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ABSTRACT 

 

Precise spatio-temporal distributions of surface energy balance components in 

arid/semiarid riparian areas are critical information for sustainable management of water 

resources as well as for a better understanding of water and heat exchange processes 

between the land surface and the atmosphere. However the distributions of surface fluxes 

over large areas are difficult to obtain from ground measurements alone. Therefore their 

prediction from remote-sensing data is very attractive since it enables large area coverage 

with a high repetition frequency.  

 

In this study, a remote-sensing image processing algorithm, the Surface Energy 

Balance Algorithms for Land (SEBAL), was selected to estimate the energy balance 

components in the arid/semi-arid riparian areas in the southwestern United States. The 

main objective of this study is to investigate the potential and limitations of remote 

sensing for the assessment of spatio-temporal distributions of surface energy balance 

components using optical imagery from Landsat and MODIS satellites. This study first 

compares instantaneous and daily SEBAL fluxes derived from Landsat 7 imagery to 

surface-based measurements with eddy covariance flux towers; then it investigates how 

up- and down-scaling affect the SEBAL-derived maps of evapotranspiration.  

  



 

 

For the up-scaling study, “output” and “input” up-scaling procedures were 

conducted in which aggregation was accomplished by both simple averaging and nearest 

neighboring resampling techniques. For the down-scaling study, also input and output 

down-scaling procedures were evaluated in which disaggregated maps were obtained by 

two different processes: subtraction and regression. 

 

 SEBAL yields accurate estimates of energy balance components in riparian areas 

in the southwestern United States using both Landsat 7 and MODIS images. The up- and 

down-scaling schemes proposed in this study generate evapotranspiration maps having a 

good agreement with maps directly derived from Landsat (30 m) and MODIS (250 m) 

satellites.  
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Cwind wind speed correction coefficient for mountainous region - 
Czom surface roughness correction coefficient for sloping surfaces - 
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D aperture diameter of the scintillometer  m 
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dr inverse squared relative distance of the Earth-sun - 
dT near surface air temperature difference  K 
EF evaporative fraction  - 
ESUNλ mean solar exoatmospheric irradiance for band λ        Wm2μm-1

ET evapotranspiration  mmd-1

ETr  reference evapotranspiration  mmd-1

ETM+  enhanced thematic mapper   
fc (φ)  apparent fractional coverage viewed as seen by the radiometer - 
fg  fraction of green vegetation  - 
g  gravitational acceleration  ms-2

G  ground heat flux  Wm-2

Gsc  solar constant  Wm-2

h  crop height  m 
H  sensible heat flux  Wm-2

I  irrigation rate  mmh-1

k  von Karman’s constant  - 
K  propagation wave number  m-1

KH  eddy diffusivities of heat  m2s-1
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KTS  thermal conductivity of the soil  Jm-1s-1K-1

L  Monin-Obukhov length  m 
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LE  latent heat flux  Wm-2

Lm  longitude of the measurement site  degree 
Lz  longitude of the center of the local time zone degree 
Lλ  at-satellite spectral radiance of the band λ Wm-2ster-1μm-1

NDVI  normalized difference vegetation index  - 
P  precipitation rate  mmh-1 

P  energy consumed by photosynthesis  Wm-2 

P  pressure   Nm-2

Q  humidity  gm-3

q*  scalar scales for humidity  gg-1
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ra  aerodynamic resistance  sm-1

rah  aerodynamic resistance for heat transport  sm-1

rex  extra resistance  sm-1
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R  surface runoff rate  mmh-1

Ra  extraterrestrial solar radiation  Wm-2

RL↓  incoming longwave radiation   Wm-2

RL↑  outgoing longwave radiation   Wm-2

Rn  net radiation  Wm-2 

Rnl  net longwave radiation   Wm-2 

Rns    net shortwave radiation   Wm-2

Rs↓  incoming shortwave radiation   Wm-2

Rs↑  outgoing shortwave radiation   Wm-2 

s  surface slope  radian 
S  storage of heat in air and plant biomass  Wm-2

Sc  seasonal correction for solar time  hour 
∆S  change in storage rate  mmh-1

T  standard local time  hour 
T  temperature  K 
Ta    air temperature    K 
Tb    brightness temperature    K 
Tc    canopy temperature    K 
Ts    surface temperature    K 
Ts_cold    surface temperature at a reference point (cold pixel) K 
Taero  aerodynamic surface temperature  K 
TM  thematic mapper   
Trad  radiometric surface temperature  K 
Tref  near surface air temperature at a reference point K 
Ts  surface temperature  K 
Tsdem  DEM adjusted surface temperature  K 
u  wind speed  ms-1

u*  friction velocity  ms-1

u200  wind speed at a “blending” height of 200m ms-1

u200_adjusted  adjusted wind speed at a “blending” height of 200m ms-1

W  capillary rise rate  mmh-1

Wλ  weighting coefficient for band λ  - 
x  parameter for calculation of Monin-Obukhov length - 
z  height   m 
zoh  surface roughness for heat transport  m 
z0m  surface roughness for momentum transport m 
Γ’  proportional factor for G/Rn ratio  - 
Γ”  extinction factor for G/Rn ratio  - 
Ψh  stability correction factor for heat transfer - 
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α  surface albedo  - 
αpath radiance  albedo path radiance  - 
αPT  Priestley-Taylor parameter  - 
αtoa  albedo at the top of the atmosphere  - 
β  Bowen ratio  - 
ea  atmospheric emissivity   - 
eo  surface emissivity  - 
φ  solar declination    radian 
γ  surface aspect  radian 
γ  psychrometric constant  kPaK-1
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λ  latent heat of vaporization   Jkg-1
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θ  solar incident angle  radian 
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τsw  one-way shortwave transmittance of air  - 
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CHAPTER 1 

 

INTRODUCTION 

 

Evapotranspiration (ET) is defined as the total amount of water that is transferred 

from the earth's surface to the atmosphere by evaporation and transpiration. Evaporation 

occurs at the surfaces of soils, plant leaves and water bodies when water evaporates 

directly into the atmosphere. Soil surfaces become wet after rain or irrigation or as a 

result of capillary rise when ground water tables are shallow, while plant leaves intercept 

water during rain and sprinkler irrigation. Transpiration refers to the transport of water 

vapor into the atmosphere after liquid water has evaporated through the stomata of plant 

leaves. Vapor transport through the stomata is determined by a slow diffusion process and 

plant physiological conditions regulated by air temperature, soil moisture status, vapor 

pressure deficit, and solar radiation. Under extreme circumstances of heat or solar 

radiation, plants may reduce –or even close entirely– the stomatal opening and, thus, 

interfere in an active manner with transpiration.  

 

ET is an important component of the earth’s hydrologic budget. For example, in 

the United States about 65 % of the precipitation received is returned to the atmosphere 
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through ET in the Northwest and Northeast regions and in the Southwest region ET 

represents nearly all the soil and surface water loss, where runoff is minimal (Nemani and 

Running, 1989; Hanson, 1991). Accurate monitoring and mapping of ET is important for 

society since it allows decision makers and stakeholders (i) to follow where, when, and 

how much water has moved into the atmosphere by evaporation; (ii) to monitor crop 

performance and the effects of droughts for famine prediction; (iii) to better evaluate the 

performance of irrigation systems; and (iv) to enhance weather predictions and increase 

our understanding of climate change. However, ET is a complex function of soil 

properties, atmospheric conditions, land use, vegetation, and topography which causes 

ET to vary in both space and time (Allen et al., 1996). Therefore, it is difficult to estimate 

or representatively measure ET at the regional scale (Bastiaanssen, 1995; Parlange et al., 

1995).  

 

Measurement approaches for ET from the land surface, including eddy covariance 

(e.g. Kizer and Elliott, 1991), Bowen ratio (e.g. Scott et al., 2000) and weighing 

lysimeters (e.g. Wright, 1982), are too expensive and time consuming for continuous 

application at sufficient spatial density at the regional scale. These techniques produce ET 

measurements over small footprints (m2 to ha) which are difficult to extrapolate to the 

regional scale, especially over heterogeneous land surfaces (Moran and Jackson, 1991). 

For example, in the heterogeneous landscape of the central plateau of Spain as many as 

13 ground measurements of ET in a relatively small area of 5000 km2 were not sufficient 

to predict accurately the area-averaged ET rate (Pelgrum and Bastiaanssen, 1996). 
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Since larger scale estimates of ET require alternative measurement and estimation 

approaches, the potential of satellite image-based remote sensing for examining spatial 

patterns or regional estimates of sensible (H) and latent (LE) heat fluxes has been pursued 

by a number of investigators (Choudhury, 1989; Moran and Jackson, 1991; Menenti et al., 

1993; Kustas and Norman, 1996; Mecikalski et al., 1999; Granger, 2000; Caparinni and 

Castelli, 2002; Nishida et al., 2003; Bastiaanssen et al., 2005; Allen et al., 2007). These 

efforts have resulted in the development of remote sensing algorithms that are quite 

different in their spatial and temporal scales: 30 m to 1/8th degree (about 13 km in New 

Mexico) and daily to monthly. Operational algorithms that have produced H and LE maps 

on local, regional, or national scales are: the North American Land Data Assimilation 

Systems (NLDAS) (Cosgrove et al., 2003), the Land Information Systems (LIS) (Peters 

Lidard et al., 2004), the Atmosphere-Land Exchange Inverse (ALEXI) (Norman et al., 

1995; Anderson et al., 1997), the disaggregated ALEXI model (DisALEXI) (Kustas et al., 

2003; Norman et al., 2003), the Surface Energy Balance System (SEBS) (Su, 2002; Jia et 

al., 2003; Han and Yang, 2004), the Surface Energy Balance Algorithm for Land 

(SEBAL) (Bastiaanssen et al., 1998; Bastiaanssen et al., 2005), Mapping 

EvapoTranspiration at high spatial Resolution with Internalized Calibration (METRIC) 

(Allen et al., 2005; Allen et al., 2007), as well as algorithms without distinct acronyms 

(Moran et al., 1989; Jiang and Islam, 2001; Ma et al., 2006; Schüttemeyer et al., 2007).  

 

SEBAL has been developed and pioneered by Bastiaanssen and his colleagues in 

The Netherlands during the 1990s (Bastiaanssen, 1995; Bastiaanssen et al., 1997; 

Bastiaanssen et al., 2001; Bastiaanssen et al., 2005). METRIC has been developed by 
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Allen and his research team in Idaho using SEBAL as its foundation (Allen et al., 2005; 

Allen et al., 2007). Unlike ALEXI and DisALEXI, SEBAL and METRIC do not require 

spatial fields of air temperature and atmospheric temperature soundings interpolated 

across the region of interest. However, applications of SEBAL and METRIC are 

restricted to clear days over areas of uniform weather condition, preventing application at 

the continental scale such as done by ALEXI, DisALEXI, NLDAS and LIS. 

 

SEBAL and METRIC calculate the energy balance from extreme thermal and 

vegetation conditions within an image using a “cold (wet)” and “hot (dry)” pixel. These 

procedures index H from the land surface (one of the major energy balance components) 

to satellite measured surface temperatures at specific surface boundary conditions. The 

main difference between SEBAL and METRIC is that the latter makes use of the 

reference evapotranspiration (ETr) calculated using high-quality ground measurements 

from weather stations (Allen et al., 2005) while the former can be applied without using 

ground measurements. Since many areas of the world have no adequate ground 

measurements there is a need for algorithms such as SEBAL. On the other hand, 

METRIC allows assimilation of ground measurements which can improve the quality of 

the H and LE maps. The SEBAL approach has demonstrated a high accuracy for 

evapotranspiration mapping worldwide with typical accuracies of about ±15 % and ±5 % 

for, respectively, daily and seasonal ET estimates (Bastiaanssen et al., 2005). Validation 

of METRIC evapotranspiration in Idaho using precision lysimeter measurements 

(considered the best standard) has shown METRIC evaporation estimates to be within 
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±10% at the sub-field scale for daily, monthly and annual time scales (Morse et al., 2000; 

Tasumi et al., 2000; Allen et al., 2003).   

 

In this dissertation I have selected SEBAL to estimate ET over arid riparian areas 

for the following reasons: (i) SEBAL consists of physically-based image analysis 

algorithms using standard satellite imagery and requires a minimum of ancillary 

meteorological information from surface measurements or atmospheric models; (ii) 

SEBAL deals with a large number of environmental variables and does not assume 

variables to be constant over space as do many other methods. For example, some 

methods assume all variables besides surface and air temperatures to be spatially constant 

(Jackson et al., 1977; Seguin and Itier, 1983); (iii) In SEBAL, the need for atmospheric 

correction of short-wave and thermal information in images is reduced (Tasumi, 2003) 

because SEBAL H and LE estimates depend only on radiometric temperature differences 

in the scene rather than on the absolute value of the surface temperature. This greatly 

enhances the applicability of SEBAL since the measurements needed for atmospheric 

corrections are often not available (Allen et al., 2007); (iv) SEBAL uses Landsat images 

with high spatial resolution which allows it to capture the small scale spatial 

heterogeneity that is typical for riparian areas in the southwestern United States. 

 

Previous validation studies have mainly been conducted in relatively 

homogeneous agricultural areas and have focused on comparison of daily ET rates 

estimated from SEBAL and METRIC with ground measurements using lysimeters 

(Trezza, 2002; Tasumi, 2003), Bowen ratio and eddy covariance methods (Bastiaanssen 
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et al., 2002; Droogers and Bastiaanssen, 2002). The overall goal of this study is to 

conduct a thorough evaluation of the performance of SEBAL in semi-arid riparian areas 

with a focus on the Middle Rio Grande Valley where vast deserts are transected by 

narrow river valleys covered by a mosaic of agricultural fields (mostly alfalfa) and 

riparian vegetation (cottonwood, saltcedar, russian willow and salt grasses) which creates 

a heterogeneous landscape with a short patch length scale. If SEBAL performs well under 

these challenging conditions, it provides a possibility to perform well in other arid and 

semi-arid regions of the world. Another difference with previous studies is my focus on 

all components of the energy balance during the instant of satellite overpass as well as on 

a daily basis. I can accomplish this since there is a quality controlled data set consisting 

of Rn, G, H and LE measurements in the riparian areas of the Middle Rio Grande Basin 

(New Mexico), San Pedro River Valley (Arizona) and the Owens River Valley 

(California).  

  

Another important goal of this dissertation is to evaluate up- and down-scaling 

procedures of ET maps generated from Landsat images (spatial resolution 30, temporal 

resolution 16 days) and from MODIS images (spatial scale 250 m, temporal resolution 

daily). The methodology for aggregating simple rectangular grid data is well developed 

(Bian, 1997; Bian et al., 1999; Mengelkamp et al., 2006). In this dissertation, simple 

averaging and nearest neighbor methods were selected for the data aggregation scheme, 

since these methods have been the most popular and convenient to use (Atkinson, 1985; 

Liang, 2004). The simple averaging method calculates the average value over an area of 

interest to produce a new coarser resolution data set. Nearest neighbor sampling produces 
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a subset of the original data; the extremes and subtleties of the data values are therefore 

preserved. 

 

Numerous studies have used the assumption that large-scale surface fluxes can be 

expressed as direct area averages of small-scale surface fluxes (Shuttleworth, 1991; 

Lhomme, 1992; Li and Avissar, 1994). Liang (2000) simply averaged the remotely 

sensed reflectance values from 30 m to 1 km and explored the aggregation effect. He 

concluded that the spectral reflectance was basically linear from 30 m resolution to 1000 

m resolution. More recently, Mengelkamp et al. (2006) mentioned that area-averaged 

small-scale ET calculated from local measurements was in good agreement with the area-

represented regional values. Nevertheless, few papers have examined the effect of 

different up-scaling schemes on the relative accuracy of the aggregated data despite its 

practical importance.  

 

A spatial resolution gap exists between the data requirements of regional-scale 

models and the output data from remote sensing energy balance algorithms such as 

SEBAL. For example, general circulation models or regional weather prediction models 

need input data with a spatial resolution of hundreds of kilometers which is much larger 

than the spatial resolution of most satellite sensors (Liang, 2004). Therefore, an up-

scaling (data aggregation) procedure is needed to fill the scale gap between satellite 

measurements and input requirements for large scale models. Increasing spatial 

resolution by data aggregation has shown the potential to generate observed or modeled 

  1-7



surface flux estimates over a range of different spatial resolutions (Gupta et al., 1986; 

Lhomme, 1992; Ebleringer and Field, 1993). 

 

In this dissertation, high quality scenes of two different dates of Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) imagery were selected and SEBAL was applied to estimate 

daily ET. Landsat-scale pixels (30 m) were aggregated to larger scale (60, 120, 250, 500 

and 1000 m). The objectives of this study were first to test the consistency of the SEBAL 

algorithm for Landsat 7 and MODIS images, and second to investigate the effects of four 

different up-scaling processes on the spatial distribution of ET, especially how the 

relative accuracy of ET changes with different up-scaling processes. 

 

Down-scaling is defined as an increase in spatial resolution following 

disaggregation of the original data set (Bierkens et al., 2000; Liang, 2004). The process of 

down-scaling accomplishes a restoration of the variation at a specific scale by assuming 

that the values of the larger scale are the average of the values at the finer scale and that 

more uncertainties exist in down-scaled products than up-scaled products because infinite 

solutions of down-scaled products are possible (Bierkens et al., 2000). Down-scaling is 

generally required for the use of available information at a desired fine resolution (Price 

et al., 2000; Maayar and Chen, 2006). Traditionally, various down-scaling procedures 

have been tested in the fields of meteorology and climatology to obtain local 

climatological information from coarse-resolution remote sensing imagery, but only a 
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few studies have applied disaggregation schemes to surface parameters to increase 

resolution (Liang, 2004). 

 

In this study, high quality Landsat 7 and MODIS images were selected to test 

various down-scaling procedures. Disaggregated daily ET rates from MODIS imagery 

were compared with the ET rates derived from Landsat imagery. SEBAL-estimated daily 

ET from Landsat imagery was validated against ground-based eddy covariance 

measurements in previous research, demonstrating very good agreement (Hendrickx and 

Hong, 2005). The primary objective of this research was to investigate the effect of 

various relatively simple down-scaling schemes on the spatial distribution of the SEBAL-

derived daily ET rate, especially how the relative accuracy of ET changes with increasing 

spatial resolution. In Chapter 6, I provide a brief review of some existing down-scaling 

procedures. 

 

This dissertation consists of seven chapters of which chapters 4, 5, and 6 are 

prepared as journal publications that stand by themselves. As a consequence some 

overlap and repetition occurs between the different chapters. Chapter 2 presents a 

literature review of different ground based and remote sensing methods for the 

measurement and evaluation of ET. Chapter 3 describes SEBAL with great detail for 

application with Landsat and MODIS images over flat and mountainous terrain. Chapters 

4, 5, and 6 are three journal publications dealing with, respectively, the evaluation of 

SEBAL versus ground measurements, up-scaling of ET maps from Landsat to MODIS 

scale, and down-scaling ET maps from MODIS to Landsat scales. The final chapter 7 
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summarizes conclusions and makes recommendations for further research. 
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CHAPTER 2 

 

MEASUREMENT AND MODELLING OF EVAPOTRANSPIRATION 

 

Techniques for quantifying actual evapotranspiration (ET) have been around for 

several decades and scientists are continually seeking to improve these methods (e.g. 

Rana and Katerji 2000, Courault et al. 2005, Shuttleworth 2007). Although a great variety 

of different methods are currently available to quantify ET in given space and time scales, 

accurate determination of the spatio-temporal distribution of ET is still a very challenging 

task since ET varies widely through both space and time. There are several factors 

controlling ET in the atmosphere; the amount of solar radiation reaching the earth’s 

surface, the availability of water in the soil, the types of plants, the amount of roots, and 

weather conditions can all affect ET.  

 

Most conventional direct measurements techniques including eddy covariance, 

Bowen ratio and weighing lysimeters are too expensive and time consuming for 

continuous application at sufficient spatial density at the regional scale (Moran and 

Jackson, 1991). They provide only point measurements and (except for lysimeters) it is 

difficult to determine the area that measurements represent, especially over 

heterogeneous regions. For example, in the heterogeneous landscape of the central 
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plateau of Spain as many as 13 ground measurements of ET in a relatively small area of 

5000 km2 were not sufficient to predict accurately the area-averaged ET rate (Pelgrum 

and Bastiaanssen, 1996). Recently developed cost-effective and fast techniques using 

remote sensing data have proven to be the only appropriate approach to provide ET 

estimation at regional scale with high repetition rate (Choudhury, 1989; Kustas and 

Norman, 1996; Anderson et al., 1997; Bastiaanssen et al., 1998). 

 

This chapter review several techniques used to measure and estimate ET at the 

local or regional scale. For each method, the advantages and disadvantages for their 

usage are discussed. The techniques presented in section 2.1 are categorized as methods 

that measure ET with hydrological and micrometeorological approaches, while methods 

that estimate ET using remotely sensed data are discussed in section 2.2. 

 

2.1. TECHNIQUES FOR MEASURING EVAPOTRANSPIRATION 

 

2.1.1. Hydrological Approaches 

2.1.1.1. Water balance method 

The water balance at the Earth’s surface can be obtained by calculating the input, 

output, and storage changes of water. Water balance is an indirect method. In semi-arid 

basins, the major input of water is from precipitation and output is ET. The residual in the 

water balance equation and the principle of conservation of mass is used to estimate ET 

in the water balance method (Figure 2.1). 
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Figure 2.1 Schematic of the water balance 
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ETSDRWIP =Δ±−−++     [2.1] 

 

where P is the precipitation, I is the irrigation, W is the capillary rise from the ground 

water table, ET is the evapotranspiration, R is the surface runoff, D is the drainage 

groundwater recharge and ∆S is the change in the soil water storage capacity. All terms 

are usually expressed in mm per unit time over a watershed. 

 

The water balance model is very popular since it looks simple. However the water 

balance model requires significant input data including precipitation, ground water table 

depth, soil moisture conditions and soil-water holding capacity. Some of these input 

parameters are difficult to determine over short time scales. For instance, reasonable 

agreement was reported between catchment scale water balance flow estimation and 

measured annual flows, but agreement with monthly flows was poor (Mather, 1972). 

Villagra et al. (1995) also argued that the error of input parameters including soil water 

storage, total hydraulic gradients, soil hydraulic conductivity and soil water flux densities 

cause a coefficient of variation of the order of 40% in ET estimates. Despite numerous 

uncertainties associated with the simple water balance model, many researchers have 

applied this type of model to problems ranging from catchment scale to the global water 

balance studies (Thornthwaite, 1948; Alley, 1984; Willmott et al., 1985; Mintz and 

Walker, 1993; Houser et al., 1998).  
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2.1.1.2. Weighing lysimeter technique 

The weighing lysimeter technique measures ET directly by using the water 

balance. This technique works by isolating a representative sample from the soil–

vegetation interface by placing it into a large ‘bucket’ and measuring the remaining 

components of the water balance (P, I) independently or through changes in the weight of 

the bucket (Tanner, 1967; Aboukhaled et al., 1982; Wright, 1991).  

 

ETSIP =Δ±+      [2.2] 

 

The weight of the moisture lost from the lysimeter by ET can be determined either 

by using a manometer to record pressure variations or with an electric balance. Either of 

these methods can be set up for daily, hourly, or long term monitoring. Because the 

weighing lysimeters technique measures water loss directly, it is considered one of the 

most accurate ways of quantifying ET on small scales (Aboukhaled et al., 1982; Allen et 

al., 1996). However, larger scale ET estimation using this technique is more challenging 

because of the high cost, physical difficulties of installation, the resulting disturbance of 

soil in the area and the limitations of vegetation height and rooting depth. That is the 

major reason why the weighing lysimeter data sometimes represent the ET of just one 

point in the field instead of conditions of the whole field (Aboukhaled et al., 1982). The 

weighing lysimeters technique is generally better for point-scale estimates and loses 

usefulness as a prediction tool when extrapolated over larger areas (Moran and Jackson, 

1991). 
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2.1.2. Micrometeorological Approaches 

2.1.2.1. Energy balance method 

The energy inputs and outputs are balanced according to the energy conservation 

law at the land surface. The surface energy balance describes how the radiative energy 

flux reaching the earth’s surface is transferred into sensible, latent and soil heat fluxes. 

The radiation balance of the Earth system is an accounting of the incoming and outgoing 

components of shortwave and longwave radiation. The radiation balance in the vertical 

direction is expressed by  

 

( ) ( ) ↓ε−−↑−↓+↓α−= LLLSn RRRRR 011    [2.3] 

 

Where Rn is the net radiation [Wm-2], RS↓ is the incoming shortwave radiation [Wm-2], 

RL↓ is the incoming longwave radiation [Wm-2], RL↑ is the longwave radiation emitted 

directly by the earth [Wm-2], α is the surface albedo [-] and ε0 is the surface emissivity [-]. 

The term (1-ε0) RL↓ represents the reflected long wave radiation as explained in section 

3.1. Rn can be positive or negative. Positive net radiation occurs during sunny daytime 

when RS↓ is large. At night, net radiation is usually negative since RS↓ is zero. Thus at 

night the outgoing longwave radiation from the Earth’s surface is usually the largest term. 

 

The principal use of the available net radiation flux in the Earth system is in the 

phase change of water (latent heat flux), changing the temperature of the air (sensible 

heat flux), subsurface (ground heat flux), canopy (heat storage) and green plant 

biochemical process (photosynthesis). Here are all components of the energy balance 



 2-7

equation below: 

SPGHRLE n Δ±−−−=      [2.4] 

 

where Rn is the net radiation flux [Wm-2], LE is the latent heat flux [Wm-2], H is the 

sensible heat flux [Wm-2], G is the ground heat flux [Wm-2], P is the energy used in the 

photosynthetic process [Wm-2] and S is the storage of heat in air and plant biomass [Wm-

2]. The term flux refers to flux density, which represents the amount of energy that flows 

through a horizontal surface of unit area per unit time. P and S are usually rather small 

compared to the other fluxes and are therefore often neglected (Miller, 1977; Monteith 

and Unsworth, 1990). Energy terms related to the horizontal transfer of heat also are not 

included because the assumed horizontal homogeneity implies these terms are balanced 

across the surfaces of the control volume for which the energy balance equation holds.  

 

The combination of all of the energy balance parameters must complete the 

balance (Twine et al., 2000). The components of this relationship can be measured 

independently. Rn is measured with a net radiometer and G is measured using soil heat 

flux plates, thermocouples and soil moisture sensors (Fritschen and Gay, 1979). H can be 

measured using a`scintillometer (Meijninger et al., 2002), sonic anemometer with a fine-

wire thermocouple (Kizer and Elliott, 1991; Massman and Lee, 2002) or the flux-gradient 

relation (Rana and Katerji, 2000). Since ET is calculated as LE/L, where L is the latent 

heat of vaporization, if all other terms (Rn, G and H) are observed and estimated, ET is 

estimated as the residual of the land surface energy balance. 
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2.1.2.2. Aerodynamic method 

The aerodynamic method is a micrometeorological technique to measure ET 

directly. It assumes a flux density is related to the gradient of the concentration in the 

atmospheric surface layer and based on only measurements of atmospheric gradients 

without using the information of the surface energy balance measurements (Thornthwaite 

and Holzman, 1942; Kondo, 1975; Blanc, 1987; Singh and Xu, 1997). In the 

aerodynamic method, heat fluxes are determined using the vertical profiles of air 

temperature, humidity and wind speed. It requires at least three or four levels of 

measurements (Legg et al., 1981; Wieringa, 1993). These parameters for turbulent flows 

in the surface layer can be derived based on the Monin-Obukhov similarity relations 

(Monin and Obukhov, 1954; Businger et al., 1971; Yaglom, 1977). 
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where Ψm, Ψh, and Ψc are the Monin-Obukhov similarity functions [-] (stability 

functions) for momentum, heat, and vapor transport, respectively, k (0.41) is the von 

Karman constant, L is the Obukov length [m], z0 is the surface roughness length [m], ρ is 

the air density [kgm-3], u*  [ms-1], θ*  [k] and q* [gg-1]are the friction velocity and scalar 

scales for temperature and humidity, respectively. Then the latent and sensible heat fluxes 
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can be calculated as follows: 

 

               ** quLE ⋅⋅⋅−= ρλ       [2.8] 

**p ucH θ⋅⋅⋅ρ−=                [2.9] 

 

where λ is the latent heat of vaporization [Jkg-1]. 

 

The aerodynamic method provides reliable results when vertical gradients of 

variables are large, however it does not work well when the temperature or humidity 

gradients are small (Baldocchi et al., 1988; Garratt, 1992; Rana and Katerji, 1996). 

Cellier and Brunet (1992) indicated that since the gradients are often small, the amount of 

uncertainty in heat fluxes estimated by the aerodynamic method is related to the 

inaccuracy of the measurement devices. Several studies suggested reducing this 

uncertainty to some extent by calculating the temperature and wind speed changes 

necessary for sensible heat fluxes (Itier, 1981; Rana and Katerji, 2000). Then the energy 

balance was used to estimate latent heat as the residual term by indirect way. 

Nevertheless, the aerodynamic method does not provide a reliable ET on tall vegetation 

neither with a complete form nor with a simplified form (Thom et al., 1975; Garratt, 

1978; Rana and Katerji, 1996). 

 

2.1.2.3. Bowen Ratio method 

The Bowen ratio method is an indirect method that has been widely applied and 

tested in various environment of settings (Tanner, 1960; Fritschen, 1965; Hatton and 
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Vertessy, 1990). The fundamental equations describing the relationship between vertical 

temperature and vapor pressure gradients for sensible (H) and latent heat (LE) fluxes, 

respectively, are expressed as: 

 

Z
TKcH Hp ∂
∂

−= ρ       [2.10] 

Z
eK

c
LE V

p

∂
∂−

=
γ
ρ

     [2.11] 

 

where ρ is the air density [kgm-3], cp is the specific heat of air [Jkg-1K-1], γ is the 

psychrometric constant [kPaK-1], KH and KV are the eddy diffusivities [m2s-1] of heat and 

water vapor transport, respectively, and 
Z
T
∂
∂  and 

Z
e

∂
∂  are the temperature and water vapor 

pressure gradients, respectively. 

 

In Eqs. [2.10] and [2.11], H and LE are not easily estimated because turbulent 

transport coefficients (KH and KV) are difficult to determine. However, Bowen (1926) 

argued that if the transfer coefficients are assumed to be equal, the ratio of H to LE is 

proportional to the ratio of the vertical gradients of temperature and vapor pressure above 

a surface. This ratio between H and LE is known as the Bowen ratio (Bowen, 1926) and 

can be approximated from measurements of air temperature and relative humidity at two 

different heights.  
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Since the Bowen ratio is defined as LEH=β , the energy balance equation Eq. [2.4] can 

be rearranged to give the following expression for LE and H: 

 

β+
−

=
1

GR
LE n       [2.13] 

( )GRH n −+
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β
β

1
     [2.14] 

 

The Bowen ratio has been proven to be an accurate method to measure ET in 

various environments (Fuchs and Tanner, 1970; Sinclair et al., 1975) including tall 

vegetation (Cellier and Brunet, 1992; Rana and Katerji, 1996). One of the advantages of 

the Bowen ratio technique is it requires only a small number of parameters to derive H 

and LE. Temperature and humidity measurements at just two heights are sufficient to 

calculate the Bowen ratio. On the other hand, since the H and LE measurements are 

directly dependent on the accuracy of β , a small measurement error in β will cause very 

large errors in the computed fluxes (Tanner, 1988; Singh and Xu, 1997). Sinclair et al. 

(1975) reported uncertainties up to 10% under ideal surface conditions, while Nie et al. 

(1992) reported uncertainties up to 20% for heterogeneous surfaces. Extremely dry 

conditions can vastly increase the error associated with the Bowen ratio technique. Angus 

and Watts (1984) estimated that the error could be as high as 60% under dry conditions. 

Kanemasu et al. (1992) indicated that measurement uncertainty using the Bowen ratio is 

particularly susceptible to errors when atmospheric moisture gradients approach zero. Xu 

and Qiu (1997) indicated that estimation by Bowen ratio method can be computationally 
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unstable and generate erroneous results when the Bowen ratio is close to -1. Some studies 

attempted to improve flux predictions by proposing criteria for rejecting unrealistic 

Bowen ratio values (Unland et al., 1996; Perez et al., 1999). However, determination of 

proper criteria is not a trivial step since the criteria of Bowen ratio vary and are dependent 

upon sensor resolution and environmental conditions (Perez et al., 1999; Xing et al., 

2008). 

 

2.1.2.4. Eddy covariance method 

In the eddy covariance approach (Swinbank, 1951; Tanner, 1988; Kizer and 

Elliott, 1991), ET is measured through the turbulent velocity and water vapor fluctuations 

caused by the transportation of vapor from the surface to the atmosphere. EC is a very 

effective method of directly measuring the water vapor flux at short time scales. The 

instrumentation required for the eddy covariance approach is fairly sophisticated. 

According to turbulent transfer theory, surface fluxes should be measured by correlating 

fluctuations in vertical wind speed with fluctuations in other atmospheric quantities like 

water vapor and temperature. In this way, the eddy covariance approach predicts surface 

fluxes. An expression for the vertical component of wind speed (w) or an atmospheric 

quantity such as heat or water vapor (s) can be related as shown: 

 

'www +=       [2.15] 

'sss +=       [2.16] 

 

where w  is the sum of mean wind speed measured over a sampling time t and w′ is the 
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instantaneous deviation from this average. 

 

Similarly, the time-averaged flux (Fs) of an atmospheric variable is dependent on its 

density, vertical velocity and volumetric content. As shown in Eqs. [2.15] and [2.16] 

above, each of these factors has a mean and a fluctuating component as: 

 

'' swFS ρ=       [2.17] 

 

where the over-bar again denotes a time average and the w’ and the s’ are instantaneous 

deviations from the mean. In this expression, the averages of the fluctuating terms and the 

mean vertical wind speed are both assumed to be zero and air density is assumed to be 

constant in the lower atmosphere. Additionally, assuming a unit volume for the mass of 

the transported entity allows the density term to be expressed. 

 

The eddy covariance can be expressed in terms of the upward vertical fluxes of water 

vapor (qs) in Eq. [2.18] and of temperature (T) in Eq. [2.19]: 

 

'' sqwE ρ=       [2.18] 

''TwcH pρ=       [2.19] 

 

In the field, hygrometers are used to measure specific humidity based on the 

electromagnetic radiation that the water vapor absorbs. Ultraviolet and infrared 

absorption hygrometers are effective when measuring humidity fluctuations in narrow 
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vertical columns of moving air. On the other hand, sonic-anemometers, also used to 

measure H, measure the vertical wind velocity by transmitting sonic signals and 

measuring them along fixed orthogonal directions. In addition, temperature fluctuations 

can be measured if a fine-wire thermocouple is installed. 

 

The theory behind the eddy covariance technique is straightforward, but the 

necessary instrumentation is sophisticated. In order for the variables to correlate 

accurately, the instrument must be capable of sampling the eddies at high frequency, the 

orientation and placement of the sensors must be precise and a sufficiently long 

averaging period  must be used. Monteith and Unsworth (1990) reported that the response 

time of the sensors depends on the range of eddy sizes that carry the flux. The size of 

eddies increases with their height above the surface and with any increase in surface 

roughness (Brutsaert 1991). The instrument sensitivity to moisture is also an issue with 

this technique, which means that measurements cannot be made when precipitation, 

irrigation, or dew exist. The krypton hygrometer and fine wire thermocouples 

incorporated on the sonic anemometer are particularly sensitive to moisture.  

 

The eddy covariance technique has an advantage over the Bowen ratio because it 

can measure the sensible and latent heat fluxes independently using the krypton 

hygrometer for the LE and the sonic anemometer for the H. However, Laubach and 

Teichmann (1999) and Twine et al. (2000) report problems with closing the energy 

balance equation using the eddy covariance technique. Because of the instrumentation’s 

sensitivity to moisture and the need to orient the eddy covariance devices with wind 
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direction, obtaining accurate ET estimates using the eddy covariance system is best done 

on clear days with appropriate wind direction. Loescher et al. (2005) examined EC 

measurement uncertainties in detail using instrument intercomparisons in laboratory and 

field. Linear regressions for sensible heat fluxes of eight EC instruments in neutral and 

unstable stability conditions revealed differences of up to 30%, while typical 

uncertainties (measured by the standard deviations of the slopes) were 7-11% depending 

on atmospheric stability. 

 

When making micrometeorological measurements over Earth surfaces, the 

measurements should represent the properties of the surface of interest. In order to do that 

the height of the instruments needs to be constrained. This is referred to as the ”fetch” 

requirement. As a rule of thumb, a fetch is usually reported as a ratio of 1:100, so that a 

vertical measurement height of 1 meter is necessary for 100 meters of homogeneous 

cover (Wieringa, 1993; Allen et al., 1996; Stannard, 1997). The location and extent of the 

flux footprint (fetch distance) depends on surface roughness, atmospheric stability, wind 

speed and wind direction (Schmid and Oke, 1990; Hsieh et al., 2000). There are several 

types of footprint models. Initially, simple two-dimensional analytical footprint models 

for neutral atmospheric conditions were developed (Gash, 1986; Schuepp et al., 1990). 

Later, the analytical footprint model was improved to account for atmospheric stability 

conditions (Horst and Weil, 1992; Hsieh et al., 2000). 
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2.1.2.5. Scintillometry method 

Scintillometry equipment has been developed over the last 30 years (Wesely, 

1976; De Bruin et al., 1995; Nieveen et al., 1998; Meijninger and De Bruin, 2000; 

Kohsiek et al., 2002; Hendrickx et al., 2007; Kleissl et al., 2008). Basically, 

scintillometry is a ground-based measurement technique that consists of transmitting a 

beam of electromagnetic radiation, most commonly in the near-infrared or microwave 

regions and measuring the variations in intensity of the received signal. These variations 

are caused by turbulently induced fluctuations in the refractive index of air. These 

measured refractive index fluctuations, in combination with other related data (e.g. 

roughness length and wind speed) can be used to estimate sensible and latent fluxes. The 

characteristics of these variations depend on the wavelength of the signal. For instance, 

signals in the near-infrared region are more sensitive to heat movement, while the 

microwave portion tends to respond more accurately to water vapor movement (Hill, 

1992; Green et al., 1994; McAneney et al., 1995; Nieveen et al., 1998; Watts et al., 2000; 

Green et al., 2001; Meijninger et al., 2002; Hendrickx et al., 2007).  

 

One of the most important advantages of scintillometry over the eddy covariance 

(EC) and Bowen ratio techniques is that footprint area of a scintillometer measurement 

(for example, footprint of the large aperture scintillometer (LAS) is up to 5000 m in one 

dimension) is significantly larger than the one from eddy covariance or Bowen ratio 

(usually less than 500 m) (Hemakumara et al., 2003; Hafeez et al., 2006; Hendrickx et al., 

2007). Large footprint of the scintillometer (500 to 10,000 m) makes it possible to be 
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used as validation and calibration data set for regional scale remote sensing and 

distributed hydrological models (Beyrich et al., 2002; Meijninger et al., 2002). 

 

The scintillometer measures the intensity fluctuations of light 2
Iσ  [-], from which 

the structure parameter of the refractive index of air 2
nC  [m-2/3], 2

TC  [K2 m-2/3] and 2
QC  

[(gm-3)2m-2/3] can be derived (Hill et al., 1980; Hill et al., 1988). Eqs. [2.20] and [2.21] 

are used to calculate 2
nC for the microwave (mw) and near-infrared (ir) scintillometers, 

respectively. 

 

6116722 50 LKC.
mwnI =σ        [2.20] 

33722 8920 LDC.
irnI

−=σ       [2.21] 

 

where λπ2=K [m-1] is the propagation wave number, D is the aperture diameter of the 

scintillometer [m] and L the distance between the transmitter and the receiver or the path 

length [m]. 
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and over-bar indicates the temporal averages, Constants AT and AQ are functions of 

wavelength λ [m], T (temperature) [K], Q (humidity) [gm-3], P  (pressure) [Nm-2].  
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Since fluctuations of the refractive index of air mainly depend on that of 

temperature and humidity, 2
nC  is related to the structure parameter of temperature and 

humidity, 2
QC  and 2

TC , respectively, as below (Wesely, 1976; Hill et al., 1980). 
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where [ ] QT/AAAA
mwirirmw QTQT −=Π and S is the sign (±) of the T-Q correlation. 

 

According to Monin-Obukhov similarity theory (MOST), it is possible to 

empirically link 2
TC  and 2

QC to the temperature and humidity scales, T* and Q* [-]. For 

unstable condition (L<0) (De Bruin et al., 1993): 
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where z is the measurement height [m], d is the zero plane displacement height [m] and L 

is the Monin-Obukhov length [m] defined as: 
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where 
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T is the air temperature [K], u* is the friction velocity [ms-1], k is the von Karman 

constant (0.41), g the gravitational acceleration (9.81) [ms-2], Ψ is the integrated stability 

function (Panofsky and Dutton, 1984), u is the wind speed [ms-1] and z0 is the 

aerodynamic surface roughness height [m].  

 

The heat fluxes, H [Wm-2] and LE [Wm-2] are obtained iteratively from Eqs. 2.25-2.27 

and the following relationship: 

 

**p TuCH ρ−=       [2.29] 

**V QuLLE −=       [2.30] 

 

where ρ is the air density [kgm-3] and Cp is the specific heat [Jkg-1K-1]. 

 

Among several possible options in scintillometry, the large aperture scintillometer 

(LAS) can have an optical integration path of up to few kilometers. A very large aperture 

scintillometer (XLAS), was especially designed for use over large distances, up to 10 km 

(De Bruin et al., 1995; Kohsiek et al., 2002). Kleissl et al. (2007) quantified 

scintillometer instrument error by intercomparing five Large Aperture Scintillometers in 

field. They found differences in the regression slopes of up to 21% with typical 

uncertainties of 5 - 6%. These uncertainties occurred even when great care was taken 
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during installation and maintenance of the equipment, data processing, and site selection. 

Larger errors are expected for non-ideal conditions. 

 

The scintillometry method, which is based on the Monin-Obukhov similarity 

theory (MOST) has been applied and compared to eddy covariance systems by several 

authors and shown to be a viable method for estimating areal averaged sensible and 

latent heat fluxes (Meijninger and De Bruin, 2000; Green et al., 2001; Kohsiek et al., 

2002; Asanuma and Lemoto, 2006). The scintillometer technique has been used 

successfully over homogeneous terrain. Recently several investigations have 

demonstrated the potential of this method over non-uniform surfaces. Watts et al. (2000) 

compared estimates from LAS with heat fluxes derived from infrared surface 

temperatures over semi-arid grassland, finding close agreement. Green et al. (2001) also 

found good agreement with eddy covariance fluxes over pasture land. Asanuma and 

Lemoto (2006) measured regional sensible heat flux over a semi-arid grassland in 

Mongolia with large aperture scintillometer and compared with eddy covariance tower 

measurements and found that results are comparable with each other. Overall, 

scintillometry appears to provide a useful means of obtaining path averaged fluxes at a 

scale suitable for satellite remote sensing comparison.  

 

2.2. REMOTE SENSING APPROACHES FOR ESTIMATING ET 

 

Although remote sensing techniques can not measure actual ET directly, the use 

of remote sensing to estimate ET rates on land surface has recently been the focus of 
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many investigations. The potential of satellite image-based remote sensing for examining 

spatial patterns of regional distributions of ET has been investigated by a number of 

authors (Choudhury, 1989; Moran and Jackson, 1991; Menenti et al., 1993; Kustas and 

Norman, 1996; Mecikalski et al., 1999; Granger, 2000; Caparinni and Castelli, 2002; Su, 

2002; Nishida et al., 2003; Bastiaanssen et al., 2005; Hendrickx and Hong, 2005; Allen et 

al., 2007). These efforts have resulted in the development of remote sensing ET 

algorithms that are quite different in their spatial and temporal scales: 30 m to 4 km, 

daily to yearly. Operational algorithms that have produced evaporation maps on local, 

regional, or national scales are: the North American Land Data Assimilation Systems 

(NLDAS) (Cosgrove et al., 2003), the Land Information Systems (LIS) (Peters Lidard et 

al., 2004), the Atmosphere-Land Exchange Inverse (ALEXI) (Anderson et al., 1997; 

Norman et al., 2003), the disaggregated ALEXI model (DisALEXI) (Norman et al., 

2003), the Surface Energy Balance System (SEBS) (Su, 2002; Jia et al., 2003; Janssen et 

al., 2004), the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 

1998; Bastiaanssen et al., 2005; Hendrickx and Hong, 2005), Mapping 

EvapoTranspiration at high spatial Resolution with Internalized Calibration (METRIC) 

(Allen et al., 2005; Allen et al., 2007), as well as algorithms without distinct acronym 

(Jiang and Islam, 2001; Ma et al., 2004; Ma et al., 2006; Schüttemeyer et al., 2007)  

 

Four main categories in remote sensing ET estimation are introduced in the next 

section. Those categories are based on works by Kustas and Norman (1996) and Courault 

et al. (2005): (1) Statistical and empirical approaches, (2) Crop coefficient with 

traditional ET equations, (3) Physically based analytical approaches and (4) Numerical 
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hydrologic models. 

 

2.2.1. Statistical and Empirical Approaches 

The statistical and empirical methods relate the difference between satellite 

observed surface radiometric temperature at the time of satellite passover and regionally 

measured air temperature to daily ET (Jackson et al., 1977; Seguin and Itier, 1983; 

Nieuwenhuis et al., 1985; Reginato et al., 1985; Carlson and Buffum, 1989; Vidal and 

Perrier, 1989; Thunnissen and Nieuwenhuis, 1990).  An early approach for estimating 

daily ET from instantaneous remote sensing data was presented by Jackson et al. (1977) 

and later analyzed by Seguin and Itier (1983) and others. The general form of the 

extrapolation equation from instantaneous surface and air temperatures to daily ET rates 

is as follows; 

 

( )i,ai,raddnd TTBARET −−+=      [2.31] 

 

where i represents instantaneous (near midday) values, d represents daily totals, A and B 

are regression coefficients depending on the local situation and Ta is air temperature at 2 

m height. To estimate daily ET in Eq. [2.31], the radiometric surface temperature (Trad) is 

required from remotely sensed data after atmospheric correction. Eq. [2.31] assumes that 

the daily total of soil heat flux is negligible (Gd = 0) and also that the ratio between 

sensible heat (H) and net radiation (Rn) is constant throughout the day (Courault et al., 

2005).  
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Other research has been conducted to establish the relationship between ET and 

NDVI (Kerr et al., 1989; Lo et al., 1993; Seevers and Ottmann, 1994; Srivastava et al., 

1997). Kerr et al. (1989) Srivastava et al (1997) and Seevers and Ottmann (1994) showed 

a good fit of linear relationship between NDVI and ET. The high correlation indicates an 

almost linear relationship between satellite-measured radiance and water losses to the 

atmosphere. Lo et al. (1993) generated a non-linear relation between NDVI and ET in the 

area of whole Africa. Monthly and yearly total of NDVI was obtained from AVHRR 

imagery and ET was calculated from water budget model suggested by Willmott et al. 

(1985). They observed a strong correlation between NDVI and ET (r ≈ 0.9) and noted 

about one month of time lag between peak ET and peak NDVI.  

 

A major advantage of the statistical and empirical methods is that they require 

only a few input data, but, apart from surface temperature, all other data, including air 

temperature, are often assumed spatially constant. Although local measurements can be 

interpolated with a geostatistical model (Seguin et al., 1994), the accuracy is still around 

20 – 30%. This limits the application to essentially homogeneous local regions. 

 

2.2.2. Crop Coefficient with Traditional ET Equations 

The crop coefficient (Kc) is a parameter frequently used in water resources 

management to scale actual ET to the reference ET for the particular vegetation. Accurate 

values of Kc improve plant water consumption estimation and the efficient management 

of water in both irrigated agriculture and natural vegetation areas. In regional 

hydrological studies it is not uncommon to make the assumption that crop coefficient is 
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directly related to daily ET (Garatuza-Payan and Watts, 2005; Compaore et al., 2008). 

This assumption then makes it possible to derive regional ET estimates based on a crop 

coefficient distribution. 

 

Neale et al. (1989) calculated Kc for corn using alfalfa ET as the reference ET. 

Corn ET was measured by lysimeters located at the Northern Colorado Research Center. 

Reference ET (alfalfa ET) was measured by three lysimeters located in a well-watered 

alfalfa field and radiometer measured reflectances were used to estimate the vegetation 

index. Then the reflectance-based Kc was estimated by linear scaling against vegetation 

index (NDVI). The authors argued that the reflectance-based Kc real time coefficients can 

be used with any combination of crop development and weather conditions. This is one 

of the main advantages over traditional crop coefficient approaches.  

 

Regional distribution of reference and potential ET calculated from remote 

sensing data has been attempted to provide a reference level for actual ET in various land 

surfaces. Mekonnen and Bastiaanssen (2000) tried the Priestly-Taylor (1972) (PT) 

approach to estimate reference ET at regional scale, because its radiation and temperature 

parameters can be assessed from remotely sensed data. The authors argued that this 

equation might behave better than a Penman-Monteith (PM) based equation because the 

PM equation requires weather parameters, such as vapor pressure and wind speed that are 

impossible to describe at a regional scale. The authors found first a good correlation 

between PM-ET and PT-ET using weather data, which indicated that the PT equation 

could be used under the humid conditions present in the study area. They concluded that 
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the Kc approach, based in the PT equation for calculating reference ET, can be used in 

remote sensing to determine regional scale crop water requirements as long as the vapor 

pressure deficit remains within acceptable limits. Choudhury (1997) estimated the global 

pattern of potential ET from the PM equation using satellite and assimilated data. The 

calculated potential ET rates were validated with lysimeter observations from well-

watered grass at 35 widely distributed locations in different climatic regimes. The results 

show that potential ET estimates from remote sensing and assimilated data have 

reasonable agreement with measured values. 

 

The Priestly-Taylor approach for calculating ET has been widely used because the 

PT equation is simpler than PM and thus requires limited input parameters (Shouse et al., 

1980; Green et al., 1984; Wilson et al., 2001; Liu and Lin, 2005). The PT method was 

extensively tested for different regions and there exist mixed results of PT performance. 

Several studies indicated that PT approach has shown reasonable performance (Jensen et 

al., 1990; McAneney and Itier, 1996) In contrast, Irmak et al. (2003) found 

underestimation of PT daily ET when compared with FAO-56 PM in Florida and the PT 

underestimations tended to be higher in dry water-stressed conditions. Yoder et al. (2005) 

compared PT and PM (FAO-56) with using ground measurement by a large weighing 

lysimeter, and they indicate that PT overestimated ET and was less accurate than PM 

(FAO-56). Although the PM approach suggested by Allen et al. (1998) requires wind 

speed and vapor pressure deficit in addition to air temperature and solar radiation, PM 

generally yields better results under various climatic conditions than the PT approach 

(Allen et al., 1994; Mohan and Arumugam, 1996; Itenfisu et al., 2003; Yoder et al., 2005). 
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2.2.3. Physically-Based Analytical Approaches 

The most common physically-based procedures for estimating ET using remote 

sensing data are based on the surface energy balance. The method for balancing surface 

energy consists of estimating Rn, G, and H from remotely sensed data and getting LE 

(ET) as the residual (neglecting photosynthesis, advection and heat storage in the air and 

canopy): 

 

HGRLE n −−=      [2.32] 

 

Because all residual errors are incorporated in the estimate of LE, applying Eq. [2.32] 

requires the accurate estimation of Rn, G, and H. In particular, much discussion has 

occurred about estimating H accurately from remotely sensed data since aerodynamic 

surface temperature (Taero) is difficult to measure from remote sensing. Taero is one of the 

mandatory parameters in the common H equation (Brutsaert, 1991). 

 

ah

aaero

r
TT

CpH
−

= ρ      [2.33] 

 

where ρa is the density of air [kgm-3], Cp is the specific heat capacity of air [Jkg-1 K-1], 

Taero is the aerodynamic surface temperature [K], Ta is air temperature at the reference 

height [K] and rah is the aerodynamic resistance to heat transport [sm-1]. 

 

Since remote sensing thermal bands measure radiometric surface temperature 
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(Trad), several studies have analyzed the effect of sensible heat flux using Trad instead of 

Taero. The two temperatures usually differ by 1 to 5 °C, depending on canopy density and 

height, canopy dryness, wind speed and sun angle (Kustas et al., 1994; Qualls and 

Brutsaert, 1996; Qualls and Hopson, 1998). Unfortunately, an uncertainty of 1 °C in Taero 

– Ta can result in a 50 Wm-2 uncertainty in H (Campbell and Norman, 1998) which could 

be approximately equivalent to an evaporation rate of 1 mm day-1. A way to compensate 

for the differences between Taero and Trad is to add an extra resistance term, rex in Eq. 

[2.33]. The rex can be expressed by ratio of zom and zoh (Kustas et al., 1989): 
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k is the von Karman constant, and B-1 is a parameter expresses the momentum flux 

compared to the extra resistance.  

 

Although many investigators have tried to solve this problem by adjusting rah or 

use of an additional resistance term, no generally applicable method has been developed 

(Kustas and Norman, 1996). Especially for sparse vegetation, kB-1 is difficult to 

determine since it is dependent upon vegetation type and canopy stage as well as climate 

conditions (Troufleau et al., 1997; Massman, 1999; Lhomme et al., 2000). Therefore the 

kB-1 approach is quite questionable for sparse canopies (Lhomme et al., 1997; Verhoef et 
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al., 1997). Campbell and Norman (1998) conclude that a practical method for using 

satellite surface temperature measurements should have at least three qualities: (i) 

Accommodate the difference between aerodynamic temperature and radiometric 

temperature, (ii) not require a measurement of near-surface air temperature and (iii) rely 

more on differences in surface temperature over time or space rather than absolute 

surface temperatures to minimize the influence of atmospheric corrections and 

uncertainties in surface emissivity. 

 

In this chapter, the physically-based analytical approaches using remote sensing 

are categorized as single-source (Bastiaanssen et al., 1998; Su, 2002; Allen et al., 2007) 

and dual-source models (Lhomme et al., 1994; Norman et al., 1995; Chebouni et al., 

1996). A main difference between the two models are whether the model parameterizes 

the radiative and turbulent exchanges of soil and vegetation components in a thermal 

pixel as separate (dual-source) or lumped manner (single-source) (Figure 2.2). 

 

2.2.3.1. Single-source approach 

The single-source approach considers each thermal pixel area as a single 

homogeneous source of heat fluxes. One example of a single-source model called  

SEBAL (Surface Energy Balance Algorithm for Land) (Bastiaanssen, 1995) deals with 

the problem of inferring Taero from Trad by estimating dT (the temperature difference 

between T1 and T2, taken at two levels, z1 and z2, over the zero plane displacement) 

directly without measuring the absolute temperature at a given height.  
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Figure 2.2 Schematic of the single-source (left) and dual-source (right) remote sensing 
model (subscript c and s is canopy and soil, respectively). 
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SEBAL selects two reference surface pixels (dry and wet) for internal calibration. 

The temperature difference (dT) for a dry reference surface (pixel) is calculated in 

SEBAL from the inversion of the sensible heat flux equation. There is no latent heat flux 

(LE=0) for the dry surface so that H = Rn - G (Bastiaanssen et al., 1998). Based on the H 

value for a dry surface, ΔTa of dry surface can be calculated from Eq. [2.36].  For a wet 

reference surface, all available energy Rn - G is used for evapotranspiration LE, so that H 

≈ 0 and ΔTa ≈ 0. In order to keep requirements for high quality ground data to a 

minimum, Bastiaanssen (1995) presumed that H = 0 for the wet surface to eliminate the 

need for a ground-based ET prediction, so that ΔTa for the wet surface is equal to zero.  

 

Another single-source model METRIC (Mapping EvapoTranspiration at high 

Resolution with Internalized Calibration) developed by Allen et al. (2001) is similar to 

SEBAL but uses the used reference crop ET (ETr) to predict LE for the dry and wet 

reference surfaces. METRIC calculates H = Rn - G and H = Rn - G – 1.05ETr at the dry 

and wet reference surfaces, respectively, where ETr is computed at the image time using 

weather data from local weather stations.  

 

As mentioned above, SEBAL calculates the sensible heat flux for each pixel using 

the air temperature difference (dT) between heights z1 and z2. Several field observations 

confirm that land surfaces with a high dT are associated with high radiometric 
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temperatures (Ts) and those with a low dT with low radiometric temperatures. Field 

measurements in Egypt and Niger (Bastiaanssen et al., 1998), China (Wang et al., 1998), 

USA (Franks and Beven, 1997) and Kenya (Farah and Bastiaanssen, 2001) have shown 

that the relationship between Ts and dT is approximately positively linear for different 

field conditions including irrigated fields, deserts, and mountains. Therefore, SEBAL 

uses a linear relationship between dT and surface temperature (Ts) for the calculation of 

dT for each pixel in an image. 

 

21 cTcT rada −=Δ      [2.37] 

 

where c1 and c2 are empirical coefficients valid for one particular moment (the time and 

date of an image) and landscape. By using the low and high values for ΔTa as calculated 

from the wet and dry reference pixels, the extremes of H are used to find coefficients c1 

and c2 that prevent outliers of H-fluxes and perform internal calibration. In the SEBAL 

implementation, the difference between Trad and Taero, becomes less important if dT is 

derived by inverting the H-flux equation rather than deriving dT from independent Trad 

and Ta measurements and kB-1 adjustments (Bastiaanssen et al., 1998). Computing dT 

from the inversion of Eq. [2.33] incorporates all biases in Trad and rah. Thus, the 

empirical Eq. [2.37] meets the third quality stated by Campbell and Norman (1998) that 

one should rely on differences in radiometric surface temperature over space rather than 

absolute surface temperatures to minimize the influence of atmospheric corrections and 

uncertainties in surface emissivity. 
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2.2.3.2. Dual source approach  

Dual source models were developed to partition radiative and turbulent energies 

into separate fluxes originating from soil surface and vegetation especially in sparsely 

vegetated areas. Some models consider energy exchange between soil and vegetation 

(Shuttleworth and Wallace, 1985; Choudhury and Monteith, 1988) and others assume 

only vertical fluxes without any interaction between soil and vegetation (Blyth and 

Harding, 1995; Lhomme and Chehbouni, 1999). Dual source models using remote 

sensing imagery have been widely applied and validated under various environmental 

conditions (Anderson et al., 1997; Kustas and Norman, 1997; Mecikalski et al., 1999; 

French et al., 2002; Li et al., 2005; Sánchez et al., 2007).  

 

The dual source model use radiometric temperature observations to estimate the 

components of the surface energy balance from soil and vegetation. Here is the common 

formula used in dual-source models to estimate the sensible heat flux (Anderson et al., 

1997; Mecikalski et al., 1999; Timmermans et al., 2007). 
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where the subscripts s and c represent soil and canopy components, respectively.  

ra is the aerodynamic resistance of the canopy air layer [sm-1], rs is the resistance of the 

soil surface [sm-1], rah is the bulk resistance [sm-1] and Ta, Tc and Ts are the temperature 

[K] of the air within the canopy and canopy itself and the soil surface, respectively. Air 
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temperature can be obtained either from local weather station or a nested modeling 

approach (Norman et al., 2003; Anderson et al., 2004). The use of this model requires 

radiometric temperatures measured from both the soil and the canopy from remote 

sensing. Anderson et al. (1997), Mecikalski et al. (1999) and Timmermans et al. (2007) 

estimated these temperatures by: 
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where fc (φ) is the apparent fractional coverage viewed as seen by the radiometer, φ is the 

view angle and LAI is the leaf area index [-]. To estimate the latent fluxes (LE) from soil 

and vegetation, a simple Priestley-Taylor approximation (Priestley and Taylor, 1972) was 

used. Soil heat flux (G) is estimated from equation suggested by Choudbury et al. (1987). 
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where LEs, LEc, Rns, Rnc are the latent heat and net radiation fluxes from the soil 
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(subscript s) and the canopy (subscript c), G is the soil heat flux, αPT is the Priestley-

Taylor parameter (1.3), Δ is the slope of the saturation vapor pressure-temperature curve 

at canopy temperature, γ is the psychrometric constant (0.066) [kPaK-1], fg is the fraction 

of green vegetation, NDVImax is NDVI for complete vegetation cover, NDVImin is NDVI 

for bare soil, ξ is a function of leaf orientation (0.8 for planophile canopy and >1.4 for 

erectophile canopy) (Choudhury et al., 1994; French, 2001).  

 

Kustas and Norman (1997), Anderson et al. (1997) and Timmermans et al (2007) 

applied a dual-source model, TSEB, in various environments and computed surface 

energy balance components. Results from the dual-source model were validated against 

the Bowen ratio or eddy covariance measurements. The estimated total fluxes from 

combined soil and vegetation data all showed a reasonable accordance (< 20%) with 

ground measurements. 

 

2.2.4. Numerical Hydrologic Models 

Numerical/hydrologic models solve the equations describing the energy and mass 

flow processes in the soil-vegetation-atmosphere system. Although compared to the 

simple water bucket model, numerical/hydrologic hydrological models can deal with 

spatial heterogeneities and describe complex hydrological processes (Houser et al., 1998; 

Immerzeel and Droogers, 2008). However there is still a difficulty in accurately modeling 

hydrological cycles due to dynamic spatial and temporal variations of hydrological 

processes. Major problems in applying sophisticated hydrological models are high 

demand of input parameters describing soil, vegetation and atmosphere properties and 
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computation resources  (Camillo et al., 1986; Carlson et al., 1995; Chen et al., 2005). In 

reality, such detailed hydrological data sets are rarely available on regional scale, 

therefore these models are less suitable for most large scale hydrology studies unless 

remote sensing information is used. 

 

The use of remote sensing as the input variables to the hydrological models is 

relatively new research area (Kite and Pietroniro, 1996; Shuttleworth, 1998; Boegh et al., 

2004). Here are several research examples successfully implemented hydrological models 

with remote sensing information. Droogers and Bastiaanssen (2002) applied SEBAL and 

the soil-water-atmosphere-plant environment (SWAP) model to evaluate an irrigation 

project in Western Turkey. The authors noted that the combination of a high temporal 

resolution hydrological model and high spatial resolution remote sensing will generate 

model products of high resolution in both space and time. Rivalland et al. (2005) used a 

soil-vegetation-atmosphere transfer (SVAT) method combining weather data and satellite 

imagery to estimate surface energy balance of the South-East of France. They applied 

SVAT model with a land use map derived from SPOT satellite imagery and fraction of 

vegetation cover (LAI) and surface albedo obtained from airborne measurements. The 

authors present a result showing a good agreement between SVAT estimated fluxes and 

ground measurements. Chen et al. (2005) applied a distributed hydrological model to 

estimate the ET and soil moisture of a forested watershed at high spatial resolution (30m) 

using vegetation index and type from Landsat imagery. Their study shows that spatial and 

temporal distributions of modeled ET and soil moisture are highly correlated with soil 

type and rainfall events. 
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So far, the main remote sensing information used in distributed hydrological 

modeling studies is high resolution precipitation, soil moisture, vegetation index and land 

cover data (Graetz, 1990; Band et al., 1993; Wallace, 1995; Kite and Pietroniro, 1996; 

Sellers et al., 1996; Kim and Barros, 2002). The most common interaction between 

remote sensing and distributed models is using remotely sensed data as model input 

variables (Plummer, 2000). However, there are more issues besides high demand of input 

parameters and computation resources, which are including spatial scale disparity 

between remote sensing data and a hydrological model (Wood, 1995) and selection of the 

most suitable remote sensing information (Engman, 1996). Nevertheless, with 

development of sensor technology and data processing, remote sensing will continue to 

be an important data source for hydrological models in terms of model validation and 

calibration. 
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CHAPTER 3 

 

SURFACE ENERGY BALANCE ALGORITHM FOR LAND (SEBAL) 

 

SEBAL is a remote sensing flux algorithm that evaluates the components of the 

energy balance and determines the ET rate as the residual: 

 

HGRLE n −−=      [3.1] 

 

where Rn is the net radiation flux density [Wm-2], G is the soil heat flux density [Wm-2], 

H is the sensible heat flux density [Wm-2], and LE (= λET) is the latent heat flux density 

[Wm-2], which can be converted to the ET rate [mmd-1] using the latent heat of 

vaporization of water λ [Jkg-1]. Figure 3.1 shows the surface energy balance components 

for a land surface. In this study, the flux of net radiation (Rn) is considered positive when 

it is directed toward the surface, latent heat (LE) and  sensible heat (H) fluxes are 

considered positive when coming from the surface toward the atmosphere, and  soil heat 

flux (G) is taken as positive when going away from the surface to deeper depths in the 

soil. 

 

To implement SEBAL, images are needed with information on reflectance in the 
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Figure 3.1 Surface energy balance for a vegetated surface. The arrows indicate the 
direction of positive fluxes. 
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visible, near-infrared and mid-infrared bands as well as emission in the thermal infrared 

band. A schematic of the general computational process of SEBAL algorithm is shown in 

Figure 3.2. 

 

 

3.1. NET RADIATION 

 

The net radiation Rn under cloud-free conditions is obtained from the radiation 

balance between net shortwave and net longwave radiation at the land surface.  

 

nLnsn RRR +=      [3.2] 

where  

  ↓↓↑↓ ⋅−=−= ssssns RRRRR α     [3.3] 

and  

( ) ↓↑↓ ⋅−−−= LLLnL RRRR 01 ε .    [3.4] 

 

Here Rns is the net shortwave radiation [Wm-2], RnL is the net longwave radiation [Wm-2], 

Rs↓ is the incoming shortwave radiation [Wm-2], Rs↑ is the outgoing shortwave radiation 

[Wm-2], RL↓ is the incoming longwave radiation emitted from the atmosphere [Wm-2], 

RL↑ is the outgoing longwave radiation emitted from the land surface [Wm-2], α is the 

albedo of the surface for shortwave radiation [-], and ε0 is the thermal emissivity of the 

surface [-]. Kirchoff’s law states that for a grey body (such as the earth’s surface) the 

absorptivity at a given wavelength equals the emissivity at the same wavelength. Then 
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Figure 3.2 Schematic of the general computational process for determining 
evapotranspiration using SEBAL. 
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the sum of transmissivity, emissivity, and reflectivity or albedo equals one, the albedo for 

the sum of transmissivity, emissivity, and reflectivity or albedo equals one. When 

transmissivity is negligibly small, the albedo for longwave radiation at the earth’s surface 

equals (1 – ε0) and ( ) ↓⋅− LR01 ε represents the reflected longwave radiation. Figure 3.3 

illustrates the surface radiative balance components included in Eq. [3.5] for calculation 

of the net radiation 

 

( ) ↓↑↓↓↓ ⋅−−−+⋅−= LLLssn RRRRRR 01 εα    [3.5] 

 

 

3.1.1. Incoming Shortwave Radiation 

Rs↓ is composed of both the direct solar radiation and the diffuse radiation with a 

strong diurnal variation. It is estimated from the amount of radiation received at the top of 

the atmosphere (Ra) [Wm-2] and the one-way shortwave transmittance for the atmosphere 

(τsw) [-]. The term τsw accounts for the reduction of the radiation received at the top of the 

atmosphere due to absorption and scattering effects by the atmosphere. 

 

swaS RR τ⋅=↓         [3.6] 

where  

rSCa dGR ⋅⋅= θcos .      [3.7] 

Therefore, 

swrSCS dGR τθ ⋅⋅⋅=↓ cos      [3.8]
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Figure 3.3 Surface radiation balance for a vegetated surface 
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where Gsc is the solar constant (1367) [Wm-2], θ is solar incident angle [radians], dr is the 

inverse squared normalized earth-sun distance [-] and τsw is the shortwave atmospheric 

transmittance [-]. 

 

The value of dr is calculated following Duffie and Beckman (1980) as:  

 

⎟
⎠
⎞

⎜
⎝
⎛+=

365
2cos033.01 πDOYd r     [3.9] 

 

where DOY is the sequential day of the year (1– 366). 

 

τsw is estimated in this study by an empirical relationship with elevation (z) from 

(Allen et al., 1998): 

 

zsw ⋅⋅+= −510275.0τ      [3.10] 

 

where z is the elevation above sea level [m]. 

 

Recent by Allen et al. (2007) present a more sophisticated equation for τsw that 

includes the impact of sun angle and water vapor and takes into account beam and diffuse 

radiation. 

 

⎥
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⎣
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25.5

293
0065.02933.101 ⎟

⎠
⎞

⎜
⎝
⎛ −

=
zP     [3.12] 

 

1.214.0 +⋅⋅= PeW a       [3.13] 

 

where P is the atmospheric pressure [kPa], W is the water in the atmosphere [mm], horθ  is 

the solar zenith angle over a horizontal surface, Kt is the turbidity coefficient [-], ea is the 

near-surface vapor pressure [kPa] and z is the elevation [m]. Eq. [3.11] is more accurate 

than Eq. [3.10] but requires ground measurements of ea and an estimate of Kt. 

 

The solar incident angle (θ) is the angle between the solar beam and an imaginary 

line perpendicular to a surface. For a flat surface, the cosine of the solar incident angle is 

calculated from the solar elevation angle as: 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= φπθ

2
coscos      [3.14] 

 

where, θ is the solar incident angle [radians] and φ is the sun elevation angle [radians] 

(Figure 3.4). However for a sloped surface, the solar incident angle (θ) changes with the 

surface slope and the aspect (Figure 3.5). Duffie and Beckman (1980) computed the 

cosine of the solar incident angle (θ) on a sloped surface as follows: 
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Figure 3.4 Definition of the solar incident angle (θ). φ is the sun elevation angle 
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Figure 3.5 Definition of the slope (left) and aspect (right) used in SEBAL  
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where cosθslope is the cosine of the solar incident angle [radians] for sloped land surfaces, 

δ is the solar declination (positive in summer in the northern hemisphere) [radians], φ is 

the latitude of the pixel (positive for northern hemisphere) [radians], s is the slope 

[radians], where “s = 0” for a horizontal surface and “s = π/2” for a vertical surface (s is 

always positive and represents a upward/downward slope in any direction), γ is the 

surface aspect angle [radians], where “γ = 0” for surfaces facing south, γ is negative for 

east and positive for western aspect, “γ = -π/2” represents an east facing slope and “γ = 

+π/2” represents a west facing slope.  “γ= -π” or “γ =π” represents a north facing slope, 

and ω is the hour angle [radians]. The value of ω is equal to 0 at solar noon, ω is negative 

in the morning and positive in the afternoon.  

 

SEBAL reprojects the Rs↓ calculated for slopes to its horizontal equivalent 

(Figure 3.6). This conversion can by done by dividing the cosine of the incident solar 

angle [cosθslope] by the cosine of the slope [cos(s)]. 

 

  ( )sslope coscoscos θθ =                  [3.16] 

 



 3-12

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Unit area implications in SEBAL 
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where cos(s) is the cosine of the land surface slope.  The cosθ  was used to obtain the 

horizontal-equivalent value of incoming solar radiation in Eq. [3.8]. 

 

The surface slope and aspect for each pixel were obtained from the digital 

elevation model of the area using ERDAS Imagine software (ERDAS, 2002). The 

parameters δ and ω were calculated by the following equations (Allen et al., 1998): 

 

⎟
⎠
⎞

⎜
⎝
⎛ −= 39.1

365
2sin409.0 DOYπδ     [3.17] 

and 

⎥
⎦
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⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ +

−
+= 12

1512 c
mz S

LL
tπω     [3.18] 

 

where t is the standard local time for the satellite overpass (without considering daylight 

saving time) [h], Lz is the longitude of the center of the local time zone (degrees west of 

the Greenwich) [deg], Lm is the longitude of the area of interest (degrees west of the 

Greenwich) [deg], and Sc is the seasonal correction for solar time [h] calculated as 

follows (Allen et al., 1998): 

 

( ) ( )
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⎠
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3.1.2. Outgoing Shortwave Radiation 

To estimate the outgoing shortwave radiation, ↑⋅ sRα , the land surface albedo 

needs to be determined. Surface albedo (α) [-] is the ratio of reflected to incoming solar 

radiation at the land surface. Albedo values for different surfaces are presented in Table 

3.1: 

 

↓

↑=
s

s

R
R

α       [3.20] 

 

where Rs↓ is the incoming shortwave radiation [Wm-2] and Rs↑ is the outgoing shortwave 

radiation [Wm-2]. 

 

In the SEBAL procedure, the hemispherical surface albedo (α) is obtained from 

the albedo at the top of the atmosphere (αtoa) with the following semi-empirical 

relationship (Menenti et al., 1989): 

 

2
_

sw

radiancepathtoa

τ

αα
α

−
=      [3.21]  

 

where α is the surface albedo [-], αtoa is the clear-sky shortwave albedo at the top of the 

atmosphere [-] and αpath_radiance is the albedo path radiance [-]. Tasumi and Allen (2000) 

found that αpath_radiance has a value between 0.025 and 0.04, 0.03 is a reasonable value.   

 



 3-15

Table 3.1 Albedo values for different surfaces (Brutsaert, 1982). 

 

Surface Albedo [-] 

Green grass and other short vegetation 0.15 – 0.25 

Coniferous forest 0.10 – 0.15 

Gray soils; bare fields 0.20 – 0.35 

Dry soils; deserts 0.15 – 0.25 

White sands; lime 0.30 – 0.40 

Moist dark soils 0.05 – 0.15 

Deep water 0.04 – 0.08 

Fresh dry snow 0.80 – 0.90 
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The albedo at the top of the atmosphere, αtoa, is computed by performing an 

integration over all reflectance bands. 

 

 ∑
=

=
n

i
itoa w

1
λλ ρα      [3.22] 

 

where n represents the total number of spectral bands used in the SEBAL algorithm, wλ is 

a weighting factor [-] that accounts for the uneven distribution of the extraterrestrial 

radiation for each narrow band region of the spectrum [Table 3.2], and ρλi [-] is the 

narrow band spectral reflectance (ρ) corresponding to band i. 

 

Tasumi et al. (2008) consider the surface albedo algorithm used in SEBAL overly 

simplified, since this algorithm (Bastiaanssen et al, 1998a) overestimates the surface 

albedo for bright-colored bare soils. They suggest the following equation, especially for 

land surfaces with high surface albedos (> 0.23). 

 

[ ]∑
=

⋅=
n

b
bbs w

1
,ρα      [3.23] 

where 

boutbin

babt

bsin

bsout
bs R

R

,,

,,

,,

,,
, ττ

ρρ
ρ

⋅

−
== ,     [3.24] 

 

wb is the weighting coefficient, bs,ρ  is the surface reflectance for band b, bsinR ,,  and 

bsoutR ,,  are the mean at-surface incoming and reflected radiances, respectively, bin,τ  and 
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Table 3.2 Weighting Coefficients wλ for Landsat 5, 7 and MODIS 

 Band1 Band2 Band3 Band4 Band5 Band6 Band7 

Landsat 5 0.293 0.274 0.233 0.157 0.033 * 0.011 

Landsat 7 0.293 0.274 0.231 0.156 0.034 * 0.012 

MODIS 0.238 0.147 0.291 0.277 † 0.034 0.014 

 
*Not available for thermal infrared band 
†Band 5 of MODIS is not used in SEBAL due to sensor error
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bout ,τ  are the effective transmittances for incoming solar radiation and reflected short 

wave radiation, respectively, bt ,ρ  is the reflectance for band b at the top of the 

atmosphere and ba,ρ  is the atmospheric path reflectance for band b. Various land surface 

albedo values calculated from Tasumi et al. (2008) were compared to albedo values 

estimated using the validated method by Liang (2000). The estimated albedo values from 

the two studies are almost identical (Tasumi et al., 2008). In this dissertation Eq. [3.21] 

has been used since Eq. [3.23] was not available during this processing of the images. 

Because the albedo difference affects only pixels with albedos exceeding 0.23, i.e. dry or 

almost dry pixels, the use of Eq. [3.21] had only a minor impact on the predicted ET rates 

of riparian areas. 

 

The weighting coefficients are calculated as the radio of the solar constant for a 

particular band and the sum of the solar constant for all the bands: 

 

∑
=

λ

λ
λ ESUN

ESUN
w      [3.25] 

 

The reflectance for each band is computed following Markham and Barker (1987) 

and NASA (2002): 

 

   
θ

π
ρ

λ

λ
λ cos

2

⋅
⋅⋅

=
ESUN

dL
      [3.26] 
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where ρ is the at-satellite spectral planetary reflectance [-] for band λ, Lλ is the at-satellite 

spectral radiance [Wm-2ster-1μm-1], which is the outgoing radiation energy of the band 

observed at the top of atmosphere by the satellite, d is the normalized Earth-Sun distance 

[-], cosθ is the cosine of the solar incident angle, and ESUNλ is mean solar irradiances 

[Wm-2ster-1μm-1] for each band λ. Values of ESUNλ are given in Table 3.3. 

 

Since the inverse of d2 is equal to dr, Eq. [3.21] can be rewritten as: 

 

rdESUN
L

⋅⋅
⋅

=
θ

π
ρ

λ

λ
λ cos

     [3.27] 

 

where dr was calculated from Eq. [3.9]. The values of at-satellite spectral radiance (Lλ) 

for Landsat 5 TM are calculated as follows: 

 

MIN
MINMAX LDN

LL
L +⋅⎟

⎠
⎞

⎜
⎝
⎛ −

=
255λ     [3.28] 

 

where, Lλ is sensor observed radiance [Wm-2ster-1μm-1] for band λ, LMAX [Wm-2ster-1μm-

1] and LMIN [Wm-2ster-1μm-1] are constants and DN [-] is the digital number recorded in 

the satellite image. The values of LMIN and LMAX vary over time as the Landsat 5 TM 

detectors age and begin to deteriorate. Recent updated values for LMIN and LMAX from 

Chander et al. (2007) are given in Table 3.4. 
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Table 3.3 ESUNλ [Wm-2μm-1] for Landsat 5 TM (Markham and Barker, 1986), Landsat 7 
ETM+ (NASA, 2002) and MODIS (http://modis.gsfc.nasa.gov/). 
 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Landsat 5 1957 1829 1557 1047 219.3 * 74.5 

Landsat 7 1969 1840 1551 1044 225.7 * 82.1 

MODIS 1631 1005 1997 1903 † 232.3 92.9 

 
*Not available for thermal infrared band 
†Band 5 of MODIS is not used in SEBAL due to sensor error 
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 Table 3.4 LMIN and LMAX values for Landsat 5 TM (Chander et al., 2007) 
 

 Processing Date: From April 2, 2007 

Band Acquisition Date LMIN 
(Wm-2ster-1μm-1) 

LMAX 
(Wm-2ster-1μm-1) 

Mar 1, 1984 – Dec 31, 1991 -1.52 169 
1 

Jan 1, 1992 - Present -1.52 193 

Mar 1, 1984 – Dec 31, 1991 -2.84 333 
2 

Jan 1, 1992 - Present -2.84 365 

3 Mar 1, 1984 – Present -1.17 264 

4 Mar 1, 1984 – Present -1.51 221 

5 Mar 1, 1984 – Present -0.37 30.2 

6 Mar 1, 1984 – Present 1.24 15.3 

7 Mar 1, 1984 – Present -0.15 16.5 
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Landsat 7 ETM+ and MODIS images provide calibration constants in the header 

files of each satellite image. The spectral radiance for each band is calculated by the 

following equation from NASA (2002): 

 

offsetDNgainL +⋅=λ     [3.29] 

 

where, Lλ is sensor observed radiance for band λ in Wm-2ster-1μm-1, and “gain” and 

“offset” correspond to the “gain” and “bias” and “scale” and “offset” values provided in 

the header file of Landsat 7 and MODIS images, respectively. The values for gain [Wm-

2ster-1μm-1] and offset [Wm-2ster-1μm-1] of each band are specific for each individual 

scene. Examples of values for gain [Wm-2ster-1μm-1] and offset [Wm-2ster-1μm-1] are 

presented in Table 3.5. 

 

3.1.3. Outgoing Longwave Radiation 

The total radiation emitted by a body, at a given temperature, is explained by the 

Stefan-Boltzman law: 

 

4
so TB ⋅⋅= σε       [3.30] 

 

where B is radiation emitted from the body [Wm-2], εo is the emissivity of the surface [-], 

σ is the Stefan Boltzman constant (5.67 * 10-8) [Wm-2K-4], and Ts is the surface 

temperature of the body [K]. In SEBAL, longwave radiation from the land surface 

depends on its temperature and emissivity. 
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Table 3.5 Example of gain and offset values for band of Landsat 7 [path 33/ row: 35] and 
MODIS [Lat/Long of center (degree): 35.7/-105.2] on June 16, 2002. 
 

 Gain 
(Wm-2ster-1μm-1) 

Offset 
(Wm-2ster-1μm-1) 

Landsat 7 (band 1) 1.1761 -6.20 
Landsat 7 (band 2) 1.2051 -6.40 
Landsat 7 (band 3) 0.9388 -5.00 
Landsat 7 (band 4) 0.9655 -5.10 
Landsat 7 (band 5) 0.1905 -1.00 
Landsat 7 (band 6) 0.0668 0.00 
Landsat 7 (band 7) 0.0662 -0.35 
MODIS (band 1) 0.0000547 0.00 

MODIS (band 2) 0.0000339 0.00 

MODIS (band 3) 0.0000318 0.00 

MODIS (band 4) 0.0000313 0.00 

MODIS (band 6) 0.0000340 0.00 

MODIS (band 7) 0.0000277 0.00 

MODIS (band 31) 0.0008400 1577.3 

MODIS (band 32) 0.0007297 1658.2 
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4
soL TR ⋅⋅=↑ σε      [3.31] 

 

where ε0 is the land surface emissivity [-]. 

 

In this study ε0 and Ts are estimated using empirical relationships. NASA (2002) 

presented the following equation to compute surface brightness temperatures from 

thermal radiance: 

 

    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
11

2

λL
Kln

KTb      [3.32] 

 

where Tb is brightness temperature [K], Lλ is the spectral radiance for thermal band, and 

K1 [Wm-2ster-1μm-1] and K2 [Wm-2ster-1μm-1] are coefficients that were developed 

considering the amount of radiation from a blackbody. Values of K1 and K2 are listed in 

Table 3.6. 

 

Most of the SEBAL algorithms using MODIS are similar to Landsat algorithms. 

The major difference exists in the algorithm for surface temperature calculations. Landsat 

has one thermal band while MODIS has 16 thermal bands (Bands 20-25 and 27-36). The 

SEBAL algorithm for surface temperature estimation with Landsat was based on its 

single thermal band while thermal bands 31 and 32 were used for the MODIS application.  
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Table 3.6 Constants K1 and K2 in Wm-2ster-1μm-1, for Landsat 5 TM (Markham and 
Barker, 1986) Landsat 7 ETM+ (NASA, 2002) and MODIS (http://modis.gsfc.nasa.gov/). 
 
 

 K1 K2 

Landsat 5 607.76 12605.6 

Landsat 7 666.09 1282.71 

MODIS (band 31) 730.01 1305.84 

MODIS (band 32) 474.99 1198.29 
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To obtain the surface temperature from Landsat imagery, SEBAL uses the 

following equation to calculate the surface temperature (Tasumi et al., 2000). Several 

studies indicates relationship between Ts and the surface emissivity (e.g. Price, 1984; 

Moran et al., 1989). 

 

25.0
0ε

b
s

TT =        [3.33] 

 

where ε0 is the surface emissivity [-]. The emissivity of an object is the ratio of the energy 

radiated by that object at a given temperature to the energy radiated by a blackbody at the 

same temperature (according to Plank’s Law). Since the thermal radiation of the surface 

is observed in the thermal band, one can compute the surface temperature from this band 

if the emissivity of the land surface is estimated. 

 

In SEBAL, surface emissivity is estimated using NDVI and an empirically-

derived method (Bastiaanssen et al., 1998a): 

 

( )NDVIo ln47.0009.1 ⋅+=ε      [3.34] 

 

where NDVI is the normalized difference vegetation index [-] (Jensen, 2000), which is 

calculated as follows: 

 

redNIR

redNIRNDVI
ρρ
ρρ

+
−

=       [3.35] 
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where ρNIR is near-infrared reflectance [-] and ρred is the reflectance [-] in the red region 

of the visible spectrum.  

 

Allen et al. (2007) present slightly different equations for the surface temperature 

calculation that utilize ‘standardized’ coefficients that tend to provide atmospheric 

correction. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1ln 1

2

c

NNB
s

R
K

KT
ε

     

[3.36] 

 

( ) skyNB
NB

pbt
c R

RL
R ε

τ
−−

−
= 1,     [3.37] 

 

where εNB is the narrow band surface emissivity [-], Rc is the corrected thermal radiance 

from the surface [Wm-2ster-1μm-1], Lt,b is the spectral radiance [Wm-2ster-1μm-1], Rp is the 

path radiance [Wm-2ster-1μm-1], Rsky is the thermal radiation from a clear sky [Wm-2ster-

1μm-1] and NBτ  is the narrow band transmissivity of air [-]. The difference in surface 

temperatures calculated with Eqs. [3.33] and [3.36] is rather small for colder pixels with 

high ET but can increase to 3 – 4 K at Ts around 315 K. However, the bias is relatively 

linear with Ts and therefore will be compensated for with the dT functions of Eq. [3.61].  
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Since MODIS imagery includes multiple thermal bands, split window algorithms 

take advantage of the differential absorption in two close thermal bands to account for the 

effects of absorption by atmospheric gases. Several split window algorithms are currently 

available to derive surface temperature from brightness temperature when multiple 

thermal bands are available. In this study the algorithm developed by Ulivieri et al. 

(1992) was applied that has been validated in natural grassland with patches of bare soil 

during various seasons with a wide range of Ts. There, the algorithm agreed quite well 

with ground data (Vazquez et al., 1997). 

 

εε Δ−−+−+= 75)1(48)(8.1 323131 TTTTs     [3.38] 

where 

( ) 23231 εεε +=      [3.39] 

and 

3231 εεε −=Δ  .     [3.40] 

 

Here T31 is the brightness temperature obtained from band 31 [K], T32 is the brightness 

temperature obtained from band 32 [K], ε31 is the surface emissivity [-] in band 31 and 

ε32 is the surface emissivity in band 32. The brightness temperature of MODIS bands 31 

and 32 are estimated by using Eq. [3.32]. The dimension of the empirical constants 48 

and 75 is degree K. These constants are hardly influenced by the values of surface 

emissivity or total vapor content of the atmosphere as long as it is less than 3 g/cm2. The 

latter value is unlikely for most New Mexico conditions. 
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For the surface emissivity estimation, an empirical approach with NDVI is often 

used in remote sensing study, since it is simple and the lack of proved techniques for 

estimating emissivity of large pixels with a partially covered soil surface. The relation 

between emissivity and NDVI is also observed from various experimental studies (Becker 

and Li, 1991; Van de Griend and Owe, 1993). This study uses the equation developed by 

Cihlar et al. (1997). The equation by Cihlar et al. (1997) is similar to the one proposed by 

Van de Griend and Owe (1993) and uses data from various studies (Wan and Dozier, 

1989; Nerry et al., 1990; Salisbury and D'Aria, 1992; Van de Griend and Owe, 1993) to 

bound the emissivity to reasonable range (0.955 - 0.985). 

 

(NDVI)..εεΔε ln0134400101903231 +=−=                   [3.41] 

where 

)ln(029.09897.031 NDVI+=ε .    [3.42] 

 

The relations are mainly based upon measurements on natural surfaces (bare soils 

and different vegetation types) in semi-arid Botswana (Van de Griend and Owe, 1993). 

Therefore, their application to the Southwestern USA is justified. The absolute estimate 

of Ts is not critical for the accuracy of the final SEBAL result (latent heat flux). SEBAL 

relies on an internal calibration by “anchoring” H and LE at the cold and hot pixels which 

reduces or cancels biases in the calculation of albedo, net radiation, and surface 

temperature as well as errors in narrow band emissivity, atmospheric correction, satellite 

sensor, aerodynamic resistance, and soil heat flux function. 
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3.1.4. Incoming Longwave Radiation 

Incoming longwave radiation, RL↓, emitted by the atmosphere can be calculated 

theoretically with the Stephan-Boltzman equation:    

 

            4
aaL TR ⋅⋅=↓ σε                                                   [3.43] 

 

where εa is the atmospheric emissivity [-], σ is the Stefan-Boltzmann [Wm-2K-4] constant 

and Ta is the air temperature [K].  

 

To utilize Eq. [3.43] both emissivity and temperature for each layer of the 

atmosphere are required. Since direct use of this equation is extremely complicated, 

SEBAL uses an empirical equation to estimate the effective atmospheric emissivity as a 

function of atmospheric transmissivity (Allen et al., 2000). 

 

4
cold_saL TR ⋅⋅=↓ σε      [3.44] 

 

( ) 09.0ln85.0 swa τε −⋅=     [3.45] 

 

where Ts_cold is the surface temperature at a reference point (cold pixel). The cold pixel is 

generally selected from a well-watered agricultural field where surface and air 

temperatures are assumed to be similar. Air temperature change due to elevation is 

accounted for by the lapse rate in this study. Note that since ↓LR  is from the entire 
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atmosphere not from the near surface atmosphere only, εa is an ‘effective’ atmospheric 

emissivity rather than the actual emissivity. Coefficient 0.09 in Eq. [3.35] was calibrated 

using air temperature observed over a well-watered agricultural field in southern Idaho 

(Allen, 2000). In a recent study by Allen et al. (2007) the radiometric surface temperature 

of each pixel is used as a surrogate for Ta in Eq. [3.43]. 

 

 

3.2. SOIL HEAT FLUX 

 

The soil heat flux density (G) is driven by the vertical temperature gradient 

between surface and soil and is positive for downward flux into the ground. Soil heat flux 

at any depth z can be expressed by (Oke, 1987): 

 

z
T

KG soil
TS ∂
∂

=      [3.46] 

 

where G is the soil heat flux [Wm-2], Tsoil is the temperature of the soil [K], KTS is the 

thermal conductivity of the soil [Jm-1s-1K-1], and z is the depth [m]. 

 

However, since it is impossible to estimate the term zTsoil ∂∂  in Eq. [3.46] from 

satellite observations, soil heat flux cannot be obtained directly. Therefore, in satellite 

applications, the soil heat flux is often estimated as a fraction of Rn (Choudhury et al., 
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1987; Norman et al., 1995; Anderson et al., 1997; Bastiaanssen, 2000). Choudhury et al. 

(1987) proposed the following conceptual model: 

 

"'Γ⋅Γ=nRG       [3.47] 

 

where Γ’  is a proportionality factor [-] that describes the conductive heat transfer in soil 

and Γ’’  is an extinction factor [-] that represents the attenuation of radiation through the 

vegetation. 

 

The soil heat flux is determined using the semi-empirical equation suggested by 

Bastiaanssen (1995) in which G is related to Rn, surface albedo (α), surface temperature 

(Ts) and normalized difference vegetation index (NDVI). The soil heat flux equation used 

in this study has been validated extensively (Clothier et al., 1986; Choudhury et al., 1987; 

Daughtry et al., 1990; Bastiaanssen, 2000). 

 

 

( ) [ ]42 98.010074.00038.0
)(
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NDVI
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tT

RG avgavgS
n −⎥

⎦

⎤
⎢
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⎡
+= αα

α
  [3.48] 

 

where )(tα is the surface albedo at certain time t and avgα is the day time averaged 

surface albedo. Since SEBAL assumes surface albedo at the time of satellite over pass is 

equal to daytime average ( avgt αα =)( ). In Eq. [3.48] the term 
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( )
( ) ( )20074.00038.0 avgavgS

t
tT

αα
α

+  represents the factor Γ’ and the term ( )498.01 NDVI−  

represents the term Γ” of Eq. [3.47].  

 

For water and snow surfaces, it is not recommended to apply Eq. [3.48]. Several 

studies have shown that G/Rn ratio for water surfaces is quite large because the ratio is 

dependent upon the turbidity and the depth of the water body and the ratio is very 

different from other land surfaces (Yamartino, 1984; Amayreh, 1995; Burba et al., 1999). 

Tasumi (2003) and Trezza (2002) suggested the following fixed expression to estimate G 

for water and snow surfaces, because no other better estimates yet exist. 

 

nsnowwater RGG 5.0==      [3.49] 

 

 

3.3. SENSIBLE HEAT FLUX 

 

The aerodynamic sensible heat flux is predicted using the following equation 

(Brutsaert, 1982). 

 

ah
p

ah

aaero
P r

dTC
r

TT
CH ⋅⋅=

−
⋅⋅= ρρ     [3.50] 

 

where ρa is the density of air [kgm-3], Cp is the specific heat capacity of air [Jkg-1 K-1], 

Taero is the aerodynamic surface temperature [K], Ta is the air temperature measured at a 
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standard screen height [K], rah is the aerodynamic resistance to heat transfer [sm-1], and 

dT  [K] is the difference between Taero and Ta. As is explained below, Taero and Ta can not 

be estimated from remote sensing images. Therefore, SEBAL uses an internal calibration 

method to estimate dT instead. 

 

The simplicity of Eq. [3.50] is deceptive since Taero cannot be measured by remote 

sensing. Remote sensing techniques measure the radiometric surface temperature, Ts, 

which is not the same as Taero. Brutsaert (1982) and Choudhury et al., (1986) argued that 

Ts and Taero are almost identical for near-neutral conditions. However, Ts is higher than 

Taero for stable conditions and lower for unstable conditions. The two temperatures can 

differ by 1 to 5 K. Unfortunately, an error of 1 K in Taero – Ta can result in a 50 Wm-2 

error in H (Hall et al., 1992; Campbell and Norman, 1998) that may result in an error in 

the daily evaporation rate of as much as 2 mm per day. Although many investigators have 

tried to obtain Taero from Ts by adjusting rah or by using an additional resistance term, so 

far no generally applicable solution to this problem has been developed (Kustas and 

Norman, 1996). Thus, the most complex issue in SEBAL is how to estimate the 

parameters needed for estimation of the sensible heat flux. The SEBAL sensible heat flux 

calculations are based on the Monin-Obukov similarity theory that takes into account the 

effects of atmospheric stability and aerodynamic resistance for heat transport (rah).  

 

The step by step procedures for H calculation in SEBAL are as follows: 

1) SEBAL needs a ground measurement (or atmospheric model estimation) of wind 

speed at the time of satellite pass over, the height of the wind speed measurement and 
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information about the surface conditions around the weather station. The friction velocity 

[ms-1] for the location of the weather station x at the time of satellite overpass (ux*) is 

calculated assuming neutral atmospheric conditions (Panofsky and Dutton, 1984). 
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where ux is the wind speed [ms-1] measured at height zx at the weather station [m], k is the 

von Karman’s constant (0.41) [-], and zom is the surface roughness length for momentum 

transport [m] which is estimated from the average vegetation height around the weather 

station by (Brutsaert, 1982): 

 

hzom ⋅= 123.0      [3.52] 

 

where h is the vegetation height [m]. 

 

2) SEBAL calculates the wind speed at a “blending” height of 200 m above the weather 

station assuming a constant friction velocity with height. At the “blending” height the 

wind speed is assumed to be unaffected by surface roughness. 
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3) SEBAL calculates a friction velocity (u*) for each pixel by downward extrapolation of 

the spatially constant wind speed at the blending height (u200) using the specific value of 

zom for each pixel. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

=

om

200

200
*

z
z

ln

ku
u      [3.54] 

 

The values of zom for each pixel are derived either by using estimates about vegetation 

height from a landuse map or from an empirical relationship between zom and NDVI and 

α (Morse et al., 2000; Tasumi and Allen, 2000) 
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where, c1 and c2 are constants that need to be determined for each image. For each image 

parameters c1 and c2 were obtained from linear regression between ln(zom) and NDVI/α of 

known landuse pixels including surface water and riparian vegetations. Tasumi et al. 

(2000) indicate that using the ratio NDVI/α, rather than using only α (Bastiaanssen et al., 

1998a), is more effective in predicting differences in z0m between tall and short vegetation, 

because tall vegetation generally has lower albedo values than short vegetation due to 

shading from tall vegetation. 
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Terrain elevation and slope affect how wind speed and surface roughness length are used 

for calculation of momentum transport (Oke, 1987; Tasumi, 2003). To adjust for 

elevation and slope in mountainous regions, the empirical equations suggested by Tasumi 

(2003) can be used; 

 

200_200 uCu windadjusted ⋅=      [3.56] 

where 

( )
1000

101 x
wind

zz
.C

−
⋅+=      [3.57] 

 

and u200_adjusted is the adjusted wind speed at 200 m height [ms-1] taking into account 

elevation effects, u200 is the wind speed at height of 200 m [ms-1] unadjusted by elevation, 

Cwind is an adjustment coefficient [-], zx is the elevation of weather station location [m], 

and z is the elevation [m]. 

 

The adjusted surface roughness length for momentum transport is calculated as: 

            

omzomadjustedom zCz ⋅=_      [3.58] 

where    

20
51 −

+=
SCzom       [3.59] 

 



 3-38

where, zom_adjusted [m] is the adjusted value of zom, Czom is a zom correction coefficient [-], 

and S is the surface slope [deg]. The zom adjustment is necessary only when the slope is 

greater than 5o. 

 

4) SEBAL calculates initial values of the aerodynamic resistance for heat transport (rah) 

for each pixel assuming neutral atmospheric conditions: 

 

ku
z
z

rah ⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= *
1

2ln
      [3.60] 

 

where z1 is 0.1 m and z2 is 2.0 m above the zero plane displacement d (Figure 3.7) 

 

5) As shown in Eq. [3.50] SEBAL calculates the sensible heat flux for each pixel using 

the air temperature difference (dT) between heights z1 and z2. A common field 

observation is that land surfaces with a high dT are associated with high radiometric 

temperatures (Ts) and those with a low dT with low radiometric temperatures. Field 

measurements in Egypt and Niger (Bastiaanssen et al., 1998b), China (Wang et al., 1998), 

USA (Franks and Beven, 1997), and Kenya (Farah and Bastiaanssen, 2001) have shown 

that the relationship between Ts and dT is approximately positively linear for different 

field conditions including irrigated fields, deserts, and mountains. Therefore, SEBAL 

uses a linear relationship between dT and surface temperature (Ts) (Figure 3.8) for the 

calculation of dT for each pixel in an image. 
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Figure 3.7 Definition of aerodynamic resistance for heat transfer (Tasumi, 2003)  
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Figure 3.8 SEBAL definition of the relationship between dT and Ts 
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bTadT s +⋅=       [3.61] 

 

To define the coefficients “a” and “b” in Eq. [3.61], the SEBAL approach involves the 

selection of two “anchor” pixels, where the value of dT can be reasonably assumed. The 

temperature difference (dT) for a dry surface without evaporation (hot pixel) is obtained 

from the inversion of the energy balance equation Eq. [3.1] with LE set to zero so that H 

= Rn – G. Then, dT is calculated by inversion of Eq. [3.60]. On the other hand, for a wet 

surface (cold pixel) all available energy Rn – G is used for evapotranspiration so that H = 

0 and dT = 0 (Bastiaanssen et al., 1998a; Bastiaanssen, 2000; Hendrickx and Hong, 2005).  

 

The values of dT and Ts for the cold and hot pixel are used to find the regression 

coefficients a and b which will prevent outliers of H-fluxes. In particular, the empirical 

equation Eq. [3.61] relies on spatial differences of the radiometric surface temperature 

rather than absolute surface temperatures to derive maps of the sensible heat flux. This 

procedure minimizes the influence of atmospheric conditions and uncertainties in surface 

emissivity on H estimates (Allen et al., 2007). However, if regional and local advection 

of heat are present, the sensible heat fluxes over the area will be decreased due to a 

decrease in temperature gradient. Therefore it is possible that H at the cold pixel has a 

negative value. If this happens, SEBAL will overestimate H, and thus underestimate LE. 

 

In areas with elevation changes exceeding a few hundred of meters, the surface 

temperature (Ts) needs to be adjusted to take into account air temperature changes since 
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on the average the air temperature decreases by about 6.5 K in the lower troposphere 

when elevation increases by 1 km (Andrews, 2000). Typically, land surface temperatures 

are in equilibrium with air temperature so that similar decreases are expected in surface 

temperatures. Therefore, dry areas at high elevations appear to be “cool” which could be 

misinterpreted as having a high ET. Therefore, the lapse rate effect on surface 

temperature has to be accounted for in the dT estimation in SEBAL. To correct for the 

error introduced by elevation changes, the surface temperature is adjusted using the lapse 

rate (6.5 K per 1 km) as 

 

zTT sadjusteds Δ⋅+= 0065.0_     [3.62] 

 

where Ts_adjusted is the adjusted surface temperature [K] using the lapse rate (6.5 K per 1 

km) and Δz [m] is the difference between elevation of each pixel minus the average 

elevation in the image. Ts_adjusted rather than Ts should be used for derivation of 

coefficients a and b in Eq. [3.61]. 

 

6) The initial estimate of sensible heat flux is obtained by assuming neutral atmospheric 

conditions in the calculation of rah in step 4. To account for the buoyancy effects that 

surface heating generates in the lower atmosphere, SEBAL uses the Monin-Obukov 

similarity theory through the following iterative process. The Monin-Obukhov length 

parameter (L) is used to define the stability conditions of the atmosphere (Monteith and 

Unsworth, 1990).  
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kgH
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3

*ρ
−=      [3.63] 

 

where, g is the gravitational acceleration constant (9.81) [ms-2]. Theoretically, the 

absolute value of L [m] represents the thickness of the layer where wind shear effects 

dominate over buoyancy forces in the production of turbulence. For that reason, when H 

= 0 (no buoyancy forces), L is infinite. On the other hand, when H is positive L tends to 

be numerically smaller as H increases. 

 

Based on the value of L, the stability correction factors for momentum and heat transport 

(Ψm and Ψh) can be obtained from the following equations (Allen et al., 1996). 

If L<0: unstable atmosphere: 

 

( )
( )( ) π5.02

2
1

ln
2

1
ln2 200

2
)200(200

)200( +−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=Ψ m

mm
mm xARCTAN

xx
   [3.64] 

 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=Ψ

2
1

ln2
2

2
)2(

m
mh

x
     [3.65] 

 

   ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=Ψ

2
1

ln2
2

1.0
)1.0(

m
mh

x
     [3.66] 

where  
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If L>0: stable atmosphere: 
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Eq [3.70] uses 2 m rather than 200 m since the boundary layer under stable atmospheric 

conditions will not extend above at most a few tens of meters. The use of 2m guarantees a 

stable numerical solution (Allen et al., 2005). 

 

If L=0; neutral atmosphere: 

 

     Ψm and Ψh = 0        [3.73] 
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Next, new values of the friction velocity (u*) and aerodynamic resistance (rah) for each 

pixel are calculated as:  
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7) Because of the new value of rah corresponding to the hot pixel, the value of dT has to 

be re-calculated for the hot pixel by inverting Eq. [3.50] as
P

ah
otpixelh C

rH
dT

⋅
⋅

=
ρ

. This new 

value of dThotpixel changes the linear equation that defines the dT versus Ts relationship in 

Eq. [3.61] and requires a new calculation of the value of sensible heat flux for each pixel. 

The iterative process for rah, dT and H for the hot pixel continues until values of hot 

pixel’s rah become stable. Figure 3.9 shows the iterative process used in SEBAL to obtain 

the sensible heat flux for each pixel. 

 
 
 

3.4. LATENT HEAT FLUX 

 

At last, the latent heat flux (LE) is obtained for each pixel after inserting the 

numerically stable sensible heat flux (H) as well as net radiation (Rn) and ground  
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Figure 3.9 Schematic of iterative procedures to calculate sensible heat flux in SEBAL. 
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heat flux (G) into Eq. [3.1]. This value of LE represents the instantaneous flux [Wm-2] at 

the time of the satellite overpass. 

 

 

3.5. DAILY ENERGY BALANCE FLUXES 

 

SEBAL yields an estimate of LE [Wm-2] at the time of the Landsat overpass. 

However, for most hydrological applications the daily total LE (daily ET) is needed; so 

the instantaneous LE needs to be extrapolated to the daily LE. The extrapolation is done 

using the evaporative fraction (EF) [-] which has been shown to be approximately 

constant during the day (Shuttleworth et al., 1989; Brutsaert and Sugita, 1992; Crago, 

1996; Farah et al., 2004; Gentine et al., 2007). 
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Therefore, multiplication of the instantaneous EF (EFinst) determined from 

SEBAL with the total daily available energy yields the daily ET rate in mm per day 

(Bastiaanssen et al., 1998a).  

 

( )242424 GREFLE ninst −⋅=      [3.77] 
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where 

( )[ ] 6101.27300236.0501.2 ⋅−⋅−= sTλ .   [3.79] 

 

Here LE24 is daily latent heat flux [MJm-2day-1], ET24 is daily ET [mmd-1], G24 is daily 

soil heat flux [MJm-2d-1], EFinst is the evaporative fraction [(Rn – G – H)/(Rn – G)] at the 

time of satellite overpass, λ is the latent heat of vaporization [Jkg-1] and Rn24 is daily net 

radiation [MJm-2d-1]. Rn24 is obtained by an semi-empirical expression (De Bruin, 1987). 

 

( ) ( )[ ]swswan scosR.R ττα 110108640 2424 −⋅⋅−⋅=    [3.80] 

 

( ) ωθ
ω

ω

ddGR rSCa ∫ ⋅⋅⋅=
2

1
24 cos      [3.81] 

 

where 0.0864 is the conversion parameter from Wm-2 to MJm-2day-1. Eq. [3.80] was 

developed by de Bruin (1987) and recommended by Bastiaanssen et al (1998a) only for 

all-day clear sky condition. If the day of the satellite image is known to have had some 

cloudiness during periods preceding or following the time of the image, then one should 

use a ground measured value for 24-h solar radiation (Rs) in place of Ra24⋅τsw. The 

constant -100 depends somewhat on the type of surface. For example, Tasumi et al. 

(2000) suggested -140 for irrigated fields in Idaho. In this study for the riparian vegetated 

areas, the coefficient -110 is used since it yields Rn24 estimates that agree quite well with 

ground measurements (MRD < 3%). Ra24 is the daily-averaged extraterrestrial shortwave 

radiation [Wm-2] which is calculated using information on location, day of year, slope 
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and aspect for each pixel. Detailed information on the Ra24 computation and SEBAL 

implementation using ERDAS Imagine are found in Tasumi et al. (2000). 

 

With the information of daily total LE (LE24), daily H (H24) is estimated from the 

energy balance equation by assuming daily G (G24) is negligibly small, i.e. zero (Kustas 

et al., 1993). 

 

   242424242424 LERLEGRH nn −≈−−=    [3.82] 

 

Note that H24 is not derived from the instantaneous H. Instead it is calculated as the 

difference between Rn24 and LE24. The Rn24 is directly derived independently from 

SEBAL results using Eq. [3.80]. The LE24 depends on the EFinst which is dependent upon 

the instantaneous Rn, G and H obtained from SEBAL. 



 3-50

REFERENCES 
 
 

 
Allen, R.G., W.O. Pruitt, J.A. Businger, L.J. Fritschen, M.E. Jensen, and F.H. Quinn. 

1996. Chapter 4: Evaporation and Transpiration. American Society of Civil 
Engineering, NY. 

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration. FAO 
Irrigation and drainage paper 56, FAO. Rome. 

Allen, R.G., H.D. Bruin, O. Hartogensis, B. Tanner, and C. Neale. 2000. Regional 
Advection Perturbations in an Irrigated Desert (RAPID)-Impacts on 
Evapotranspiration. University of Idaho, Kimberly. 

Allen, R.G., M. Tasumi, and R. Trezza. 2005. M E T R I Ctm Mapping 
Evapotranspiration at High Resolution. Applications Manual for Landsat Satellite 
Imagery. Version 2.0. University of Idaho, Kimberly, Idaho. 

Allen, R.G., M. Tasumi, and R. Trezza. 2007. Satellite-based Energy Balance for 
Mapping Evapotranspiration with Internalized Calibration (METRIC) – Model. 
Journal of Irrigation and Drainage Engineering 133:380-394. 

Amayreh, J.A. 1995. Lake evaporation: a model study, Utah State University, Logan, UT. 

Anderson, M.C., J.M. Norman, G.R. Diak, W.P. Kustas, and J.R. Mecikalski. 1997. A 
two-source time-integrated model for estimating surface fluxes using thermal 
infrared remote sensing. Remote Sensing of Environment 60:195-216. 

Andrews, D.G. 2000. An Introduction to Atmospheric Physics Cambridge University 
Press. 

Bastiaanssen, W.G.M. 1995. Regionalization of surface flux densities and moisture 
indicators in composite terrain, Wageningen Agricultural University, Wageningen, 
Netherlands. 

Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes, and A.A.M. Holtslag. 1998a. A remote 
sensing surface energy balance algorithm for land (SEBAL). Part 1: Formulation. 
Journal of Hydrology 212-213:198-212. 

Bastiaanssen, W.G.M., H. Pelgrum, J. Wang, Y. Ma, J.F. Moreno, G.J. Roerink, R.A. 
Roebeling, and T.v.d. Wal. 1998b. A remote sensing surface energy balance 
algorithm for land (SEBAL). Part 2: Validation. Journal of Hydrology 212-
213:213-229. 

Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the Irrigated 
Gediz Basin, Turkey. Journal of Hydrology 229:87-100. 



 3-51

Becker, F., and Z.L. Li. 1991. Complementarity of temperature independent Thermal 
Infrared Spectral Indices (TISI) and NDVI: Compared properties and combined 
use for soil and vegetation discrimination Physical Measurements and Signatures 
in Remote Sensing 2:475-480. 

Brutsaert, W. 1982. Evaporation into the atmosphere D. Reidel Pub. Co., Dordrecht, The 
Netherlands. 

Brutsaert, W., and M. Sugita. 1992. Application of self-preservation in the diurnal 
evolution of the surface energy budget to determine daily evaporation. Journal of 
Geophysical Research 97:18,377-18,382. 

Burba, G.G., S.B. Verma, and J. Kim. 1999. Surface energy fluxes of Phragmites 
australis in prairie wetlands. Journal of Agricultural and Forest Meteorology 
93:31-51. 

Campbell, G.S., and J.M. Norman. 1998. An introduction to environmental biophysics. 
Second Edition Springer, New York, NY. 

Chander, G., B.L. Markham, and A.B. J. 2007. Revised Landsat-5 Thematic Mapper 
Radiometric Calibration. IEEE Transactions on Geoscience and Remote Sensing 
4:490-494. 

Choudhury, B.J., R.J. Reginato, and S.B. Idso. 1986. An analysis of infrared temperature 
observations over wheat and calculation of latent heat flux. Agricultural and 
Forest Meteorology 37:75-88. 

Choudhury, B.J., S.B. Idso, and R.J. Reginato. 1987. Analysis of an empirical model for 
soil heat flux under a growing wheat crop for estimating evaporation by an 
infrared-temperature-based energy balance equation. Agriculture and Forest 
Meteorology 39:283-297. 

Clothier, B.E., K.L. Clawson, J. P.J. Pinter, M.S. Moran, R.J. Reginato, and R.D. Jackson. 
1986. Estimation of soil heat flux from net radiation during growth of alfalfa. 
Agricultural and Forest Meteorology 37:319-329,. 

Crago, R.D. 1996. Conservation and variability of the evaporative fraction during the 
daytime. Journal of Hydrology 180:173-194. 

Daughtry, C.S., W.P. Kustas, M.S. Moran, R.D. Jackson, and J. Pinter. 1990. Spectral 
estimates of net radiation and soil heat flux. Remote Sensing of Environment 
32:111-124. 

De Bruin, H.A.R. 1987. From Penman to Makkink Proceedings and Information No. 39, 
TNO Committee on Hydrological Research, The Hague. 

Duffie, J.A., and W.A. Beckman. 1991. Solar engineering of thermal processes John 
Wiley and Sons, NY. 



 3-52

ERDAS. 2002. Field Guide 6th ed. Atlanta, Georgia, ERDAS Inc. 

Farah, H.O., and W.G.M. Bastiaanssen. 2001. Spatial variations of surface parameters 
and related evaporation in the Lake Naivasha Basin estimated from remote 
sensing measurements. Hydrological Processes 15:1585-1607. 

Farah, H.O., W.G.M. Bastiaanssen, and R.A. Feddes. 2004. Evaluation of the temporal 
variability of the evaporative fraction in a tropical watershed. International 
Journal of Applied Earth Observation and Geoinformation 5:129-140. 

Franks, S.W., and K.J. Beven. 1997. Estimation of evapotranspiration at the landscape 
scale: a fuzzy disaggregation approach. Water Resources Research 33:2929-2938. 

Gentine, P., D. Entekhabi, A. Chehbouni, G. Boulet, and B. Duchemin. 2007. Analysis of 
evaporative fraction diurnal behaviour. Agricultural and Forest Meteorology 
143:13-29. 

Hall, F.G., K.F. Huemmrich, S.J. Goetz, P.J. Sellers, and J.E. Nickeson. 1992. Satellite 
remote sensing of surface energy balance: sucesses, failures, and unresolved 
issues in FIFE. Journal of Geophysical Research 97:19,061-19,089. 

Hendrickx, J.M.H., and S.-H. Hong. 2005. Mapping sensible and latent heat fluxes in arid 
areas using optical imagery. Proceedings of International Society for Optical 
Engineering, SPIE 5811:138-146. 

Jensen, J.R. 2000. Remote sensing of the environment: An earth resource perspective 
Prentice-Hall, Inc., New Jersey. 

Kustas, W.P., C.S.T. Daughtry, and P.J.V. Oevelen. 1993. Analytical treatment of the 
relationships between soil heat flux/net radiation ratio and vegetation indices. 
Remote Sensing and Environment 46:319-330. 

Kustas, W.P., and J.M. Norman. 1996. Use of remote sensing for evapotranspiration 
monitoring over land surfaces. Hydrological Sciences 41:495-516. 

Markham, B.L., and J.L. Barker. 1987. Thematic Mapper. bandpass solar exoatmospheric 
irradiances. International Journal of Remote Sensing 8:517-523. 

Menenti, M., W.G.M. Bastiaanssen, and D. Van Eick. 1989. Determination of 
hemispheric reflectance with thematic mapper data. Remote Sensing of the 
Environment 28:327-337. 

Monteith, J.L., and M.H. Unsworth. 1990. Principles of Environmental Physics, Edward 
Arnold, London. 

Moran, M.S., R.B. Jackson, L.H. Raymond, L.W. Gay, and P.N. Slater. 1989. Mapping 
surface energy balance components by combing Landsat Thematic Mapper and 
ground-based meteorological data. Remote Sensing of Environment 30:77-87. 



 3-53

Morse, A., M. Tasumi, R.G. Allen, and W.J. Kramer. 2000. Application of the SEBAL 
methodology for estimating consumptive use of water and streamflow depletion 
in the Bear river basin of Idaho through remote sensing. Final report submitted to 
the Raytheon Systems Company, Earth Observation System Data and Information 
System Project, by Idaho Department of Water Resources and University of Idaho. 

NASA. 2002. The Landsat-7 Science Data User's Handbook. 

Nerry, F., J. Labed, and M.P. Stoll. 1990. Spectral properties of land surfaces in the 
thermal infrared 1. Laboratory measurements of absolute spectral emissivity 
signatures. Journal of Geophysical Research 95:7027-7044. 

Norman, J.M., W.P. Kustas, and K.S. Humes. 1995. A two-source approach for 
estimating soil and vegetation energy fluxes from observations of directional 
radiometric surface temperature. Agriculture and Forest Meteorology 77:263-293. 

Oke, T.R. 1987. Boundary Layer Climates Routledge, NY. 

Panofsky, H.A., and J.A. Dutton. 1984. Atmospheric Turbulence: Models and Methods 
for Engineering Applications Wiley, New York. 

Price, J.C. 1984. Land surface temperature measurements from the split window channel 
of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of 
Geophysical Research 89:7231-7237. 

Salisbury, J.W., and D.M. D'Aria. 1992. Emissivity of terrestrial materials in the 8-14 um 
atmospheric window. Remote Sensing of Environment 42:83-106. 

Shuttleworth, W.J., R.J. Gurney, A.Y. Hsu, and J.P. Ormsby. 1989. The variation in 
energy partition at surface flux sites. Proceedings of the IAHS Third International 
Assembly, Baltimore, MD. 186:67-74. 

Tasumi, M., and R.G. Allen. 2000. Application of the SEBAL methodology for 
estimating consumptive use of water and stream flow depletion in the Bear River 
Basin of Idaho through remote sensing. Appendix A: The theoretical basis of 
SEBAL. Final report submitted to the Raytheon Systems Company, Earth 
Observation System Data and Information System Project. 

Tasumi, M., R.G. Allen, and W.G.M. Bastiaanssen. 2000. The theoretical basis of 
SEBAL. Appendix A of Morse et al. (2000). Idaho Department of Water 
Resources, Idaho. 

Tasumi, M. 2003. Progress in operational estimation of regional evapotranspiration using 
satellite imagery, Ph.D. Thesis, University of Idaho, Moscow, Idaho. 

Tasumi, M., R.G. Allen, and R. Trezza. 2008. At-surface reflectance and albedo from 
satellite for operational calculation of land surface energy balance. Journal of 
Hydrologic Engineering 13:51-63. 



 3-54

Trezza, R. 2002. Evapotranspiration using a satellite-based surface energy balance with 
standardized ground control. Ph.D. Thesis, Utah State University: Logan, Utah. 

Van de Griend, A.A., and M. Owe. 1993. On the relationship between thermal emissivity 
and the normalized difference vegetation index for natural surfaces. International 
Joural of Remote Sensing 14:1119-1131. 

Vazquez, D.P., F.J. Olmo Reyes, and L.A. Arboledas. 1997. A comparative study of 
algorithms for estimating land surface temperature from AVHRR data. Remote 
Sensing of Environment 62:215-222. 

Wan, Z., and J. Dozier. 1989. Land-surface temperature measurement from space: 
Physical principles and inverse modeling. IEEE Transactions on Geoscience and 
Remote Sensing 27:268-278. 

Wang, J., W.G.M. Bastiaanssen, Y. Ma, and H. Pelgrum. 1998. Aggregation of land 
surface parameters in the oasis-desert systems of Northwest China. Hydrological 
Sciences 12:2133-2147. 

Yamartino, R.J. 1984. A comparison of several "Single-Pass" estimators of the standard 
deviation of wind direction. Journal of Climate and Applied Meteorology 
23:1362-1366. 

 
 



 4-1

 

 

 

CHAPTER 4 

 

EVALUTION OF AN EXTREME-CONDITION-INVERSE-
CALIBRATION REMOTE SENSING MODEL  
FOR MAPPING ENERGY BALANCE FLUXES  

IN ARID RIPARIAN AREAS 

 

ABSTRACT 

 

Accurate information on the distribution of the surface energy balance 

components in arid riparian areas is needed for sustainable management of water 

resources as well as for a better understanding of water and heat exchange processes 

between the land surface and the atmosphere. Since the spatial and temporal distributions 

of these fluxes over large areas are difficult to determine from ground measurements 

alone, their prediction from remote sensing data is very attractive as it enables large area 

coverage and a high repetition rate. In this study the Surface Energy Balance Algorithm 

for Land (SEBAL) was selected to estimate all the energy balance components in the 

arid/semi-arid riparian areas of the Middle Rio Grande Basin (New Mexico), San Pedro 

River (Arizona), and Owens Valley (California). We compare instantaneous and daily 

SEBAL fluxes derived from Landsat TM images to surface-based measurements with 
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eddy covariance flux towers. This study shows the potential for SEBAL to yield reliable 

estimates for energy balance components in riparian areas in the southwestern United 

States. The great strength of the SEBAL method is its internal calibration procedure that 

eliminates most of the bias in latent heat flux at the expense of increased bias in sensible 

heat flux. 

 

 

4.1. INTRODUCTION 

 

The regional distribution of the energy balance components, net surface radiation 

(Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) in arid riparian 

areas is critical knowledge for agricultural, hydrological and climatological investigations. 

However, Rn, G, H and LE are complex functions of atmospheric conditions, land use, 

vegetation, soils, and topography which cause these fluxes to vary in space and time. 

Therefore, it is difficult to estimate or representatively measure them at the regional scale 

(Parlange et al., 1995). Measurement approaches for LE from the land surface including 

eddy covariance (Kizer and Elliott, 1991), Bowen ratio (Scott et al., 2000) and weighing 

lysimeters (Wright, 1982) are too expensive and time consuming for continuous 

application at sufficient spatial density at the regional scale. These techniques produce LE 

measurements over small footprints (m2 to ha) which are difficult to extrapolate to the 

regional scale, especially over heterogeneous land surfaces (Moran and Jackson, 1991). 

For example, in the heterogeneous landscape of the central plateau of Spain as many as 

13 ground measurements of evapotranspiration in a relatively small area of 5000 km2 
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were not sufficient to predict accurately the area-averaged evapotranspiration rate 

(Pelgrum and Bastiaanssen, 1996). 

 

Since larger scale estimates of LE require alternative measurement and 

estimation approaches, the potential of satellite image-based remote sensing for 

examining spatial patterns or regional estimates of H and LE has been investigated by a 

number of investigators (Caparinni and Castelli, 2002; Choudhury, 1989; Granger, 2000; 

Kustas and Norman, 1996; Mecikalski et al., 1999; Menenti et al., 1993; Moran and 

Jackson, 1991; Nishida et al., 2003). These efforts have resulted in the development of 

remote sensing algorithms that are quite different in their spatial and temporal scales: 30 

m to 1/8th degree (about 13 km in New Mexico), daily to monthly. Examples of 

algorithms used in hydrological investigations that have produced H and LE maps on 

local, regional, or national scales are: the North American Land Data Assimilation 

Systems (NLDAS) (Cosgrove et al., 2003), the Land Information Systems (LIS) (Peters 

Lidard et al., 2004), the Atmosphere-Land Exchange Inverse (ALEXI) (Anderson et al., 

1997; Norman et al., 2003), the disaggregated ALEXI model (DisALEXI) (Norman et al., 

2003), the Surface Energy Balance System (SEBS) (Han and Yang, 2004; Jia et al., 2003; 

Su, 2002), the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 

1998; Bastiaanssen et al., 2005), Mapping EvapoTranspiration at high spatial Resolution 

with Internalized Calibration (METRIC) (Allen et al., 2005; Allen et al., 2007a; Allen et 

al., 2007b), as well as algorithms without distinct acronyms (Jiang and Islam, 2001; Ma 

et al., 2004; Ma et al., 2006; Schüttemeyer et al., 2007). 
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SEBAL has been developed and pioneered by Bastiaanssen and his colleagues in 

The Netherlands during the 1990s (Bastiaanssen, 1995; Bastiaanssen et al., 1994). 

METRIC has been developed by Allen and his research team in Idaho using SEBAL as 

its foundation (Allen et al., 2007a; Allen et al., 2007b). Unlike ALEXI and DisALEXI, 

SEBAL and METRIC do not require spatial fields of air temperature and atmospheric 

temperature soundings interpolated across the region of interest; unlike NLDAS and LIS, 

SEBAL and METRIC do not require land cover maps. However, applications of SEBAL 

and METRIC are restricted to clear days over areas of unvarying weather, and require 

some supervised calibration for each image, preventing application at the continental 

scale such as done by ALEXI, DisALEXI, NLDAS and LIS. 

 

SEBAL and METRIC calculate the energy balance using extreme thermal and 

vegetation conditions within an image using a “cold” and “hot” pixel. These procedures 

index H from the land surface (one of the major energy balance components) to satellite 

measured surface temperatures at specific surface boundary conditions. The main 

difference between SEBAL and METRIC is that the latter makes use of the reference 

evapotranspiration (ETr) calculated using high-quality ground measurements from 

weather stations (Allen et al., 1998) while the former can be applied without using 

ground measurements. Since many areas of the world have no adequate ground 

measurements there is a need for algorithms such as SEBAL, on the other hand METRIC 

allows assimilation of ground measurements which can improve the quality of the H and 

LE maps. The SEBAL approach has demonstrated a high accuracy for evaporation 

mapping worldwide with typical accuracies of about ±15% and ±5% for, respectively, 



 4-5

daily and seasonal evaporation estimates (Bastiaanssen et al., 2005). Validation of 

METRIC evaporation in Idaho using precision lysimeter measurements (considered the 

best standard) has shown METRIC evaporation estimates to be within ±10% at the sub-

field scale for daily, monthly and annual time scales (Allen et al., 2003; Allen et al., 

2007b; Morse et al., 2000). 

 

In this study we have selected SEBAL to estimate H and LE over arid riparian 

areas for the following reasons: (i) SEBAL consists of physically-based image analysis 

algorithms using standard satellite imagery and requires a minimum of ancillary 

meteorological information from surface measurements or atmospheric models; (ii) 

SEBAL deals with a large number of environmental variables and does not assume 

variables to be constant over space as do many other methods. For example, some 

methods assume all variables besides surface and air temperatures to be spatially constant 

(Jackson et al., 1996; Seguin and Itier, 1983); (iii) In SEBAL, the need for atmospheric 

correction of short-wave and thermal information in images is reduced (Tasumi, 2003) 

because SEBAL H and LE estimates depend only on radiometric temperature differences 

in the scene rather than on the absolute value of the surface temperature. This greatly 

enhances the applicability of SEBAL since the measurements needed for atmospheric 

corrections are often not available (Allen et al., 2007a); (iv) SEBAL uses Landsat images 

with high spatial resolution which allows to capture the small scale spatial heterogeneity 

that is typical for riparian areas in the southwestern United States. 
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Previous validation studies have mainly been conducted in relatively 

homogeneous agricultural areas and have focused on comparison of daily ET rates 

estimated from SEBAL and METRIC with ground measurements using lysimeters 

(Tasumi, 2003; Trezza, 2002), Bowen ratio and eddy covariance methods (Bastiaanssen 

et al., 2002; Droogers and Bastiaanssen, 2002) and scintillometer technique 

(Hemakumara et al., 2003; Kite and Droogers, 2000). The overall goal of this study is to 

conduct a thorough evaluation of the performance of SEBAL in arid riparian areas in 

New Mexico, Arizona and California. Here, vast deserts are transected by narrow river 

valleys covered by a mosaic of irrigated agricultural fields and riparian vegetation 

(cottonwood, saltcedar, Russian-willow and salt grasses) which creates a very 

heterogeneous landscape with a short patch length scale. If SEBAL performs well under 

these challenging conditions, it is likely to perform well in most arid and semi-arid 

regions. Another difference with previous studies is our focus on all components of the 

energy balance during the instant of satellite overpass as well as on a daily basis. We can 

accomplish this since we have available a quality controlled data set consisting of Rn, G, 

H and LE measurements in the riparian areas of the Middle Rio Grande Basin (New 

Mexico), San Pedro River Valley (Arizona) and the Owens River Valley (California). 
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4.2. SURFACE ENERGY BALANCE ALGORITHM FOR LAND (SEBAL) 

 

SEBAL is a remote sensing algorithm that evaluates the fluxes of the energy 

balance and determines LE as the residual 

 

HGRLE n −−=      [4.1] 

 

where Rn is the net radiation flux density [Wm-2], G is the soil heat flux density [Wm-2], 

H is the sensible heat flux density [Wm-2], and LE (= λET) is the latent heat flux density 

[Wm-2], which can be converted to the ET rate [mmday-1] using the latent heat of 

vaporization of water λ [Jkg-1] and the density of water ρw [kgm-3]. 

 

To implement SEBAL, images are needed with information on reflectance in the 

visible, near-infrared and mid-infrared bands as well as emission in the thermal infrared 

band. Such images are offered by a number of satellites such as Land Satellite (Landsat), 

Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High 

Resolution Radiometer (AVHRR), Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER), ENVISAT-Advanced Along Track Scanning 

Radiometer (AATSR) and China-Brazil Earth Resources Satellite (CBERS). In this study, 

we use Landsat images for their high spatial resolution. In undulated landscapes and 

mountains, a Digital Elevation Model (DEM) is also needed to take into account terrain 

slope and aspect of each pixel (Allen et al., 2007a; Tasumi and Allen, 2000). Extensive 

descriptions of SEBAL and METRIC and their implementations have been presented by 
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(Allen et al., 2007a; Allen et al., 2007b; Bastiaanssen et al., 1998; Bastiaanssen et al., 

2005; Koloskov et al., 2007). In this section, we aim to present in a succinct manner all 

relevant SEBAL equations with emphasis on the semi-empirical and empirical equations. 

 

4.2.1. Net Radiation 

The net radiation Rn is obtained from the radiation budget under cloud-free 

conditions as 

 

( ) ↓↑↓↓↓ ⋅−−−+⋅−= LLLssn RRRRRR 01 εα    [4.2] 

 

where RS↓ is the incoming shortwave radiation [Wm-2], RL↓ is the incoming longwave 

radiation [W m-2], RL↑ is the outgoing longwave radiation [Wm-2], α is the surface albedo 

[-], and ε0 is the surface emissivity [-]. 

 

The incoming shortwave radiation Rs↓ is composed of both the direct solar 

radiation and the diffuse radiation. It is estimated as 

 

swrscS dGR τθ ⋅⋅⋅=↓ cos     [4.3] 

 

where Gsc is the solar constant (1367) [Wm-2], θ is solar incident angle, dr is the inverse 

squared relative Earth-sun distance [-], and τsw is the transmissivity of air [-]. In this study, 

we use DEMs (30 x 30m) to take into account (1) the effects of slope and aspect on the 

radiation balance and (2) the effects of elevation on pixel surface temperature as 
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explained in section [4.2.3]. The DEMs were obtained from United States Geological 

Survey (http://seamless.usgs.gov). 

 

The cosine of the solar incidence angle (θ) is calculated as (Duffie and Beckman, 

1991) 

 

  

)sin()sin()sin()cos(

)cos()cos()sin()sin()cos(

)cos()cos()cos()cos(

)cos()sin()cos()sin()cos()sin()sin(cos

ωγδ

ωγφδ
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γφδφδθ

s

s

s

ss

+

+

+

−=

   [4.4] 

 

where δ is the declination of the Earth [rad], φ is the latitude of the pixel [rad], s is the 

slope [rad], γ is the aspect (γ = 0 represents a south-facing slope, and γ = -π or γ = π 

represents a north-facing slope, γ = -π/2 is an east-facing slope and γ = π/2 represents an 

west-facing slope) and ω is the hour angle [rad]. Incoming solar and long wave radiation 

fluxes on slopes are converted to their horizontal equivalents by dividing the cosine of the 

incident solar angle [cos θ] by the cosine of the slope. 

 

τsw in most SEBAL applications is estimated by an empirical relationship with 

elevation (z) (Allen et al., 1998): 

 

zsw ⋅⋅+= −510275.0τ .     [4.5] 
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In METRIC, a band-by-band transmissivity is computed following Tasumi et al. (2008), 

based on sun and satellite view angle, elevation and precipitable water (Allen et al. 

2007a). Reflected shortwave radiation ↑⋅ sRα  is dependent upon the surface albedo 

which is reflectivity in shortwave radiation. The albedo at the top of the atmosphere (αtoa) 

is computed using a standard method by NASA (Handbook, 2002). The surface albedo 

(α) is calculated in classical SEBAL applications using a semi-empirical relationship 

(Menenti et al., 1989):  

 

2
_

sw

radiancepathtoa

τ

αα
α

−
=      [4.6] 

 

where αpath_radiance is the albedo path radiance [-], αpath_radiance has a value between 0.025 

to 0.04 and 0.03 is used in this study (Bastiaanssen, 2000). In METRIC, band-by-band 

corrections are made and integrated (Allen et al., 2007b). The latter method produces 

estimates for the albedo that are similar to those from Eq. [4.6] for most types of 

vegetation, but tends to estimate a lower albedo for bare soil (Tasumi et al., 2008) 

 

Longwave radiation from atmosphere and surface depend on their temperatures 

and emissivities. 

 

4
cold_saL TR ⋅⋅=↓ σε      [4.7] 
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4
soL TR ⋅⋅=↑ σε       [4.8] 

 

where εa is the emissivity of air [-], ε0 is the surface emissivity [-], σ is the Stefan-

Boltzmann constant (5.67 x 10-8) [Wm-2K-4], Ts_cold is the surface temperature of a well-

watered pixel in agricultural field [K] which is assumed to be equal to air temperature, 

and Ts is the surface temperature [K]. In a well-watered area, surface and air temperatures 

are assumed to be similar and the air temperature is relatively constant over a large area. 

Air temperature change due to elevation is accounted by lapse rate in this study. Note that 

since ↓LR  is from the entire atmosphere not from the near surface atmosphere only, εa is 

really an ‘effective’ atmospheric emissivity rather than the actual emissivity derived from 

the near surface air temperature. In a recent study by Allen et al. (2007) the radiometric 

surface temperature of each pixel is used as a surrogate for Ta in Eq. [4.7] since ground 

measurements at American Falls Reservoir in SE Idaho during 2004 show that the surface 

temperature generates better estimate of the incoming longwave radiation. 

 

In this study εa, ε0 and Ts are estimated using empirical relationships by 

(Bastiaanssen et al., 1998; Tasumi and Allen, 2000) as 

 

( )NDVIln047.0009.10 +=ε      [4.9] 

 

( ) 09.0ln85.0 swa τε −=      [4.10] 

 



 4-12

25.0
0ε

b
s

T
T =      [4.11] 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1ln

6

1

2

L
K
KTb     [4.12] 

 

where NDVI is normalized difference vegetation index, L6 is the spectral radiance of 

thermal band 6 [Wm-2sr-1μm-1], Tb is the brightness temperature [K] and K1 and K2 are 

constants [Wm-2ster-1μm-1] (Landsat 7: K1 = 666.09, K2 = 1282.71; Landsat 5: K1 = 

60.776, K2 = 1260.56). Coefficient 0.09 in Eq. [4.10] was calibrated using air temperature 

observed over a well-watered agricultural field in southern Idaho (Allen et al., 2000). 

Recent study by Allen et al. (2007a) uses radiometric surface temperature as a surrogate 

for Ta in Eq. [4.7]. 

 

4.2.2. Soil Heat Flux 

The soil heat flux density G is positive for downward flux into the ground. Since 

G cannot be directly obtained from satellite observations, it is often estimated as a 

fraction of Rn (Anderson et al., 1997; Bastiaanssen, 2000; Choudhury et al., 1987; 

Norman et al., 1995). In this study, the soil heat flux is determined using a semi-empirical 

equation (Bastiaanssen, 2000) in which G is related to Rn, surface albedo α, surface 

temperature Ts and normalized difference vegetation index NDVI: 

 

( )( )( )[ ]RNDVITG S
498.010074.00038.01.273 −+−= α     [4.13] 
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4.2.3. Sensible and Latent Heat Fluxes 

The most difficult issue in remote sensing algorithms is to solve the equation for 

the sensible heat flux density (Brutsaert et al., 1993) 

 

( )
ah

aaeropa

r
TTc

H
−⋅⋅

=
ρ

     [4.14] 

 

where ρa is the density of air [kgm-3], cp is the specific heat capacity of air [Jkg-1K-1], 

Taero is the aerodynamic surface temperature, Ta is the air temperature measured at a 

standard screen height, and rah is the aerodynamic resistance to heat transfer [sm-1]. 

The simplicity of Eq. [4.14] is deceptive since Taero cannot be measured by remote 

sensing. Remote sensing techniques measure the radiometric surface temperature, Ts, 

which is not the same as Taero. Ts and Taero are almost identical for near-neutral 

conditions, but Ts is higher than Taero for stable conditions and lower for unstable 

conditions (Choudhury et al., 1986). The two temperatures can differ by 1 to 5 °C. 

Unfortunately, an error of 1 °C in Taero – Ta can result in a 50 Wm-2 error in H 

(Campbell and Norman, 1998; Hall et al., 1992) that may result in an error in the 

daily evaporation rate of as much as 2 mm per day. Although many investigators 

have tried to obtain Taero from Ts by adjusting rah or by using an additional resistance 

term, so far no generally applicable solution to this problem has been developed 

(Kustas and Norman, 1996). 

 

The aerodynamic resistance to heat transfer between levels z1 and z2, rah12 [sm-1] 

is affected by wind speed, atmospheric stability, and surface roughness (Brutsaert and 
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Sugita, 1992) and determined by: 
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where 
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where 
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z1 and z2 are two arbitrary heights, Ψh and Ψm are the stability correction factors for 

heat and momentum transport, respectively, u* is the friction velocity [ms-1], k is the 

von Karman’s constant (0.41), u200 is the wind velocity at height 200 m, ux
* is the 

friction velocity at weather station, ux is the wind velocity [ms-1] at weather station at 

height , zx [m] and z0m is the momentum roughness length [m]. 

 

In this study, z0m is either estimated directly from the landuse map, if available, 

by assigning a typical z0m for each land use/land cover class. When no land use map is 
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available we use an empirical relationship between z0m, NDVI and α (Tasumi and Allen, 

2000): 

 

])/exp[( bNDVIazom +×= α     [4.19] 

 

where a is the slope and b is the intercept. Using the ratio NDVI/α (Tasumi et al., 2000) 

rather than using only α (Bastiaanssen et al., 1998), is more effective in predicting 

differences in z0m between tall and short vegetation, because tall vegetation generally has 

lower albedo values than short vegetation due to shading from tall vegetation. 

 

In the Middle Rio Grande Basin the image of September 14, 2000 was analyzed 

using land use maps prepared by Paul Neville at the Earth Data Analysis Center of the 

University of New Mexico. For all other dates, we used selected locations on each image 

with known land use and assigned z0m to determine the a and b coefficients in Eq. [4.19] 

using regression analysis. 

 

The Monin-Obukhov length parameter (L) is used to define the stability 

conditions of the atmosphere (Monteith and Unsworth, 1990). 

 

kgH
Tuc

L sp
3

*ρ
−=      [4.20] 

 

where, g is the gravitational constant [9.81 ms-2] 
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The stability correction factors for momentum and heat transport (Ψm and Ψh) 

can be obtained from the following equations (Allen et al., 2007a; Allen et al., 1996). 

 

If L < 0: unstable atmosphere: 
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where  
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If L > 0: stable atmosphere: 
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⎟
⎠
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1.05)1.0(        [4.29] 

 

Eq [4.27] uses 2 m rather than 200 m since the boundary layer under stable atmospheric 

conditions will not extend above a few tens of meters at most. The use of 2m guarantees a 

stable numerical solution (Allen et al., 2005). 

 

If L = 0; neutral atmosphere: 

 

Ψm and Ψh = 0               [4.30] 

 

SEBAL overcomes the problem of inferring the aerodynamic surface temperature 

from the radiometric surface temperature and the need for near-surface air temperature 

measurements by directly estimating the temperature difference ΔT between T1 and T2 

taken at two levels z1 (0.10 m) and z2 (2 m) above the canopy or soil surface without 

explicitly solving for the absolute temperature at a given height. 
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where rah12 is the aerodynamic resistance between levels z1 and z2. The ΔT gradient 
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essentially ‘floats’ over the surface and eliminates the need to estimate the roughness 

length for sensible heat transport (z0h). In addition, the floating gradient may reduce 

complications in applying the energy balance to conditions of sparse vegetation, where 

some argue for applying a two-source model. 

 

The temperature difference for a dry surface without evaporation (the “hot” 

pixel) is obtained from the energy balance equation (Eq. [4.1]) with LE set to zero so that 

H = Rn – G followed by the inversion of Eq. [4.14] to ΔT = H rah12/(ρa cp). On the other 

hand, for a wet surface (the “cold” pixel) all available energy Rn – G is assumed in 

traditional applications of SEBAL to be used for evapotranspiration so that H = 0 and ∆T 

= 0 (Bastiaanssen, 2000; Bastiaanssen et al., 1998). As discussed in more detail later, this 

assumption suggests that no advection of energy from outside sources exists that would 

cause H + LE to exceed Rn – G. METRIC uses a weather data-based reference (potential) 

ET to estimate the influence of advection (Allen et al., 2007a). The implicit assumption 

in extreme-condition-inverted-calibration processes such as SEBAL is that land surfaces 

with a high ∆T are associated with high radiometric temperatures and those with a low 

∆T with low radiometric temperatures. Field measurements in Egypt and Niger 

(Bastiaanssen et al., 1998), China (Wang et al., 1998), USA (Franks and Beven, 1997), 

and Kenya (Farah and Bastiaanssen, 2001) have shown that the relationship between Ts 

and ∆T is approximately positively linear for different field conditions including irrigated 

fields, deserts and mountains. 

 

21 cTcT s +⋅=Δ ,    [4.33] 
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where c1 and c2 are the linear regression coefficients valid for one particular moment (the 

time and date the image is taken) and landscape. By using the values of ∆T calculated for 

the cold and hot pixel (see section [4.3.5]) the regression coefficients c1 and c2 can be 

determined so that the extremes of H are constrained which will prevent outliers of H-

fluxes. Occasionally, Ts of dry desert areas can exceed that of dry, bare agricultural soils.  

The impact of this is discussed in a later section. In summary, the empirical Eq. [4.33] 

relies on spatial differences of the radiometric surface temperature rather than absolute 

surface temperatures to derive maps of the sensible heat flux. This procedure minimizes 

the influence of atmospheric corrections, uncertainties in surface emissivity, surface 

roughness and differences in Taero and Ts on H estimates (Allen et al., 2007a). 

 

Generally, in the lower troposphere air temperature decreases by about 6.5 to 10 

degree K for saturated and dry air, respectively, when elevation increases by 1 km (Allen 

et al., 1998; Andrews, 2000). The lapse rate effect on surface temperature has to be 

accounted for in the ΔT estimation in SEBAL because high elevations that appear to be 

“cool” due to the temperature decreases with elevation would be misinterpreted as having 

high ET. To correct for the error introduced by elevation changes in this study, the 

surface temperature is adjusted using the standard saturated air lapse rate (6.5 K / km), 

before Eq. [4.33] is applied by assuming that surface temperature expects similar 

decreases in air temperature with elevation change. Instead of using Ts determined with 

Eq. [4.11], we adjust the surface temperature for elevation as 
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zTT sadjusteds Δ+= 0065.0_      [4.34] 

 

where Δz is the elevation of each pixel minus the elevation of an arbitrary datum [m] in 

the image where Ts_adjusted is specified to equal Ts. The term Δz is positive where the 

elevation of the pixel is higher than the datum. In our study area, the maximum Δz 

between ground measurements of the sensible and latent heat fluxes is 130 m or less 

(Table 4.2). Therefore, the maximum surface temperature difference caused by elevation 

is approximately 0.0065 x 130 = 0.8 K which is about 4 % or less of the temperature 

differences between the hot and cold pixels in the images used in this study. Thus, errors 

introduced by assuming an average lapse rate of 6.5 K/1000 m for each of the images 

analyzed will be negligible. When SEBAL is applied over larger elevation differences, it 

will be necessary to determine for each image the appropriate lapse rate. 

 

Besides ∆T the other unknown in Eq. [4.32] is the aerodynamic resistance to heat 

transfer rah12 (Eq. [4.15]) which is affected by wind speed, atmospheric stability, and 

surface roughness. Several algorithms take a few field measurements of wind speed and 

consider it spatially constant over representative parts of the landscape (Hall et al., 1992; 

Kalman and Jupp, 1990; Rosema, 1990). This assumption is only valid over 

homogeneous surfaces. For heterogeneous landscapes a wind speed near the ground 

surface is required for each pixel. One way to overcome this problem is to consider the 

wind speed spatially constant at a height of 200 m above ground level. This is a 

reasonable assumption since this height is usually above the blending height, where the 

wind speed is not affected by local changes in surface roughness. The wind speed at 200 
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m is obtained by an upward extrapolation of a wind speed measurement at the surface 

assuming a logarithmic, stability corrected, surface-layer wind profile (Holtslag, 1984). 

The wind speed distribution for each pixel is then obtained by a downward extrapolation 

using the local surface roughness, which is determined for each pixel using empirical Eq. 

[4.19] or a land cover map. 

 

Finally, knowing rah12 and ∆T, H can be determined for each pixel using Eq. 

[4.32]. However, as is seen in Eqs. [4.14] – [4.15] and [4.20] – [4.29], rah12 is needed 

to calculate H while H is required to calculate rah12. Therefore, an iterative process is 

required to solve for H and rah12. The iteration starts with the assumption of neutral 

stability, i.e. Ψh and Ψm are zero, so that the first estimate for rah12 can be calculated 

directly. The iterative process continues until the values of rah12 and H become stable. 

Then, after inserting Rn, G and H into Eq. [4.1] the latent heat flux LE is obtained for 

each pixel. Finally, by dividing LE by the latent heat of vaporization of water we 

derive the instantaneous ET (mmhour-1) at the time of the Landsat overpass around 

10:30 am. 

 

4.2.4. Daily Energy Balance Fluxes 

SEBAL yields an estimate of the instantaneous LE at the time of the Landsat 

overpass. However, for most hydrological applications the daily LE is needed; so the 

instantaneous LE needs to be extrapolated to the daily LE which is done using the 

evaporative fraction (EF). Where soil moisture does not significantly change and 

advection does not occur, the evaporative fraction has been shown to be approximately 
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constant during the day (Brutsaert and Sugita, 1992; Crago, 1996; Farah and Bastiaanssen, 

2001; Farah et al., 2004; Shuttleworth et al., 1989). However, analysis of field 

measurements by other investigators (Anderson et al., 1997; Sugita and Brutsaert, 1991; 

Teixeira et al., 2008) indicates that the instantaneous evaporative fraction on clear days at 

satellite overpass time (around 11:00 am) tends to be approximately 10 – 18 % smaller 

than the daytime average. Therefore, a correction coefficient cEF is introduced to take into 

account differences between instantaneous and daily evaporative fractions. Some 

investigators use cEF of 1.00 (Bastiaanssen et al., 1998; Bastiaanssen et al., 2005) while 

others suggest cEF of 1.10 (Anderson et al., 1997) or cEF of 1.18 (Teixeira et al., 2008). 

The value for cEF should depend on the relative amount of advection of heat, which in 

turn is a function of regional evaporation, wind speed and relative humidity.   
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  [4.35] 

 

Allen et al. (2007a) suggest using the fraction of reference ET (ETrF) to extrapolate from 

instantaneous ET to daily ET, rather than EF, where the reference ET basis accounts for 

impacts of advection on the energy balance processes. Advection can be stronger during 

afternoon periods than at the time of the 10:30 am Landsat overpasses. 

 

Assuming cEF of 1.0, multiplication of the instantaneous EFinst determined from 

SEBAL with the total daily available energy yields the daily ET rate in mm per day 

(Bastiaanssen et al., 1998; Bastiaanssen et al., 2005) as 
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( )242424 GREFLE ninst −⋅=      [4.36] 

 

and since the daily soil heat flux G24 [MJm-2day-1] is close to zero 
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where LE24 is daily latent heat flux [MJm-2day-1], ET24 is daily ET [mmday-1], EFinst is the 

evaporative fraction [(Rn – G – H) /(Rn – G)] at the time of satellite overpass, λ is the 

latent heat of vaporization [Jkg-1], ρw is the density of water [kgm-3] and Rn24 is daily net 

radiation [MJm-2day-1]. Rn24 is obtained by an semi-empirical expression (De Bruin, 

1987). 

 

( )[ ]swswan RR ττα 11010864.0 2424 −⋅⋅−⋅=    [4.38] 
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and 0.0864 is the conversion parameter from Wm-2 to MJm-2day-1. Eq. [4.38] was 

developed by de Bruin (1987) and recommended by Bastiaanssen et al (1998a) only for 

all-day clear sky condition. If the day of the satellite image is known to have had some 

cloudiness during periods preceding or following the time of the image, then one should 
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use a ground measured value for 24-h solar radiation (Rs) in place of Ra24⋅τsw. The 

constant -110 depends somewhat on the type of surface. For example, Tasumi et al. (2000) 

suggested -140 for irrigated fields in Idaho. In this study for riparian vegetated areas, the 

coefficient -110 is used since it yields Rn24 estimates that agree quite well with ground 

measurements (MRD < 3%). Ra24 is the daily-averaged extraterrestrial shortwave 

radiation [Wm-2] which is calculated by using information on location, day of year, slope 

and aspect for each pixel (Tasumi and Allen, 2000). 

 

In this study we compare the daily H derived from SEBAL with those measured 

on the ground assuming that the daily G is negligibly small, i.e. zero (Kustas et al., 1993). 

The daily H is calculated as 

 

242424242424 LERLEGRH nn −≈−−= .    [4.40] 

 

Thus, H24 is not derived from the instantaneous H. Instead it is calculated as the 

difference between Rn24 and LE24. The Rn24 is derived independently from SEBAL results 

using Eq. [4.38]. The LE24 depends on the EFinst which is dependent upon the 

instantaneous Rn, G, H and LE obtained from SEBAL. 
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4.3. METHOD AND MATERIALS 

 

4.3.1. Study Areas 

The components of the energy balance (Rn, G, H and LE) are determined by 

SEBAL from sixteen Landsat images for three typical riparian areas in the southwestern 

United States: the Middle Rio Grande Valley (NM), the Owens Valley (CA) and the San 

Pedro Valley (AZ) (Figure 4.1 and Table 4.1). 

 

The Middle Rio Grande Valley extends through central New Mexico and is 

defined as the reach of the Rio Grande between Cochiti Dam and Elephant Butte 

Reservoir. The Middle Rio Grande riparian vegetation consists of native vegetation such 

as cottonwood and salt grasses as well as various non-native species including saltcedar 

and russian olive. In the Middle Rio Grande Valley, the average annual air temperature is 

15 °C. Daily summer temperatures range from 20 to 40 °C, while daily winter 

temperatures range from -12 to 10 °C. Mean annual precipitation is about 25 cm and 

mean annual potential evapotranspiration is approximately 170 cm. 

 

The Owens Valley is a long, narrow valley on the eastern slope of the Sierra 

Nevada in Inyo County, California. It is a closed basin drained by the Owens River which 

terminates at saline Owens Lake. The Owens Valley has a mild high-desert climate: in 

summer (June, July and Aug) the lowest average daily minimum temperature is 7 °C and 

the highest average daily maximum temperature temperatures is 37 °C, and in winter 

(Nov, Dec, Jan and Feb) from -7 to 21 °C. Since, the Owens Valley is located in the “rain  
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Figure 4.1 Landsat7 scenes of the study areas in New Mexico, Arizona and California 
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Table 4.1 List of Landsat TM images used in this study (overpass around 10:30 am). 
 

Satellite Area Path/Row Date 

Landsat7 Rio Grande 33/36 04/07/2000 

Landsat7 Rio Grande 33/36 07/28/2000 

Landsat7 Rio Grande 33/36 09/14/2000 

Landsat7 Rio Grande 33/36 09/30/2000 

Landsat7 Rio Grande 33/36 05/09/2000 

Landsat7 Rio Grande 34/36 06/04/2001 

Landsat7 Rio Grande 34/36 05/06/2002 

Landsat7 Rio Grande 33/36 05/31/2002 

Landsat7 Rio Grande 33/37 05/31/2002 

Landsat7 Rio Grande 33/36 06/16/2002 

Landsat7 Rio Grande 33/36 08/19/2002 

Landsat7 Owens Valley 41/34 07/10/2002 

Landsat7 Owens Valley 41/34 08/11/2002 

Landsat7 Owens Valley 41/34 09/12/2002 

Landsat7 San Pedro 35/38 05/16/2003 

Landsat7 San Pedro 35/38 08/12/2003 
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shadow” of the Sierra Nevada, the average annual precipitation in the Owens Valley is 

only about 12 cm and mean annual potential evapotranspiration is about 150 cm. 

Snowmelt runoff from the Sierra Nevada creates a shallow water table underneath the 

valley floor which supports approximately 28,000 hectares of native shrubs and grasses 

in riparian areas. 

 

The San Pedro River flows north from the mountains of Sonora, Mexico, to the 

Gila River in southern Arizona. It is surrounded by vegetation consisting of cottonwood, 

willow, mesquite and sacaton grass. The mean air temperature of the Upper San Pedro 

valley is around 18 °C. Daily summer temperatures range from 22 to 44 °C, while daily 

winter temperatures range from 9 to 24 °C. Mean annual precipitation is about 36 cm and 

mean annual potential evapotranspiration is approximately 200 cm. 

 

Although, the regional climate of all three areas is classified as arid/semiarid, 

there exists a difference in precipitation pattern. In the Owens Valley, precipitation 

occurs primarily in winter and spring, while in the San Pedro and the Middle Rio Grande 

Valleys, the annual precipitation distribution is bimodal, with more than half of the 

rainfall being monsoonal in summer, although the proportion varies considerably from 

year to year (Cleverly et al., 2002; Costigan et al., 2000; Elmore et al., 2002; Scott et al., 

2000; Stromberg, 1998). Table 4.2 presents main characteristics of the study areas: 

vegetation type, elevation above sea level, height of vegetation canopy and the height of 

flux sensors above ground level. The average elevations are 1440, 1230 and 1220 m  
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Table 4.2 Site characteristics and sensor heights on the eddy covariance towers. 
 

Site Vegetation type Elevation 
(m) 

Vegetation 
height (m) 

Sensor 
height (m) 

Rio Grande – BDAS saltcedar 1370 6.2 8.2 

Rio Grande – BLN cottonwood 1460 25.1 27.2 

Rio Grande – SEV saltcedar 1430 4.9 6.5 

Rio Grande – SHK cottonwood 1500 23.7 26.3 

Owens – FSL138 alkali meadow 1280 0.2 2.5 

Owens – PLC018 rabbitbrush scrub 1250 0.5 2.5 

Owens – PLC074 saltbush meadow 1240 1.0 2.5 

Owens – PLC185 desert sink scrub 1220 0.5 2.5 

Owens – BLK100 alkali meadow 1170 0.2 2.5 

San Pedro – CM mesquite 1190 7.0 14 

San Pedro – LSS Sacaton 1230 1.0 3.5 

San Pedro – LSM mesquite 1240 3.5 6.5 
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above sea level for, respectively, the Middle Rio Grande Basin, Owens Valley and San 

Pedro Valley. 

 

4.3.2. Eddy Covariance Measurements and Closure Forcing 

SEBAL estimates of LE, H, G, and Rn are compared to ground-based eddy 

covariance and energy balance measurements. At each site, the turbulent heat fluxes were 

measured using the eddy covariance (EC) method. EC can theoretically provide direct 

and reliable measurements of H and LE (Arya, 2001). Although the method is relatively 

simple, EC measurements require expensive instrumentation that must be installed with 

great care. Any mistake with instrument leveling, orientation, calibration, and 

maintenance will lead to less accurate measurements. Some measurement errors such as 

instrument tilt, and reduced correlation due to spatial displacement between the EC 

sensors can be partially corrected during post-processing. 

 

At all of the ground measurement sites, a three-dimensional sonic anemometer-

thermometer that measures the three-dimensional wind vector and virtual temperature, 

was collocated with a Krypton hygrometer that measures water vapor density [gm-3] with 

a sampling rate of 10 Hz (Cleverly et al., 2002; Scott et al., 2004; Steinwand et al., 2006). 

The covariances between the vertical wind speed and, respectively, water vapor density 

and virtual air temperature are used for the computation of, respectively, 30 minutes 

averages of the latent heat flux LE and the kinematic sensible heat flux H. The installed 

eddy covariance systems are oriented toward the predominant wind direction, thereby 

reducing data loss due to winds blocked by the tower and instrumentation. All eddy 
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covariance data were quality controlled and corrected for tilt by coordinate rotations, 

frequency response, oxygen absorption of the Krypton hygrometer, and flux effects on air 

density. The coordinate rotation, however, can not correct for effects of changing wind 

direction during 30-minute average periods that can cause mean ‘vertical’ wind speeds to 

deviate from 0, thereby inducing error in the H and LE measurements. This problem is 

common to EC measurements in tall vegetation such as trees where the sensors are placed 

too close to tree branches or canopy. Soil heat fluxes in the San Pedro Valley and Owens 

Valley were obtained from measurements using a soil heat flux plate that were corrected 

for soil heat storage above the plate using collocated soil temperature and soil moisture 

measurements.  

 

At the Middle Rio Grande sites, soil heat storage could not be calculated due to 

the absence of soil moisture measurements. Therefore, the soil heat flux measurements in 

the Middle Rio Grande Valley have not been compared with those estimated by SEBAL. 

The net radiation was obtained from REBS Q7 net radiometers. In some of the 

installations, the Rn sensors may have been mounted too close to the towers and may have 

been impacted by reflection from the local structure. For the comparison of the 30 

minutes averaged ground measurements with the instantaneous energy fluxes estimated 

using SEBAL, an ‘instantaneous’ ground measurement was determined by linear 

interpolation between the two 30 minutes averaged, ground measurements before and 

after the satellite overpass. To compute daily values of LE, H, G and Rn the 30 minutes  

 
flux data were summed over the day (00 – 24 hours). 
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We use the energy balance closure as a criterion for the selection of high-quality 

Rn, G, H, and LE ground measurements for comparison with SEBAL estimates. The 

relative closure (RC) is defined as (Twine et al., 2000). 

 

100∗
−
+

=
GR

LEHRC
n

     [4.41] 

 

Figure 4.2 presents the relative closures at one location-day occurring on a satellite 

overpass day for all sites as provided by the investigators operating the EC towers in the 

Owens and San Pedro River Valleys. Since no soil heat flux measurements were available 

in the Middle Rio Grande Valley, we calculated the instantaneous relative closure [%] as 

 

100*
SEBALn GR
LEHRC

−
+

=      [4.42] 

 

where GSEBAL is the instantaneous soil heat flux derived by SEBAL. This approach is 

justified on the basis of the reasonable agreement found between SEBAL derived 

instantaneous soil heat fluxes and those measured on the ground in the Owens and San 

Pedro River Valleys (see Table 4.8). If the sum of H and LE, before correction, was less 

than 65 % or greater than 110 % of the available energy (Rn – G), the data were not used 

in our analysis. This criterion leads to the exclusion of 45 % of instantaneous fluxes and 

39 % of the daily fluxes of the data from the Middle Rio Grande Valley, 79 % 

(instantaneous) and 43 % (daily) from the Owens River Valley and 17 % (instantaneous) 

and zero % (daily) from the San Pedro River Valley. 
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Figure 4.2 Distribution of energy balance relative closure (H+LE)/(Rn–G) of 
instantaneous (top panel) and total daily (bottom panel) fluxes from eddy covariance 
towers. Each ‘bar’ represents one location-day occurring on a satellite overpass day. The 
dotted lines show criteria of acceptable closure [65 and 110 %] and percentage of the data 
having acceptable closure is shown in bracket. 
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Reviews of the EC method (Anderson and Farrar, 2001; Laubach and Teichmann, 

1999; Paw et al., 2004; Richardson et al., 2006; Twine et al., 2000; Wilson et al., 2002) 

revealed that even if EC measurements are corrected for measurement errors as described 

above, the sum of the turbulent heat fluxes (H+LE) is typically 10 – 30 % less than Rn – G. 

One way to improve the turbulent heat flux estimates is to force the closure of the energy 

balance by increasing LE and H by the Bowen ratio (Twine et al., 2000). The adjusted H 

and LE are computed as 

 

1+
−

=
β

GR
LE n

adj       [4.43] 

 

adjnadj LEGRH −−=      [4.44] 

 

where Hadj and LEadj are the adjusted H and LE by energy balance closure and β is the 

Bowen-ratio (H/LE), where H and LE were the original estimates from the EC system 

after correction for frequency response, oxygen absorption, and air density. A relative 

closure of 70 % is generally accepted to be of sufficient quality to use the data with 

confidence. However, some investigators go as low as 40 % (Anderson et al., 2004). In 

this SEBAL validation study we need high quality ground measurements and, therefore, 

we use only those measurements with relative closures exceeding 65 % after they have 

been adjusted using Eqs. [4.43] and [4.44]. 

 

We have not found in the literature any discussions of relative closures exceeding 

100 %, yet some of our data have relative closure between 110 – 120 %. Relative closure 
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exceeding 100 % can be explained by a time shift in the flux time series, e.g. a sudden 

decrease in Rn will take some time to be detectable as a smaller H and, thus, yield a 

relative closure exceeding 100 % (see Eq. [4.42]). However, since we expect relative 

closure around 70 – 90 % (Twine et al., 2000) any value exceeding 110 % is considered a 

large outlier. Especially, since all our EC measurements reflect clear sky conditions 

without clouds, i.e. without sudden Rn decreases. Therefore, we removed all 

measurements with relative closures exceeding 110 %. 

 

After elimination of EC measurements on the basis of unacceptable closures, we 

eliminated three more EC measurements taken on May 16, 2003 in the San Pedro River 

Valley at the Mesquite (CM) site. On this day the wind direction was approximately 90 

degrees different from the prevailing wind direction which resulted in fetch distances 

considerably shorter than the recommended 100 times the sensor height above the canopy 

(Stannard, 1993; Sumner and Jacobs, 2005). The problem was exacerbated by the 

relatively high placement (7 m) of the sensors above the canopy (Table 4.2) since the heat 

fluxes can vary significantly with height under such conditions (De Bruin et al., 1991). 

 

4.3.3. Comparison of SEBAL Predictions of Energy Balance Fluxes to Ground 

Measurements. 

Comparison of SEBAL derived estimates of Rn, G, H and LE with ground 

measurements is not a straightforward operation because the spatial and temporal scales 

of the SEBAL predictions and ground measurements are quite different. In this section 

we will discuss these scale issues for each flux in the energy balance. 
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4.3.3.1. Net radiation 

Rn is measured with a net radiometer at a height of about 2 – 3 m above the 

canopy that covers typically a ground area on the order of 10 m2. The measurements are 

taken every second and made available as 30 minutes averages for this study. The 

SEBAL Rn prediction is derived from reflectances in the visible, near-infrared and mid-

infrared bands from a 900 m2 pixel as well as the emittance in the thermal band from a 

3600 m2 pixel. Thus, the Rn ground observation is based on a measurement area at least 

two orders of magnitude smaller than the SEBAL Rn prediction. For homogeneous areas 

this difference will not matter much but for heterogeneous areas it may cause serious bias, 

since the satellite based Rn samples a larger area and is therefore more representative of 

the EC footprint. In arid riparian areas heterogeneity is the rule rather than exception. 

Radiometers are typically placed over the canopy of interest which may cause under-

representation of surrounding bare soil or ground cover in the angle of view. Therefore, 

ground measured Rn is expected to be biased towards the Rn of the vegetation of interest 

in heterogeneous arid riparian areas. 

 

4.3.3.2. Soil heat flux 

G is measured by soil heat flux plates combined with the determination of 

changes in heat storage above the plate using soil temperature and soil water content 

measurements. If G is not corrected for heat storage above the plate, large errors will 

result (Sauer, 2002). This is the case for the measurements at the Middle Rio Grande sites 

and, therefore, these G measurements have not been used for the comparison. The 
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measurement area of a soil heat flux plate is about 0.001 m2 which is almost six orders of 

magnitude less than a 900 m2 Landsat pixel. G is spatially variable due to heterogeneity 

in soil moisture and vegetation cover, so that numerous flux measurements would be 

needed to estimate the average pixel G with the desired accuracy (Humes et al., 1994; 

Kustas et al., 2000). Therefore, we expect the instantaneous G ground measurements to 

be a rather crude estimation of the true instantaneous G of a pixel. The instantaneous G 

can vary widely depending on soil condition (20 – 300 Wm-2) (Sauer et al., 2003). Since 

G is positive during the day and negative during the night the daily G is rather small 

compared to the other components of the energy balance (Seguin and Itier, 1983). G is 

measured in the field every second; we used 30 minutes averages for this study. 

 

4.3.3.3. Sensible and latent heat fluxes 

H and LE are measured using a three-dimensional sonic anemometer-

thermometer and Krypton hygrometer, respectively. For these components of the energy 

balance the relationship between ground measurement area and pixel size is the opposite 

of the one discussed for Rn and G: the area of ground measurements is several times 

larger than a Landsat pixel. As discussed below a typical footprint for H and LE under the 

micrometeorological conditions of this clear-sky study covers about 5 pixels or about 

4500 m2. The location of the footprint is upwind of the EC tower and its size and distance 

from the tower are dependent upon atmospheric stability conditions. For the comparison 

of H and LE SEBAL estimates with ground measurements, first the footprint area must 

be determined and then, the weighted average is taken of the SEBAL estimated H and LE 

values of all pixels within the footprint area. These weighted averages of H and LE are 
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compared with the ground measured H and LE at the EC tower. This approach is 

expected to work reasonably well for comparison of SEBAL instantaneous H and LE 

estimates with ground measurements at the time of the satellite overpass. 

 

Comparison of daily H and LE fluxes is problematic. Every 30 minutes 

instantaneous H and LE measurements are available at the EC tower but SEBAL 

estimates of the instantaneous H and LE are only available once per day at the time of the 

satellite overpass. Therefore, it is impossible to compare every 30 minutes the footprint 

averaged SEBAL estimates with the ground measurements. It is also problematic to 

compare daily SEBAL estimates of H and LE at each pixel with daily H and LE 

measurements at the EC tower. Daily H and LE measurements at the EC tower are the 

daily sum of 30 minutes instantaneous H and LE measurements originating from different 

footprints covering a wide area especially on days with highly variable wind directions. 

Combining the assumption of constant evaporative fraction during the day with the daily 

footprint using daily-averaged parameters including air temperature, u*, wind speed and 

direction, it may be possible to compare daily H and LE measurements at the tower with 

SEBAL estimates. However, uncertainties would remain and at best a rough comparison 

can be made since the average daily values are not necessarily a good measure for 

determination of a daily footprint. Therefore, in this study rather than trying to determine 

the true location of the “representative” daily foot print, the daily H and LE ground 

measurements will be compared with the average SEBAL estimated H and LE fluxes 

originating from twenty-five homogeneous pixels surrounding the EC tower. The 

homogeneity of the pixels surrounding the tower is evaluated by inspecting NDVI, albedo, 
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and surface temperature values as well as the H and LE values themselves. 

 

4.3.3.4. Quantitative measures to compare SEBAL estimates and ground measurements 

The numerical comparison of the energy balance components (Rn, G, H, and LE) 

estimated by SEBAL with those measured on the ground is conducted by means of 

quantitative measures proposed by Willmott and others for the validation of atmospheric 

models (Fox, 1981; Willmott, 1981; Willmott, 1982). We use the coefficient of 

determination (r2), mean absolute difference (MAD), root mean square difference 

(RMSD), and the mean relative difference (MRD) as defined in Table 4.3 (Anderson et 

al., 1997). The coefficients of determination may be misleading as “high” or statistically 

significant values of r are often unrelated to the sizes of the differences between model 

estimates and measurements (Willmott and Wicks, 1980). In addition, the distributions of 

the estimates and measurements will often not conform to the assumptions that are 

prerequisite to the application of inferential statistics (Willmott, 1982). However, since r2 

is a commonly used correlation measure that reflects the proportion of the “variance 

explained” by the model, we report this measure. The MAD and RMSD are robust 

measures as they summarize the mean differences between SEBAL estimates and ground 

measurements; the MAD is less sensitive to outliers than RMSD. The MRD is often used 

as an indication how well SEBAL estimates agree with ground measurements 

(Bastiaanssen et al., 2005). 

 

The quantitative measures provide useful information for the interpretation of the 

comparisons between ground measurements and SEBAL estimates of the heat fluxes.  
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Table 4.3 Definition of quantitative measures used to evaluate the performance of 
SEBAL 
 

Measure Description Computational Form 

n Number of observations  

G  
Mean of the ground 

measurement ∑
=

n

i
iG

n 1

1
 

S  
Mean of the SEBAL 

estimate ∑
=

n

i
iS

n 1

1
 

SDG 

Standard deviation of 
the ground 

measurement 
( )∑

=

−
−

n

i
GG

n 1

2

1
1

 

SDS 
Standard deviation of 
the SEBAL estimates ( )∑

=

−
−

n

i
SS

n 1

2

1
1

 

r2 Coefficient of 
determination 

( )

( ) ( )

2

1

2

1

2

1

2

1

2

1 11

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⋅⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⋅

−⋅⋅

∑ ∑∑ ∑

∑ ∑∑

= == =

= ==

n

i

n

i
ii

n

i

n

i
ii

n

i

n

i
i

n

i
iii

SSnGGn

SGSGn
 

MAD Mean absolute 
difference ⎥

⎦

⎤
⎢
⎣

⎡
−∑

=

n

i
ii SG

n 1

1
 

RMSD Root mean square 
difference ( )∑

=

−
n

i
ii SG

n 1

21
 

MRD 
Mean Relative 

Difference 
( )

G
SG −

 

 
 



 4-41

However, in order to detect significant differences among all comparisons under 

consideration a two-way Analysis of Variance (ANOVA) (McClave and Dietrich II, 1979) 

was conducted on the original difference values between ground measurement minus 

SEBAL estimate as well as on the ranks of the difference values. The latter approach does 

not require the assumption of normally distributed values (Conover and Iman, 1981). The 

“treatments” in the ANOVA are the different combinations of ground measurements and 

SEBAL estimates discussed in Section [4.4.4]. The “blocks” are ground measurements of 

one EC tower on a given day: 25 blocks are used for comparison of instantaneous heat 

fluxes and 24 blocks for comparison of daily fluxes. 

 

4.3.4. Footprint Model 

The location and extent of the footprint depends on surface roughness, 

atmospheric stability, wind speed, wind direction and may cover many pixels upwind 

of the eddy covariance tower (e.g. Hsieh et al., 2000; e.g. Schmid and Oke, 1990). 

There are several types of footprint models. Initially, simple two-dimensional analytical 

footprint models for neutral atmospheric conditions were developed (e.g. Gash, 1986; 

Schuepp et al., 1990). Later, the analytical footprint model was improved to account for 

atmospheric stability conditions (e.g. Horst and Weil, 1992; Hsieh et al., 2000). The 

footprint flux, F(x, Zs) [-], along the upwind direction, x [m], measured at the height zs 

[m], suggested by (Hsieh et al., 2000) is used in this study. 
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where 

 ( )[ ]smmssu zzzzzz 00 1ln +−=     [4.46] 

and 
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and 
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where k is the von Karman constant (0.4), D and P are similarity constants, zu is a length 

scale [m], L is the Obukhov length [m], zs is the instrument height [m] above the zero-

plane displacement, d [m], z0m is the momentum roughness height [m], ρa is the density of 

air [kgm-3], u* is the friction velocity [ms-1], cp is the specific heat capacity of dry air at 

constant pressure (1005) [Jkg-1K-1], Ta is the mean air temperature [K], g is the 

gravitational constant (9.81) [ms-2], and H is the sensible heat flux [Wm-2]. 

 

The cumulative footprint scalar flux, F(x, Zs)_cum [-], along the upwind direction, x, 

can be calculated by the following equation (Hsieh et al., 2000). 

 

⎟
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⎞
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s 2_),(
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In order to get a three-dimensional view of the footprint, the footprint flux across the 

main wind direction (y) is assumed to have a Gaussian distribution with an integrated 
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value equal to ( )szyxF ,, . Incorporating equations for lateral plume dispersion the three-

dimensional footprint flux at any point x, y and zs is calculated as (Gryning et al., 1987): 

 

( )
( ) ( )22 2/,

,, 2
ys

s

y

y

zx
zyx e

F
F σ

σπ
−

⋅
=     [4.50] 

 

where y is the distance [m] from the mean wind-axis x. σy is the cross wind spread [m] 

estimated as (Hanna et al., 1977) 

 

yy fx ⋅⋅= θσσ      [4.51] 

 

where σθ is the standard deviation of the wind direction in azimuth angle [-], x is the 

distance along the upwind direction and fy is an empirical function [-] (Draxler, 1976; 

Gryning et al., 1987; Irwin, 1983) 

 

( )( ) 5.0211 yy Ttf +=      [4.52] 

 

where t is the travel time [s] and Ty is the Lagrangian time scale for the lateral dispersion. 

We used a value of 600s for Ty, irrespective of the atmospheric stability (Irwin, 1983). In 

this study, σθ is calculated using the Yamartino algorithm (Yamartino, 1984) as 

 

( )[ ]31 1547.01sin εεσθ += −     [4.53] 

where 
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 ( ) ( )( )[ ] 5.0221 yx UU +−=ε     [4.54] 

where 

 ( ) NU ix /sin∑= θ      [4.55] 

and 

 ( ) NU iY /cos∑= θ      [4.56] 

 

where N is the number of samples and θi is the azimuth wind direction [degree] of an 

individual measurement. 

 

In order to compute the H and LE fluxes from SEBAL which correspond to the eddy 

covariance measurements, the weighting factor for each pixel Wi within the footprint area 

needs to be determined according to 
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The footprint weighted HFP and LEFP (FP stands for footprint) is then calculated 

by the equations: 

( )∑ ⋅=
n

i iiFP HWH      [4.58] 

 

( )∑ ⋅=
n

i iiFP LEWLE      [4.59] 
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where Hi and LEi are the pixel-scale H and LE estimated from SEBAL. 

 

A typical footprint size and footprint intensity for one 30 minute period on August 

19, 2002, at a Rio Grande saltcedar EC tower is presented in Figure 4.3. To verify the 

quality of the footprint model used in this study, we also calculated xmax (peak footprint) 

for this period with the model by Schuepp et al. (1990). The models by Hsieh et al (2000) 

and Schuepp et al. (2000) calculate xmax as 10 m (Figure 4.3) and 11 m, respectively, 

which implies that the footprint from Hsieh et al (2000) is indeed close to the tower. At 

most EC sites, the maximum contribution to the footprint was within 50 m from the tower 

(wind speeds were generally less than 4 ms-1) and most of the footprint intensity (>90 %) 

is located within 300 m from the tower. We compute the footprints from meteorological 

parameters including air temperature, sensible heat flux, wind speed, wind direction and 

friction velocity. The footprints for H and LE are obtained for the time of the satellite 

overpass using the 30 minute averaged meteorological parameters. Approximately 80 % 

of all footprint fluxes cover an area of 5 to 9 pixels, twenty percent cover larger areas. As 

explained in Section [4.3.3.3] calculation of a representative daily footprint for 

comparison of SEBAL H and LE estimates and ground measurements is nearly 

impossible. Therefore, the use the average H and LE values of the 25 pixels surrounding 

the EC tower pixel is considered to be the best option for the comparison of daily ground 

measurements and SEBAL estimates.  
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Figure 4.3 Footprint size and footprint intensity from the eddy covariance tower located 
at SEV (saltcedar) in Rio Grande on August 19, 2002 (10:40 am) (wind speed: 3.4 m/s, 
vegetation height: 4.9 m and sonic anemometer height from ground: 6.5 m). 
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4.3.5. Selection of Temperatures for the Hot and Cold pixel 

During the course of this study we have found that the correct selection of the 

temperatures of the cold and hot pixel for the derivation of parameters c1 and c2 in Eq. 

[4.33] is the most critical step in the entire SEBAL process. An error of a few degrees K 

will cause serious distortion of the distribution of the sensible and latent heat fluxes over 

an image. The ranking of the heat fluxes from smallest to largest will still be correct but 

their absolute values can be considerably flawed. The selection of cold and hot pixels 

requires a thorough understanding of field micrometeorology and is somewhat subjective, 

i.e. different experts will select slightly different temperature values.  

 

The cold pixel is normally selected in areas with well-watered healthy crops with 

full soil cover or in shallow water bodies (Bastiaanssen et al., 2005). Over the cold pixel 

it is assumed that ΔT = 0, which implies that H = 0 and LE = Rn – G. An alternative 

manner is to use the reference ET (Allen et al., 1998) for the estimation of H in well-

irrigated alfalfa and clipped grass fields (Allen et al., 2007a; Tasumi, 2003). However, 

during the period of this study a lack of high-quality weather data for calculation of the 

reference ET in the Middle Rio Grande Valley made implementation of the latter 

approach is cumbersome. Of course, the absence of high quality weather data is the 

default condition for many regions worldwide (Droogers and Bastiaanssen, 2002) which 

leaves the original SEBAL implementation as the only alternative. 

 

The selection of the hot pixel is often difficult since the heterogeneous landscapes 

of the southwestern U.S. contain many hot pixels with a wide range of temperatures and, 
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therefore, of ΔT’s that fulfill the condition that LE = 0 and H = Rn – G. In this study, the 

hot pixel is selected from a dry bare agricultural field with negligible ET. There are hotter 

pixels in the scene (e.g. a parking lot or sparsely-vegetated desert), but the ET over the 

cooler dry bare agricultural field is already expected to be zero. Thus, for any pixel cooler 

than the hot pixel, ET > 0 (if the Rn and G are the same), and for any pixel warmer than 

the hot pixel, ET = 0. In addition, the estimation equation for G was derived for 

agricultural conditions and therefore produces more dependable estimates for calibration 

when applied to a bare, agricultural soil having a tillage history. 

 

We used two different approaches for the selection of the temperatures for the 

cold and hot pixel: the EC approach is based on inspection of the hydrogeological 

features of the landscape followed by fine-tuning the parameters c1 (slope) and c2 

(intercept) in Eq. [4.33] using ground measurements of available instantaneous latent heat 

fluxes at the EC towers. In the EC approaches, cold pixels are selected from a fully 

covered well-watered agricultural field characterized by NDVI > 0.7 or higher and albedo 

0.16 – 0.25. Since there were no fully covered irrigated fields in the image of April 7, 

2000 just before the start of the growing season, we selected the cold pixel in a shallow 

surface water body. All the hot pixels in the EC approach are chosen inside of a bare 

agricultural field characterized by NDVI < 0.15. Since selection of the cold pixel is 

straightforward in fully covered fields, the temperature of the cold pixel was fixed but the  

temperature of the hot pixel was varied to best match the instantaneous ground 

measurements of LE. Steps for hot pixel selection in the EC approach are presented in 

Figure 4.4. First dT and then LE were calculated from the first set of anchor pixels  
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Figure 4.4 Example of steps for hot pixel selection in EC approach. 
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selected using the guidelines in the METRIC manual (Allen et al., 2005). Next, different 

hot temperatures were selected in a bare field close to the first choice for the hot pixel. 

Then, the hot temperature that resulted in the best visual agreement with the ground 

measurements of LE was selected for determination of coefficients c1 and c2 in Eq. [4.33]. 

However, it is not trivial to obtain a perfect match with 2 to 3 LE ground measurements. 

Therefore, there always remains some discrepancy as shown in Figure 4.4. The Empirical 

(EM) approach is based only on inspection of the hydrogeological features of the 

landscape and micrometeorological considerations. The latter approach is typical for most 

SEBAL applications since the high density network of EC towers available in this study 

is a unique situation. The data in Table 4.4 show that the EM approach results in cold 

pixels around 2 – 3 degree colder than the EC approach and hot pixels about 1 degree 

colder. In order to independently evaluate the EC versus the EM approach, I implemented 

the EC approach while my advisor, Dr. Hendrickx, implemented the EM approach. 

 

4.3.6. Scenarios for Comparison of SEBAL Estimates of Sensible and Latent Heat 

Fluxes to Ground Measurements. 

In the previous sections we discussed several different ways to establish energy 

balances using either SEBAL or ground measurements. SEBAL has been implemented 

using the EC and the EM approaches for selection of the cold and hot pixel (Section 

[4.3.5]). In the EC approach, calibration of SEBAL to ground measurements was 

implemented either using the average footprint weighted instantaneous heat fluxes 

(EC_FP) or using the instantaneous heat fluxes of the pixel where the EC tower is located  
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Table 4.4 Information of anchor pixel temperatures and dT-Ts relationship parameters. 
 

EC approach (FP) EC approach (TP) EM approach 
Date 

Ts_c
1 Ts_h

2 c1
3 c2

4 Ts_c Ts_h c1 c2 Ts_c Ts_h c1 c2 

4/07/2000 289 313 0.24 -69.7 289 311 0.28 -98.5 289 313 0.24 -69.7 

5/06/2002 293 316 0.25 -72.6 293 318 0.22 -64.5 292 320 0.20 -59.0 

5/09/2000 296 314 0.36 -107.9 296 316 0.32 -93.7 291 317 0.25 -74.2 

5/31/20025 299 326 0.19 -58.2 299 332 0.14 -40.6 298 326 0.18 -54.9 

5/31/20026 299 325 0.22 -66.4 299 325 0.23 -68.0 297 326 0.19 -56.0 

6/04/2001 299 325 0.19 -57.5 299 321 0.22 -64.5 293 319 0.19 -57.4 

6/16/2002 302 331 0.18 -55.9 302 331 0.18 -54.7 296 325 0.18 -53.9 

7/28/2000 300 317 0.34 -100.8 300 318 0.32 -96.9 297 317 0.29 -85.4 

8/19/2002 297 316 0.27 -81.6 297 318 0.25 -75.9 294 312 0.34 -99.3 

9/14/2000 296 313 0.38 -111.4 296 315 0.32 -95.8 294 312 0.33 -96.7 

9/30/2000 296 312 0.40 -120.0 296 313 0.36 -108.2 289 309 0.30 -85.8 

7/10/2002 303 334 0.14 -41.9 303 335 0.13 -39.5 303 334 0.13 -39.3 

8/11/2002 300 326 0.17 -51.2 300 326 0.15 -45.4 299 328 0.13 -39.4 

9/12/2002 295 326 0.13 -39.9 295 322 0.17 -50.2 296 324 0.14 -42.1 

8/12/2003 298 319 0.31 -92.8 298 319 0.29 -86.9 298 317 0.32 -97.3 

Average 297 321 0.3 -75.2 297 321 0.24 -72.2 295 320 0.2 -67.4 

 

1Temperature [K] of cold pixel, 2Temperature [K] of hot pixel, 3slope in dT-Ts relation, 
4intercept in dT-Ts relation, 5path/row: 33/36, 6path/row: 33/37 
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(EC_TP). The former method is difficult to implement for most practitioners while the 

latter is practical and fast. In addition, ground energy balances have been established 

using either net radiation measurements on the ground with a footprint of about 10 m2 or 

the net radiation estimated by SEBAL at the pixel scale. For the comparison of these 

different methods for deriving SEBAL estimated and ground measured heat fluxes, we 

defined seven different scenarios (Table 4.5). Scenarios S1, S2, and S4 employed the EC 

approach for selection of the cold and hot pixel, while scenarios S3 and S5 used the EM 

approach (see Section [4.3.5]). The EM approach is the classical SEBAL approach 

(Bastiaanssen, 2000; Bastiaanssen et al., 1998) that can be implemented without high 

quality meteorological data. Scenarios S1, S2, and S3 compared SEBAL based estimates 

against ground measurements of fluxes where the ground measured Rn was used to adjust 

H and LE measurements to close the energy balance using Eqs. [4.43] and [4.44]. With 

the exception of the soil heat flux in the Middle Rio Grande Valley that was taken from 

SEBAL. Scenarios S4 and S5 established the closure and adjustment of LE and H from 

the ground based energy balance using SEBAL Rn estimates since those seemed to be 

more representative for heterogeneous pixels as discussed in Section [4.3.3.1]. Since the 

differences between S1 and S2 turned out to be relatively minor, the labor intensive 

footprint (FP) analysis for selection of the anchor pixel temperature was not implemented 

along with scenarios S4 and S5. 

 

No independent radiation data are available that present absolute proof about the 

possible higher quality of the SEBAL net radiation estimates at the pixel scale over the 

ground measurements. The Q7 net radiometers may have been placed preferentially over  
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Table 4.5 Scenarios of comparison between SEBAL and ground measurements 
 

ID Scenario Assumption Practitioner’s 
assumption 

S1 EC Approach (FP)1 Rn
5 is correct Rn is correct 

S2 EC Approach (TP)2 Rn is correct Rn is correct 

S3 EM Approach3 No ground measurements used 

S4 EC Approach (SRn4) SRn is correct SRn is correct 

S5 EM Approach (SRn) No ground measurements used 

AS2 EC Approach (TP) SRn is correct Rn is correct 

AS4 EC Approach (SRn) Rn is correct SRn is correct 
 

1Match between the ground measured instantaneous LE (adjusted for closure error) at the 
satellite overpass and the footprint weighted averaged SEBAL LE. 2Match between the 
ground measured instantaneous LE (adjusted for closure error) at the satellite overpass 
and the SEBAL LE of the tower pixel. 3Consider the hydrogeological features of the 
landscape and micrometeorological considerations. 4SEBAL Rn estimate is used for the 
determination of the closure adjusted ground measured H and LE. 5Ground measured Rn 
is used for the determination of the closure adjusted ground measured H and LE. 
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vegetation and may have some calibration challenges. On the other hand, the radiation 

subroutines in SEBAL rely on SEBAL’s internal calibration that eliminates to some 

extent the need for atmospheric corrections for estimation of LE (Allen et al., 2007a; 

Bastiaanssen et al., 2005) but do not necessarily guarantee a perfect estimate of net 

radiation. Therefore, two more alternative scenarios have been defined (AS2 and AS4 in 

Table 4.5) for the evaluation of biases that are introduced when practitioners use ground 

measurements for calibration and validation of SEBAL as we have done in S1, S2 and S4. 

Scenario AS2 is counterpart to S2 and assumes that the ground energy balance that uses 

the SEBAL estimated Rn is really the correct one for adjusting H and LE for closure error, 

while a practitioner unknowingly uses the ground based H and LE where the energy 

balance closure was done using the ground Rn measurements (S1–S3), without 

knowledge of satellite based Rn. Scenario AS4 is counterpart to S4 and assumes that the 

ground energy balance that uses the ground Rn measurements for closure error is correct, 

while a practitioner unknowingly uses the LE and H, but with the SEBAL Rn. Given the 

current interest in the use of EC and scintillometer ground measurements for the 

validation and calibration of remote sensing ET algorithms (Hendrickx et al., 2007; Watts 

et al., 2000), these scenarios are bound to occur. No alternative scenario counter to S1 has 

been implemented since S1 and S2 are quite similar. 

 

 

 



 4-55

4.4. RESULTS AND DISCUSSION 

 

4.4.1. Spatio-temporal Distribution of Daily Latent Heat Fluxes 

Figure 4.5 presents an example of the ET maps that can be produced by SEBAL 

for all components of the energy balance as well as other environmental parameters such 

as albedo, NDVI, surface temperature, etc. In Figure 4.5, daily ET rates are mapped in the 

Middle Rio Grande Valley and surrounding deserts on four different days during the 

spring, summer and fall. The maps show how the ET rates increase from April 7 (just 

after the start of the irrigation season) to June 16 at the height of the irrigation season; a 

decrease of ET is observed during September and October when fields are harvested and 

lower temperatures are impeding crop growth. On all four days higher ET rates are 

observed over irrigated fields and in the riparian areas while low to very low rates occur 

in the surrounding deserts. The high spatial resolution of these maps (30 m) allows water 

resources managers (i) to follow where, when, and how much water has moved into the 

atmosphere by evapotranspiration; (ii) to monitor crop performance; (iii) to better 

evaluate the performance of irrigation systems; and (iv) to estimate water use for water 

rights adjudication. In this study we evaluate the quality of SEBAL estimated ET maps in 

riparian areas of the southwestern U.S. through a systematic comparison of SEBAL 

predicted and ground measured energy balance fluxes. 

 

4.4.2. Comparison of SEBAL Net Radiation with Ground Measurements 

Figures 4.6 and 4.7 and Table 4.6 present the comparisons of the instantaneous 

and daily Rn measured on the ground and estimated by SEBAL. The method used for the 
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Figure 4.5 SEBAL evapotranspiration (mm/d) maps along the Rio Grande in spring, 
summer and fall. 
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Figure 4.6 Comparison of instantaneous net radiation (Rn) between net radiometer 
measurements and SEBAL estimates. (EC_FP method selected anchor pixels to match 
fluxes of the ground measured instantaneous LE (adjusted for closure error) at the 
satellite overpass and the footprint weight averaged SEBAL LE. EC_TP method selected 
anchor pixels to match fluxes of the ground measured instantaneous LE and the flux of 
the tower pixel. EM method selected the anchor pixels with the hydrogeological features 
of the landscape and micrometeorological considerations)  
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Figure 4.7 Comparison of daily net radiation (Rn) between net radiometer measurements 
and SEBAL estimates.
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Table 4.6 Quantitative measures for comparison of SEBAL instantaneous and daily net radiation estimates ( S ) versus ground 
measurements (G ) using the EC and Empirical Approaches for selection of hot and cold pixels. 
 

Selection Cold and Hot Pixel n G  S 4 SDG SDS r2 MAD RMSD MRD 

Instantaneous Rn (-) (W/m2) (W/m2) (W/m2) (W/m2) (-) (W/m2) (W/m2) % 

EC Approach (FP1) 25 654 569 86 90 0.56 88 105 13.0 

EC Approach (TP2) 25 654 571 86 89 0.56 87 103 12.8 

Empirical Approach 25 654 559 86 88 0.56 97 113 14.6 

Daily Rn (-) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (-) (MJ/m2/d) (MJ/m2/d) % 

EC Approach3 24 15.6 16.0 3.1 3.1 0.75 1.3 1.6 -2.9 

Empirical Approach 24 15.6 15.9 3.1 3.0 0.69 1.3 1.8 -2.3 
 

1Cold and hot pixels were selected by matching the instantaneous latent heat flux measured at the EC tower with the footprint weighted 
averaged SEBAL instantaneous latent heat flux. 
2Cold and hot pixels were selected by matching the instantaneous latent heat flux measured at the EC tower with the SEBAL instantaneous 
latent heat flux of the EC tower pixel. 
3The daily net radiation does not depend on the selection of the cold and hot pixels; both EC Approaches yield the same values. 
4The SEBAL instantaneous net radiation estimate ( S ) was obtained by calculating the footprint weighted average for the instantaneous 
net radiation; the daily net radiation ( S ) was obtained as the average SEBAL daily net radiation of the 25 pixels around the EC 
tower.
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selection of the cold pixel (see Eq. [4.7]) slightly affects the significant differences 

(paired t-test, p<0.0005) between the averaged measured ground instantaneous net 

radiation and the averaged SEBAL estimates due to the influence of the cold pixel 

temperature on the Rn estimate. These differences are 87 and 97 W/m2 for, respectively, 

the EC approach and Empirical Approach resulting in MRDs of 12.8 and 14.6%. These 

differences are about two to three times larger than those typically reported in the 

literature (Allen et al., 2006; Ma et al., 2006). Much of this larger than usual MRD is 

attributed to the heterogeneity of the riparian sites, the different footprints of net 

radiometer and Landsat pixel, and the directional preference of the net radiometer for the 

vegetation studied as described in Section [4.3.3.1]. The higher net radiation measured on 

the ground as compared with the SEBAL net radiation supports this argument. A bias 

occurs where the net radiometer is placed preferentially above vegetation that has a lower 

albedo, lower surface temperature and higher surface emissivity than the patches of bare 

soil present next to the vegetation in the Landsat pixel. These arguments are supported 

with experimental data from another study where the MRD’s between ground measured 

Rn’s and the one’s estimated with SEBS were 1.2, 9.2, and 17.2 %, respectively, for a 

homogeneous cotton field, heterogeneous shrub terrain, and heterogeneous grassland (Su, 

2002). The MRD of 9.2 and 17.2 % from the heterogeneous pixels are similar to the ones 

reported in Table 4.6. 

 

 SEBAL calculates the incoming longwave radiation from the atmosphere (RL↓) 

with the cold pixel surface temperature (Ts_cold) instead of the air temperature (Ta) 

(section [4.2.1]). Recently Allen et al. (2007) suggest to use the radiometric surface 
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temperature (Ts) of each pixel as a surrogate for Ta. In order to test the robustness of the 

SEBAL estimated RL↓, we calculate three different RL↓ estimates from Eq. [4.7] at the EC 

tower sites of Middle Rio Grande: (1) Ta from ground measurement, (2) Ts_cold from 

SEBAL, and (3) Ts of each pixel from SEBAL. The top panel of the Figure 4.8 presents 

RL↓ using Ta from ground measurement versus Ts_cold from SEBAL. In Figure 4.8 (middle 

and bottom panels), we also compare the SEBAL RL↓ estimates using either Ts_cold or Ts 

with RL↓ calculated with the equation of Brutsaert (1975). Duarte et al. (2006) and 

Lhomme et al (2007) indicate that the equation by Brutsaert (1975) produces a best 

estimate of the incoming longwave radiation. However, it requires a ground measured Ta 

and actual vapor pressure (ea). In Figure 4.8, the mean difference between Ts_cold and Ta is 

2.3 K. The MRD for each method (top, middle and bottom panels in Figure 4.8) is 3.1, -

0.9 and 16.4 %, respectively. Thus, using Ts_cold in Eq. [4.7] yields more robust estimates 

of RL↓ than use of Ts for each pixel. The top and middle panels in Figure 4.8 show that 

Ts_cold is a reasonable parameter to calculate RL↓. 

 

The daily net radiations match very well with a MRD of only -2.3 to -2.9 %, i.e. 

the SEBAL predicted daily Rn using Eq. [4.38] is 0.3 – 0.4 MJm-2day-1 larger than the 

ground measured daily Rn. This is an excellent agreement but it immediately begs the 

question “why?” since the instantaneous Rn’s differ by more than 12%. The main reason 

appears to be that on clear days over sparsely vegetated surfaces the maximum 

temperature differences between bare soil and vegetation typically occur around noon;  
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Figure 4.8 Comparison of incoming longwave radiation (RL↓) values calculated using 
SEBAL estimated cold pixel surface temperature (Ts_cold) versus ground measured air 
temperature (Ta) [top], SEBAL estimated Ts_cold versus the equation of Brutsaert (1975) 
[middle], and SEBAL estimated Ts versus the equation of Brutsaert (1975) [bottom]. 
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temperature differences measured in the Walnut Gulch Experimental Watershed near 

Tombstone, Arizona, varied between 10 and 25 ºC during that time of the day (Humes et 

al., 1994). Since the conditions in the arid riparian areas of this study are similar, we 

expect similar temperature differences to occur when the satellite passes over around 

11:00 am. The incoming short and longwave radiation are equal for the bare soil and the 

vegetation, therefore the net radiation will depend on the outgoing short and long wave 

radiation. The albedo and surface temperature of dry bare soils around 11:00 am are 

higher than of vegetation resulting in more reflection of short wave radiation and more 

emission of long wave radiation which results in a lower Rn during the day for bare soil. 

During the night the surface temperatures of vegetation and bare soil are similar so that –

due to the higher emissivity of vegetation (0.99) as compared to bare soil (0.94) (Humes 

et al., 1994) – the Rn of vegetation is lower. Using the equations presented in Section 

[4.2.1] one can roughly calculate that the daily Rn difference between vegetation and soil 

will be considerably smaller than the instantaneous Rn difference around 11:00 am.  

 

These differences have been quantified by comparing the SEBAL estimated 

instantaneous and daily net radiation for fully vegetated agricultural fields, saltcedar, and 

bare soils (Table 4.7). Whereas the measured instantaneous net radiation fluxes of fully 

cropped agricultural fields and saltcedar stands exceeded those of bare soils by 54 to 

77 %, the daily net radiation fluxes were only 20 to 36 percent larger. A typical low Leaf 

Area Index (LAI) for saltcedar is about 2.5 (Cleverly et al., 2002) which indicates that 

bare soil is present but vegetation cover is dominant. Now let us assume a typical mixed 

pixel for the Middle Rio Grande Valley with a 75% soil cover of saltcedar and 25% bare 
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Table 4.7 Selected instantaneous and daily net radiation fluxes and relevant parameters for adjacent clusters of vegetated and 
bare soil pixels on June 16, 2002. 
 
 

Vegetation Albedo 
(-) 

NDVI1 

(-) 
T-surface 

(degree K) 

Instantaneous 
Net Radiation 

(W/m2) 

Daily 
Net Radiation 
(MJ/(m2 d)) 

N2 

 Veg Bare Veg Bare Veg Bare Veg Bare Ratio Veg Bare Ratio  

Alfalfa 0.22 0.32 0.84 0.14 299 325 634 384 1.65 17.9 14.8 1.21 50 

Alfalfa 0.21 0.31 0.80 0.24 301 322 627 408 1.54 18.1 15.1 1.20 20 

saltcedar 0.16 0.32 0.65 0.14 302 326 670 379 1.77 19.8 14.8 1.34 50 

saltcedar 0.14 0.31 0.49 0.24 308 322 657 408 1.61 20.6 15.1 1.36 20 

 
1) NDVI = Normalized Difference Vegetation Index 
2) N = number of pixels in each 
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soil. The data from Table 4.7 for the first saltcedar plot show that the ratios between 

100% saltcedar and 100% bare soil for, respectively, instantaneous and daily net radiation 

are 1.77 and 1.34. We want to find similar ratios between 100% saltcedar and our mixed 

pixel using the values of Table 4.7 for the instantaneous and daily net radiation for 

saltcedar and bare soil. Ignoring the effect of thermal radiation from soil that is 

intercepted by adjacent vegetation, the instantaneous and daily net radiations for the 

mixed pixel are, respectively, 0.75 × 670 + 0.25 × 379 = 598 Wm-2 and 0.75 × 19.8 + 

0.25 × 14.8 = 14.9 + 3.7 = 18.6 MJm-2day-1. So, the net instantaneous and daily radiations 

of a fully vegetated saltcedar pixel are 670/598 = 1.12 and 19.8/18.6 = 1.06 times those 

of our mixed pixel. The 12 percent difference is similar to the MRD’s of 13 – 15% 

presented for the difference in instantaneous net radiation between ground measurements 

and SEBAL estimates. The 6 percent difference for daily net radiation falls within error 

ranges of radiation measurements (Field et al., 1992; Halldin and Lundroth, 1992). Thus, 

the much smaller MRD for daily Rn (-2.3 to 2.9 %) compared to the MRD of 

instantaneous Rn (about 13 %) can be explained by environmental radiation physics and 

is not necessarily caused by errors or biases in the SEBAL method for instantaneous Rn 

or in the sensor itself. 

 

The difference between ground measured instantaneous Rn and the one 

determined by SEBAL is quite large. Above we made the case that in heterogeneous 

pixels the SEBAL Rn seems more reliable than the ground measured one due to its more 

representative footprint. Therefore, we have merged ground and remote sensing 

observations for best estimates of the energy balance at the EC towers in Section [4.4.4.1]. 
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We established energy balances using the sensible and latent heat fluxes measured on the 

EC tower together with SEBAL Rn estimates. In this manner all major components of the 

energy balance are estimated on the basis of a footprint of one Landsat pixel or larger. 

 

4.4.3. Comparison of SEBAL Soil Heat Flux with Ground Measurements 

The magnitude of soil heat flux G depends on surface cover, soil water content, 

and solar irradiance. For a moist soil beneath a plant canopy or residue layer the 

instantaneous G will often be less than ±20 Wm-2 (Sauer, 2002) while a bare, dry, 

exposed soil in midsummer could have a day-peak in excess of 300 Wm-2 (Fuchs and 

Tanner, 1970). In the Middle Rio Grande Basin during summer typical midday (10 am 

through 2 pm) values of G are 104 and 132 Wm-2 for, respectively, grassland and shrubs 

(Kurc and Small, 2004). These examples demonstrate that the instantaneous G can be an 

important component of the instantaneous energy balance that needs to be taken into 

account. In most field soils the instantaneous G exhibits not only a temporal variability 

but also a large spatial variability which makes it very difficult to measure an average G 

for areas with the size of a typical Landsat pixel (30 x 30 m) (Sauer, 2002).  

 

For this study six soil heat flux measurements were available from the Owens 

Valley and the San Pedro Valley. The SEBAL determined G approaches the ground 

measured G reasonably well but the MRD is relatively high with values of 32.2 and 

30.8 % for, respectively, the EC and Empirical approaches for determination of the cold 

and hot pixel (Figure 4.9 and Table 4.8). The overall impact of the relatively high MRD 

in instantaneous G is minor. Although it is about 30% of the smallest component of the 
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energy balance, it hovers around 6% percent of the instantaneous net radiation. 

The daily G is close to zero since heat enters the soil during the day but leaves the soil 

during the night. The daily G measurements in the field confirm this (Table 4.8). 

Therefore, it is assumed in SEBAL that the daily heat flux can be neglected, i.e. G is zero. 

 

Given the high spatial and temporal variability of G (Sauer, 2002) within one 

Landsat pixel, the reasonable agreement between SEBAL predicted instantaneous G and 

ground measurements (Figure 4.9 and Table 4.8), the relatively minor impact of an error 

in G on the estimates of ET, and the impossibility to measure a truly representative G for 

a 900 m2 heterogeneous riparian pixel using soil heat flux plates with a foot print of only 

0.001 m2, it appears that the SEBAL estimated G often will result in a quite acceptable 

estimate on the pixel scale. 

 

4.4.4. Comparison of SEBAL Sensible and Latent Heat Fluxes with Ground 

Measurements 

Since there is a strong interplay between sensible and latent heat fluxes we 

discuss both heat fluxes together in this section. First we inspect the plots of 

instantaneous and daily SEBAL heat flux estimates versus ground measurements using 

the S1 (EC_FP) approach for the selection of the cold and hot pixel temperatures and 

calibration of SEBAL to the ground measurements. The instantaneous and daily sensible 

and latent heat fluxes are presented in Figure 4.10 which demonstrates several interesting 

features. Our data set covers a wide range of conditions varying from dry to moist which 

allows evaluation of SEBAL over a wide range of environmental conditions in the 
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Figure 4.9 Comparison of instantaneous ground heat flux (G) between soil heat flux plate 
measurements and SEBAL estimates. 
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Table 4.8 Quantitative measures for comparison of instantaneous and daily SEBAL soil heat flux estimates ( S ) versus ground 
measurements (G ) using the EC and Empirical Approaches for selection of hot and cold pixels. 
 

Selection Cold and Hot Pixel N4 G  S 5 SDG SDS r2 MAD RMSD MRD 

Instantaneous G (-) (W/m2) (W/m2) (W/m2) (W/m2) (-) (W/m2) (W/m2) % 

EC Approach (FP1) 6 76 101 26 13 0.02 35 35 -32.2 

EC Approach (TP2) 6 76 101 26 13 0.02 35 35 -31.9 

Empirical Approach 6 76 100 26 13 0.02 34 34 -30.9 

Daily G (-) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (-) (MJ/m2/d) (MJ/m2/d) % 

EC Approach3 24 0.5 0.0 0.4 0.0 - 0.5 0.6 >100 

Empirical Approach 24 0.5 0.0 0.4 0.0 - 0.5 0.6 >100 
 

1 Cold and hot pixels were selected by matching the instantaneous latent heat flux measured at the EC tower with the footprint weighted 
averaged SEBAL instantaneous latent heat flux. 
2 Cold and hot pixels were selected by matching the instantaneous latent heat flux measured at the EC tower with the SEBAL 
instantaneous heat flux of the EC tower pixel. 
3 The daily soil heat flux does not depend on the selection of the cold and hot pixels; both EC Approaches yield the same values. 
4 No instantaneous soil heat flux measurements were available in the Middle Rio Grande Basin. 
5 The SEBAL instantaneous soil heat flux estimate ( S ) was obtained by calculating the footprint average for the instantaneous soil heat 
flux; the daily soil heat flux ( S ) was obtained as the average SEBAL daily soil heat flux of the 25 pixels around the EC tow
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southwestern U.S. The ground measured instantaneous and daily sensible heat fluxes 

have, respectively, twice and six times a negative value which is an indication of the 

occurrence of local or regional advection. The corresponding SEBAL estimated 

instantaneous and daily sensible heat fluxes on the other hand are close to zero since their 

surface temperature are close to the cold pixel’s temperature. When high quality hourly 

meteorological data are available regional advection can be accounted for in SEBAL by 

defining an advection enhancement parameter that is a function of soil moisture and 

weather conditions (Bastiaanssen et al., 2006) or one could implement METRIC (Allen et 

al., 2007a). However, in this study our aim is to evaluate the performance of SEBAL in 

heterogeneous arid environments using a minimum of weather data. The data in Figure 

4.10 show that ignoring regional advection results in a maximum underestimation of the 

instantaneous and daily latent heat fluxes by, respectively, about 10 and 20 percent under 

moist conditions; it becomes considerably less when the soil dries out. For our data 

analysis we have removed all data related to negative instantaneous and daily sensible 

heat fluxes so that advection effects will not interfere with our analysis. The advection 

scenario will be discussed in a future study. 

 

4.4.4.1. Comparison of instantaneous heat fluxes 

Figures 4.11 and 4.12 present the plots of, respectively, the adjusted sensible and 

latent heat fluxes measured at the EC towers versus the SEBAL estimates resulting from 

scenarios S1 through S5. While there exists a severe mismatch between the SEBAL 

estimated instantaneous sensible heat fluxes and the ground measurements (S1–S3), once 

the SEBAL estimated net radiation is used in the “ground measured” energy balance 
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Figure 4.10 Comparison of sensible (H) and latent heat (LE) fluxes between adjusted 
eddy covariance tower measurements (with negative H data points) and SEBAL estimates 
from scenario S2 (EC_TP). 
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Figure 4.11 Comparison of instantaneous sensible heat flux (H) between adjusted eddy 
covariance tower measurements and SEBAL estimates for scenarios S1–S5. 
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Figure 4.12 Comparison of instantaneous latent heat flux (LE) between adjusted eddy 
covariance tower measurements and SEBAL estimates for scenarios S1–S5. 
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good agreement is reached (S4 and S5). The agreement between SEBAL estimated 

instantaneous latent heat fluxes and the ground measurements is good for all five 

scenarios (S1 – S5). These observations are quantified in Table 4.9 that contains the 

quantitative comparison measures for these scenarios as well as for scenarios AS2 and 

AS4. The prediction of latent heat fluxes is very good for scenarios S1–S5 and 

consistently less than the average 14% instantaneous deviation reported for SEBAL 

applications worldwide (Bastiaanssen et al., 2005), except for AS2 where the MRD for 

LE is -27%. This mismatch will be discussed below. 

 

Table 4.10 compares the differences between the ground measured and SEBAL 

estimated H and LE using the numerical statistics of a two-way ANOVA. However, our 

data do not obey all the assumptions needed for significance testing of the ANOVA 

results. The biggest violation is the fact that the ground measurements and SEBAL 

estimates are not independent. The SEBAL LE estimates in S1, S2, S4, AS2 and AS4 

have been calibrated using ground measurements of the instantaneous latent heat flux 

while the “ground measured” soil heat flux for Middle Rio Grande sites in all scenarios 

(S1 – S5, AS2 and AS4) was estimated using the SEBAL determined soil heat flux due to 

lack of ground measurements (see section [4.4.3]). Nevertheless, we have classes that are 

distinctly different by using a comparison of means at a significance level of p < 0.01. 

This classification is more qualitative than quantitative but gives an appreciation for the 

differences between the “means of the differences between ground measurements and 

SEBAL estimates” (Tables 4.10 and 4.12). In S1 and S2, the ground measured and 

SEBAL estimated sensible and latent heat fluxes are not distinctly different. Thus, 
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Table 4.9 Quantitative measures for comparison of SEBAL derived instantaneous sensible (H) and latent (LE) heat fluxes 
estimates ( S ) versus ground measurements (G ). Scenarios S1–S5 assume that all ground measurements (G ) are correct; 
scenarios AS2 and AS4 assume that the ground measurements of, respectively, S4–S5 and S2–S3 are the correct ones. 

n G 6 S 7 SDG SDS r2 MAD RMSD MRD 
Scenario Selection Anchor 

Pixel Comments  
(-) (W/m2) (W/m2) (W/m2) (W/m2) (-) (W/m2) (W/m2) % 

H 25 262 156 151 105 0.76 108 131 40.4 
S1 EC Approach (FP) 1 - 

LE 25 299 314 174 170 0.90 39 57 -5.0 

H 25 262 138 151 91 0.81 126 147 47.2 
S2 EC Approach (TP) 2 - 

LE 25 299 333 174 162 0.85 56 74 -11.5 

H 25 262 171 151 77 0.64 111 135 35.0 
S3 EM Approach - 

LE 25 299 291 174 143 0.78 66 81 2.7 

             

H 25 209 207 112 114 0.83 36 46 0.8 
S4 EC Approach (TP)3 SEBAL Rn replaces ground Rn

4 
LE 25 262 258 171 170 0.92 39 48 1.7 

H 25 205 171 110 77 0.59 61 77 16.6 
S5 EM Approach SEBAL Rn replaces ground Rn

5 
LE 25 257 291 167 143 0.82 61 77 -13.2 

             

H 25 209 138 112 91 0.74 74 90 33.7 
AS2 EC Approach (TP) 2 SEBAL Rn replaces ground Rn

4 
LE 25 262 333 171 162 0.89 74 91 -26.9 

H 25 262 207 151 114 0.84 70 84 21.1 
AS4 EC Approach (TP)3 - 

LE 25 299 258 174 170 0.87 58 75 13.6 
 

1 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint weighted averaged 
SEBAL flux. 2 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux of 
the tower pixel. 3 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux 
of the tower pixel. In S4 the SEBAL estimated Rn replaces the Rn measured on the ground for adjustment of the latent heat flux using Eq. [4.43]. 4 

Instead of using the Rn measurements made on the ground, the SEBAL derived Rn in Scenario 2 is used for the determination of the ground measured 
energy balance and in adjusting the H and LE from the EC for closure error (using Bowen ratio). 5 Instead of using the Rn measurements made on the 
ground, the SEBAL derived Rn in Scenario 3 is used for the determination of the ground measured energy balance and in adjusting the H and LE from 
the EC for closure error (using Bowen ratio). 6 The heat fluxes have been calculated from the EC measurements using Eqs. [4.43] and [4.44]. Since no 
soil heat flux measurements were available for the Middle Rio Grande Basin, the SEBAL soil heat flux was used to establish the ground measured 
energy balance (see Eq. [4.42]). 7 The SEBAL estimates of the instantaneous H and LE were obtained by calculating the footprint weighted averaged 
SEBAL heat fluxes. 
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Table 4.10 Comparison of means of differences between ground measurements and SEBAL estimates of instantaneous sensible 
(DH) and latent heat (DLE) fluxes. 
 

Means of Differences 
Instantaneous Ground Measurements minus SEBAL Estimates 

ID Scenario Comments Mean DH 
(W/m2) Grouping5 Mean DLE 

(W/m2) Grouping 

S1 EC Approach (FP) 1 - 106 A B     -15  B C  
S2 EC Approach (TP) 2 - 124 A      -34   C  
S3 EM Approach - 92  B C    8  B   

               
S4 EC Approach (TP) 2 SEBAL Rn replaces ground Rn

3 2      F 4  B   
S5 EM Approach SEBAL Rn replaces ground Rn

4 34     E  -34   C  
               

AS2 EC Approach (TP) 2 SEBAL Rn replaces ground Rn
3 70   C D   -71    D 

AS4 EC Approach (TP) 2 - 55    D E  41 A    
 
1 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint 
weighted averaged SEBAL flux. 2 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the 
EC tower and the SEBAL flux of the tower pixel. 3 Instead of using the Rn measurements made on the ground, the SEBAL derived Rn in 
Scenario 2 is used for the determination of the ground measured energy balance. 4 Instead of using the Rn measurements made on the 
ground, the SEBAL derived Rn in Scenario 3 is used for the determination of the ground measured energy balance. 5 Means with different 
letters are distinctly different.
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SEBAL calibrations based on the instantaneous latent heat flux of the tower pixels 

(EC_TP) or on the latent heat flux of the instantaneous foot prints during the satellite’s 

overpass (EC_FP) yield very similar results. This finding is relevant for practitioners who 

need to calibrate SEBAL on a routine basis and/or in nearly real-time: using only the 

tower pixels is much faster and easier to implement automatically than determination of a 

footprint weighted average. It also justifies the omission of S1 from further consideration 

in the other scenarios (S4–S5, AS2 and AS4). However, for posterior SEBAL analyses 

and research applications use of the footprint is still recommended since (1) it results in 

somewhat smaller comparison measures (Tables 4.9 and 4.10) and (2) footprint analyses 

are effective for the detection of unusual environmental conditions. 

 

The ground measured H and LE are identical in S1– S3 but differ slightly from 

each other in S4 and S5. SEBAL estimated net radiation fluxes in S2 and S3 are slightly 

different due to a slight difference in the temperature of the cold pixel that is used in Eq. 

[4.7] as an approximation of the air temperature for estimation of the incoming long wave 

radiation (see Table 4.4). However, a large difference exists between the ground 

measured H and LE in S1–S3 versus those in S4–S5. This is caused by the hypothesized 

large bias in instantaneous net radiation of the ground measurements versus the net 

radiation determined with SEBAL (Table 4.6). The H and LE SEBAL estimates for the 

Empirical approach (S3 and S5) are identical since this approach does not use the EC 

measured instantaneous LE for calibration; one set of cold and hot pixels are used for 

both scenarios in SEBAL. However, in S1, S2 and S4 a different set of cold and hot 

pixels are determined for each scenario by forcing the constants c1 and c2 in Eq. [4.33] to 
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fit the LE measurements at the EC towers. This leads to quite different H and LE SEBAL 

estimates in S1, S2 and S4. 

 

A striking feature in S1–S3 is the very poor prediction of the sensible heat flux 

with MRD’s between 35 and 47 %. Especially, for S1 and S2 that have been calibrated 

against ground measured instantaneous latent heat fluxes, this result had not been 

expected. The discrepancy is not caused by any obvious error in the SEBAL procedure 

but by the hypothesized apparent bias in the ground measurements of the net radiation 

that was reported earlier (see Section [4.4.2]). When the ground measured net radiation is 

replaced with the arguably more accurate SEBAL estimate of net radiation, the SEBAL 

estimates of sensible heat fluxes improve dramatically with MRD’s in S4 and S5 of, 

respectively, 1 and 17 %. Despite the poor MRD’s of H (35 to 47 %) in S1 – S3 the 

SEBAL LE estimates exhibit good MRD’s (3 to -12 %). Therefore, these numbers 

provide an unexpectedly clear demonstration of the power of SEBAL’s internal 

calibration. Through the “anchoring” of H and LE at the cold and hot pixels SEBAL 

reduces or cancels biases introduced in the calculation of albedo, net radiation, and 

surface temperature as well as errors in narrow band emissivity, atmospheric correction, 

satellite sensor, aerodynamic resistance, and soil heat flux function. This may result in a 

reduction of total bias in ET of as much as 30 % compared to other models that are not 

routinely internally calibrated (Allen et al., 2006). Allen et al. (2006, 2007a) describe 

how METRIC, through the use of weather based reference ET, is able to eliminate most 

internal energy balance component biases at both the cold and hot extreme conditions. 

SEBAL, on the other hand, eliminates biases at the hot extreme, but necessarily retains a 
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bias at the cold extreme where it is assumed that LE = Rn – G. The cost for the improved 

estimates for LE is a deterioration of the SEBAL and METRIC H estimates since the 

sensible heat flux, as an intermediate parameter, absorbs most of the aforementioned 

biases as a result of the internal calibration process. As shown in Table 4.10 the mean 

difference in sensible heat fluxes measured on the ground and estimated with SEBAL 

varies from 92 to 124 W/m2 in S1–S3 but reduces dramatically to 2 and 34 W/m2 in S4–

S5 while the mean difference in latent heat fluxes is very similar in S1–S5. Also, while 

the mean differences of the latent heat fluxes are hardly different between S1–S5, the 

mean differences in sensible heat fluxes between these scenarios is distinctly different. 

The mean differences of S1–S3 are much larger and distinctly different from the ones of 

S4–S5. Also, the mean difference of S4 (the EC_TP calibrated implantation of SEBAL) 

is distinctly less than S5 which suggests that calibrating SEBAL with reliable ground 

measurements at the pixel scale will indeed improve its estimates of both, sensible and 

latent heat fluxes. We can reasonably assume that the effect of SEBAL estimated 

instantaneous soil heat fluxes for the ground measured LE can be ignored. Therefore, the 

relatively small MRD’s for LE of 2.7 and -13.% in S3 and S5 are strong evidence that 

SEBAL yields robust estimates of LE similar to those measured with EC systems since 

LE’s in S3 and S5 has been derived independently from the ground measurements. The 

rather small MRD’s for LE of -5, -11.5 and 1.7 % in S1, S2 and S4 are expected since the 

ground measurements have been used to calibrate SEBAL. However, the significance of 

these low MRD’s is that ground measurements can be used successfully for the 

calibration of SEBAL. 

 



 4-80

The data presented in scenarios AS2 and AS4 allow us to evaluate the not 

uncommon scenario AS2 where a practitioner would rely entirely on the (biased) ground 

measurements of S1–S3 to calibrate a SEBAL application. Assuming that the ground 

measurements AS2 are unbiased, the misplaced trust in S1–S3 ground measurements will 

cause quite large MRD’s of 34 % for H and -27 % for LE in AS2 due to the large 

differences between Rn of SEBAL vs. that measured at the ground. Thus, calibration with 

biased ground measurements can do much more harm than good if the ground energy 

balance components are not all unbiased. Of course, the practitioner would have been 

warned about potential problems by the high MRS’s for H found under S1 and S2. Of 

course –since we don’t have unbiased net radiation measurements at the pixel scale on 

the ground– one could make an argument that the ground measured net radiation of S1–

S3 could be unbiased and not fully representative. Then, when a practitioner would use 

the ground measurements of S4 and S5 to calibrate a SEBAL application MRD’s for H 

and LE of, respectively, 21 and 14 % would result. Also differences in MRD of 21 and 

14 % indicate that it is not trivial to have a perfect match between SEBAL LE and ground 

measurement by calibrating dT in EC method as shown in Figure 4.4. In this case (S4 and 

S5), since unbiased ground measurements have been used the SEBAL LE converges to its 

“true” value while H absorbs the bias caused by the mismatch between unbiased and 

biased ground measurements. The data presented under scenarios S3 and S5 indicate that 

the Empirical approach for selection of the cold and hot pixel –if implemented by an 

experienced SEBAL expert– is a powerful tool for detection of severe biases in 

procedures that use ground measurements for calibration of Eq. [4.33] in SEBAL. 
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The data presented in Figures 4.11 and 4.12 and Tables 4.9 and 4.10 lead to three 

important conclusions. The first one is that ground measurements of sensible heat fluxes 

should be used cautiously and carefully for the calibration and validation of SEBAL, 

since the SEBAL sensible heat flux is biased necessarily to compensate for bias in Rn, G 

and aerodynamics, and deviates from the ground measured sensible heat flux (even if the 

ground based H is correct) in order to arrive at unbiased estimates of LE. The second 

conclusion is that SEBAL’s internal calibration procedure is its greatest strength since it 

endeavors to eliminate total bias in LE albeit at the expense of increased bias in H. The 

third conclusion is that the empirical calibration approach implemented by a SEBAL 

expert is a powerful tool for detection of severe biases in the ground measurements. 

 

4.4.4.2. Instantaneous and daily evaporative fraction 

In Figure 4.13 the ground measured daily evaporative fraction (EF24) is plotted 

against the instantaneous evaporative fraction (EFinst). It is clear that the two evaporative 

fractions are not identical: the daily evaporative fraction is larger than the instantaneous 

one. Due to the large variability in the data as well as the fact that both the instantaneous 

and daily evaporative fractions are random variables a straightforward linear regression 

forced through the origin is not recommended. A simple linear regression with a 5% 

significance level yields a small intercept of 0.04 that is not significantly different from 

zero with a slope of 1.19 with a 95 % confidence interval from 0.99 to 1.36. This 

demonstrates that there is about 20 % difference between instant EF and daily EF. While 

recognizing that 1.18 is much closer to 1.1 than to 1.0, we employed two different 

coefficients cEF for the conversion from instantaneous latent heat flux to daily latent heat 
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Figure 4.13 Comparison of satellite overpass instantaneous evaporative fraction (EF) 
with daytime average measured on the ground. 
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flux (see Eqs. [4.35] and [4.36]): 1.0 as assumed in the classical SEBAL application 

(Bastiaanssen et al., 1998) and 1.1 as found by some researchers on the basis of field 

measurements (Anderson et al., 1997). 

 

4.4.4.3. Comparison of daily sensible and latent heat fluxes 

Figures 4.14 – 4.17 present the plots of, respectively, the adjusted sensible and 

latent daily heat fluxes measured at the EC towers versus the SEBAL estimates resulting 

from scenarios S1–S5 assuming cEF equals 1.0 (Figures 4.14 and 4.16) or 1.1 (Figures  

4.15 and 4.17). Visual inspection of these figures reveals that generally there is good 

agreement between the daily ground measurements and the daily SEBAL estimates. 

Exceptions are the sensible daily heat fluxes for S4 and S5 that show SEBAL 

overestimated as well as the latent daily heat flux for S4 where SEBAL underestimated 

the ground measurement. These observations are confirmed by the MRD’s in Table 4.11. 

Before inspecting the quantitative measures in Table 4.11, we examine which means of 

differences between ground measurements and SEBAL estimates are distinctly different 

from each other in Table 4.12. In S1 and S2 –as before with the instantaneous heat 

fluxes– there exists no distinct difference between the means of differences between 

ground measured and SEBAL estimated sensible and latent daily heat fluxes for both 

evaporative fractions. Thus, no distinct difference occurs between SEBAL calibrations 

based on the instantaneous latent heat flux of the tower pixels (EC_TP) or on the latent 

heat flux of the instantaneous foot prints during the satellite’s overpass (EC_FP). This 

finding is relevant for practitioners who need to calibrate SEBAL on a routine basis 

and/or in nearly real-time. Also, there are no major distinct differences between the  
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Figure 4.14 Comparison of daily sensible heat flux (H) between adjusted eddy covariance 
tower measurements and SEBAL estimates. (EF24 = 1.0*EFinst) 
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Figure 4.15 Comparison of daily sensible heat flux (H) between adjusted eddy covariance 
tower measurements and SEBAL estimates. (EF24 = 1.1* EFinst) 
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Figure 4.16 Comparison of daily latent heat flux (LE) between adjusted eddy covariance 
tower measurements and SEBAL estimates. (EF24 = 1.0* EFinst) 
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Figure 4.17 Comparison of daily latent heat flux (LE) between adjusted eddy covariance 
tower measurements and SEBAL estimates. (EF24 = 1.1* EFinst) 
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Table 4.11 Quantitative measures for comparison of SEBAL derived daily sensible (H) and latent (LE) heat fluxes estimates 
( S ) versus ground measurements (G ). Scenarios S1–S5 assume that all ground measurements (G ) are correct; scenarios AS2 
and AS4 assume that the ground measurements of, respectively, S4–S5 and S2–S3 are the correct ones. 
 
EF24 = 1.0×EFinst 
 

n G 6 S 7 SDG SDS r2 MAD RMSD MRD 
Scenario Selection Anchor 

Pixel Comments  
(-) MJ/(m2d) MJ/(m2d) MJ/(m2d) MJ/(m2d) (-) MJ/(m2d) MJ/(m2d) % 

H 24 6.0 7.2 3.7 3.2 0.41 2.3 3.1 -19.4 
S1 EC Approach (FP) 1 - 

LE 24 9.1 8.9 4.4 4.9 0.78 1.7 2.2 2.9 

H 24 6.0 6.9 3.7 3.3 0.32 2.6 3.3 -14.9 
S2 EC Approach (TP) 2 - 

LE 24 9.1 9.1 4.4 5.0 0.72 2.2 2.6 0.0 

H 24 6.0 7.6 3.7 2.7 0.37 2.6 3.3 -27.0 
S3 EM Approach - 

LE 24 9.1 8.3 4.4 4.2 0.69 1.9 2.6 8.9 

             

H 24 6.0 8.7 3.4 3.8 0.40 3.1 4.1 -46.4 
S4 EC Approach (TP)3 SEBAL Rn replaces ground Rn

4 
LE 24 9.5 7.3 4.9 4.9 0.64 2.8 3.7 22.8 

H 24 6.0 7.7 3.4 2.7 0.41 2.4 3.1 -27.9 
S5 EM Approach SEBAL Rn replaces ground Rn

5 
LE 24 9.5 8.3 4.9 4.2 0.70 2.2 2.9 12.1 

             

H 24 6.0 6.9 3.4 3.3 0.34 2.5 3.1 -15.7 
AS2 EC Approach (TP) 2 SEBAL Rn replaces ground Rn

4 
LE 24 9.5 9.1 4.9 5.0 0.66 2.4 3.0 3.5 

H 24 6.0 8.7 3.7 3.8 0.34 3.2 4.3 -45.5 
AS4 EC Approach (TP)3 - 

LE 24 9.1 7.3 4.4 4.9 0.70 2.6 3.2 20.0 
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EF24 = 1.1×EFinst 
 

n G 6 S 7 SDG SDS r2 MAD RMSD MRD 
Scenario Selection Anchor 

Pixel Comments  
(-) MJ/(m2d) MJ/(m2d) MJ/(m2d) MJ/(m2d) (-) MJ/(m2d) MJ/(m2d) % 

H 24 6.0 6.3 3.7 3.5 0.41 2.1 3.0 -5.6 
S1 EC Approach (FP) 1 - 

LE 24 9.1 9.7 4.4 5.3 0.78 1.9 2.5 -6.3 

H 24 6.0 6.0 3.7 3.6 0.32 2.7 3.3 -0.8 
S2 EC Approach (TP) 2 - 

LE 24 9.1 10.0 4.4 5.4 0.71 2.4 3.0 -9.3 

H 24 6.0 6.9 3.7 3.0 0.42 2.3 2.9 -14.8 
S3 EM Approach - 

LE 24 9.1 9.2 4.4 4.6 0.69 2.0 2.5 -0.3 

             

H 24 6.0 8.1 3.4 4.0 0.40 2.8 3.8 -35.2 
S4 EC Approach (TP)3 SEBAL Rn replaces ground Rn

4 
LE 24 9.5 8.0 4.9 5.2 0.64 2.6 3.5 15.6 

H 24 6.0 6.9 3.4 3.0 0.44 2.1 2.8 -15.6 
S5 EM Approach SEBAL Rn replaces ground Rn

5 
LE 24 9.5 9.2 4.9 4.6 0.70 2.1 2.7 3.2 

             

H 24 6.0 6.0 3.4 3.6 0.33 2.6 3.2 -1.5 
AS2 EC Approach (TP) 2 SEBAL Rn replaces ground Rn

4 
LE 24 9.5 10.0 4.9 5.4 0.66 2.6 3.2 -5.5 

H 24 6.0 8.1 3.7 4.0 0.35 3.0 4.0 -34.2 
AS4 EC Approach (TP)3 - 

LE 24 9.1 8.0 4.4 5.2 0.71 2.4 3.0 12.6 
 

1 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint 
weighted averaged SEBAL flux. 2 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the 
EC tower and the SEBAL flux of the tower pixel. 3 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass 
measured at the EC tower and the SEBAL flux of the tower pixel. In S4 the SEBAL estimated Rn replaces the Rn measured on the ground 
for adjustment of the latent heat flux using Eq. [4.43]. 4 Instead of using the Rn measurements made on the ground, the SEBAL derived Rn 
in Scenario 2 is used for the determination of the ground measured energy balance. 5 Instead of using the Rn measurements made on the 
ground, the SEBAL derived Rn in Scenario 3 is used for the determination of the ground measured energy balance. 6 The heat fluxes have 
been calculated from the EC measurements using Eqs. [4.43] and [4.44]. Since no soil heat flux measurements were available for the 
Middle Rio Grande Basin, the SEBAL soil heat flux was used to establish the ground measured energy balance (see Eq. [4.42]). 
7 The SEBAL estimates of the instantaneous H and LE were obtained by calculating the footprint weighted averaged SEBAL heat fluxes. 
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Table 4.12 Comparison of means of differences between ground measurements and SEBAL estimates of daily sensible (DH) 
and latent heat (DLE) fluxes. 
 
EF24 = 1.0×EFinst 
 

Means of Differences 
Daily Ground Measurements minus SEBAL Estimates 

ID Scenario Comments 
Mean DH 
MJ/(m2 d) Grouping5 Mean DLE 

MJ/(m2 d) Grouping 

S1 EC Approach (FP) 1 - -1.16 A      0.27   C D 
S2 EC Approach (TP) 2 - -0.90 A      0.00    D 
S3 EM Approach - -1.62 A      0.81   C D 

               
S4 EC Approach (TP) 2 SEBAL Rn replaces ground Rn

3 -2.77  B     2.15 A    
S5 EM Approach SEBAL Rn replaces ground Rn

4 -1.66 A      1.15  B C  
               

AS2 EC Approach (TP) 2 SEBAL Rn replaces ground Rn
3 -0.94 A      0.33   C D 

AS4 EC Approach (TP) 2 - -2.73  B     1.82 A B   
 



 4-91

 
 
 
EF24 = 1.1×EFinst 
 

Means of Differences 
Instantaneous Ground Measurements minus SEBAL Estimates 

ID Scenario Comments 
Mean DH 
MJ/(m2 d) Grouping5 Mean DLE 

MJ/(m2 d) Grouping 

S1 EC Approach (FP) 1 - -0.33 A      -0.57   C D 
S2 EC Approach (TP) 2 - -0.05 A      -0.85    D 
S3 EM Approach - -0.89 A      -0.03   C D 

               
S4 EC Approach (TP) 2 SEBAL Rn replaces ground Rn 3 -2.10  B     1.48 A    
S5 EM Approach SEBAL Rn replaces ground Rn 4 -0.93 A      0.30  B C  

               
AS2 EC Approach (TP) 2 SEBAL Rn replaces ground Rn 3 -0.09 A      -0.52   C D 
AS4 EC Approach (TP) 2 - -2.05  B     1.15 A B   

 
1 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint 
weighted averaged SEBAL flux. 2 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the 
EC tower and the SEBAL flux of the tower pixel. 3 Instead of using the Rn measurements made on the ground, the SEBAL derived Rn in 
Scenario 2 is used for the determination of the ground measured energy balance. 4 Instead of using the Rn measurements made on the 
ground, the SEBAL derived Rn in Scenario 3 is used for the determination of the ground measured energy balance. 5 Means with different 
letters are distinctly different.
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means of differences between ground measured and SEBAL estimated latent daily heat 

fluxes of S1, S2, S3, and S5 but the mean of differences of S4 is distinctly different from 

those in S1, S2, S3, and S5 for both evaporative fractions. The same pattern is observed 

for the sensible daily heat fluxes for both evaporative fractions. Thus, the relative ranking 

of the means and the location of distinct differences is identical for cEF of 1.0 and 1.1. 

 

We conducted a two-way ANOVA for detection of distinct differences between 

the means of the differences of the same scenario under cEF of 1.0 and 1.1. None of the 

means of differences between ground measurements and SEBAL estimates of daily 

sensible and latent heat fluxes turned out to be distinctly different when using cEF of 1.0 

or 1.1. For example, the MRD of H in S1 under cEF of 1.0 is -19.4% which is not 

distinctly different of -5.5% found under cEF of 1.1. Therefore, we cannot determine with 

certainty which of the cEF’s yields more accurate estimates of H and LE. Inspection of 

Table 4.11 suggests that the use of 1.1 yields better overall values for both sensible and 

latent heat fluxes. Our conclusion is that the use of 1.1 in our study (non-advective 

conditions during months April to September) is preferred given the regression analysis 

conducted in section [4.4.4.2], data reported in the literature, and the MRD’s in Table 

4.11 but a conclusive determination cannot be made on the basis of our data. 

 

In addition, Table 4.11 reveals that SEBAL also tends to absorb biases in the daily 

sensible heat flux in order to yield the best possible estimate of the daily latent heat flux. 

For cEF of 1.0, the MRD’s for sensible daily heat flux vary from -46 to -15 % while those 

for latent heat flux vary from 0 to 20%; for cEF of 1.1, the respective numbers are -35 to -
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1% and -9 to 16%. These numbers indicate that using the daily sensible heat flux for 

calibration of SEBAL applications has a high risk of introducing severe bias. Therefore, 

on the basis of this study we conclude that only reliable measurements of the latent heat 

flux, either instantaneous or daily, should be used to calibrate SEBAL. 

 

A comparison between ground measurements and SEBAL estimates of daily 

evapotranspiration is made in Figure 4.18 where the unadjusted EC measurements of ET 

are compared with SEBAL estimates of ET with cEF of 1.1. For scenarios S1 (EC_FP), 

S2 (EC_TP), and S3 (EC_EM) the slopes between unadjusted ET measured at the EC 

tower and the SEBAL estimates are, respectively, 1.30, 1.32, and 1.08 which averages to 

1.23. Thus, SEBAL ET estimates are about 21% higher than the unadjusted ET 

measurements at the EC towers. This discrepancy is expected since it has been reported 

in the literature that the systematic underestimation of heat fluxes by the eddy covariance 

method can be as high as 10 to 30 % (Paw et al., 2004; Twine et al., 2000). Given the 

inherent uncertainties of the SEBAL approach and the eddy covariance method the 

agreement between the two methods is surprisingly good. Especially, considering that we 

compare sensible and latent heat fluxes measured in heterogeneous arid riparian areas. 

Therefore, this study confirms other recent studies (Allen et al., 2007b; Bastiaanssen et 

al., 2005) that SEBAL is a powerful tool for high resolution mapping of 

evapotranspiration. 
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Figure 4.18 Comparison of ET rates determined from SEBAL with cEF of 1.1 to eddy 
covariance ground measurements in riparian areas of the Rio Grande Valley (NM), San 
Pedro Valley (AZ), and Owens Valley (CA). 
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4.5. CONCLUSIONS 

 

In this paper we report the results of a study to compare sensible and latent heat 

fluxes of riparian and desert systems measured on the ground with the eddy covariance 

method and those based on SEBAL using only Landsat satellite images with few to no 

ground measurements. The comparison of these heat fluxes in arid heterogeneous riparian 

areas in the southwestern United States clearly demonstrates that SEBAL can be applied  

for mapping sensible and latent heat fluxes at high spatial resolutions.  

 

Analyses indicate that when ground based eddy covariance data were used to 

calibrate SEBAL, no distinct difference occurred between SEBAL calibrations based on 

the instantaneous latent heat flux of the tower pixel itself or on the latent heat flux of the 

instantaneous foot print during the satellite overpass. This finding is relevant for 

practitioners who need to calibrate SEBAL on a routine basis since using only the tower 

pixel is quicker and easier to implement automatically than determination of a footprint 

weighted average flux. However, for research applications use of the footprint is still 

recommended since it results in slightly smaller comparison differences (Tables 4.9 and 

4.11).  

 

An analysis of differences in instantaneous Rn during late morning (Landsat 

overpass time) between vegetation and exposed soil emphasizes the large impact of soil 

in the Rn view, and the importance of proper vegetative mixture viewed by the Rn sensor.  

We hypothesize that tower Rn is generally biased toward vegetation, resulting in higher 
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Rn values. Instantaneous Rn from SEBAL, representing a larger area for heterogeneous 

vegetation, gives lower Rn values. When these are used to close the eddy covariance 

energy balance, LE and H from SEBAL and LE and H from the ground based EC are 

much more similar. 

 

An important conclusion of the comparisons between various calibration 

strategies for SEBAL is that ground measurements of sensible heat fluxes should be used 

with caution for the calibration and validation of SEBAL, since the SEBAL sensible heat 

flux is intentionally biased during calibration (to produce an unbiased LE) and will 

deviate from the ground measured sensible heat flux in order to arrive at unbiased 

estimates of LE. 

 

The true strength and the effectiveness of the internal calibration procedure for 

SEBAL LE estimation is demonstrated where despite a poor quality ground measured 

energy balance, SEBAL LE estimates tend to converge to the ground measured LE (after 

correction of EC for closure error). The comparison measures in S1–S5 are strong 

evidence that the great strength of the SEBAL method is its internal calibration procedure 

that eliminates most of the total bias in LE at the expense of increased bias in H. We 

conclude that the empirical approach implemented by a SEBAL expert is a powerful tool 

for detection of severe biases in the ground measurements. 
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The use of a multiplier on the instantaneous evaporative fraction of 1.1 to convert 

the instantaneous ET to daily ET is preferred for the non-advective conditions during the 

months April to September that were covered during this study. 
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CHAPTER 5 

 

UP-SCALING OF SEBAL DERIVED EVAPOTRANSPIRATION 

MAPS FROM LANDSAT (30m) TO MODIS (250m) SCALE 

 

 

ABSTRACT 

 

Remotely sensed imagery of the Earth’s surface via satellite sensors provides 

information to estimate the spatial distribution of evapotranspiration. The spatial 

resolution of evapotranspiration predictions depends on the sensor type and varies from 

the 30 – 60 m Landsat scale to the 250 – 1000 m MODIS scale. Therefore, for an 

accurate characterization of the regional distribution of evapotranspiration, scaling 

transfer between images of different resolutions is important. Scaling transfer includes 

both up-scaling (aggregation) and down-scaling (disaggregation). In this paper, we 

address the up-scaling problem.  
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The Surface Energy Balance Algorithm for Land (SEBAL) was used to derive 

evapotranspiration maps from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Moderate Resolution Imaging Spectroradiometer (MODIS) images. Landsat 7 bands have 

spatial resolutions of 30 to 60 m, while MODIS bands have resolutions of 250, 500 and 

1000 m. Evaluations were conducted for both “output” and “input” up-scaling procedures, 

with aggregation accomplished by both simple averaging and nearest neighboring 

resampling techniques. Output up-scaling consisted of first applying SEBAL and then 

aggregating the output variable (daily evapotranspiration). Input up-scaling consisted of 

aggregating 30 m Landsat pixels of the input variable (radiance) to obtain pixels at 60, 

120, 250, 500 and 1000 m before SEBAL was applied. The objectives of this study were 

first to test the consistency of SEBAL algorithm for Landsat and MODIS satellite images 

and second to investigate the effect of the four different up-scaling processes on the 

spatial distribution of evapotranspiration.  

 

We conclude that good agreement exists between SEBAL estimated ET maps 

directly derived from Landsat 7 and MODIS images. Among the four up-scaling methods 

compared, the output simple averaging method produced aggregated data and aggregated 

differences with the most statistically and spatially predictable behavior. The input 

nearest neighbor method was the least predictable but was still acceptable. Overall, the 

daily evapotranspiration maps over the Middle Rio Grande Basin aggregated from 

Landsat images were in good agreement with evapotranspiration maps directly derived 

from MODIS images.  
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5.1. INTRODUCTION 

 

Remote sensing data from satellite-based sensors have the potential to provide 

detailed information on land surface properties and parameters at local to regional scales. 

Perhaps one of the most important land surface parameters that can be derived from 

remote sensing is actual evapotranspiration (ET). The spatio-temporal distribution of ET 

is needed for sustainable management of water resources as well as for a better 

understanding of water exchange processes between the land surface and the atmosphere. 

However, ground measurements of ET over a range of space and time scales are very 

difficult to obtain due to the time and cost involved. Remotely sensed imagery with 

numerous spatial and temporal resolutions is therefore an ideal solution for determination 

of the spatio-temporal distribution of ET. 

 

Today, large amounts of remotely sensed data with variable spatial, temporal, and 

spectral resolutions are available. A number of studies have attempted to estimate ET 

from different satellite sensors, including the Land remote sensing satellite Enhanced 

Thematic Mapper Plus (Landsat ETM+) (Bastiaanssen et al., 2005; Hendrickx and Hong, 

2005; Allen et al., 2007), the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) (French et al., 2002), the Advanced Very High Resolution 

Radiometer (AVHRR) (Seguin et al., 1991), the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Nishida et al., 2003; Hong et al., 2005) and the 

Geostationary Orbiting Environmental Satellite (GOES) (Mecikalski et al., 1999). 
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We employ the Surface Energy Balance Algorithm for Land (SEBAL) that is one 

of several remote sensing algorithms used to extract information from raw satellite data. 

It estimates various land surface parameters, including surface albedo, normalized 

difference vegetation index (NDVI), surface temperature, and energy balance parameters 

from the remotely sensed radiance values obtained from satellite sensors. Since satellite 

sensors have different spatial, spectral and radiometric resolutions, the consistency of ET 

estimates from different satellites by SEBAL needs to be certified. We have successfully 

used SEBAL for ET mapping in New Mexico, Arizona, and California (Hendrickx and 

Hong, 2005), the Panama Canal watershed (Hendrickx et al., 2005), and the Volta Basin 

in West Africa (Hendrickx et al., 2006; Compaore et al., 2008). We have validated our 

implementation of SEBAL by comparing its results with eddy covariance ground 

measurements of ET in riparian areas of the southwestern USA (Hendrickx and Hong, 

2005). 

 

The validation of products of remote sensing algorithms is dependent upon the 

spatial resolution (Liang, 2004). Fine resolution products (< 100 m) such as Landsat can 

be validated with ground measurements. However, validating coarse resolution products, 

such as MODIS (1000 m in thermal band), using ground measurements is very difficult 

because of the scale disparity between ground “point” measurements and the coarse 

spatial resolution imagery. Therefore, for validation of MODIS products, the products of 

high resolution remotely sensed imagery such as Landsat 7 (30 to 60 m resolution) need 

to be first validated with ground point measurements. MODIS products can then be 

compared against up-scaled (aggregated) Landsat product.  
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Many studies regarding the effect of up-scaling data sets have been reported 

(Nellis and Briggs, 1989; Turner et al., 1989; Lam and Quattrochi, 1992; Stoms, 1992; 

Brown et al., 1993; Vieux, 1993; De Cola, 1994; Mark and Aronson, 1994; Wolock and 

Price, 1994; Zhang and Montgomery, 1994; Bian et al., 1999). During an aggregation 

process, the raster spatial data are reduced to a smaller number of data pixels covering the 

same spatial extent. It is generally recognized that data aggregation modifies the 

statistical and spatial characteristics of the data (Bian et al., 1999). Since the total number 

of pixels is reduced, the variance and frequency distribution of the sampled data may 

deviate from the original data set and tends to reduce spatial autocorrelation at coarser 

resolutions (Bian, 1997). Some studies have pointed out that data accuracy is enhanced 

significantly by reduction of spatial resolution (Townshend et al., 1992; Dai and Khorram, 

1998; Van Rompaey et al., 1999; Carmel, 2004). Several studies have also argued that 

aggregation to a coarser resolution reveals certain spatial patterns which are not shown 

until the data are presented at a coarser scale (Zhang and Montgomery, 1994; Seyfried 

and Wilcox, 1995). On the other hand, the decrease in spatial resolution possibly results 

in a loss of information that may be valuable for particular applications (Carmel et al., 

2001). 

 

The methodology for aggregating simple rectangular grid data is well developed 

(Bian, 1997; Bian et al., 1999; Mengelkamp et al., 2006). In this study, the simple 

averaging and nearest neighbor resampling methods were selected for the data 

aggregation scheme, since these methods have been the most popular and convenient to 



 5-6

use (Atkinson, 1985; Liang, 2004). The simple averaging method calculates the average 

value over an area of interest to produce a new coarser resolution data set. Nearest 

neighbor sampling produces a subset of the original data; the extremes and subtleties of 

the data values are therefore preserved. 

 

For the up-scaling scheme, numerous studies have used the assumption that 

surface fluxes can be expressed as direct area averages of the surface fluxes 

(Shuttleworth, 1991; Lhomme, 1992; Li and Avissar, 1994). Liang (2000) simply 

averaged the remotely sensed reflectance values from 30 m to 1 km and explored the 

aggregation effect. He concluded that the spectral reflectance was basically linear from 

30 m resolution to 1000 m resolution. More recently, Mengelkamp et al (2006) 

mentioned that area averaged small scale ET calculated from local measurements was in 

good agreement with the area represented regional values. Nevertheless, few papers have 

examined the effect of different up-scaling schemes on the relative accuracy of the 

aggregated data despite its practical importance. A spatial resolution gap exists between 

the data requirements of regional-scale models and the output data from remote sensing 

energy balance algorithms such as SEBAL. For example, general global circulation 

models or regional weather prediction models need input data with a spatial resolution of 

hundreds of kilometers which is much larger than the spatial resolution of most satellite 

sensors (Liang, 2004). Therefore, an up-scaling (data aggregation) procedure is needed to 

fill the scale gap between satellite measurements and input requirements for large scale 

models. Increasing spatial resolution by data aggregation has shown the potential to 
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generate observed or modeled surface flux estimates over a range of different spatial 

resolutions (Gupta et al., 1986; Lhomme, 1992; Ebleringer and Field, 1993). 

 

In this study, high quality scenes of two different dates of Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) imagery were selected and SEBAL was applied to estimate daily ET. Landsat 

scale pixels (30 m) were aggregated to larger scale (60, 120, 250, 500 and 1000 m). The 

objectives of this study were first to test the consistency of the SEBAL algorithm for 

Landsat 7 and MODIS images, and second to investigate the effects of four different up-

scaling processes on the spatial distribution of ET, especially how the relative accuracy of 

ET changes with different up-scaling processes. 

 

 

5.2. METHOD AND MATERIALS 

 

5.2.1. Study Area and Satellite Imagery 

Landsat 7 and MODIS images on two different dates during the growing season 

(September 14, 2000 and June 16, 2002) (Figures 5.1 and 5.2) were used to examine the 

effect of aggregation processes. Four satellite images used in this study were 

georeferenced to match the spatial coordinates as closely as possible. This was done by 

identifying the several accurate Ground Control Points (e.g. road intersections and 

agricultural field boundaries) on the images and aligning them to fit on between images. 

The image used in this study is the subset of the Middle Rio Grande Basin that  
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    Landsat7
(Temporal resolution: 16 days; Spatial resolution: 30, 60m)

MODIS
(Temporal resolution: daily; Spatial resolution: 250, 500, 1000m)

 
 

 
 
 
 
 
Figure 5.1. Landsat and MODIS satellite imagery on June 16, 2002 
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Figure 5.2. Location of the study area (18km by 90km). True color Landsat 7 (30 m by 30 
m resolution) and MODIS (250 m by 250 m resolution) images on June 16, 2002. 
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covers an area of 18 by 90km. The Middle Rio Grande setting is mainly composed of 

agricultural fields, riparian forests and surrounding desert areas (Figures 5.3 and 5.4).  

 

5.2.2. Surface Energy Balance Algorithm for Land (SEBAL)  

SEBAL is a physically based analytical image processing method that evaluates 

the components of the energy balance and determines the ET rate as the residual. SEBAL 

is based on the computation of energy balance parameters from multi spectral satellite 

data (Bastiaanssen et al., 1998; Morse et al., 2000; Allen et al., 2007). To implement 

SEBAL, images are needed with information on reflectance in the visible, near-infrared 

and mid-infrared bands, as well as emission in the thermal infrared band. To account for 

the influence of topographical variations on the energy balance components, a digital 

elevation model (DEM) with the same spatial resolution as the satellite imagery is also 

required. The slope and aspect were calculated from DEM using models provided in 

ERDAS IMAGINE software (ERDAS, 2002). 

 

The energy balance equation is 

 

                                     λETHGRn =−−      [5.1] 

 

where Rn is the net incoming radiation flux density [Wm-2], G is the ground heat flux 

density [Wm-2], H is the sensible heat flux density [Wm-2], λET is the latent heat flux 

density [Wm-2], and parameter λ is the latent heat of vaporization of water [Jkg-1]. 
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Figure 5.3. Landsat 7 images on June 16, 2002 and September 14, 2000. [Band 3: visible 
band (30 m by 30 m resolution), Band 6: thermal infrared band (60 m by 60 m 
resolution)]. Enlarged areas (6 by 9 km) shown at the bottom correspond to the dotted 
square of the upper images.
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Figure 5.4. MODIS images on June 16, 2002 and September 14, 2000. [Band 1: visible 
band (250 m by 250 m resolution), Band 31: thermal infrared band (1000 m by 1000 m 
resolution)]. Enlarged areas (6 by 9 km) shown at the bottom correspond to the dotted 
square of the upper images. 
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The net radiation (Rn) was computed for each pixel from the radiation balance 

using surface albedo obtained from short-wave radiation and using emissivity estimated 

from the long-wave radiation (Allen et al., 1998; Bastiaanssen et al., 1998; Morse et al., 

2000). Soil heat flux (G) was estimated from net radiation together with other parameters 

such as normalized difference vegetation index (NDVI), surface temperature and surface 

albedo (Clothier et al., 1986; Choudhury et al., 1987; Daughtry et al., 1990; Bastiaanssen, 

2000). Sensible heat flux (H) was calculated from wind speed, estimated surface 

roughness for momentum transport, and air temperature differences between two heights 

(0.1 and 2 m) using an iterative process based on the Monin-Obukhov similarity theory 

(Brutsaert, 1982; Morse et al., 2000; Tasumi, 2003). 

 

The spatial resolutions of the Landsat 7 bands are 30 and 60 m, compared with 

250, 500 and 1000m for the MODIS bands (Table 5.1). Besides the difference in the 

spatial resolution between Landsat 7 and MODIS, a difference in radiance measurements 

between the two sensors is expected as a result of slightly different band widths for each 

sensor. Table 5.1 also shows the spectral bands of Landsat 7 and MODIS in the visible, 

near infrared and thermal infrared wavelength regions used for SEBAL application. 

MODIS bands 1, 2, 3, 4, 6 and 7 are compatible with Landsat 7 bands 3, 4, 1, 2, 5 and 7, 

respectively. The band widths of MODIS in the visible and near infrared, with the 

exception of Band 3, are narrower than those of Landsat. This results in different 

responses from the surface, which in turn may alter the computed surface albedo and 

vegetation index. 
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Table 5.1. Band spatial resolutions (m) and wavelengths (μm) of Landsat 7 and MODIS 
sensors. 
 

 
Band number 

Sensors  
 

1 
 

2 
 

3 
 

4 
 

5# 
 

6 
 

7 
 

31 
 

32 

Pixel size 
[m] 

 
30 

 
30 

 
30 

 
30 

 
30 

 
60 

 
30 

 
NA* 

 
NA* 

 
Landsat 7 

Band width 
[μm] 

 
0.45 

– 
0.51 

 
0.52 

– 
0.60 

 
0.63 

– 
0.69 

 
0.75 

– 
0.9 

 
1.55 

– 
1.75 

 
10.4 

– 
12.5 

 
2.09 

– 
2.35 

 
NA* 

 
NA 

Pixel size 
[m] 

 
250 

 
250 

 
500 

 
500 

 
500 

 
500 

 
500 

 
1000 

 
1000 

 
MODIS 

Band width 
[μm] 

 
0.62 

– 
0.67 

 
0.84 

– 
0.87 

 
0.46 

– 
0.48 

 
0.54 

– 
0.56 

 
1.23 

– 
1.25 

 
1.63 

– 
1.65 

 
2.11 

– 
2.15 

 
10.8 

– 
11.3 

 
11.8 

– 
12.3 

 
#MODIS band5 is not used in this study because of streaking noise,  
*Not available 
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5.2.2.1. Brightness temperature  

The major difference in the ET derivation from Landsat and MODIS images was 

in the surface temperature calculations. SEBAL used one thermal band for surface 

temperature estimation for Landsat 7 data while two thermal bands were used with 

MODIS data. The temperature detected by a thermal sensor is called the brightness 

temperature. Radiance data from Landsat 7 and MODIS thermal infrared bands were first 

converted to brightness temperatures with an inversion of Planck’s equation: 

⎟⎟
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⎞
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⎝

⎛
+

=
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L
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k
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Tb      [5.2] 

where Tb is the brightness temperature in Kelvin [K], c is the speed of light (2.998 x 108) 

[ms-1], h is the Planck's Constant (6.626 x 10-34) [Js], k is the Boltzmann constant (1.3807 

x 10-23) [JK-1], Lλ is the spectral radiance [Wm-2μm-1sr-1], λ is the band effective center 

wavelength [μm] and K1 and K2 are calibration coefficients [Wm-2sr-1μm-1] (Table 5.2). 

 

5.2.2.2. Surface temperature 

For Landsat images the surface temperature (Ts) is estimated using Tb and ε0 with 

the following empirical relationship (Tasumi et al., 2000). Several studies reported 

similar relationship between Ts and ε0 (e.g. Price, 1984; e.g. Moran et al., 1989). 

 

25.0
0ε

b
s

TT =                    [5.3] 

where 
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Table 5.2. Constants K1 and K2 [Wm-2ster-1μm-1] for Landsat 7 ETM+ (NASA, 2002) and 
MODIS (http://modis.gsfc.nasa.gov/). 
 

 K1 K2 

Landsat 7 666.09 1282.71 

MODIS (band 31) 730.01 1305.84 

MODIS (band 32) 474.99 1198.29 
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ε0 = 1.009 + 0.47 ln(NDVI).      [5.4] 

 

For MODIS images the split window technique is used. Split window algorithms 

take advantage of the differential absorption in two close infrared bands to account for 

the effects of absorption by atmospheric gases. Several split window algorithms are 

currently available to derive surface temperature from brightness temperature when 

multiple thermal bands are available. In this study the algorithm developed by Ulivieri et 

al. (1992) was applied. Vazquez et al. (1997) validated the algorithm at the area of natural 

grassland with patches of bare soil covering various seasons and a wide range of Ts and 

the algorithm present a great level of accordance with ground data (Ulivieri et al., 1992; 

Vazquez et al., 1997). 

 

εε Δ−−+−+= 75)1(48)(8.1 323131 TTTTs     [5.5] 

 

where T31 is the brightness temperature obtained from band31 [K], T32 is the brightness 

temperature obtained from band 32 [K], ε = (ε31+ ε32)/2, Δε = ε31 –ε32, ε31 is the surface 

emissivity in band 31 and ε32 is the surface emissivity in band 32. 

 

Cihlar et al. (1997) developed an algorithm to calculate the surface emissivity 

from NDVI. 

(NDVI)..εεΔε ln0134400101903231 +=−=                   [5.6] 

where     
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)ln(029.09897.031 NDVI+=ε .    [5.7] 

5.2.2.3. Daily evapotranspiration 

In SEBAL, daily ET was interpolated by assuming the instantaneous evaporative 

fraction (EF) when the satellite was passing over is approximately equal to the daily 

mean value (Shuttleworth et al., 1989; Brutsaert and Sugita, 1992; Crago, 1996; Farah et 

al., 2004; Gentine et al., 2007). The soil heat flux is assumed to be zero on a daily basis 

(Kustas et al., 1993). Based on the known value of the instantaneous EF, the daily-

averaged net radiation flux, and the soil heat flux over a daily period, daily ET (ET24) can 

be computed by (Bastiaanssen et al., 1998):  

 

w

n GREF
ET

ρλ ⋅
−⋅⋅

=
)(86400 2424

24     [5.8] 

  

where ( )HEEEF += λλ , 86400 is a constant for time scale conversion, ET24 is daily 

ET [mmd-1], Rn24 is daily-averaged net radiation [Wm-2], G24 is daily-averaged soil heat 

flux [Wm-2], EF is the evaporative fraction and ρw is the density of water [kgm-3]. 

 

5.2.3. Up-scaling (Aggregation) Process 

In the up-scaling process, two different procedures were evaluated. The first 

consisted of applying SEBAL first and then aggregating the output variable (daily ET). 

The second consisted of aggregating Landsat pixels of input variable (radiance) to obtain 

pixels at the MODIS scale before SEBAL was applied (Figure 5.5). If the model is 

insensitive to an input parameter, aggregating the value with increasing scale will have  
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Figure 5.5. Schematic of up-scaling schemes applied in this study. (Upscaling1: output 
up-scaling with simple averaging, Upscaling2: output up-scaling with nearest neighbor, 
Upscaling3: input up-scaling with simple-averaging and Upscaling4: input-up-scaling 
with nearest neighbor). 
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little influence on model predictions. However, when the model does not operate linearly, 

the change in data aggregation could increase or decrease model predictions (Quattrochi 

and Goodchild, 1997; French, 2001; Liang, 2004). 

 

Aggregation imagery was obtained by simple averaging and by nearest neighbor 

selection, and done with ERDAS IMAGINE (Leica Geosystems LLC). The simple 

averaging resampling method calculated the arithmetic mean over an n by n window. 

Since a pixel value of satellite imagery is considered to be the integrated value over the 

corresponding area on the ground, simple averaging is considered appropriate for 

aggregating remotely sensed images. The simple averaging method smoothes the original 

data values and therefore produces a “tighter” histogram than the original data set. 

Furthermore, aggregating a data set by simple averaging generally decreases the variance 

and also increases the spatial autocorrelation (Anselin and Getis, 1993). 

The nearest neighbor approach uses the value of the input pixel closest to the 

center of the output pixel. To determine the nearest neighbor, the algorithm uses the 

inverse of the transformation matrix to calculate the image file coordinates of the desired 

geographic coordinate. The pixel value occupying the closest image file coordinate to the 

estimated coordinate will be used for the output pixel value in the georeferenced image. 

Unlike simple averaging, nearest neighbor is appropriate for thematic files having data 

file values based on a qualitative system. One advantage of the nearest neighbor method 

is that, unlike the simple averaging resampling method, its output values are original 

input values. The other advantage is that it is easy to compute and therefore fastest to use. 

However, the disadvantage is that nearest neighbor generates a choppy, "stair-stepped" 
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effect. The image tends to have a rough appearance relative to the original data (Cover 

and Hart, 1967; Atkinson, 1985; Dodgson, 1997; Bian et al., 1999). 

The aggregation was operated at six levels: 30, 60, 120, 250, 500 and 1000 m 

pixel sizes. At each level, Landsat scale 30 by 30 m pixels were broken into 10 by 10 m 

pixels with the same pixel values; the data were then aggregated directly from the 10 m 

resolution instead of from a previous aggregation. This procedure made it easier to 

aggregate from the Landsat 30 m pixel size to MODIS 250, 500 and 1000 m pixel sizes. 

 

 

5.3. RESULTS AND DISCUSSION 

 

5.3.1. SEBAL Consistency between Landsat and MODIS 

The SEBAL algorithm was applied to both Landsat 7 and MODIS images 

acquired on September 14, 2000 and June 16, 2002 and estimated their daily ET rates. In 

order to check the consistency of SEBAL performance for the different satellite sensors, 

SEBAL estimated ET from Landsat and MODIS images were compared each other. 

Spatial distribution of ET maps for visual verification and histograms and basic statistics 

for quantitative examination were selected. Two approaches were used to inspect the ET 

estimation difference between two different satellite sensors: one is a difference image 

(pixel-by-pixel difference between Landsat and MODIS estimates), while the other was a 

relative difference image (absolute value of the pixel difference was divided by the 

MODIS derived pixel value). Basic statistics of the difference and relative difference 
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images were also computed to quantify the discrepancy between Landsat and MODIS 

estimates. 

 

5.3.1.1. Comparison between Landsat (30m) and MODIS (250m) estimated ET 

Figure 5.6 shows that the June image taken during the summer has significantly 

higher ET rates than the September image taken in the early fall. All of the ET images 

clearly  show high ET rates in the irrigated fields and riparian areas along the Rio Grande 

Valley, while low ET rates are shown in the surrounding desert areas and bare soils. The 

city of Albuquerque has a somewhat higher ET rate than surrounding desert areas due to 

urban and residential vegetations. 

 

The disparate spatial resolutions of Landsat- and MODIS-based ET images result 

in some differences in ET distribution, as may be expected. Many small areas (length 

scale on the order of 10 to 100 m) with high ET rates along the river are captured well in 

the Landsat-based ET map with a spatial resolution of 30 m. These peak ET rates are 

averaged out, however, on the MODIS derived ET map with a spatial resolution of 250 m. 

Figure 5.6 shows that MODIS derived ET distributions have a tighter and taller histogram 

and fewer pixels have close to zero (0.0 to 0.5) ET than the histogram from Landsat 

imagery. In the table of basic statistics in Figure 5.6, the ET map derived from the 

Landsat 7 image shows a higher maximum and standard deviation than the one derived 

from the MODIS images. However, the mean values of Landsat- and MODIS-based ET 

images are very similar. The minimum value of ET in each image equals to zero. 
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Min 0.00 0.00  0.00 0.00 
Max 15.19 7.37  7.51 5.16 
Mean 1.81 1.86  1.10 0.90 
Std 2.46 2.07  1.78 1.39 
 

        
 
Figure 5.6. Landsat (30 m) and MODIS (250 m) derived ET by SEBAL of June and 
September. Bin size of the histogram is 0.5 mm/d and frequency occurrence exceeding 
20% marked next to the arrow. The histograms and basic statistics are based on the entire 
maps (18 km x 90 km). Enlarged areas (9 by 6 km) shown at the bottom correspond to 
the dotted square of the upper images. 
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Difference images between the Landsat-based ET at 30m resolution and MODIS-based 

ET at 250m resolution show how these products are dissimilar to each other (Figure 5.7). 

Each difference image was produced by subtracting MODIS-based ET from Landsat-  

based ET [ETLandsat – ETMODIS], with brown-colored pixels in the difference map in Figure 

5.7 representing points where the MODIS-based ET is significantly higher than Landsat-

based ET. Blue-colored pixels represent points where the ET from Landsat is 

significantly higher than the ET from MODIS imagery. Areas with apparently high ET 

differences (> +2.0 or < -2.0 mm/d) shown as brown or blue, are observed along the  

boundary between Rio Grande River riparian areas and surrounding deserts. These high 

differences are mostly due to (1) disagreement in image georeferencing between the 

Landsat and MODIS imagery and (2) differences resulting from subtracting the ET value 

of a large (250m) MODIS based pixel from that of a small (30m) Landsat based pixel.  

 

It is not trivial to generate georeferenced imagery with error of less than one pixel 

(Eugenio and Marqués, 2003). The georeferencing of two maps with spatial resolutions 

differing an order of magnitude is especially difficult (Liang et al., 2002). One or two 

pixels of georeferencing disagreement can cause abrupt ET changes at the boundaries 

between riparian (high ET) and desert (low ET) areas. The effect of different pixel sizes 

is clearly demonstrated with the brown and blue pixels located along the sudden 

transition from riparian area to desert. The brown-colored pixels (ET difference < -2 

mm/d) are located in the desert and result from subtracting a large MODIS pixel located 

partially in the riparian area with relatively high ET from a small Landsat pixel located in 

the desert with zero ET. The blue-colored pixels (ET difference > 2 mm/d) are located in  
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                                    Difference map: [ETLandsat – ETMODIS] 

 
                               June 16, 2002               September 14, 2000 
                                     (30m)               (30m) 

     
 

Mean 
absolute 

difference 
0.73 0.51 

STD 0.92 0.72 

                                                        

            
 
 
Figure 5.7. ET difference map (30 m) between the Landsat estimated ET (30m) and the 
MODIS estimate ET (250m). (note: mean and standard deviation (STD) are calculated 
with the absolute difference). Enlarged areas (12.5 by 17 km) shown at the bottom 
correspond to the dotted square of the upper images. 
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 the riparian area and result from subtracting a large MODIS pixel located partially in the 

desert from a riparian area located small Landsat pixel. 

 

Basic statistics (mean and standard deviation) allow a quantitative means of 

comparison and evaluation. Positive and negative differences due to georeferencing 

disagreement between two images tend to cancel each other in these calculations since 

they occur in opposite directions at both sides of the transgression from riparian to desert 

area. Therefore the mean and standard deviation of each difference image were calculated 

based on the “absolute” difference between Landsat- and MODIS-based ET images. For 

both study dates, the mean and standard deviation of difference between the Landsat and 

MODIS-based ET are within 1.0 mm/day. Basic statistics in Figure 5.7 show that the 

September images have a slightly lower mean difference and standard deviation than the 

June images. However, this does not imply that the September Landsat- and MODIS-

based ET images agree better than June images. The difference in basic statistics is 

caused by the smaller values of the mean and standard deviation of ET rates in the 

September images.  

 

Relative difference images were produced as well by dividing the absolute 

difference image by the MODIS derived ET image [|(ETLandsat – ETMODIS)| /ETMODIS] 

(Figure 5.8). The relative difference value ranges from zero to infinity. The infinity 

values occur when the MODIS-based ET is much smaller than the Landsat-based ET. 

The infinity values were constrained to 1.0 and pixels having zero values either in the 

MODIS-based ET or in the Landsat-based ET image are also assigned to 1.0 as relative  
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Relative difference between Landsat estimated ET (30m) and MODIS estimate ET 

(250m): [|(ETLandsat – ETMODIS)| / ETMODIS]| 
 

    June 16, 2002       September 14, 2000 
                                       (30m)         (30m) 

                                
 

Mean 
relative 

difference 
0.67 0.78 

STD 0.37 0.34 

 

                              
 
 
Figure 5.8. Relative difference (30 m) between the Landsat estimated ET (30m) and the 
MODIS estimate ET (250m) on June 16, 2002. Enlarged areas (12.5 by 17 km) shown at 
the bottom correspond to the dotted square of the upper images. 
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difference. Most of the pixels having 1.0 (red-colored) relative difference are located in 

the desert area. One interesting point is that the quite a few pixels having 1.0 as relative 

difference are found along the transition zone between riparian and desert areas. Those 

pixels result from 30 m Landsat pixels having high ET inside 250 m coarse resolution of 

MODIS pixels having low ET (Figure 5.8).  

 

Figure 5.9 presents three dimensional graphs of the relationship between relative 

difference and daily ET rate on both June and September images. Both graphs in Figure 

5.9 show that large relative difference predominantly occur in areas having low ET while 

areas having ET such as greater than 3 mm/d exhibit relative differences of about less 

than 0.4. However, there are some points having 1.0 relative difference with daily ET 

greater than 2.0 mm/d. These points are resulted from pixels having significant difference 

between Landsat and MODIS derived ET and mainly due to georeferencing disagreement 

between Landsat and MODIS satellite images. These questionable points are mostly 

located in the boundary area between riparian and surrounding desert.  

 

5.3.2. Analysis of Up-scaling Effects 

The spatial distribution and its statistical features were evaluated and compared 

among the four different up-scaling methods across the five aggregation levels. Output 

up-scaling aggregated the SEBAL estimated daily ET rates either with simple averaging 

or the nearest neighbor resampling method. The resultant aggregated ET map may 

represent the best estimate of ET at the coarser resolution, since the aggregated ET was 

derived directly by aggregation of the fine resolution ET data. For input up-scaling, since  
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Figure 5.9. 3D frequency plot of the relative difference between Landsat derived ET 
(30m) and MODIS derived ET (250m) against MODIS derived ET (250m) (top: June 16, 
2002 and bottom: September 14, 2000). 
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the radiometric observations (radiance) or SEBAL model inputs were aggregated, one 

expects to retrieve the best estimate of a radiometric observation at the coarser 

resolutions. These aggregated data were used as input to the SEBAL model and 

calculated daily ET.  

 

The different up-scaling methodologies were evaluated by: (1) spatial distribution 

of aggregated imagery by four different schemes at each aggregation level to evaluate the 

changes in spatial pattern after aggregation, and (2) histograms and basic statistics of the 

aggregated data for different up-scaling schemes at all levels. The spatial details lost 

during aggregation were considered to be the difference between original image and up-

scaled image. In this study difference images were created by subtracting the up-scaled 

pixels from the original pixels of the Landsat- or MODIS-based ET estimates. While 

relative difference images were produced by dividing the absolute difference by the 

original Landsat- and MODIS-based ET images. The statistical and spatial characteristics 

of differences were evaluated by analyzing the spatial distribution of differences as well 

as the mean and standard deviation of absolute differences. 

 

5.3.2.1. Effect of aggregation 

Spatial and statistical characteristics of up-scaled products from June and 

September Landsat-based ET maps at 30m resolution to five aggregation levels are 

presented in Figures 5.10 – 5.13. Figure 5.10 presents ET maps from output up-scaling 

using simple averaging resampling on June 16, 2002, at spatial resolutions of 60, 120, 

250, 500 and 1000m. This method produces the most statistically and spatially  
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Output up-scaling with simple averaging on June 16, 2002 
 
           60m                   120m                  250m       500m                 1000m 

 

   
 
 

  
 
 
 
 
 
 
Figure 5.10. ET maps from output up-scaling using simple averaging resampling on June 
16, 2002. Spatial resolutions are 60, 120, 250, 500 and 1000 m from the left. This method 
produces the most statistically and spatially predictable behavior. 
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Input up-scaling using nearest neighbor on June 16, 2002 
 
          60m                   120m                  250m     500m                1000m    
 

 
 

 
 

 
 
 
 
 
 
 
Figure 5.11. ET maps from input up-scaling using nearest neighbor resampling on June 
16, 2002. Spatial resolutions are 60, 120, 250, 500 and 1000 m from the left. This method 
produces the least predictable behavior but is still acceptable. 



 5-33

Output up-scaling with simple averaging on June 16, 2002   
     60m                   120m                    250m                 500m                   1000m 
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Figure 5.12. Frequency distribution and basic statistics of up-scaled maps on June 16, 
2002. Bin size of the histogram is 0.5 mm/d and frequency occurrence exceeding 20% 
marked next to the arrow. 
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Output up-scaling using simple averaging on September 14, 2000 
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Figure 5.13. Frequency distribution and basic statistics of up-scaled maps on September 
14, 2000. Bin size of the histogram is 0.5 mm/d and frequency occurrence exceeding 
20% marked next to the arrow. 
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predictable behavior. The least predictable – but still acceptable – behavior is produced 

by input up-scaling using nearest neighbor resampling. An example for June 16, 2002 is 

presented in Figure 5.11. Figures 5.12 and 5.13 present the histograms and statistics for 

the different up-scaling methods on, respectively, June 16, 2002 and September 14, 2000. 

Although spatial detail was lost with the increase in pixel size, the overall spatial 

distribution of ET of each aggregated map (for example Figures 5.10 and 5.11) was in 

agreement with the original ET maps in Figure 5.6.  

 

All histograms of ET distribution (Figures 5.12 and 5.13) show the dominance of 

close to zero ET values and this frequency decreases a few percent (3.4 to 1.3%) with 

pixel size only when output up-scaling with simple averaging was applied. This feature 

might be explained by the observation that desert areas along the riparian corridors are 

classified to have zero ET in fine resolution of 30m. However, these desert areas are 

easily mixed with riparian areas when applying simple averaging, while nearest neighbor 

resampling schemes hardly affect the frequencies in the histogram since nearest neighbor 

produces a subset of the original data. The 60 and 120m pixel sized histograms in Figures 

5.12 – 5.13 exhibit an almost constant frequency occurrence of 2.0% for June imagery 

and 3.0% for September imagery over ET rates ranging from 2.5 to 7.5 mm/d and from 

1.0 to 5.0 mm/d, respectively. This constant frequency changes into a concave down 

shape as pixel size is increased further with simple averaging resampling in both output 

and input up-scaling. That is, the frequency of pixels having 5 – 6 mm/d ET increases but 

the frequency of pixels having 3 – 4 mm/d decreases with simple averaging is applied. 

Pixels having 5 – 6 mm/d of ET in this study area are mainly surface water, agricultural 
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fields and riparian vegetation pixels located along the Rio Grande riparian corridor. There 

are pixels having 3 – 4 mm/d of ET located inside of the riparian corridor as well as in 

the transition zone between riparian and surrounding desert. These pixels are mostly 

located along the transition zone between riparian areas and surrounding deserts areas 

and adjacent to the Rio Grande River. These pixels have low ET, but when averaged with 

adjacent higher ET pixels the contrast disappears. However, histograms from nearest 

neighbor resampling stayed rather consistent in shape at each resolution. 

 

The basic statistics and histograms also show the statistical changes through 

aggregation. With either output up-scaling or input up-scaling, the mean values of the 

simple averaging and nearest neighbor images remain essentially constant across all 

aggregation levels in both days. However, ET maps derived using nearest neighbor show 

a more “blocky” pattern than those derived using from simple averaging (for example 

Figures 5.10 and 5.11). This difference in spatial distribution is due to the fact that simple 

averaging decreases the standard deviation with increasing pixel size, while the standard 

deviation from nearest neighbor aggregation stays fairly constant across all aggregation 

levels.  

 

The differences in aggregation procedures between simple averaging and nearest 

neighbor cause the fundamental difference in statistics of the aggregated data. The simple 

averaging method aggregates based on data values, and the resulting values are confined 

to the mid range. However, the nearest neighbor resampling is based on location, its pixel 

value varying with the location of central pixels in new coordinates as the pixel size 
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changes. Therefore, the aggregated results are a systematically sampled subset of the 

original data, and their values are expected to be less confined. This explains the 

somewhat larger data ranges for the nearest neighbor resampling method, but the mean of 

the data does not change significantly. Many regional-scale hydrological process models 

require input parameters over a large area.  Direct area averaging technique has often 

been used to generate the regional-scale model input parameters (Shuttleworth, 1991; 

Chehbouni and Njoku, 1995; Croley et al., 2005; Maayar and Chen, 2006). For example, 

direct averaged values of air temperature, precipitation, humidity, surface roughness 

length and so on were used as input parameters in hydrologic models (Brown et al., 1993; 

Maayar and Chen, 2006). However, the standard deviation of the data set decreases as the 

aggregation level increases, therefore users need to check the sensitivity of the range of 

the variable of the model prior to applying direct averaging for data aggregation. 

 

In fact, the SEBAL algorithm is nonlinear; that is the mean aggregated ET (output 

up-scaled) at any given resolution does not equal the modeled ET value of an aggregated 

input value (input up-scaled). However, as demonstrated by visual examination of the 

spatial distribution of ET in Figures 5.10 − 5.13, the contrast as well as the basic patterns 

(high and low values and their relative locations) of ET between output up-scaling and 

input up-scaling show a slight disagreement. A slightly higher mean and standard 

deviation was found in the results from input up-scaling with simple averaging than from 

output up-scaling with simple averaging; however there is almost no difference between 

input and output up-scaling when applying the nearest neighbor method. Overall, 
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statistical and spatial characteristics produced by input up-scaling show relatively good 

agreement with those of the output up-scaling method. 

 

5.3.2.2. Difference of aggregated data versus original Landsat (30m) and MODIS (250m) 

estimated ET 

First, aggregation difference was examined by comparing aggregated maps with 

the original ET map at 30m resolution derived from Landsat imagery. Tables 5.3 and 5.4 

present the basic statistics of difference and relative difference against original Landsat 

derived ET on June 16, 2002 and September 14, 2000 produced by four different up-

scaling. The mean values of absolute difference and relative difference range from 0.14 

to 0.63 mm/d and from 0.55 to 0.82, respectively.  

The mean and standard deviation values of absolute difference from September image are 

smaller than those from June image. The smaller mean difference and standard deviation 

is explained by the smaller values of the ET rates in the September image. Mean values 

of absolute difference from output up-scaled maps are similar with those from input up-

scaled maps; however consistently higher standard deviations are found in input up-

scaled maps (Tables 5.3 – 5.4). This result confirms that aggregated model output data 

provide the best estimate of model output at the coarser resolution.  

 

The mean and standard deviation of the absolute differences also increase with 

pixel size. This is mainly due to the mixed pixel effect. Since aggregation tends to 

average out the small surface features, the difference between aggregated imagery and 

the original fine resolution imagery increases with aggregation levels. One interesting  



 5-39

Table 5.3. Basic statistics of the difference [mm/d] between up-scaled ET and original 
Landsat-based ET (30m). (note: statistics are calculated from absolute value of the 
difference) 

 
June 16, 2002 September 14, 2000 

Up-scaling 
approach 

Up-scaling 
operation Mean 

difference 
Standard 
deviation 

Mean 
difference 

Standard 
deviation 

AVG_601 0.20 0.34 0.14 0.24 

NN_602 0.18 0.30 0.14 0.28 

AVG_120 0.30 0.48 0.17 0.27 

NN_120 0.32 0.35 0.23 0.33 

AVG_250 0.51 0.79 0.25 0.35 

NN_250 0.32 0.38 0.23 0.35 

AVG_500 0.54 0.81 0.27 0.36 

NN_500 0.38 0.41 0.27 0.36 

AVG_1000 0.63 0.90 0.30 0.38 

Output 

NN_1000 0.43 0.43 0.33 0.42 

AVG_60 0.28 0.50 0.14 0.25 

NN_60 0.18 0.31 0.15 0.28 

AVG_120 0.29 0.51 0.16 0.28 

NN_120 0.28 0.36 0.23 0.34 

AVG_250 0.53 0.85 0.24 0.36 

NN_250 0.32 0.38 0.23 0.35 

AVG_500 0.54 0.87 0.25 0.37 

NN_500 0.38 0.41 0.28 0.39 

AVG_1000 0.62 0.95 0.28 0.39 

Input 

NN_1000 0.43 0.43 0.32 0.42 
1Aggregated to 60m by simple averaging, 2 Aggregated to 60m by nearest neighbor
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Table 5.4. Basic statistics of the relative difference [-] between up-scaled ET and original 
Landsat-based ET (30m). (note: statistics are calculated from absolute value of the 
relative difference) 

 
June 16, 2002 September 14, 2000 

Up-scaling 
approach 

Up-scaling 
operation Mean relative 

difference 
Standard 
deviation 

Mean relative 
difference 

Standard 
deviation 

AVG_601 0.55 0.44 0.68 0.42 

NN_602 0.56 0.45 0.69 0.43 

AVG_120 0.58 0.42 0.70 0.40 

NN_120 0.60 0.42 0.73 0.40 

AVG_250 0.64 0.40 0.74 0.37 

NN_250 0.65 0.41 0.75 0.38 

AVG_500 0.64 0.39 0.74 0.37 

NN_500 0.69 0.38 0.78 0.35 

AVG_1000 0.65 0.39 0.76 0.36 

Output 

NN_1000 0.72 0.37 0.82 0.32 

AVG_60 0.60 0.44 0.70 0.41 

NN_60 0.56 0.45 0.70 0.42 

AVG_120 0.61 0.42 0.71 0.40 

NN_120 0.62 0.42 0.73 0.39 

AVG_250 0.66 0.40 0.76 0.37 

NN_250 0.65 0.41 0.75 0.38 

AVG_500 0.67 0.40 0.76 0.37 

NN_500 0.69 0.39 0.78 0.35 

AVG_1000 0.68 0.39 0.77 0.36 

Input 

NN_1000 0.73 0.36 0.82 0.32 
1Aggregated to 60m by simple averaging, 2 Aggregated to 60m by nearest neighbor 
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note is that the mean of the relative difference increase with pixel size, however standard 

deviation actually slightly decreases with pixel size. In this study relative difference is 

bounded to be not greater than 1.0. Therefore, as mean values increase to approach 1.0, 

the standard deviation of absolute difference actually decreases with increasing relative 

difference. Based on the mean and standard deviation of the absolute difference and 

relative difference, although the difference increases with aggregation levels, the ET of 

the original images seems to be better preserved from the output up-scaling than input up-

scaling. 

 

Both of the 3D frequency plots in Figure 5.14 between up-scaled ET and its 

relative difference against Landsat-based ET show patterns similar to those in Figure 5.9. 

That is, relative difference decreases with ET. However, points having 1.0 relative 

difference with daily ET greater than 1.0 mm/d are greatly diminished in Figure 5.14. In 

particular, the top portion of Figure 5.14, which shows the relative difference between the 

output up-scaled ET and the ET obtained from simple averaging, shows very few of these 

questionable points. In the bottom portion of Figure 5.14, which shows the relative 

difference between the input up-scaled ET and the nearest neighbor up-scaled ET, there 

are some points with a relative difference of 1.0, but there are far fewer such points than 

in Figure 5.9. This indicates that there are fewer georeferencing disagreements between 

Landsat-derived ET and output up-scaled ET than the one between Landsat and MODIS 

images. 
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Figure 5.14. 3D frequency plot of the relative difference between up-scaled daily ET (250 
m) and Landsat derived ET (30m) on June 16, 2002 against Landsat derived ET (30m) 
(top: up-scaling output with simple averaging and bottom: up-scaling input with nearest 
neighbor). 
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Table 5.5. Basic statistics of the difference [mm/d] and the relative difference [-] of up-
scaled ET against original MODIS-based ET (250m). (note: statistics are calculated from 
absolute value of the difference) 

 
June 16, 2002 September 14, 2000 

Up-scaling 
approach 

Up-scaling 
operation Mean 

difference 
Standard 
deviation 

Mean 
difference 

Standard 
deviation 

AVG_2501 0.41 0.39 0.31 0.37 Output 
 NN_2502 0.46 0.41 0.36 0.41 

AVG_250 0.43 0.40 0.32 0.38 
Input 

NN_250 0.46 0.41 0.36 0.41 

 Mean relative 
difference 

Standard 
deviation 

Mean relative 
difference 

Standard 
deviation 

AVG_250 0.60 0.38 0.71 0.36 Output 
 NN_250 0.67 0.37 0.78 0.34 

AVG_250 0.65 0.38 0.75 0.36 
Input 

NN_250 0.67 0.37 0.78 0.34 
1Aggregated to 250m by simple averaging, 2 Aggregated to 250m by nearest neighbor  
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Next, we compare aggregation differences by comparing up-scaled maps at 250m 

resolution with the original ET map from MODIS. This requires that we first examine 

which aggregation scheme produces the best match with the original MODIS-based ET  

and then check the quality of the different aggregation schemes. Landsat-based ET maps 

at 30 m resolution were aggregated into 250 m resolution maps by applying the four 

different aggregation schemes already presented in Figure 5.5. Table 5.5 show the basic  

statistics of the absolute difference and relative difference of images from the four 

different up-scaling schemes at 250m resolution compared with MODIS-based ET of 

June and September. The mean and standard deviation of absolute difference and relative 

difference from output up-scaling with the simple averaging map are smaller than the one 

from input up-scaling (Table 5.5). Also the simple averaging method generates smaller 

absolute difference and relative difference than the nearest neighboring method. This 

implies that output up-scaling with simple averaging map has best agreement with 

MODIS derived ET. No difference between output and input up-scaling is found from the 

nearest neighbor aggregation method. As shown in the previous section, the maximum 

and standard deviation of the ET maps produced by simple averaging are decreased as 

data were aggregated to 250m resolution. However, the nearest neighbor aggregation 

method generated images having a similar maximum and standard deviation to the 

original image (Figures 5.12 − 5.13). This explains why the mean and standard deviation 

of absolute difference between aggregated Landsat ET image using simple averaging and 

MODIS-based ET are smaller than from nearest neighbor (Table 5.5).  

 

Although the difference increases with aggregation levels, the ET of 
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the original images seems to be better preserved with output up-scaling than with input 

up-scaling. Out of the four different up-scaling procedures, output up-scaling with simple 

averaging performs best. However, all four aggregation schemes are still acceptable since 

the mean and standard deviation values of absolute difference are all less than those from 

the original Landsat ET imagery in Figure 5.7. 

 

 

5.4. CONCLUSIONS 

 

Daily evapotranspiration rates were predicted using the SEBAL algorithm from 

Landsat 7 and MODIS imagery. The objectives of this study were to test the consistency 

of the SEBAL algorithm for the different satellite sensors and to investigate the effect of 

various proposed aggregation procedures.  

 

Although ET maps derived from the Landsat 7 images showed higher maximum 

and standard deviation values than those derived from the MODIS images, the mean 

values of Landsat- and MODIS-based ET images were very similar. Discrepancy in 

direct pixel-by-pixel comparison between Landsat- and MODIS-based ET was due to 

mainly georeferencing disagreement as well as the inherent differences in spatial, spectral 

and radiometric resolutions between imagery from the different satellite sensors.  

 

The output up-scaling scheme produced slightly better ET maps than the input up-

scaling scheme. Both simple averaging and nearest neighbor resampling methods can 
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preserve the mean values of the original images across aggregation levels. However, the 

simple averaging resampling method resulted in decreasing standard deviation values as 

the resolution coarsened, while the standard deviation did not change across aggregation 

levels with the nearest neighbor resampling method. For difference analysis, large 

relative differences predominantly occur in areas having low ET (desert and bare soil) 

while areas having high ET (agricultural field and riparian vegetation) exhibit small 

relative differences. Out of the four different up-scaling procedures proposed in this study, 

output up-scaling with simple averaging performs best. However, other aggregation 

schemes are still acceptable.  
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CHAPTER 6 

 

DOWN-SCALING OF SEBAL DERIVED EVAPOTRANSPIRATION 

MAPS FROM MODIS (250m) TO LANDSAT (30m) SCALE 

 

 

ABSTRACT 

 

In the selection of satellite sensor imagery, there exists a trade-off between 

spatial and temporal resolution. The major problem with high spatial resolution satellite 

images like Landsat 7 is that imagery is not available very often (i.e. every 16 days or 

longer) and the coverage area is relatively small (swath width 185 km), while satellites of 

lower spatial resolution like MODIS are revisiting the same part of the Earth more often 

(daily) and one image covers a relatively large area (swath width 2,330 km). This paper 

considers the feasibility of applying various down-scaling methods to improve the spatial 

resolution of MODIS imagery to Landsat scale in order to obtain both high temporal and 

high spatial resolution. The Surface Energy Balance Algorithm for Land (SEBAL) was 

used to derive daily evapotranspiration distributions from Landsat 7 and MODIS images. 
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Landsat 7 has a spatial resolution of 30 to 60 m, and MODIS has a resolution of 250, 500 

and 1000 m.  

 

Two down-scaling procedures were evaluated: input down-scaling and output 

down-scaling. Input down-scaling consisted of disaggregating 250 m MODIS scale pixels 

of surface albedo, NDVI, and surface temperature values to obtain pixels at the 30m 

Landsat scale prior to applying the SEBAL algorithm to estimate daily 

evapotranspiration. Output down-scaling consisted of disaggregating SEBAL estimated 

daily evapotranspiration from MODIS to Landsat pixel scale. Disaggregation imagery 

was obtained by two different processes: (1) applying the difference between two 

MODIS scale images to previous or subsequent Landsat scale product covering the same 

area by assuming the fine scale variability of the area of interest is constant; (2) applying 

linear regression between two MODIS scale products to previous or subsequent Landsat 

scale product. The primary objective of this study was to investigate the effect of the 

different down-scaling schemes on the spatial distribution of SEBAL derived daily 

evapotranspiration, particularly how the relative accuracy of evapotranspiration changes 

with spatial resolution. This study shows that all of the 12 proposed down-scaling 

methodologies can generate reasonable spatial patterns of the disaggregated 

evapotranspiration map. Among the 12 different down-scaling schemes, the output down-

scaling with regression between two MODIS-based images is the most preferred scheme 

and input down-scaling with subtraction between MODIS and aggregated (nearest 

neighboring) Landsat is the least preferred scheme. 
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6.1.  INTRODUCTION 

 

Monitoring surface characteristics with remote sensing data is dependent upon 

the relationship between the spatial resolution of the sensor (pixel size) and the scale of 

the surface features. The spatial resolution of each type of remote sensing imagery is 

among the most distinctive characteristics of the sensors. In order to assess the 

capabilities and the potential of remote sensing models, the remote sensing estimated 

surface flux estimates need to be compared against ground measurements (Valor and 

Caselles, 1996; Justice et al., 2000; Rigo et al., 2006). However, one of the major 

problems in validation of remote sensing estimates is the difference in spatial scale 

between ground point measurements and the spatial resolution of the remote sensing 

imagery (Ma et al., 2003; Liang, 2004). Moderate Resolution Imaging Spectroradiometer 

(MODIS) images provide useful opportunities to monitor the energy balance at meso-

scale, but they cannot directly provide field specific data. Since most ground 

measurements are taken at the point/plot scale with footprints often not exceeding 100m, 

accurate validation of MODIS remote sensing evapotranspiration estimates can only be 

done using finer spatial resolution images like Land Satellite (Landsat) and Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER). 

 

Another issue in validation of remote sensing model flux estimates is that the 

remotely sensed imagery needs to be accurately georeferenced. The georeferencing is the 

image-processing technique to match the geolocation between remotely sensed image 

pixels and physical positions on the Earth surface. In fact the spatial accuracy of the 
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georeferenced images is dependent upon the accuracy of Ground Control Points (GCPs) 

and the mathematical transformation algorithm at the processing level (Schowengerdt, 

1997; Carrion et al., 2002; Eugenio and Marqués, 2003). However, even the most 

sophisticated model cannot generate georeferenced imagery with errors of less than one 

pixel (Eugenio and Marqués, 2003). For example, the accuracy of the georeferenced 30m 

resolution Landsat imagery produced by professionals is still around 50m (personal 

communication with technician in MDA Federal Inc.). Therefore, there is difficulty in 

comparing flux estimates between remote sensing model and ground measurements; 

especially when the spatial scale of ground measurements is less than one or two pixel 

size. 

 

Routine monitoring of surface conditions with high spatial resolution satellite 

data is difficult due to the long return period between successive satellite overpasses. 

Although the temporal resolution of Landsat is 16 days, even in arid regions only 

monthly coverage is a reasonable expectation for the availability of clear high-resolution 

satellite images due to periodic cloud cover (Moran et al., 1996). High-temporal 

resolution (daily or more frequent) but coarser spatial resolution satellite data including 

MODIS, Advanced Very High Resolution Radiometer (AVHRR) and Geostationary 

Orbiting Environmental Satellite (GOES) have therefore been used to conduct routine ET 

monitoring (e.g. Mecikalski et al., 1999; Sequin et al., 1991). Coarse resolution images 

like MODIS provide very useful opportunities to monitor the surface conditions at meso-

scale with manageable amounts of data; however, they cannot directly provide detailed 

field-specific data. For the purpose of monitoring land cover changes accurately, thermal 
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band pixels of size less than 500 m are required (Townshend and Justice, 1988). 

Therefore, down-scaling from MODIS to Landsat scale is a very useful technique to 

combine the advantages of high temporal and spatial resolutions of surface conditions. 

 

Down-scaling is defined as an increase in spatial resolution following 

disaggregation of the original data set (Bierkens et al., 2000; Liang, 2004). The process of 

down-scaling accomplishes a restoration of the variation at a specific scale by assuming 

that the values of the larger scale are the average of the values at the finer scale and that 

more uncertainties exist in down-scaled products than up-scaled products because infinite 

solutions of down-scaled products are possible (Bierkens et al., 2000). Down-scaling is 

generally required for the use of available information at a desired fine resolution (Price 

et al., 2000; Maayar and Chen, 2006). Traditionally, various down-scaling procedures 

have been tested in the fields of meteorology and climatology to obtain local 

climatological information from coarse-resolution remote sensing imagery, but only a 

few studies have applied disaggregation schemes to surface parameters to increase 

resolution (Liang, 2004). 

 

In this study, high quality Landsat 7 and Terra MODIS images (Figure 6.1) were 

selected to test various down-scaling procedures. Disaggregated daily ET rates from 

MODIS imagery were compared with the ET rates derived from Landsat imagery. 

SEBAL-estimated daily ET from Landsat imagery was validated against ground-based 

eddy covariance measurements in previous research, demonstrating very good agreement  
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Figure 6.1. Location of the study area (18km by 90km). True color Landsat 7 (30 m by 30 
m resolution) and MODIS (250 m by 250 m resolution) images on June 16, 2002. 
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(Hendrickx and Hong, 2005). The primary objective of this research was to investigate 

the effect of various relatively simple down-scaling schemes on the spatial distribution of 

the SEBAL-derived daily ET rate, especially how the relative accuracy of ET changes 

with increasing spatial resolution. In the next section we provide a brief review of some 

existing down-scaling procedures. 

 

6.2. PREVIOUS RESEARCH ON DOWN-SCALING 

 

In the last decade many studies have examined the effects of spatial resolution on 

surface characteristic representation, but information on down-scaling is limited since 

most studies have examined up-scaling procedures only (Nellis and Briggs, 1989; Turner 

et al., 1989; Lam and Quattrochi, 1992; Stoms, 1992; Brown et al., 1993; Vieux, 1993; 

De Cola, 1994; Mark and Aronson, 1994; Wolock and Price, 1994; Zhang and 

Montgomery, 1994; Bian et al., 1999).  

 

In this section, several widely-used down-scaling procedures using remote-

sensing imagery are presented. Each technique has achieved a certain amount of success 

at increasing spatial-resolution. Most previous research regarding down-scaling using 

remote sensing imagery has focused on attempting to disaggregate the land cover 

information. Among the most popular techniques for disaggregation of land cover are 

artificial neural networks (Kanellopoulos et al., 1992; Atkinson and Tatnall, 1997), 

mixture modeling (Settle and Drake, 1993; Kerdiles and Grondona, 1996), and 

supervised fuzzy c-means classification (Bezdek et al., 1984; Foody and Cox, 1994). 
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These techniques have been successfully applied to estimate the proportions of specific 

classes that occur within each pixel. While this disaggregation information expressed 

land cover composition, it did not provide any indication of spatial location within the 

pixel. Atkinson (1997) proposed an idea for an alternative methodology called “sub-pixel 

mapping”. The proposed technique aimed to determine where the relative proportions of 

each class are most likely to occur. The major assumption of this technique related to the 

spatial dependence within and between pixels. The results showed a significant 

improvement in the accuracy of land classification. 

 

Several down-scaling techniques have been proposed for merging panchromatic 

and multispectral data (for example, the combination of 10 m resolution of SPOT 

panchromatic data with 30 m resolution of Landsat TM imagery). The most common 

procedures for this technique include the intensity-hue-saturation transform based 

methods (IHS), principal component analysis (PCA), and the Brovey transform. 

However, those methods require complicated computations and time-consuming 

processing. Detailed information can be found in several papers (Carper et al., 1990; 

Chavez et al., 1991; Shettigara, 1992; Yocky, 1995; Zhou et al., 1998). 

 

More recently, a sharpening thermal imagery algorithm called DisTrad was 

introduced by Kustas et al. (2003). DisTrad sharpens thermal band data to that of the 

VIS/NIR bands by using the relationship between radiometric surface temperature and 

the Normalized Difference Vegetation Index (NDVI). The DisTrad technique is based on 

fitting a second order polynomial between radiometric surface temperature (Trad) and the 
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aggregated NDVI to the resolution of Trad. Disaggregated sensible heat flux fields 

estimated by the DisTrad technique using Landsat 7 imagery agreed with ground 

measured fluxes to within 10 % (Anderson et al., 2004). Most of the very-fine resolution 

(< 5 m) satellites like IKONOS and Quickbird do have VIS/NIR bands but do not have 

thermal bands. DisTrad can generate IKONOS resolution for thermal imagery with 

additional information. For example, since IKONOS provides 1.0 m resolution NDVI, 1.0 

m resolution of thermal imagery can be generated with thermal imagery from other 

sensors like Landsat and MODIS. DisTrad also can be a useful tool for disaggregating 60 

m Landsat thermal imagery to 30 m resolution or 1000 m MODIS thermal imagery to 

250 m resolution. However, it is not very practical to use DisTrad to disaggregate 

MODIS resolution data to Landsat resolution since Landsat already has a thermal band. 

 

 

6.3. METHOD AND MATERIALS 

 

6.3.1. Study Area and Satellite Imagery 

The study area covers a portion of the Middle Rio Grande Valley in New Mexico 

(Figure 6.1). The Middle Rio Grande setting is composed of agricultural fields and 

riparian vegetation. The regional climate is classified as arid/semiarid; its annual 

precipitation distribution is bimodal, with more than half of the rainfall due to monsoonal 

patterns in the summer, although the proportion varies considerably from year to year. 

The average annual air temperature is 15 °C. Summer daily temperatures range from 20 

to 40 °C, while winter daily temperatures range from -12 to 10 °C. Mean annual 
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precipitation is about 25 cm and mean annual potential ET is approximately 170 cm. 

(Stromberg, 1998; Costigan et al., 2000; Scott et al., 2000; Cleverly et al., 2002; Elmore 

et al., 2002). 

 

Clear-sky Landsat 7 and MODIS imagery from May 31 and June 16, 2002 was 

selected for the investigation of the effect of down-scaling processes. Table 6.1 shows the 

spectral bands of Landsat 7 and MODIS in the visible, near infrared and thermal infrared 

wavelength regions used for SEBAL application. These four satellite images were 

georeferenced to closely match the spatial coordinates each other. This was done by 

identifying several accurate Ground Control Points (e.g. road intersections and 

agricultural field boundaries) on the images and aligned them to fit on the images. The 

images used in this study covered an 18 km x 90 km area of the Middle Rio Grande Basin 

from city of Albuquerque to the Sevilleta LTER (Figure 6.1). 

 

6.3.2. Surface Energy Balance Algorithm for Land (SEBAL) 

SEBAL is a remote sensing flux algorithm that solves the surface energy balance 

on an instantaneous time scale and for every pixel of a satellite image (Bastiaanssen et 

al., 2005; Hendrickx and Hong, 2005; Allen et al., 2007). The method is based on the 

computation of surface albedo (α), surface temperature (Ts), and NDVI from multi-

spectral satellite data (Figure 6.2). The albedo was calculated from visible to mid-infrared 

bands (Landsat 7: bands 1-5 and 7; MODIS: bands 1-4, 6 and 7); the Ts from thermal-

infrared bands (Landsat 7: band 6; MODIS: bands 31 and 32); the NDVI from red and 

near-infrared bands (Landsat 7: bands 3 and 4; MODIS: bands 1 and 2). The albedo was  
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Table 6.1. Band spatial resolutions (m) and wavelengths (μm) of Landsat 7 and MODIS 
sensors. 
 

 

Band number 
Sensors 

 

 

1 

 

2 

 

3 

 

4 

 

5# 

 

6 

 

7 

 

31 

 

32 

Pixel size 

[m] 

 

30 

 

30 

 

30 

 

30 

 

30 

 

60 

 

30 

 

NA* 

 

NA* 

 

Landsat 7 
Band width 

[μm] 

 

0.45 

– 

0.51 

 

0.52 

– 

0.60 

 

0.63 

– 

0.69 

 

0.75 

– 

0.9 

 

1.55 

– 

1.75 

 

10.4 

– 

12.5 

 

2.09 

– 

2.35 

 

NA* 

 

NA 

Pixel size 

[m] 

 

250 

 

250 

 

500 

 

500 

 

500 

 

500 

 

500 

 

1000 

 

1000 

 

MODIS 
Band width 

[μm] 

 

0.62 

– 

0.67 

 

0.84 

– 

0.87 

 

0.46 

– 

0.48 

 

0.54 

– 

0.56 

 

1.23 

– 

1.25 

 

1.63 

– 

1.65 

 

2.11 

– 

2.15 

 

10.8 

– 

11.3 

 

11.8 

– 

12.3 
 
#MODIS band5 is not used in this study because of streaking noise, *Not available 
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Figure 6.2. Schematic of SEBAL algorithm 
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used to calculate net short wave radiation, and Ts was used for the calculation of net long 

wave radiation, soil heat flux and sensible heat flux for each pixel. The NDVI governs the 

soil heat flux by incorporating light interception effects by canopies and was used to 

express spatial variability in aerodynamic roughness of the landscape. The latent heat 

flux was computed as the residue of the surface energy balance.  

 

HGRLE n −−=      [6.1]  

 

where Rn is the net radiation flux density [Wm-2], G is the soil heat flux density [Wm-2], 

H is the sensible heat flux density [Wm-2] and LE (= λET) is the latent heat flux density 

[Wm-2], which can be converted to the ET rate [mms-1] at the time of satellite passover 

using the latent heat of vaporization of water λ [Jkg-1]. 

 

SEBAL estimates daily ET (mmd-1) by assuming the value of evaporative 

fraction (EF) is assumed to be the same as the daily-averaged value (Shuttleworth et al., 

1989; Brutsaert and Sugita, 1992; Crago, 1996; Farah and Bastiaanssen, 2001) and the 

soil heat flux is zero on a daily basis. Bastiaanssen et al. (1998) and Morse et al. (2000) 

show how to compute the daily net radiation and soil heat flux. Based on the known 

value of the instantaneous EF, the daily net radiation flux, and the soil heat flux over a 

daily period, daily ET can be estimated by the following:  

 

λ
)(86400 2424

24
GREF

ET n −⋅⋅
=     [6.2] 

where 
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HE

EEF
+

=
λ

λ       [6.3] 

and 

( ) swswan RR ττα ⋅−⋅⋅−= 1101 2424     [6.4] 

where 

( ) ωθ
ω

ω

ddGR rSCa ∫ ⋅⋅⋅=
2

1
24 cos      [6.5] 

 

where ET24 is daily ET [mmd-1], Rn24 is daily net radiation [Wm-2], G24 is daily soil heat 

flux [Wm-2], [-], EF is the evaporative fraction, α is the surface albedo [-], τsw is the 

transmissivity of air, Gsc is the solar constant [1367 Wm-2], θ is solar incident angle, dr is 

the inverse squared relative Earth-sun distance [-] and Ra24 is the daily-averaged 

extraterrestrial shortwave radiation [Wm-2] which is calculated using information on 

location, day of year, slope and aspect for each pixel (Tasumi et al., 2000). 

 

The most difficult and complex issue involved in the SEBAL algorithm is 

solving the equation for the sensible heat flux density. The SEBAL sensible heat flux 

calculations are based on the Monin-Obukov similarity-stability theory accounting for 

effects on atmospheric stability on sensible heat flux (H) and aerodynamic resistance for 

heat transport (rah). Air temperature difference between two heights (dT) is needed for the 

calculation of sensible heat for each pixel. In order to determine the value of dT for each 

pixel, the SEBAL procedure assumes a linear relationship between dT and radiometric 

surface temperature (Ts). This relationship between dT and Ts is the most sensitive 

portion in SEBAL algorithm (Bastiaanssen et al., 1998; Hendrickx and Hong, 2005; 
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Allen et al., 2007). In order to minimize the effect of the dT-Ts relationship on the 

SEBAL product, we restrained the relationship. Otherwise, the input down-scaled 

imagery maybe affected more by the dT-Ts relationship rather than the down-scaled input 

parameters. For the 30m resolution imagery whether it is Landsat or disaggregated 

MODIS, 71541810 .T.dT s −⋅=  and 29451510 .T.dT s −⋅=  were used for June and May 

images, respectively and 13642090 .T.dT s −⋅=  and 63381290 .T.dT s −⋅=  were used 

for the 250m resolution June and May images, respectively. Ts expressed in degree 

Kelvin. For more details of SEBAL algorithm, the reader is referred to the papers 

(Bastiaanssen et al., 1998; Hendrickx and Hong, 2005; Allen et al., 2007). 

 

We have selected SEBAL to estimate evaporation distributions in the Rio Grande 

Basin for the following reasons: (1) SEBAL consists of physically-based image analysis 

algorithms using standard satellites imagery and requires a minimum of ancillary 

meteorological information from surface measurements or atmospheric models. (2) 

SEBAL deals with a large number of environmental variables and does not assume 

variables to be constant over space as do many other methods. For example, some 

methods assume all variables besides surface and air temperatures are spatially constant 

(Seguin and Itier, 1983; Jackson et al., 1996). (3) In SEBAL the need for atmospheric 

correction of short-wave and thermal information in images is reduced (Tasumi, 2003), 

since SEBAL evaporation estimates depend only on radiometric temperature differences 

in the scene rather than on the absolute value of the surface temperature. This greatly 

enhances the applicability of SEBAL, since the measurements needed for atmospheric 

corrections are often not available (Bastiaanssen et al., 1998; Allen et al., 2007). (4) 
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SEBAL has not only been used successfully with Landsat images at spatial scales of 30-

60 m, but also with AVHRR (Advanced Very High Resolution Radiometer) and MODIS 

(Moderate Resolution Imaging Spectroradiometer) images at spatial scales of 250-1000 

m (Bastiaanssen et al., 2002; Hong et al., 2005; Hafeez et al., 2006). (5) Recent studies 

with SEBAL in the heterogeneous arid riparian and desert areas of the southwestern US 

have been successful using Landsat and MODIS images (Fleming et al., 2005; Hendrickx 

and Hong, 2005; Hong et al., 2005). 

 

6.3.3. Down-Scaling (disaggregation) Process 

Image down-scaling or disaggregation consists of using information taken at 

larger scales to derive processes at smaller scales. The total number of pixels increases 

and each output pixel represents a smaller area. Prior to applying the down-scaling 

procedures, we prepared maps of albedo, NDVI, surface temperature and daily ET from 

Landsat 7 and MODIS images on June 16, 2002 and May 31, 2002. Since down-scaling 

schemes require maps of 250m spatial resolution, the Landsat-based estimates of 30m 

resolution were aggregated to 250m by either applying simple averaging or nearest 

neighbor resampling. The schematic of preprocessing for down-scaling is shown in 

Figure 6.3. In this study, we have disaggregated MODIS scale imagery to Landsat scale 

imagery using twelve different down-scaling methods (Table 6.2 and Figure 6.4). First, 

disparities between input and output down-scaling procedures were evaluated. The “input 

down-scaling” consists of disaggregating MODIS-scale pixels of albedo, NDVI, and Ts 

values to obtain pixels at the Landsat scale prior to applying SEBAL to estimate daily 

ET.  
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Figure 6.3. Preprocessing for down-scaling scheme 
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Table 6.2. Twelve different down-scaling methods used in this study. 
 

Down-scaling 
approach 

Down-scaling 
operation ID Method 

1a LCET30 = (MCET250 – MPET250) + LPET30 

1b LCET30 = (MCET250 – LPETAV250_OUT) + LPET30 Subtraction 

1c LCET30 = (MCET250 – LPETNN250_OUT) + LPET30 

2a LCET30 = Regr*(MPET250, MCET250) to LPET30 

2b LCET30 = Regr(LPETAV250_OUT, MCET250) to LPET30 

Output 

Regression 

2c LCET30 = Regr(LPETNN250_OUT, MCET250) to LPET30 

3a LCET30 = (MCANT250 – MPANT250) + LPANT30 

3b LCET30 = (MCANT250 – LPANTAV250_IN) + LPANT30 Subtraction 

3c LCET30 = (MCANT250 – LPANTNN250_IN) + LPANT30 

4a LCET30 = Regr(MPANT250, MCANT250) to LPET30 

4b LCET30 = Regr(LPANTAV250, MCANT250) to LPET30 

Input 

Regression 

4c LCET30 = Regr(LPANTNN250, MCANT250) to LPET30 

 
*1st order regression, for example Regr(x,y) to z represents applying 1st order regression between x 
(predictor) and y (response) to z as a predictor. 
LCET30: 30m resolution ET map from current (June 16, 2002) Landsat,  
LPET30: 30m resolution ET map from prior (May 31, 2002) Landsat,  
LPANT30: 30m resolution albedo, NDVI and Ts maps from prior Landsat, 
LCETAV250_OUT: 250m resolution (output simple averaging) ET map from current Landsat  
LPETAV250_OUT: 250m resolution (output simple averaging) ET map from prior Landsat  
LCETNN250_OUT: 250m resolution (output nearest neighbor) ET map from current Landsat  
LPETNN250_OUT: 250m resolution (output nearest neighbor) ET map from prior Landsat 
LPANTAV250: Aggregated (simple averaging) 250m resolution albedo, NDVI and Ts maps from prior 
Landsat, 
LPANTNN250: Aggregated (nearest neighbor) 250m resolution albedo, NDVI and Ts maps from prior 
Landsat, 
MCET250: 250m resolution ET map from current (June 16, 2002) MODIS,  
MPET250: 250m resolution ET map from prior (May 31, 2002) MODIS,  
MCANT250: 250m resolution albedo, NDVI and Ts maps from current MODIS, 
MPANT250: 250m resolution albedo, NDVI and Ts maps from prior MODIS, 
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Figure 6.4. Schematic of down-scaling scheme (Downscalling1: down-scaling output 
with subtraction, Downscaling2: down-scaling output with regression, Downscaling3: 
down-scaling input with subtraction, Downscaling4: down-scaling input with regression). 
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The “output down-scaling” scheme required running SEBAL first and then 

disaggregated SEBAL estimated daily ET from MODIS to Landsat pixel scale. Second, 

disaggregation imagery was obtained by two different processes, subtraction and 

regression (Figure 6.5). Subtraction methodology disaggregated imagery by applying the 

distribution of pixel by pixel difference between two MODIS scale products to previous 

or subsequent Landsat scale images covering the same area. The fine-scale variability 

within a MODIS pixel is assumed unchanged during the time interval (16 days or longer) 

between two high quality Landsat images. For example in order to disaggregate ET 

imagery obtained from MODIS imagery of June with output-downscaling with 

subtraction (down-scaling 1(a) in Figure 6.4), first the pixel-by-pixel difference map 

between MODIS ET on June 16, 2002 and May 31, 2002 was calculated ((c) in Figure 

6.6). Second, the calculated difference was added to prior Landsat ET imagery on May 

31, 2002 to predict disaggregated ET imagery of June ((e) in Figure 6.6). Regression 

methodology disaggregated imagery by applying linear regression between two MODIS 

scale products to the previous or subsequent Landsat scale product. In this application of 

output down-scaling with regression (down-scaling 2(a) in Figure 6.4) as an example in 

Figure 6.7, a 1st order linear regression between two ET maps derived from MODIS on 

June 16, 2002 and May 31, 2002 was first calculated, and then the obtained regression  

was applied to ET map derived from prior Landsat on May 31, 2002 to predict 

disaggregated imagery of June. The obtained 1st order regression line was not constrained 

to zero intercept in order not to change the meaning of the regression coefficients. 

Regression methodology used in the study has an assumption that the linear relationship 

between coarse resolution images is valid between fine-scale resolution imagery and that  
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Figure 6.5. Example schematic of two disaggregation methods. MODIS scale imagery 
(250m resolution) on June 16, 2002 is MODIS-based estimate and  May 31, 2002 
MODIS scale imagery can be obtained from; (a) MODIS-based estimate at 250m 
resolution, (b) simple averaging of Landsat-based estimate at 30m to 250m resolution and 
(c) nearest neighbor of Landsat-based estimate at 30m to 250 resolution. 
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        YM          XM          D=YM-XM                   XL    YL=XL+D 
 
             (a)                          (b)                       (c)                                      (d)                          (e) 

 
 

 
 
 
 

 
 
Figure 6.6. Example procedure of down-scaling output with subtraction. (a) MODIS-
based ET map of June at 250 m resolution, (b) MODIS-based ET map of May at 250 m 
resolution, (c) Difference map between (a) and (b), (d) Landsat-based ET map of May at 
30 m resolution and (e) Down-scaled ET map at 30 m resolution of June. Enlarged areas 
(6 by 9 km) shown at the bottom correspond to the dotted square of the upper images. 
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                YM          XM    YM=aXM+b     XL      YL =aXl+b                  
 
                       (a)                              (b)                                         (c)                         (d) 

         
 
 

      
 
 
 
 
Figure 6.7. Example procedure of down-scaling output with regression. (a) MODIS-
based ET map of June at 250 m resolution, (b) MODIS-based ET map of May at 250 m 
resolution, (c) Landsat-based ET map of May at 30 m resolution and (d) Down-scaled ET 
map at 30 m resolution of June. Regression line between (a) and (b) is; (a) = 1.135(b) - 
0.15. Enlarged areas (6 by 9 km) shown at the bottom correspond to the dotted square of 
the upper images. 
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the fine-scale variability of the area of interest changes linearly during the time interval 

between two satellite-estimated maps. 

 

Third, as illustrated in Figures 6.6 and 6.7, in order to disaggregate MODIS scale 

to Landsat scale imagery using subtraction and regression, two different dates’ MODIS 

imagery at coarse resolution and/or one prior or subsequent Landsat imagery at fine 

resolution were required. The pixel-by-pixel difference and linear regression performed 

in subtraction and regression require two coarse 250m resolution images. These were 

obtained by three different methods as noted (a), (b) and (c) in Figure 6.4: (a) between 

two MODIS-derived estimates of ET, Ts, albedo or NDVI on May 31, 2002 and June 16, 

2002; (b) between a map estimated from MODIS imagery on June 16, 2002 and an 

aggregated map by simple averaging of Landsat imagery on May 31, 2002; and (c) 

between MODIS estimated map on June 16, 2002 and an aggregated map by nearest 

neighboring of Landsat imagery on May 31, 2002. To aggregate data from Landsat scale 

30 m to MODIS scale250 m, first Landsat scale pixels were broken into 10 m pixels with 

the same pixel values. After that, the data resample to 250m resolution by simple 

averaging or nearest neighboring. The simple averaging method calculates the arithmetic 

mean over an n by n window to produce a new coarser resolution data set. The nearest 

neighbor method finds the pixel in the original image. The new data point is closest to the 

center of the grid in calculated coordinates. To determine the nearest neighbor, the 

algorithm uses the inverse of the transformation matrix to calculate the image file 

coordinates of the desired geographic coordinate. 
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The spatial distribution and statistical features of the disaggregated ET maps 

generated by 12 different down-scaling schemes were compared with each other. The 

down-scaled ET maps were also evaluated against the ET map directly derived from 

Landsat imagery. The performance of the different down-scaling schemes was examined 

by inspection of: (1) spatial distribution of disaggregated imagery by each down-scaling 

schemes to evaluate the changes in spatial pattern after disaggregation and (2) histograms 

and basic statistics of the disaggregated data from each down-scaling schemes. 

 

The differences in spatial details between the disaggregated imagery and the 

original fine-resolution imagery from Landsat were considered disaggregation 

differences. In this study, difference images were created by subtracting the 

disaggregated pixels from the pixels of the direct Landsat-based estimates (ETdown-scaled – 

ETLandsat). Relative difference images were produced by diving absolute difference by 

direct Landsat-based ET imagery [|(ETdown-scaled – ETLandsat)| / ETLandsat]. The statistical 

and spatial characteristics of the differences were evaluated by displaying their spatial 

distribution and calculating the mean and standard deviation of the absolute differences. 

Basic statistics were calculated based on the absolute value of the difference so that large 

positive and negative differences would not cancel each other out when the mean 

difference and relative difference were calculated. 
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6.4. RESULTS AND DISCUSSION 

 

6.4.1. Landsat and MODIS Imagery Preparation 

Landsat- and MODIS derived surface albedo, NDVI, Ts and daily ET 

distributions on May 31 and June 16 in 2002 are shown in Figures 6.8 – 6.11. The area of 

coverage is 90 x 18 km2 which contains 3000 x 600 pixels for Landsat scale (30m) and 

360 x 72 pixels for MODIS scale (250m). The frequency distribution and basic statistics 

including minimum, maximum, mean and standard deviation of SEBAL estimates are 

also shown in Figures 6.8 – 6.11. In order to show the spatial distribution in detail, the 

enlarged area of 6 x 9 km2 in the Rio Grande riparian area is presented at the bottom of 

the figures. Linear regressions of Landsat and MODIS scale pixels used in down-scaling 

with regression methodology are presented in Figures 6.12 –  6.15. 

 

6.4.1.1 Spatial distribution of Landsat- and MODIS-based maps 

As shown in Figures 6.8 – 6.11 the SEBAL estimated maps support that the 

SEBAL estimated albedo, NDVI, Ts and daily ET along the middle Rio Grande valley are 

in good accordance between same date Landsat and MODIS imagery. The derived daily 

ET rates have been validated and showed a good agreement with the eddy covariance 

towers measurements located in the riparian areas (Hong et al., 2008). The frequency 

distribution and basic statistics show a wide pixel value range due to the heterogeneous 

surface covers including riparian vegetation, Rio Grande River, agricultural fields, bare 

soil, desert vegetation and urban areas in the study area. Especially, great portion of the  
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Figure 6.8. SEBAL estimated daily ET, surface temperature (Ts), surface albedo and 
NDVI from Landsat 7 on June 16, 2002 (30m by 30m resolution). Bin size of the ET, Ts, 
albedo and NDVI histogram is 0.5 mm/d, 2.5 K, 0.02, and 0.05, respectively. Enlarged 
areas (6 by 9 km) shown at the bottom correspond to the dotted square of the upper 
images.         
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Figure 6.9. SEBAL estimated daily ET, surface temperature (Ts), surface albedo and 
NDVI from Landsat 7 on May 31, 2002 (30m by 30m resolution). Bin size of the ET, Ts, 
albedo and NDVI histogram is 0.5 mm/d, 2.5 K, 0.02, and 0.05, respectively.  
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Figure 6.10. SEBAL estimated daily ET, surface temperature (Ts), surface albedo and 
NDVI from MODIS on June 16, 2002 (250m by 250m resolution). Bin size of the ET, Ts, 
albedo and NDVI histogram is 0.5 mm/d, 2.5 K, 0.02, and 0.05, respectively. 
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Figure 6.11. SEBAL estimated daily ET, surface temperature (Ts), surface albedo and 
NDVI from MODIS on May 31, 2002 (250m by 250m resolution). Bin size of the ET, Ts, 
albedo and NDVI histogram is 0.5 mm/d, 2.5 K, 0.02, and 0.05, respectively. 
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Figure 6.12. Linear regression between Landsat-based estimates on May 31, 2002 and 
June 16, 2002 (30m resolution). 
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Figure 6.13. Linear regression between MODIS-based estimates on May 31, 2002 and 
June 16, 2002 (250m resolution).
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Figure 6.14. Linear regression between Landsat-based estimates on May 31, 2002 (250m 
resolution by simple averaging) and MODIS-based estimates on June 16, 2002 (250m 
resolution). 
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Figure 6.15. Linear regression between Landsat-based estimates on May 31, 2002 (250m 
resolution by nearest neighbor) and MODIS-based estimates on June 16, 2002 (250m 
resolution). 
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pixels (30 – 50%) in the study area have close to zero ET rates (0 – 0.5 mm/d). Lower ET 

rates correspond to the higher Ts and surface albedo and lower NDVI values. In both 

Landsat and MODIS estimates, the mean values of ET and NDVI were higher but Ts was 

lower for the June images than those from images were in May. This indicates that 

vegetation growth activity was increasing from the end of May to the middle of June. 

However, it is difficult to notice the difference in mean albedo values between the two 

dates. The full scene of Landsat- and MODIS-based ET, Ts, albedo and NDVI maps on 

same date showed overall similar distribution, but many of the fine details found on the 

Landsat-based maps have disappeared on the MODIS-based maps. For example, all of 

the images clearly show that higher ET, low Ts, lower albedo and higher NDVI occur in 

the irrigated fields and riparian areas along the Rio Grande Valley, while lower ET, 

higher Ts and albedo and lower NDVI values occur in the adjoining desert areas. The city 

of Albuquerque has much higher ET rates than the surrounding desert due to the urban 

vegetations. 

 

The high spatial resolution of the Landsat-based image resulted in many 

homogeneous pixels with either high or low ET, Ts, albedo and NDVI. The low spatial 

resolution of the MODIS-based map resulted in many mixed pixels consisting partly of 

high ET, Ts, albedo and NDVI and partly of low ET, Ts, albedo and NDVI. The mixed 

pixels issue is well presented in the NDVI maps. As shown in Figures 6.8 – 6.11, the 

minimum value of NDVI in the Landsat-based estimate is negative (water pixel), but the 

MODIS-based NDVI has a positive minimum number. This shows that the 250m by 

250m MODIS pixel size is too big to be composed entirely or mainly of a water body in 
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our study area. Also in Figures 6.8 – 6.11, the increase in mixed pixels in the MODIS-

based maps is clearly presented in the histograms and basic statistics. Due to the increase 

in mixed pixels as spatial resolution increases, MODIS-based ET, Ts, albedo and NDVI 

distributions produced a tighter and taller histogram than the one from Landsat imagery. 

As shown in the table of basic statistics, mean values of Landsat and MODIS estimated 

images are very similar (Figures 6.8 – 6.11). However, maps of ET, Ts, albedo, and NDIV 

derived from the Landsat 7 image show a greater maximum and standard deviation than 

the one derived from the MODIS images. The dynamic changes in ET, Ts, albedo and 

NDVI in the area of agricultural fields along the Rio Grande River between images of 16 

days apart are significant. The abrupt changes are clearly shown in Landsat-based maps 

in 6 km by 9 km enlarged areas. These changes can be detected in the MODIS estimated 

maps, but are not as clearly represented as in Landsat scale images due to the coarse 

spatial resolution of the MODIS pixel. 

 

6.4.1.2. Linear regression between Landsat- and MODIS-based maps 

Figures 6.12 and 6.13 present the linear regressions of two Landsat and two 

MODIS estimates, respectively, on May 31, 2002 versus June 16, 2002. The linear 

regressions between MODIS and aggregated Landsat-based estimates with either simple 

averaging or nearest neighbor are also shown in Figures 6.14 and 6.15. The 1:1 line is 

also plotted in the graphs. Especially, Figures 6.12 and 6.13 were generated to answer to 

the question whether relationships between ET, Ts, albedo and NDVI are identical for a 

MODIS and Landsat image of the same day. The data show a decent agreement in linear 

regressions between Landsat and MODIS. Therefore, it confirms the feasibility to use the 
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downscaling methods, especially the regression based ones that are proposed in this 

study. Among the Figures 6.13 – 6.15, highest r2 value is shown in relationship between 

two MODIS images (Figure 6.13) and the lowest r2 value is shown between MODIS and 

aggregated Landsat by nearest neighbor (Figure 6.15). The regression lines in Figure 6.12 

and 6.13 also support that the ET and NDVI were higher but Ts was lower for the June 

images than those from May images in both Landsat and MODIS estimates. However, 

regression lines in Figures 6.14 and 6.15 shows shallower slope than the ones in Figures 

6.12 and 6.13. This shallow slope and lower r2
 of regressions in Figures 6.14 and 6.15 are 

mainly due to georeferencing disagreement between the MODIS and aggregated Landsat 

images that is discussed in detail in later section. 

 

6.4.2. Comparison of Different Down-scaled Maps 

Spatial and statistical characteristics of 12 different down-scaled products at 30m 

resolution from coarse 250m resolution MODIS-based imagery are presented in Figures 

6.16 – 6.19. Examples of the difference maps of down-scaled daily ET map versus 

Landsat-based ET at 30m resolution are shown in Figures 6.20 and absolute relative 

difference maps of daily ET are presented in Figures 6.21. The enlarged area for the 

difference and absolute relative difference map is area of 12.5 km by 17 km and covers 

the east and west sides’ boundary between riparian forest and desert areas. 

 

6.4.2.1. Down-scaling with subtraction 

In Figure 6.16, the down-scaled map shown in (a) is somewhat sharper than the 

maps in (b) and (c). The down-scaled map in (c) looks the most blurry. For example, it is  
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Figure 6.16. Down-scaled ET map from down-scaling output (daily ET) with subtraction. 
Pixel difference is calculated (a) between MODIS-based ET of June and May, (b) 
between MODIS-based ET of June and aggregated (simple averaging) Landsat-based ET 
of May and (c) between MODIS-based ET of June and aggregated (nearest neighbor) 
Landsat-based ET of May. 
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Figure 6.17. Down-scaled ET map from down-scaling output (daily ET) with regression. 
Linear regression is calculated (a) between MODIS-based ET of June and May, (b) 
between MODIS-based ET of June and aggregated (simple averaging) Landsat-based ET 
of May and (c) between MODIS-based ET of June and aggregated (nearest neighbor) 
Landsat-based ET of May. 
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Figure 6.18. Down-scaled ET map from down-scaling inputs (Ts, albedo and NDVI) with 
subtraction. Pixel difference is calculated (a) between MODIS-based ET of June and May, 
(b) between MODIS-based ET of June and aggregated (simple averaging) Landsat-based 
ET of May and (c) between MODIS-based ET of June and aggregated (nearest neighbor) 
Landsat-based ET of May. 
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Figure 6.19. Down-scaled ET map from down-scaling inputs (Ts, albedo and NDVI) with 
regression. Linear regression is calculated (a) between MODIS-based ET of June and 
May, (b) between MODIS-based ET of June and aggregated (simple averaging) Landsat-
based ET of May and (c) between MODIS-based ET of June and aggregated (nearest 
neighbor) Landsat-based ET of May. 
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Figure 6.20. Example of the difference ET map between down-scaled ET (down-scaling 
output with subtraction) and Landsat-based ET of June at 30m resolution. Difference 
maps in (a), (b) and (c) were generated with the down-scaled maps shown in (a), (b) and 
(c) in Figure 6.12. Enlarged areas (12.5 by 17 km) shown at the bottom correspond to the 
dotted square of the upper images. Bin size of the difference histogram is 0.5 mm/d. 
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Figure 6.21. Example of the relative difference ET map between down-scaled ET (down-
scaling output with subtraction) and Landsat-based ET of June at 30m resolution. 
Relative difference maps in (a), (b) and (c) were generated with the down-scaled maps 
shown in (a), (b) and (c) in Figure 6.12. Enlarged areas (12.5 by 17 km) shown at the 
bottom correspond to the dotted square of the upper images. Bin size of the relative 
difference histogram is 0.05 mm/d. 
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difficult to see where the location of the Rio Grande River is and to identify individual 

agricultural fields along the Rio Grande River in maps (b) and (c). Visual comparison of 

the spatial distribution of ET of down-scaled imagery against direct Landsat-based ET 

map on June 16, 2002 (Figure 6.8) reveals that visual agreement of (a) is best and (b) is 

better than (c). The somewhat blurrier pattern of down-scaled maps in (b) and (c) is also 

demonstrated in the basic statistics table. The standard deviation of down-scaled ET in 

(b) and (c) is smaller than the one from (a) as well as one from original Landsat-based ET 

(σ: 2.46 mm/d).  

 

Mean values of the down-scaled ET map of June in Figure 6.16 are all greater 

than Landsat-based ET of May (μ: 1.79 mm/d), but interestingly the mean values are also 

greater than the mean value of the original June Landsat-based ET (μ: 1.81 mm/d). The 

greater mean values of the down-scaled ET map can be explained by the larger positive 

pixel-by-pixel difference between the two MODIS scale ET images than the difference 

between original Landsat-based ET of June and May. For instance, the differences in 

mean values between the MODIS-based ET in June and the May MODIS-based ET and 

aggregated ET maps from Landsat in May by using simple averaging and nearest 

neighboring are 0.09, 0.09 and 0.05 mm/d, respectively. Those differences are greater 

than the difference between original Landsat-based ET of June and May (0.02 mm/d). 

Therefore, when these differences between two MODIS-scale images were applied to 

Landsat-based ET on May 31, 2002, the down-scaled ET was higher than the original 

Landsat-based ET on June 16, 2002. The difference in the SEBAL outcome between 

Landsat 7 and MODIS is a result of slightly different band widths for each sensor. The 
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band widths of MODIS in the visible and near infrared, with the exception of Band 3, are 

narrower than those of Landsat 7. This results in different responses from the surface, 

which in turn may alter the computed surface albedo, NDVI and Ts. 

 

6.4.2.2. Down-scaling with regression 

The down-scaled maps in Figure 6.17 were produced by applying a linear 

regression obtained from two MODIS scale images to the Landsat-based ET map on May 

31, 2002. Therefore, the overall spatial distribution of down-scaled imagery is similar to 

the original Landsat-based ET map of May. The down-scaled maps in Figure 6.17 show 

smoother pattern than those in Figure 6.16 since regression methodology is less 

vulnerable to the georeferencing difference between Landsat and MODIS images than the 

subtraction methodology. In Figure 6.17, the Rio Grande River and adjacent agricultural 

fields can be easily identified. Note that the standard deviation of the down-scaled maps 

in (b) and (c) is a lot smaller than the standard deviation from the direct Landsat-based 

ET of June (σ: 2.46 mm/d). This is because first the standard deviation of Landsat-based 

ET of May (σ: 2.15 mm/d) is smaller than the standard deviation of June imagery and 

second the slopes of the linear relationships between the two 250m resolution ET images 

in Figures 6.14 and 6.15 are smaller than 1.0. The minimum value of (c) in Figure 6.17 is 

greater and the maximum value of (c) is smaller than the ones from (a) and (b). The 

standard deviation of (c) is lowest. These differences are due to the fact that the 

regression line used to generate the down-scaled map of (c) has a bigger intercept (0.36) 

and smaller slope (0.84) than the ones from regression lines used for (a) and (b).  
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Regression methodology is a simpler procedure than subtraction methodology 

and produces a sharper imagery. Another advantage of regression over subtraction is that 

a few outliers hardly will affect the linear regression since so many pixels are available 

for the regression. Outliers can be caused by georeferencing disagreement among the 

different satellite images or by abrupt temporal changes between two different dates’ 

images resulting from a rainstorm or irrigation over part of area. However, down-scaled 

maps with regression show that areas having low ET (desert and bare soil) can be 

relatively inaccurate, for example the minimum ET of (b) and (c) in Figure 6.16 is not 

zero but 0.25 and 0.36 mm/d respectively. The minimum of (a) in Figure 6.16 is zero. 

Smaller mean values of ET in Figure 6.18 than in Figure 6.16 are explained by the 

smaller slope (< 1.0) and bigger intercept (> 0.0) of Ts (Figure 6.13 – 6.15). This smaller 

slope and bigger intercept regression causes an increase in the pixel temperature of cold 

high ET areas, resulting in overall decreased ET.  

 

6.4.2.3. Input and output down-scaling 

The down-scaled ET maps in Figures 6.18 and 6.19 were generated after 

applying SEBAL with down-scaled 30m pixel size of SEBAL input parameters (Ts, 

albedo and NDVI) from 250m pixel size with subtraction and regression methodology, 

respectively. The disparity among the down-scaled ET maps of (a), (b) and (c) in Figures 

6.18 and 6.19 is similar to the disparity among the maps in Figures 6.16 and 6.17. For 

example, maps of (a) in Figures 6.18 and 6.19 are sharper than the maps in (b) and (c) 

because again the georeferencing disagreement between the two MODIS images is a lot 

smaller than the one between MODIS and aggregated Landsat. The disparities in the 
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down-scaled maps between output and input down-scaling schemes were examined by 

comparing the maps of Figure 6.16 against Figure 6.18 as well as Figure 6.17 against 

Figure 6.19.  

 

Comparing maps in Figures 6.16 and 6.18 reveals that the maximum values of 

ET from input down-scaling (a: 10.9, b: 12.0 and c: 11.7 mm/d) are smaller than the ones 

from the output down-scaling (a: 15.0, b: 12.4 and c: 20.0 mm/d). However, mean values 

of (b: 1.52 mm/d) and (c: 1.53 mm/d) in Figure 6.18 are smaller than the ones (b: 1.89 

and c: 1.88 mm/d) in Figure 6.16. This is because the maps in Figures 6.18 have more 

pixels with low ET values (0 to 0.5 mm/d) and fewer high ET areas than the maps in 

Figures 6.16. Few differences exist in standard deviation between maps in Figures 6.16 

and 6.18. For the Figures 6.17 and 6.19, although maximum of (a) as 17.3 in Figure 6.19 

is larger than the one (10.9 mm/d) in Figure 6.17, the mean values of (b) and (c) as 1.34 

and 1.29 mm/d in Figure 6.19 are smaller than the ones (1.86 and 1.85) in Figure 6.17. 

Just as was found in the comparison of Figures 6.16 and 6.18, the input down-scaled 

maps in Figure 6.19 have more pixels with low ET values (0 to 0.5 mm/d) than the output 

down-scaled maps in Figure 6.17, however the differences in standard deviations 

between the maps in Figures 6.17 and 6.19 are small. A difference between input and 

output down-scaled maps results from first the imperfection of down-scaling procedure 

which leads a disparity between down-scaled input parameters and parameters from 

original MODIS sensor. Second, the disparity between input and output down-scaling is 

also due to the non-linearity of SEBAL model and application of different dT-Ts 

relationship for different pixel size imagery. For the input down-scaling 
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71541810 .T.dT s −⋅=  was used and 13642090 .T.dT s −⋅=  was used for the output 

down-scaling. That is, even with the linearly related two input data set having different 

spatial resolutions, the down-scaled SEBAL estimated ET (output down-scaled) is not 

equal to the ET value from SEBAL after down-scaling input parameters (input down-

scaled). Nevertheless, as demonstrated by visual examination of the spatial distribution of 

ET in Figures 6.16 ( 6.19, the contrast as well as the basic patterns (high and low values 

and their relative locations) of ET between output down-scaling and input down-scaling 

show only slight disagreement. The input down-scaling procedure is more complicated 

than the output down-scaling, since it needs to disaggregates three images compare to one 

image for output down-scaling. In addition, longer SEBAL process time is required for 

input down-scaling because input images have a higher resolution and a larger file size. 

 

6.4.3. Limitation of the Proposed Down-scaling Method 

The proposed down-scaled methodology does not produce always a reliable 

results. This section analyzes the differences in down-scaled images and investigates the 

model limitations. 

 

6.4.3.1. Difference between down-scaled ET and original Landsat-based ET 

Figure 6.20 present examples of spatial distributions and frequency of the 

difference images of down-scaled ET map which was created by down-scaling output 

with subtraction. Basic statistics of absolute difference of 12 different down-scaled ET 

maps against original Landsat-based ET of June 16, 2002 are shown in Table 6.3. Based  
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Table 6.3. Basic statistics of the difference [mm/d] of down-scaled ET against original 
Landsat-based ET of June 16, 2002. (note: mean and standard deviation are calculated 
from the absolute difference). 
 

Down-scaling 
approach 

Down-scaling 
operation ID Mean 

absolute difference Standard deviation 

1a 0.53 0.72 

1b 0.70 0.90 Subtraction 

1c 0.78 0.99 

2a 0.57 0.70 

2b 0.72 0.64 

Output 

Regression 

2c 0.80 0.64 

3a 0.55 0.77 

3b 0.67 0.86 Subtraction 

3c 0.78 1.15 

4a 0.54 0.70 

4b 0.62 0.86 

Input 

Regression 

4c 0.66 0.90 
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on visual inspection of Figure 6.20, the spatial distribution of difference image of (a) is 

much smoother (fewer brown and blue points) than in (b) and (c). Basic statistics in Table 

6.3 show that the mean and standard deviation values of (a) are smaller than those from 

(b) and (c). The greatest mean and standard deviation of differences are found in (c). The 

incidence of smoother difference and smaller mean in (a) than (b) and (c) indicates that 

down-scaling with MODIS-derived maps produces ET maps that are close to the original 

Landsat-based ET map. This is another confirmation that georeferencing disagreement is 

the most troublesome component in applying the disaggregation schemes suggested in 

this study.  

 

Example of the spatial distributions and frequency of the absolute relative 

difference images of down-scaled ET map by applying down-scaling output with 

subtraction are shown in Figure 6.21. Basic statistics of absolute relative difference of 12 

different down-scaled ET maps against original Landsat-based ET of June 16, 2002 are 

shown in Table 6.4. The absolute relative difference value ranges from zero to infinity. 

The infinity relative difference values occur when the original Landsat-based ET is much 

smaller than the down-scaled ET. The infinity values were constrained to 1.0. Pixels 

having zero values either in the Landsat-based ET or in the down-scaled ET images are 

also assigned an absolute relative difference of one (red-colored). 

 

3-D frequency plots between down-scaled daily ET and absolute relative 

difference against Landsat-based ET created in Figure 6.21. Both of the spatial 

distribution of relative difference maps (Figure 6.20) and three 3-D plots (Figure 6.22)  
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Table 6.4. Basic statistics of relative difference [-] between down-scaled ET and original 
Landsat-based ET of June 16, 2002. (note: mean and standard deviation are calculated 
from the absolute relative difference). 
 

Down-scaling 
approach 

Down-scaling 
operation ID Mean absolute  

relative difference Standard deviation 

1a 0.66 0.40 

1b 0.68 0.39 Subtraction 

1c 0.69 0.38 

2a 0.68 0.39 

2b 0.68 0.38 

Output 

Regression 

2c 0.68 0.38 

3a 0.67 0.40 

3b 0.74 0.37 Subtraction 

3c 0.75 0.36 

4a 0.67 0.40 

4b 0.70 0.36 

Input 

Regression 

4c 0.70 0.35 
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Figure 6.22. 3D frequency plot between down-scaled daily ET and absolute relative 
difference against Landsat estimated ET on June 16, 2002. Down-scaled image were 
generated by down-scaling output with subtraction (top) between MODIS-based ET of 
June and May, (middle) between MODIS-based ET of June and aggregated (simple 
averaging) Landsat-based ET of May and (bottom) between MODIS-based ET of June 
and aggregated (nearest neighbor) Landsat-based ET of May. 
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show that large absolute relative difference occurs in areas having low ET while areas 

having high ET exhibit small relative differences. There are several areas inside of the 

riparian area in Figure 6.21 having large relative differences. These are mainly 

agricultural fields that show dynamic temporal changes in ET. Because it is impossible to 

determine which field (at the MODIS sub-pixel scale) has received irrigation after the 

previous Landsat image, it is impossible to derive the exact down-scaled ET distribution 

within each MODIS pixel. In MODIS pixels with high frequency temporal changes the 

proposed methods provide an average ET value but not a correct spatial distribution of 

ET values. In Figure 6.22, there are some points having 1.0 relative difference with high 

daily ET. These points are considered as unreliable down-scaled pixels where the down-

scaled ET is a lot higher than the original Landsat-based ET. These points are due to 

either areas having dynamic temporal changes or by georeferencing disagreement 

between down-scaled ET and original Landsat-based ET as discussed above.  

 

The mean of the absolute difference ranged from 0.53 to 0.80 mm/d (Table 6.3). 

The mean absolute difference of down-scaling ID #1 (subtraction or regression between 

two MODIS-based estimates) is bigger than down-scaling ID #2 (subtraction or 

regression between MODIS and simple averaged Landsat estimates). The mean absolute 

difference of down-scaling ID #3 (subtraction or regression between MODIS and nearest 

neighbored Landsat estimates) is lowest. This results also support that down-scaling with 

two MODIS-derived maps produces better down-scaled ET maps compared to using 

aggregated Landsat-derived map, because of smaller georeferencing disagreement exists 

between two MODIS-based estimates. The mean of the absolute relative difference 
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ranged from 0.66 to 0.75 (Tables 6.3 and 6.4). The mean absolute difference of down-

scaling ID #1 is bigger than down-scaling ID #2 and ID #3 except ‘output down-scaling 

with regression’. This is because slopes of regression of ET in Figures 6.14 and 6.15 as 

0.90 and 0.84, respectively, are smaller than the one in Figure 6.13 (1.14). The shallower 

slope generates down-scaled ET with tighter range therefore smaller standard deviation. 

Tables 6.3 and 6.4 also support that the difference in down-scaled ET maps between 

input and output down-scaling schemes was not significant. However, any slight 

difference between input and output down-scaling should be traced back to the difference 

between the down-scaled input parameters and the original parameters from MODIS 

imagery. 

 

6.4.3.2. Georeferencing disagreement among images 

Figure 6.23 presents the examples of a pixel-by-pixel difference map between 

two MODIS ET maps and between MODIS and aggregated Landsat-based ET maps to 

illustrate the georeferencing disagreement among images. Each image has a 

georeferencing difference of a size of one or two pixels; therefore, the disparity of the 

georeferencing accordance between images is easily more than a couple of pixels size. 

Also note that the georeferencing match between images from different satellite sensors 

is poorer than the ones from same sensors. As shown in Figure 6.23, the difference map 

between two MODIS-based ET maps in (a) shows a smoother pattern (less extreme 

values) than the ones in (b) and (c). Difference maps in (b) and (c), areas with apparently 

high ET differences (± 2.0 mm/d), shown with brown and blue colors, are observed along 

the boundary between Rio Grande River riparian areas and surrounding deserts. Since  
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Min -3.10 -4.78 -5.24 
Max 3.40 4.93 6.29 
Mean 0.09 0.07 0.06 
Std 0.72 0.92 1.06 

 

                      
 
Figure 6.23. Pixel by pixel difference ET map (a) between MODIS-based ET maps of 
June and May, (b) between MODIS-based ET of June and Landsat-based ET of May 
(250m resolution by simple averaging), (c) between MODIS-based ET of June and 
Landsat-based ET of May (250m resolution by nearest neighbor). Bin size of the ET 
difference in the histogram is 0.25 mm/d. 
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difference maps in (b) and (c) were produced by subtracting MODIS-based ET from 

Landsat-based ET [ETLandsat –ETMODIS], blue-colored pixels of the difference maps of (b) 

and (c) represent MODIS-based ET is considerably higher than Landsat-based ET. Of 

course, areas showing brown-colored pixels represent points where the ET from Landsat 

is considerably higher than the ET from MODIS-based imagery. These extremes are 

mostly due to disagreement in image georeferencing match between Landsat- and 

MODIS-scale imagery. Dealing with the georeferencing of two maps with spatial 

resolutions differing by an order of magnitude is not an easy problem. In fact, it was 

impossible for us to identify accurate common ground control points from both Landsat 

and MODIS imagery directly because of the huge difference in the spatial resolution. 

Therefore, it was very difficult to perform georeferencing two different-scale satellite 

images correctly. Maps in Figure 6.23 show that georeferencing disagreement causes 

abrupt ET changes at the boundaries between riparian (high ET) and desert (low ET) 

areas. The georeferencing difference also appears in histograms. Histograms in Figure 

6.23 show that the range between minimum and maximum of (b) and (c) is bigger than 

the range in (a). In addition, since ET in the month of June is higher than the month of 

May, histograms of ET difference (ETJune – ETMay) should be right-skewed because the 

data have more positive values than negative values. However, as shown in histograms of 

(b) and (c) compared to (a), it tends to be a normal distribution. This also indicates more 

georeferencing difference in map (c) in which the Landsat-based ET map was aggregated 

from 30 to 250 m resolution by nearest neighbor, while simple averaging was used to 

generate map (b).  
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6.4.3.3. Areas having dynamic temporal changes 

As mentioned earlier, subtraction methodology assumes fine-scale variability 

within one MODIS scale pixel is unchanged during the time interval between previous 

and subsequent imagery. To examine the difference of fine-scale variability in the time 

interval between previous and subsequent fine-resolution imagery, the spatial distribution 

of Landsat-based ET on May 31, 2002 and June 16, 2002 was examined. No precipitation 

was recorded during this 16 days period. Three different land use types including 

riparian, desert, and agricultural field are shown in the area of 1000 m by 1000 m (Figure 

6.24). As shown in Figure 6.24, the spatial variability of daily ET in riparian and desert 

areas is consistent between the 16 days interval. However, agricultural fields show 

dynamic changes in daily ET between the 16 days apart due to irrigation. Therefore, 

subtraction methodology can produce a reliable down-scaled image in less dynamic (for 

example, no localized rainfall event) areas such as riparian and desert environments; 

however, it is impossible to precisely predict down-scaled imagery in areas experiencing 

dynamic changes such as agricultural fields.  

 

Down-scaling with regression methodology is dependent upon regression slope 

and intercept between two 250m resolution images. Since the regression does not also 

allow abrupt changes between 16 days apart. For example, this study does not allow more 

than 20% in ET changes between May 31 and June 16. Therefore, regression method also 

has limitation to down-scale areas experiencing a dynamic temporal change in short 

period of time. 
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            Riparian area (May 31, 2002)                               Riparian area (June 16, 2002) 

 

                
 
  

           Desert area (May 31, 2002)                                Desert area (June 16, 2002) 
 

                
 
 

            Agricultural field (May 31, 2002)                  Agricultural field (June 16, 2002) 
 

                
 
 
 
Figure 6.24. 3-D spatial distribution of Landsat-based ET of different land cover types at 
30m resolution in area of MODIS pixel (1000m by 1000m) on May 31, 2002 and June 16, 
2002. 
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6.5. CONCLUSIONS 

 

Georeferencing disagreement between Landsat and MODIS images is a most 

significant issue for the application of the down-scaling schemes suggested in this study.  

Regression methodology is less vulnerable to the georeferencing difference than 

subtraction methodology. Using two MODIS-based estimates for pixel-by-pixel 

difference or linear regression in applying subtraction or regression produced more 

reliable results than using aggregated Landsat-based estimates. This is because difference 

due to georeferencing disagreement between two MODIS-based estimates is smaller than 

the difference between MODIS-based and aggregated Landsat-based estimates. When 

using aggregated Landsat-based estimates, simple averaging is preferred over the nearest 

neighboring. Because simple averaging produces images having less georeferencing 

disagreement. Nearest neighbor resampling selects only the middle pixel located in the 

calculated coordinates which causes larger differences. Difference images also confirm 

that down-scaling with two MODIS-derived maps rather than using an aggregated 

Landsat-based map produces ET maps that are better matched with the original Landsat-

based map.  

 

Based on our results, the difference in down-scaled ET maps between input and 

output down-scaling schemes was not significant. However, since input down-scaling 

procedure is more complicated and requires longer SEBAL process time than output 

down-scaling, we recommend the output down-scaling procedure over input down-

scaling. This study also indicates that down-scaled ET values from coarse resolution 
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remotely sensed data are not always reliable. In particular, down-scaled sites need to be 

in less temporally dynamic conditions at the coarse MODIS scale in order to produce 

more reliable results. Relative difference images show that large relative difference 

occurs in desert areas with low to zero ET rates, while areas having high ET rates show 

small relative difference.  

 

Despite encountering some issues, this study has shown that all of the proposed 

down-scaling methodologies could be used to predict reasonable spatial patterns of ET 

within each coarse MODIS-scale pixel over the Middle Rio Grande Basin. However, 

since output down-scaling is simpler than input down-scaling and regression 

methodology between MODIS images is the least vulnerable to georeferencing 

disagreement, it is concluded that output down-scaling with regression between two 

MODIS-based images (Down-scaling 2(a) in Figure 6.4) is the most preferred scheme 

among twelve proposed down-scaling schemes. The least preferred scheme is input 

down-scaling with subtraction between a MODIS image and a nearest neighbor 

aggregated Landsat image (Downscaling 3(c) in Figure 6.4). 
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CHAPTER 7 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

7.1. SUMMARY AND CONCLUSIONS 

 

Accurate information on the spatio-temporal distribution of the energy balance 

components (net surface radiation (Rn), soil heat flux (G), sensible heat flux (H) and 

latent heat flux (LE)) in arid riparian areas is critical knowledge for agricultural, 

hydrological and climatological investigations. Perhaps the most widely used energy 

balance component is the latent heat flux (evapotranspiration) because the amount of 

evapotranspiration is not only directly related to plant growth and carbon uptake but is 

also an important hydrological component affecting soil moisture, runoff, ground water 

recharge and atmospheric circulation. At different spatial scales, we have an interest in 

water use per field, per riparian unit, per range unit, per catchment and per entire river 

basin. At different temporal scales, we have an interest in daily and weekly water use for 

irrigation management, riparian vegetation, and range management as well as in seasonal 

and annual water budgets and in variability for long-term sustainable water management 

in large watersheds.  
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However, the distribution of surface fluxes over large areas is difficult to obtain 

from ground measurements alone since it is influenced by various parameters including 

soil type, soil moisture, plant type and development stage, and weather conditions. 

Therefore prediction of surface fluxes from remote sensing data is very attractive as it 

enables large area coverage and a high repetition rate. In this study, a cost-effective and 

fast remote sensing image processing technique, SEBAL, was selected to estimate all the 

energy balance components in the arid/semi-arid riparian areas of the Middle Rio Grande 

Basin (New Mexico), San Pedro River (Arizona), and Owens Valley (California). 

 

Various types of remotely sensed images of the Earth’s surface via satellite 

sensors provide information for estimation of the spatio-temporal distribution of land 

surface parameters. The spatial resolution of predictions from remote sensing imagery 

exclusively depends on the sensor type and there exists a trade-off between spatial and 

temporal resolution. The major problem with high spatial resolution satellite images like 

Landsat 7 is that imagery is not available very often (i.e. every 16 days or longer) and the 

coverage area is relatively small (swath width 185 km), while satellites of lower spatial 

resolution like MODIS are revisiting the same part of the earth more often (daily) and 

one image covers a relatively large area (swath width 2,330 km). Landsat 7 bands have 

spatial resolutions of 30 to 60 m, while MODIS bands have resolutions of 250, 500 and 

1000 m.  
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Coarse resolution images like MODIS provide useful opportunities to monitor the 

surface conditions at meso-scale with manageable amounts of data; however, they cannot 

directly provide detailed field-specific data. For the purpose of monitoring land cover 

changes accurately, thermal band pixels of size less than 500 m are required. Therefore, 

down-scaling (disaggregation) from MODIS to Landsat scale is a very useful technique 

to combine the advantages of high temporal and spatial resolutions of surface conditions.  

 

There exists a spatial resolution gap between the data requirements of regional-

scale models and the output data from remote sensing energy balance algorithms such as 

SEBAL. For example, general circulation models or regional weather prediction models 

need input data with a spatial resolution of tens or hundreds of kilometers which is much 

larger than the spatial resolution of most satellite sensors. Therefore, an up-scaling (data 

aggregation) procedure is needed to fill the scale gap between satellite measurements and 

input requirements for large scale models.  

 

The main objective of this study was to investigate the potential and limitations of 

remote sensing for the assessment of spatio-temporal distributions of surface energy 

balance components in the southwestern United States using optical imagery from 

Landsat and MODIS satellites. This study has compared instantaneous and daily SEBAL 

fluxes derived from Landsat 7 and MODIS images to surface-based measurements with 

eddy covariance flux towers; it also has investigated the effect of up- and down-scaling 

processes on the spatial distribution of evapotranspiration maps derived from SEBAL, 
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especially how the relative accuracy of evapotranspiration varies with different up- and 

down-scaling processes.  

 

SEBAL yields reliable estimates for energy balance components at high spatial 

resolutions in heterogeneous riparian areas in the southwestern United States. The 

comparison study between SEBAL estimates of the energy balance components and 

ground measurements resulted in two main conclusions. The first one is that ground 

measurements of sensible heat flux should be used carefully for the calibration and 

validation of SEBAL in order to arrive at unbiased estimates of latent heat flux since the 

SEBAL sensible heat flux is biased and deviates from the ground measured sensible heat 

flux. The second conclusion is that SEBAL’s internal calibration procedure is its greatest 

strength since it eliminates most bias in latent heat flux albeit at the expense of increased 

bias in sensible heat flux. 

 

From the up-scaling study, I conclude that the output simple averaging method 

produced aggregated data with the most statistically and spatially predictable behavior 

among the four up-scaling methods compared. The input nearest neighbor method was 

the least predictable but was still acceptable. Overall, the daily evapotranspiration maps 

over the Middle Rio Grande Basin aggregated from Landsat images were in good 

agreement with evapotranspiration maps directly derived from MODIS images. In 

addition, good agreement exists between SEBAL estimated daily evapotranspiration 

maps on the same date directly derived from Landsat 7 and MODIS images, which 

confirms the consistency of the SEBAL algorithm for different satellite imagery.  
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From the down-scaling study, I conclude that all of the 12 proposed down-scaling 

methodologies can generate reasonable spatial patterns of the disaggregated 

evapotranspiration map. Georeferencing disagreement between Landsat and MODIS 

images is the most significant issue for the application of the down-scaling schemes 

suggested in this study. The regression method is less vulnerable to the georeferencing 

difference than the subtraction method and the difference in down-scaled ET maps 

between input and output down-scaling schemes was not significant. Among the 12 

different down-scaling schemes, output down-scaling with regression between two 

MODIS-based images is the best scheme and input down-scaling with subtraction 

between MODIS and aggregated (nearest neighboring) Landsat is the worst scheme. 

 

Finally, the spatio-temporal distributions of the surface energy balance 

components mapped in this study will provide useful information for water resources 

management as input and validation data sets for climate and hydrological models for 

understanding and predicting the global ecosystem and climate changes. Moreover, 

identifying up-scaling as well as down-scaling effects on statistical and spatial properties 

of spatial data can help to understand the characteristics of aggregated and disaggregated 

data sets. 
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7.2. RECOMMENDATIONS 

 

The following section lists topics for further investigations for the advancement of 

our ability to estimate energy balance components using the remote sensing model 

SEBAL. 

 

(1) Automatic implementation of the SEBAL model 

This study indicates that the correct selection of the temperatures of the cold and 

hot pixel (anchor pixels) is the most critical step in the entire SEBAL process. An error of 

a few degrees in K will cause serious distortion of the distribution of the H and LE over 

an image. The selection of anchor pixels requires a thorough understanding of field 

micrometeorology and is somewhat subjective, i.e. different experts will select slightly 

different temperature values. Results of this study show that there is no significant 

difference in SEBAL products using the EC approach (selection of anchor pixel is 

calibrated using ground measurements) and EM approach (selection of anchor pixel is 

based on inspection of the hydrogeological features of the landscape and 

micrometeorological considerations as well as statistical relationship between surface 

parameters). Sound statistical relations among surface temperature, NDVI and albedo 

values inside of the image indicate a possibility for selection of anchor pixels in an 

automatic way.  Since the selection of hot and cold pixel requires considerable 

knowledge and experience, the automatic implementation of SEBAL would be 

advantageous for users without such training or for the continuous automatic analysis of 

images in real time. 
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(2) SEBAL ET estimation in mountainous complex terrain 

Quite a few studies, including this study, have used satellite imagery to estimate 

ET by using different modeling techniques with successful results over relatively flat 

areas including agricultural fields, riparian areas and semiarid rangeland basins. However, 

few studies have been conducted in mountainous complex terrain mainly because 

insufficient ground observations are available for model validation. The Valles Caldera 

National Preserve (VCNP) in New Mexico is a prime site for this type of study since 

VCNP represents a heterogeneous mountaneous region where direct ground 

measurements of heat fluxes from eddy covariance towers and scintillometers are 

available since 2006.  

 

(3) SEBAL application in other environments 

This study has confirmed that SEBAL accurately estimates the ET of 

heterogeneous semi-arid riparian areas in the southwestern USA. Its strong performance 

in this challenging environment suggests that SEBAL should perform well in most other 

environments. However, further studies are necessary to test the SEBAL approach under 

different climate/land conditions such as temperate climates and the humid tropics. For 

example, Dr. Hendrickx’s research group is active with SEBAL applications in (1) the 

White Volta Basin with a tropical climate characterized by six months without and six 

months with rain, (2) the Panama Canal Watershed with a humid tropical climate, (3) 

Wyoming with a cold semi-arid climate, and (4) Michigan with a humid continental 

climate. Examples of different land surfaces in and outside of New Mexico in need of 
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further investigations are urban areas, water bodies, deserts, basalt flows, snow covered 

ground, tropical vegetation, and bare soils. Of special interest in these areas is the further 

development of algorithms for evaluation of Rn and G as well as the quantification of the 

dT-Ts relationship for H estimation. An important criterion for the selection of new test 

sites is that the availability of reliable ground measurements. Therefore, Dr. Hendrickx’s 

research group has installed 7 scintillometers and is measuring sensible heat fluxes in 

agricultural fields, desert, mountain and basalt areas in New Mexico. These scintillometer 

readings will be used to calibrate and validate SEBAL estimated surface fluxes. 

 

(4) Comparison of SEBAL products from MODIS against scintillometry 

There exist a scale disparity between the ground measurement of H and LE and 

the spatial resolution of remote sensing images. While the spatial length scale of remote 

sensing images covers a range from 60 m (Landsat), to 1000 m (MODIS) and 4000 m 

(GOES) in the thermal band, direct methods to measure H and LE such as eddy 

covariance (EC) and Bowen ratio (BR) only provide point measurements at a scale that is 

considerably smaller than the estimate obtained from a remote sensing method. Therefore, 

in order to validate MODIS products against ground measurements, the products of high 

resolution remotely sensed imagery such as Landsat need to be first validated with 

ground point measurements. MODIS products can then be compared against up-scaled 

(aggregated) Landsat products. However, recent progress in scintillometry makes it now 

possible to measure heat fluxes at footprint dimensions from 100 to 10,000 m. 

Scintillometers are able to measure the vertical fluxes averaged over large areas (up to 
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about 5 MODIS thermal pixels), so coarse-resolution images can be directly validated 

and calibrated using scintillometer readings. 

 

(5) Direct ET estimation from land cover 

In regional hydrological studies, it is not uncommon to make the assumption that 

land cover is directly related to ET. This assumption then makes it possible to derive 

regional ET estimates based on a land cover map. It is often the only feasible alternative 

to the establishment of an expensive region wide network of meteorological sensors. 

Study of ET estimation directly from land cover is feasible in the area of the Middle Rio 

Grande Valley because good-quality detailed land cover maps of this area are available. 

In order to construct a relation between land cover and ET, first ET maps derived from 

SEBAL can be converted to maps of crop coefficients by dividing the ET of each pixel 

by the weather-based reference ET determined from measurements at a representative 

weather station. After that the spatial and temporal distributions of the crop coefficients 

and ET can be evaluated for each land cover class for the derivation of meaningful 

relationships between ET and land cover.  

 

(6) Comparison of SEBAL with other remote sensing models  

Satellite image-based remote sensing for examining spatial patterns or regional 

estimates of H and LE has been investigated by a number of investigators (e.g. SEBS, 

ALEXI, METRIC). Each model differs in terms of the complexity of the algorithms used 

in computing energy flux exchange, equations used to calculate fluxes and ancillary data 

requirements. In order to compare the performance of each model, products from 
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different models applied in various environments need to be compared to each other as 

well as validated with ground measurements. This will provide an opportunity for 

improvements in the algorithms used by the various models. 

 

(7) Comparison of SEBAL with hydrological/numerical models  

Remote sensing techniques and hydrological models (e.g. tRIBS, SVAT, 

HYDRUS) are advanced tools that are suited to estimate the ET, soil moisture and related 

hydrological processes at the regional scale. For the development of a practical cost-

effective method for ET prediction at a fine spatio-temporal resolution, it will be 

necessary to use hydrologic models that assimilate data provided by SEBAL or other 

remote sensing methods as well as ground measurements. Previous research by Hong 

(2002) showed that ET estimated by SEBAL in a riparian area of the Middle Rio Grande 

was in reasonable agreement with ET derived from HYDRUS-1D simulations. We can 

investigate further how hydrological models can be combined with SEBAL in order to 

improve the quality of the ET and other surface parameters.  
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