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ABSTRACT

Because of technological limitations, the scale of property heterogene-
ity that can be represented with a computational model is significantly larger
than the scale at which properties are measured by most instruments. Conse-
quently, techniques are needed to upscale and synthesize small-scale measure-
ments to infer larger scale effective properties. Laboratory upscaling experi-
ments were conducted by Tidwell and Wilson [2000] using an automated gas
minipermeameter system. Repeated permeability measurements on geologic
samples showed different but related patterns of spatial variability at different

sample supports and, depending on the rock, different upscaling behavior.

We numerically simulated a field of log permeability values prescribed
to geostatistically replicate a block of Massillon sandstone. Log permeability
values were simulated using sequential Gaussian simulation on a block-centered
grid using laboratory data to prescribe geostatistical parameters. The opera-
tion of a steady-state gas minipermeameter was modeled by means of the finite-
difference method. The laboratory multisupport minipermeameter allows for
highly resolved gridded measurements to be made using a set of five inter-
changeable tip-seals, each twice the size of the next, ranging in inner radius

from 0.15 cm to 2.54 cm. The numerical scheme that models the multisupport



minipermeameter replicates change of sample support by holding constant the
boundary conditions representing the tip-seal (thereby maintaining constant
flow geometry) while repeatedly doubling the resolution of the grid, effectively
mimicking the corresponding halving of tip-seal dimensions. The X-y positioner
that moves the tip-seal of the multisupport minipermeameter across the face of
the rock sample is numerically modeled by shifting the grid of log permeability
values row by row relative to the fixed boundary conditions. The multisupport
minipermeameter made measurements on a 50 x 50 grid; due to the time re-
quired to perform the computations, the numerical experimental measurement

“grid” consists of a transect of 100 points.

Effective log permeability measurements show that the numerically
modeled minipermeameter capably replicates the operation of the laboratory
instrument. The variance of the numerical effective log permeability decreases
as tip-seal size increases, as does the variance of the laboratory data set. This
result is consistent with the simple averaging characteristic of both the mea-
surement grid and the change of sample support. In addition, semivariograms
calculated from numerical effective log permeabilities show patterns similar to
those of the laboratory data, namely that the sill decreases and the range in-
creases as tip-seal size increases. The behavior of the sill is simply a reflection
of the upscaling of the variance, and the behavior of the range reflects the fact

that as the tip seal size increases, two measurements must be separated that



much farther apart before they become uncorrelated.

The numerical experiment allows for comparison between the numer-
ical effective log permeability and the underlying synthetic log permeability
field. In an effort to determine how well the_instrument characterizes the spa-
tial structure of the field it samples, we determined that it is neither possible
for an instrument to resolve features of the target field smaller than twice
the characteristic length (in this case the inner tip-seal radius), nor can a set
of measurements made on a regular grid fully resolve features at scales less
than twice the measurement grid interval. This result is consistent with the
sampling theorem of Fourier analysis. In addition, comparison between the
numerical effective log permeability and the mean of the log synthetic perme-
ability field confirms that the two variables are strongly correlated and that
minipermeameter measurements of heterogeneous permeability fields are most
strongly correlated with the regions of the field that lie nearest the inner and
outer edges of the tip-seal. This results confirms the spatial weighting function
theories proposed by Aronson [2001] and Molz, et al. [2003] for homogeneous

fields.

Though the numerical experiment replicates many operational charac-
teristics of a physical minipermeameter, it failed to capture the most important
teature of the laboratory experiment: the upscaling of the mean effective log

permeability. While the laboratory values show a strong upward trend as the



tip-seal size increases, the numerical results are essentially flat. The fundamen-
tal physical reason for this is that the laboratory sample allows the development
of fast flow paths as tip-seal size increases.. We identified three primary causes
for the failure of the numerical experiment to reproduce the mean upscaling seen
in the laboratory. First, small-scale structures of the laboratory sample are not
measured by the laboratory instrument, primarily because of the limitations
of bandwidth noted above. As a result, these high spatial frequency features
are not simulated in the synthetic log permeability field, based as it is on the
laboratory data set. Second, the simulated field is assumed to be lognormally
distributed, which is an incorrect parameterization of thé laboratory measure-
ments. As a result, the semivariogram of the synthetic log permeability field is
only approximately representative of the laboratory version. Third, qualitative
features of the laboratory measurements are not replicated by the simulation.
The sequential Gaussian simulation routine fails to replicate the zones of de-
positionally related cross-strata unconformably separated by low permeability
bounding surfaces. These three shortcomings, at a minimum, should be ad-
dressed in order to create a faithful replica of the laboratory sample which will

demonstrate effective mean log permeability upscaling.
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NOMENCLATURE
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CHAPTER 1

INTRODUCTION

1.1  Problem Statement

Groundwater hydrologists depend on simplified abstractions, or mod-
els, to represent subsurface flow and transport systems. These models are
cast in the form of partial differential equations which in turn are often solved
numerically with digital computers. This approach is so ubiquitous that the
particular numerical scheme employed is commonly referred to as the “model”,
a convention we will adhere to herein. A fundamental challenge presented to
the modeler is to correctly parameterize the physical properties (porosity, per-
meability, etc.) of the the porous medium supporting a particular flow and
transport system. This challenge appears in the form of two related problems:
interpolation and upscaling. The problem of interpolation arises from want of
information. The system being modeled can be sampled only sparsely and in
a small subset of its extent, necessitating estimation of parameters at unsam-
pled locations. The problem of upscaling arises from the quality of information
available. Measurements are typically made at a much smaller scale than that
of the model. Upscaling is the process by which properties defined at the mea-
surement scale are assigned to the model scale. Permeability, in particular, is
a function of both material properties and the flow geometry imposed by the
instrument used to obtain the measurement, so both factors must be taken into

account in the upscaling process.



Upscaling, so far as we are concerned, can be construed broadly to
mean a method for determining an effective or average property of a hetero-
geneous porous medium. Couching the properties of the porous medium in
the framework of the continuum hypothesis, we suppose that these properties
are piecewise continuous fields: every mathematical point in the medium is
associated with a property value that we understand to be assigned to a repre-
sentative elementary volume (REV) centered on the mathematical point [Bear,
1971]. In this sense, we have encountered fhe upscaling problem at a very
basic level. When we agreed to sweep the detailed pore-scale fluid dynamics
under the rug and instead concern ourselves with ensemble behavior at the
REV scale, sparing us from working directly with the Navier-Stokes equations
in the complicated and inaccessible realm of individual pores and allowing us
to invoke relatively simple macroscopic equations like Darcy’s law, we tacitly
invoked an upscaling rule. However, while the REV is large compared to indi-
vidual pores, it is still small compared to instruments used in the lab or field,

so we may regard REV properties as point-scale properties at the lab scale.

At the lab scale, we can formally treat a measurement as a rule
specifying how to average point-scale properties to yield an effective property
[Beckie, 1996; Desbarats, 1992; Indelman and Dagan, 1993; Oliver, 1990; Rubin
and Gomez-Hernandez, 1990]. The volume over which an instrument averages
a quality to which it is sensitive is called the sample support. In some cases, the
averaging rule dépends solely on the intrinsic property of the medium. For ex-
ample, effective porosity is just the arithmetic mean of the point-scale porosity
in the sample support. In other cases the effective property depends on the flow

context in which it is measured. Effective permeability, for one, depends on



the geometry of the fluid flow relative to the medium. Famously, for example,
a layered system could be correctly parameterized by the arithmetic mean, the
harmonic mean or the weighted geometric mean [Desbarats, 1992] depending
- on whether flow is parallel to the layering, perpendicular to the layering or

radial, respectively.

In general, permeability depends on the sample support at which
it is measured, as has been demonstrated from both physical [Brace, 1984;
Parker and Albrecht, 1987; Clauser, 1992; Hanor, 1993; Schulze-Makuch and
Cherkauer, 1997] and computational [Warren and Price, 1961; Desbarats, 1987
Gomez-Hernandez and Gorelick, 1989; Bachu and Cuthiell, 1990; Durlofsky,
1992] experiments. In as much as technological limitations preclude making
measurements at the model scale, upscaling from measurement to model pa-
rameter is conditioned on spatial statistical characteristics of the point-scale
field. These characteristics can be obtained by making multiple measurements
on a sampling network [Beckie, 1996]. The efficacy of a sampling campaign
depends on both the scale of the sample support of a single measurement (the
measurement scale) and the scale of the distance between measurements (the
sampling scale). Natural porous media exhibit variability across a range of
scales. The measurement scale limits the finest scale over which an effective
property can be resolved. As an instrument integrates point-scale properties
over its sample support, variation of the field that lies at the scale of the linear
dimension of the sample support is lost. Assuming that the sampling scale is
larger than the measurement scale, the sampling scale limits both the finest
and coarsest scale resolvable by the network of measurement. Spectral analysis

shows that the information available from such a network is band-limited. The



Nyquist frequency limits the finest scale theoretically resolvable to twice the
smallest distance between measurements; the coarsest scale resolvable is lim-
ited to half the greatest distance between measurements [Briggs and Henson,

1995; Bracewell, 2000].

In this research, we examine the effect of both measurement scale
and sampling scale on permeability measurements. We have used stochastic
simulation to generate a number of synthetic log permeability fields. These
fields are subjected to numerical experimentation that simulates measurement
of permeability with a gas minipermeameter. The permeameter measurements
are made with five “instruments” spanning over three orders of magnitude in
sample support arrayed on a regular network. We analyze how measurements
made at different scales, but subject to identical flow conditions, relate to
one another. We also analyze how a network of such measurements fares at
capturing the underlying structure of the synthetic log permeability fields. This
computational study parallels laboratory studies performed by Tidwell and
Wilson [Tidwell and Wilson, 1997, Tidwell and Wilson, 1999a; Tidwell and
Wilson, 1999b; Tidwell et al., 1999; Tidwell and Wilson, 2000]. Tidwell and
Wilson developed an apparatus called the multi-support permeameter (MSP)
capable of performing just the sort of measurements described above but in
the laboratory. They made regularly gridded permeability measurements on
rock samples using several different sample supports, different by orders of
magnitude on a per volume basis. We use Tidwell and Wilson’s work as a
starting point, attempting to simulate rock samples that are statistically similar
to those tested in the lab by the MSP. We compare the results of our numerical

experiments to their laboratory experiments.



The rest of this work is organized as follows. In the remainder of
this introductory chapter, we present the specific objectives and scope of our
work, discuss the theory and operating principles of gas minipermeameters, and
summarize previous work on upscaling. In Chapter 2, we will give an overview
of our numerical experimental methods, discussing both the numerical model
and the stochastic techniques used to create the synthetic rock samples. In
Chapter 3, we present and analyze the results of our numerical experimentation.
In Chapter 4, we discuss our conclusions and give recommendations for further

work.

1.2 Objective and Scope of Work

The primary objective of this work is to understand the physical pro-
cesses that contribute to the upscaling of the MSP measurements of the Mas-
sillon sandstone. The means to this end is a numerical model of the operation
of the MSP on the Massillon sandstone. We conceptually model the perme-
ability of the Massillon as a field of discrete permeability values. Then, we
replicate the operation of a gas minipermeameter on the sample by operating
on the synthetic permeability field with a linear finite-difference operator that
approximates the governing partial differential equation. Solution of the system
of difference equations yields an array of pressure values assigned to the points
at which we assigned the permeability, from which we can obtain the velocity
field and mass transport rate. We then analyze the numerical data to demon-
strate similarity to the laboratory data and explore the physical processes that

determine the outcome of the measurement.

We designed the series of numerical experiments that closely parallel



(but not replicate) the MSP experiments performed by Tidwell and Wilson
[Tidwell and Wilson, 1997; Tidwell and Wilson, 1999a; Tidwell and Wilson,
1999b; Tidwell et al., 1999; Tidwell and Wilson, 2000]. They performed exhaus-
tive measurements on several meter-scale blocks of rock, each representative of
a different lithology. Each face was subjected to many thousands of regularly
gridded measurements. In the case of the Massillon sandstone, the measure-
ment grid consisted of a 50 x 50 array, with 1.27 cm grid separation. At each
point in the grid, multiple measurements were made with instruments having
inner tip-seal radii of 0.15 cm, 0.31 cm, 0.63 cm, 1.27 cm and 2.54 cm, span-
ning 3.7 orders of magnitude in volumetric sample support. In this work, we
simulated only one of the rock samples, a Massillon sandstone, and performed
measurements on only one face. Rather than sampling on a square grid, we
sampled one hundred points along a single transect. Otherwise, we attempted

to retain the same measurement and sampling scales.

Our analysis parallels the statistical approach followed by Tidwell
and Wilson [1997; 1999a; 1999b; 2000] for the laboratory experiment to illumi-
nate the interaction of the measurements with the permeability field. We use
published experimental semivariograms calculated from the sets of actual MSP
measurements made at the smallest available scale to synthesize the underly-
ing log permeability. Direct comparison of the numerical and laboratory results
serves to answer whether the small scale measurements are representative of
the true sample log permeability. We also examine the dependence of spatial

statistics on sample support.

We also test the hypothesis that the upscaling rule enters a transition



phase when the characteristic linear measurement scale is comparable to the
correlation length of the log permeability field. We suppose that when the
correlation length is either much less than or much greater than this charac-
. teristic measurement scale, that the effective permeability is well represented
by the geometric mean of the permeability within some neighborhood of the
sample support. However, when the correlation length is very near to the char-
acteristic measurement scale, we anticipate that there exists the possibility of
fast flow paths becoming significant. We test this hypothesis by measuring
the correlation between effective permeability measurements and the geomet-
ric mean of the permeability within a nested set of sub-volumes centered on

the measurement.

1.3 Background

1.3.1 Permeameters

Gas minipermeameters offer a rapid, non-destructive means of eval-
uating permeability [Goggin, 1988; Davis et al. 1994; Tidwell and Wilson,
1997; Aronson, 1999;]. The instrument we employ in this study injects gas at
constant pressure from a compressed gas source into a rock sample while the
user monitors applied pressure and flow rate. The flow of gas at the rock face
is controlled by an apparatus consisting of a circular aperture, through which
the gas flows, surrounded by an annular tip-seal of silicone rubber or similar
conformable material (fig. 1.1). Permeability is calculated using a modified
form of Darcy’s law [Goggin et al. 1988]:

Qup; (1.1)

kg = ——————,
(aGo(E550)



w Sead
2 Hriosing

R

v
.
.
7 Lo
@ g SV 74
] ’ T Ui Seat et
¥ (mlerh') Seil Guide Sitigen Kubler Sl

Figure 1.1: Minipermearﬁeter tip-seal [Aronson, 2001]

where kg is the effective permeability, @ is the volumetric flow rate into the
sample, p is the gas dynamic viscosity, p; and p, are the pressure inside the
tip-seal chamber and the ambient pressure, respectively, a is the inner tip-
seal radius, and Gy is the geometric factor. Go depends on the internal and
external radii of the tip-seal and the geometry of the sample domain. Goggin
developed tables of geometric factors for cylindrical sample domains using a
finite-difference model [1988]. Kerr and Wilson derived an exact analytical
solution for a semi-infinite domain [Kerr and Wilson, personal communication,

2001].

The geometry and characteristics of the sample support have been
subject to considerable investigation. The sample support for a homogeneous,
isotropic semi-infinite half space is approximately hemispherically shaped [Gog-

gin, 1988; Winterbottom, 1990; Aronson, 1999].

Goggin et al. concluded that the difference in permeability between a
measurement of effective permeability made on a core plug with a radius and
depth of 4a (i. e., the radius and depth of the domain are each four times the

inner tip-seal radius) and a measurement made on a semi-infinite domain is



less than 5%. Using a finite-difference model, Chen [1992] compared geometric
factors obtained for cylindrical domains subject to both first and second type
boundary conditions, finding that the geometric factor varied by less than 0.2%
for cylindrical domains with radius and depth of 9a. Chen also determined
that almost 40% of the mass flows through the grid-block just inside the tip-
seal, and more than 35% exited the sample through the first block outside
the tip-seal, noting that these regions contributed the greatest weight to the
measurement. Based on laboratory experiments, Suboor and Heller [1995]
found that boundary conditions caused effective permeability to vary by less
than 1% when the edge of the sample domain was located 2.88a from the tip-
seal center and the bottom of the sample domain was located 3.50a from the
tip-seal center. The results cited pertain to the case in which the ratio of outer

to inner tip-seal radius, by, is 2.

In related work, others have developed spatial weighting functions,
measures of what regions of the permeability field contribute to the effective
permeability. Tidwell et al. {1999] empirically calculated a two-dimensional spa-
tial weighting function using Fourier analysis on gridded MSP measuremeﬁts.
They determined that a cylindrical region with a radius 1.73a contributes 90%
of the weight of a permeability measurement, and a region with a radius of
1.87a contributes 95%. Aronson [1999] used a finite element model to deter-
mine that 95% of the contribution to the effective permeability is contained
with a cylinder with radius 2.3¢ and depth 3.71a, and that a 99% contribution
is made within a hemisphere of radius 4.16a. These results arose from Aron-
son’s determination of a spatial weighting function derived by means of adjoint

state analysis. Once again, these results are for by = 2.
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Molz et al. [2003] have developed a theory to account for the empir-
ical results given above. Using a streamline-based argument in the context of
a steady, homogeneous, and isotropic flow system, they interpreted the spa-
- tial weighting function in terms of the ratio of energy dissipation rate per unit
volume of porous medium to the total energy dissipation rate over entire flow
domain. For non-uniform flow fields, such as that imposed by a gas miniper-
‘meameter, this implies that the greatest contribution to the weighting function
is made where the magnitude of head gradients is greatest—in the case of the

minipermeameter, near the seal boundaries.

1.3.2 Effective Permeability and Upscaling

Permeability upscaling has received wide attention for more than 20
years. By one account [Renard and de Marsily, 1997], compiled six years ago
in 1997, more than 200 papers treating this subject appear in the literature.
Hence, we will touch on only a few of the most significant theories, focusing on

the stochastic theories that provide the framework for this study.

Theories advanced to explain permeability upscaling can broadly be
categorized as deterministic, heuristic or stochastic [Renard and de Marsily,
1997; Neuman, 2003]. Deterministic theories are predicated on a complete,
a priori knowledge of the permeability field and boundary conditions, and
tend to rest on physical arguments. Direct solutions of the flow equation,
whether arrived at analytically or numerically, are examples of a determin-
istic theory. Other examples are streamline-based methods, renormalization
and homogeneous-equation methods [Renard and de Marsily, 1997]. Like de-

terministic theories, heuristic theories require full knowledge of the underly-
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ing permeability, but are presented as plausible rules, tending to be purely
mathematical in character, for calculating effective permeabilities. Examples
of heuristic theories are sampling and various averaging schemes [Renard and

de Marsily, 1997].

Our unavoidably incomplete knowledge of how permeability varies in
space is addressed by stochastic theories. The stochastic approach to modeling
regards permeability as a random variable. A given sample permeability is a
single realization of a spatially correlated random function. In the literature,
the hypothetical random functions that generate the sample permeability are
often considered to be statistically homogeneous or second-order stationary,
equivalent terms that indicate the first and second moments (the mean and

covariance) of the random variable do not depend on absolute position.

Warren and Price [1961] used a Monte Carlo numerical approach to in-
vestigate the effective permeability of heterogeneous formations. Using a three-
dimensional finite-difference scheme, they tested spatially uncorrelated lognor-
mal and exponential permeability distributions under conditions of quasi-linear
and quasi-radial steady-state flow and quasi-radial transient flow to determine
that the geometric mean provided a good estimate of the effective permeability.
Matheron [1967] is widely credited [Neuman, 2003; Desbarats, 1987; Desbarats,
1992; Cushman, 1986) with showing rigorously that the effective permeability
is equal to the geometric mean in a two-dimensional, lognormally distributed,
statistically isotropic medium. This result was confirmed by Dagan [1982].
Gutjahr et al. [1978] used a perturbation approach to calculate the effective

permeability in an isotropic, n-dimensional medium, finding that
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1 1

keﬁ = ]—fgeometric(l + (5 - E)ank)y (12)

where /_cgeometric is the geometric mean of the point-scale permeability, n is the
dimension of the medium, and s , is the variance of the natural logarithm of

the point-scale permeability.

Gelhar and Axness [1983] derived an expression for the effective per-
meability of a statistically anisotropic medium, proposing that Eq. (1.2) is

really just a truncation of the exponential relationship

1 1
ke = Kgeometric €XP (5 - ﬁ>512“'“‘ (1.3)

Neuman [2003] cited this result as originating independently from
Landau and Lifshitz [1960] and Matheron [1967]. Dagan [1993] derived an
expression for kg including terms up to order si, , and found it in agreement
with Eq. (1.3). Dykaar and Kitanidis [1992a, 1992b] and Neuman and Orr
[1993] and Sanchez-Vila [1995] confirmed Eq. (1.3) for values up to smp =
7. Neuman proposed a variation of Eq. (1.3) valid for anisotropic media in

[Neuman, 1994).

The theories above assume a sample support that spans many cor-
relation lengths of a statistically homogeneous medium. In this sense, they
can be thought of as the limiting case, the upper bound toward which perme-
ability measurements approach as sample support increases. In real geologic
samples, permeability seems to change up to the largest observed scales, with-

out appearing to approach an upper bound. One explanation for this is that
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permeability possesses structure spanning all scales, so the assumption of sta-
tistical homogeneity is never valid. Neuman proposed a universal scaling rule
[1990], suggesting that the semivariogram of permeability can loosely be fit to
- a power model, implying a fractal scaling behavior. Boufadel et al. [2000], Di
Frederico and Neuman [1997], Liu and Molz [1997], and Molz et al. [1998] have

also elaborated fractal and multifractal scaling theories.

Though considerable work has gone into devising theories to predict
the effective permeability of various random fields and into discerning the spa-
tial structure of those fields over many scales, less has been published on how
to estimate the spatial structure of the field based on limited samples. In a
numerical experiment, Durlofsky [1992] compared sampling (in which the effec-
tive permeability of a domain is set to the point-scale value at a single location
* within that domain), global geometric averaging (in which the the effective
permeability of a domain is set to the geometric mean of the permeability of
entire domain) and local geometric averaging (in which a domain is subdivided
into smaller sub-domains, each possessing an effective permeability equal to the
geometric mean of the sub-domain permeability). Examining two-dimensional
methods for spatially correlated, lognormal permeability distributions, he de-
termined that local averaging is always more accurate than sampling, that
local averaging is more accurate than global averaging , and that sampling is
more accurate than global averaging when the size of grid-blocks is smaller
than the correlation length. Beckie [1996] used a spatial filtering approach,
implemented by analytical and numerical calculations, to compare the effects
of measurement scale and sampling scale on the estimation of general model

parameters. He defined a “subgrid scale” lying above the measurement scale
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and below the sampling scale, that is unresolved by a measurement campaign,
leading to the so-called “closure problem” and consequent model errors. He
concluded that minimization of subgrid variability can be achieved by increas-
ing the measurement scale (at the cost of lower model resolution) or decreasing
the sampling scale (at the cost of increasing the number of measurements that

must be made).



CHAPTER 2

METHODS

2.1 The Real World

The numerical experiments that are the subject of this work are in-
tended to parallel the laboratory experiments done by Tidwell and Wilson using
the multi-support permeameter (MSP) [Tidwell and Wilson, 1997; Tidwell and
Wilson, 1999a; Tidwell and Wilson, 1999b; Tidwell et al., 1999; Tidwell and
Wilson, 2000]. The MSP is designed to meet ﬁhe criteria described by Tidwell
and Wilson:

[M]easurements made at different sample supports must be consis-
tent in four basic ways. First, multisupport permeability data must
be collected from the same physical sample, thus requiring the mea-
surement technique to be nondestructive. Second, near exhaustive
sampling is required at each support to avoid errors induced by
sparse data effects. For this reason, large suites of data must be col-
lected at each sample support, requiring measurements to be rapid
and inexpensive. Third, measurements must be sensitive to slight
changes in permeability at all sample supports; thus measurement
error must be small and consistent. Fourth, measurements must

be consistent in terms of flow geometry, boundary conditions, and

15
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calculational techniques so as to provide a uniform basis for com-

parison. [Tidwell and Wilson, 1997]

The MSP consists of a gas minipermeameter coupled with a computer-
controlled x-y positioner. Measurements are made by compressing the tip-seal
against the flat face of the rock sample while injecting gas at constant pressure.
~ Permeability is obtained using Eq. (1.1). Gas slippage effects were minimized
by working at pressures at which they are insignificant. The user specifies
a sampling grid that is programmed into the x-y positioner, which positions
the tip-seal and compresses it against the rock face at a constant pressure
[Tidwell and Wilson, 1997]. Rock samples are meter-scale cubical blocks. In
order to assure consistent boundary conditions, the outermost points of the
measurement grid are located sufficiently far from the edges of the sample to

limit escape of gas from the sides of the block to negligible amounts.

The unique feature of the MSP is its use of different sized tip-seals,
which can readily be exchanged, permit\ting data to be acquired over a range
of discrete sample supports in a consistent manner [Tidwell and Wilson, 1997].
The tip-seals employed have inner radii of 0.15 cm, 0.31 ¢cm, 0.63 cm, 1.27 cm
and 2.54 cm and an outer radii measuring twice the inner. This arrangement
preserves the flow geometry and boundary conditions of each measurement.
The inner radius serves as the characteristic length scale of the instrument.

Each doubling of the inner radius brings about an increase of the sample volume

support by a factor of eight.

We modeled the gas minipermeameter assuming steady-state, isother-

mal flow of an ideal gas in a semi-infinite domain. Although the radial symme-
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try of the instrument begs treatment using either cylindrical-polar or spherical-
polar coordinates, we have chosen to operate in three-dimensional Cartesian
coordinates, for reasons that we will explain in the next section. Neglecting

- gas slippage effects, the mass conservation equation is

,V(kgvp)zO, (2.1)

with boundary conditions

p=pi (-2 +(y—y)’ <a,z=0,
giz’——- , a<(m—3 )+ (y—y)? <b, z=0, (2.2)
P=po (z—z)+{y—y)>0b2=0,
z,y € (—00,+00), z € [0,+00),
where p is the gas density, p is the gas pressure, z. and y. are the x and y
coordinates, respectively, of the tip-seal center, and the other symbols are as

defined previously. Substituting the ideal gas law, pV = nRT, into 2.1, we

obtain
Mp

V(b Ve) =0, (2.3)

where M is the gas molecular mass, R is the gas constant, and T is absolute

temperature.

Following from Goggin et al. [1988], we may use the Kirchhoff trans-

form to linearize Eq. (2.3) in terms of p*:

M 2y
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Viscosity is a function of both pressure and temperature. However,
viscosity varies little with pressure, and the gas is isothermal, so viscosity is

treated as constant in this work.

We may simplify the notation by introducing the pseudo-potential @,
defined

M,

= —0 p? _
T (2.5)
Combining Eq. (2.1), Eq. (2.4), and Eq. (2.5) yields
V-kV® =0 (2.6)
O=0;, (z—z)+(y-v)<a,2=0,
20, a<(@-c)*+{y—9)°<bz=0, (2.7)

® =9, (x—xc)2+(y—yc)2 >b,z2=0,
z,y € (—00,+00), z € [0, +00).

In general, k is a tensor quantity, but we make the simplifying assumption of
treating k as a scalar. Eq. (2.6) is the governing equation of the numerical

minipermeameter system.

We may now write Eq. (1.1) in terms of the variables introduced in
this section. Substituting Eq. (2.5) into Eq. (1.1), we obtain
M
Ckr)
aGo(Cbi - ‘1)0) ’

where p; is the gas pressure at the inlet. From the ideal gas law, we know that

keﬁ = Q (28)

p=pM/Rt, so
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Qp;

b = ol - ) 29)

The quantity Qp; is just the mass flow rate into the sample, 7;, leading us to
M

| L S——

T aGo(@: — @,)

Eq. (2.10) is used to calculate the permeability k.y. We also use Eq. (2.10)

(2.10)

for model calibration, by prescribing & and solving for Gp.

Of course, we must also know rn; in order to apply Eq. (2.10). This
we obtain by integrating the mass flux, q., over the inlet area A;. In our case,

A; lies in the plane z = 0, so

h; = /qm-éz dz dy, (2.11)
As

where €, is the unit vector normal to A;. The mass flux is given by

U = —E2Vp. (2.12)
7
But note that
M
o = —p?
_ M
T uRT Y
P
p (2.13)

Substituting Eq. (2.13) into Eq. (2.12) yields
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Eq. (2.10) becomes

We introduce here a system of non-dimensional quantities:

Zq

Yd

z4
ba
Vi
Oy

ka

20

am = —kVO,
m; = /—kV@-ézdxdy.
Ay

[ —kV® -8, dsdy
A;

ke = aGo(®; — @,)

Il

loa i€l

nomm
&
+

Il

(2.14)

(2.15)

(2.16)

(2.17)
(2.18)

(2.19)
(2.20)
(2.21)
(2.22)

(2.23)

where &,, &,, and &, are unit vectors oriented in the subscripted directions,

and k, is an arbitrary reference permeability. Eq. (2.18) — Eq. (2.23) allow us

to define a dimensionless mass flow rate from Eq. (2.15),
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md = / —dedCI)d . éz dxd dyd, (2.24)
A;

which in turn yields an equation for the dimensionless effective permeability

based on Eq. (2.16),

1
kega =& / —kaVa®a - €, dzqdya, (2.25)
0
A;

The minipermeameter governing equation , Eq. (2.6), and its boundary condi-

tions, Eq. (2.7), can be recast

Vi kiVy®q =0 (2.26)
@d:]" (x_xc)2+(y_yc)2§]-)zd:07
%:O, 1<(x—xc)2+(y_yc)2§bd7 24 =0, (2.27)

Oy=0, (z—2)%+ W —ye)?>by 24=0,
Ta,Ya € (—00,+00), 24 € [0,400).

The stage is set. We numerically solve Eq. (2.26) subject to the
boundary conditions (2.27) with k, given by a stochastically simulated perme-
ability field. The effective permeability is calculated by solving Eq. (2.25), also
numerically. We discuss the numerical model and the simulation procedure in

the following sections.

2.2 The Model

We model the system using a block-centered finite-difference scheme,

working in three-dimensional Cartesian coordinates. The numerical scheme is
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described in detail in Appendix A. Though the annular boundary conditions
imposed by the instrument invites treatment in a curvilinear coordinate sys-
tem, we elect to work in Cartesian coordinates because we are addressing a
- problem of upscaling. In a numerical treatrﬁent, use of cylindrical or spherical
coordinates results in grid-blocks whose volume is scaled by the radial distance
from the origin of the coordinate system. Permeability values assigned to these
blocks would have to be based on an upscaling rule. This would prove espe-
cially challenging for comparing measurements made with different tip-seals:
the size of grid-blocks contributing most heavily to the measurement, those
located directly beneath the edges of the tip-seal, would be scaled by the size
of the tip-seal itself. It would be very difficult to disentangle the effect of the

changing boundary condition from actual upscaling behavior.

While it becomes necessary later on to assume an upscaling rule
when simulating the log permeability, as discussed in §2.3, we elect to use
the Cartesian coordinate system, which permits grid-blocks to be of a uniform

size throughout the domain.

2.2.1 Boundary Conditions

We now describe the numerical boundary conditions we use to repli-
cate the operation of the instrument on a sample. Recall that the boundary
conditions of the minipermeameter are given by Eq. (2.26). The boundary
conditions pose two immediate problems. First, we must find a way to assem-
ble circular boundaries from square grid-blocks. Second, we must replicate an

infinite domain using a finite number of grid-blocks.



h =048

h=024

Figure 2.1: Discretized boundary conditions

In addressing the first of these problems, we reasoned that we might
approximate the circular tip-seal by using many small grid-blocks. Projecting
the concentric circular profile onto the nominal top surface of the domain,
on which the tip-seal boundary condition is applied, we designate grid-blocks
whose centroid falls on or within the inner circle to lie inside the tip-seal,
blocks whose centroid lies between the circles we designate to lie under the tip-
seal, and blocks whose centroid lies outside the outer circle we designate to lie
outside the tip-seal, as illustrated in Fig. (2.1), which shows the discretization
as a function of the dimensionless grid separation hq (recall hgy = %) In the
figure, the concentric circles represent the edges of the tip seal and the black
squares represent grid-blocks assigned a no flow boundary. grid-blocks on the
top surface are chopped (see Appendix A); all other boundaries are full blocks.
Note that the approximation becomes better as h becomes smaller. Iriowever,

it is clear that the area inscribed by the circular approximation will always be

greater than that of the true circle. Hence, we define the effective radius, rep,
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of a circular approximation as the radius of a circle with the same area as the

approximation, A,

Aci'rc

Teff = - (2.28)
The effective inner and out radii are defined
[A;

Qeff = ? (229)
A

beg = {/— )
5 - (2.30)

We use effective radii to define the instrument geometry, so the non-dimensional
outer radius is calculated

be
baeg = af; (2.31)

Effective radii are used as a metric to determine the physical analogue to the

discretized boundary conditions. For example, the nominal inner and outer
radii of the discretization shown as “h=1” in Fig. (2.1) are 1.00 and 1.97,
respectively. However, the effective inner and outer radii are 0.985 and 1.968,
 respectively, yielding bg.s; = 1.9975. This, in fact, is the discretization used
for the model. In addition, the effective radius is used in the calculation of the
effective permeability from Eq. (2.16), in which a.yy is substituted for a in the

denominator.

We address the second problem by using a domain sufficiently large
that the influence of the boundary conditions at the sides and bottom of the
domain is negligibly small. The farther the edges of the synthetic sample
lie from the central axis of the synthetic sample support (along which the

measurement is made), the better the approximation to an infinite domain.
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It is evident that the demands of our two approximations act at cross
purposes. Good approximation of the annular boundary conditions at the
tip-seal requires that grid blocks be very small relative to the tip-seal itself.
Good approximation of an infinite half space requires that either grid-blocks
be numerous and/or large in size. With limi’ged computational resources at our
disposal, in the sense that we are limited in the number of grid-blocks we may
use in our simulation, we must contend With the fact that excellence of one
approximation may be purchased at the price of mediocrity of the other. We

describe now our attempts to optimize the configuration of the domain.

We use the geometric factor, Gy, as our primary metric for evaluating
the suitability of various configurations of the domain. Prescribing a uniform

permeability kq = 1, we calculate geometric factors by rearranging Eq. (2.25)

G() = / —-qu)d . éz dxd dyd, (2.32)
A;

For numerical reasons, we can more accurately calculate the mass flux into the
rock by using the surface defined by the sides and bottom of the grid-blocks
lying adjacent to the inlet of the instrument (i. e., the layer of grid-blocks
we designated “in” when prescribing the boundary conditions) than we can
by using the top surface of those blocks. This is easily done using the same
approach shown in Eq. (A.5) (see Appendix A). For the Ny, blocks lying inside
the tip-seal,
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We begin by testing the effect of the dimensionless grid separation Ay
on the numerically calculated geometric factor G. Our test domain is a homo-
geneous, isotropic, cubical region measuring 10 dimensionless length units on
a side and with dimensionless permeability kg = 1. We denote the theoretical
geometric factor that obtains for this scenario G(10) and the numerically cal-
culated geometric factor G(10). We set the nominal dimensionless inner and
outer radii of the simulated permeameter a = 1 and b = 2, though the actual
effective radii vary as a function of h,. The purpose of this test is to compare
@(10) to the geometric factor for the physical analogue to this system G(10).
If the discretization scheme is valid, we should see G(10) approach G(10) as
hy — 0. While we don’t know exactly what value G(10) takes, we can estimate
it. The numerical work done by Goggin et al. [1988] and Chen [1992] and labo-
ratory work done by Suboor and Heller [1995] suggest that G(10) for this finite
domain should differ from the analytical solution for a semi-infinite domain,

Go = 5.099, by less than 1%. Thus, we expect that G(10) = 5.099 & 0.051.
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Figure 2.2: Geometric factors for numerical minipermeameters as a function of

dimensionless grid separation

Further, based on work by Chen [1992], G(10) will lie between the geometric
factor derived from a simulation in which the sides and bottom of the domain
(which we refer to as the “far” boundaries from here on) are given a no-flow
boundary condition, G, £(10), and that for a simulation in which those bound-
aries are prescribed a side-of-grid-block constant potential ® = 0, ﬁp(IO). We
plot curves of G(10) in Fig. (2.2). Analysis is complicated by the fact that the

by e varies as we change hq (Table (2.1)), accounting for the jaggedness of the
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Figure 2.3: Geometric factors for numerical minipermeameters as a function of
domain size

curves. Nonetheless, we do see convergence to a value in the expected range—
for h = 0.0687, Gnz(10) = 5.0597 and G,(10) = 5.0675, the values differing by
less than two parts in a thousand. This confirms that the discretization scheme
is valid.

Next, we test the location of the far boundaries. Setting hy = 0.1,

we generate a series of homogeneous, isotropic sample domains ranging in size

from 5.1 x 5.1 x 2.5 dimensionless length units to 36.1 x 36.1 x 18.1 dimension-
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ha a b bq
0.3922 | 1.0139 | 2.0873 | 2.0587
0.3279 | 0.9962 | 2.0348 | 2.0426
0.2817 | 0.9667 | 2.0166 | 2.0860
0.2469 | 0.9751 | 2.0331 | 2.0849
0.2198 | 1.0300 | 2.0032 | 1.9449
0.1980 | 1.0055 | 2.0141 | 2.0031
0.1802 | 1.0012 | 1.9946 | 1.9922
0.1653 | 0.9913 | 2.0109 | 2.0109
0.1527 | 1.0082 | 2.0109 | 1.9945
0.1418 | 0.9768 | 1.9943 | 2.0415
0.1324 | 0.9942 | 2.0010 | 2.0127
0.1242 | 0.9837 | 1.9885 | 2.0215
0.1170 | 1.0072 | 2.0069 | 1.9925
0.1105 | 0.9916 | 2.0037 | 2.0206
0.1047 | 1.0112 | 1.9921 | 1.9699
0.0995 | 1.0121 | 2.0030 | 1.9791
0.0948 | 0.9991 | 2.0045 | 2.0064
0.0905 | 1.0018 | 2.0043 | 2.0006
0.0866 | 1.0023 | 2.0051 | 2.0006
0.0830 | 1.0009 | 2.0024 | 2.0006
0.0797 | 1.0022 | 2.0069 | 2.0025
0.0766 | 1.0093 | 2.0023 | 1.9839
0.0738 | 1.0002 | 2.0025 | 2.0022
0.0712 | 1.0007 | 1.9985 | 1.9972
0.0687 1 0.9999 | 2.0003 | 2.0004

Table 2.1: Effective dimensionless radii for fig. (2.2)
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less length units, where a = 1 and b = 2. We calculate the numerical geometric
factor as a function of domain size, é(LI, L,,L,), for both no-flow and constant
potential far boundary conditions. The objective here is to test the sensitiv-
ity of the measurement to conditions at the far boundaries. This gives us a
guideline as to how far we must set the far boundaries from the measurement
location in order to claim that we are simulating an infinite domain (or, put
another way, defines the effective sample support for the numerical miniperme-
ameter). In addition, we obtain the value of the geometric factor Gy for our
numerical minipermeameter sampling a “semi-infinite” domain, when hq = 0.1,
a = 0.9853, b = 1.9682, and by = 1.9975. We plot curves of (N?(Lm,Ly,Lz) in
Fig. (2.3). Based on the largest simulation domain, G is 5.040 + 0.002. The
relative difference between outcomes of the two far boundary conditions drops

below 0.1% by the point the domain is 25.1 x 25.1 x 12.5 length units.

Based on these tests, we have chosen to use a 25.1 x 25.1 x 12.5
synthetic sample domain with a grid separation hy = 0.1 for the experi-
ments described below. For this discretization, Gy = 5.05358, a.z; = 0.985,
bess = 1.968, and byesy = 1.9975. The effective inner radius a.s; and numerical
geometric factor Go = 5.05358 are used to calculate the effective permeability

from Eq. (2.16).

2.2.2 Numerical Experimental Design

The underlying log permeability field of the laboratory sample is char-
acterized by a nested semivariogram with a maximum correlation length of 13.0
dimensionless length units. Tidwell and Wilson [1997] used a 50 x 50 measure-

ment grid, with measurement poihts separated by 0.5 dimensionless length
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units. Unfortunately, computational limitations forbid making an equivalent
number of numerical measurements. Instead, we make measurements at 100 lo-
cations on a single transect, with measurements separated by 0.5 length units.
This scheme ailows us to sample a statistically significant number of points
in a single direction at the cost of limiting our numerical estimate of the spa-
tial structure to the transect direction. The longest correlation length of the
synthetic log permeability parallel to the transect is 7.09 dimensionless length

units.

The dimensions of the flow domain in the numerical experiment are
constant relative to the tip-seal: the length and breadth of the flow domain are
always 25.1 times the inner tip-seal radius and the depth of the flow domain is
always 12.5 times the inner tip seal radius. At this point, we introduce some
notation. Henceforth, the model 2.54 cm tip-seal and the log permeability
field associated with it are denoted by either an “x1” or subscript “1”. The
1.27 cm, 0.63 cm, 0.31 cm, and 0.‘5 cm tip-seals and fields are denoted by “x2”,
“x4”  “x8”, and “x16”, respectively, or the subscripts “27, “4”, “8”, and “167,
respectively. The correlation lengths of the log permeability field remain fixed,
and thus are not constant relative to either the tip-seal or the flow domain.
For example, the correlation length perpendicular to bedding of the large-scale
exponential semivariogram structure is 7.09 times the inner radius of the x1
tip-seal (i. e., the model 2.54 cm tip-seal). The flow domain used to test the x2
tip-seal is 25.1 times the inner tip-seal radius, but now the correlation length
perpendicular to bedding of the large scale exponential semivariogram is 14.18
times the x2 inner tip-seal radius. We discuss the details of how we create

the log permeability fields used in the numerical experiment in the following
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section.

2.2.3 Geostatistical Simulation of Synthetic Permeability

Ideally, the geostatistical simulation procedure should replicate, at
least in the statistical sense, the point-scale permeability of the laboratory rock
samples. Given such a simulation procedure, we would then calculate effective
permeability on a gridded set of locations with the numerical minipermeameter,
using different sizes of tip-seal at each point on the grid. This ideal approach
is impractical for several reasons. First, we have no way of knowing the true
point-scale log permeability of the rock samples. Second, even if we did know
(or assumed) the point-scale permeability, a synthetic sample simulated with
the necessary resolution would consist of on order of 10*® grid-blocks, exceeding
what we can handle with the available computational resources by four orders
of magnitude. Third, even if we had the resources to synthesize and test such
a field, we are unable to replicate the different tip-seal sizes in a consistent

fashion.

Our solution is to assume the statistics calculated from the set of labo-
ratory measurements obtained with the smallest tip-seal is representative of the
true point-scale permeability. This assumption provides a testable hypothesis,
viz., “How well do the measurements made at the smallest support capture the
underlying permeability field?” Using those statistics and the measurements
from which they are calculated, we conditionally synthesize a log permeabil-
ity field using sequential Gaussian simulation [Deutsch and Journel, 1998] and
measure its effective permeability. Our choice of coordinate system, however,

presents us with a dilemma. As we are unable to synthesize a single permeabil-
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ity field and subject it to a consistent set of tests corresponding to interrogation
by different sizes of tip-seal, we must choose between maintaining consistent
boundary conditions while changing the permeability, or maintaining a con-
sistent permeability while changing boundary conditions. We have chosen the
former. The objective is to formulate a procedure by which we synthesize a
three-dimensional log permeability field of sufficient breadth and depth that a
measurement made at the center of the top surface is unaffected by conditions
at the sides and bottom (so that, as far as the instrument knows, it is mea-
suring a sample of infinite breadth and depth) and of sufficient length that we
may move the instrument along this direction, making measurements at regular
intervals. We will call this large- scale field the “superblock”. The superblock
is the field that is tested by the largest tip-seal. In order to subject this field to
measurement by successively smaller tip-seals, we require a means of “magni-
fying” the superblock, i. e., increasing resolution relative to the fixed boundary
conditions imposed by the instrument. In the laboratory, the tip-seals decrease
in size by a factor of two with each step, so in the numerical experiment the
resolution of the synthetic log permeability field increases by a factor of two
in all directions with each step. Rather than use successively smaller tip-seals
for the numerical experiment, as was done in the laboratory, the dimensions of
the flow domain are halved and the grid resolution doubled with each magni-
fication. As discussed in the previous section, the trick is to do this in such a
way that each magnification of the log permeability field behaves as much as
possible like halving the size of the tip-seal. We attempt this by requiring that
the statistical properties of the field should be invariant in the procedure of

magnification, or, at least, that the changes it undergoes should be physically
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sensible. We devised a two-step procedure of simulation and interpolation to

accomplish this.

In overview, we initially create a coarse-grid geostatistical simulation
of the superblock, modeled to bear a statistical likeness to the small tip-seal
data set. This is the permeability seen by the largest of the numerical tip-seals.
We measure the permeability at the .ﬁrst station on the transect by discarding
all the simulated log permeability values lying outside a 251 x 251 x 125 node
region (as defined at the end of §2.2.2) centered on that station. The truncated
“local” field is used in the numerical flow calculation. Remaining at this point
on the transect, we magnify the local field by a factor of two by inserting
new node points between the previously simulated ones and then conditionally
simulate log permeability values on the new nodes. We are unable to simulate
the entire magnified field, containing as it does eight times the number of grid
points as the original, so we truncate the outside édges and bottom half of
the original field. Recall that the tip-seal applied to the magnified field is half
the size of that for the original, so the truncation only removes information
to which the instrument is relatively insensitive. We magnify and simulate
the local field four times, to provide more detailed grids for measurements
made with successively smaller tip-seals. Once we have completed the full
suite of measurements at a given point, we move to the next station on the
transect, repeating the procedure of simulation and magnification. We discuss

the procedure in detail next.

We used sequential Gaussian simulation to generate log permeability

values on the nodes. Sequential Gaussian simulation has the property of hon-
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oring global statistics of the simulated random function, which was the critical
objective of the simulation routine. In addition, sequential Gaussian simulation
is very fast compared to other routines such as Turning Bands, which is vital
considering that the numerical experiment requires simulation of five hundred
realizations. Geostatistical simulation routines like sequential Gaussian sim-
ulation differ from estimators like Kriging in that the former are designed to
maximize local accuracy without regard to global fidelity. However, sequential
Gaussian simulation is built on the foundation of Kriging, so we will discuss

Kriging before discussing simulation.

All versions of Kriging are elaborations on the basic linear regression

estimator:

[Zirig(x) = m(x)] = Z Ai[Z(x:) — m(x)] (2.34)

where Z(x;) is the random variable model at location x;, x; is the location
of the ith data value and m(x) is the attribute mean in the neighborhood
of X; Zk,;,(x) is the estimated random variable at some other location to be
estimated, x [Deutch and Journel,1998]. Kriging has the property of being the
best linear unbiased estimator. The estimate is best in the sense that the mean
of the estimation errors m, is set to 0 and unbiased in the sense that the error
variance s2 is minimized. The weights are calculated to optimize m, and s? by
solving the equation
. ,

> XC(x; - %) = Clx — x3), (2.35)

j=1
where C'(x; — x;) is the model covariance between attribute values at x,; and

x; and C(x — x;) is the covariance between the location of the point to be
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estimated, x, and x;. Note that we must have prior knowledge of the covariance

model in order to make the estimate. The estimation variance is:
Skrig = C(0) = > NC(x — %y). (2.36)
i=1

In sequential Gaussian simulation, we begin by performing a normal
score transformation on the data and then fitting a semivariogram model to the
transformed data. We then work out a random path through the locations we
wish to simulate. At each point, we calculate the Kriged estimate and variance,
conditioning on both the original data and simulated values. The simulated
value at that point is a number drawn at random from a normal distribution
that has a mean equal to the Kriged estimate and a variance equal to the Kriged
variance. Obtaining such a distribution is simply a matter of scaling a zero-
mean, unit-variance normal distribution by sx, and adding Z¥rig- If there are
no nearby data for Kriging or if we are performing an unconditional simulation,
then the global mean and variance are used-the simulated value is simply a
random number drawn from a zero-mean, unit variance normal distribution.
Once the simulation is complete, we back transform the data to the original
distribution, taking care to avoid introducing bias [Deutch and Journel, 1998].
In our case, we assume that the permeability is lognormally d.istributed, SO we
need not apply a normal score back-transform. We do, of course, exponentiate

In (k) before the fluid-flow simulation using the methods of §2.2.1.

The initial synthetic log permeability field, In (ki(xo)), corresponds
to a subregion of the rock sample interrogated by the largest tip-seal. The
permeability field used for the fluid flow simulation is the exponentiation of

the log permeability, k1(Xo). As discussed in the previous section, we need not
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necessarily simulate the entire rock sample for any single test, only the effective
sample support, the box-shaped subregion, with a length and width of 25.1 di-
mensionless units and a depth of 12.5 dimensionless units. We set by . = 1.998,
as close as possible to 2, and hy = 0.1. The effective permeability calculated
from the measurement of k1(xo) is keg 1(12.55,12.55,0) (the coordinates are of
the tip-seal center). Next, we change tip-seals, switching to the next smallest
instrument. In order to maintain consistency of the boundary conditions, we
retain the same domain and instrument parameters, but we change the look
of the permeability field. Imagine that rather than shrinking the instrument
with respect to a fixed permeability field, we magnify the permeability field
with respect to a fixed instrument (or, more accurately, with respect to a fixed
set of boundary conditions that defines the instrument). It works like this: We
discard the points from k;(xo) that lie outside the sample support of the new,
smaller tip-seal. If the initial simulation consists of 251 x 251 x 251 grid points,
we keep the central 125 x 125 grid points lying in a horizontal slab that extends
61 grid points from the top surface. The grid points of the previous simulation
are co-located with the grid points of the new simulation. However, the ab-
solute grid separation of the new domain is half that of the previous domain,
so there are now rows, columns and layers of new grid points that lie between
those of the previous domain. We assign the punctual permeability values
from ki(xo) to their collocated grid blocks in the new domain and then obtain
permeability values for the remaining vacant grid-blocks with conditional se-
quential Gaussian simulation. Call the new field k(xo). Note that in doing
this, we have assumed an upscaling rule. The punctual values from k;(xo),

originally assigned the relatively coarse grid-blocks of the initial simulation,
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KXo}

Figure 2.4: Magnified natural log permeability fields

are now passed to the finer grid-blocks of the current simulation. Basically, we
have assumed that the spatial correlation structure exists across all scales, but
that the model is indifferent to information that lies below the grid-block scale.
This amounts to using the crudest of low-pass filters, simple sampling, for an
upscaling rule. What consequences of this rule might we anticipate? Given
that all the fields are sufficiently large as to ensure second order stationarity,
simple sampling should guarantee that the sample statistics of the synthetic

log permeability fields remain constant across all grid-block supports.

We run the magnification routine a total of four times, creating the
conditional permeability fields ky(xo), ka(Xo), ks(x0), k1s(x0). The k1(x0),
ka(x0), ka(xo), ks(Xo), kis(x0) fields correspond to the permeability fields in-
terrogated by the 2.54 cm, 1.27 cm, 0.63 cm, 0.31 cm and 0.15 cm tip-seals, re-



39

spectively. We illustrate this process for the In (k1 (x0)) — In (ks(x0)) in Fig. (2.4)
(In (k16(x0)) is omitted for the sake of clarity). In this figure, we show a two-
dimensional sli_ce of the log permeability field as seen by each tip-seal. The
length and breadth of the slice are both five global dimensionless units. The
top image is from within In (k;(X¢)), consisting of five by five grid—blbcks, is
drawn form the initial unconditional simulation. The second image from the
top is from the same portion of In (kg(xo)) and consists of nine by nine grid
blocks. Rows and columns of new blocks have been inserted between those
from the initial simulation of this region. This can be seen by scanning along
the top row of grid-blocks. The first, third, fifth, seventh and ninth grid-blocks
of the In (ky(xo)) field correspond to the first, second, third, fourth and fifth
grid blocks of the In (k1(xo)) field, respectively. The grid-block centers of these
odd numbered blocks from In (k2(xo)) share the same global coordinates with
the corresponding grid-blocks from In (k;(x0)), and so share the same value of
log permeability. The inserted grid-blocks in the In (k2(xo)) field are condition-
ally simulated on the information passed from the In (k1(x¢)) field. Similarly,
the third image from the top, taken from the In (k4(x¢)) field, is made up of
collocated log permeability values passed from the In (k2(x0)) field and condi-
tionally simulated log permeability values at the intervening grid-blocks. The
bottom image form the In (kg(xo)) field is generated the same way from the
In (k4(x0)) field above it. This algorithm ensures that information is preserved

across all scales.

We now are ready to move the numerical instrument to a new position
on the measurement grid. In this study, the grid is actually a transect, so we

describe in detail only the routine for repositioning in a single direction. The
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transect consists of 100 measurement points extending in the y direction, per-
pendicular to bedding. The measurement points are separated by 0.5 global
dimensionless length units, equal to half the inner radius of the z1 tip-seal.
The routine can easily be generalized to simulate measurements made on a
two-dimensional or even three-dimensional grid. We now introduce a global,
dimensionless Cartesian coordinate system with an origin at the lower, left
corner of top layer of the initial simulation k1(xo), so the sample domain X,
is bounded on the outside by the planes Zyoba = 0, Zgobar = 25.1, Ygiobat =
0, Ygiobal = 25.1, Zgiobat = 0, Zgiobas = 12.45 with the center of the tip-seal posi-
tioned at Tyopa = 12.55, Ygiobar = 12.55, 2g0pa = 0. (recall that the top layer
consists of chopped blocks). Distances in the global system, designated with a
subscript “global”, are always given in dimensionless units scaled by the inner
radius of the largest tip-seal and referenced to the origin at the corner of k; (xo).
By contrast, distances in local coordinates are scaled by the inner radius of the
tip-seal in current use and are referenced to the lower, left corner of the top

layer of the current domain.

Suppose now that we move the instrument 0.5 dimensionless units
in the positive y direction. We designate the sample supports associated with
the first shift x;. The sample support of the largest tip-seal is now bounded
by the planes Tyt = 0,Zgobar = 25.1, Ygiobar = 0.5, Ygiobat = 25.6, Zgiobas =
0, Zgobar = 12.45. We obtain the shifted permeability field ki(x;) by dis-
carding the points from ki(xo) that lie outside the boundaries of the shifted
field (the lower five rows, consisting of grid-blocks from the initial realiza-
tion izo = 1...251,4y, = 1...5,4z9 = 1...125) and conditionally simulating

the vacant points of the new simulation (the upper five rows, consisting of
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izy = 1...231,0y; = 247...251,4z; = 1...125). The effective permeabil-
ity calculated from measurement of ki(x1) is keg 1 (Zgotr = 12.55, Ygiopar =

13.05, Zglobal = O).

Moving on to the second largest tip-seal, the boundaries of the field
ko(x0) are the planes g0 = 6.275, Zgiobat = 18.825, Ygiobar = 6.275, Ygiohat =
18.825, Zgi0bat = 0, Zgiobat = 6.225. Thé boundaries of the shifted field kz(x;) are
the planes Zgiopar = 6.275, 1050 = 18.825, Ygspa = 6.775, Ygiobal = 19.325, Zgiopm =
0, zgobar = 6.225. We retain all the points previously simulated from both
ki(xo) and ky(xo) that lie within the boundaries of ky(x;), and conditionally
simulate the remaining vacant grid points. Similarly, we pass all points from
the simulations k1 (xo), k2(x0), and ky(x) lying within Tgiobal = 9.4125, X giopas =
15.6875, Ygiobar = 10.4125, Ygiopar = 16.6875, 240pa1 = 0, Zglobal = 3.1125 to ka(xy).
We repeat the procedure for ks(x;) and kig(x1). An image of the three-
dimensional z1 superblock is shown in Fig. (2.5); similar images of the other
superblocks are unavailable due to memory limitations. We show plan views
of the superblock fields in Fig. (2.6) - Fig. (2.9), showing only k;—ks. The grid
spacing of the ki field is so dense that it is not possible to assemble an image

due to memory limitations.

Consider the set of geostatistical simulations used here. The synthetic
field is modeled on a set of MSP measurements with a 0.15 cm tip-seal on
a 50 x 50 grid with grid centers separated by 1.27 cm (Fig. 2.10) [Tidwell
and Wilson, 2000]. The image shows the natural logarithm of the measured
permeability normalized by the mean of the set. Fig. (2.11) and Fig. (2.12)

show the histogram and semivariograms, respectively, calculated from the data.
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Figure 2.5: Synthetic permeability field, In (k)
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Figure 2.6: Plan view of In (k;) synthetic permeability field
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Figure 2.7: Plan view of In (k;) synthetic permeability field
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Figure 2.8: Plan view of In (k4) synthetic permeability field
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Figure 2.10: Massillon sandstone, In kg
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Figure 2.11: Massillon sandstone, histogram of In k; for a = 0.15¢cm

Tidwell and Wilson [2000] fit a nested, anisotropic semivariogram model to
the sample semivariogram. We used their two-dimensional model as the basis
for our three-dimensional model, assuming the Massillon to be isotropic in the
zz direction, parallel to the bedding. The three-dimensional semivariogram

model, shown as a solid line in Fig. (2.12), is

¥(sq) = % (1 — exp [~3s - X])+53 (1 —exp[~3s - Xy])+s5 (1 — cos [~27s - Xj])

(2.37)
where s? is the variance component for the jth model (j = 1,2,3), A} (not to
be confused with the Kriging weight \) is the reciprocal correlation length in

the principal directions

1
Az

1. 1.
€+ —¢€, +

A\ —
T Ay Ay,

€2

for the jth model, in which A, ; is the correlation length of the jth model in the
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Figure 2.12: Massillon sandstone, semivariograms of In k,

Model Index | 2 Az Ay Az
1 0.17 1.06 0.59 1.06
2 0.23 13.0 7.09 13.0
3 0.055 | 1 x10°%|7.00  1x 10°

Table 2.2: Model In (k) semivariogram parameters [Tidwell and Wilson, 2000]

z direction, and sy = s4, 28, + 54, Y&, + 84, 28, is the dimensionless lag vector
(lag normalized by inner tip seal radius) in the principal directions. Note that
s? only refers to a variance and s or Sdx/y/> Only refer to separation vectors.

Values of the various parameters are presented in Table (2.2).

The synthetic log permeability is a lognormally distributed field rep-

resented by a nested, anisotropic semivariogram:

The dimensions of the superblocks and their univariate statistics are
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Magnification | Dimensionless | Dimensionless | Dimensionless | m[ln (k)] | s°[In (k)]
Width Length Depth
x1 25.1 75.1 12.5 -0.03029 | 0.44238
x 2 12.55 62.55 6.25 -0.05343 | 0.42875
x4 6.275 56.275 3.125 -0.1374 | 0.42932
x 8 3.138 53.138 1.562 -0.23743 | 0.51383
x 16 1.569 51.569 0.78125 -0.2439 0.5751

Table 2.3: Superblock dimensions and statistics

presented in Table (2.3), and their semivariograms are shown in Fig. (2.13),
on which the dashed lines represent the semivariograms calculated from the

synthetic fields, and the solid lines represent the model values.

Both the mean and the variance vary, and neither shows any particu-
lar pattern in doing so. What accounts for this? If there is any pattern at all,
it is that the variance increases as the size of the grid-blocks decreases. This
result is consistent with the regularization described by Journel and Huijbregts
in [1978], but is unexpected in this context. Journel and Huijbregts demon-
strated that the variance of a volume averaged property increases as sample
support decreases. This should not be the case here. Our scheme presumes
that the permeability is continuous and that as we change magnification level
we are simply evaluating that continuous function at finer and finer resolu-
tion. As mentioned earlier, this amounts to high-frequency sampling of the
permeability, which should have no effect on the summary statistics under the
assumption that the sampling region is sufficiently large to ensure stationarity.
From Fig. (2.13), the semivariogram in the z direction is very faithfully repli-
cates the model, the semivariogram in the z direction consistently lies above

the model, and the semivariogram in the y direction shows an increase in the
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amplitude of the hole-effect variance as magnification level increases. If we had

somehow inadvertently introduced regularization, it would not look like this.

In fact, what is going on is that the assumption of stationarity is not
valid for the high magnification superblocks. These regions, as can be seen
from Table (2.1) and Fig. (2.6)-Fig. (2.9), are relatively narrow and shallow,
and hence not representative of thé global statistics. This can be shown by cal-
culating the mean, variance and semivariogram of the coarse k; superblock in
the sub-volumes that overlap the higher magnification superblocks. Table (2.4)
shows the univariate statistics in the overlapping volumes. In comparison with
Table (2.3), the statistics closely resemble those of the magnified superblocks.
Fig. (2.14)-Fig. (2.17) superimpose y-direction semivariograms calculated from
the high resolution superblocks, ko—kis, on y-direction semivariograms cal-
culated fr(l)m the corresponding subvolumes of k;. The semivariograms very
nearly overly each other for ko— ks. Only the semivariograms for ki¢ are no-
ticeably different, though the difference is considerably less than that between
the model and experimental values. Overall, the similarities give some reas-
surance that the departure of the magnified superblocks from the expected
statistical measures is simply a result of local bias due to the limited size of the
domain. The magnified fields do preserve the statistics of the data on which
they were conditionally simulated (i. e., the k; log permeability field in the

corresponding subvolume).
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Magnification of | m[In (k;)] | s*[In (k)]
Overlapped Volume

X 2 -0.05892 | 0.42962

x 4 -0.14173 | 0.43551

x 8 -0.22487 | 0.52365

x 16 -0.2475 0.65288

Table 2.4: Statistics of In (k;) in magnified sub-volumes
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18 20

Figure 2.14: Comparison between semivariogram, v,, for ks superblock (solid
line) and corresponding volume of ky superblock (dashed line)
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Figure 2.17: Comparison between semivariogram, -, for kig superblock (solid

line) and corresponding volume of k; superblock
(dashed line)



CHAPTER 3

RESULTS AND DISCUSSION

3.1 Univariate Statistical Coniparison of Numerical and Laboratory
Results

The effective, numerically calculated log permeability along the numerically-
modeled transect is shown in Fig. (3.1). A single transect of the laboratory
data consists of only fifty measurement points. In order to facilitate compar-
ison between the numerical and laboratory results, we compare a transect of
the laboratory data across the bedding (the 26 column of Fig. (2.10)) to
an arbitrary selection of fifty consecutive points in the numerical transect in
Fig. (3.2). The laboratory data have been normalized to display on the same
scale used for the numerical data. The laboratory values of the natural log
of the dimensionless permeability for the x4 tip-seal, In (kq;), were normalized
by subtracting the sample mean of the natural log of the 216 (i. e.,0.15 cm)

tip-seal from each value, so

In (Kiap normatized) = 10 (kg itap) — m[In (Ka,16,1ab))-

We obtain the dimensionless permeability kg by dividing by the unit perme-
ability. For the sake of brevity, we suppress the subscripts “normalized” and
“d”, so that from here on, In (ki) really means In (kg iab, normatized) 80d 10 (Kpum)

really means In (kg num). Except where otherwise noted, the subscripts “num”

%3]




o6

X4 -

TR TR
Ya

I'IUITI)

In{k

Figure 3.1: Natural log of the numerical dimensionless permeability

Magnification | m[In(kpum)] | s*[In(Kknum)] | mIn(kies)] | s*[In(kias)]
x 1 -0.0636 0.1983 1.1997 0.1449
x 2 -0.0848 0.2783 0.8524 0.2254
x 4 -0.1115 0.3408 0.5438 0.2593
x 8 -0.1198 0.3805 0.2666 0.3007
x 16 -0.1316 0.4091 0.0000 0.4013

Table 3.1: Univariate statistics of numerical and laboratory results

and “lab” also refer to the measurements of the effective permeability, not the

point-scale permeability of the underlying field.

A casual inspection of Fig. (3.2) is revealing. First, both sets of mea-
surements show the distinctly periodic character at the expected wavelength.
Second, both sets of measurements are smoothed as the tip-seal size increases.
However, while the In (k1 pum) and In (k1 14) values appear comparably smooth,
the laboratory results seem to posses more power at high spatial frequencies

for the smaller tip-seals. In plain English, the 22-216 laboratory results look
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more jagged than the corresponding numerical results. One metric of smooth-
ness is the variance, plotted for the complete sets of numerical and laboratory
measurements (not just the transects shown on Fig. (3.2)) on Fig. (3.3b) and
tabulated in Table (3.1). The variance of both data sets is nearly identical
for the z16 tip seal, but the variance of the laboratory results is lower than
that of the laboratory results for the larger tip-seals, confirming our qualitative
observation. Compare the change in the variance of the numerical effective log
permeability in Table (3.1) to the change in the variance of the log permeabil-
ity of the synthetic field in Table (2.3). The log permeability variance of the
synthetic field decreased from z16 to z1 as a result of local bias. Thus, the
decrease in the variance of the effective numerical values may simply reflect
the decrease in the variance of the underlying field that the numerical min-
permeameter samples. However, we reject this conclusion on the basis that
the laboratory values, which exhaustively sample the rock face and are thus
less prone to the effects of local bias, also show a decrease in log effective per-
meability as tip-seal size increases. Third, a clear trend in the mean of the
laboratory results is apparent: In (ki) increases as tip-seal size increases. No
such trend is apparent for the numerical results. The mean of the two sets of
measurements is plotted on Fig. (3.3a) and tabulated in Table (3.1). We see
the obvious trend for the laboratory data here, but only slight upward trend
for the numerical results. The trend in the numerical results is consistent, but

so small that we cannot give it significance.

Two effects, overlapping and increase of support, may be at work to
lower the variance as tip-seal size increases. By overlapping, we mean that

for a pair of measurement points, the sample support at each point increases
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Figure 3.4: Variance of In (k4) as a function of grid separation for (A), numerical
results and (B), laboratory results.

with the size of the tip-seal used to make the measurement. As a result, the
supports of the two measurements intersect one another to a greater extent
for larger tip-seals. We can distinguish the effect of overlap from the effect of
sample support by considering the variance of the data as a function of grid
separation. The measurement grid for both numerical and laboratory data sets
is 0.5 dimensionless length units. We calculate the variance of data subsets
consisting of measurements separated by 1.0, 1.5, 2.0 and 2.5 dimensionless
length units. The results are plotted on Fig. (3.4). There is no particular trend
in the variance as we change the separation between measurements. This means
that the smoothing is not, as far as we can tell, a function of overlap, but of

change of sample support only.

As the tip-seal size increases, so too does the volume of the sam-
ple support. As the linear dimensions of the sample support approach the
correlation length of a given characteristic spatial structure of the underlying
permeability, we lose the ability to resolve that structure. Compare the size of
each tip-seal to the correlation lengths of the underlying permeability field. We

define the dimensionless correlation length Ay = %, where A is the correlation
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length and a is the inner tip-seal radius. The dimensionless correlation lengths
for the three characteristic spatial structures estimated from the laboratory
data set [Tidwell and Wilson, 1997] in the principal directions, /\fmn, fl,yn? and

“sn
?

i for each tip-seal are shown in Table (3.2). The superscript “4” in this case

d,zn’
indexes the characteristic spatial structure, per Table (2.2), and the subscript
“n” refers to the tip-seal size. For example, )‘cli,y2 refers to the dimensionless
correlation length of the small- scale exponential structure in the y direction
(i. e., perpendicular to bedding) relative to the z2 tip-seal. The small-scale
dimensionless correlation length changes as we go from the z1 tip-seal to the
216 tip-seal from A}, = 0.59 to A} ;5. The dimensionless correlation length
goes from being somewhat smaller than the z1 tip seal to being just less than
an order of magnitude larger than the 16 tip-seal. Thus, we expect that the
signal from the small-scale structure to be completely filtered out for the zl
tip-seal and to reemerge as tip-seal size decreases. Referring to Table (2.2),
this would mean that the difference in variance between measurements of the
z1 tip-seal and 216 tip-seal should be about 0.17, the sill value of the small-
scale exponential structure. From Table (3.1), the difference is 0.2108 for the
numerical data set and 0.2664 for the laboratory data set. We interpret this
to mean that the small-scale structure is completely filtered out and that. In
addition, the z1 tip-seal is too big to completely resolve even the large-scale
exponential structure, as variance of 0.1983 is less than the sill value of the
large-scale exponential structure, 0.23. We will revisit this issue again when we

analyze semivariograms calculated from both numerical and laboratory results.

We interpret the similarity in the variance upscaling between the nu-

merical and laboratory results as confirmation of the validity of the magnifi-
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Small-Scale Large-Scale Hole-Effect
Magnification | Az, | Ay ) Ay )\fi,(m’z) Ny | M)
x1 0.59 | 1.06 7.09 13.0 7.09 N/A
x 2 1.18 | 2.12 | 14.18 | 26.0 14.18 | N/A
x4 236 | 4.24 | 2836 | 52.0 | 28.36 | N/A
X8 4721 848 | 56.72 | 104.0 | 56.72 | N/A
x 16 9.44 | 16.96 | 113.44 | 208.0 | 113.44 | N/A

Table 3.2: Dimensionless correlation lengths [Tidwell and Wilson, 1997]

cation routine as a means of parameterizing the permeability field at different
scales. Heuristically, the variance reveals the smoothing or averaging of the un-
derlying field by the instrument. The consistency in the scaling of the variance
between numerical and laboratory experiments suggests that the numerical
model of the log permeability field as the resolution of the grid increases corre-
sponds to the behavior of the physical log permeability field as the size of the

tip-seal decreases.

The most glaring difference between the laboratory and numerical
results is the upscaling of the mean log permeability. This is important because
the trend in the mean is the crucial element we wish to explore. The laboratory
results show an obvious increase in the mean as tip-seal size increases, while the
mean of the numerical results appears essentially unchanged. In fact, the mean
log permeability of the numerical measurements does increase, but much less
than that of the laboratory measurements (see Fig. (3.3a) and Table (3.1)).
In this case, we cannot blame to discrepancy on the smaller sample size of
the numerical data set: statistics calculated on single transects taken from the

laboratory data show virtually the same upscaling trends in both mean and
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variance of the ensemble laboratory data as shown in Fig. (3.3).

Clearly, the synthetic permeability does not possess whatever quality
or qualities that account for the upscaling of the laboratory field. We show
in Fig. (2.13) that the synthetic numerical permeability faithfully reproduces
the prescribed statistics of Eq. (2.88). What, then, is the missing ingredient?
Physically, the upward trend in the inean log effective permeability is caused by
relatively greater mass transport of gas by larger tip-seals than smaller tip-seals
on average. The most plausible mechanism for enhanced mass transport as a
function of tip seal radius is the availability of preferential flow paths. Such flow
paths would arise if the permeability field were characterized by connectivity of
like permeability values extending over the range of spatial scales corresponding
to the range of measurement scales that demonstrate the upscaling trend. In a
medium characterized by the sort of laminar anisotropy present in the Massillon
sandstone, connectivity of either low or high permeability regions would have
the effect of creating channels of relatively high permeability. Channelization of
permeameter flow was not apparent in the numerically modeled Massillon. We
identify three possible causes for the absence of channelization: the synthetic
log permeability field is qualitatively different from actual log permeability field;
the punctual log permeability values of the laboratory sample are not Normally
distributed, as the synthetic field is; and the simulation fails to capture the
small-scale features of the laboratory sample. We discuss the first two of these

in the remainder of this section and the last in the following section.

We immediately note the qualitative difference between the perme-

ability map of the laboratory data set and the synthetic permeability. Compare
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Fig. (2.6) to Fig. (2.10). Both permeability fields are anisotropic and show a
bedding pattern. The laboratory image, however, shows far more structure.
Perpendicular to bedding, the synthetic field shows alternating bands of high
and low values‘ of equal thickness, while the laboratory image is character-
ized by wide bands of high permeability values alternating with thinner lenses
(bounding surfaces) of low permeability values. Parallel to bedding, both high
and low permeability regions are coherent over greater widths. In addition, an
angular unconformity is present in the laboratory image at the top lett. It is
clear that simulation that honors semivariograms, as is the case for the syn-
thetic field, does not necessarily honor the physical features from which those
semivariograms are calculated. As noted by Pyrcz and Deutsch [2003], the
relationship between a hole-effect semivariogram and the field from which it is
calculated is non-unique: any number of periodic structures (e. g., regularly or
irregularly clustered lenses, regular or irregular strata) may have identical spa-
tial correlation structure. Correctly reproducing the qualitative features of the
laboratory sample might entail using a hierarchical simulation procedure, in
which regions of “high” or “low” permeability are simulated using an indicator
algorithm, then punctual permeability values are assigned using a second sim-

ulation routine (perhaps sequential Gaussian simulation) within each region.

We can also see substantial quantitative differences between the nu-
merical and laboratory permeabilities. Fig. (3.5) and Fig. (3.6) show the cumu-
lative distribution functions of In (knyum) and In (ki ), respectively. The results
are consistent with what we have seen already. Both sets of CDFs become
narrower as tip-seal size increases, showing the decreasing trend in variance.

The increase in the mean log permeability is seen in the positive shift of the
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CDFs as tip-seal size increases. We see the slight increase in the mean of the
numerical results better here than in Fig. (3.4a). Also note that the laboratory
results are negatively skewed compared to the corresponding numerical results,
indicating that the laboratory measurements are not log-normally distributed
(¢f. Fig. 2.10), contrary to the simplifying assumption made by Tidwell and
Wilson [1997]. '

The skew is even more apparent from Fig. (3.7), Q-Q plots comparing
quantiles of the numerical and laboratory data. The Q-Q plots vividly show
the much greater upward trend in the mean of the laboratory results as tip-
seal increases, as compared to the numerical results. While the long lower tail
of the laboratory results was previously evident, we can also see much more
clearly a truncated upper tail. In fact, we see that the negative skew becomes
more pronounced as tip-seal size decreases: the negative tail gets longer and
the positive tail more truncated. Overall, we conclude that the upward shift of
the mean is not a result of a few outliers, but is an across-the-board increase in
effective permeability. We don't see a similar pattern in the numerical results,

which are predictably lognormally distributed.

This distributional anomaly is significant. The long low-value tail has
the effect of moving log permeability values in the tail farther away from the
median than they would be for a Gaussian distribution. As a consequence, the
skewed distribution has a break, where the tail begins, below which punctual log
permeability values are lower than they would be in the Gaussian distribution.
The break divides the skewed distribution into a sub-populations of low and

high log permeability values. In a Gaussian distributed, spatially correlated
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field, like log permeabilities tend to cluster together, with regions of high log
permeability smoothly transitioning to regions of low log permeability. A log
permeability field that follows the skewed distribution characteristic of the

~ laboratory data Joses some of that smoothness.

To illustrate this, imagine that we perform a Normal-score transform
on the one of the Gaussian-distributed synthetic log permeability fields used
here. For the sake of illustration, suppose the break dividing fhe high and
Jow sub-populations is located at In (k) = —1 (see Fig. (2.11)). All punctual
log permeability values below -1 in the original synthetic field will be assigned
some lower value according to the transform table. The spatial structure of
log permeabilities would be unaffected, but the punctual log permeabilities
below -1 would now be lower in comparison to the remainder of the field,
creating distinctive “blocks” of low log permeabilities within a matrix of other-
wise Gaussian-distributed high log permeabilities. By increasing the constrast
between high and low values, the Normal-score transform creates the poten-
tial for channelization of flow through connected high log permeability regions
bounded by connected low log permeability regions. Treated as a hypothesis,
this scenario can be easily tested by employing a Normal-score transform on
the sequential Gaussian simulated log permeability values, and running the

flow code on both the transformed and untransformed fields.

3.2 Geostatistical Comparison of Numerical and Laboratory Re-
sults

Fig. (3.8) shows a set of three superimposed semivariograms for each

tip-seal. The black dots are semivariograms calculated from the numerical ef-
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fective log permeability values, the solid lines are semivariograms we fit to the
numerical semivariograms (i. e., the solid lines are fit to the black dots), and the
dashed lines are the semivariograms Tidwell and Wilson [1997] fit to the 216
tip-seal laboratory data set. Superimposed on the semivariograms calculated
from the numerical measurements are semivariograms fitted to the calculated
versions and semivariograms fitted to the appropriate set of laboratory mea-
surements. Both sets of fitted semivariograms retain the nested functional form
of Eq. (2.88), but the sill/amplitude and range parameters have been changed
to achieve the best fit. The parameters for the semivariograms fitted to the nu-
merical data are shown in Table (3.3) and the parameters Tidwell and Wilson
[2000[ fit to the laboratory data are shown in Fig. (3.4). We did the fitting by
eye, emphasizing closeness of fit at short ranges over long ranges. It can be seen
that the fit, while as good as possible for the given functional form, is ques-
tionable. Note the pronounced long-range upward trend in the semivariogram
calculated from the numerical data (the black dots in Fig. (3.8)), which seems

to be the primary culprit for the poor fit to the numerical semivariogram.

What accounts for this long range trend in the effective numerical
log permeability that is not present in the effective laboratory log permeability
(Fig. (2.12))? The trend is present for all tip-seal sizes, so this is not an
upscaling trend so much as something symptomatic of the instrument itself.
The first question that should be answered is whether the trend is present in
the underlying permeability field. Referring to Fig. (2.13), it appears that this
is the case, that the underlying synthetic log permeability field does show a
similar upward trend. Thus, this feature in the semivariogram calculated from

the effective numerical log permeability reflects to some degree the same feature
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Small-Scale | Large-Scale | Hole-Effect

Magnification | 7 [ Ayt | S5 | Ay2 55 | Ays
x1 0.045] 9.0 | 0.12 | 12.09 | 0.035 | 7.09

X 2 0.065 | 3.0 | 0.13 | 10.09 | 0.075 | 7.09

x4 0.075| 2.0 1 0.16 | 9.09 | 0.10 | 7.09

x 8 0.085 | 1.2 | 0.17| 7.59 | 0.09 | 7.09

x 16 0.1 [0.99]0.19] 7.09 | 0.085 | 7.09

Table 3.3: Semivariogram parameters Fit to numerical data

Small-Scale | Large-Scale | Hole-Effect

Magnification | 82 | Ay1 | S5 | g2 s:i | A3
x 1 .o | -+ ]10.15]15.94 | 0.068 | 7.09

X 2 e ... 1 0.20|11.22{ 0.090 | 7.09

x 4 0.02] 1.30 {022 | 8.86 |0.080 | 7.09

x 8 0.06 1 0.83 |0.23| 7.68 |0.065 | 7.09

x 16 0.17] 0.59 | 0.23 | 7.09 | 0.055 | 7.09

Table 3.4: Semivariogram parameters fit to laboratory data [Tidwell and Wil-
son, 2000]

in the underlying permeability field of which the effective values are a measure.

Examination of the semivariogram parameters fitted to the numerical
effective log permeability semivariogram does reveal upscaling behavior com-
plementary to that seen for the laboratory data. As with Tidwell and Wilson
[2000], the sill values of both exponential semivariogram structures decreases as
tip-seal size increases, with the relative contribution of the small-scale structure
decreasing rapidly. The amplitude of the hole-effect structuré increases with
tip-seal size to a point and then drops. We see here clearly the preferential
filtering we noted above in our discussion of the global variance. For the lab-

oratory results, the contribution of the small-scale structure is entirely filtered
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out for the z1 and z2 tip-seals, which is intuitively sensible and in keeping with
Beckie’s [1996] observation that physics above the Nyquist frequency cannot be
resolved. The contribution of the small-scale structure to the semivariogram
fit to the numerical results does not fall off nearly as precipitously as for the
laboratory results nor is it filtered out completely. Also consistent with Tid-
well and Wilson [2000}, the range of the exponential structures increases with

tip-seal size.

The significance of the upscaling of the sill values has already been
discussed in the previous section. The upscaling of the correlation length, as
noted by Tidwell and Wilson [2000], simply reflects the fact that, as the tip-
seal size increases, two measurements must be separated that much farther
apart before the become completely uncorrelated. Once again, these results
give us confidence that the numerical scheme accurately models a real world

gas minipermeameter, but they tell us little about upscaling processes.

On a different track, one of the questions we wish to answer in this
study is how well the gas minipermeameter measures the spatial structure of
the underlying permeability. Overall, none of the tip-seals provides a very
accurate representation. However, comparing Table (3.3) and Table (3.4), we
see that the accuracy of the estimated semivariograms increases as the tip-seal
size decreases. For the exponential structures, two trends are apparent: as tip-
seal size decreases, the sill approaches the prescribed value from below and the
correlation length approaches the prescribed value from above. For the hole-
effect structure, the wavelength is accurate for all tip-seals. The hole-effect

amplitude also appears to be headed in the right direction as the tip-seal size
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decreases, though it is not possible to know if the amplitude and correlation
length parameters would truly converge to the correct value. This gives us
an indication as to how small the tip-seal must be relative to the correlation
length of a permeability field semivariogram in order resolve that correlation
length. In the numerical data set, only the correlation length of the large scale
exponential structure is well resolved (in that the estimated correlation length
from Table (3.3) reflects the actual correlation length from the underlying field),
and then only by the 16 tip-seal, for which the correlation is 113.44 times
the length of the inner tip-seal radius. This suggests that in order for a tip-
seal to be used to correctly estimate a correlation length, the inner tip-seal
radius must be around two orders of magnitude smaller than the correlation
length to be estimated. If this is the case, then the largest correlation length
that could be well estimated in the laboratory by the MSP would around one
hundred times the inner radius of the smallest tip-seal, or 15 cm. If this is
so, then the parameterization of the small-scale exponential semivariogram
structure is likely not representative of the actual structure: extrapolating the
trends from Table (3.4), the true semivariogram would have a correlation length
less than the estimated 0.59 dimensionless length units and a sill higher than
the estimated 0.17. It is also plausible that spatial structure exists for this
sample at a smaller scale than even the small-scale exponential structure that
is completely or nearly completely unresolved, and so a parameterization of the

Massillon sandstone based on the small

The incomplete picture of the underlying spatial structure of the Mas-
sillon is consistent with the closure problem discussed by Beckie [1996]. Beckie

designates variability of the target field (i. e., the field interrogated by an in-
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strument) that lies below the scale of the measurement grid as “sub-grid”, and
notes that such variability can only be partially resolved by a gridded set of
measurements. That is precisely the situation encountered here by both labo-
ratory and numerical experiments. While the measurement scale is varied using
tip-seals of different size, the sampling scale remains fixed at 1.27 cm between
points on the measurement grid (in the case of the laboratory experiment) or
transect (in the case of the numerical experiment). Gridded measurements are
band-limited and cannot fully resolve variability below the Nyquist interval of

the sampling scale, which in this case would be 2.54 cm.

This inability of the smallest laboratory tip-seal to measure the small-
est features of the sample may be another reason the numerical experiment fails
to upscale in the expected manner. The synthetic field is paramterized by semi-
variograms drawn from the laboratory 0.15 cm tip-seal data set, which we have
shown to be an incomplete representation of the actual spatial structure of
the Massillon. We may reasonably expect that there exist spatial structures
smaller than 2.54 cm and these features will contribute, to some degree, to the
effective permeability measured by the instrument. We don’t know to what
extent such features might affect log permeability upscaling, but their absence

-

from the synthetic field begs investigation.

3.3 Spatial Weighting Functions

In order to evaluate the spatial weighting function of the numerical
minipermeameter, we have compared effective permeability to the geometrical
mean of the underlying field. At each measurement location on the transect,

we calculated the geometric mean of the local permeability in a number of
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Region
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inside radius, 1 | 1.5
outside radius, 2

Table 3.5: Dimensions of averaging regions

concentric cylindrical regions. The axis of the cylinders coincides with the
axis of the tip-seal and the dimensions of the cylinders are s’caled by the local
coordinate system (cf. §2.2.3). Thus, the radius, ra;, of the averaging volume
A1 is given by 741 = %al, where a; is the x1 inner tip seal radius. Similarly,
the height, k1, of the averaging volume A; is given by hyy = %al. We define
dimensionless radii and heights by normalizing by the appropriate inner tip-seal

radius, so that for the Al averaging volume,

LV 1
d,Al = ay - \/57
P (1/v2)a _ 1
T g V2

The dimensions of the averaging volumes are given in Table (3.5). The region
U is an annulus that lies directly beneath the tip seal and extends a depth
one-and-a-half times the inner tip seal radius. The region H is the full local

domain.

We compare natural log of effective permeability to the natural log of
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the geometric mean in each of the cylindrical regions in the figures shown in
Appendix B and scatter plots in Appendix C, and in Fig. (3.9)-Fig. (3.17) for
the z16 tip seal only. In a qualitative sense, we see that the correlation between
the geometric mean and the effective permeability is strongest in regions A-C
and U, and that the strength of correlation across all regions is better for small

tip-seals than large ones.

In order to quantify the cross-correlation between the effective per-
meability and the volume average, Fig. (3.18) shows the correlation coefficient,
N
_ 70 2imy 0 (egg) In (bgeo) — miln (e ) m{ln (geo)]
V82 I (kesp)]/ 8% [In (e sr)]

for regions A-F and U across all sample supports. Two patterns are apparent

(3.1)

in Fig. (3.18). First, correlation to the effective log permeability is better for
the smaller averaging volume (with an important caveat) and becomes worse
as the averaging volumes increase. Second, the correlation between all pairs
of effective log permeability and volume average decreases as tip-seal size in-

creases.

That the effective log permeability correlates most strongly with the
geometric mean of the small volume averages is not surprising. However, the
strongest correlation is not for Region A, the smallest of the averaging volumes,
but for Region U (for 216, z8 and z4) and Region B (for 22 and z1). Both
Regions U and B include the grid-blocks that lies adjacent to the edge of the
inner tip-seal radius. This is consistent with the work of Aronson [2001] and
Molz et al. [2003], who showed for a homogeneous, isotropic permeability field
that the narrow annulus lying under the inner radius of the tip-seal contributes

most heavily to the effective log permeability. The volumes that encompass
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Figure 3.9: (a), Comparison between In (k16 mum) and In (kase)- (b), Scatter
plot of In (kaie) vs. In (k16 num)-

this annulus, Regions B, C and U, all show the strongest correlation with the
effective permeability. Region A is next best correlated, followed by Regions

D, E, F, G, and H, in that order.

The reasons for the decrease in correlation between the effective log
permeability and all volume averages as tip-seal size increases are less clear.
We can interpret this in terms of the relationship between the inner tip-seal

radius and the correlation length of the underlying permeability field. Recall
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that the minpermeameter acts as an averaging device, weighting the domain
nearest the edges of the tip seal (particularly the inner tip-seal) most heavily.
At the same time, we are calculating the geometric mean within subregions of
the domain, but without giving greater weight to any part of the subregion.
Thus, the volume average always gives disproportionate weight to portions of
the domain removed from those portions that truly contribute to the effective
permeability. When the correlation length is approximately the same size as
the inner tip seal radius, the underlying permeability field is more uniform in
the neighborhood of the tip-seal, so the greater weight given by the volume
geometric averaging to portions of the domain removed from the tip-seal edges
has little effect. However, as the correlation length decreases relative to the
inner tip-seal radius, the underlying permeability field becomes less uniform,
and the volume geometric mean includes values that are increaéingly dissimilar
to those near the tip-seal edges. This has the effect moving the log geometric

mean away from the effective log permeability.

We plot the upscaling trends of the natural log of the geometric mean
in Fig. (3.19). Comparing to Fig. (3.4a), the natural log of the geometric mean
in regions A-D and U show an upward trend, as we would expect. The overall
change in permeability is similar, though the volume-averaged lines do not in-
crease monotonically, as the numerical line does. An interesting feature is that
m[ln (kgeo)] is biased low compared to the numerical values. The magnitude of
the upscaling is comparable to that of log numerical effective permeability, on

the order of 0.1.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

From the performance of the numerical model, we are able to draw the
following conclusions. We distinguish two categories, permeability simulation

and measurement of the effective numerical permeability.

From the exercise of simulating the synthetic permeability field, we

conclude that:

e Sequential Gaussian simulation alone is inadequate to faithfully repro-
duce the global characteristics of the laboratory sample. Though the
semivariogram of the synthetic log permeability matches that of the labo-
ratory sample, it is clear that this is insufficient to guarantee a qualitative

match.

e Small-scale properties of the laboratory sample, if they exist, are not
captured by the laboratory measurements nor replicated in the synthetic
sample. We draw this conclusion based on the resolution of the measure-
ment grid (see below). We speculate that these small—sc.ale structures
play a role in determining the effective permeability and thus influence
upscaling of the mean log effective permeability. In order to test this

hypothesis, it would be necessary to prescribe a small-scale structure and

90




91

demonstrate the desired upscaling pattern. The primary obstacle to this
is creating a model with sufficient grid resolution to support a smaller
scale. If this were possible, we might guess at thé small-scale structure
and test for upscaling. Guessing would be required because we are un-
able to measure the small-scale variation directly. We might, however,
use optical images or x-ray tomography reconstruction of the pore space
to constrain our guesses to semivariogram models that are likely repre-

sentative of the true small-scale structures.

From the set of measurements by the numerical minpermeameter, we conclude

that:

o Estimates of spatial structures calculated from gridded measurements are
subject to preferential filtering. This filtering limits how well structures of
the measured field can be resolved as a function of both the measurement
scale (the scale of the instrument) and the sample scale (the scale of the
measurement grid). It has already been established that it is not possible
to resolve structures below either the measurement scale or the sample
scale [Beckie, 1996]. In this case, the sample scale was held constant
and the measurement scale varied. AS predicted, the numerical miniper-
meameter does filter out the contribution of structures with correlation
lengths on the order of the inner tip seal radius. We also determined
that in order to completely resolve spatial structures at the theoretical
limit of the sample scale, the measurement scale must be two orders of
magnitude smaller than the correlation length. At this point, this result

can only be generalized for gas minipermeameters with by = 2.
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e We confirm that the gas minipermeameter measurement is strongly cor-
related to the geometric mean of the underlying permeability field. In
particular, the measurement correlates best with those small (i. e., gy <
V2, hg < \/5) cylindrical regions that encompass the annular region lying
beneath the inner radius of the tip-seal. This confirms that the spatial
weighting function derived by Aronson [2000] and Molz, et al. [2003] for

homogeneous fields is valid for heterogeneous fields.

Beyond these largely performance related conclusions, we must yet
address the physical processes that contribute to permeability upscaling. What,
then, have we learned, in a general sense, about upscaling? Answering this
question requires us to explore the implications of the negative result of the

numerical experiment.

The physical explanation for the lack of mean effective log permeabil-
ity is that the synthetic permeability field does not allow for increased relative
flow (on average) as tip seal size increases. As discussed in §3.1, this is proba-
bly due to an absence of preferential flow paths. It appears that the numerical
scheme provides an accurate model of minipermeameter operation, and the
magnification routine gives a good account of modeling the change of scale,
which leaves the permeability simulation routine accountable for the negative

result.

We attribute this failure to three things. First, an inability of the
laboratory measurements to fully characterize the Massillon sandstone, partic-
ularly the small-scale structures. This may be indicative of the closure prob-

lem discussed by Beckie [1996]. Beckie notes that parameters cannot vary
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below twice the measurement scale (in this case the inner tip-seal radius), nor
can parameters be explicitly resolved below twice the grid scale (the factor of
two is consequence of these limits being functions of the Sampling Theorem
~ [Bracewell, 2001]). While the measurement scale measurement scale for the
laboratory data on which we based the simulation is 0.15 cm, allowing struc-
tures as small as 0.30 cm to be resolved in theory, the grid scale is 1.27 cm. This
means that structures with a correlation length less than 2.54 cm cannot be
completely resolved. Visual inspection of the Massillon shows structures below

this scale, making it plausible that permeability structures also exist here.

Second, semivariograms and distributions of the synthetic log perme-
ability are not well matched to those of the laboratory sample. In particular
both the synthetic log permeability and the effective log permeability show
long range upward trends, denoting lower correlation at long lags, that are not
present in the laboratory data. Also, the distribution of the laboratory log
permeability is significantly skewed, showing a extended tail of low log perme-
ability values and a truncated tail of high log permeability values. Both these
characteristiés stand to have a significant bearing on the numerical measure-

ments.

Third, the synthetic field is qualitatively much different from the lab-
oratory specimen. Absent from the synthetic field are the bounding surfaces
that separate zones of depositionally related cross-strata. As observed by Tid-
well and Wilson [2000], the statistics of the cross-strata are representative of
separate population parameters from those of the bounding surfaces, with the

bounding regions contributing the negative skew of the distribution. This bi-
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modality is not reflected in the synthetic log permeability. The stratified struc-
ture of the laboratory Massillon almost certainly contributes to the upscaling

of the mean log permeability.

Without capturing these characteristic structures of the laboratory
specimen, it is unlikely that we could expect to replicate the same upscaling

pattern in the numerical experiment.

4.2 Recommendations for Future Work

Our recommendations for future work parallel the concluding points

made above.

¢ Simulating values at a significantly smaller scale than that used herein
would prove technically challenging. Decreasing grid spacing by a factor
of 10 would require storing permeability values for no less than 7.88 x 10°
grid points. Using single-precision format, storing the coefficient matrix,
state vector and load vector would require about 176GB. With 64-bit
processors entering wide commercial distribution, it might, in theory, be
possible to solve this system on a desktop machine. However, the time

required to do so might make doing so prohibitive.

Setting aside for the moment the technical issues, decreasing the grid res-
olution would also require knowledge of the small-scale correlation struc-
ture. The finest grid separation used in the current study is on the order
of 10~'mm or 10?um. Decreasing this by a factor of 10 would require
knowledge of the correlation structure at the micron scale. Chapin [2001]

has analyzed the pore structure of the Massillon sandstone, which is at
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the desired scale, and calculated spatial correlation using spectral analy-
sis. Should computational limitations prove surmountable, future workers
might attempt to derive effective permeability values from Chapin’s pore

scale analysis, and thence prescribe smaller scale semivariograms.

Tidwell and Wilson [2000] fit a standard nested semivariogram structure
to their data. This nested structure was the best fit using the stan-
dard functional forms available to model semivariograms. However, this
functional form did not provide a faithful replica of the Massillon semi-
variogram during simulation. Better fidelity might be achieved by using
a look-up table composed of the empirical covariances in place of covari-
ances derived from the nested function that was fit to the data. However,
care would have to be taken to ensure that the empirical covariance ma-

trix would be non-negative definite.

The physical characteristic of the Massillon might better be replicated
in the synthetic log permeability by incorporating several approaches to
simulation. Recall that the Massillon is characterized by the presence of
several bounding surfaces, representing unconformities separating differ-
ent depositional events. In addition, the laboratory data indicate that
the perméability does not follow a log-normal distribution. Performing
a normal score back-transform of the Gaussian distributed simulated log
permeabilities, using a transformation table based on the laboratory log
permeabilities, would a necessary step in future work. Better fidelity
still might be achieved by conditioning the simulation on the laboratory

data. This would require first performing a forward normal score trans-
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form, followed by simulation, followed by back-transformation. A related
approach to reproducing the pattern of depositionally related regions sep-
arated by bounding surfaces would be to use an indicator algorithm, fol-
low by punctual simulation within each indicator region. Doing so would
more accurately take into account the weak bimodality of the population.

This approach, too, could be conditioned on the laboratory data set. '

The magnification routine was based on a sampling upscaling rule: the
punctual permeability value at the node points was passed from one mag-
nification to the next. This means that for a given volume of the domain
occupied by a single grid-block at one magnification, and several grid-
blocks at a higer magnification, that no averaging takes place to incor-
porate information about any of the fine grid blocks into the assigned
permeability of the coarse grid-block, other than for the grid-block that
is co-located. It would be worthwhile to explore different averaging rules

to see what effect would take place.

Tt would be very helpful to increase both the physical and parameter
space covered by the measurement grid. This might be accomplished
by extending the measurement grid into two or three dimensions, and
covering a region that encompasses many correlation lengths. In this
study, the measurement transect encompassed about seven correlation
lengths of the large scale correlation structure. Ideally, subs‘equent studies

might encompass at least fifty correlation lengths in all directions.

A Monte Carlo approach would be complementary or supplementary to

extending the measurement grid. Replicating the numerical experiment
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- using multiple realizations of the synthetic permeability field provides a
more thorough exploration of the parameter space, giving assurance that
the results are general and not a fluke of a single permeability field. might
be taken, in which a two-dimensional grid of similar size to the transect

used here would be generated for many independent realizations.

A useful test of upscaling volumes corresponding to minipermeameter
measurements would be to subject each of the volume averages to linear
flow conditions. Using cubical rather than cylindrical volumes would be
a natural choice. Each sub-volume would simply be subjected to linear
flow in each of the principal directions, giving effective permeability values
that would be consistent with the sort of conditions encountered in most
typical applications. Optimally, these linear conditions would be tested
using several different boundary conditions: no flow, prescribed potential

and periodic, reflecting a variety of possible modeling scenarios.

It would be of great interest to visualize flow through the synthetic sam-
ples. Such visualization could include stream lines and stream tubes to
identify preferential flow paths, which would help to ascertain the physical
reasons for permeability upscaling. In addition, use of a particle tracker

would expand the scope of the work to include dispersivity upscaling.



APPENDIX A

Finite-Difference Method

We model the operation of the minipermeameter using a block-centered,
ﬁnite—diﬂerence scheme. The domain is discretized into N, x N, x N, rectan-
gular grid-blocks. grid-block are identified by the indices iz, iy, and iz, corre-
sponding to relative position along the z, y, and z axes, respectively. Material
properties within each grid-block are assumed to homogeneous and the state

variable @ is evaluated at a grid point at the center of each block.

We may derive a system of equations for ® at each grid point based on
a simple material balance argument (note that this derivation leads to exactly
the same system of equations as the more conventional derivation based on

Taylor series expansion of the differential operator.)

Let’s proceed by considering a simple example, a 3x 2 two-dimensional
grid (Fig. 2.1). Physically, the figure represents a rectangular block with no flow
boundaries at the top and bottom (indicated by hash marks) and prescribed
potentials, ®4 and ®p on the left and right sides, respectively. The coordinate
system of the model is defined in the lower left corner of the figure. We denote
the width of the blocks as h,, their height as h,,, and their thickneés as b. Model
grid points are indicated by black dots. The iz and 7y indices are displayed
at the top right of each grid-block. Assume the grid-blocks have a thickness b.
Displayed at the bottom right of each grid-block is the global index [, calculated
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Figure A.1: A simple 3 x 2 grid

[ =iz + (iy — 1)N, (A.1)

This global index allows us to label grid-blocks with a single number, which will
prove to be convenient when putting the system of equations into matrix-vector
form. Notice that the leftmost grid-blocks have been “chopped”, the boundary
is described by a plane cutting through the center of the grid-blocks, so that
the grid point lies at the surface, but the distances between grid points are
uniform in each direction, h, = h, = h, consistent with the grid layout used in
this work. The derivation that follows [Wilson, personal communication 2002]

can easily be modified to accommodate a non-uniform grid.

Under conditions of steady-state flow, the principle of mass conser-
vation informs us that the net mass flux through the boundaries of a control

volume must be zero. If we suppose our control volume, Q to be an arbitrary

99



grid-block (iz, #y), with boundary 99, we can use Eq. (2.14) to express this

idea as

j[qm “dA =0, (A.2)
o0

= f—W@ “dA = 0. (A3)
o0

Assuming that grid-blocks are connected through block faces, so that block
(iz, iy) is connected only to blocks (iz — 1, iy), (i, iy — 1), (iz + 1, iy), and
(iz, iy + 1), we can approximate Eq. (A.3) for an interior grid-block (that is,
a grid-block that does not lie on the boundary of the domain) with a system
of one-sided difference equations (we have suppressed the subscript m, though

we maintain that q means the mass flux).

iz iy hyb + Qiz+3 iy hyb + Qg iy -1 hyb + Uiz, iy+1 hsb (A.4)
(®iz,iy - q)ia:—l,iy
iz——-%,iy hx

= k

Jhyb

®iz 1, _Qiz,i
- kiz—i—é—,iy( = 3;7/ y>hyb

®ia:,iy - @iz,iy—l
h’y

®iz i - q’zz 3 |
- kim,iy—i—%( , y+1h . )hzb (A5)
)

+ kiw,iy—%( )th 7

where q;;_1 ,, is the mass flux across the interface between grid-block (iz, iy)

and grid-block (iz — 1, 4y). Similarly, i1, Qisiy-1> and qy; 41 are the
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fluxes between grid-block (iz, 4y) and, respectively, (iz + 3,4y), (iz, iy — 3,
and (iz, iy + 1). The permeabilities are effective values between grid-blocks,
designated using the same convention (for example, Kizy1 4, 18 the effective
interblock permeability between blocks (iz, 7y) and (iz + %,iy)). We use the

harmonic mean for the interblock permeability,

2
kiz—%,iy = 1 + 1 (AG)
kiz,’iy kzz— % Sy
2
kia:—q—%,iy = 1 1 (A7)
ia;-]—%,iy iz, 1y
2
kz’z)iy——% = _1_+ 1 (A8)
k”"Ly ia;,'iy—%
2
kiz,iy—{—% = 1 + 1 (Ag)
kia:,’iy-{—% ki, iy

These equations are valid for interior grid-blocks, but what about
grid-blocks that lie on the boundaries of the domain? Prescribed flux bound-
ary conditions (a.k.a. second type or Neumann) are handled easily by direct
substitution into Eq. (2.31). For example, later on we will be required to set a
no-flow boundary condition on a chopped block. To do so means literally doing
nothing: the appropriate flux term in the equation corresponding to Eq. (2,31)
is zero, so it does no appear at all thereafter. Prescribed potential boundary
conditions (a.k.a. first type or Dirichlet) are handled in a couplé of different
ways. For a chopped block, such as the left boundary in Fig. 2.1, the boundary
condition is applied directly to the grid point so the solution is trivial—®i; 4

is sirﬁply the boundary condition! For a full block, such as the right boundary
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in Fig. 2.1, the boundary condition is applied to the side of the grid-block. We
make use of the same one-sided difference equation we used to calculate fluxes
between grid-blocks. For example, the mass flux across the right surface of one

- of grid-block (3,1) in Fig. 2.1 is given by,

O — D3 .
= kg —m——n8, A.
43,1 3,1 h$/2 e ( 10)

For those who may feel squeamish at this point, asserting that the flux given by
Eq. (A.10) should correctly be assigned to a surface that lies halfway between
the side of the grid-block and the grid point, be reassured that this is the same
result obtained from the more conventional derivation by assigning a layer of

fictitious grid-blocks on the boundary.

Using this approach, we obtain a system of six equations and six

unknowns. At this point, we begin labeling ® using the global index .

®, =Dy, (A1)
kl.s,l(% h_ q)l)hyb - k2.5,1(g?’-;—m?z)hyb = kz,l.f,(@"’ ;y %)hzb =0, (A.12)
asa (2 e 22y h,b - ka,l(%}jf—g)hzb a2 ;y Psvnb=0, (A13)
Dy =Dy, (A.14)

]~€1.5,2((I)5 };®4)hyb - k2.5,2(q)6 h_z(bs Yhyb — kz,l.s(q)s };%)hxb =0, (A.15)
Fasa( 22 e 22 )hyb - kg,g(%]j—f—s)hzb = kg,l,g(%;y Psyhb=0.  (A.16)

We can rearrange Eq. (A.11) — Eq. (A.16), as
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Q1 =Dy (A.17)

hyb hyb hyb
k151E®1+(k151E+k251h +k215'—)‘132
hb hb
hyb
—k251h—‘1>2
hyb hyb h,b
—_— 2
+(k251h + 2k3 lh hy)@?,
hzb hyb
ko1 s—Pg = 2k —D 1
3157 6 1<331hm B (A19)
Qy=a (A.20)
hb hyb
—kg15 hy —kis 2‘@‘%
hyb hyb heb hyb
(k152h +k2527{;+k215hy)®5 kzsrﬁm—@e =0 (A21)
hb hyb
—k315h—y‘1>3 kzsz—h'w"q)s
hyb hyb h.b hyb

(k252_g_+2k32h k315h )(1)6 = 2]{}32—}{—(1)3 (A22)
z Yy

This linear system of equations can be written in matrix vector form

AP =f (A.23)

The coefficient matrix A is,
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1 0 0 0 0 0
Tis1+Tos;
=t 4T i

0 —Ths5,
0 0 0 1 0 0

' T T:
0 ~T15 0 ~Tis52 152+ 1252 —Trs2

’ +T5.15

Toso+ 2132
0 0 —T: 0 T ’ ’
\ 315 25,2 Tyrs

\ (A.24)

where,

T, = ity 7 (A.25)

m:+%,iy

T, = k., . ‘ (A.26)

zm,iy—i—% zar,zy—i—%

The state vector, ®, is

(A.27)

and the load vector, f, is

(A.28)
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The coefficient matrix A represents the connections between blocks,
the state vector ® contains the potential at each grid point, and the load vec-
tor f contains information about sources, sinks and boundary conditions. The
coefficient matrix A is pentadiagonal, in that there exist non-zero entries exist
only for ann, Gnnt1, 30 GnntN,, and symmetric. The an, entries correspond
to the grid-block with global index [ — n. The Gnni1 entries represent the con-
nection between adjacent grid blocks in the x direction, the @, nin, represent
the connection between adjacent grid-blocks in the y direction. Our objective
is to solve Eq. (A.23), which for this system we could easily do even by hand

using Gaussian elimination.

We can easily generalize the equations derived above for a three-
dimensional system. Construction of the coefficient matrix A and load vector
f can be prescribed by an algorithm whereby we visit each grid-block in the
domain in turn, assigning elements in A and f on the basis of connection to
neighboring blocks and boundary conditions. For an arbitrary grid-block (iz,

iy, iz) with global index [, the assignments are given as follows:

e If one of the faces of grid-block [ is a chopped block boundary with a

prescribed potential g, then
a =1 (A.29)

b = & (A.30)

‘In this case, we go no farther. Nothing more need be done, so we move

onto the next grid-block.
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e If grid-block I does not lie on a chopped block, then A and b depend
on the connections of block I to either its neighbors or the boundaries.
Note that the elements of the main diagonal of A and of b receive input
from connections through all six faces of block I. We describe this below
by updating these entries, adding new values to the old as we calculate

them.

— Let’s begin with the connection between an arbitrary grid-block (1)
and its horizontal neighbors. The connection is maintained through
the opposing faces of the block with area given by hyh.. We define
the “left” face as the interface between blocks () and (I — 1) (or
equivalently between (iz,iy,iz) and (iz — 1,iy,iz)) and the “right”
face as the interface between blocks (1) and (I 4+ 1) (i. e., between
(iz,iy,iz) and (ix + 1,iy,iz)). There are three possibilities: the in-
terface may be a side-of-grid-block first type boundary condition,
it may be a second type‘ boundary condition, or it may neighbor

another grid-block.

1. Tf either the face is a side-of-grid-block boundary with prescribed

potential @g, then

h |
ap = 2kiz,iy,iz h’]?:/ (A31)
hoy b ,
fi= zkiz,iy,iz_;jb_'q)o (A.32)

9. If either the left or right face is a boundary with a prescribed

mass flux, qo, then we do nothing to A, but we update f with

fl = £qp - éwhyhz + fl,old (A33)
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The normal vectors point out from the grid-block, so an inward
flux is negative and and outward flux is positive. Note that if the
boundary is no-flow, then both A and f are unchanged, hence
the appellation on a no-flow boundary as a “natural” boundary

condition.

3. If the left face neighbors another grid-block, then

L = Kig 1 iyiz hhh +ayy; ;Jld (A.34)
ari-1 = —Kig_1 iy h;:z (A.35)
If the right face abuts another grid-block, then
Lt = Kigy Ly iz hhh + a0l (A.36)
a1 = Kyl iy h;’;fz (A.37)

In neither case is f affected.

— The connection between arbitrary grid-block (I) and its front and
back neighbors is maintained through the opposing faces of the block
with area given by hzh,. We define the “front” face as the interface
between blocks (1) and (I — N,) (or equivalently between (iz,iy,iz)
and (iz,y — 1,iz)) and the “back” face as the interface between
blocks (1) and (I + N,) (i. e., between (iz,iy,iz) and (iz,iy + 1,i2)).

1. If either face is a boundary with prescribed potential @q, then

we update A and f with

hyh,
ap = ka: ,1Y,12 h +a Al l:old (A38)
Yy
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heh,
fl = Zkig:,iy,iz TQO + fl,old (A39)
Y

9. If either the front or back face is a boundary with a prescribed

mass flux, qo we update f with
fl = :}:qO ' _éyhzhz + fl,ola! (A40)

3. If the front face neighbors another grid-block, then

hyh ~
app = kiz,iy—é,iz—@— + Qi old (A41)
hzh.
Qr]-N, = —kiz,iy—-%,iz A (A42)
Y

If the back face neighbors another grid-block, then

01 = Fig iy 3,50 + Gllsold (A.43)
Yy
hzh
LN, = ~Kip iy iz . z (A.44)
Yy

— Finally, the connection between arbitrary grid-block (1) and its top
and bottom neighbors is maintained through the opposing faces of
the block with area given by h.h,. We define the “top” face as the
interface between blocks (1) and (I+ Nz NNy) (or equivalently between
(iz,iy,iz) and (iz,iy,iz + 1)) and the “bottom” face as the interface
between blocks (1) and (I — NpN,) (i. e, between (iz,iy,iz) and
(iz,iy,iz — 1)).

1. If either face is a boundary with prescribed potential ®g, then

we update A and f with

hoh
= Qkiz,iy,iz—h—y' + Q1501 (A.45)
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hzh
fl = 2kiz,iy,iz —g—yq)o + fl,old (A46)

9. If either the top or bottom face is a boundary with a prescribed

mass flux, qo, then we do nothing to A, but we update f with
fl = j:qO : ézhxhy + fl,old (A47)

3. If the top face neighbors another grid-block, then

hzh
ap; = kiz,iy,iz—i—%—;b_y + Qi lold (A48)
hzh
aLi-NoNy, = ~Kig iy iz 7 ¢ (A.49)
If the bottom face neighbors another grid-block, then
h.h
air = kix,iy,iz—% h . + ayl;old (A50)
hzh
A1,1+N. Ny = —kiz’iy,iz_% 7 L (A.51)

The N, N,N, x N;NyN, coefficient matrix is septa-diagonal (i. e., it has non-
zero entries only on the mainn + 1, n &+ N, and n £ NN, diagonals) and

symmetric.

Once A and f have been assembled, we need only solve the system
A® = f. For this work, we use a pre-conditioned conjugate gradient algorithm
[Gill, Murray and Wright, 1990], a detailed description of which is beyond the
scope of this paper. Suffice it to say that the conjugate gradient method is an
iterative technique used to minimize the norm of the residual vector r, where
r = A® — f. Convergence of the iterative process depends on properties of the

matrix A, which can be dramatically improved by preconditioning.
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APPENDIX B
)

Comparison Between Volume Averaged and Effective
Numerical Natural Log Permeability
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APPENDIX C

Scatter Plots of Volume Averaged vs. Effective
Numerical Natural Log Permeability
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Figure C.6: Scatter plot of In (kp1) vs. In (k1 num)-
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Figure C.17: Scatter plot of In (kpg) vs. In (k2 num)-
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Figure C.19: Scatter plot of In (kps) vs. In (ks num)-
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Figure C.22: Scatter plot of In (kg2) vs. In (k2 num)-
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Figure C.23: Scatter plot of In (kgs) vs. In (K num)-
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Figure C.24: Scatter plot of In (kgs) vs. In (ks num)-
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Figure C.26: Scatter plot of In (kpy) vs. In (k1num)-
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Figure C.27: Scatter plot of In (kre) vs. In (kg num)-
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Figure C.28: Scatter plot of In (kr4) vs. In (k4 num.)-
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Figure C.29: Scatter plot of In (kpg) vs. In (ks num)-
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Figure C.30: Scatter plot of In (kp1s) vs. In (k16,num.)-
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Figure C.31: Scatter plot of In (ke1) vs. In (k1 num)-
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Figure C.32: Scatter plot of In (kez) vs. In (ks,num)-
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Figure C.33: Scatter plot of In (kgy) vs. In (K num)-
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Figure C.34: Scatter plot of In (kgs) vs. In (kg num)-
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Figure C.35: Scatter plot of In (kg16) vs. 1n (k16,mum)-
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Figure C.36: Scatter plot of In (kg1) vs. In (k1 num)-
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Figure C.37: Scatter plot of In (kg2) vs. In (k2 num)-
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Figure C.38: Scatter plot of In (kxs) vs. In (ky,num)-
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Figure C.39: Scatter plot of In (kgs) vs. In (ks num)-
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Figure C.40: Scatter plot of In (kgie) vs. In (k16,num)-
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Figure C.41: Scatter plot of In (ky1) vs. In (k1 num)-
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Figure C.42: Scatter plot of In (ky2) vs. In (k2 num)-
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Figure C.43: Scatter plot of In (kya) vs. In (k/ num)-
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Figure C.44: Scatter plot of In (kys) vs. In (ks num)-
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