarisk
5 7 319234.86| 3731280.97 20 Tamarisk
5 8 319346.61] 3731306.59 20 Tamarisk
5 9 319467.67] 3731334.26 30 Tamarisk
5 10 319579.16] 3731346.58 20 Tamarisk

Table B.2. Summary of data collected at the Marcial Fire Site in August of 20086.




MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

STAND | STAND | SEEDLING { SAPLING| SHRUB

TRANS NUM | PLOT NUM (FT) (V) % % %
1 1 8.0 24 0.0 0 0
1 2 6.0 1.8 0.0 0 0
1 3 6.0 1.8 0.0 0 0
1 4 6.0 1.8 0.0 0 0
1 5 6.0 1.8 0.0 0 0
1 6 6.0 1.8 0.0 0 0
1 7 8.0 1.8 0.0 0 50
1 8 50 . 1.5 0.0 0 0
1 9 7.0 2.1 0.0 0 50
1 10 5.0 1.5 0.0 0 10
2 1 5.0 1.5 0.0 0 0.5
2 2 5.0 1.5 0.0 0 0
2 3 6.0 1.8 0.0 0 0
2 4 5.0 1.5 0.0 0 0
2 5 5.5 1.7 0.0 0 0
2 8 5.0 1.5 0.0 0 0
2 7 3.0 0.9 0.0 0 0
2 8 4.0 1.2 0.0 0 0
2 9 5.0 1.5 0.0 0 0
2 10 3.0 0.9 0.0 0 3
3 1 6.0 1.8 0.0 0 0
3 2 7.0 2.1 0.0 0 0
=e3 3 8.0 2.4 0.0 0 0
3 4 6.0 1.8 0.0 0 0
3 5 7.5 2.3 0.0 0 0
3 6 8.0 1.8 0.0 0 0
3 7 7.0 2.1 0.0 0 0
3 8 6.0 1.8 0.0 0 0
3 9 6.0 1.8 0.0 0 0
3 10 6.5 2.0 0.0 0 0
4 1 5.0 1.5 0.0 0 0
4 2 5.0 1.5 0.0 0 -0
4 3 6.0 1.8 0.0 0 0
4 4 6.0 1.8 0.0 0 0
4 5 6.0 1.8 0.0 0 0
4 6 7.0 2.1 0.0 0 0
4 7 7.0 21 0.0 0 0
4 8 7.0 2.1 0.0 0 0
4 9 7.0 2.1 0.0 0 0
4 10 7.0 2.1 0.0 0 0

Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006.
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MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

STAND SEEDLING | SAPLING | SHRUB
TRANS NUM | PLOT NUM FT |STANDM % % %
5 2 7.0 2.1 0 0 0.5
5 3 7.0 2.1 0 0 0
5 4 8.0 2.4 0 0 0
5 5 8.0 2.4 0 0 0
5 6 5.0 1.5 0 0 0
5 7 8.0 2.4 0 0 0
5 8 6.0 1.8 0 0 0
5 9 6.0 1.8 0 0 0
5 10 6.0 1.8 0 0 0

Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006.

L
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MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

TRANS | PLOT | GRAMINOID | FORB | COMBO | BARE SOIL | GRAVEL | SOIL
NUM | NUM % % | VEG% % % _ |TEXTURE
7 7 0 0 0 70 0 SC
7 2 0 0 0 30 0 SL
1 3 0 0 0 50 0 SC
7 4 0 0 0 50 0 SL
1 5 0 0 0 10 0 SL
1 6 0 05 0.5 60 0 SL
1 7 0 05 0.5 90 0 SC
7 8 0 05 05 80 0 SL
7 9 0 0 50 80 0 SL
1 10 0 10 20 70 0 SL
2 7 0 0 0.5 20 0 SL
2 2 0 0 0 10 0 SC
2 3 0 0.5 05 40 0 SL
2 4 0 0 -0 20 0 SL
2 5 0 05 05 40 0 SC
2 6 0 0 0 0 0 SC
2 7 0 0 0 90 0 SL
2 8 0 0 0 90 0 SL
2 9 0 0 0 80 0 SC
2 10 0 05 4 90 0 SL
3 1 0 0.5 0.5 90 0 SL
3 2 0 05 05 70 0 SL
3 3 0 05 05 20 0 SL
3 7 0 05 05 10 0 SL
3 5 0 05 05 40 0 SL
3 6 0 0 0 10 0 SL
3 7 0 0.5 0.5 10 0 SL
3 8 0 10 10 10 0 SL
3 9 0 0.5 0.5 20 0 SL
3 10 0 0 0 0 10 SL
4 1 0 0.5 0.5 10 0 FS
4 2 0 05 0.5 20 0 FS
4 3 0 0 0 30 0 FS
4 4 0 0.5 0.5 20 0 FS
7 5 0 0 0 20 0 FS
Z 6 0 0 0 30 0 FS
4 7 0 0 0 30 0 FS
4 8 0 0.5 0.5 30 0 FS
4 9 0 3 3 40 0 FS
4 10 0 05 0.5 50 0 FS

Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006.
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MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

TRANS | PLOT | GRAMINOID | FORB | COMBO | BARE SOIL | GRAVEL | SOIL
NUM NUM % % VEG % % % TEXTURE
5 2 0 60 0.5 20 0 SL
5 3 0 20 20 80 0 SL
5 4 0 30 30 10 0 SL
5 5 0 0 0 80 0 SL
5 8 0 0.5 -0.5 80 0 SL
5 7 0 0.5 0.5 70 0 SL
5 8 0 0.5 0.5 70 0 SL
5 9 0 0.5 0.5 70 0 SL
5 10 0 20 20 60 0 SL

Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006




MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

"TRANS
NUM

PLOT
NUM

EROSION
TYPE

EROSION
SEVERITY

CRUST

1

1

Cracked
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1
1
1
1
1
1
1
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1
2
2
2
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2
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Table B.2. Summary of data collected at the Marcial Fire Site in August of 2006.




MARCIAL FIRE SUMMER 2006 FIELD SAMPLING DATA

TRANS PLOT EROSION | EROSION
NUM NUM TYPE SEVERITY | CRUST
5 2 Zero 0 cracked
5 3 Zero 0 checked
5 4 Zero 0 checked
Not
5 5 Zero 0 cracked
Lightly
5 6 Zero 0 cracked
; Not
3 5 7 Zero 0 cracked
Not
5 8 Zero 0 cracked
Not
5 9 Zero 0 cracked
Not
5 10 Zero 0 cracked

Table B.2. Summary of data collected at the Marcial
Fire Site in August of 2006.
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BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA

Elev {Trans_{ Plot_|Waypt_| 9 Pixel
Date Datum {m) | Num | Num|} Num Num
9/1/2006 | WGS 84 | 4580 1 0 71
- 9/1/2006 | WGS 84 | 4565 1 1 72 1
9/1/2006 | WGS 84 | 4580 1 2 73 2
9/1/2006 | WGS 84 | 4582 1 3 74 3
9/1/2006 | WGS 84 | 4572 1 4 75 4
9/1/2006 | WGS 84 | 4566 1 5 76 5
9/1/2006 | WGS 84 | 4566 1 6 77 6
9/1/2006 | WGS 84 | 4567 1 7 78 7
9/1/2006 | WGS 84 | 4565 1 8 79 8
9/1/2006 | WGS 84 | 4577 1 9 80 9
9/1/2006 | WGS 84 | 4563 1 10 81 10
9/11/2006 | WGS 84 | 4555 2 1 - 82 11
9/11/2006 | WGS 84 | 4513 2 2 83 12
9/25/2006 | WGS 84 | 4560 2 3 104 13
9/25/2006 | WGS 84 | 4591 2 4 105 14
9/25/2006 | WGS 84 | 4581 2 5 106 15
9/25/2006 | WGS 84 | 4564 2 6 107 16
9/25/2006 | WGS 84 | 4578 2 7 108 17
9/25/2006 | WGS 84 | 4576 2 8 109 18
v

9/25/2006 | WGS 84 | 4578 2 9 110 19
9/25/2006 ]| WGS 84 | 4568 2 10 111 20
9/13/2006 | WGS 84 | 4581 3 |1 84 21
0/13/2006 | WGS 84 | 4457 3 2 85 22
9/13/2006 | WGS 84 | 4576 3 3 86 23
9/13/2006 | WGS 84 | 4567 3 4 87 24
9/13/2006 | WGS 84 | 4592 3 5 88 25
9/13/2006 | WGS 84 | 4592 3 6 89 26
9/13/2006 | WGS 84 | 4581 3 7 90 27
9/13/2006 | WGS 84 | 4578 3 8 91 28
9/13/2006 | WGS 84 | 4570 3 9 92 29
9/13/2006 | WGS 84 | 4582 3 10 93 30

1 9/15/2006 | WGS 84 | 4576 4 1 95 31
0/15/2006 | WGS 84 | 4566 4 2 95.5 32
9/15/2006 | WGS 84 | 4589 4 3 96 33
9/15/2006 | WGS 84 | 4585 4 4 97 34
0/15/2006 | WGS 84 | 4578 4 5 98 35
9/15/2006'] WGS 84 | 4575 4 [¢] 99 36
9/15/2006 | WGS 84 | 4573 4 7 100 37

Table B.3. Summary of data collected in September of 2006.




BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA

Elev |Trans_| Trans| Plot_N| Waypt N

Date Datum (m) Num |_Num| um um
9/15/2006 | WGS 84 | 4573 4 8 101 38
9/15/2006 | WGS 84 | 4578 4 9 102 39
9/15/2006 | WGS 84 | 4575 4 10 103 40
9/29/2006 | WGS 84 | 4566 5 1 112 41

113 42

9/29/2006 | WGS 84 | 4566 5 2

9/29/2006 | WGS 84 | 4571 5 3 114 43
9/29/2006 | WGS 84 | 4577 5 4 115 44
9/29/2006 | WGS 84 | 4575 5 5 116 45
9/29/2006 | WGS 84 | 4578 5 6 117 46
9/29/2006 | WGS 84 | 4575 5 7 118 47
9/29/2006 | WGS 84 | 4574 5 8 119 48
9/29/2006 [ WGS 84 | 4576 5 9 120 49
9/29/2006 | WGS 84 | 4571 5 10 121 50

Table B.3. Summary of data collected in September of 2006.
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BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA

Stand | Stand
Trans_j Plot Total Tree Height | Height| Seedling
Num | Num| Latitude | Longitude| UTME UTM N % Dom Species | ({ft) {m) %
-1 0 | 33.986367 | -106.8544 | 328708.44 | 3762194.2 3 Tamarisk 15 4.57 0
1 1 33.9975 | -106.8589 | 328321.28 | 3763436.3 0 Tamarisk 2.5 0.76 . 0.5
1 2 | 33.996483] -106.8584 | 328359.27 | 3763322.8 0 Tamarisk 5 1.52 0.5
1 3 |[33.995617 -106.8581 | 328392.93 | 3763226.1 0 Tamarisk 5 1.52 0.5
1 4 | 33.994583| -106.8577 | 328424.73 | 3763110.9 0 Tamarisk 2 0.61 0.5
1 5 33.99345 | -106.8572 | 328470.17 | 3762984.3 0 Tamarisk 0 0 0
1 6 33.9926 | -106.8568 | 328505.41 | 3762889.4 0 Tamarisk 3 0.91 0.5
1 7 |33.991617| -106.8563 | 328548.09 | 3762779.5 0 Tamarisk 0 0 0.5
1 8 | 33.990617] -106.8558 | 328592.27 | 3762667.8 0 Tamarisk 3 0.91 0.5
1 9 | 33.989617 ] -106.8554 | 328628.74 | 3762556.2 0 Tamarisk 2 0.61 3
1 10 | 33.988683 | -106.8549 | 328673.06 | 3762451.8 3 Cottonwood 50 15.24 0.5
2 1 ]33.987233} -106.8541 | 328737.9 | 3762289.8 20 Cottonwood 40 12.19 0
2 2 | 33.988033| -106.8549 | 328673.29 | 3762379.7 10 Cottonwood 40 12.19 0
7
2 3 | 33.988583 | -106.8557 | 328597.42 | 3762442.1 30 Cottonwood 40 1219 0
2 4 | 33.989483 | -106.8562 | 328556.11 | 3762542.7 0 Tamarisk 2 0.61 3
2 5 | 33.9905 | -106.8564 | 328538.14 | 3762655.8 0.5 Tamarisk 2.5 0.76 3
2 6 | 33.99135 | -106.8566 | 328518.3 | 3762750.5 0 Tamarisk 2 0.61 0.5
2 7 }33.992117] -106.8576 | 328432.08 | 3762837.1 0 Tamarisk 2 0.61 0.5
2 8 | 33.992883] -106.8584 | 328355.1 | 3762923.5 0.5 Tamarisk 4 1.22 0
2 9 33.98365 | -106.8593 | 328273.51| 3763010.1 0 Tamarisk 5 1.52 0
2 10 | 33.994433] -106.8602 | 328195.03 | 3763098.4 0 Tamarisk 5 1.52 0.5
3 1 | 34.000633 ] -106.8585 | 328359.92 | 3763783.2 0.5 Forb 2.5 0.76 0.5
3 2 }33.999517 -106.8585 | 328363.83 | 3763659.3 0 Forb 3 0.91 3
3 3 | 33.998483 ] -106.8586 | 328346.35 | 3763544.9 0 Tamarisk 4 1.22 0
3 4 | 33.998617 | -106.8598 | 328238.87 | 3763561.7 0 Tamarisk 4 1.22 0
3 5 |33.998833] -106.8611 | 328120.76] 3763587.9 0 Tamarisk 4 | 1.22 0
3 6 33.999 ‘| -106.8623 | 328008.72 | 3763608.4 0 Tamarisk 4 1.22 0
3 7 33.99905 | -106.8636 | 327890.28 | 3763616.1 0 Tamarisk 4 1.22 0.5
3 8 | 33.999183| -106.8649 | 327770.47 | 3763633.1 0 Tamarisk 3 0.91 3
3 9 33.99935 | -106.8663 | 327639.96 | 3763653.9 0 Forb 4 1.22 0
3 10 | 33.99935 | -106.8675 | 327527.58} 3763656 0 Tamarisk 5 1.52 0.5
4 1 34.0025 | -106.8678 | 327507.78 | 3764005.8 0 Tamarisk 3 0.91 10
4 2 | 34.000417 -106.8671 | 327565.14 | 3763773.6 40 Tamarisk 5.5 1.68 0
4 3 | 34.00405 | -106.8662 | 327660.23| 3764175 30 Tamarisk 0 4] 0
4 4 | 34.00415 | -106.8649 | 327778.96 | 3764183.9 0 Tamarisk 2 0.61 0.5
4 5 | 34.004283| -106.8636 | 327894.69 | 3764196.6 0 Shrub 3 0.91 0.5
4 6 | 34.004367 ] -106.8624 | 328013.38 | 3764203.7 0 Forb 0 0 0
4' 7- |34.004433{ -106.8612 | 328119.73 | 3764209.1 0 Forb 0 0 0

Table B.3. Summary of data collected in September of 2006.
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BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA ‘

Trans Stand | Stand
9 Pixel| _Nu Total Tree Height ; Height | Seedling I
Num | m | Plot Num | Longitude] UTME UTM N %o Dom Species | (ft) {m) % ‘
4 8 | 34.004517] -106.86 | 328227.66] 3764216.4 0 Graminoid - 0 0 0 ‘

4 9 | 34.004583| -106.8588 | 328338.63 | 3764221.8 0 Graminoid 0 0 0

4 10 | 34.0042 | -106.8577 | 328445.6 | 3764177.3 0 Shrub 0 0 0
5 1 33.90427 | -106.8581 | 328387.15] 3763076.8 0 Tamarisk 2.5 0.76 3 !

5 2 |33.995033} -106.8589 | 328314.79 [ 3763162.8 0 Tamarisk 2 0.61 0.5
5 3 | 33.99578 | -106.8597 | 328245.47 | 3763246.9 0 Tamarisk 5 1.52 0
5 4 | 33.99662 | -106.8604 | 328180.96 | 3763341.2 0 Tamarisk 5 1.52 0
5 5 | 33.99735 | -106.8611 | 328116.24 | 3763423.4 0 Tamarisk 4 1.22 0
5 6 33.99808 | -106.8618 | 328049.96 | 3763505.6 0 Tamarisk 5 1.562 0
5 7 33.99888 | -106.8624 | 327994.62 | 3763595.3 0 Tamarisk 3 0.91 3
5 8 | 33.99968 | -106.8631 | 327934.66 | 3763685.2 0 Tamarisk 4 1.22 0
5 9 ]34.000417] -106.8638 | 327871.49| 3763768.1 ] Tamarisk 3 0.91 3
5 10 | 34.001183| -106.8646 | 327800.68 | 3763854.4 0 Tamarisk 4 1.22 0

Table B.3. Summary of data collected in September of 2006.




BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA

| Trans{ Plot_| Sapling | Shrub | Graminoid| Forb | Comboveg Bare Soil
_Num| Num % Yo % %o % % Gravel %
1 0 0 3 0 0 3 90 3
1 1 0 0 0 0 0 98 0
1 2 10 0 0 0 0 90 0
1 3 10 0 0 0 0 90 0
1 4 0 0 0 0 0 98 0
1 5 0 0 0 0 0 100 0
1 6 0 0 0 0 0 98 0
1 7 0 0 0 3 3 90 0
1 3 0 0 0.5 0.5 1 S0 0
1 9 0 0 0 0 0 90 0
1 10 0 0 0 0 0 90 0
2 1 3 0 0 0 0 80 0
2 2 3 0 0 0 0 90 0
2 3 0.5 20 0 0 20 70 0
2 | 4 0 3 0 3 6 920 0
2 5 0 0 0 0 0 90 0
2 6 0 0 0 0 0 98 0
2 7 0 0 0 0 0 98 0
2 8 40 0 0 0 0 60 0
2 9 10° 0 0 0 0 0 0
2 10 0.5 0 0 0 0 10 0
3 1 0 0 0 70 70 30 0
3 2 0 0 0 90 90 10 0
3 3 10 0 0 10 10 80 0
3 4 20 0 0 10 10 70 0
3 5 10 0 0 0 0 30 0
3 6 10 0 0 0 0 90 0
3 7 3 0 0 0 0 98 0
3 8 0 0 0 0.5 0.5 90 0
3 9 0.5 [¢] 0.5 40 0.5 50 0
3 10 10 0.5 0.5 0 .1 80 0
4 1 0 10 3 0 " 13 60 0
4 2 0 0 0.5 0 0.5 50 0
4- 3 0 0 10 0 10 60 0
4 4 0 0 0.5 0 0.5 90 0
4 5 0 10 0.5 0 0.5 80 0
4 [¢] 0 0 0 20 20 80 0
4 7 0 0 0.5 20 20.5 80 0

Table B.3. Summary of data collected in September of 2006.
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BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA

Trans| Plot | Sapling | Shrub |Graminoid| Forb | Comboveg | Bare Soil
Num | Num % % P Yy % % % Gravel %
4 8 0 0 70 - 05 70.5 20 0
4 9 0 0 0.5 0 0.5 98 0
4 10 0 0.5 0 0 0.5 90 10
5 1 0 0 0 0 0 98 0
-
5 2 0 0 0 0 0 98 0
5 3 10 0 0 0 0 90 0
5 4 3 0 0 0 0 90 0
5 5 3 0 0 0 0 90 0
5 6 3 0 0 0 0 90 0
5 7 0 0 0 0 0 90 0
5 8 10 0 0 10 10 80 0
5 9 0 0 0 3 3 90 0
5 10 3 0 0 3 3 90 0

Table B.3. Summary of data collected in September of 2006.
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BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA -

Trans | Plot | Erosion| Erosion Soil
Num [ Num| Type | Severity | Fire Intensity | Veg Stage Crust Texture
1 0 G 1 4 Non existant - VFS
1 1 0 0 1 Charred SC
lightly checked, charred
1 2 0 0 2 30% SC
lightly checked, charred
1 3 0 0 2 30% SC
1 4 0 0 1 lightly charred SC
1 5 0 0 0 lightly checked SC
1 6 0 0 0 lightly checked SC
1 7 G 1 - 1 Cracked FS.
1 8 S 0 1 Checked, curled SC
1 9 0 0 1 Checked, curled SC/S
1 10 0 0 1 Checked, curled SC |
2 1 G 1 SC
2 2 G 1 1 not cracked CL &SI
- top 3/4": C;
2 3 0 0 3 1 cracked bottom S|
top 3/4". C;
2 4 0 0 1 1 cracked bottom Si
2 5 0 0 3 1 not cracked C
top 1/8™ C;
2 6 0 0 3 1 cracked, furled bottom Sl
. top 1/8": C;
2 7 0 0 3 1 cracked, furted bottom Sl
. top 1/8": C;
2 8 0 0 3 2 Cracked bottom S|
top 1/12";
C; bottom
2 9 0 0 3 2 cracked, small furling Sl
2 10 0 0 3 1,4 not cracked SIL
3 1 0 0 2 cracked SC
3 2 0 0 4 cracked SC
3 3 0 0 4 not cracked SC
3 4 0 0 0 not cracked sc
top 1/8": C;
3 5 0 0 1 some cracked areas | bottom SI
- top 1/8". C;
3 6 0 0 1 some cracked areas | bottom Sl
3 7 0 0 2 (majority), 4 cracked SC
3 8 0 0 4 cracked SC
3 9 0 0 4 cracked Sl
3 10 0 0 Sl
4 1 0 0 4 slightly cracked Sl
4 2 0 0 4 cracked SIL
4 3 0 0 4 checked SIL
4 4 0 0 4 cracked SIL
4 5 0 0 4 cracked, furled SIL
4 6 0 0 0 cracked SIL
top 1/8": C;
4 7 0 0 0 cracked bottom Si

Table B.3. Summary of data collected in September of 2006.
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BOSQUECITO FIRE SUMMER 2006 FIELD SAMPLING DATA

Trans | Plot | Erosion| Erosion Soil
Num | Num| Type | Severity | Fire Intensity [ Veg Stage Crust Texture
4 8 0 0 0 not cracked SIL
4 9 0 0 0 Sl
VFS wf
4 10 R ‘2 0 eroded by gully and rill|  gravel
top 1/8™ C;
5 1 0 0 1 cracked, furled bottom S
top 1/8": C;
5 2 0 0 1 cracked, furled bottom S|
5 3 0 0 3 1 cracked SIL
top 1/8": C;
5 4 0 0 3 2 cracked, some furled | bottom Sl
5 5 0 0 3 4 not cracked SIL
5 6 0 0 3 4 not cracked Sl
5 7 0 "0 3 2 cracked S|
5 8 0 0 3 4 cracked Si
5 9 0 0 3 4 cracked SIL
) 10 0 0 3 4 cracked SIL
Table B.3. Summary of data collected in September of 2006.
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Appendix C. Summer 2006 Field Sampling Maps

The following maps were created from data collected during the Summer
2006 Field Campaign when ocular measurementé were taken of various
vegetatién, soil and fire parameters. Field and location data is presented in
tabular form in Appendix A. Site sampling occurred 1 year and 4 months after
the Mitchell F‘ire, and 3 months after the Marical and Bosquecito Fires. The
sarhpling followed the FIREMON protocol and was performed under the
guidance of Mr. Jerry Hess. The sampling locations have been matched to 9-
Pixel Numbers and such location information can be found ih Apbendix A.The 9-
Pikel Numbers have been labeled on the maps in the figures below inv brdered to

correlate with the 9-Pixel Bar Graph data presented in Section 4.2.

217




Mitchell Fire Macroplot Sampling
Dominant Vegetation Species
October 2006
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Figure C.1. Ocular measurements of vegetation and environmental parameters from the

ampaign.
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Mitchell Fire Macroplot Sampling
Tamarisk Cover (%)
October 2006
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Figure C.2, Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Mitchell Fire Macroplot Sampling
Dominant Vegetation Stand Height (meters)
October 2006
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Figure C.3. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Mitchell Fire Macroplot Sampling
Bare Soil (%)
October 2006
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Figure C.4. Ocular measurements of vegetation and environmental parameters from the
| Summer 2006 Field Campaign.




Mitchell Fire Macroplot Sampling
Summation of Shrub, Graminoid and Forb (%)
October 2006
3 . e | =
.‘Wq\l . ' ! ‘. - [ . I - ] _.... e
’ [ .‘J‘ ; ,\i
0 = '\
% § '
w:hi
Well \
e 1 " =
Well | T, :If
I |
Walls : |
' +
i
i
; |
well | T :
= o I
EA i
o 8 etk
9 Q Ly
%] (=] e - I
‘;_ ey - T(.ri_
- ;,.f Sl
4
P 2450 : i
Antonio ‘
0 230 460 620 1,380 1,840
Meters | Shrub + Gram + Forb %
N 0-3
\ W 4-10
‘ _‘] B 11-44
45-73
| W 74-93
1 Fire Perimeter
l 1 - Pixel Piot Numbar

Figure C.5. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Mitchell Fire Macroplot Sampling
Tamarisk Stage

October 2006
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‘ Figure C.6. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Mitchell Fire Macroplot Sampling
Soil Type

October 2006
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Figure C.7. Ocular measurements of vegetation and environmental parameters from the

Summer 2006 Field Campaign.
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Mitchell Fire Macroplot Sampling
Fire Intensity
October 2006
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Figure C.8. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Marcial Fire
Dominant Vegetation Species Map
Tamarisk Cover (%)
Sampling Performed in August of 2006
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| Figure C.9. Ocular measurements of vegetation and environmental parameters from the
| Summer 2006 Field Campaign.
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Marcial Fire
Macroplot Sampling Map
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Figure C.10. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.11. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Macroplot Sampling Map
Bare Soil Cover (%)
Sampling Performed in August of 2006
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Figure C.12. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.13. Ocular measurements of vegetation and environmental parameters from the

Summer 2006 Field Campaign.




Bosquecito Fire
Macroplot Sampling Map
Dominant Vegetation Species
Sampling Performed in September of 2006
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Figure C.14. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Bosquecito Fire
Macroplot Sampling Map
Tamarisk Cover (%)
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Figure C.15. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.16. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Bosquecito Fire
Macroplot Sampling Map
Tamarisk Seedling Cover (%)

Sampling Performed in September of 2006
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Figure C.17. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.18. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.19. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Macroplot Sampling Map
Combination of Shrub, Forb and Graminoid (Combo Veg) (%)
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Figure C.20. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.21. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Figure C.22. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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Sampling Performed in September of 2006
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Figure C.22. Ocular measurements of vegetation and environmental parameters from the
Summer 2006 Field Campaign.
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