STABLE ISOTOPIC EVIDENCE FOR FLUID MIXING
IN THE TERTIARY ALKALIC-TYPE EPITHERMAL
Au-Te DEPOSIT, CRIPPLE CREEK, CO

by
Amber N. McIntosh

Submitted as partial fulfillment of the
Requirements for the Degree of
Master of Science in Geology -
May 15, 2004

Department of Earth and Environmental Science
New Mexico Institute of Mining and Technology
Socorro, NM




ABSTRACT

The Au-Te deposit at Cripple Creek, CO is the largest alkalic-type epithermal
deposit of the North American Cordillera and a historical world-class producer of gold.
The Tertiary Cripple Creek volcanic-subvolcanic coﬁplex intrudes a suite of
Precambrian metamorphic and plutonic rocks that comprise the basement lithologies in
the region. Intrusions hosting mineralization range in composition from phonolite to
lamprophyre and become successively more mafic with time. Lamprophyre emplacement
was followed by hydrothermal brecciation, gold mineralization, and intense potassium
metasomatism extending several km outside the diatreme. Structurally controlled gold
mineralization is manifested by high-grade, epithermal Au-telluride (£ quartz + fluorite +
carbonate + adularia + pyrite £ trace barite/celestite and base metal sulfide minerals)
veins with halos of K-metasomatism containing disseminated gold, mineralized
hydrothermal breccias, and low-grade bulk-tonnage deposits.

Past research has documented consistent characteristics for the mineralizing fluids
at Cripple Creek. Mineralization took place at relativély low temperatures (125-225?C)
and salinities (< 5 wt. %), and like other alkalic-type deposits, Cripple Creek has heavy
8'80 values (3 - 9%o) for vein minerals and calculated fluid values, which are consistent
with a magmatic source for mineralizing fluids. Most studies on the Cripple Creek

District to date acknowledge a minor shift in the stable isotope data to lighter §'%0 values

during later stages of mineralization, suggesting that mixing with meteoric fluid may




have been a factor; however, convincing data to support the presence of meteoric fluid is
lacking.

In an attempt to further explore the role of meteoric fluid, this study presents a
stable isotope survey encompassing ore related and barren carbonate (& quartz + fluorite
+ carbonate + pyrite + trace barite/celestite and base metal sulfide) veins from the entire
district. Measured 5'°0 and $13C mineral values for carbonates range from —7.4 to
23.0%o and —8.6 to 5.5%o, respectively. Fluid inclusion temperatures collected from this
study (Ty = 108 to 321°C) were applied to published fractionation factors to calculate
fluids with §'¥ 00 values of ~15.8 to 12.1%o and 8">C pcos. values of —11.8 to 14.4%e,
documenting a much broader range of fluid compositions than previous research. &**Smos
values from vein pyrites (~14.5 to —~1.1%o) and calculated fluids (-15.4 to -0.1%o) fall
within a range of values reported in previous studies, and overlap the range of values
typically seen in alkalic-type deposits.

New stable isotope and fluid inclusion data from carbonates represent a broader
spatial and temporal view of the district than previous research, which has focused on
ore-stage mineralization. When this data is examined at a district scaie, geochemical and
spatial trends emerge, suggesting mixing between magmatic and meteoric fluids.
Spatially, the data are divided into broad zones with a central magmatic isotope signature,

transitioning into more meteoric signatures towards the margins of the diatreme.
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LIST OF SYMBOLS

The following list of symbols is used throughout the thesis to refer to rock types.
If a symbol is followed by a “d” it refers to a dike of the same lithology. The list starts

with the youngest rocks, T refers to Tertiary and Y or X refers to Precambrian lithologies.

Thbx - Hydrothermal Breccia
Late stage breccia pipes consisting of angular to rounded, heterolithic clasts in a rock
flour matrix. Typically associated with pervasive argillic alteration.

Tih — Hornblende-bearing - Lamprophyre Dike

Dark green to greenish-black, fine-to medium-grained porphyry with hornblende,
pyroxene and olivine phenocrysts in an analcime matrix with minor amounts of
orthoclase, magnetite, and apatite.

TIb — Biotite-bearing - Lamprophyre Dike

Dark green, fine-to medium-grained porphyry with biotite phenocrysts in a fine-grained
groundmass consisting of analcime, alkali feldspar, biotite, hornblende and minor
magnetite.

TIbx - Lamprophyre Breccia :

Late-stage lamprophyric breccia pipe consisting of both matrix and clast supported
heterolithic breccia with abundant dark-green lamprophyre clasts and variable late
carbonate alteration.

Ttd — Phonotephrite

Dark gray, fine-grained to porphyritic dikes and sills with variable trachytic texture.
Groundmass composed of fine-grained plagioclase, orthoclase, analcime, pyroxene, and
olivine as well as minor hornblende and magnetite. ’

Tsy — Tephriphonolite

Gray, medium-to fine-grained intrusive composed of orthoclase, plagioclase, pyroxene
and minor hornblende and analcime, commonly occurring as small- to medium-sized
stocks.

Tph - Phonolite
Gray, brown, or pink, aphanitic phonolite composed of fine- grained orthoclase,
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nepheline, minor aegerine-augite, and analcime.

Tphk — Feldspar-bearing Plagioclase Phonolite

~ Light to medium gray porphyry with subhedral to euhedral, medium-to coarse-grained
phenocrysts of alkali feldspar with minor amounts of feldspathoids, glassy apatite and
pyroxenes.

Tphh - Homblende\Pyroxene-bearing Plagioclase Phonolite

Gray, medium-grained porphyry with cuhedral to subhedral homblende, aegerine-augite,
and alkali feldspar phenocrysts.

Tphb — Biotite-bearing Plagioclase Phonolite
Gray, fine-grained porphyry with euhedral biotite and alkali feldspar phenocrysts.

Tbx1L - Cripple Creek Lapilli Breccia

Generally massive, structureless, matrix supported breccia that is poorly sorted, typical of
diatremal crater fill breccia. Clasts are sub-angular to sub-rounded and primarily
composed of various phonolite units with occasional Precambrian fragments. Commonly
shows varying degrees of hydrothermal alteration.

Tbx2 - Cripple Creek Breccia-Bedded
Variably stratified volcaniclastic breccia with matrix and clast compositions much the
same as Tbx1L. Locally occurs in thinly bedded base surge deposits.

Ypp - Pikes Peak Granite
Massive, pink to reddish tan, medium-to coarse-grained, biotite-hornblende-microcline

granite.

Yece - Cripple Creek Quartz Monzonite
Massive, pink, medium-grained, biotite-muscovite-quartz monzonite.

Xgd - Granodiorite
Massive to foliated, medium-to coarse-grained, homblende-biotite granodiorite. Locally
occurs as augen gneiss. Includes diabase dikes and schistose lenses.

Xgnb - Biotite Gneiss
Strongly foliated, biotite-quartz-plagioclase gneiss to schist, which is locally migmatitic.
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INTRODUCTION

The Au-Te deposit at Cripple Creek, CO is the largest alkalic-type epithermal
deposit of the North American Cordillera and a historical world-class producer of gold. .
Numerous stable isotope and fluid inclusion studies have been conducted in the district in
~ an effort to understand the hydrothermal system responsible for producing such a rich
deposit. Fluid characteristics used to infer fluid sources and processes responsible for
‘, precipitating gold are popular topics of investigation.

Past research has documented consistent characteristics for the mineralizing fluids
at Cripple Creek. Mineralization took place at relatively low temperatures (125-225°C)
and salinities (< 5 wt. %), and like other alkalic-type deposits, Cripple Creek has heavy
§'%0 values (3 - 9%o) for vein minerals and calculated fluid values, which is consistent
with a magmatic source for mineralizing fluids (Jensen, 2003). This is an unusual
characteristic relative to other, “classic” epithermal deposits that are dominated by
meteoric fluids (O'Neil et al, 1973; O'Neil and Silberman, 1974; Taylor, 1973, 1974b;
Bethke and Rye, 1979; Casedevall and Ohmoto, 1977; Criss and Taylor, 1983). However,
Cripple Creek is still considered an epithermal system on the basis of low temperature
(<300°C), shallow (<1-2 km) mineralization (Jensen and Barton, 2000). Because the
term “alkalic” implies a genetic relationship between alkalic-type epithermal gold
deposits and alkalic magmatism (Richards, 1995), a transition into Cu-Au porphyry-style
mineralization that occurs at higher temperatures (>300°C) and greater depths (>1km)
may be a more accurate model for Cripple Creek (Jensen and Barton, 2000). Although
the intrusive phase directly responsible for mineralization has yet to be identified,

evidence to suggest this transition is seen in high temperature mineralization and
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alteration, such as biotite-stable alteration assemblages, overprinted by lower

‘temperature, epithermal-style mineralization (Jensen and Barton, 2000). Zones of
hydrothermal biotite alteration in Cripple Creek are restricted to the deepest levels of the
Ajax and Portland mines in the southern part of the diatreme, but in the northern part,
- zones of biotite‘ alteration are seen at much higher levels in the vicinity of the Mollie
Kathleen mine, Moffat Tunnel, and Globe and Ironclad Hills (Jensen, 2003; see Figure
2). The presence of high temperature biotite alteration seems to fit with the high volume
of magmatic fluids documented in this system, suggesting that Cripple Creek may be
nearing the transition between epithermal and porphyry-style mineralization.

Most studies on the Cripple Creek District to date acknowledge a minor shift in
the stable isotope data to llighter 5'%0 values during later stages of mineralization,
suggesting that mixing with meteoric fluid may have been a factor; however, convincing
data to support the presence of meteoric fluid is lacking.

In an attempt to further explore the role of meteoric fluid, this study presents a
stable isotope survey encompassing ore-stage and barren carbonate (+ quartz + fluorite =
carbonate + pyrite % trace barite/celestite and base metal sulfide) veins from the entire
district. O and C isotopes from carbonates, and S isotopes from sulfides are utilized in
conjunction with fluid inclusion data to identify fluid sources and address fluid evolution,
patterns of fluid flow, and examine the spatial scale of mixing zones between different
end member fluids. Ultimately this data is used to assess the viability of applying a
simplistic epithermal model for hydrothermal circulation to the Cripple Creek District in

an exploration context.
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REGIONAL GEOLOGY

The Tertiary Cripple Creek volcanic-subvolcanic complex in central Colorado
intrudes a suite of Precambrian metamorphic and plutonic rocks that comprise the
basement lithologies in the region (Figure 1). The oldest rocks in the Cripple Creek
district are the biotite-muscovite schists and gneisses of the Idaho Springs Formation
(Xgnb), that record the accretion of juvenile island arc terranes to the southern margin of
the Archean Wyoming craton beginning around 1.8 Ga (Reed et al, 1987). The 1.7 Ga
granodiorite (Xgd) present in the Cripple Creek district belongs to a group of late
orogenic plutons that intruded the supracrustal rocks of 1.8 Ga (Selverstone et al, 1997).
During and subsequent to accretion, northeast trending shear zones and petrotectonic
provinces (Yavapai and Mazatzal) were established, and are interpreted to have
repeatedly influenced younger tectonism and magmatism (Selverstone et al, 1997;
Karlstrom and Humphreys, 1998).  Similarly, Tweto and Sims (1963) suggested that
north-northeast and north-northwest trending shear zones and faults were also established
during the Precambrian. The prominent structural trends that acted as conduits for
magmatism and mineralization within the Cripple Creek district coincide with regional
trends established in the Precambrian.

A regional thermal and metamorphic event at ca. 1.4 Ga resulted in widespread
plutonism in North America. In Colorado, granitic plutons were emplaced along
northeast trending shear zones, and include the Cripple Creek Quartz Monzonite (Ycc)
and Silver Plume magmatic suite (Selverstone et al, 1997; Karlstrom and Humphreys,
1998). The southwestern U.S. experienced extensional tectonism and magmatism (ca.

1.1 Ga) related to far field stress generated by Grenville collision to the southeast
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Figure 1: Map Legend of Symbols for Geologic Units

Thbx - Hydrothermal Breccia: Late stage breccia pipes consisting of
angular to rounded, heterolithic clasts in a rock flour matrix. Typically
associated with pervasive argillic alteration.

— Tlh - Hornblende-bearing Lamprophyre Dike: Dark green to greenish-
black, fine- to medium-grained porphyry with hornblende, pyroxene, and
olivine phenocrysts in an analcime matrix with minor amounts of
orthoclase, magnetite, and apatite. )

Tlb - Biotite-bearing Lamprophyre Dike: Dark green, fine- to medium-
grained porphyry with biotite phenocrysts in a fine-grained groundmass
consisting of analcime, alkali feldspar, biotite, hornblende, and minor
magnetite.

Tlbx - Lamprophyre Breccia: Late-stage lamprophyric breccia pipe
consisting of both matrix and clast supported heterolithic breccia with
abundant dark-green lamprophyre clasts and variable late carbonate alteration.

Ttd — Phonotephrite: Dark gray, fine-grained to porphyritic dikes and sills
with variable trachytic texture. Groundmass composed of fine-grained
plagioclase, orthoclase, analcime, pyroxene, and olivine as well as minor
#~ | hornblende and magnetite.

Tsy — Tephriphonolite: Gray, medium-to fine-grained intrusive
composed of orthoclase, plagioclase, pyroxene, and minor hornblende and
analcime, commonly occurring as small- to medium-sized stocks.

Tph — Phonolite: Gray, brown, or pink, aphanitic phonolite composed of
fine-grained orthoclase, nepheline, minor aegerine-augite, and analcime.

Tphk - Feldspar-bearing Plagioclase Phonolite: Light- to medium-gray,
porphyry with subhedral to euhedral, medium- to coarse-grained
phenocrysts of alkali feldspar with minor amounts of feldspathoids, glassy
apatite, and pyroxenes.

Tphh - Hornblende\Pyroxene-bearing Plagioclase Phonolite: Gray,

medium-grained porphyry with euhedral to subhedral hornblende, acgerine-
augite, and alkali feldspar phenocrysts.

Tphb - Biotite-bearing Plagioclase Phonolite: Gray, fine-grained
porphyry with euhedral biotite and alkali feldspar phenocrysts.
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Figure 1: Map Legend of Symbols for Geologic Units

Tbx1L - Cripple Creek Lapilli Breccia: Generally massive, structureless,
matrix supported breccia that is poorly sorted, typical of diatremal crater fill
breccia. Clasts are sub-angular to sub-rounded and primarily composed of
various phonolite units with occasional Precambrian fragments. Commonly
shows varying degrees of hydrothermal alteration.

Tbx2 - Bedded Cripple Creek Breccia: Variably stratified volcaniclastic brec-
cia with matrix and clast compositions much the same as Tbx1L. Locally occurs
in thinly bedded base surge deposits.

Ypp - Pikes Peak Granite: Massive, pink to reddish tan, medium- to coarse-
grained, biotite-hornblende-microcline granite.

Ycce - Cripple Creek Quartz Monzonite: Massive, pink, medium-grained,
biotite-muscovite-quartz monzonite.

Xgd - Granodiorite: Massive to foliated, medium- to coarse-grained,
hornblende- biotite granodiorite. Locally occurs as augen gneiss. Includes
diabase dikes and schistose lenses.

Xgnb - Biotite Gneiss: Strongly foliated, biotite-quartz-plagioclase gneiss to
schist, which is locally migmatitic.
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(Karlstr}om et al, 1999). At this time in central Colorado, a suite of plutonic rocks
including the Pikes Peak Granite (Ypp) (1.04 to 1.08 Ga; Hedge, 1970; Unruh,
unpublished data) were emplaced, and were accompanied by silicic volcanism (Sanders
and Hawkins, 1999).

The oldest sedimentary rocks in contact with the’ Precambrian basement in the
Pikes Peak region are Cambrian in age. The missing period of time in the sedimentary
record has been termed the Great Uﬁconfonnity (Powell, 1876) and is interpreted as a
long-lived plateau across much of the western U.S. sometimes referred to as the trans-
continental ‘arch (Lochman-Balk, 1972). Sedimentation associated with low-energy
fluvial and marine environments dominated Cambrian through Mississippian time.- The
sudden occurrence of Pennsylvanian-Permian coarse arkosic and conglomeratic
sediments in the sedimentary record mark the onset of Ancestral Rocky Mountain
tectonism in the western U.S. North-south trending uplifts and adjacent basins developed
in response to the Ouachita-Marathon orogeny (Kluth and Coney, 1981) or a subduction
zone off the southwest margin of the craton (Ye et al, 1996), and are interpreted to have
reactivated existing faults established during the Precambrian (Kluth and Coney, 1981;
Karlstrom and Humphreys, 1998; Timmons, 2001).

Following Ancestral Rocky Mountain deformation, the region remained near sea
level as evidenced by marine regressions and transgressions recorded in the sedimentary
sequence until the Laramide orogeny began in the late Cretaceous (Karlstrom and
Humphreys, 1998). Laramide tectonism (75-45 Ma) involved crustal thickening and
uplift (~1-2 km), and coeval magmatism (Tweto and Sims, 1963) along the north and
northeast trending structures the Ancestral Rocky Mountains had exploited (Karlstrom
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and Hufnphreys, 1998). Ore deposits associated with Laramide-age intrusions; define the
Colorado Mineral Belt, a 400 km northeast-southwest trending zone in Colorado (Tweto
and Sims, 1963). Cripple Creek is approximately 90 km east of the structural trend of the
Colorado Mineral Belt.

From 55-37 Ma the Rockies experienced erosion and uplift resulting in an Eocene
erosion surface approximately 6 km above sea level and still predominant today, although
locally modified by Tertiary and youﬁger volcanism (Karlstrom and Humphreys, 1998).
Sometime between 40 and 32 Ma there was a transition between the compressional
regime of active subduction (70-40 Ma) and the extension (beginning 32 Ma) causing the
development of the Rio Grande rift (Kelley et al, 1998).

Between 40 and 35 Ma renewed volcanism formed the San Juan and Thirtynine
Mile volcanic fields (Kelley et al, 1998). Volcanic tuffs and volcaniclastic sediments are
present as clasts within the Cripple Creek breccia, and may have been initially deposited
as early as 35 Ma providing an upper time constraint on Cripple Creek volcanism (Kelley
et al, 1998). The Florissant Lakebeds, 15 km to the northwest, were deposited in a
shallow valley on the Bocene erosion surface from 35 to 34 Ma (Chapin and Cather,
1994). Early Tertiary (32-27 Ma; Kelley et al, 1998) extension initiated the Rio Grande
rift along north and northwest trending structures. Igneous activity in the Cripple Creek
district (31.8-28.4 Maj; Jensen, 2003) occurred coincident with similar alkalic magmatism
that parallels the Rio Grande rift from northern Colorado to Coahuila, Mexico (Jensen

and Barton, 2000).
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DISTRICT GEOLOGY: CRIPPLE CREEK DIATREME COMPLEX

The Cripple Creek diatréme complex covers approximately 18 square kilometers
and forms a basin elongated along its NW-SE axis (Kelley et al, 1998). The orientation
of the diatreme suggests its emplacement was controlled by preexisting northwest
- trending structur.es (Koschmann, 1949) that ha\;e‘been sporadically reactivated since their
establishment in the Proterozoic.

The oldest and most common rock type in contact with the Precambrian basement
in the diatreme is the Cripple Creek breccia. It is a heterolithic, matrix-supported breccia
(Tbx1L) that also occurs as fine-grained, stratified volcaniclastic and lacustrine sediments
(Tbx2) and massive basin fill. The breccia is composed of angular to subangular clasts of
Precambrian metamorphic and igneous rocks, and Tertiary volcanic and sedimentary
rocks in a matrix of quartz, microcline and rock fragments (0.5 to 2.0 mm in diameter;
Thompson et al, 1985), and later dolomite and pyrite precipitated from circulating
hydrothermal fluids (Lovering and Goddard, 1'.950). Near the margins of the diatreme
Precambrian clasts become more prevalent as the breccia often grades into highly
fractured Precambrian rock (Loughlin and Koschmann, 1935).

Carbonized tree trunks and plant matter can be found in the breccia to depths as
great as 300 m (Lindgren and Ransome, 1906), and blocks of water lain sediments to
depths of 1020 m (Koschmann, 1949). This suggests that the 1000 m (Thompson et al,
1985) of breccia accumulated as the basin subsided slowly and intermittently during its
volcanic phase along steeply-dipping normal faults (average 65° to 80°) as evidenced by
fault breccia, gouge and élickensides commonly found along the contact between the
Cripple Creek breccia and the Precambrian rocks (Koschmann, 1949). Subsidence
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culminated before the intrusion of alkaline igneous rocks, but repeated movements
related to settling produced shear zones in the Cripple Creek breccia and adjacent
Precambrian rocks that were subsequently exploited by the intrusions and later ore fluids
(Koschmann, 1949).

The diatreme is divided into three sub basins defined by the preéence of
Precambrian ridges beneath the Cripple Creek breccig (Koschmann, 1949), two of which
are presently exposed due to erosion‘(Granite Island and Schist Island). In the Eastern
sub basin the Cripple Creek breccia is underlain by 200 feet of arkose and 400 feet of
conglomerate, and is commonly interbedded with lacustrine deposits. The lacustrine
deposits occur as thinly bedded sediments that occasionally have ripple marks, mud
cracks, worm burrows, bird footprints, fossil leaves, and rain drop impressions
(Koschmann, 1949; Thompson et al, 1985).

Following diatreme emplacement the Cripple Creek breccia was intruded by
alkaline dikes, sills, and small stocks that became successively more mafic with time
(Jensen and Barton, 2000). Alkaline intrusions and flows occur up to 15 km outside the
diatreme where they cut or overlie Precambrian rocks, the Oligocene Tallahassee Creek
Conglomerate, and Wall Mountain Tuff (Kelley et al, 1998). The maximum range over
which emplacement of alkaline rocks occurred is 35.1 to 28.6 Ma (Kelley et al, 1998).
Because pervasive hydrothermal alteration overprints the majority of the rocks within the
district, the accuracy of age dates is problematic. Data reported here are after Jensen
(2003; See Appendix A for further discussion of age dating). |

The earliest intrusive phases are phonolites dated at ~31.8 Ma (Jensen, 2003).
Tephriphonolite (Tsy) and phonotephrite (Ttd) were emplaced syn- to post-phonolite

18




time, and a second phase of phonolite emplacement occurred outside the complex at 30.9
Ma (Kelley et al, 1998). Lamprophyres (TIbx, Tlb, Tih) have been identified as the
youngest intrusive stage on the basis of age dates (28.4 Ma; Jensen, 2003) and
crosscutting relationships. Hydrothermal breccias (Thbx) formed later (Pontius, 1996)
and contain clasts of all rock types present in the district.

Paragenesis has been carefully documented in several places in the district,
however linking paragenetic stages bétween each locality is difficult, if not impossible.
Below are paragenetic summaries for a few localities (discussed in greater detail,
Appendix B).

Seibel (1991) and Thompson (1996) present a generalized paragenesis for
hydrothermal breccia hosted mineralization at Ironclad and Globe Hill:

o Stage I: adularia + quartz + apatite + pyrite/marcasite + fluorite +
hematite

o Stage 2: celestite + sericite + dolomite + barite + galena + sphalerite +
chalcopyrite + fluorite + pyrite + quartz + rutile

o Stage 3: Au-tellurides + pyrite + dolomite + quartz + sericite + native
gold + Fe-Mn oxides

Dwelley (1984) and Thompson et al (1985) have documented the following
paragenesis for veins of the Ajax Mine (minerals in parentheses reported by Thompson et
al, 1985):

e Stage I: adularia + quartz + fluorite + dolomite + pyrite + marcasite
o Stage 2: pyrite + marcasite + galena + sphalerite + chalcopyrite (+ quartz
+ pyrrhotite)
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e Stage 3: sphalerite + quartz + fluorite + pyrite + rutile (+ hematite +
sphalerite)
e Stage 4: quartz + pyrite + tellurides (+ rutile + acanthite)
e Stage 5: vug filling quartz + chalcedony + fluorite + dolomite
Jensen (2003) reviews paragenetic sequences presented in previous studies (also
discussed in Appendix B), and points out ambiguities that can be problematic when
trying to fit the data to a relative time scale. The term halo is used to refer to spatial zones
within a vein. A very géneralized paragenesis for veins is as follows (after Jensen, 2003):
e Vein Margin (early): ankerite + adularia + barite - celestite
e Outer Halo: quartz + fluorite + pyrite + tellurides =+ barite - celestite +
trace (sphalerite + galena + tetrahedrite)
o Inner Halo: quartz + fluorite + barite — celestite + carbonate (usually
calcite) + pyrite + tellurides
e Centerline (late): chalcedony + calcite
It is important to note that most veins rarely show all stages of mineralization, and
rarely are all phases present in each stage. No single mineral phase serves as an accurate
indicator of mineralization. Tellurides are commonly accompanied by only a few gangue
minerals, and they have been found in nearly all “stages” of mineralization, making it
difficult to put Au-Te mineralization relative to barren carbonate + pyrite veins. Barren
veins often are only distinguished from Au-Te veins on the basis of visible telluride
minerals.
Gold mineralization is manifested by high-grade, epithermal Au-telluride (&
quartz * fluorite + carbonate = adularia * pyrite + trace barite/celestite and base metal
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sulfide minerals) veins with halos of K-metasomatism containing disseminated gold,
mirieralized hydrothermal breccias, and low-grade bulk-tonnage deposits. Mineralization,
which crosscuts all units in the district, is structurally controlled, with most veins
exploiting northeast or northWést trending faults, fractures, shear zones, and lithologic
contacts. Fluids were channeled along local structures fr;)m multiple source area breccia
pipes (Figure 2). The most intense mineralization and hydrothermal alteration are

observed at structural intersections, which likely saw a higher volume of fluid flow.
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PREVIOUS WORK AND SCOPE OF PRESENT STUDY

Fluid inclusion and stable isotope data collected by previous researchers provide a
framework in which to interpret data collected for the present study. Compilations of
fluid inclusion and stable isotope data are presented in Appendices C and D, and are
briefly summarizéd below.

Mote (2000) identified four types of inclusions in quartz-carbonate-sulfate-K-
feldspar veins. A group of two-ﬁhase (L + V) inclusions with homogenization
temperatures between 190° to 320°C, and salinities from 0.1 to 25 eq. wt. % NaCl are the
most common. Halite-bearing, CO,-bearing, and vapor-rich inclusions with higher
homogenization temperatures (up to 640°C) and salinities (up to 40 eq. wt. % NaCl) were
also observed in a few samplés from certain intervals of the UGC 97-5 hole, however no
evidence for high temperature, high salinity inclusions was found in UGC 97-5 samples
in the present study, only two-phase inclusions were observed. It is important to note that
Jensen (2003) states that the high temperature, high salinity inclusions are likely from
Precambrian clasts within veins; this is further discussed below.

Rosdeutscher (1998) documented two groups of quartz inclusions in quartz-
adularia-pyrite-kaolinite veins from Grassy Valley. The more abundant first group
consists of two-phase (L + V), liquid-rich (~90% L) inclusions that homogenize between
778° and 432°C and have salinities from 3.3 to 6.6 eq. wt. % NéCl. The less abundant
group 2 was observed in only two samples and contains three-phase (L + V + NaCl)
inclusions that homogenize between 407° and 467°C and have salinities > 26 eq. wt. %
NaCl.

Thompson (1998, 1996, 1986, 1985) reports fluid inclusion data collected in a
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number of different studies by his students (Burnett, 1995; Dwelley, 1994; Seibel, 1991;
Nelson, 1989; Collins, 1979; and Lane, 1976). Tﬁ and salinity ranges measured on veins
of the Ajax mine are 200-510°C and 28-48 eq. wt. % NaCl for stage 1 quartz veins; 105-
159°C and 7-9 eq. wt. % NaCl for stage 4 quartz; and <150°C and 1.4 - 3.5 for
mineralized sambles. Fluid inclusions from Globe Hill homogenized between 371 and
425°C for stage 1 quartz; and 198 and 211°C for stage 2 quartz, but salinities were not
reported. Beaty et al (1996) measured fluid inclusions from quartz-Au telluride-fluorite
veins in the vicinity of the Pharmacist vein system in the Altman area. Inclusions
homogenized from 177 to 257°C, but no salinity data was obtained. Silberman (1992)
documented fluids of 165-200°C and 4-6 eq. wt. % NaCl from quartz-telluride-fluorite
veins in the Cresson diatreme.

The most recent study is Jensen's (2003) PhD dissertation. His thorough review
and reevaluation of past studies, together with a wide spectrum of new data provide a
very detailed account of the complex evolution of the Cripple Creek hydrothermal
system.  Generally, fluid inclusions in Tertiary veins are simple two phase, liquid +
vapor inclusions, whereas Precambrian rocks contain high temperature inclusions with
multiple daughter minerals. The presence of CO; is confined to Precambrian inclusions.

Jensen’s (2003) oxygen isotope data from ore-stage veins show §'%0 fluid values
that overlap magmatic fluid composition. Kelley et al (1998) used K-feldspar and biotite
to calculate the composition of mineralizing fluids at the Ocean Wave mine. Fluid §'%0
values (2.4 and 4.2%o) approach the range for magmatic water, but they do not address
what caused a shift toward lighter values.

Rosdeutscher's (1998) calculated 8180 and 8D fluid values range from 3.5 to

24




8.7%0 and —84 to —38%o from illite; and 7.8 to 10.3%o and —88 to —62%o from kaolinite.
Caiculated §'%0 fluid values for quartz are 12.2 to 15.4%.. The O and H isotopic values
from illite and quartz suggest a magmatic origin for hydrothermal fluids.

Beaty et al (1996) studied stable isotopes of the Pharmacist vein system in the
* Altman area. Thé authors propose a model with altered phonolites adjacent to the vein
having the lowest §'%0 values (7.1 to 14.3%o), “silicified rock from the upper levels of the
hydrothermal system” (reported in their table 2 as quartz values) having intermediate
values (~18%o), and the late stage vug quartz having the highest values (21 to 24%o)
representing cooling of the ore fluid causing increased fractionation over time. These
results are consistent with the Altman rocks being flooded with a large volume of 8'*0-
enriched ore fluid that mixed only locally at the margins of the deposit with §5'%0-
depleted meteoric water. Silberman (1992) examined stable isotope data from quartz *
telluride * pyrite + K-feldspar veins in Grassy Valley, Wild Horse, Portland, Altman, and
Cresson. Silberman proposes a system in which magmatic waters (618O-enriched) move
upward and mix with meteoric waters (6'80-depleted) based on the fact that the data are
not more consistent. If this was simply a cooling magmatic system, calculated fluid
values for vein minerals should fall within a more restricted range. Mixing with meteoric
water is suggested to cause the variation, and may be an important factor in triggering
gold precipitation.

Numerous fluid inclusion and stable isotope studies‘have been conducted within
the Cripple Creek District to date. In addition to the studies briefly summarized above,
all are discussed in detail in Appendix B. The general consensus is that mineralization
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took place at relatively low temperatures (125-225°C), and the mineralizing fluid had low
salinity (< 5 wt. %) and heavy 5180 values (3 - 9%o) consistent with a magmatically
derived fluid (Jensen, 2003). Most studies acknowledge that there is enough variation in
the data to suggest that mixing with meteoric water occurred at some poimnt in the

_evolution of the hydrothermal system, however, convincing data to support this
hypothesis is lacking.

Sulfur isotope data from ore-stage veins reported by Jensen (2003) shows the
following: pyrite 53 4Smme,a1 values fall between —20 and 2%o, base metal sulfides (galena
and sphalerite) are between —14 and -10%., later paragenetic stages (stibnite and
cinnabar) often have lighter 5’*S values than earlier pyrites, and sulfide from local
sediments falls between —4 and -2%o. Sulfur isotope values throughout the district are
quite variable, except along the western margin of the diatreme where sulfides have
heavy &'S values. Rosdeutscher (1998) studied quartz-adularia-pyrite-kaolinite veins
hosted largely in Proterozoic granodiorite to constrain an origin for the mineralizing fluid
responsible for depositing the disseminated gold in the Grassy Valley area of the district.
5*'S Qalues for 23 vein pyrites range from —10.4 to —3.9%o with a mean of —5.3%o. These
values fall within the same range reported by Jensen (2003). Thompson (1996) reports
sulfur isotope data from galenas in the district are very light (8*'S = -6.8 to —21.1%o) and
in general show lightest values at shallower depths.

This study presents new stable isotope and fluid inclusion data from carbonates
that represent a broader spatial and temporal view of the district than previous research,
which has focused on ore-stage mineralization. When this data is examined at a district

scale, a geochemical trend emerges, suggesting mixing between magmatic and exchanged
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meteoric fluids. When examined spatially, the same data show a broad zone of magmatic
{zahies in the southern portion of the district, with lighter values away from the central
magmatic zone. Difficulty in refining these zones may be due to the complexity of
structural features within the district as well as multiple source areas for magmatic fluids.
The lack of a clearly defined paragenetic sequence further complicates interpretation of

this new data.
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METHODS
Sample Selection

Intervals of drill core likely to have visible carbonate veins were identified based
on whole rock C analyses obtained during assay. Favorable intervals were examined and
sampled. The 77 carbonate veins chosen for analysis are generally massive and have a
simple vein paragenesis: carbonates are dominant, with only minor amounts of pyrite
and quartz being present, and if any, jﬁst trace amounts of fluorite, barite, and base metal
sulfides. 22 samples of sedimentary dolomite fﬁund to react with hydrochloric acid were
sampled from the Koschmann collection to investigate whether or not a "sedimentary”
carbonate signature is a possible source for carbon. 3 samples of calcite replacing
phenocryst sites in either volcaniclastic rocks or altered phonolites were sampled because
they were found to react with hydrochloric acid. 4 fracture surfaces with calcite
mineralization were also sampled. All samples were crushed, sieved, hand separated, and
ground to a fine powder to obtain the cleanest samples possible for analysis.

Fluid inclusion microthermometry was conducted on carbonate veins to obtain
temperature data for use in calculating stable isotopic values of the mineralizing fluids.
106 carbonate samples (Figure 3) taken from drill core, the Koschmann collection, and
surface outcrop, as discussed above, were prepared and analyzed for O and C isotopes;
sulfide mineral separates of pyrite, galena, and sphalerite from the same carbonate veins
were analyzed for S isotopes.

The same powdered samples used for stable isotope analysis were used for X-ray
Diffraction analysis of representative samples to confirm mineralogy. All methods are
further described in Appendix E.
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Sample Descriptions

Carbonates are divided into four groups based on mineralogy, discussed in further
detail later. Each group is briefly described below. Calcite occurs in massive veins with
minor amounts of pyrite and quartz, and if present at all, just trace amounts of fluorite,
barite, and base metal sulfides (Figure 4a). Calcite can also occur along fracture surfaces
(Figure 4b), in high-grade Au-Te veins (Figure 4c), replacing phenocryst sites in
volcaniclastic rocks (Figure 4d), and as thin veins (Figure 4e).

Dolomite commonly occurs as open-space fill in breccias (Figure 5a), thin
massive or euhedral veins (Figure 5b), and in lamprophyres (Figure 5c). Dolomitic
sediments are common in the Eastern sub basin (Figure 5d).

Ankerite occurs along fracture surfaces (Figure 6a), as yellowish boxwork in vugs
(Figure 6b), and in sugary textured veins with fluorite (Figure 6c¢).

Rhodochrosite can occur as euhedral veins with base metal rich zones (Figure 7a),
thicker thodochrosite veins with sphalerite along the edges (Figure 7b), and as
thodochrosite matrix breccias with sphalerite around the clasts (Figure 7c). Bright pink

thodochrosite veins occur with quartz and fluorite (Figure 7d).
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Figure 4a: Massive calcite veins. Base metal sulfides along
center line (left). Host rock is granodiorite (right).

Figure 4b:

Calcite along

a fracture surface
in a lamprophyre.

Figure 4d: Calcite replacing phenocryst
sites in a volcaniclastic rock.

Figure 4c: High grade Au-Te vein
with calcite and fluorite. Host rock
is logged as “basalt”.

Figure 4e: Thin calcite veins in a phonotephrite (left) and an altered phonolite
(right, with pyrite).
5
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Figure 5a:

Dolomite as open- ., Figure 5b:

space fill in (Top) Thin

phonolite breccia dolomite (edges)

(Dante Collapse and calcite

- Breccia) with (center) vein in

cinnabar. lamprophyre.
(Bottom) Euhedral
dolomite vein in
granodiorite.

Figure 5c: Dolomite in lamprophyres. Note, same rock type,
rock on the right is more altered that rock on the left.

Figure 5d: Sedimentary dolomite from
the Eastern sub basin.
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Figure 6a: Ankerite along
a fracture surface in a
lamprophyre breccia.

Figure 6b: Yellowish
ankerite boxwork

in a vug in phonolite.

Figure 6¢c: Sugary ankerite + fluorite
vein in a hydrothermal breccia.
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Figure 7a:

Euhedral
rhodochrosite vein.
Irridescence is from
a base metal sulfide
rich layer just below

the surface.
Figure 7b:
Thick rhodochrosite Figure 7c: Rhodochrosite matrix
vein with sphalerite breccia. Note, pyrite and sphalerite
on the edges. around phonolite clasts.

Figure 7d:
Pink rhodochrosite
vein with quartz and fluorite.



RESULTS
Fluid Inclusion Microthermometry

Data were collected for 78 inclusions from massive carbonate veins. Thick
sections were prepared for 6 calcite, 3 dolomite, 2 ankerite, and 2 thodochrosite samples.
Many more incluisions were observed, but due to the excellent cleavage and high internal
pressures of carbonate inclusions, decyepitation or leakage of inclusions upon heating or
freezing was common and made data collection difficult.

Primary, two-phase (liquid + vapor) inclusions are the most common type
observed, with only a few measurable pseudosecondary inclusions present. Inclusions
range in size from 2 to 43 pm, (average = 11 pm) and have degrees of fill from .55 to .95
(most = .90 - .95). Apparent daughter minerals were observed in a few inclusions, but
they did not shrink upon heating and may have been imperfections within the mineral or
accidentally trapped material. Variable liquid to vapor ratios were observed in primary
inclusions in a few samples, but based on the scatter in measurements within each
sample, the variation is attributed to leaking or necking off rather than boiling.
Secondary veils of inclusions (too small to measure) in some samples also show variable
liquid to vapor ratios, and because they are so abundant, may indicate boiling.

Salinities are estimated by the freezing point depression after Bodnar (1992;
Appendix F). Photographs and data for each inclusion measﬁred are presented in
Appendix G, a PowerPoint presentation on disc. Homogenization temperatures and
salinities range from 108°C to 321°C (average = 193°C) and 0 to 9.7 (average = 4.8)

equivalent weight percent NaCl, respectively (Table 1 and Figures 8 and 9).
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Stable Isotopes

Oxygen and Carbon Isotopes

Carbonates are separated into four different categories (calcite, dolomite, ankerite
and rhodochrosite) based on fractionation factors that are used to calculate equilibrium

fluids. Data is piotted according to these four categories and will be discussed following

the same convention. Detailed sample descriptions and locations are presented in
Appendix H.

The range of stable isotopic mineral values (Table 2) for each category are listed
below and presented in Figure 10: calcite, §'%0 = 8.1 to 23.0%o, §13C = -6.3 to 5.5%o;
dolomite, 51%0 = 7.0 to 16.9%o, 8"°C = -4.9 to -0.8%o; ankerite, 8'°0 = -7.4 to 17.0%,
§13C = -8.6 to -1.4%o; rthodochrosite, 580 = 7.1 to 12.0%o, §°C =-6.9 to -4.0%o.

Sulfur Isotopes

The range of stable isotopic pyrite values (Table 2) is §%S = -14.5 to —1.1%o
(Figure 11). Only two galena samples and one sphalerite sample were analyzed and have
values of —14.0, —14.9%o and —10.1%o, respectively. Detailed sample descriptions and
locations are presented in Appendix L.

Calculated Fluid Values

Fluid inclusion homogenization temperatures collected from this study (108 to
321°C) were applied to published fractionation factors (further discussed later) to
calculate fluids with 8800 values of =15.8 to 12.10%o and 8 Chcos. values of —11.8 to
14.4%o (Figure 12). Calculated 8**Sys fluid values range from —15.4 to —0.1%0 (Figure
13). When fluid inclusion data could not be directly obtained from the sample, estimates

based on the literature were applied (see “Code” column, Table 2). Fluid values for
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calcites on fracture surfaces or deposited from recent descending waters were calculated
4t 25°C, and these samples plot towards the pure meteoric end member on Figure 12.

“Sedimentary dolomite” includes rocks with fine, alternating light and dark bands
that are likely water lain sediments because they exhibit soft sediment deformation
features. This group also includes coarser, more clastic, arkosic sediments that also show
soft sediment deformation. A temperature of 50°C was used to calculate equilibrium
fluids for sedimentary dolomite, assmﬁing diagenetic processes were responsible for its
formation. In two volcaniclastic sediments and one phonolite sample, calcite is seen
replacing original phenocryst sites. These were also calculated at 50°C because no other
temperature constraints could be applied. Average measured Ty values from this study
were used to calculate fluid values for: massive calcite veins (175°C); calcite + pyrite +
base-metal sulfide veins (175°C); ankerite veins (180°C); calcite + pyrite veins (200°C);
and rhodochrosites veins and breccias (210°C). A temperature of 225°C was used for
calcite veins with distinctive alteration haloes similar to those reported in the literature.
Deep Ajax/Portland vein samples were calculated at 300°C based on temperatures of vein
quartz reported in the literature.

X-ray Diffraction Data

Representative samples from eight different groups of carbonate were analyzed to
confirm mineralogy. These include: sedimentary dolomite, calcite replacing phenocryst
sites in volcaniclastic sediments, massive dolomite within lamprophyres and euhedral
dolomite in vugs, yellow dolomite filling open space in breccias, sugary ankerite +
fluorite veins, massive calcite (+ pyrite, quartz, and base metal sulfides), massive
rhodochrosite (= fluorite and base metal sulfides), and a calcite sample deposited from
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" recent descending waters. The eight groups fall into one of the four mineralogical
categbries (calcite, dolomite, ankerite and rhodochrosite) used to discuss all data in this
thesis, as described above in the Oxygen and Carbon Isotopes (Results section). The
sample peak pattern for each sample analyzed can be found following the sample

description slide in Appendices J-M. Results are further discussed in Appendix N.
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DISCUSSION
Fluid Inclusions

Fluid inclusions provide important temperature data that can be used in
conjunction with stable isotopes to define fluid characteristics such as fluid source, and
~address interactidn between different fluids.

Because this study focuses on predominantly barren carbonate veins, samples
used for fluid inclusion microthermometry do not contain telluride minerals, and it is
therefore unknown whether or not they are associated with the mineralizing event. Fluid
inclusion measurements (107 to 321°C; 0 to 9.7 eq. wt. % NaCl) overlap the range of the
low temperature (125-225°C), low salinity (< 5 wt. %) mineralizing fluids reported by
previous researchers, but are up to 100°C and ~5 eq. wt. % NaCl higher. Other fluid
inclusion studies (Appendix C) document temperatures ranging from 105 (Collins, 1979)
to almost 510°C (Thompson, 1996), and the data presented in this study falls well within
this range. Temperatures of up to 600°C have been measured, and these inclusions
commonly contain daughter halite, sylvite, and opaque minerals (Rosdeutscher, 1999;
Mote, 2000), and in a few instances, CO; (Mote, 2002; Burnett, 1995; Siebel, 1991;
Collins, 1979); however, most of these inclusions are in the Precambrian rocks and do not
represent the hydrothermal fluids responsible for Tertiary mineralization (Jensen, 2000).

Varying Degrees of Fill

A few samples analyzed showed varying degrees of fill amongst inclusions. In
some cases this may be attributed to boiling, but in this case it is attributed to leakage or
pinching off. Inclusions that had obviously leaked were observed to have varying
degrees of fill at room temperature, and they did not change upon heating-freezing runs.
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Because leaked inclusions give abnormally high Ty measurements, their presence makes
the higher homogenization temperatures (225 to 325°C) collected in this study suspect.
However, these types of inclusions were avoided during measurements, and because data
in the range of 225-325°C has been documented by other studies, these higher
_temperatures are believed to be accurate.

Depth of Mineralization

Many lines of evidence suppért shallow levels for mineralization at Cripple
Creek. The presence of trace fossils in the lacustrine sediments of the Eastern sub basin
and tree fragments within the Cripple Creek breccia indicate that this was a near-surface
environment at the time of mineralization. Because there is no direct evidence for a thick
sequence of volcaniclastic or supracrustal rocks, the unconformity between Precambrian
rocks and volcaniclastic and lacustrine sediments is believed to mark the paleosurface at
the onset of Tertiary volcanism (Jensen, 2003).

However, when the biotite-stable alteration zones are considered, it seems likely
that a few hundred meters of erosion have taken place. This type of alteration suggests
temperatures of 300-450°C, which requires pressures of 100 bars to keep water liquid at
~320°C, and because these alteration assemblages are exposed at less than 100 m depth in
the northern parts of the district, the paleosurface would have been several hundred
meters higher than at present (Jensen, 2003). If this is the case, then it is necessary to
apply a pressure correction to fluid inclusion homogenization temperatures if there is no
indication that the fluids were boiling.

Because high temperatures of mineralization have been documented in previous

studies, a temperature of ~400°C and a salinity of ~5% are used to estimate a pressure
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correction. This temperature will reflect the highest pressure the mineralizing fluids
experienced to prevent boiling. However, this is a minimum estimate, and pressures may
have been even higher. Using graphs from Roedder (Figures 9.4 and 9.6, pages 262 and
274), a temperature of 400°C corresponds to a pressure of 250 bars (25 MPa). The lowest
homogenization temperatures in this study need to be corrected by ~30°C and the highest
temperatures by ~20°C. For example, carbonate inclusions with homogenization
temperatures of 108°C may have aétually been trapped (Tt) at 138°C, and higher
homogenization temperatures (~320°C) may indicate trapping temperatures of 340°C.
The effect this has on calculated stable isotopic fluid values will be discussed later.
Transition from Epithermal to Porphyry-Style Mineralization

Temperatures reported in the literature document the predominance of hotter
fluids (300-510°C; Thompson, 1996) in the deepest levels (7000 elevation) of the Ajax
and Portland mines. If the assumption can be made that fluid temperatures increase with
depth, a mixing model in which hot magmatic fluids enter into deep parts ;)f the system,
ascend along structurally controlled conduits, and mix with cooler meteoric fluids at
higher levels in the system may be applicable. Further evidence to support this
hypothesis is the presence of high temperature (300-450°C) biotite stable alteration
assemblages that are also present at deep levels in the Ajax and Portland mines and at
shallower levels in the vicinity of the Mollie Kathleen mine, the Moffat Tunnel, and
Globe and Tronclad Hills (Jensen, 2003; see Figure 2). Evidence for these high
temperature fluids is not seen in the fluid inclusion data from present study. One
explanation for this may be that the deepest sample in which inclusions were measured is
from the 8061' elevation.
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Stable Isotopes

Isotopic mineral values along with temperature data collected from fluid
inclusions and compiled from other studies (see explanation, Table 2) were applied to
fractionation equations to calculate isotopic fluid values, which rely heavily on accurate

temperature data. Because a pressure correction of 20-30°C may be applied to the
homogenization temperatures measured from inclusions in this study, it is important to
note the effect this has on calcula;ted fluid values. Fractionation increases with
decreasing temperature so the largest shifts will be seen at lower temperatures. For
example, the difference between fluids calculated at 108 and 138°C is 3%o heavier for
oxygen and .1%o lighter for carbon, whereas the difference between 320 and 340°C is
0.5%o for oxygen and .02%o. (negligible) for carbon.

The lack of a clearly defined paragenetic sequence limits the conclusions that can
be drawn from the stable isotope data presented in this study. As discussed in the section
on District Geology, it is not possible to apply a relative timing to the samples on the
basis of mineralogy.

Oxygen and Carbon Isotopes

Calculated isotopic fluid values for carbonates are shown in Figure 12. Calcite
and dolomite equations from Zheng (1999), Deines (1974), Ohmoto and Rye (1979), and
Mook et al (1974) are used to calculate the 5" 0mo and 8" Cycos. values for fluids that
were in equilibrium with those respective minerals at the time of deposition (See
introduction to appendices on disc for equations).

Because mineral-8"*Crcos- equations do not exist for ankerite or rhodochrosite,

fluid values calculated with mineral-8'0wm0o equations for ankerite and rhodochrosite
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" were compared to those calculated with equations for dolomite. The 8'®0 values

calculated only differ by 2%o; therefore the pair of dolomite equations was used to
calculate the 5800 and 8" Cpicos- values for fluids that were in equilibrium ankerite and
rhodochrosite.

The fluid vﬂelds drawn on Figure 12 are defined with values from the following
references: magmatic fluid field - Ohmoto and Rye, 1979 and Taylor, 1979; meteoric
fluid field - Ohmoto and Rye, 1979 and Taylor, 1974. The exchanged meteoric fluid
field is discussed below.

Oxygen and carbon isotopes from alkalic-type epithermal deposits generally

range from 4.7 to 11.4%o and -8 to 0%o, respectively, and overlap magmatic values
(Richards, 1995). Richards (1995) identifies mixing between two fluid end members
(magmatic and exchanged meteoric) as a common characteristic of alkalic-type
epithermal Au-Te systems. As meteoric fluids circulate through country rocks they tend
to pick up its isotopic signature, evidenced by a shift to heavier 880 values from a pure
meteoric end member.
Recall that previous studies have focused on ore-stage mineralization and have
documented consistent evidence to support a magmatic source for the mineralizing fluids
at Cripple Creek. The §'80 range of values cited in these studies is between 3 and 9%eo,
which overlaps magmatic rcomposition. Ore stage veins analyzed in this study cluster
around the magmatic fluid field, which is consistent with interpretations of previous
studies. Tt is interesting to note, that the ore stage veins are included in a group of the
deepest samples (10 samples total from elevations between 6716 and 7665' from the
southern part of the district), which also cluster around the magmatic fluid field. This
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' further supports a model in which hot, magmatic fluids enter into deep parts of the
| system, rise along structurally controlled conduits, and mix with cooler descending
meteoric fluids.

When a broader spatial and temporal view of the district is considered by looking
at the range of éalculated fluid values for barren carbonate veins, fracture surface

carbonate mineralization, and calcite replacing phenocryst sites, a trend that suggests

calcite samples that lie closest to the meteoric fluid end member are from fracture
surfaces. Three samples of calcite replacing phenocryst sites plot towards the pﬁre
meteoric end member.

It is important to note that the meteoric end member (far left field, Figure 12) is a
pure end member without isotopic exchange with country rocks being taken into
consideration. The isotopic values of exchanged meteoric waters can be approximated
using whole rock data from Beaty et al (1996) and Silberman (1992), compiled in
Appendix D. The field of “exchanged meteoric water” on Figure 12 is calculated with
the K-feldspar fractionation equation from Zheng, (1993b) assuming a temperature of
200°C, and that the fluid is in equilibrium with the K-feldspar in the sample. Although
exact conditions of exchange are not documented, estimates provide useful information
on the ’magnitude of shift isotopic exchange can have.  The average fluid value
calculated for K-feldspar at 200°C is -7.4%o, a shift of ~ 10%o lighter. When this field is
plotted on Figure 12, the mixing trend between the magmatic and exchanged meteoric
fluid ﬁélds becomes more evident.

The trend can be interpreted as mixing between magmatic and exchanged
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" meteoric fluid end members. Further interpretations cannot be drawn due to the
ambrig\uity in the paragenetic sequence. Carbonate commonly occurs in all stages of
mineralization (Jensen, 2003; Table 5.1), but because veins seldom show all stages, or all
minerals common to each stage, crosscutting relationships do not show enough
information to define a clear paragenetic sequence and determining relative ages is not
possible.

Sedimentary dolomite falls in a distinct ﬁeld,/with low 80 (-16 to —8%o) and
high §3C (10 to 14%o) values relative to the ranges mentioned above for other alkalic-
type epithermal deposits. Because no temperature data was obtained from this group of
samples, the 50°C temperature used to calculate fluid values remains an inference based
on the fact that these are water lain sediments deposited in a shallow basin, and low
temperature diagenetic processes likely dominated. It is interesting to note that all of
these samples came from the Eastern sub-basin, which has not been subject to the intense
K-metasomatism seen throughout the rest of the district (Jensen, 2003, Figure 6.9), so
these samples likely escaped a later geochemical overprint. Sedimentary dolomite was
analyzed to investigate whether or not it could have been the source of C for vein
carbonates, but it appears that it is not, as the values are not consistent with the rest of the
data and no visible trend to suggest mixing with this reservoir is observed.

Origin of Hydrothermal Calcite

The formation of hydrothermal calcite is controlled by the concentration of
aqueous carbon dioxide, pH, temperature and aqueous calcium ion activity (Simmons and
Christenson, 1994). Boiling and fluid mixing are the main mechanisms that affect these
parameters (Simmons and Christenson, 1994; Giggenbach and Stewart, 1982). Because
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calcite has a reverse solubility, it commonly precipitates in epithermal systems as a result
of cool, descending recharge waters coming into contact with hot rocks, causing slight
heating (Simmons and Christenson, 1994). The occurrence of late stage barren calcite
veins may be explained by this process, which typically occurs along the periphery of
epithermal systenis, where cooler fluids interact with hot rocks, until the collapse of the
system, when cool fluids can enter what used to be the zones of upflow (Simmons and
Christenson, 1994). Calcite deposited Ey warming, descending waters is typically coarse
grained and rhombohedral, and is commonly associated with other minerals with
retrograde solubilities, such as anhydrite (Moore and Norman, 1999).

Epithermal systems that experience boiling give off steam and other volatiles that
condense at higher levels in the system, creating relatively dilute, slightly acidic waters
with low salinities and temperatures below 240°C (Giggenbach and Stewart, 1982).
These systems commonly have calcite veins deposited from steam heated groundwater,
and although previous studies have documented evidence to support the occurrence of
boiling in certain areas of the district, several observations from Cripple Creek are
inconsistent with typical steam-heated epithermal systems.

Boiling epithermal systems typically produce an assemblage consisting of quartz
+ adularia + bladed calcite (Moore and Norman, 1999; Simmons and Christenson, 1994).
However, no evidence for bladed calcite is seen in the Cripple‘ Creek District. The
majority of fluid inclusion homogenization temperatures presented in this study are

consistent with the <240°C temperatures seen in steam heated systems, but there are some

higher temperatures, and the salinities from Cripple Creek inclusions are higher than
would be expected for steam heated waters. The oxygen isotope values of calcites
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deposited from steam-heated waters are typically close to those of meteoric water, but the
carbonates from Cripple Creek have much more magmatic values. These observations
do not support the presence of common steam-heated waters reported in epithermal
systems; however, the processes acting in Cripple Creek may be similar in that cooler
descending groundwaters interact with rising plumes of hot magmatic waters to deposit
calcite, and as the magmatic waters cool and descend, they maintain their predominantly
magmatic signature, which is recorded in carbonate veins.

Sulfur Isotopes

Sulfide minerals can be used as an independent line of evidence for interpreting
the source of fluids. 8°*S values for sulfides from epithermal Au-Ag-Te deposits range
from -7.9 to 5.5%o during the early phases of a magmatic hydrothermal system and shift
to lighter values of —15 to +3 (typically less than 0%.) during later stages of evolution,
reflecting the addition of exchanged meteoric waters to the system (Richards and Kerrich,
1993). Values for epithermal deposits are broader than the §8**S range for porphyry-type
deposits, which tend to be 0 + 5%o for deposits in the western U.S. (Ohmoto and
Goldhaber, 1997). The 8°*S data from this study (-16 to 0%.; Figure 11) and studies by
Jensen (2003; —20 to 2%o) and Rosdeutscher (1999; -10 to -3%o) overlap these ranges and
have a few even lighter values (Figure 14). This wide range of values may represent
mixing between a magmatic fluid (0%.) and another lighter énd member, such as
exchanged meteoric fluid; or a change in fluid fO, through time, with fluids characterized
by lighter 8343 values during later stages of mineralization. Evidence for the latter was
presented in Jensen’s (2003) study, with late sulfides having values of —20 to —12%o.

A mixing trend should be visible in both O and S data if mixing is the dominant
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mechanism controlling isotopic values. Heavy O should correspond to heavy S
(magmatic), and as meteoric fluid is introduced, values should get progressively lighter.
However, when plotted, the data show nd correlation (Figure 15). It is intriguing that the
two samples with the heaviest S values come from the deep Ajax mine in the southern
‘part of the district, but other than that no correlation with depth is shown (Figure 16).

An alternative explanation for such a wide variation in S values is the role of
oxidation. If a magmatic source for éulfur, with 8**Syys values around 0%o undergoes
oxidation, the SO4~ created will be heavy. The H,S left behind will be light, therefore
zones of oxidation would show light 53*Sups values (Ohmoto and Goldhaber, 1997).
Mechanisms such as fluid mixing, reaction with wall rocks or Fe-bearing phases,
precipitation of sulfides, sulfates, and carbonates, and boiling can cause changes in the
redox state of a single hydrothermal fluid (Ohmoto and Goldhaber, 1997).

Variation in Isotopes

Generally, O, C and S values reported for alkaline epithermal deposits are largely
consistent with derivation from magmatic sources (Shannon et al, 1983; Richards and
Kerrich, 1993; Richards, 1995; Spry and Thieben, 1998). Alkaline epithermal deposits
are generally characterized by light carbon and sulfur isotopes, as mentioned above
(Ahmad et al, 1987a; Richards and Kerrich, 1993; Thompson, 1998), indicating eithef the
oxidized state of sulfur in alkaline magmatic systems, or the progressive oxidation of
hydrothermal fluids (e.g. boiling; Richards and Kerrich, 1993). These ranges overlap
typical magmatic values but can vary by up to 12%o, suggesting either mixing with other
isotopic reservoirs such as country rocks, or the operation of redox processes during
mineralization (Richards, 1995; Ohmoto and Goldhaber, 1997). Cripple Creek has a
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much wider range of both O and C values, and some slightly lighter S values. The
generalized ranges overlap to some extent with values seen in this deposit. Mixing
between magmatic and exchanged meteoric fluids may have resulted in extreme changes

in fluid chemistry, causing such a wide range in isotopic values.
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EXPLORATION

Stable isotope and fluid inclusion data are used to characterize the sources for
mineralizing fluids in epithermal deposits. These characterizations are often applied to a
simple model of an epithermal system in an attempt to explore for further mineralization.
The simple model commonly used to illustrate hydrothermal plumbing in epithermal
deposits shows magmatic fluids ascending in central Zones and meteoric fluids
descending along the margins of the hydrothermal cell and mixing with magmatic fluids
(Figure 17a).

Successful exploration entails defining patterns of fluid flow and assessing
mechanisms responsible for precipitation of Au-Te minerals to identify geochemical and
structural environments that are favorable for mineralization. It is important to address at
what scale the data needs to be examined. Many studies try to define exploration targets
on the scale of a vein system, but often it is not possible to find geochemical or spatial
patterns on less than a district-wide scale.

At the district scale, deposits like Cripple Creek are characterized by voluminous
metasomatism, multiple magmatic and hydrothermal events, and structurally focused
zones of high-grade mineralization (Jensen and Barton, 2000). Because regional
structures control magmatic and hydrothermal plumbing (Figure 17b), an understanding
of structural patterns, the distribution and intensity of hydrothermal alteration, and the
presence of geochemical anomalies is necessary for good exploration (Jensen and Barton,
2000).

Fluid flow in the Cripple Creek district is structurally controlled. Fluids tend to

exploit faults, fractures, shear zones, and contacts between rock types. Dikes are
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emplaced along the same trend (~N-S) as regional structures, and dike margins also
function as conduits for mineralizing fluids. Evi(ience to support this is seen in assay
data and as mineralized dike margins. Cripple Creek Breccia is often mineralized along
dike margins, but the dikes themselves are barren. This suggests that fluids flow
relatively more easily through the porous breccia than through dikes, and that when fluid
flow is blocked by dikes or stocks, fluids pond up against the contact and are forced to
flow along it. |

Multiple magmatic events imply multiple source regions for fluids. Magmatic
fluids likely ascend through the numerous breccia pipes so magmatic signatures would be
expected in the vicinity of them and isotopic values would be expected to shift towards
more meteoric values away from the pipes.

Figure 2 shows a cross section through several breccia pipes to illustrate the
structural complexity of the district. Worthy of note are the Precambrian ridges (Granite
Island) concealed beneath the Cripple Creek Breccia in areas of the district. These ridges
divide the diatreme into sub basins, and may have blocked fluid flow between basins. If
multiple breccia pipes throughout the district (located in different sub basins) each
sourced fluids, it is likely that the isotopic signatures of fluids varied quite a bit on a
spatial basis because the proportion of mixing between magmatic fluids and exchanged
meteoric fluids could vary between the sub basins.

Figure 17 compares a simple epithermal mixing model to perhaps a more realistic
scenario of hydrothermal plumbing in the structurally complex Cripple Creek District.
Note the multiple "magmatic" and "meteoric" fluid sources, and the structural control on
fluid flow. After considering a complex scenario for hydrothermal plumbing such as this,
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the prospect of seeing small-scale isotopic patterns does not seem realistic.

This study finds that there are no discernable stable isotope patterns until a
district-wide scale is cbnsidered, and the focus is broadened from ore-stage
mineralization to encompass barren veins. Whén examined spatially (Figures 18a and b),
‘the same data shows a broad zone, centered around the Ajax/Portland mines,
characterized by a magmatic signature. Farther away from this zone, values get lighter,
indicating fluids with more of a meteoric signature.

It is important to consider that this is three-dimensional data plotted in two
dimensions. The deepest samples included in this ‘study came from the southern part of
the district. As a group, the deep samples include four known ore-stage samples and they
have magmatic signatures (red of Figures 18a-c). Because they represent ore-stage fluids
with a magmatic signature, as included in the discussion on Figure 12, areas with a
magmatic signature may be promising exploration targets. It is assumed that the
magmatic signature in the southern part of the district is not biased by ore stage samples
because other "barren” samples with magmatic signatures are also located in the southern
part of the district.

To eliminate the uncertainty in calculated values due to temperature discrepancies
(pressure correction), Figures 18a and b are plots of the mineral isotope values, which
exclude sedimentary dolomites, fracture surface mineralizatibn, calcite replacing
phenocryst sites, and calcite deposited by recent descending waters because they were
likely deposited at low temperatures. The oxygen plot shows the clearest pattern, and the
same pattern is visible in the carbon data. When oxygen fluid values are plotted (Figure
18¢), the same pattern is observed, with a little less detail, indicating that the temperature
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-~ discrepancies due to pressure correction do not have a very substantial effect. The carbon
fluid values show no pattém. This may be attributed to several things: overall, the data
show a narrow range of carbon values (Figure 12), so seeing relative differences between
values is not as easy as with the oxygen data; and the reservoirs of carbon have larger
ranges than oxygén does, making it more difficult to pinpoint a source.

All things considered, this isotopic pattern is intriguing and worthy of
investigation. Based on previous research and data presented in this study, ore-stage
mineralization consistently has @ magmatic isotopic signature, and stable isotopic data

may prove to be a valuable exploration tool.
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CONCLUISONS

New stable isotope and fluid inclusion data from carbonates represent a broader
spatial and temporal view of the district than previous research, which has focused on
ore-stage mineralization. When this data is examined at a district scale, a geochemical
trend becomes Viéible, suggesting mixing between magmatic and exchanged meteoric
fluids. When examined spatially (Figu;es 182 and b), the same data shows a broad zone,
centered around the Ajax/Portland mines in the southern part of the district, characterized
by a magmatic signature. Farther away from this zone, values get lighter, indicating
fluids with more of a meteoric signature. Because deep, ore-related samples from the
Ajax/Portland mines have been shown to have magmatic signatures, areas with magmatic

values may be promising exploration targets.
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APPENDIX A: INTERPRETATION OF AGE DATES

Obtaining accurate age dates for rocks in the Cripple Creek District can be
problematic due to the extent of hydrothermal alteration. ~ Multiple stages of
hydrothermal alteration have masked the original geochemical signatures of most rocks
in the district. “Fresh”, truly unaltered, rocks are rare, and although rocks may look
“fresh” in hand sample, alteration may be subtle enough that it is only detectable under
the electron microprobe. Samples must be carefully chosen for chemical analysis and age
dating, and caution must be exercised when interpreting age dates. Alteration can “reset”
argon systematics and produce apparent ages that are older than the true age. This is
evidenced by lamprophyre dikes that are clearly the youngest intrusive phase based on
crosscutting relationships, but give old apparent ages. The poor spectra obtained for
many Ar/Ar and K/Ar analyses and lack of reproducibility of age dates is likely attributed
to the effects of K-metasomatism that occurs during alteration events (Jensen, 2003). The
reliability of the age data is based on correlation with observed field relationships and the
extent of alteration/quality of spectra obtained. Age data are compiled in the following

table for reference, but ages reported in the text are after Jensen (2003).
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APPENDIX B: PREVIOUS WORK

Past research has documented consistent characteristics for the mineralizing fluids
at Cripple Creek. Mineralization took place at relatively low temperatures (125-225°C)
and salinities (< 5 wt. %), and like othér alkalic-type deposits, Cripple Creek has heavy
§120 values (3 - 9%o) for vein minerals and calculated fluid values, which is consistent
with a magmatic source for mineralizing fluids (Jensen, 2003). This is an unusual
characteristic relative to other, “classic” epithermal deposits that are dominated by
meteoric fluids (O'Neil et al, 1973; O'Neil and Silberman, 1974; Taylor, 1973, 1974b;
Bethke and Rye, 1979; Casedevall and Ohmoto, 1977; Criss and Taylor, 1983). Most
studies on the Cripple Creek District to date acknowledge a minor shift in the stable
isotope data to lighter §!80 values during later stages of mineralization, suggesting that
mixing with meteoric fluid may have been a factor; however, convincing data to support
the presence of meteoric fluid is lacking.

Early Studies

The earliest and exceptionally detailed accounts of geology on the Cripple Creek
district come from Cross and Penrose (1895) and Lindgren and Ransome (1906). These
authors interpreted the deposit as a crater formed by explosive volcanic eruptions within
Proterozoic rocks. Loughlin and Koschmann (1935) later realized that subsidence was
largely responsible for the early formation of this deposit. Koschmann (1949) suggested
that reactivation of preexisting structures controls the emplacement of intrusions and

74



" formation of later conduifts fqr ore fluids. Lovering and Goddard (1950) describe district
geology and mineralization based on observations in active mines up to 1950.
Silberman, 1992

This study attempts to interpret the timing of mineralization and the evolution of
the fluids responéible for mineralization and alteration with stable isotope and fluid
inclusion data from different areas within the district. Cripple Creek shows similar
temperatures to ore deposits of the Greét Basin (O’Neil and Silberman, 1974), which are
interpreted to have formed by epithermal circulation of predominantly meteoric water,
but has enriched 8'%0 values suggestive of a deeper origin for fluids (magmatic?).

Most temperatures reported are estimatés (Reynolds, 1992) used to calculate the
equilibrium ore fluid with Friedman and O’Neil’s (1977) fractionation equations.
Silberman proposes a mixing model in which he calculates magmatic to meteoric fluid
ratios using end member compositions. Magmatic water is estimated to be 8.3%o, which
falls in Taylor’s (1979) range of 5.5 to 9.5%o for magmatic water, based on average 80
of “unaltered” rocks in the district, and the value for meteoric water is —17.5 %o (Taylor,
1974).

Samples from quartz-pyrite veins in sericiticly altered Precambrian rocks from
Grassy Valley are inferred to contain “magmatic” quartz typical of that in porphyry
environments and trapping temperatures are estimated to be ~3SO°C (Reynolds, 1992).
Calculated §'%0 fluid values (9.6, 5.5, and 5.0%o) are consistent with a magmatic or
predominantly magmatic source. The other two samples (8'%0 fluid values 3.8 and
3.0%o) are interpreted to be the result of mixing 80% magmatic water with 20% meteoric.

Wild Horse: No fluid inclusion data was obtained for these samples, but based on
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the assumption that the samples were deposited near surface; a temperature estimate of
180°C is used. Single samples of K-feldspar and quartz yield fluid values of —0.3 and
3.2%o, respectively. If the two minerals had formed at the same temperature, they were
not in equilibrium. If they had formed from the same fluid, feldspar had to form at a
higher temperature than quartz. If feldspar formed at 250°C, the fluid would be 20%
meteoric, and if quartz formed at 180°C the fluid would be 33% meteoric.

Portland: Using the same estirhate of 180°C, quartz yields a fluid composition of
1.8%o and a whole rock adularia of —0.2%o, suggesting a 25% meteoric component.

Cresson: Samples taken from quartz-gold telluride, calcite-gold telluride, quartz-
auriferous pyrite, adularia, and whole rock mineralization are listed in Table 1.

Table 1: Isotopic mineral values and calculated fluid values for Cresson samples.

Sample 880 pineru %0 5180 g1a%o Estimated temperature and salinity
calcite-gold telluride 17.3 6.6 165°-185°C, 4-6 eq. wt % NaCl
quartz-gold telluride 16.0 3.0

quartz-gold telluride 17.6 4.6

quartz-auriferous pyrite 13.6 0.6

quartz-auriferous pyrite 18.2 52

adularia 8.8 -2.0 170°-200°C for related fluorite
whole rock 10.8 0

whole rock . 12.0 1.2

whole rock 12.2 14

whole rock 103 -0.5

Silberman suggests the fluid that deposited the calcite sample has a magmatic
signature but is not in isotopic equilibrium with quartz at 180°C. Quartz would have been
in equilibrium with a fluid that was 15- 20% meteoric water. Fluids depositing quartz
from auriferous pyrite samples could have 12-30%, and fluids dep031t1ng adularia may
have up to 40 % meteoric water.

Altman (Gold Star Pit): Silberman cites only conclusions for this area, stating
that he has a lot of detailed isotope data from a traverse across the Pharmacist vein
system that leads him to believe the quartz formed from a dominantly magmatic fluid and
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the K-feldspar altered wall rocks had a significant meteoric component. He interprets
this as a predominantly mégmatic fluid becoming diluted with meteoric water near the
surface.

Based on this study, Silberman proposes a system in which magmatic waters
(high, 6180-enriched) move upward and mix with meteoric waters (low, §180-depleted)
entering the system based on the fact that the data are not more consistent. Because the
fluid inclusion temperatures are all approximately the same (< 200°C, with the exception
of Grassy Valley), the fractionation effect of temperature should not affect how the data
are scattered. If this was simply a cooling magmatic system, calculated fluid values
should fall within a more restricted range. Mixing with meteoric water is suggested to
causes the variation, and may be an important factor in triggering gold precipitation.
Another way to explain the isotope values is through isotopic exchange with wall rocks,
which is not addressed.

Preliminary K-Ar age data are also reported in this study (Table 2):

Table 2: K-Ar age data

Sample Mineral Age (Ma)

Monchiquite, Cres A-1 whole rock 29.0x1.1

Vug fill, Cres A-2 adularia 312+08

Drill cuttings, Cres A-3 roscoellite 283+0.7

Breccia clasts, Cres A-4 adularia concentrate 29.3+0.7

Altered volcaniclastic, Cres A-5 adularia 37.9+0.1

Breccia clast, JA-1 sericite 30.8+0.8

Breccia clast [A-2 sericite 32.7+09

Altered breccia, GRA-1 sericite 356+09

Altered rock, GRA-2 sericite 160+3

Phonolite sanidine 29.3 + 0.7 (Wobus, 1976)
Phonolite sanidine 27.9+ 0.7 (Wobus, 1976)
Syenite aegerine-augite 344 + 1.0 (McDowell,
1971)

Based on this data, the ~1.5 km of Cripple Creek breccia had to accumulate and

stop subsiding before 34 Ma, since the syenite gives the oldest age of intrusion. GRA-1,
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GRA-2 and Cres A-5 appear to be anomalously old and the data need to be reexamined,
but GRA-1and GRA-2 are from altered breccia so this may be interpreted as alteration
that occurred before emplacement of alkaline rocks. The adularia in CresA-5 is from an
altered volcaniclastic rock and may represent contamination from older feldspar. Sericite
in sample IA-2 is inferred to constrain the timing of mineralization (32.7 = 0.9 Ma)
because the sericite is intergrown vﬁth quartz and fluorite containing visible gold.
Sample IA-1 has sericitically altered clasts within a matrix of coarse, coxcomb quartz
crystals that contain gold flakes. Sericite from the clast gives a date of 30.8 + 0.8 Ma and
is interpreted as either the age when the clast was incorporated into the quartz matrix or
the age of an earlier alteration event, but in either case, Silberman suggests hydrothermal
alteration occurred over at least 2 million years. Both of these dates are older than those
reported in Kelley et al (1998). The whole rock Cres A-1 sample is interpreted as an
intrusion age of the monchiquite (29.0 = 1.1 Ma), which overlaps with mineralization age
of Cres A-3 (28.3 £ 0.7 Ma). CresA-2 (31.2+0.8 Ma) is older than the intrusion and is
_inferred to record a pre-monchiquite hydrothermal event.
Silberman proposes the following model based on preliminary data: The Cripple
Creek volcanic center developed over 6.5 Ma, from the beginning stages of volcanic
activity through the collapse of the hydrothermal system responsible for mineralization.
Volcanic activity and subsidence began before 34.5 Ma, successive intrusions were
emplaced until 28 Ma, and development of a hydrothermal system and mineralization
followed. Silberman states that confirmation of these dates is needed, and more “well
controlled” samples should be collected and dated. This study lacks well-constrained
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mineralogy and paragenetic relationships, and the dates are not particularly reliable.
1996 SEG Guidebook: Pontius

Pontius (1996) presents a basic overview of the mining history, regional geology
and district geolbgy with descriptions of the rock types within the district and the
occurrence of mineralization, as well as a model for formation of the district based on his
own observations and data cited from bwelley (1984) and Reynolds (1992). The model
has two stages, but realistically there is probably a transition between the two. Pontius
proposes that the beginning of hydrothermal activity coincided with the later stages of
volcanism.  Stage one involves resurgent doming and emplacement of phonolite was
accompanied by high temperature (350°C), high salinity (~30 eq. wt. % NaCl) fluids
responsible for widespread alteration. Stage 2 is a 2 Ma period during which cooler
(160°-220°C), more dilute (<5 eq. wt. % WNaCl) fluids circulated causing K-
metasomatism, pyritization, and eventually depositing gold.

1996 SEG Guidebook: Beaty et al

Beaty et al (1996) studied stable isotopes of the Pharmacist vein system in the
Altman area. The quartz-Au telluride-fluorite sheeted veins follow both northeast and
northwest structures and are hosted primarily by phonolite, but phonotephrite and
lamprophyre dikes are locally present. The richest ore occurs whére veins of both trends
intersect. Because mineral separates were difficult to obtain, whole rock samples of
altered phonolite collected along three transects perpendicular to the northeast striking
main Pharmacist vein were analyzed for oxygen isotopes and range from 7.10 to 14.31%o.

Three samples of unaltered phonolite were collected from the Altman pit and another
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 from outside the district for comparison. Feldspar separates from a “possibly altered”
phonolite yield $'%0 values of 10.53 and 11.19%0 and magnetite has a Valué of 5.44%o.
Feldspar, clinopyroxene and magnetite from a fresh phonolite have 880 values of 9.41,
6.88 and 5.11%o, respectively. A whole rock value of 8.12%o0 was obtained for a third
phonolite. Feldspar and magnetite in phonolite from outside the district have values of
790 and 2.78%o. The authors assign a value of 8 to 9%o as a pre-alteration background
value of phonolite in the Altman area (Eeaty et al, 1996). Presumably this is based on the
whole rock value for a “fresh” phonolite. If this assumption is true, alteration increases
the 8'%0 signature by ~ 5%o (up to 14.31%o) adjacent to the vein and the alteration halos
appear to extend at least 30 m into the host rock from the vein. However, their figures
show values closest to the vein increase then decrease with distance from the vein.
Phonotephrite and tephriphonolite dikes were also sampled but show no zonation
around the veins. “Fresh” samples (45-55 m from the vein) have whole rock 8'%0 values
of 6.70 to 7.88%o and altered samples (less than 10 m from vein) have values of 6.85 to
8.04%,, which is reported as no significant difference in this paper, but it is still a slight
increase. In addition, three 8'%0 values (7.91 to 9.52%o) and four 813C values (-5.48 to —
4.75%o) for dolomite were obtained from these samples. The authors state that the 8'%0
values approximate the typical range (7.9 to 9.5%o, not referenced)‘ for igneous rocks and
$13C values are similar to magmatic carbon (-2 to -5%o, Ohmoto and Rye, 1979). A dike
that shows silicification gave a whole rock §'%0 value of 10.08%.. Two other altered

rocks gave whole rock 5180 values of 4.52 and 8.77 %o. The low value of 4.52%o is

inferred to represent interaction with light meteoric water. The 8'%0 values for four
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quartz separates range from 18.01 to 23.71%o, and they represent vug quartz that post-
dates mineralization. However, in the text two of these are cited as whole rock values
and are inferred to indicate deposition at low temperature corresponding to increased
fractionation.

A single Sample of quartz-Au-telluride inferred to be part of the Pharmacist vein
was analyzed for fluid inclusions. The sample shows three stages of quartz, all of which
exhibit characteristics (explosion textﬁre 2, milky?) of boiling, but they only obtained
measurements from a growth zone that showed no evidence of boiling (?). Two phase,
liquid dominant inclusions with no daughters or CO; homogenized from 177 to 257°C,
with a mean of 220°C. No salinity data was obtained. The authors assume the
temperature of alteration to be 200-250°C based on this data. Because the phonolite is
composed predominantly of secondary feldspar the authors state that the isotopic
composition of the fluid is calculated to be 4 to 7%o using the alkali feldspar-water
fractionation of O’Neil and Taylor (1967), which overlaps with Taylor’s (1979) values
for magmatic water. If they used reported feldspar values for these calculations there
should be ~0 to 7%o fractionation between the mineral and fluid, which means they had to
use temperatures of 250°C and up.

The authors propose a model with altered phonolites adjacent to the vein having
the lowest 80 values (7.10 to 14.31%o), “silicified rock from the upper levels of the
hydrothermal system” (reported in their table 2 as quartz values) having intermediate
values (~18%o), and the late stage vug quartz having the highest values (21 to 24%o)
representing cooling of the ore fluid and increasing fractionation over time. The authors
claim these results are consistent with the Altman rocks being flooded with a large
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- volume of heavy, §'180-enriched ore fluid that mixed only locally at the margins of the

deposit with light, §'80-depleted mefeoric water, but the conclusion cannot be proven
without additional data. Because the meteoric water is represented by only one sample
and the water-rock ratio is not known, they state that the composition of the light end-
member fluid cahnot be calculated. This study lacks well-constrained “fresh” vs.
«“altered” rocks and the data they base estimated temperature on is unreliable.
1996 SEG Guidebook: Thompson

Thompson (1996) includes a compilation of fluid inclusion studies done on veins
throughout the district by students at the Colorado State University from 1982-1996.
Some of this data has been published by Thompson and students (Thompson et al, 1985)
in Economic Geology. The remainder is presented in the 1996 SEG field trip guidebook.

The Ajax mine: Mineralization in the Ajax mine occurs as sheeted zones of

narrow veinlets, open space fillings, and disseminated Au-telluride mineralization in

~ wallrock that extend up to 1000 m vertically (Thompson, 1996).

Thompson (1996) summarizes Dwelley’s (1984) paragenesis (Table 3) for veins
of the Ajax mine and applies it to “major veins” in the district to represent the deép
environment that he later compares to the shallow environment characterized by the
deposits like the Cresson diatreme and hydrothermal breccia pipes (minerals in
parentheses reported in Thompson et al, 1985): |

Table 3: Paragenesis after Dwelley (1984) and Thompson (1985)

Paragenesis for main stage veins
1. adularia + quartz + fluorite + dolomite + pyrite + marcasite
2. pyrite + marcasite + galena + sphalerite + chalcopyrite (+ quartz + pyrrhotite)

3. sphalerite + quartz + fluorite + pyrite + rutile (+ hematite — sphalerite)
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4. quartz -+ pyrite + tellurides (+ rutile + acanthite)
5. vug filling quartz + chalcedony + fluorite + dolomite

Thompson (1996) reports fluid inclusions in Ajax stage 1 quartz homogenize
from 234°-510°C (lower limit of 206°C, Thompson et al, 1985) and boiling is indicated
by variable liquid'to vapor ratios. Halite, sylvite and hematite daughters are common and
salinities range from 28.1-47.8 eq. wt. %, NaCl. Higher salinities occur in the upper 300
m of the vein system. He estimates true trapping temperatures to be ~200-320°C based
on water-rich inclusions that yield trapping pressures of 360-400 bars (unpublished
curves from Bodnar and Kuehn, not referenced). Thompson suggests ore fluid salinities
dropped between stages 1 and 2, but he does not report any temperature or salinity data
for stages 2 and 3 in this paper. In the 1985 paper he states stages 2 and 3 have
progressively lower homogenization temperatures and salinities (0-.8.3 eq. wt % NaCl).
During stage 4 ore fluids were less than 200°C (reported as 105° to 159°C with a mean of
140°C in 1985 paper) with salinities from 7-9 eq. wt. % NaCl, which is much higher than
the 1.4 to 3.5% range reported in the 1985 paper. Apparently higher temperatures aré
obtained from the Cripple Creek breccia hosted portions of the vein system (Thompson et
al, 1985)

Lane (1976) measured homogenization temperatures of 168°-190°C in fluorite
and 162°-266°C in barite in the El Paso mine, which correspond to Dwelley’s Stage 3 for
main stage veins. Burnett (1995) found filling temperatures in adularia at shallow levels
in the Ajax to be 152°-262°C with salinities ~7 eq. Wt. % NaCl. |

Thompson et al (1985) present the following conclusions on deep, main stage
veins in the 1985 paper: Ore fluids contained significant CO, (CO; @y + CO; vy + H,0-
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rich fluid) and estimated trapping pressures of 360 to 400 bars suggest first boiling would
begin at a depth of 4,000 m under hydrostatic conditions but boiling occurred over the
entire vertical interval of 1,050 m. As fluids boiled metal concentrations in the remaining
fluid increased. Stage 1 fluids were saline and had temperatures over 300°C, indicating
that chloride corﬁplexes probably transported gold. As ore fluids (less saline, below
160°C) were diluted due to meteoric influx, tellurium complexes became important and
precipitation of gold was triggered by céoling.

Hydrothermal Breccias: Thompson (1996) states ore fluids responsible for
mineralization in breccia pipes representing the shallower levels of the system were less
saline (4-8 eq. wt. % NaCl) than veins, but have similar temperatures. Mineralization
often occurs as open space filling within breccia pipes, and the various deposits have
been studied in detail by Thompson’s students. Paragenesis for mineralization in the

hydrothermal breccias of the Ironclad and Globe Hill deposits was established by Seibel

(1991). Boiling is documented in the upper portions of the Ironclad and Globe Hill
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hydrothermal breccias and the Cresson diatreme by Trippel (1985), Seibel (1991),
Burnett (1995) and Thompson (1996).

Thompson (1996) presents the generalized version of Seibel’s (1991) paragenesis
(Table 4) for hydrothermal breccia hosted ores below and applies it to the Cresson
diatreme:

Table 4: Paragenesis for breccia-hosted mineralization

1. adularia + quartz + apatite + pyrite/marcasite + fluorite + hematite

2. celestite + sericite + dolomite + barite + galena + sphalerite + chalcopyrite + fluorite + pyrite +
quartz + rutile

3. Au-telluride + pyrite + dolomite + quartz + sericite + native gold + Fe-Mn oxides
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The Tronclad deposit is a mineralized breccia pipe (90 by 150 m, extending to at least
320 m deep) that formed by cyclic brecciation, fluidization and mineralization of
phonolite. Seibel (1991) classifies its formation into three events (all gold-bearing),
which he summarizes in the 1996 SEG Guidebook:

1. Brecciatioh + precipitation of Au® + drusy quartz + chalcedony + fluorite +
carbonates + celestite (in matrix of clasts) + potassic alteration of clasts. Fluid inclusions
from this stage homogenize below 186°C and some, with variable liquid to vapor ratios
in individual growth bands, indicate that the fluids were boiling. Depressed melting
temperatures, which give salinities less than 10 eq. wt. %, are inferred to be caused by the
presence of CO,. In addition to CO; other compounds must have been present in the
fluids because some inclusions showed double menisci. The fluids are also interpreted to
be alkaline (pH 5 — 6.5) and oxidized based on stability ranges of the mineral assemblage
present.

2. Stage 2 brecciation is identified by fragments of stage 1 breccia + matrix sized
material + Mn-Fe oxides (+ cryptomelane) = quartz. Fluids are inferred to be more
oxidized than stage 1.

3. Stage 3, the most voluminous, contains clasts of the first two stages and occurs as
both clast and matrix supported breccias as well as massive and bedded microbreccias.
The bedded units display flow structures around clasts, channeling; and graded bedding
parallel to host rock contact that are interpreted to have formed by repeated episodes of
subsurface fluidization.

1996 SEG Guidebook: Seibel
Seibel (1996) states that oxygen isotopes from early stages of minerlaization
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- support a dominantly magmatic source for fluids, and speculates gold was transported as
a bisulfide complex and precipitated by an increase in oxygen fugacity and pH caused by
boiling, but does not cite any data. Seibel (1991) also suggests that CO, effervescence
may have caused deposition of feldspar.

The Globe Hill ore bodies occur at the intersections of northeast and northwest or east
and west trending structures just west of the Globe Hill breccia pipe, a triangular body
approximately 300 m on a side (Seibel, 1996). Ore is characterized by irregular
anastomosing veins of Au® £ Au-telluride Mn-Fe oxides + halloysite + fluorite in
phonolite (Seibel, 1996). Trippel (1985) summarizes the development of the Globe Hill
system in four events, which is described in more detail in Thompson et al, 1985:

1. Structurally controlled hydrothermal brecciation + calaverite + chalcedony +
quartz + celestite + fluorite + carbonate + pyrite + anatase + monazite + sphalerite -+
galena + chalcopyrite + pyrthotite + specularite + rutile + sericite + montmorillinite.

2. Development of veins with mineralogy similar to stage 1 with the absence of
chalcedony, monazite and rutile.

3. Brecciation with rock flour matrix and no associated mineralization.

4. Another stage of hydrothermal brecciation resulting in an anhydrite or
montmorillinite cemented breccia with the same mineral assemblage as the second stage.

Five stage 1 fluorite inclusions homogenized between 371° and 425°C and six
stage 2 quartz inclusions homogenized between 198.6° and 210.6°C, and an additional
one at 331.3°C (Thompson et al, 1985), but because the inclusions have variable liquid to
vapor ratios suggestive of boiling they are interpreted to be trapped at temperatures below
198.6°C (Trippel, 1985).
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The Cresson diatreme is a lamprophyre breccia pipe with mineralization occurring
dominantly within open space between breccia clasts. Saunders (1986) and Nelson (1989)
found no evidence for boiling fluids at depth in the Cresson diatreme hosted deposit. No
specific data is reported for the Cresson diatreme in Thompson’s 1996 paper, but Kelley
et al (1998) state that mineralizing fluids were low temperature (135°-175°C), low
salinity (3-9.6 eq. wt % NaCl), neutral to alkaline (pH ~5-6) and relatively oxidized
(Saunders, 1986). |

Saunders (1986) suggests gold telluride complexes could account for the amount
of gold throughout the vertical extent of veins and that oxidation was the triggering
mechanism for gold telluride precipitation followed by native gold under most oxidizing
conditions. Thompson speculates gold was transported initially as chloride or bisulfide
complexes and suggests other complexes were significant in an alkaline fluid under
boiling conditions because bisulfide complexes would have destabilized before gold
telluride deposition so paragenetically Au® would come first, which is the opposite of
what is observed. Because the amount of gold remains fairly consistent throughout the
vertical extent of veins (up to 1000 m) and temperatures decrease towards the surface and
with time, Thompson argues that temperature was not responsible for triggering
precipitation of gold, which contradicts his conclusions in the 1985 paper.

Thompson reports sulfur isotope data from galenas in the district are very light
(™S = -6.8 to —21.1%o) and in general show lightest values at shallower depths. No
locations or interpretations have been given for this data. Because §**S fractionates into
the vapor phase during boiling leaving behind fluids enriched in 8°*S (Ohmoto and Rye,
1979), these observations would be consistent with a shallow boiling horizon, where the
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galenas formed from condensing H,S. In the Ajax mine, Thompson states that fluids
poiled over the entire vertical interval of 1050 m. If the S data does suggest a shallow
boiling horizon, the shallower parts of the system must have experienced boiling for a
lengthier amount of time relative to the deep environment.

Based on oxygen isotope data reported in Beaty et al (1996), Kelley et al (1996),
and Fears (1986) and the high salinities presented in his 1996 study, Thompson supports
a predominantly magmatic source for ﬂﬁid, and proposes that the change over time from
an H,S dominated system to predominantly S04~ is a result of oxidation due to either
mixing with meteoric water or boiling.

He further states trace element geochemistry links ore fluids to lamprophyre
intrusions, which are also inferred to be the source of metals and H,S CO, collected from
deep in the Ajax mine has §3C of —3.2%o, which approaches —3%o for Hawaiian
fumaroles and —7%o for CO, dissolved in basaltic magmas, and is inferred to indicate
derivation from an alkaline mafic melt.

Thompson, 1998

In his GSA abstract Thompson (1998) again reports five paragenetic stages for
vein mineralization. Temperatures and salinities obtained from fluid inclusion studies are
consistent with his 1996 observations. The data reported for the “bulk tonnage” deposits
(hydrothermal breccias) is a combination of observations from his 1985 and 1996 papers.
He states that ore fluids are magmatically derived based on fluid inclusion, stable isotope
and trace element data. S data are inferred to indicate oxidation of fluid and H,S: SO4~
ratios. He also states Au:Ag ratios of dore produced over the past 100 years are higher
(~10) in deeper levels compared to shallow levels (< 5). A correlation between Au and
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K,0, As, Te, and F in shallow level deposits is inferred, but no correlation with Ag and S
is evident.
Jensen, 1998

Jensen’s (1998) GSA abstract describes K-metasomatism alteration halos
(adularia-pyrite- Fe, Ca, Mn, Mg carbonate-quaﬂz-ﬂuorite-TiOz—tetrahedrite-sphalerite-
galena-sericite + roscoellite + monazite + bast (?) = U-Th minerals) associated with high-
grade Au-telluride veins. The halos afe typically greater than 20 times vein width and
coalesce to form broad zones of alteration that occur throughout most of the diatreme.
Ore fluids are interpreted to be high in CO, based on the increasing carbonate:pyrite ratio
outward from the veins and the lack of acid alteration. Clay and sericite alteration are
pervasive in the upper 300 m of the system but become fracture controlled and more
restricted with depth as do veins. Based on stable isotope and mass balance data, Jensen
suggests a large volume of magmatic hydrothermal fluid is required to have entered the
system syn- to post-lamprophyre time. Early, high temperature veins (biotite-pyrite-K-
feldspar-fluorite-carbonate-base metal + magnetite) present in deepest exposures but rare
at shallow levels are inferred to be ore stage and are sometimes overprinted by later, low
temperature Au-rich mineralization associated with deep carbonate + base metal veins up
to 2 m wide, anhydrite-celestite veins, albite-pyrite-sulfate veins and Ca-Na amphibole
mineralization. Early alteration types include biotite-magnetite-K-feldspar (fractu;e
controlled, associated with syenite), pervasive biotite-magnetite + pyrite (deep), and
pervasive K-feldspar-hematite (occurs at all levels) and are inferred to be associated with
early intrusions and not related to gold mineralization.

Rosduetscher, 1998
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Rosdeutscher (1998) studied stable isotopes of O, H, and S, and fluid inclusion
data from quartz-adularia-pyrite-kaolinite veins hosted largely in Proterozoic granodiorite
to constrain an origin for the mineralizing fluid responsibl‘e for depositing the
disseminated gold in the Grassy Valley area of the district. Results are presented in a
M.S. thesis and summarized in a 1998 GSA abstract. 880 and 8D values for illite,
kaolinite, and quartz were measured and isotopic fluid values were calculated using an
average temperature of 300°C for Gréup 1 inclusions, described below. For ten illite
samples, 5180 and 8D values range from 7.0 to 12.2%o and —109 to —63%o respectively.
Nine kaolinite samples have 8180 values from 13.4 to 15.9%o0 and 8D values from —106 to
—80%o. Only four 5130 values (19.2 to 22.7%o) were obtained for quartz. Calculated
fluid 30 and 8D values range from 3.5 to 8.7%o and —84 to —38%. for illite, and 7.8 to
10.3%o and —88 to —62%o kaolinite, respectively. Calculated fluid 880 values from quartz
are 12.2 to 15.4%o. &5°*S values for 23 vein pyrites range from —10.4 to —3.9%o with a
mean of —5.3%o. In contrast to Thompson’s (1996) statement, Rosdeutscher states no
apparent relationship between depth and §%*S values exist.

Eight samples of vein quartz were analyzed to obtain 24 homogenization
temperatures and 10 salinity measurements. Two types of fluid inclusions can be
identified. The first group consié;s of two-phase (L + V), liquid-rich (~90 % L)
inclusions that homogenize between 228° and 432°C and have salinities from 3.3 to 6.6
eq. wt. % NaCl. The less abundant group 2 contains three-phase (L + V + NaCl)
inclusions that homogenize between 407° and 467°C and have salinities > 26 eq. wt. %
NaCl; however, é pressure correction of 40° to 50°C (Potter, 1977) may be applied based
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~ on Pontius’s 1992 estimate that approximately 500 m of erosion have taken place since
the end of volcanism in the district.

Rosdeutscher concludes that O and H isotopic values from illite and quartz
suggest a magmatic origin for hydrothermal fluids, and S isotope values indicate a
magmatic source for S. Mineralizing fluids were hot (~470°C) and became cooler with
time as sericite precipitated followed by quartz + adularia + auriferous pyrite at around
300°C, and dickite and kaolinite at e\;en lower temperatures. Kaolinite mineralization
appears to be hypogene, but without a definite temperature estimate it is unclear whether
the data indicate a supergene meteoric source at 35°C, or a magmatic fluid at 200°C.

Kelley et al, 1998

Kelley et al (1998) used a variety of techniques to investigate the timing of
emplacement and mineralization and probable sources for alkalic magmas and
hydrothermal fluids. ~Research has been published in Economic Geology and
summarized in a GSA abstract. Based on trace element geochemistry, the authors
propose fractional crystallization of phonotephrite creates the more felsic trachyandesite,
tephriphonolite and phonolite; but, as Jensen and Barton (2000) point out, the intrusions
become more mafic with time, so this model does not apply.

5130 values obtained from clinopyroxene (5.5-6.5%o in syenites, 4.9-5.9%0 in
mafic igneous rocks) and feldspar (6.6-7.6%0 in syenites, 6.6-8.0%o in phonolites)
separates overlap with values typical of unaltered mafic rocks (~ 5 to 8% for basalts and
gabbros) according to Taylor and Sheppard (1986). Mineral values were used to
calculate whole rock or “magma compositions”, which range from 6.4-7.1%0 in
phonotephrite and 7.7-8.4%o in tephriphonolite, trachyandesite and phonolite. The
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authors claim increasing values with differentiation throughout the suite is to be expected
(Taylor and Sheppard, 1986). Based on timing relationships described above,
differentiation is highly unlikely, and if it did occur at equilibrium above 900°C, the
effect would be smaller than 1%o (Taylor and Sheppard, 1986). They also state that the
1.8%o0 difference between the tephriphonolite/trachyandesite (felsic, earlier), and the
phonotephrite (mafic, later) and the low (<9%o) calculated “magma” values are consistent
with a source in the upper mantle/low.er crust, and upper crustal contamination was not
significant.

Pb isotopes indicate that the source rocks for Cripple Creek magmas maintained
low U/Pb ratios for a significant amount of geologic time and had average Th/Pb ratios,
both of which are consistent with a source that has evolved in the lower crust after
granulite metamorphism has preferentially expelled U relative to Th. Pb isotopes of
galena were used to infer the source of Pb in ore fluids. Vein galena and K-feldspar are
cither equal to or more radiogenic than whole rock (phonolite) samples analyzed, which
is interpreted as a Pb contribution to ore fluids from surrounding Proterozoic rocks. As
expected, towards the periphery of the diatreme, fluids interacted to a greater degree with
Proterozoic rocks and show more radiogenic values.

Sr isotope compositions of the more mafic rocks 7Sr/*Sr = .70391-.70474)
overlap with subcontinental lithospheric mantle (.7035-.7100) and oceanic island basalts
(.7028-.7070) (McDonough et al, 1985) and are consistent with a metasomatized mantle
source. The more radiogenic ratios of phonolites (.70600 and .71249) suggest crustal
assimilation. However, one phonolite falls on the borderline with a value of .70475, and
should be grouped with the mafic rocks.
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Based on their observations thus far, it makes sense fc;r the early, more felsic
phonolites to have assimilated some crustal material as conduits were established during
initial emplacement. With time these conduits would be coated by earlier eruptions and
successive eruptions would assimilate less crustal material. This may be a reason the
magmas appear more mafic and primitive with time.

40 A1/ Ar geochronology was utilized to establish when the igneous activity in the
district began. Sanidine from a tephriﬁhonolite gives an age of 32.5 £ 0.1 Ma, and biotite
from a different tephriphonolite yielded an age of 32.3 = 0.1 Ma. These two dates are
reported as statistically identical. This data negates the fractional crystallization model in
which the authors propose phonotephrite is the oldest intrusive phase. Phonolite ages
range from 31.8 to 30.9 Ma. Three sanidine dates reported for phonolite are 31.8 + 0.1,
31.6 + 0.1, and 30.9 £ 0.1 Ma and a trachyandesite age is 31.6 = 0.2 Ma. The authors
conclude tephriphonolite was emplaced first, followed by phonolite and trachyandesite.
The younger phonolite date, recorded six km outside the district, is inferred to represent a
second phase of phonolite emplacement.

K-feldspar and biotite from veins place an upper constraint of 31.3-29.6 Ma on
gold mineralization because this is thought to be the early, high temperature form of
alteration. Kelley et al (1998) calculated the composition of mineralizing fluids at the
Ocean Wave mine based on §180 values for K-feldspar (7.9%o) and biotite (3.4%o) from
their study and temperatures of mineralization (250°C) from Thompson (1996). Fluid
§'80 values (2.4 and 4.2%o) approach the range for magmatic water, but they do not
address what would cause a shift toward lighter values. Two biotites gave 8D values of
_174 and —196%o, and again using 250°C, calculated fluids have 8D values of —116 and
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~138%o if an equation for biotite-water (400-800° C; Kyser, 1987) is used. But, if
Venneman and O’Neil’s (1996) equation for biotite-H" (150-400°C) is used, fluid values
of -74 and —96%. move much closer to the magmatic range of -50 to —85%. (Taylor,
1979).

In conclusion to their study the authors propose a timeline of events described in
detail in the paper, but only brieﬂy. summarized here. They cite a change from
compression to extension between 40 and 32 Ma and they suggest “postsubduction
melting of the asthenosphere and subcontinental lithospeheric mantle generated alkaline,
volatile-rich magmas that assimilated and mixed with lower crust and differentiated by
fractional crystallization (which has already been discussed as an unlikely model above)
during and/or after ascent.” Felsic magmas (32.5-30.9 Ma), followed by mafic and
ultramafic magmas ascended rapidly along fractures and were emplaced in the shallow
crust. During the later stages of fractional crystallization, a predominantly magmatic
fluid enriched in X, S, and F deposited biotite, K-feldspar, dolomite, fluorite and pyrite.
Beginning ~ 31 Ma, gold and gold tellurides were deposited. Mineralization continued
until 30 Ma, possibly longer.

Mote, 2000

The focus of Mote’s 2000 study was to characterize the fluids responsible for vein
mineralization hosted predominantly in the Precambrian granodiorite based on fluid
inclusion data from deep drill hole UGC 97-5 along the margin of Granite Island. Seven
samples of quartz-carbonate-sulfate-K-feldspar vein material were analyzed to obtain
approximately 100 homogenization temperatures and 80 salinity measurements. Fluid
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inclusions observed fall into the following four categories:

1. Moderate salinity (0.1 to 25 eq. wt. % NaCl), two phase (H2Oq) + HaOwy)
inclusions that homogenize from 190° to 320°C.

2. Halite-bearing inclusions (salinities > 40 eq. wt. % NaCl) present at depths of
2585 to 2770 to .feet. This group contains halite + sylvite £ unknown daughter salt
(CaCl,?) + opaque daughter mineral (hematite?) and homogenizes from 350° to > 500°C.

3. Tnclusions that can be classified as groups 1 or 2 but also contain CO,. This
group homogenizes to temperatures from 300° to > 500°C, indicating CO, was trapped as
a vapor phase.

4. Vapor rich inclusions present in samples at depths of 12357, 1922’, and 2770°
(observed but decrepitated before a measurement could be obtained). These inclusions
are assumed to have low salinities because they are 60 to 80 % vapor (7). 3 inclusions
homogenize from 400° to 500°C and one at 640°C.

Mote concluded that the presence of type 3 inclusions indicates a salt
oversaturated fluid that may have helped in the transport of Au, the presence of type 4
inclusions indicates boiling may have occurred deep in the system, and the data observed
is consistent with the presence of an intrusion at depth.

Jensen and Barton, 2000

Jensen and Barton (2000) attempt to summarize characteﬁstics of gold deposits
associated with alkaline magmatism. As a group these deposits can be characterized by:

1. Multiple intrusive phases and complex evolutionary histories. In the case of
Cripple Creek, intrusions become more mafic with time and are likely derived from
different sources. Most researches in Cripple Creek have tried to link gold with the
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intrusive phases observed, but Jensen and Barton suggest that the intrusion responsible
for introducing the gold has not yet been identified.

2. Relatively cool (< 300°C as compared to porphyry types) fluid with low
salinities (< 10 eq. wt % NaCl) and moderate to high CO; concentrations. Cripple Creek
may have formed at pressures higher than are typical of most epithermal deposits because
fluid inclusions contain liquid CO; (Thompson et al, 1985). Fluids are inferred to be near
neutral based on the widespread stabiiity of K-feldspar and carbonate ’and the lack of
significant hydrothermal quartz.

3. A high concentration of magmatic fluids is inferred because reported stable
isotope data overlap with magmatic fluid compositions, but commonly approach lighter
values during later stages of mineralization which may indicate mixing with a lighter end
member fluid. However, the authors state that Cripple Creek and epithermal deposits in
the Black Hills may have formed almost exclusively from magmatic fluids.

4. Alkaline epithermal deposits may transition into porphyry-type Cu (Aw)
deposits at depth, and this is usually evidenced by low temperature alteration overprinting
higher temperature alteration, which is documented at Cripple Creek (Jensen et al, 1998).

5. Phlogopite present in deep, high temperature biotite alteration infers high
oxidation states (Wones and Eugster, 1965; Beane, 1974; Guidotti, 1984), as does the
presence of sulfates (Thompson et al, 1985; Saunders and May, 1986; Moyle et al, 1990;
Richards and Kerrich, 1993).

6. Alkaline deposits typically have moderate to low sulfidation states and contain
magnetite = hematite, sphalerite (Fe-rich), and tetrahedrite-tennantite.

7. Because alkaline epithermal deposits are characterized by near-neutral, low
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salinity, S-bearing fluids, gold is transported as a bisulfide (Au(HS),) complex (Seward,
1973; Romberger, 1991), whereas base metals have a low solubility. The authors state
that telluro-complexing of gold suggested by previous papers (Thompson et al, 1985;
Saunders and May, 1986; Richards, 1995) is not likely because gold-tellurium complexes
would have to bé orders of magnitude more stable than gold-sulfide complexes to
transport gold.

8. Gold precipitation may be triggered by different mechanisms, several of which
may be influencing fluid compositions contemporaneously: boiling, fluid mixing
resulting in a change in oxidation state or dilution, cooling, and wall rock reaction
(sulfidation that destabilizes gold-sulfide complexes). Evidence for wall rock reaction
(sulfidation) is seen at Cripple Creek where mineralization occurs disproportionately
around lamprophyres and other mafic rocks.

Jensen’s current survey on S isotopes throughout the district shows clear evidence
for at least two, if not multiple, fluid sources along the periphery of the diatreme.
Although his O values are fairly consistent throughout the district, there 1is enough

variation for some degree of mixing to have taken place (Jensen, written comm., 2002).
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APPENDIX E: METHODS

" Detailed sample descriptions, photographs, and all other data collected on samples
are presented in Appendices J through M (on disc). The reader is referred to the
following Appendices for information on carbonates of each specific type: |

Appendix J . Calcite Samples

Appendix K: Dolomite Samples

Appendix L: Ankerite Samples

Appendix M: Rhodochrosite Samples

Fluid Inclusion Microthermometry

Fluid inclusion microthermometry was conducted at the New Mexico Institute of
Mining and Technology using a Iinkham TH-600 heating-freezing stage and an Olympus
BH2 petrographic microscope. Doubly polished fluid inclusion thick (~200 m) sections
of carbonate veins were scanned and broken into chips to fit on the heating-freezing
stage. To obtain accurate measurements chips with large, primary, isolated inclusions
were measured to ensure no leakage or necking down had occurred. Photographs were
taken prior to freezing the sample; and sizes, phases present (liquid + vapor), inclusion
type (primary or psuedosecondary), and degree of fill were recorded. The rate of heating
or freezing was digitally controlled, and could be dropped to 0.3°C/minute during
measurements to avoid errors caused by thermal gradients. |

Stable Isotopes

Stable isotope analysis was completed at The New Mexico Institute of Mining
and Technology on two different systems. The majority of the carbonate (O and C) data
was analyzed on the original system, a Finnigan Delta E with vacuum extraction lines.
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Analytical precision, calculated from duplicate samples is = 0.9 %o for O and + 0.4 %o for
'C. 20 carbonate samples and all S samples Wefe analyzed on a Finnigan Delta Plus XP
with a Finnigan Gas Bench for carbonates and a Costech EA for sulfides. Analytical
precision is + 0.23 %o for O, = 0.03 %o for C, = 0.2 %o for S in pyrite, = 2.33 %o for S in
sphalerite, and + 0;45 %o for S in galena.

Oxygen and Carbon Isotopes

93 carbonate vein samples taken from drill core, the Koschmann collection, and
surface outcrop were coarsely crushed, sieved to an appropriate size fraction for removal
of sulfides, separated, and crushed again for analysis.

Analyses done with the Finnigan Delta E with vacuum extraction lines used the
following procedure: For pure carbonate samples approximately 12 mg of sample
(adjusted accordingly for impure or whole rock carbonate samples) was loaded into one
side of a carbonate reaction vessel for reaction with phosphoric acid loaded on the other
side. Unreacted sample vessels were left open to vacuum and pumped for a minimum of
four hours to remove atmospheric gasses. Sample vessels were closed and allowed to
react overnight in a 50°C water bath to produce CO, gas for analysis. The CO; sample
was then cleaned and extracted through a series of cold traps and analyzed for O and C
on the mass spectrometer. O values were corrected using a calculated acid fractionation
factor that incorporated a comparison of standard measurements to know values. C
values did not require a correction.

Samples analyzed with the Finnigan Delta Plus XP used the following procedure:
Approximately 0.5 to 0.6 mg of carbonate sample was measured and added to a septum-
capped glass vial and flushed with helium for 3 minutes. 10 drops of phosphoric acid
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was injected with a needle and samples were allowed to react at 45°C for 3 hours (calcite)
to 16 hours (dolomite). The CO; was extracted using a helium carrier gas and analyzed
by continuous flow.

Sulfur Isotopes

26 sulﬁdé samples separated during carbonate preparation were kept for S
analysis. Because some sample loss is experienced during the crushing procedure, large
samples were crushed to a fine powder for analysis, but small samples were analyzed as
whole grains. Pyrite, sphalerite, and galena samples of sizes 0.75, 1.2, and 3.0 mg,

respectively were to be loaded in tin capsules for analysis.

X-ray Diffraction Data

Carbonate samples can be classified into eight categories (described in Results
section, below) based on mineralogy and style of mineralization. Representative samples
from each group were analyzed using at the New Mexico Bureau of Geology and Mineral
Resources X-ray Diffraction facility to confirm mineralogy. Pure calcite and dolomite
standards were also analyzed for comparison with samples. The same powdered samples
used for stable isotope analysis were used for XRD. The majority of samples analyzed
was obtained from clean mineral separates and generate very sharp XRD peak patterns.
Groups one and two are whole rock analyses, but the carbonate peaks are still plainly
visible.

Calibration of the XRD equipment was done at the beginning of each session
using the silica 111 peak. All samples were scanned between 2 and 70 degrees and
analyzed using JADE 6 software. The computer matched primary peaks in each pattem
with minerals in the JADE database.
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APPENDIX G: FLUID INCLUSION PRESENTATION

This disk contains the following PowerPoint presentations:

» Introduction to Appendices

»  Appendix G: Fluid Inclusion Presentation

»  Appendix J: Calcite Sample Descriptions

» Appendix K: Dolomite Sample Descriptions

»  Appendix L: Ankerite Sample Descriptions

»  Appendix M: Rhodochrosite Sample Descriptions
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APPENDIX N: X-RAY DIFFRACTION RESULTS

The sample peak pattern for each sample analyzed can be found following the
sample description slide in Appendices J -M.

The first group of samples analyzed consists of lacustrine sediments of two
different types. One type is dolomite-cemented arkosic sandstone (sample 39-K-245)
derived from shallow lacustrine deposition of the Cripple Creek breccia. The other type
(39-K-248) is fine-grained, layered sediments with alternating dark and light bands. This
particular sample was drilled out of the dark layers and is dolomitic in composition.

The second group is represented by sample 39-K-163B1, a maroon, white, and
green layered volcaniclastic sediment with calcite replacing original phenocryst'sites.

Group 3 occurs as massive dolomite within lamprophyre intrusions (sample DOL-
1), and euhedral dolomite in vugs and on fracture surfaces (CC 1840 1337°5%).

Sample 25-L-21 represents a group of yellowish dolomites found as open-space
filling in breccias.

The fifth group consists of sugary ankerite + fluorite veins (CC 1954 1165°) or
boxwork ankerite after dolomite (CC 2236 1131°).

Group 6, the largest group, is made up of fairly clean, massive calcite (i pyrite,
quartz, + base metal sulfides along vein margins) veins up to two feet across, but most
commonly one to three inches wide. Samples UGC 97-5 1341°3”, UGC 97-5 16127107,
and UGC 97-5 2294°4” all show clean calcite peaks.

Samples 39-K-52 C and 41-K-89 E represent a group of rhodochrosites that occur
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as massive veins ( fluorite + base metal sulfides) or breccia open-space fill.

Sample 25-1-24 is a recent sample deposited from descending waters in the

Cresson Blowout and consists of gypsum and calcite.
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