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INTRODUCTION

STUDY PURPOSE

Soils with uranium contamination exist due to mining in many different climatic
regions. For large areas with diffuse surface uranium contamination, plant uranium
uptake from the soil is a potentially cost-effective remediation technique.
Phytoremediation of U-contaminated soils has been explored in temperate U.S. areas, but
not in more arid areas. Semi-arid soils are significantly different from those in temperate
areas as they typically have a higher pH, higher calcium carbonate content, and less
organic carbon. Geobotanical studies in the Four Corners area have found evidence of
accumulation of uranium in native plants, suggesting the possibility of phytoremediation
in New Mexican semi-arid soils.

This study has three goals: 1) to describe semi-arid soil properties and
geomorphology and relate these to uranium distribution at an old mine site. 2) to identify
the plant species which uptake uranium in arid soils. 3) to relate the plant efficiency of
uptaking uranium to arid soil properties such as carbonate content, alkaline pH, cation

exchange capacity, and soil texture.



Naturally occurring uranium phytoaccumulating plants in New Mexico are
identified through the evaluation of uranium uptake of plants at two old mine sites NW of
Grants, NM. Relationships between site soil properties and geomorphology with
uranium are also explored. The geomorphology of the site is broken into 4 “Land Uses,”

each with slightly different soil properties.

STUDY SITES

Two locations were selected from areas with diffuse uranium contamination,
based on suggestions from Peter Luthiger of Rio Algom, and Michael Landon of the New
Mexico State Land Office. The two main study sites are ~40 miles northwest of Grants,
NM, adjacent to Rio Algom property. Both major mine sites were underground mines,
but surface activity created a range of site conditions including waste piles, a tailings
pond and a disturbed plain. In this study, these different areas of the abandoned mine are
called land use areas. Each abandoned mine site is characterized by a flat disturbed
plain, former drainage/ ponded water area, and mine waste piles. The waste piles are
typically distinct, 3-4 meter tall hills which are very bare of vegetation. They are
comprised of a homogenous sand at the surface, with some iron mine waste (crusher mill
balls, general building material).  The formerly ponded areas are depressions, with or
without confining berms. These appear to have more organic matter and better water
availability—the soil surface is darker, and supports more vegetation than the

surrounding disturbed areas.



Minor additional plant sampling was done approximately ten miles southeast of
the two major study sites in the Poison Canyon mine area in order to survey the area for

additional plant species.

SECTION 27

The 'section 27' mine is privately owned but monitored by Rio Algom. The
sampling site is 300 m x 400 m, and has an average elevation of 7030 feet. The site has
a shallow arroyo that increases to ~ 1 m depth and drains west. The section 27 mine was

closed more than 30 years ago, and left unremediated (Luthiger, 2001).
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Figure 1. General Study Site Location, northwest New Mexico.



SECTION 36

The section 36 mine was one of the original mines in the area, and has been
undisturbed for 50 years (Landon, 2001). It is state land with permitted access. It is
directly west of the current Rio Algom operation, which is 2 miles south of the Ambrosia
Lake ghost town. The site is approximately four miles southwest of the Section 27 site.
The sampling site is 600 m x 200m and is at an elevation of 6970 feet. The site has a

central depression which drains northward, but is a small closed basin within the site.
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OVERVIEW

In 1959, New Mexico produced 3.3 tons of uranium, predominantly in the
Bluewater-Ambrosia Lake area. Sixty mines were in operation at various times through
1952-1962 (Gay, 1963).  The uranium boom ended in the early 1980's, due to
international price competition and cutbacks in building nuclear power plants.
(Chenoweth, 1990). Rio Algom, the last operating New Mexican uranium mill, closed in
2002.

The uranium ore dewatering and milling process produced significant amounts of
mine waste and mill tailings containing variable amounts of uranium ore, both often left
at the mine site. Some large mine sites in the Ambrosia Lake mining district have been
intensely remediated, but sites with more diffuse contamination remain unremediated.
Diffuse contamination remains at abandoned uranium mines throughout the semi-arid
American West, including mine sites in NM, Ut, Wy, and Co. These sites typically have
uranium contamination at the surface from waste rock, the ore dewatering process, and
mine tailings. Rio Algom continues to work contractually to clean up a number of the
abandoned mine sites in the Ambrosia Lake area.

The diffuse nature of the contamination, as well as the semi-arid climate and the
radioactivity and metal toxicity of uranium make remediation a challenge. Soil uranium
concentrations are below 1000 ppm. A technique that can remove a relatively small
amount of uranium from a large soil volume is needed. Two current approaches for

removing uranium from contaminated soil are soil washing and phytoremediation.



Soil washing can be a physical or chemical process. Physical methods involve
wet screening or attrition scrubbing (Francis and Dodge, 1998). Chemical methods
involve liquid additions to the soil (acidic or basic) in order to dissolve and remove
uranium (Francis and Dodge, 1998). Fifty-three to ninety-three percent of uranium was
extracted in different applications of soil washing (Elless and Lee, 1998; Duff et al.,
2000).

Leach-based remediation is often less efficient at extracting uranium than
uranium mining, due to the heterogeneous nature of soils. Soil washing generates large
volumes of liquid waste, and involves a drastic alteration of soil physical and chemical
properties. The leachate becomes a difficult-to-dispose-of "mixed waste," in addition to
the uranium possibly left at the site (Duff et al., 2000). The soil washing process may

purge the soil of iron, magnesium, calcium and silica, which are common soil elements

(Duff et al., 2000). Soil washing agents can persist in the environment and may cause
post-remediation radionuclide migration (Francis and Dodge, 1998). After soil washing,
site vegetation restoration is often difficult because of the major soil chemical changes
(Huang et al., 1998). High standards of remediation, requiring complete removal of
uranium, can also make soil washing financially challenging (Duff et al., 2000).

Uranium phytoremediation is based on sequestering the contaminant to be
removed within the plants grown on the contaminated site. This is a low cost and low
impact alternative to soil leach remediation. Phytoremediation uses specific plants to
target the contaminant of concern: plants can extract and concentrate metals from the
soil, or degrade organic contaminants. This process generates a minimum amount of

secondary waste and allows in-situ treatment (Huang et al., 1998). Plants that have taken



up uranium can then be gathered and ashed to reduce the amount of total remediation
waste.

Phytoremediation combined with citric acid soil treatments can have up to a 99%
uranium recovery rate (Francis and Dodge, 1998). Citric acid is a preferred 'soil washing'
agent because it is a consistent biodegradeable multidentate complexing agent. In the
case of less efficient extraction rates, the phytoextraction procedure can easily be
repeated without harm to the soil.

Most uranium phytoremediation studies to date have been made in the eastern
United States or in Europe (Baumgartner et al, 2000; Hossner et al, 1992; Huang et al,
1998; Meyer et al, 1998; Pfeifer et al, 1994; Saric et al, 1995; Yoshida et al., 2000). Soils
of the western United States are more arid, with higher pHs and lower organic carbon
content than temperate soils of the eastern United States or Europe. Both soil pH and
carbon content affect uranium solubility in soil water. Conclusions drawn from studies
of uranium phytoremediation in temperate soils cannot automatically be extended to
more arid regions.

Oftentimes, different soils and climate dictate the natural plant community’s
species composition, or the type of crop plants grown in a certain area. Plants used for
phytoremediation in the eastern United States will probably not grow in semi-arid areas,
or accumulate uranium at the same rates. The applicability of uranium phytoremediation

to soils of the western United States remains unexplored.



HYPOTHESES

Land Use Types:

e Land use types will show differences in their soil uranium content. The more
disturbed areas will contain more uranium.
Null hypothesis:

Soil properties and land use type do not affect the distribution of uranium.

Uranium in soils:

¢ Uranium concentration increases in proportion to changes in soil properties—
for example, increased pH, or decreased CaCOs content.

Null hypothesis:

Soil uranium content is not affected by soil properties.

Uranium in plants:

e Certain species accumulate more U than others (U per gram plant: U per gram
soil).

Null hypothesis: All plant species will accumulate uranium equally well.




BACKGROUND

URANIUM CHEMISTRY

Different uranyl species form in different pH environments (figure 2). At higher,
alkaline pH, UO0,CO;° and carbonate complexes predominate. Increasing pH also
increases sorption by favoring precipitation of uranium minerals and complexes (Willett,
1995). Sorption of uranyl onto natural materials is maximal in the pH range 5.0 - 8.5
(figure 2). Turney (1995) found post-experiment pH of soil effluent to be "...an indicator
of overall U removal from the soils" (p. 102). This suggests that soil pH could be a
controlling factor on uranium phytoextraction.

Uranyl sorption onto soil is readily reversible with changing pH (Willett, 1995).
This means that uranium sorption is a reversible process when based on changing soil
conditions, such as the wetting and drying cycles of semi-arid soils.

Uranium primarily takes two cation forms -- U (IV) or U (VI). Each is soluble
under different conditions. It is useful to briefly examine these conditions as it provides
more specific insight into uranium's behavior in semi-arid soils. Due to the oxidizing
conditions prevalent in semi-arid soils, U(VI) is the dominant species. In these soils
U(V]D) is very soluble as it forms stable complexes with chlorides, sulfates, and
carbonates (Turney, 1995). The COs ligand is primarily associated with the U (VI) and
OH with U(IV) (Jurinak, 1993). Adsorption of U (VI) onto soil particles strongly
increases from pH 4.5 - 5.5, and decreases from pH 7.5 to 8.5. This is the likely pH
range of semi-arid soils, which means that U (VI) is more available for plant uptake in

semi-arid soils.

10



Uranium (IV) is typically extremely insoluble; it occurs in very low
concentrations in soil water (< .01 ug/L). It is more likely to dissolve below pH 2 or
above pH 7 (Elless and Lee, 1998; Watt, 1996). Uranium (VI) appears in figure 2,

below, as (UO; *). In figure 3, U(IV) appears as the species U(OH)s .

100
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Figure 3. Uranyl species as a function of pH. Calculated at 25 C for .0025 M
MgSOy4, 10 mg U L', and in equilibrium with atmospheric CO,. (Willett et al,

1998).
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Figure 4. U-Si-C-O-H Pe-pH diagram. Assumed activities for dissolved species are:
U=10* M, C=10>M, and Si=10"° M (Brookins, 1998) (Turney, 1995).

Uranium movement varies between soil horizons because of different chemical
and physical properties in each horizon. Soil properties and soil development relevant to

uranium presence in arid soils are described later in this section.

GEOLOGY OF AMBROSIA LAKE DISTRICT

The Grants mineral belt extends from the Laguna area in a northwestern direction
for approximately 100 miles, ending north of Gallup, NM. The late Jurassic Morrison
formation, part of the Colorado Plateau sedimentary sequence (figure 9), is the host for
more than 90% of these uranium deposits (Santos, 1963). It is primarily an arkosic

sandstone with minor amounts of layered mudstone.
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Ambrosia Lake uranium deposits typically occur in paleo-fan systems; here, they

are fluvial sandstones with mudstone interbeds (Galloway, 1979). The Poison Canyon
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Figure 5. Geologic Map of Grants Uranium District, showing the
Grants mineral belt and mining areas (Laverty et al., 1963).

ore body is in the Brushy Basin member of the Morrison formation, which is

stratigraphically higher than the Westwater Canyon member (Fitch, 1979).
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Figure 6. Detail of the Stratigraphic Section of the Ambrosia Lake Area, McKinley

and Valencia Counties, New Mexico (Chenoweth, Learned, 1979).
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GEOMORPHOLOGY OF SOUTHWESTERN SAN JUAN BASIN

The San Juan basin is a sedimentary basin containing Jurassic and Cretaceous
sandstones and limestones (Santos, 1963). Regional faulting occurred in the early
Tertiary, uplifting the Brushy Basin outcrop in the Poison Canyon area. Downfaulting a
mile northwest put stratigraphically adjacent uranium deposits at ~1000 foot depth.
Uplift of the Colorado Plateau in the Miocene and Oligocene resulted in regional
exhumation of the area. Resultant faulting currently defines some of the edges of local
mesas and plains (Connors et al., 1987).

Quaternary deposits in the area consist of alluvial, playa, colluvial, and eolian
sediments (Smith & McFaul, 1997). Both study sites are on flat eolian plains, sand and
silt sheets, that have developed in the past 15,000 years (Smith, McFaul, 1997). There is

a present-day low rate of eolian transport (Wells et al, 1983).
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Figure 7. Cross-section of San Juan Basin landscape elements (Connors et al.,
1987).
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MINING HISTORY

A description of the mining techniques used gives insight into the nature of the
contamination and the origins of the landforms produced. Mining operations typically
disturbed the local area, resulting in a landscape containing waste rock/ mine waste piles,
a disturbed plain and lowlying areas where drainage occurs.

In 1948, Poison Canyon was the first uranium mining operation in the Grants
district (Melancon, 1963). By 1963, 47 mines were operating (Chenoweth and Holden,
1980). Ninety percent of all local production in 1963 was from wet-ore (below the
groundwater table) bodies. Excess water was pumped and released at the surface
adjacent to mine sites.

Mining Technique

In the Ambrosia Lake area, the vertical mineshaft was sunk to ore-bearing
formations ranging from 600 to 1,400 feet depth. From the shaft, various levels were
created in waste rock, beneath the ground-water saturated ore bodies. The mine water
was pumped to the surface where it was collected for use in the mill. The volume of
water pumped from each mine varied from 200 to 2,000 gallons per minute (Luthiger,
2002). Ore was cut from the ceilings of the mine tunnels. From there, it was

transported to the surface and to the processing mill.

At the mill, the grayish sandstone ore, heated and dried, passed through a
primary and secondary crusher and a sample tower. The ore then passed through a fine
ore bin and into the rod mills which ground the ore to -28 mesh. The ore slurry (30%
water added, 70% ore) was pumped to the leaching agitators where sulfuric acid and

sodium chlorate were added. Uranium and any other metals that were soluble in
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sulfuric acid were dissolved. The sodium chlorate oxidized the ore, which sped up the
leaching process and improved the recovery. At the end of the leaching phase, the ore

was pumped into cyclone classifiers for sand-slime separation (Luthiger, 2002).

The separated sand, still in a slurry state, was thoroughly washed with acid-water
solution. The uranium was thus separated from the individual sand grains. The barren
sand was then pumped to the tailings disposal pond. The separated ore-slurry-slime was
pumped to the thickener circuit. It was washed to remove attached micro particles of
uranium. Barren slime removed from the last thickener was also pumped to the tailings
disposal pond. Ninety to ninety-seven percent of the ore's uranium was now in the acid-

water-rock solution (Luthiger, 2002).

The leaching process also removed metals other than uranium from the host rock.
The acid-water solution often contained trace amounts of vanadium, molybdenum or
iron. It was necessary to extract the uranium from the acid-water solution by a liquid ion
exchange process, which transferred the uranium to a solvent at three times the
concentration (Luthiger, 2002). The resultant uranium-free, acid-water solution, or
"raffinate,” was pumped back to previous circuits as a washing solution, or to the tailings
disposal pond. The uranium, in the solvent solution, was pumped to the stripping circuit.
Here the uranium was stripped from the solvent and again concentrated. Ammonia, air
and heat in the precipitation circuit precipitated the uranium from the solvent solution.
The uranium moved through a thickening tank and a filter circuit where it was
thoroughly washed and dried. The final product contained 80 to 90 percent uranium

oxide in a <0.25 inch particle size (Luthiger, 2002).
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In conclusion, barren acid-washed sand, barren acid-washed slime, acid-water
solution with iron, vanadium, and molybdenum, and ore-dewatering groundwater
pumped to the surface were added to the tailings ponds at the various mill locations. This
process disturbed soils and ultimately resulted in the creation of a new landscape. The
original soils were often covered over or removed. Vegetation was largely removed, and
often only hardy or invasive vegetation has been able to return.

Geomorphology of the Mine Area

The post-mine landscape can be separated into four areas: waste piles, disturbed
plains, drainage and/or former pond areas, and adjacent, lightly disturbed or undisturbed
areas. Waste piles are made up of white, barren, homogenous medium sand from tailings

and waste rock in 2 -5 meter tall piles.

Figure 8. Looking west across S27, viewing disturbed plain, with waste pile and
undisturbed areas in the distance.
The ore dewatering and tailings pond or drainage area has a lower elevation and
denser vegetation. The drainage area soil retained clays and some additional organic
carbon. The disturbed plain is the area around the headframe and the abandoned mine

site, with solid mine waste deposits over the surface soils in some areas. Areas adjacent
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to the site remained undisturbed. Each land use area received different degrees and
types of uranium contamination. There is waste rock uranium and leftover tailings
uranium in the waste piles; uranium leached into the soils underneath the drainage areas;
and blown uranium-contaminated dust over the undisturbed areas. A combination of the

above, as well as refuse and truck ore-spill, impact the disturbed plain.

A

Figure 9. Looking east —southeast across S36, viewing undisturbed area in
foreground, drainage area in middle, and existing Rio Algom uranium mill outside
of study area to the east.

CLIMATE

The area has a semi-arid climate with an average annual precipitation of 10-12
inches (Soil Conservation Service, 1993). The average annual air temperature is 48-53 C,
and the frost-free period 114-150 days. Short late afternoon high intensity summer
rainstorms characterize precipitation. There is also a small snow contribution during the

winter months, although the ground usually remains bare, not snow-covered.
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SOILS

SOIL DEVELOPMENT

Six periods of eolian deposition have formed the undisturbed semi-arid soils of
the San Juan basin over the last 12,000 years (Smith, McFaul, 1997). Arid soils, as they
develop with time, show increases in silt, clay and calcium carbonate (Smith, McFaul,
1997). Weakly-developed soils have less potential for retarding downward movement of
uranium through a soil because they lack clays and iron oxides. (Watt, 1996).

Arid soil-uranium studies found that uranium was retained in surface soil horizons
(e.g. Litaor, 1995—central Co; Willett et al, 1998, 1995--Northern Territory, Australia;
Shilk, 1995--Cincinnati, Oh; Watt 1996--Los Alamos, NM; Vainetti, 1996—mnorthern Ut).
More concentrated and stored uranium was found in strongly developed soils (Watt,
1996).

Studies of uranium in semi-arid soils also described the effect of different soil
horizons on soil uranium distribution. A study east of the Rocky Flats nuclear plant, near
Golden, Co., showed that most of the uranium was concentrated above the B horizon,
located at 15-40 cm. Due to the higher clay content of the lower B horizon, uranium was
retarded from further downward movement (Litaor, 1995). Highly weathered soils
retained radionuclides in the surface-most few centimeters (Willett et al, 1998; Willet,
1995, and Schilk, 1995). The surface horizon had the most organic content, and water
saturation caused reducing conditions. They concluded that there was no likelihood of
the uranium being leached to any depth. Even in soils with weakly developed soil

properties, most of
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the uranium is concentrated in the upper 20 cm, within 50 m of the contaminant source

Figure 10. Section 36 undisturbed soil profile.
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(Watt, 1996). A lack of water in arid areas ultimately prevents uranium from being

leached further into the soil (Vaninetti, 1996).

SOIL FRACTIONS

The following soil properties influence uranium mobility: organic matter,
calcium carbonate, clays (cation exchange capacity, CEC), and ferric oxyhydroxides
(Elless and Lee, 1998; Watt, 1996). In one study, 20% of uranium was bound to soil
carbonate, 10% to mineral oxides, and 20% to the organic soil matter (Dhoum and Evans,
1998). Uranium also binds with Fe and Mn oxyhydroxides (Watt, 1996). Clay content
and mineralogy do not significantly impede dissolved uranium movement downward
through a soil (Watt, 1996).

Organic Matter

Organic matter is an important reducing agent for trace elements such as uranium.
However, most studies of uranium mobility in mine tailings and soils have been
conducted on systems with pH <6, whereas semi-arid soils typically have pHs above 7.
At high pH and high uranyl concentrations, the formation of uranyl humate is favored
(Watt, 1996). The organic content of arid soils is also typically very low, often less than
1% (Vaininetti, 1996). While the organic matter that is in a semi-arid soil might be very
effective in complexing uranium, the overall organic matter effect on uranium movement

is probably small.
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Figure 8. Vertical Distribution of OC, CaCOj3, and water-soluble U concentrations
in a Nevadan aridisol. (Vaininetti, 1996).

Soil Carbonate

Uranyl carbonate species are highly mobile in soil solution (Langmuir, 1978;
Willett, 1995). Adsorption in soil was lowest in high pCO, and low pH waters because
of the formation of soluble U (VI) carbonates (Duff, 1996).

Evapotranspiration in arid climates tends to concentrate uranium and precipitating
ligands, causing more uranium mineral formation (Langmuir, 1978). In arid climates,
CO; pressures in soils and groundwaters also tend to be relatively low because of the

paucity of soil organic activity (Langmuir, 1978). If the semi-arid soils in this study are
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assumed to have low pCO9 from a low plant density, and a high pH soil, these soils

should therefore have fewer soluble uranium carbonates, and more uranium carbonate
adsorption. As stated in the Soil Development section, carbonate content in a soil also
relates to soil development. Most of the soils in this study showed little soil development

and carbonate content.

Cation Exchange Capacity (CEC)

Uranium sorption increases with increasing cation exchange capacity. Two
sources of CEC are clay minerals and organic matter. The type of aluminosilicate clay
minerals and amount of organic material influence uranium sorption. Montmorillonite, a
clay mineral with high CEC, adsorbs more uranyl ions than Na" and K" ions, but less
than Mg?* and Ca** ions (Watt, 1996). In semi-arid soils, kaolinite, a non-reactive clay,

is abundant (Birkeland, 1999).

Fe and Mn oxyvhydroxides

Total iron content of a semi-arid soil is typically low. Goethite is the most
common iron mineral in most well-drained soils, with a yellowish-brown color
(Birkeland, 1999). This tends to make up a much smaller soil fraction in semi-arid soils
than another soil precipitate, calcium carbonate.

Iron and Manganese oxyhydroxides, which also occur in semi-arid soils, are
complex OOH- bound soil precipitates of iron and manganese. Fe and Mn hydrous
oxides are responsible for strong sorption of divalent metal cations, such as uranium
(Willett, 1995). In arid soils, even though the total iron content is small, these

compounds can be as or more important than CEC for uranyl absorption.

23



30

Amorphous Fe(IT) Oxide (3.24 /)
LU added = [ ppm
® O.0IM KC1, no CO2
o O.0IM {KCl + KHCO4), air CO,

U (ppb)

I

¥
]

T

§ U W |

T

2

Figure 9. Adsorption of uranyl onto X-ray amorphous ferric oxyhydroxide
as a function of pH (From Van der Wiejden et al., 1976, and VdW, Langmuir, 1975)
(Langmuir, 1978).

Contaminant uranium concentration has been correlated with iron oxide and
oxyhydroxide content, but not with total iron concentration in soils around Los Alamos,
NM (Watt, 1996). More dissolved carbonate causes less U(VI) adsorption to Fe oxide
and oxyhydroxide mineral surfaces (Duff, 1996). U(VI) adsorption on goethite (cis-
FeOOH) increases with increasing pH in carbonate-free solutions across a large pH range

(Duff, 1996). Over the pH range of 5 to 8.5, ferrihydrite (Fes(O4Hs)s) is a very strong

scavenger of U (Watt, 1996; Birkeland, 1999).

LOCAL SOIL DESCRIPTIONS
The soils of the Ambrosia Lake quad have been mapped but not yet published by

the Natural Resource Conservation Service (Tzschetzsche, 2003). Ambrosia Lake quad
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soils are consistent with the published soils of the southern adjacent Dos Lomas
quadrangle. The Dos Lomas quadrangle is dominated by Penistaja, San Mateo, and
Sparank soil series. These are deep soils, mainly formed on cuestas, fan terraces, flood
plains, and alluvial fans (SCS, 1993). Some undisturbed soils in this region have
significant calcic horizon development, although not in this area (Smith & McFaul,
1997).

The undisturbed soils of this study are Penistaja type soils, as defined by the
NRCS. Penistaja soils have an extent of over 1 million acres in New Mexico, and
predominate in this study area. They are formed in mixed alluvium and eolian material
derived from sandstone and shale (NRCS, 2003). The Penistaja soil surface layers are a
brown fine sandy loam. The subsoil is a strong brown sandy clay loam, and the
substratum a reddish yellow sandy loam that is occasionally slightly calcareous.

The Penistaja soil contains a thin organic A horizon overlies a slightly leached A
horizon, a B and Bt horizon enriched in iron and weatherable minerals, and a lower Bk
carbonate layer with >15% CaCOj; deeper than 40 inches. This carbonate layer becomes
progressively more indurated and less permeable with time (Birkeland, 1999). The
typical pedon is a fine sandy loam with up to 15% gravel. Soils at the study site are sandy

loams with pale red or yellow tones.
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Figure 13. Penistaja Soil Profile (NRCS, 2003).

PLANTS

VEGETATION OF THE SOUTHWESTERN SAN JUAN BASIN

Vegetation in this area is primarily an eastward extension of the Great Basin
desert (Dodge, 1985; Knight, 1992). It combines monostands of woody shrubs with
some southern Rocky Mountain flora and New Mexico desert grassland plants. Saltbush,

rabbitbrush, snakeweed, and wooly buckwheat all occur in this area as small or medium

woody shrubs.
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Figure 14, Indian Rice Grass, right, and Spike dropseed, /eft.

The two study sites have vegetation representative of desert grasslands and
badland lowlands. Grama grass is considered a climax vegetative species (Dewitt-Ivey,
1995). Pioneer plants include tumbleweed, goathead, and spurge. In saline or alkaline
lowlands, russian thistle, pepperweed (Lepidium montanum) and goosefoot may be
present (Knight, 1992). Intermediate stages include galleta and burro grass, cactus, and
mixed weeds.

In the badland lowlands, low densities of forbs and shrubs can occur (Knight,
1992). Annuals or biennials may provide additional diversity to the shrubs, but in dry
years may not grow. Alkaline clay soils support spike and sand dropseed grasses, galleta
grass, and blue grama grass. Sandier soils incorporate Indian dropseed grass as a major
species. Shrub growth is more precipitation dependent than determined by soil type

(Knight, 1992).
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Figure 15. Fringed Sagebrush, /eft, and Russian Thistle/ Tumbleweed, right.

PREVIOUS URANIUM-UPTAKE PLANT STUDIES

Phytoremediation utilizes plants that accumulate uranium. Plants used in uranium
phytoremediation must have the ability to isolate uranium in the plant cells, preferably in
above ground plant matter (Chaney, 1997). This is considered more important than high
biomass of the plant, which could contribute to gross uranium extraction (Chaney, 1997).

Uranium accumulation may not always be healthy for the plant. There are two
important plant reactions to a high uranium environment: detectable uranium
accumulation, and anomalous growth habits (Cannon, 1951). Small amounts of uranium
can stimulate plant growth, but concentrations above a very low level can be retarding or
toxic. Poison effects on germination can begin at 47.6 ppm. 476 ppm can wither leaves
and roots; 1% U was toxic to germination (Cannon, 1951).

The availability of uranium to plants is influenced by soil properties and the

degree of uranium binding in the soil. The elemental solubility of uranium affects
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uranium's availability for plant uptake (Ibrahim and Whicker, 1992). Many of the factors
that are important for plant uptake of uranium, such as pH, texture, organic matter, and
CEC also control uranium sorption in the soil (Mortvedt, 1994).

The uranium accumulation in the plant relative to the uranium content of the soil
is represented by the concentration ratio (CR), which is a measure of the effectiveness of
phytoremediation.

(mean U concentration/ g dry vegetation)

(mean U concentration/ g dry, underlying soil)

(Ibrahim and Whicker, 1992). Previous CR data shows that plant uptake of uranium is
not linearly related to soil concentration of uranium (Hossner et al, 1992; Ibrahim and
Whicker, 1992; Mortvedt, 1994). The CR depends on the plant species, and the soil
variables identified in the previous section. Concentration ratios were highest for plants
growing on the edge of a tailings impoundment because "acidity [pH 2-5] and water
availability tend to enhance the solubility and availability of radionuclides for plant
uptake," or because of saturation conditions encouraging plant growth (Ibrahim, Whicker,
1992).

Desert vegetation of the Four Corners area was sampled for uranium content and
Juniper, Indian Rice Grass, and a milkvetch (Astragalus Preussii var. arctus) were
identified as uranium accumulators (Cannon, 1951). In Texas, range plants were grown
in uranium mine overburden and adjacent soils (Hossner et al, 1992). Sand lovegrass was
the best uranium accumulator with 4 ug/g. Greenhouse investigations of plants with
uranium contaminated soil found little uranium uptake (Baumgartner et al., 2000, Meyer,

Mclendon, Price, 1998).
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Brassica rapa, a mustard plant, is "a model plant for U phytotoxicity because of

its ability to produce seed even at high levels of U (10,000 mg/ kg) (Saric et al., 1995).
Species in the Brassicaceae family (Mustards) have been shown to have the "...ability to
hyperaccumulate heavy metals such as Zn, Pb, and Cd under natural conditions" (Huang

et al, 1998).
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METHODS

FIELD WORK

OVERVIEW

A grid was laid out over each area using a measuring tape and pace and compass
mapping. Geomorphology, soil profile samples, geiger counter readings (urem/ hour),
and GPS readings were described or measured at each point in this grid. Selected grid
points were sampled for soil and vegetation. In the four designated land use types, plant
transects were taken and soil profiles were sampled. Figure 16 details the grid and land
use type sampling. These samples use the systematic and judgmental sample designs, as

described in Table 1.

Approach Relative Number Relative Basis of Selecting
Of Samples Bias Sampling Sites
Judgmental  Smallest Largest Prior history, visual
assessment of technical
judgement
Systematic ~ Larger Smaller Consistent grid or pattern
Random Largest Smallest Simple random selection

Table 1. Basic Sampling Approaches for Environmental Research and Assessment
(Keith, 1991).
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SAMPLING GRID

A reference grid was established every 50 m over the study area with a compass,
measuring tape, and/or pacing. This helped to compare total area of land use types and
map the landforms accurately. Once the grid was established, a GPS location was taken
at each point flagged in the field. Based on this information, a large number of samples
was anticipated, and the plant and soil sampling design was scaled down. Plant and
'surface' soil samples were taken at approximately every other point at S27, and 60% of

the points at S36.

Section 27 Grid

At S27, plant and soil samples were taken at 25 selected grid points in a
checkerboard pattern. These 25 sampling points are shown in red on the following aerial
photograph (Figure 17). An additional 73 GPS points were taken at the Section 27 mine
to more accurately map the breaks in slope and drainage areas. These points were used in
conjunction with the 63 initial grid points and the aerial photograph at section 27 to
further map the area's land use areas: arroyo, waste pile, and disturbed plain.

Section 36 Grid

The section 36 mine had two waste piles, a large disturbed area, and a drainage
area. A grid of approximately 600 x 200 m in 50-meter intervals was laid out at the site.
75 GPS points were taken, including all grid points and some topographic detail (Figure
18). Because of sample size considerations, samples were taken at 39 points in the 1, 2, 3
rows. Additional plant samples were taken along the top of the most contaminated waste

pile.
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GPS Measurements

After the grid was established and marked with flagging, each point was GPS'd
using a Garmin 12xIs GPS unit. The GPS error (+/- 2-5 m) was typically higher than the
measuring tape or paced measurement error (+/- 1-m). The original GPS points for this
study use the UTM NAD 1983 datum. These plot correctly on a digital aerial photograph
(rgis.unm.edu). For section 27, they correlate with the expected location, just north of an
eastern-running dirt road. The coordinates were transformed to the NAD 1927 datum in
order to be used on a topographic map. The points were converted from Nad 1983 to

Nad 1927 using the ArcToolbox program.
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GRID POINT SAMPLING

Soil 'Surface' Sampling

At grid points, soil samples were taken at 0-5 cm depth, adjacent to the sampled
plants. These are subsequently referred to as "surface" soil samples.

Plant Sampling

Plants were sampled above the soil surface at the grid points provided in figures
13 and 14. Three plants, those closest to the grid point, were sampled. Standard
procedure was to cut these plants above the soil surface. A number of grid points had

duplicate species samples.

NON GRID POINT SAMPLING

Soil Profiles
At S27 and S36, soil profile samples independent of the grid system were also taken
(figure 19). These were taken to characterize the soils in the land use types: in the arroyo,
waste pile, and undisturbed areas. This information was used to examine the possibility
of uranium movement within the soil profile. At the section 27 mine site, soil profiles
were sampled every five centimeters to 30 cm, considering uranium mobility and sample
sizes. At the section 36, soil pits were dug deeper, in order to examine the soil profile at
greater depths. In the S36 lowland, waste pile, and undisturbed areas, these soil pits are
60 cm deep, with samples taken every 10 cm.

In both locations, all soil pits were dug, measured and photographed. Soil

horizons were identified, and soil samples taken in one 4 inch wide by 1 inch deep area at
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each interval. Sampling was performed from the bottom up, in order to minimize
contamination of subsequent samples.

Soil profile samples from both locations were analyzed for uranium content, pH,
particle size, organic carbon, and calcium carbonate. Selected samples were analyzed for
clay type and by sequential extraction for uranium partitioning between the soil fractions.

These samples were selected based on high uranium values and land use location.

Plant Transects

In order to characterize the vegetation in the undisturbed areas, lowland drainage
areas, and mine waste piles, vegetation transects were taken in the different land use areas
at each site (figure 20). This method quantifies ground cover by species, and identifies
the percent bare ground. No plants were "sampled" along these transects. These
transects are a modified form of the Long Term Ecological Research (LTER) line
vegetation transect (Loftin, 1999). The LTER method sums the total length of a 50-m
measuring tape that is covered by each species of plant, bare ground, or litter, and gives
relative percentages of each species’' ground cover. Established reference grid points
were used as the endpoints for the line transects. For that reason, Figure 19 showing the
line transect locations uses the same reference grid as the previous diagrams.

Additional non-grid plant and soil sampling was done at the Poison Canyon study
site, approximately 5-10 miles southeast of the other two sites. Because this sampling
was exploratory and not done at the same scale, with designated land use types and a grid

sampling system, this information is listed in Appendix E.
ping sy PP
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Figure 20. Plant transect along undisturbed section, Section 36.

LABORATORY METHODS

ICP-MS analysis was used to determine the uranium concentration of plant and
soil samples. Soils 'surface' and profile soil samples were also analyzed for their particle

size, organic carbon content, carbonate content, and pH. Certain soil samples were
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selected for additional analyses based on land use area and uranium content. 10 soil
samples were analyzed for clay type, and the uranium content of separate soil fractions
was tested using 12 soil samples. For this sub-study the uranium bound in soils was

separated into exchange sites, carbonate, oxides, organic, and residual fractions.

ICP-MS SAMPLE PREPARATION

The soils typically had a 1-5% moisture content, and were air dried in their
sample bags. They were then sieved to <2mm. The >2mm gravels were weighed and set
aside. The fine soil material was split for particle size, carbonate, organic carbon, pH,
and uranium analyses.

Plant samples were air dried. After drying, a small section of the plant was
removed from the total sample. For a grass, this was a few blades or a small clump from
the rest of the grass plant; for a shrub it was typically a low branch, one that joins the
stem close to the soil level. When the plant sampled had stems and leaves, the samples
were split into leaf and stem samples. Grass samples were not split into stems and leaves.
Tiny samples of small non-woody plants were taken as one sample and not divided into
stems and leaves.

The stem and leaves were then separated into two piles. These were then held on
wax paper and cut into <1 cm pieces. Any particulate matter generated during this
process was removed. The ICP-MS plant subsample was then taken randomly from the
prepared material for each sample. The prepared matter was generally > 4-10 X the
sample size.

Microwave Digestion
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Microwave digestions were conducted in a Milestone Plus Temperature Control

scientific microwave oven with turntable, under pressure, in Teflon test tubes. Twelve
samples at a time were prepared for ICP-MS analysis. These twelve samples usually
included two of three quality control measures: a blank, a standard, or a sample duplicate.
The temperature progression of a typical digestion is shown in Appendix H. The
National Institute of Standards and Technology (NIST) reference material 8704, Buffalo
River sediment, and 2709 San Joaquin soil, were used as reference soils.  The NIST
standard 1570a, trace element in spinach leaves, was used as reference plant matter. The
content of these standards is listed in table 2. Trace metal grade chemicals were used in
all NMT digestions and glassware cleaning procedures. These samples were prepared

with nitric-acid cleansed glassware.

Element BRS stdev 2709  Stdev 2709 leach Spinach stdev
% %
Ca 2.64 0.08 1.89 0.05 1.5 1.53 0.04
Fe 3.97 0.1 3.5 0.11 3
Mg 1.2 002 L51  o0s 1.4
K 2 0.04 2.03 0.06 0.32 2.9 0.05
Na 0.55 oo01s  1.16 0.03 0.068 1.82 0.04
mg/kg ug/g
Pb 150 17 18.9 0.5 13
Mn 544 21 538 17 470 75.9 1.9
Th 9.07 0.16 0.048 0.003
As 17.7 0.8 <20 0.068 0.01
Cu 34.6 0.7 32 12.2 0.6
Se 1.57 0.08 0.014 0.12 0.01
U 3.09 0.13
A% 94.6 4 112 5 62 0.57 0.03
Zn 408 15 106 3 100 82 3

**Extractionable fractions

As and Se volatile elements and affected by gas losses. In dried soil, ~1% mass is lost.

Table 2. for Standards used in Microwave digestion and ICP-MS analysis.
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Soil sample ICP-MS preparation

Soil samples were prepared following EPA standard method 3051.  The oven-
dried soils were split to approximately 0.2 gram and put into Teflon sample vessels.
Under a fume hood, 10 ml of RO water, 8 ml of HNOj3, and 3 ml of HCI were added to
the Teflon sample vessels. As each sample vessel was filled, it was capped. The twelve
samples were pressurized at local atmospheric pressure, and microwaved at 210 degrees
for 20 minutes. After the samples cooled to room temperature, they were filtered and
diluted to 50-ml volume.

112 soil samples were processed by ICP-MS for total uranium and other elements.
This includes 66 surface soils and 46 soil profiles. Including duplicate samples,

approximately 170 samples were run.

Plant Sample ICP-MS preparation

Plant samples were digested following EPA method 3052. This digests 0.4 g plant
sample + 5 ml Hy0, 5 ml NO;, 2 ml H,O, in a pressurized vessel at 210 degrees for 20
minutes. After cooling, under a fume hood, the sample is depressurized, filtered and
diluted to 50 ml volume. 171 individual plant samples from the two mine sites were
prepared for the microwave digestion. Including laboratory duplicates, approximately

400 plant samples were prepared.

ICP-MS data
These samples were analyzed by an Agilent 75001 ICP-MS (Inductively Coupled

Plasma-Mass Spectrometer) for total uranium concentration and other elements present.
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Elements reported varied by analysis day, but included at different times Be, B, Na, Mg,
Si, K, Ca, Ti, V, Cr, Mn, Co, Cu, Zn, Fe, Ni, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Hg, Ti,
Pb, Th, U. This data is listed in the appendix. Including duplicates, >1000 samples were
reported.

ICP-MS data was reported in ppb (ug/ L) solution. This was converted to ppm

(mg/ kg) element of plant or soil matter by the calculation:

ugreported U I 1L solution I 50 ml preparation = ug reported uranium
L solution | 1000 ml I ~.2000 g orig. sample g original sample

For the sequential extraction and early 2003 ICP-MS analyzed samples, residual
standard deviation (RSD) values were reported for all elements. The ICP-MS measures
each sample multiple times, and generates an average of these measurements for the
reported sample value. The residual is the sum of deviations from a best-fit curve of all
ICP-MS measurements of that sample. The residual represents the variance of these
repeated measurements. A high RSD could mean that the sample that the sample
reported poorly on the ICP-MS. If a sample had very little uranium, any variation would
be exaggerated and the RSD becomes less useful. The RSD values were also used to
identify the appropriate dilution.

The final data included elements Na, Mg, Si, K, Ca, V, Mn, Fe, Cu, Zn, As, Se,

Pb, Th, U, and was prepared considering the uranium concentration, the sample dilution,
and the RSD value. The specific steps used for preparing this data for analysis are listed

in Appendix H.
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SOIL ANALYSES

The fine soil material was split for particle size, carbonate, organic carbon, pH,
and uranium analyses. Between samples, the splitter was cleaned using pressurized air, a
bristle brush, kimwipes, and /or Ottawa sand. For all soil analyses except pH, the soils
were oven dried for 24 hours at 105° C, and split again to obtain the exact weight for the
procedure. pH soil samples were split from reserve air-dried samples.

Organic carbon

Organic carbon (OC) percent was determined by loss on ignition (LOI). Oven-
dried soils are heated to 400° degrees C for 2 hours. This temperature burns off the
organic carbon but not inorganic carbon. The weight difference was taken as the percent
organic carbon (Rone, 2001). The LOI data presented in the results assumes that the
weight loss of the samples is attributable to the total amount of OC present. It is
calculated by the formula:

% LOI=  ((sample weight before (g) -tin wt)- (sample weight after (g)- tin wt))*100
(sample weight before (g) - tin weight (g))

CaCo;

The Chittick procedure was used to determine the amount of calcium carbonate in
the soils (Machette, 1986). This procedure uses glacial (6N) hydrochloric acid to convert
carbonate solid into carbon dioxide gas. The amount of hydrochloric acid added, and the
amount of carbonate in the soil affect the amount of carbon dioxide gas generated by the
¢

procedure (figure 21). Taking into account the barometric pressure, and the volume of

the generated gas, percent carbonate in the soil can be calculated: (Machette, 1986):
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wt of carbon in CO3; 1 correction factor from table: I CO, evolved I
3866 I _barom. pressure v. temp [ (ml) I =y
I sample wt (g)

This y value was then substituted into the equation y = mx+b where m and b were
taken from a line generated by four daily carbonate standards. The final value x is given
as the calcium carbonate content of the soil.

The Chittick method is typically calibrated to work for samples with 3%
carbonate or above. In order to allow for these low carbonate values, lower value

standards (1%, 5% ) were used, as well as duplicates of most S27 and some S36 samples.
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Figure 21. Chittick apparatus for measuring evolution of carbon dioxide gas from
sample of soil carbonate (Machette, 1986).

Particle Size Distribution Analysis (PSDA)

Particle size was determined by removing the gravels (particles >2mm) from a

sample, and then oven drying it. 20 grams of sample was added to a 250 ml Erlenmeyer
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flask with 50 ml of 10% sodium pyrophosphate as a clay deflocculater. After at least 4
hours of shaking to disperse the clays, the sample was wet filtered to 63 um. The residue
from this filtration was the sand fraction, which was dried and weighed. The < 63 um
filtered sample was added to a 1200 ml settling tube and shaken for 45 seconds. At the
appropriate settling interval, 20- 25 ml of clays in suspension were sampled at 10 cm
depth, dried, and weighed. Additional clays were extracted in preparation for the clay
type determination (Janitzky, 1986).

pH

Soil pH was obtained by dissolving an air-dried sample in a 1:1 reverse osmosis
water solution and placing on a reciprocating shaker for 24 hours. The samples were then
centrifuged and the pH of the clear liquid was taken at the Bureau of Geology’s wet
chemistry lab (Janitzky, 1986; SSSA, 2003).

Clay Mineralogy

Clay mineralogy was determined by x-ray diffraction analysis using a Rigaku
D/Max II. Chris McKee of the NM Bureau of Geology conducted this analysis. The clay
is suspended in water, then placed on a glass slide with an eyedropper, and allowed to
dry. A more detailed method description is given in Appendix A. The analysis

determined clay type with 10% error.

SEQUENTIAL EXTRACTION
The goal of this procedure was to identify uranium bound with different soil
fractions: exchangeable, carbonate, Fe-Mn oxides, organic carbon, and residual metals

(Tessler, Campbell, and Bisson, 1979). This procedure was conducted at NMSU's
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Department of Agronomy & Horticulture Soil Chemistry lab, and is listed in detail in
Appendix A.  The procedure uses specifically targeted chemicals to extract the uranium
bound to different soil fractions of the same soil sample (Ramos, 1994). For the first
three steps, the chemical is added and the samples are agitated for one hour or more. The
samples are then centrifuged and the supernatant is removed. Each of the first three steps
is repeated to ensure the complete extraction of the associated metals. Tube, cap, and
sample weights are necessary at each step to account for water and soil carryover
between the tests.

The first step analyzed for exchangeable or soluble cations. 25 ml of 1 M
magnesium chloride (MgCl,) were added to each tube. The samples were shaken,
centrifuged, and the supernatant solution poured off for uranium analysis.

Carbonate bound uranium was analyzed for next. 25 ml of 1 M sodium acetate
(NaOAc; pH 5) was added to each sample. The sample was shaken and centrifuged, the
pH was measured, and the supernatant fluid poured off for analysis.

In the third step, the oxide bound fraction was analyzed for with 25 ml of 0.4 M
NH,OH- HCI (in 25% acetic acid). The sample was again shaken and centrifuged, and
the supernatant poured off for analysis.

The fourth fraction analyzed for the organic bound uranium. This used 5 ml] of
0.1 M Nitric Acid (HNOs3), and then 1 ml of 30 % H,O,. These samples were left
uncapped for several hours, and then another 1 ml of 30% H,0, was added. After
effervescence ended, the sample tubes were heated in a water bath at 50° C until bubbles
disappeared. At this point 20 ml of DI water was added, the sample was centrifuged, and

the resulting fluid was poured off for analysis.
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The last fraction looked for any residual uranium in the soil. What was left of the
original soil sample was washed into an aluminum container, dried and weighed. A total
soil digest procedure was conducted that mirrored the above microwave soil digestion for
ICP-MS analysis. All of these samples were then diluted 1:5 and run for uranium content

on the NM Tech ICP-MS.

STATISTICS

This study aims to identify new uranium accumulating plants, and to identify the
effects of semi-arid soils on uranium uptake in plants. Previous parts of this methods
section identified land use type, soil uranium content, soil pH, texture, and OC and
CaCO; content as well as plant uranium content as potentially important variables.
Relationships between these variables can be meaningfully tested using correlation and

linear regression.

CORRELATION ANALYSIS

Correlation assigns a number approaching 1 as the degree of linear relationship
increases between two variables (Ramsey, Schafer, 2002). It does not identify
independent or dependent variables. A correlation matrix can quickly be generated from
a table of data, looking at every combination and identifying significant ones for further
consideration. However, correlation analysis cannot account for nonlinear relationships,
suchasy = X

In this study the final data included 15 elements and 7 soil properties. Correlation

was used as a summary measure to suggest relationships between variables. At both
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mine sites, pH, organic carbon, silt, clay, and land use have normally distributed data
sets. Qravels, clay, and uranium data are skewed towards low numbers. In order to
create a numerical relationship, land use types were ranked with respect to disturbance:
undisturbed
lowland/drainage

1
2
disturbed plain 3
waste pile 4

Correlation relationships are then further tested with regression analysis. The relationship

between soil properties and uranium was tested in this way.

REGRESSION ANALYSIS

Regression analysis describes the distribution of values of one variable (the
response) as a function of other explanatory variables (Ramsey, Schaefer, 2002). It
defines a linear relationship where one variable is dependent upon, and can be predicted
by other independent variables. Regressions can support inference about nonrandom
relationships. It is a useful way of summarizing a relationship between variables that
may be suggested but not conclusively obvious from a scatterplot of the data.

The significance of regression relationships is tested by the p-value and the r-
squared value. The p-value tests the equation's ability to accurately account for all given
data. The r-squared value is very useful for interpretation of regression equations. It
quantifies the degree of variation of the response variable (for example, U) that can be
predicted by the explanatory variables (for example, clay content and organic carbon).
For example, the r-square value of an equation U = 2.3 + 0.79 OC - .33 clay % is 53 %.
This suggests that 53% of the uranium concentration is explained by, or affected by, the

soil organic carbon and soil clay content, taken together.
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Simple regression looks at the influence of a single explanatory variable.
Multiple regression models the response variable as a function of several explanatory
variables (Ramsey, Schaefer, 2002). A 'Best Subsets' regression can be generated from
multiple variables. This shows different combinations of explanatory variables as
predictive equations of the same response variable, and each equation's significance and
explanatory effectiveness. In a stepwise regression, the operator sets the variables to be
considered. The program Minitab then determines which of the designated explanatory
variables are significant, and generates an equation with the response variable.

Multiple regressions are used here to model relationships between the soil
properties of interest (uranium concentration, depth, land use type) and other soil
properties. Predictive equations (soil properties predicting uranium value) were then
generated in the format y = b + mx1 + mx2 + ...., where y is the dependent variable. The
dependent variable is the outcome to be explained in these regression analyses. Any
change in the dependent variable is viewed as a function of changes in the independent

variable.
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RESULTS

LAND USE TYPES

LAND USE MAPS

Land use types were mapped in the field at the two major sampling locations.
These maps were used to test the differences in soil properties and uranium distribution.
The Section 27 sampling area covered a range of 2-8 points in each land use area, while

the Section 36 grid sampling area covered 3-16 points in each land use area (Table 3).

Section Undisturbed Lowland Disturbed plain  Waste pile TOTAL
27 8 2 8 7 25
36 16 16 3 4 36

Table 3. Sampling Points by Land Use type

Figure 22 shows a view from atop the S27 waste pile looking east, viewing
disturbed plain and unsurveyed, undisturbed land. Figures 23 and 24 show two land use
areas of S36; the lowland area and the waste pile, as well as their soil profiles. The

following figures (figures 25 and 26) map out the S27 and S36 land use types. First the
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following figures (figures 25 and 26) map out the 827 and 836 land use types. First the
land use types are presented, and in Figures 25b and 26b the land use types are overlain

on aerial photographs.

Figure 22. Waste pile and undisturbed area, looking west, S27.

Stars on figures 25 and 26 show the sampling points overlain on the grid pattern
and the aerial photographs of each sampling site. These photos (figures 25b, 26b) show
the higher vegetation and less bare ground of the lowland land areas, and the slightly
lighter undisturbed areas. The waste pile and disturbed plain land use area have more
bare ground and lower percent vegetation cover. On Figure 25b, showing Section 27, the
difference between the disturbed plains and waste piles versus the lowland and

undisturbed areas is shown in the darker color of the latter areas. On Figure 26D,

53



showing Section 36, the differences between land use types are less obvious on the aerial
photos. The lowland area still has more vegetation and ground surface cover, resulting in
a darker photo of that area. The waste pile, current road through the area, and current
Uranium milling operations to the east of the photo all have less vegetative cover and

thus more albedo on the aerial photo.

Figure 23. S36 northern end of lowland area and lowland soil profile.
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Figure 24. S36 Waste pile and soil profile.
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At Section 36, the presence of kaolinite suggests a highly weathered environment;
however the presence of illite and mixed layered clays at this site also documents some
resistant material (Birkeland, 1999). While the soils here have in general less kaolinite
than S27, there is almost no smectite, meaning that the CEC is greatly reduced. Because
both sites contain clay minerals with low CEC, other methods of uranyl sorption, such as

organic matter, may take on increased relative importance in the soil.

Section 36 Surface Hlite Kaolinite Smectite Mixed Layered Clays
Drainage 25 75 negl Negl
Disturbed Plain 25 75 negl Negl
Waste Pile ~2.5 80 ~2.5 ~15

Table 6. Section 36 Surface clay mineralogy, estimated at 10% per Chris McKee and
duplicate samples.

pH

Soil pH varied very little at either site, S27 or S36. The range of pH values at S27
was ~7.6-8.1.  The range of pH values at S36 was ~ 7.4-8.0. At both locations, the
undisturbed land use areas (marginally) had the highest pH. The drainage areas at both
locations were relatively intermediate, and the disturbed plain and waste pile locations
had the lowest pHs. All of the average pH values between land use types had standard
deviations large enough to suggest that there is no significant variation between land use

type (figure 30).
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Surface Soil Uranium Samples

S27
Very little difference can be seen in the surface soil uranium values of the
undisturbed, drainage, and waste pile land use areas. Average surface soil uranium
differentiated the disturbed plain by 120 ppm. However, this large difference was
captured in 25% (2) of the sample points in the disturbed plain area (8 total). The only
difference of these two point is in their uranium value (Figure 31a). However, the
variability of the uranium concentration of the disturbed plain land use type can be seen

in its' low average value when those two points are excluded:

All S27 surface pts S27 surface excl. F2, D4
Land Use U avg U stdev U avg U stdev
Undisturbed 61.37 62.6
Drainage 73.77 92.88
Dist Plain 253.12 393.43 31.73 26.08
Waste Pile 78.71 59.66

Table 7. S27 Surface soil uranium value, averaged by land use type.

S36
Overall surface soil uranium content was much lower than section 27 in section
36. While S27 did not have obvious differences between the land use types in surface
soil uranium content, in S36 the undisturbed and drainage soils have soil uranium content
more than one standard deviation lower than the soil uranium content of the disturbed
plain and waste pile surface soils. All of this uranium content is very low, below 15 ppm

(figure 31b).

71







500.00

2

2 .
€ 400.00

foe)

8

£ 300.00

=]

b

& 200.00

Q

£

= 100.00

T — 1L —F
5 L

0.00 Undisturbed Drainage Disturbed plain Waste pile

Figure 31a. S27 0-5 cm soil Uranium averaged by Land Use

bn20.00
-~
E;
o 15.00
.2
§ T
k=
§ 10.00 T
: i
E 5.00
g + T
-
0.00

Undisturbed Drainage Disturbed Plain Waste Pile

Figure 31b. S36 0-5 cm soil Uranium averaged by Land Use




Surface Soil Uranium measurement

Surface soil uranium concentrations were originally measured with a gamma ray
meter. These measurements helped define the uranium concentrations in the field, and
varied from 0~1500 uRem/ hr. Surface soil uranium concentrations by ICP-MS analysis
varied from 0-1050 ppm. These uranium concentrations did not correlate in all cases
with the gamma ray readings, primarily at the S36 site, which only had high gamma ray
readings on top of the waste pile, and nowhere else. The waste pile soil profile later had
a ICP-MS uranium concentration of 47.6 ppm. The surface soil uranium (ppm) at S36
shows high uranium readings at 3 locations (approximately 20 ppm).

Uranium is primarily mined for the low-concentration isotope U-238. This
isotope is the main source of gamma rays. U-235 and U-234 constitute ~95% of
naturally occurring uranium ore. They do not emit gamma rays. For this reason
concentrations of uranium -235, and U-234 in the soil may not be accurately measured by
a gamma ray meter. All uranium isotopes are important targets for soil remediation.
The S36 waste pile may have had more mine tailings and U-238, which is why it had a
high gamma ray reading. Less disturbed locations that may have been contaminated by
windblown dust from an adjacent processing facility did not have elevated gamma ray
readings, perhaps because the soil contained different relative concentrations of uranium
isotopes. This could have been caused by wind-blown uranium dust, possibly from the
nearby processing facility.  Because of these concerns, the ICP-MS uranium
concentration information is used when analyzing the surface contours of uranium

concentrations for both the S27 and the S36 study sites.
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Contour maps of the ICP-MS uranium values were made to further examine the
surface distribution of uranium. These contour maps, in both locations, did not help to
distinguish between the four land use types. For simplicity, the contour maps of uranium
concentration are presented here without additional overlays. Both contour maps are
oriented north in the upper left-hand corner, and are plotted using the same 50-m
separated grid points as figures 25 and 26.

At S27, the disturbed plain is in the west-central and southeast portions of the
grid. The undisturbed area is around the edges of the grid, and the waste piles also in the
west-central and southeast portions of the grid. Considering this land use information,
the S27 contours on figure 32 can help distinguish the disturbed plain land use type and
not the three other types.

At S36, the central portion of the grid is drainage area. Disturbed plain is
primarily in the northern part of the grid, with the waste pile central in the northern grid.
The undisturbed portion is along the west side of the study area. In the S36 contour map,

the contours do not match closely to any land use type (Figure 33).
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SOIL PROFILE ANALYSES

Organic matter

S27
The S27 soil profiles varied by land use type in their organic carbon content. The
undisturbed soil had 3-4% organic carbon, which did not change significantly with depth
(figure 34). The disturbed plain and waste pile profiles had less than 1% organic carbon
throughout their soil profiles.
S36
The S36 soil profiles varied by land use type in their organic carbon content.
Here, in contrast to S27, the undisturbed profile had the least organic carbon, 2% or less
throughout the profile (figure 35). In the drainage land use type soil profile, OC was very
high at the top of the profile (8%) and decreased to 3.7 % at 70 cm. The waste pile land
use type soil profile had organic carbon increase with depth to 3% at 70 cm. In the top 30
cm the waste pile profile had < 2% organic carbon. Study area S36 could have had more
water available to develop the drainage land use type soil profile. The waste pile soil

profile organic carbon at depth is probably affected by the tailings layers at 60-70 cm.

Calcium Carbonate

S27
The S27 soil profiles contained very little carbonate. The disturbed plain had up
to 2.8% in the surface layers. However, because the overall content of these profiles was

so small, there are no significant differences between the profiles (figure 34).
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S36
The S36 soil profiles contained up to 3.3% calcium carbonate (figure 35). This is
also very little carbonate, although it is slightly higher than the carbonate at S27. The
undisturbed profiles had carbonate above 3% in the bottom three layers. These depths
were not sampled at S27. This suggests a small amount of soil development at both sites.
Again, these carbonate contents are very small and it is difficult to draw major
conclusions from these minor variations in carbonate content.
pH
S27
The pH content of the S27 soil profiles also had very slight differences between
the land use types' soil profiles (figure 32). The undisturbed profile had 4/7 samples near
pH 8; the disturbed plain had an average pH 7.7; and the waste pile soil profile had 6/7
samples near pH 7.5. The small variations in pH are probably due to the relative soil
development and parent material differences of these three soil profiles. In this case, the
undisturbed soil would be slightly more developed, as its pH is slightly higher and the
soil profile has been left under stable condition for a longer period of time.
S36
The pH content of the S36 soil profiles had very minor variations, similar to the
S27 soil profile pHs (figure 33). However, the S36 pH variations also had the same slight
decreasing-with-disturbance trend as the S27 soil profiles. The S36 undisturbed soil
profile pH increased with depth to pH 8.4 at 60 cm. The S36 drainage soil profile had pH

8 with the 30-60 cm soils. The S36 waste pile soil profile had very low pHs at 35-60 cm
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(pH 4.5-5). This is probably due to the buried tailings layer at 60 cm depth in the S36
waste pile. The slight increasing-with-disturbance trend in pH probably also reflects the
relative age of these soils. The undisturbed is the oldest, the drainage soil profile
younger, and the waste pile definitely less than 100 years old.

Particle Size Distribution Analysis

S27
At S27, the undisturbed soil profile is distinct from the other two soil profiles
(figure 36). The disturbed plain and waste pile soil profiles are defined by their high sand
content (approximately 80% sand). This sand is most likely a byproduct of mining the
uranium from a sandstone ore. The undisturbed profile has almost equal amounts of silt
and clay (38- 48% each) and less than 20% sand. Clay and silt presence in the
undisturbed profile show the effects of weathering and eolian transport on the
undisturbed soil profile development.
S36
The S36 soil profile particle size values vary between land use types (figure 37).
The drainage soil profile texture is very different from the undisturbed and waste pile soil
profiles' soil textures. While the waste pile and undisturbed soil are predominated by
sand (55-87%), the drainage soil profile has 33-79% silt. The waste pile also has
significant amounts of clay that increase with depth.  The difference between the
undisturbed and drainage soils could be attributed to the variability of soil formation
across a landscape (catena), and the effects of soil formation in a small natural drainage

with additional water.
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The uppermost part of the soil horizons of the undisturbed and waste pile soil
profiles appear very similar in texture. However, this similarity of the waste pile and
undisturbed profiles does not continue at depth. The waste pile has a well defined, deep
red-brown, fine-grained and high uranium layer at 60 cm depth. This is probably buried
mine tailings. At this depth, the waste pile soil profile’s sand content drops >37%, and
the gravel content increases 4%. The undisturbed layer reduces its sand content by
approximately 17% at 60 cm depth, which does not match the change in the waste pile
soil profile at that depth.

It is possible that the shallow soil horizons of the waste pile are composed of
surface soils removed from an adjacent area, and used to bury the tailings layer. This
could help explain some of the similarities in texture between the undisturbed and waste
pile soil profiles at S36.

Clay Mineralogy

S27
At S27, the disturbed plain soil profile was selected for clay mineralogy analysis
based on its high uranium content (figure 38). This profile contains mainly kaolinite, at
the surface and at 30 cm depth. For a <40 ya soil, it is very weathered. There is slightly

more weathering with a small smectite increase at 30 cm depth.
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Disturbed Plain soil profile clay types, S27

0 Fr—
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depth
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30125 |20|15]10)5 |0
[IMixed Layer | 0.5 25
Clays
O Smectite 1.5 0.5
Bl Kaolinite 8 7
Ilite

Figure 38. Clay Mineralogy of the S27 Disturbed plain soil profile.
S36
The S36 waste pile soil profile was selected for clay mineralogy analysis based on

its relatively high uranium content. The clay mineralogy of this soil profile is

predominantly kaolinite (Figure 39). There is a slight increase in illite, a 2:1 layer clay,

Waste pile soil profile clay types, S36

depth

0 2 4 6 8 10]
70 60 49 35 21 7 o
0 Mixed Layer Clays
O Smectite 0.5
B Kaolinite 15 8
Diilite 25 02

Figure 39. Clay mineralogy of the S36 Waste Pile soil profile.
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at 60 cm depth. This corresponds with a marked increase of uranium (200 ppm) at this
depth.

Soil profile uranium data

S27
The S27 soil profile uranium content varies in magnitude between the different
land use area soil profiles (figure 40). While there is no clear trend of uranium with
depth, each of the land use types can be identified based on the magnitude of the uranium
content in each profile. The S27 undisturbed soil profile contains uranium from 2-6 ppm.
The S27 disturbed plain soil profile contains uranium from 200-500 ppm, with one
sample containing 1200 ppm uranium. The S27 waste pile soil profile contains uranium
from 28-80 ppm, making it intermediate and distinguishable from the other two soil
profiles.
S36
The same definition of land use types based on average uranium content in the
soil profile is possible at S36. There are no clear trends of uranium with depth; however,
the total uranium content of the land use types varies as shown by the soil profiles (figure
41). The S36 undisturbed soil profile contains from 0.5- 2 ppm uranium. The S36
drainage soil profile contains from 4-16 ppm uranium, and the S36 waste pile soil profile
contains 15-70 ppm uranium, with the 60 cm sample containing 250 ppm uranium. The
uranium concentration differences between each land use types' soil profile make it

possible to distinguish land use type based on soil profile uranium content.
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SEQUENTIAL EXTRACTION

‘Surface’ soil and soil profile samples were selected for Sequential extraction
analysis based on the ICP-MS uranium content and field location. The samples’
identifying information is listed in table 8. Because of high uranium values, the

disturbed plain soil profile for S27 and S36 were selected.

Site Sample Land Use U (ppm)  %gravels % OC % CaCO3
27 0cm disturbed plain ~ 527.35 5.3 0.7 24
27 10cm  disturbed plain 3449 19.2 0.6 0.7
27 20cm  disturbed plain 187.7 22.8 0.9 0.4
27 30cm  disturbed plain 218.8 11.9 0.75 0.3
27 Cl1 lowland 174.4 3.3 1.1 0.35
27 Gl lowland 139.5 23 0.6 1.3
27 D2 disturbed plain 621.9 5.7 1.5 0
27 F2 disturbed plain  1040.45 22 0.4 0
36 0cm Waste pile 7 1.1 1.89 0.86
36 2l cm Waste pile 3.39 1.53 1.65 0.07
3 49 cm Waste pile 0.53 0.79 0.57 0.08
36 60 cm Waste pile 6.21 3.08 2.80 0.48
36 Bl Waste pile 1.39 n/avail 1.58 1.54
36 H3 Lowland 16.72 n/avail 5.47 1.20

Table 8. Background information on selected samples for Sequential Extraction.

The sequential extraction information reported uranium values somewhat different
from those listed in table 8. After dilutions and blanks were taken into account, the data
is reported below in terms of a ratio of each uranium value to the others.  This
relationship emphasizes the role of the calcium carbonate soil fraction in binding
uranium. In general, the organic fraction was the second most important source of

uranium, with the exchangeable fraction binding more uranium at depth.
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average average average = average  average

Exchangeable | Carbonate Oxide | Organic ; Residual
F1% F2% F3% F4% F5%
- 27-2-0 2.88 80.29 338 1291 0.55
N 0.17 495 0.59 4.49 0.04
27-2-10 5.36 74.41 597 13.66 0.60
27-2-20 2251 47.90 8.42 20.05 1.12
27-2-30 14.57 42.03 10.18 31.72 1.50
36-1-0 4,12 52.33 21.04 21.84 0.67
36-1-21 6.68 65.17 15.19 11.73 1.23
36-1-42 2972 4511 11.48 12.60 1.09
36-1-60 54.29 35.53 522 472 0.24
27+C1 10.44 46.34 11.82 30.12 1.28
27+D2 13.46 51.05 13.16 20.02 2.31
039 1.28 1.69 337 | o0l
27+G1 3.64 6727 5.82 21.74 1.53

Table 9. Percent uranium for each Sequential Extraction fraction.
It is not intuitively obvious that the carbonate fraction of these soils, which is such

a minor part of these soils, would be the major source of uranium bonds in these soils. At

high pHs uranyl carbonates are more easily formed; and < 3% total CaCOj in the soil is
still enough carbonate to bind < 1000 ppm uranium. The same is true with the small
amounts of organic material in these soils, which were the second most important source

of uranium bonds.

Sample U (ppm)
NMSU Deionized water 0
Exchangeable fraction blank 0.04
Carbonate fraction blank 0.04
Oxide fraction blank 0.01
Organic fraction blank 0.04
Residual fraction blank 0.02
BRS Standard 0.64

Table 10. Sequential Extraction blanks are valid.
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PLANT ANALYSES

PLANT TRANSECTS

Plant transects were conducted to compare the ground cover and plant types of the
different land use types (figure 42). At S27, the two undisturbed plant transects show
that the undisturbed areas had litter covering half of the unvegetated soil surface
(approximately 40% litter and total 84% unvegetated area). Grass covered 12% of the
undisturbed soil surface.

Both the litter and the grass content distinguish the undisturbed plant transect
from the other land use types' plant transects. The drainage land use area had more grass
(21%), but much less litter (5%) than the undisturbed land use area. The drainage area
also had almost 5% bushes, and 1% herbaceous plants. The disturbed plain and the
waste piles were predominatly bare ground (92-99%). The disturbed plain had almost
7% grass and 1.7% herbaceous plants. The waste piles had 0.1-4% grasses, and 0- 0.8%
herbaceous plants. There were also differences between plant species in the different
land use areas. For example, Indian Rice Grass was the one grass species found on the
waste piles. This grass had twice the patch size of the other species and land use types--
25 cm versus 8-13 cm.

At S36, two plant transects were recorded--one undisturbed and one across the
waste pile (figure 43). Both had more plant cover, and more species variety than the S27
transects. The undisturbed plant transect was almost evenly split between grass cover,
soil litter, and bare ground (25.8%, 22.7%, and 32.6% respectively). Blue grama grass
predominated the grass patches (269/ 281 grass points recorded). The S36 waste pile

plant transect is different from the S36 undisturbed area with its increased bare ground
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(52.8%), decreased litter (8.6%) and decreased bush cover (3.3%). This waste pile

vegetation transect has more vegetation and more variety than the S27 waste pile
transects. This is probably due to time since disturbance--S36 had been abandoned at
least 20 years prior to S27. The waste pile at S36 also has a central depression which

may serve to collect precipitation and promote plant growth.

PLANT URANIUM CONTENT

S27

Three plants were taken at the established grid sampling points. These three plant
samples included three different species at most points, and occasionally duplicate plant
samples of the same species at the same point. These samples were also duplicated in the

laboratory (Table 11).

Plant Type Species # Field Pts | # Fld Samples | Analyzed | Graphed
Grasses Tobosa grass 10
Vine Mesquite
Burro grass
Squirreltail
Sand Dropseed
Indian Rice grass
Blue Grama
Herbaceous Wooly Buckwheat
Tansy Mustard
Stickleaf Blazing Star
Curly Cup Gumweed
Heath Aster
Milkvetch
Shrubs Rabbitbrush
Fourwinged Saltbush
Snakeweed
Weeds Tumbleweed
Kochia weed
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Table 11. Frequency of plant occurance at S27 sampling points,
and of field sampling and ICP-MS analysis per plant species.
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Figure 43 shows the relationship of plant uranium with soil uranium for 16
species at S27. S27 had higher soil uranium values (0-1000 ppm) than S36. Because of
the higher soil uranium, the plant response to uranium is more indicative of potential
phytoremediation applications. Eight of the ten graphs in figure 44 are at the same scale.
These graphs indicate that there is a difference between species in plant uptake of soil
uranium. A high ratio of plant U : soil U is a useful indicator for further
phytoremediation studies. In the top eight graphs of figure 43, this high ratio is shown
most clearly in the Stickleaf Blazing Star herb samples, which have a >100% (>1) plant
uptake: soil uranium ratio. The high samples of the Indian Rice grass, Snakeweed and
Sand Dropseed grass also have 0.46, 0.33 and 0.27 plant uranium concentration ratios.
Most plant samples in these top eight graphs of figure 43 do not show significant uranium
uptake.

The bottom two figures in figure 43 have scales approximately six times smaller
than the above graphs in that figure. Tumbleweed's concentration ratio decreases with
increasing soil uranium. Below 200 ppm soil uranium, tumbleweed accumulates up to
25% of soil uranium. At 600 ppm, it accumulates approximately 8.3% of soil uranium.
Kochia weed appears to accumulate more plant uranium with increasing soil uranium. At
the soil uranium high value (1050 ppm), Kochia weed accumulated approximately 31%
of soil uranium in the plant material.

S36

More plant species were sampled at S36. Some species, such as Blue grama
grass, Tansy mustard, Kochia weed, and Winterfat shrub occurred in abundance. Other

species were sampled only a few times. The sampling duplication is listed in table 12.
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Plant Type Species # Field Pts | # Fid Samples | Analyzed | Graphed

Grasses Blue Grama 19 19 20 19
Mountain Muhly 3 4 4 3
Sand Dropseed 10 10 10 10

Threeawn grass 2 2 2 2

Tobosa grass 4 4 6 4

Squirreltail 2 2 2 2

Herbaceous Cleome serrulata 2 2 5 0
Goosefoot-C. lepidium 3 3 6 3

Gilia 2 4 6 0

Scarlet Globemallow 1 1 2 1

Mustard-D. pinnitifida 9 10 11 9

Shrubs Fourwing Saltbush 1 1 3 1
Willow 1 1 1 1

Rabbitbrush 5 5 10 5
Winterfat 10 11 35 10

Snakeweed 2 2 4 2

Fringed Sage 1 1 3 1

Weeds Tumbleweed 1 1 1 1
Kochia weed 11 15 15 11

Other Lichen 2 2 2
Bulrush 1 1 1 1

Table 12. Frequency of plant occurance at S36 sampling points,
and of field sampling and ICP-MS analysis per Plant Species.

Because of the additional species and smaller average sample size per species at
S36, more‘species were grouped together on single graphs. S36 also had much less soil
uranium than S27. Up to 3 ppm can be considered "background" soil uranium values
(reference). This allows fewer conclusions about plant uranium uptake and suggestions

for phytoremediation.
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Figure 44. S36 Plant uranium concentration versus soil uranium for 7 species.

Figure 44 shows S36 grass uranium uptake. Three-awn, Mountain Muhly,
Squirreltail and Spike dropseed grasses accumulated very little uranium. While none of
these grass samples has "elevated" grass uranium concentrations, a few samples did show
uptake at background soil uranium concentrations. Blue Grama, Tobosa, and Sand
Dropseed grasses all had a point or a few points which accumulated 2 ppm plant U for
less than 5 ppm soil U. Both the Blue Grama and Sand Dropseed grasses were frequently
sampled and this 40% plant uranium concentration ratio did not continue with increasing

soil uranium. In the Tobosa grass, only one of four graphed points showed this level of

uranium uptake.
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Six herbaceous species, and one sedge, were sampled at S36. Only one of these

species, Tansy Mustard, had enough samples to allow trend analysis. The plant and soil

uranium values for these samples are listed in figure 46.
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Figure 45. $36 Plant Uranium versus soil U concentration for five herb species.

Tansy Mustard was the only herbaceous species to accumulate more than 2 ppm
uranium (figure 45). One Tansy Mustard sample accumulated 9 ppm plant uranium per
17 ppm soil uranium, a concentration ratio of 0.53. However, no linear or other plant
uptake trend for Tansy Mustard could be established, and most points accumulated less

than 2 ppm uranium.

98



Plant Uranium

(ppm)

=T S < -]

§36 Rabbitbrush shrub $36 Winterfat Shrub
e — 10
8
E 6
y=-0.03x+046| | |3 2 : v y =0.06x +0.93
R?=0.29 = _E"-n-—v 2=,
1 gl s g [ 0 - , : v L o o
0 5 10 15 20 25 0 5 10 15 20 25

Soil Uranium (ppm) J

Soil Uranium (ppm)

$36 Small Samples, Various Shrubs

Soil Uranium (ppm)

L

0
8 @ gusa
— 6 ® aica
= g‘. 4 arfr
E 2 * X > saex
0 +® T T {
5 10 15 20 25

Figure 46 . $36 Plant uranium uptake versus soil uranium for six shrub species.

Six shrubs were sampled at S36; these plant and soil uranium values are listed in

figure 47. All shrubs had plant uranium values below 2 ppm. The Winterfat shrub

showed a slight decrease of accumulated plant uranium with increasing soil uranium.
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Figure 47. S36 Plant Uranium uptake versus soil uranium for two weed



Two weedy species were also sampled at S36: Kochia weed and Tumbleweed
(figure 48). Both accumulated very little soil uranium at S36. Kochia weed, which had
some high uranium uptake at S27, increased 1 ppm plant uptake over a 17 ppm soil
uranium spread. Kochia weed did not show indications of high uranium uptake potential
at S36.

S36 Waste Pile Plant Sampling

Nine species were additionally sampled along the waste pile plant transect line.
This was done because of the low uranium values across most of S36, and the high values
within the waste pile. These plant samples had slightly higher uranium values than the
S36 grid samples (table 13). The shallowest sample of the waste pile soil profile
contained approximately 48.6 ppm uranium. Assuming this concentration is constant
across the waste pile transect, the Red Three-awn grass and Blue Grama grass have
accumulated the most uranium of the plants in this table. These two samples had
concentration ratios of 0.19 and 0.27. These ratios are higher than almost all grid

samples.
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sample point Plant Species U(ppm) | avg U ppm stdev
W10 Blue Grama grass 2.26 5.65 4.79
W10 Blue Grama grass 9.04
W15 Threadlead Groundsel 0.37 0.19 0.26
W15 Threadlead Groundsel 0.00
W25 6-wks Three-awn grass 438 4.89 0.72
W25 6-wks Three-awn grass 5.40
W25 Spike Dropseed grass 0.50
W30 Red Three-awn grass 13.14
w30 Indian Rice grass 2.14
W35 Indian Rice grass 2.65
W40 Russian Tumbleweed 1.79 1.32 0.66
W40 Russian Tumbleweed 0.86
w40 Herbaceous Stickleaf 2.64
W45 Winterfat Shrub 3.78 3.29 0.64
W45 Winterfat Shrub 2.36
W45 Winterfat Shrub 347
W45 Winterfat Shrub 3.56
n/a std 0.00

Table 13. Uranium content of Waste Pile plant samples, S36.
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DISCUSSION

DIFFERENCES BETWEEN THE LAND USE TYPES

Surface soil properties, soil profiles, vegetation transects, and vegetation samples
were all used to test for differences between the land use types. The surface soil
properties --particle size, pH, calcium carbonate, organic carbon, pH, and clay type--in
almost all cases did not significantly distinguish the land use types. There were
descriptive differences between the land use types in the soil profiles, however.

Land use types were also distinguishable topographically and with differing
vegetation density. The waste pile and the lowlands can be distinguished based on
respective topographic highs and lows. The disturbed plain and waste pile can be
distinguished based on decreased vegetation, a lack of surface soil color, and an increase

in relative surface soil sand content from waste rock and mining activity.

SURFACE SOILS AND SOIL PROFILES

Most of the soil sampling for this study was done at shallow depths (0-5 cm), in
order to sample the exact rooting soil of the plants. One difference between arid and
temperate soils is the higher activity and vertical movement of surface particles in the
semi-arid soil. Certainly one insight from this study is that surface soil samples, for the
purposes of phytoremediation, do not give a complete insight into the soil properties at
depth. This is probably due to the active soil surface in this semi-arid area. This is
further supported by the strong winds common to the area, and experienced during

fieldwork.
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URANIUM IN SURFACE SOILS

At S27, the most soil uranium content occurs along an old road included in the
disturbed area. A small drainage channel now follows part of this road. Uranium is
slightly lower here than on the waste pile surface samples. One disturbed area surface
sample had 500+ ppm U. One undisturbed surface sample also had 50 ppm uranium.
These two points illustrate some of the variability of the surface soils, and the difficulty
using the surface soils to distinguish land use types. Ore loss from trucks and eolian
transport may be two different surface processes confusing the picture of uranium
occurrence across this site.

Uranium in the S36 surface soils distinguished between disturbed and less
disturbed areas. The undisturbed and lowland areas had lower surface soil uranium than
the disturbed plain and waste pile areas. However, this difference was approximately 2

ppm between the less and more disturbed surface soils over a range of 18 ppm.

SOIL PROFILE DIFFERENCES

While having much more limited sample sizes, the soil profiles provided more
insight into the differences between land use types. Based on the soil profiles, the
different land use types are distinguishable within each mine site, but not comparable
between mine sites. The undisturbed soil profiles at S27 had higher relative organic
carbon. The S36 undisturbed soil profile had higher relative CaCOj; that increased with
depth. Both undisturbed soil profiles had typically slightly higher pH values. The
disturbed profiles typically had slightly lower pHs, low CaCOj; content and high sand

content.
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S27 Soil Profiles

The undisturbed soil profile has gravels from 0-24%, predominately below 5%. It
also contained mostly silt and clay, and had 3-4% organic carbon, but no CaCO; The
disturbed plain and waste pile soil gravels, by contrast, are typically above 10%. These
two profiles have organic carbon < 1% and high sand content, which suggests burial and
little plant growth on these two disturbed soils.

S36 Soil Profiles

The undisturbed soil profile had gravels below 5% in all samples to 60 cm.
There was ~2% organic carbon throughout this profile, and soil carbonate increased with
depth to 3.1% at 60 cm. The S36 lowland and waste pile soil profiles had more relative
carbonate at the surface and less relative carbonate at depth. The carbonate at the surface
suggests the short development time of these two disturbed profiles. The S36 drainage
soil profile has low sand and high organic carbon relative to all the other soil profiles,
including both undisturbed profiles. This could be because of the effects of additional
mine release water that flowed over this area while the mine was active and dewatering

the underground uranium ore.

URANIUM CONTENT IN SOIL PROFILES

In the soil profiles, total uranium concentration differs for each land use type. As
with the above soil profile samples, the sample sizes here are small. Highly variable
urnaium concentration in some of the soil profiles suggests that the samples may
represent highly variable uranium concentrations throughout the study area. However,

the profiles suggest some differences between land use types.
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The undisturbed profiles at each location had uranium concentrations below 6
ppm. Uranium decreased with depth at both undisturbed sites. The disturbed plain soil
profile (S27) varied from 200-1100 ppm with most values ~350 ppm U. Both the S27
disturbed plain soil profile and the S36 drainage area soil profile had uranium decreasing
with depth. The two waste piles also had patterns of uranium decreasing with depth.
This was highly variable at the S27 waste pile soil profile. In the S36 waste pile soil
profile, uranium decreasing with depth is interrupted by a high-uranium layer at 60 cm.
This layer contains fine-grained tailings material, and is not a naturally developed soil

layer.

VEGETATION AMOUNTS

The amount of vegetation is a good indicator of past land use. The more heavily
disturbed the area, the less total vegetation was recorded by the vegetation transects.
Vegetation communities, as measured by the vegetation transects, also differentiated the
land use types. The undisturbed vegetation transects are characterized by equal amounts
of bare ground and litter, while all other transects are dominated by bare ground. The
S36 lowland area has a high diversity of species, but still lots of bare ground.

It is interesting that both the vegetation transects and the soil profiles helped to
define the land use areas. There is not enough data here to support a direct link between
the soil profile and vegetation transect of one land use area. However, it is possible that
the variations in the soil profiles between each land use type affect the vegetation of each
land use type. This suggests that perhaps vegetation here is more affected by variations

in subsurface soil properties than the surface soils.
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SEMI ARID AREA PLANTS AND URANIUM UPTAKE

In these samples, few plants appeared to be accumulating uranium. Of the plants
with enough samples to plot on a graph, most did not increase in uranium concentration
with increasing soil uranium.

Of the uranium that was found in the plants, it was often found at twice the
concentrations in the leaves than the stems of the plants. Leaves grow faster and have a
higher 'osmotic potential' than stems, because they are the primary site of transpiration.
The leaf area within the plant could therefore be the site where uranium enters plant cells,
as uranyl ions dissolved in water. This water flows from the plant stem xylem into leaf
cells for tranpiration and photosynthesis. This process may cause the uranium to be
stored at a higher rate in the leaf cell vacuoles as plant waste.

Uranium concentrations in the plants were low in general, except for two Kochia
samples at S27. The surface soils taken to relate to the plant uranium concentrations may
in some cases not be the best measurement of available soil uranium. For example the
rooting depth of large shrubs such as the saltbush or rabbitbrush may make deeper soil
uranium available to the plant. However, even without the measurement of that deeper
soil uranium, in the samples given in this study, most plants did not show elevated
uranium concentrations. These species do not show special promise for
phytoremediation.

In many cases, plants do not show linear uptake of plant uranium with soil
uranium. This could be because these plants are genetically programmed to limit
uranium uptake. Selection of uranium tolerant plant samples in the field may yield a

uranium accumulating variant of that particular wild species.
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Plants that did show uranium uptake, in this study, did not follow a consistent
pattern. At S27, Sand Dropseed grass and Indian Rice grass both had some plant
uranium uptake at soil concentrations ~140 ppm. However, the Sand Dropseed appeared
to follow a linear uptake pattern, while the Indian Rice Grass sample was just one of six
samples, 5 of which were not significant accumulators. The herb Stickleaf Blazing Star
accumulated lots of uranium at a low soil concentration. For sheer uranium removal, this
plant could be rated the best overall, with a CR of >2. However, this may be because the
soil uranium was not measured accurately on the waste pile relative to this plant, and
should have been measured at greater depth. Or, it could mean that the Stickleaf herb, is
especially good at catching eolian dust particles, with some possible uranium content.

S36, which has been left undisturbed for ~ 20 years longer than S27, had more
species sampled. It also had less overall uranium, and fewer species with any indications
of uranium uptake. The Tansy Mustard and the Winterfat Shrub both had singular
samples from the population which had CRs of ~0.5 and ~1 respectively. Kochia weed

did not show uranium uptake at this mine site.

PLANT URANIUM UPTAKE RELATED TO SOIL PROPERTIES

Six plant species sampled at the two study sites had large enough sample sizes
for statistical comparison of plant uranium uptake with soil properties, including the
relevant 'surface' soil properties. These species were Kochia weed, Sand Dropseed grass,

Snakeweed, Tumbleweed, and Galleta grass.
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Soil characteristics of the 0-5 cm surface soil samples were compared with the
concentration ratio of plant:soil uranium. These plant samples were related to the soil
properties pH, OC, CaCO;, particle size, and uranium content.

These analyses only use the soil properties of 'surface’ soil samples. Surface soils
were previously proven to not have significant differences between land use types. For
these comparisons, the land use type designations were set aside.

For all species, plant uranium uptake was related to pH:

r-square
Kochia S27U CR=-8.27 + 1.08 pH 75.5 %
S36 CR =-100.1 + 15.2 pH 45.3%
Snakeweed S27 U CR =0.399 - 0.393 pH 4.4 %
Tumbleweed S27 U CR=1.81-0.21 pH 7.2 %
Sand Dropseed grass S27U CR=2.62 + 0.35 pH 66 %

The other soil properties affected the different species' uranium uptake differently.

Best fit equations for the different plant species were found in many cases to incorporate

more than one soil property. Tumbleweed S27 U CR was controlled by organic carbon
and calcium carbonate:
Tumbleweed S27 U CR = 0.15 - 0.07% OC - 0.1% CaCO3
(p=.11, .14; r-sq = 86.5%).
Galleta grass's uranium uptake responded to organic carbon and silt in the soil:
Hija S36 U CR=6.94 - 1.3 OC - 0.05silt p=10.03,0.07, r-sq = 99.93%
Uptake of uranium in winterfat, a small shrub responded to soil silt content:
Winterfat S36 U CR =2.23 - 0.015 silt p=0.089, r-sq =31.82%
Sand dropseed grass occurred frequently at both S27 and S36. At S27, the CR

regresses with calcium carbonate:
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Sand Dropseed S27 CR = 0.42 - 0.2 % CaCO3 (p = 0.055, r-sq = 89.31%).
At S36, sand dropseed grass CR regressed with organic carbon:

log Sand Dropseed S36 CR =2.12 - 0.275 OC (p=.155, r-sq = 30.6%).

Soil pH rises with calcium carbonate and drops with the presence of organic
carbon. The uranium concentration ratio of Sand Dropseed grass at these two study sites
appears to form a negative relationship with both calcium carbonate and organic carbon
presence. This may seem counterintuitive; however, uranium does form different ionic
complexes at different pHs. But between these two sites, the pH does not vary greatly.
This plant species' uranium uptake may be reacting to soil property interaction effects.
As one property (CaCO3) increases, another (OC) decreases. So the uranium uptake of
this plant may be competing (negative relationship) with the dominant form of soil
carbon at a particular site.

Snakeweed is a very common, low-growing (to ~ 2 feet) perennial shrub. It has
long pinnate leaves and persistent yellow blossoms. At S27, scatterplots of total uranium
plant CR and leaf CR did not suggest any relationships with measured soil characteristics.
Plant stem CR data also does not regress significantly with soil variables. The best

relationship suggests that pH can explain 4.4% of Snakeweed's uranium concentration.

SUMMARY

Significant influences of soil properties vary by plant species and mine site.
Kochia weeds' uranium uptake was influenced by soil pH variations at both sites. Sand
dropseed grass's uranium uptake was influenced by soil calcium carbonate content at S27.

Also at S27, Tumbleweed's uranium uptake was influenced by both organic carbon and
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calcium carbonate. At S36, the Galleta grass and the winterfat shrub's uranium uptake
were influenced by soil silt content. Galleta grass was also influenced by organic carbon.

pH is an important factor in soil chemistry and in phytoaccumulation. Except for
Kochia weed, it is not the predominant factor affecting these plant's uranium uptake.
Carbon forms in the soil --organic carbon or calcium carbonate--seem to have more

extensive influence on plant uranium uptake.

RAMIFICATIONS FOR PHYTOREMEDIATION

This study specifically investigates diffuse surface uranium contamination. At
background levels of uranium concentration, a number of species uptake small amounts
of uranium. Species for further investigation, and possible genetic selection studies
include Kochia weed, and Galleta, Sand Dropseed, Red Three-awn and Indian Rice
grasses. The Winterfat shrub and Tansy Mustard, Stickleaf herbs may also have certain
plants within the species that are more tolerant of uranium and could be cultivated for
possible phytoaccumulation.

Land use type influences plant species distribution across these two sites. An
overall lessening of plant growth on the more disturbed land use areas was seen in this
study. Phytoremediation approaches could benefit by considering the various land use
types of semi-arid areas proposed remediation sites. The land use types can influence the
success of vegetation, the soil texture, and the movement of uranium through the soil
profile. Soil profiles are useful for phytoremediation as well because some of the plants

considered for phytoremediation were shrubs with rooting depths of up to 1 m.
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URANIUM PHYTO-UNDER-ACCUMULATION
IN SEMI-ARID SOILS

The soil profiles suggest that non-surface soils can be defining characteristics of
the differences between land use types. The land use types also reflect differences in the
vegetation communities. Based on this information, we can suggest but not prove a link
between the two. If the two were linked, soil horizons could possibly affect uranium
movement in semi-arid soils in different ways in disturbed and undisturbed soils (Figure
49). Undisturbed soils might allow little uranium availability to plants because of their
relatively higher water infiltration and resultant uranium transport deeper into the profile,
away from plant roots. Disturbed soils would allow little uranium uptake because of the
harsher conditions for plant growth.

For example, undisturbed soils in this study have typically more grass content and
more total vegetation cover. This will allow relatively more water infiltration on a small
scale (Rone, 2001). These relatively higher amounts of water infiltration may carry
uranium to deeper depths within the soil profile (as seen in figure 40, S36 drainage
profile and S27 disturbed plain profile). This greater depth of uranium in the soil profile
may make it less available to plants for potential uptake. While the area probably has
more total plant biomass, it may have less uranium concentration in plants because of the
deeper sequestration of uranium in the soil profile.

Disturbed soils will exhibit less soil development (CaCOj; content), and have
more shrub growth and bare ground on the soil surface. This results, typically, at smaller
scales, in less water infiltration and more runoff (Rone, 2001). Less water infiltration

into the soils would create less uranium movement into deeper soil horizons, but plant
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uptake of uranium in disturbed soils would still be low, based on the lower amounts of
plant cover, and (potentially) shallower rooting depth of these plants. Fruitful future
work could concentrate on intraspecies variations in uranium phytoaccumulation. A
focus on root zone definition and description relative to soil properties, soil uranium

content, and plant uranium uptake could also be insightful.

POTENTIAL CAUSES FOR VARIABILITY

Because of the grid sampling pattern, the number of samples varied in each land
use type, as well as for each plant species sampled. These sampling size considerations
limit the strength of the conclusions. Future sampling should be targeted on one specific
question of investigation in order to increase the strength of the conclusions.

Alternative sampling strategies could be completely random sampling, completely
stratified sampling, or stratified random. Stratified random (based on land use type)
would be the best to test the differences between the land use types. Non-grid,
nonrandom sampling (based on plant species) would be the best to test the differences
between the plant species. The combination of grid sampling and non-grid land use type
sampling used here allows both land use type and plant sampling to be conducted as part
of a unified study. Because of these different lines of inquiry, the sample sizes were
overall large, but barely sufficient for the plant/ soil properties comparison. Future
studies might benefit from a narrowing of the questions of investigation, and targeting the
sample sizes to answering one or two questions.

Because the number of plant species sampled was not limited, but instead

maximized, many of the plant species have small sample sizes. This makes statistically
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valid conclusions difficult. One way to estimate the variability of a population is through
the standard deviation measurement.

The plant samples were put through a number of steps; sampling in the field,

preparation in the lab, and analysis on the ICP-MS. Standard deviation (0‘) can be

measured for field samples where two plants of the same species were sampled at the
same grid point. Numerous duplicates were also prepared in the laboratory. The ICP-MS
élso analyzes each sample multiple times and provides an average of these samples, as
well as a residual standard deviation (RSD) value. The total standard deviation for a

sample can be calculated as:
OTotal = OField T GLaboratory + OCicp-Ms
Unfortunately field and laboratory measurements can only be reported after they have
been measured on the ICP-MS. Therefore the above equation becomes
OTotal — OPoint (ICP-MS values).

For example, the high uranium Kochia weed in Section 27 had three plant
samples at the same point. These two plants had uranium values of 323.6, 343.6, and
347.7. The total standard deviation for these plant samples is 12.91. A more typical,
lower uranium point at section 27 had plant values of uranium 5.9, 6.4, and 16.4 and
standard deviation 5.9. A typical, low uranium point at S36 had plant values of uranium

0.9, 1.8 and standard deviation 0.64 (Keith, 1991).

SOIL SAMPLING
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Western U.S. state Soil Surveys (Wyoming, Oregon) typically advise sampling a
soil by taking multiple samples (< 1 kg) in an area, mixing them together, and then
splitting out a subsample for analysis. In this study, single samples were typically larger
than 1 kg. These samples were then split into one or more subsamples for analysis.
While the study might benefit from multiple blended soils into each sample, this is
difficult to accomplish for different plant sizes, with different rooting radiuses and
depths, without entire excavation of each sampled plants’ rooting soil.

The soil samples split for analysis for uranium analysis split a ~0.2 g dried soil
sample from a sample > 1 kg. This analysis was subsequently done by using grinding,
instead of splitting, in order to do the analysis.  For simplicity and duplication of the

sample, ground soil preparation is probably a preferable method to choose in the future.
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CONCLUSIONS

LAND USE TYPES

Land use types show differences in their uranium content. These differences are
reflected in increased uranium concentrations in increasingly disturbed soil profiles.
Land use type differences in uranium concentration are not seen in surface soils.

The soil profiles and plant transects show differences between land use types.
The undisturbed transects of both locations showed much more soil litter than the
disturbed transects. Both undisturbed soil profiles had slightly higher soil pH’s. The S27
undisturbed soil profile had higher OC and clay content than the disturbed soil profiles.
The S36 undisturbed soil profile had more carbonate at depth than the disturbed soil
profiles.

Surface soil sampling did not reflect differences between land use types. Sample
sizes were much smaller in the soil profiles. Soil profile sample sizes limit the

significance of the conclusions.

URANIUM IN SOILS

Uranium concentration did not vary consistently in proportion to changes in soil

properties. While uranium activity in the soil and vegetation appears to be affected by
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soil properties, uranium concentration is probably influenced more by previous

disturbance.

URANIUM IN PLANTS

Some plants show more uranium accumulation than others, but intraspecies
variations also exist. Kochia weed at S27 had two samples with 30% uranium
accumulation where the soil uranium was 950 ppm. All other Kochia samples showed
much less uranium accumulation. Conclusions about any species are limited because of
the small number of samples for each species. At S27, Indian Rice Grass, Sand Dropseed
grass, and Snakeweed shrub show promise based on their plant: soil uranium ratio. No
plants at S36 accumulate uranium beyond background levels. Some plant species appear

to accumulate uranium relative to different soil properties for each species.
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XRD CLAY TYPE ANALYSIS

Procedure for preparation of oriented clay mineral ageregates

1. Place a small sample (20 to 25 g) in a 100 ml beaker with distilled water. Mix
and wait 5 minutes.

2. If the clay flocculates or settles out, pour off clear water, add more water, and
remix. Ifthe clay does not disperse, repeat this step several more times.

3. If the clay still flocculates, add a few drops of dilute solution (50g/L) of
sodium hexametaphosphate (Calgon) and remix. If the clay flocculates, repeat
step 2.

4. Centrifuge for 4 minute, wash with distilled water, and centrifuge again as
often as needed.

5. Once the clay is in a dispersed state, allow the beaker and its contents to
remain undisturbed for 10 minutes. At the end of the period, use small pipette
(1-2 ml) to draw off enough suspension from the surface to cover a glass slide
completely. This decanted fraction is < 2um. Prepare at least two slides and
allow to air dry.

6. Use petrographic glass slides that have a high melting point.

7. If clay slurry flocculates on the slide surface, remake slide.

8. Run the slide of oriented clay on diffractometer at 2° 26/minute from 2° to 35°
20 with monochromatic or Ni-filtered Cu radiation. Subsequent runs
(glycolated and heat tratment) will vary depending on the mineralogy and

nature of the information needed.
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MICROWAVE SAMPLE DIGESTION FOR ICP-MS ANALYSIS

Microwave Temperature of Plant Samples

Temperature (C)
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ICP-MS DATA ANALYSIS

Dilution Selection

For each sample analyzed, the ICP-MS prepared two auto-dilutions,
approximately 1:5 and 1:100. The ICP-MS then reported uranium values at these two
different concentrations. For high uranium values, the more diluted concentration
was typically more accurate. For low uranium values, the less diluted concentration
was typically more accurate. For high uranium concentration in the soil or plant, (>
Sppm) the concentration was reported using the highly autodiluted sample (1:105.9)
versus those samples with expected low uranium values (which were autodiluted 1:5).
Where other elements were reported, the RSD was also checked to be below 10%. If

the RSD was not below 10%, the other dilution was used.

Procedure to Prepare Data for Analysis

a) Assemble appropriate information into one table. This includes ICP-MS data from
different days, and the relevant laboratory data from different digestion runs.

b) Calculate uranium ppm.

c) Based on uranium ppm, choose appropriate dilution for final uranium
concentration. For ICP-MS data after ~9/17/02, two dilutions of each sample
were run --~ 1:5 and 1:100. Only one dilution for the final data assembly is
desired. Where uranium is > 5 ppm, the 1:100 dilution is a more accurate
measurement. Where uranium is <5 ppm, the 1:5 dilution is a more accurate
measurement.

d) Check residual standard deviation (RSD) values for uranium and all other
elements. The ICP-MS analyzes each sample multiple times (~12-24). Each
value in the ICP-MS report is an average of these analyses. The residual is the

difference between each individual analysis and the average. The residual
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g)
h)

)

standard deviation is the standard deviation of all residual values for that element,
for that sample.
Eliminate all RSD values above 10%. Each sample has an RSD reported for each
element (after 9/17/02). Samples before 9/17/02 did not have RSD values reported.
Each RSD for each element for each sample must be checked to be below 5%.
Substitute ppb values from the other dilution, if the RSD value for that element is
below 10%. The uranium values and RSD's were closely watched during the ICP-
MS laboratory run of each sample. However, other elements can be 1000 times less
or more than the uranium value. While one dilution for a sample was selected based
on the Uranium value, other elements may indicate consideration of the other
dilution's value for that element. Where necessary, this was done.
Calculate ppm for all elements.
Remove all RSD values from the table. Residual standard deviations are a data
quality check. Once it has been ensured that all the data are of good quality, the RSD
value is distracting to the analyses. These values are listed in the appendix.
Calculate averages for duplicated samples. Calculate standard deviations for all
elements for duplicated samples.
Separate final data into tables of common soil elements and relevant soil elements

and metals.

SEQUENTIAL EXTRACTION FOR HEAVY METALS PROCEDURE
Draft procedure expanded from M.J. Blaylock, Edenspace, N.J. May, 2001
Adapted from Ramos et al., 1994.

Goal: Identify metals bound with each soil fraction: Exchangeable, Carbonate, Oxide,

Organic, and any residual metals. Used here specifically for uranium, but originally

developed for lead.

Procedure: Use increasingly aggressive chemicals to extract metals from the same soil

sample. For the first three steps, the chemical is added, the samples are agitated for 1

hour or more, and then the samples are centrifuged and the supernatant (remaining clear
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liquid) is removed. These first three extraction steps are repeated once to ensure complete
extraction of the associated metals. Tube, cap, and sample weights at each step are

necessary to account for water and metal carryover between fractions.

Materials: per sample: 2.5 g oven dried soil sample
8 50 mL centrifuge tubes
50mL 1 M MgCl, (Magnesium Chloride)
SO0mL 1 M NaOAc (pH5) (Sodium Acetate)
50 mL 0.04 M NH,OH-HCI (in 25% Acetic Acid)
(Hydoylamine HCI)
5mL 0.1 M HNO; (Nitric Acid)
6 mL 30% H,O, (Hydrogen Peroxide)
10 mL 1:1 HNO;3
5 mL concentrated HNO;
for procedure:
reciprocating shaker
automatic dispenser (0-50 mL)
1 mL and 5 mL pipettes
Vortex (automatic shaker)
centrifuge to 3,000 rpm
50 ° C water bath
glass funnels
filter paper
pH paper or pH probe

DI water
Steps:
1.0 Exchangeable/ Soluble Cations (F-1)

1.1 Mix each sample thoroughly to achieve homogeneity. For each digestion batch, a

minimum of one sample should be duplicated and one NIST Standard Soil or
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other repeated sample should be included for every 20 samples. Samples may be
finely ground or sieved to < 2mm. Sieve preparation may result in more floating
(lost during procedure) organic matter.

1.18 Weigh sample to the nearest 0.01 g and transfer to a centrifuge tube 2.5 g of sample.
Record the weights of the sample, tube and cap all together.

1.2 Alternatively, weigh and record the empty tube and cap, and then the sample, cap,
and tube together.

1.3 Pouring down the side of the centrifuge tube, add 25 mL of 1 M MgCl, to each tube.
Vortex samples for complete mixing.

1.4 Shake 2 hours on the reciprocating shaker. Use caution that the same approximate
time is used throughout the procedure.

1.45 Centrifuge 2,000-3,000 rpm for 10 minutes. Watch the bottoms of the tubes. They
may dimple. If necessary, the centrifuge can be run at lower rpms for a longer
time, as long as the total is approximately 30,000 g-minutes.

1.5. Using funnels, separate supernatant solution into new, labeled vial (F-1a for the first
run; F-1b for the repeated run). Use filter paper if necessary to separate floating
organic matter.

1.6 For the original sample, repeat steps 1.2-1.5.

2.0 Carbonate Bound (F-2)

2.1 Pouring down the side of the centrifuge tube, add 25 mL of 1 M NaOAc (pH 5) to
each sample.

2.2 Shake 2 hours on the reciprocating shaker.

2.25 Centrifuge at 2,000-3,000 rpm for 10 minutes.

2.3 Measure pH with pH paper or probe.

2.4 With funnels, separate supernatant solution into new, labeled vials (F-2a for the first
run; F-2b for the repeated run). Use filter paper if necessary to separate floating
organic matter.

2.5 Weigh and record the original sample with the tube and cap.

2.6 If pH is <6, go to 3.0. If pH is > 6.0, repeat steps 2.1-2.5.



***when stopping for the evening, remove supernatant samples, including original soil

tubes, to dark, cold room (4o C is preferable).

3.0 Oxide Bound (F-3)

3.1 Pouring down the side of the centrifuge tube, add 25 mL of 0.4 M NH,OH-HCI (in
25% Acetic Acid).

3.2 Shake 2 hours on the reciprocating shaker.

3.25 Centrifuge at 2,000-3,000 rpm for 10 minutes.

3.3 With funnels, separate supernatant solution into new, labeled vials (F-3a for the first
run; F-3b for the repeated run). Use filter paper if necessary to separate floating
organic matter.

3.4 Weigh and record the original sample with the tube and cap.

3.5 Repeat steps 3.1-3.4.

4.0 Organic Bound (F-4)

4.1 Pouring down the side of the centrifuge tube, add 5 mL of 0.1 M HNOs, then 1 mL of
30% of H,0,.

4.2 Vortex mix, then place the cap loosely on the tube and allow to stand several hours.
If overnight, leave samples at room temperature and not in cold room.

4.3 Add additional 1 mL of 30% H,0,. When effervescence ceases, place tube in a
beaker with water and heat at 50 o C until bubbles disappear. This can take
upwards of an hour.

4.4 Add 20 mL of DI water.

4.5 Centrifuge (2,000-3,000 rpm for 10 minutes).

4.55 Using funnels, separate and save supernatant solution into new F-4 marked vials.
Filters are probably not necessary by this point.

4.6 Weigh and record the tube, cap and sample.
5.0 Residual Fraction (F-5)

5.1 Conduct ‘Total’ Metal Analysis beginning on step 2.
This method is adapted from EPA Method 3050, HNO;/ H,O, Acid Digestion.
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5.15 Use DI or RO water to rinse sample from centrifuge tube into little aluminum
bucket.
5.18 Set in oven at 110 ° C to dry until no water is present.
5.2 (same as step 2, TMA) Add 10 mL of 1:1 HNO3 to the sample.

Heat the sample to 95 ° C and reflux for 15 minutes without boiling.

Add 5 mL of concentrated HNO;.

Reflux for 30 minutes.

Add 5 more mL of concentrated HNO; and reflux for 30 more minutes.

(This is to ensure complete oxidation).
Allow the solution to evaporate to 15 ml.
Note: 5 mL of concentrated HNO3; may be added instead of 10 ml of 1:1 HNO;.

However, in some samples with high organic matter this results in a very vigorous
reaction and the sample may overflow the tube. Evaporation of the excess water
and the corresponding reduction in volume helps prevent loss of sample from
excessive frothing when the peroxide is added in step 3. It is not absolutely

necessary to evaporate the water but extra care is needed in step 3.

5.3 (TMA step 3) After the sample has cooled, add 1 ml of 30% H,0,.
Return the tube to the hot plate for warming and to start the peroxide reaction.
Care must be taken that losses do not occur due to excessively vigorous
effervescence.
Heat until effervescence subsides.

Remove the tube from the hot plate.

Note: For samples with apparently high organic matter, it may be advantageous
to reduce the aliquot volume of H202 to 0.5 ml. This will help prevent sample
loss by effervescence. It is also sometimes helpful to allow the samples to stand at
room temperature for several hours or overnight after the first peroxide addition.
Then place them on the hot plate. This will decrease the speed of the reaction and

lessen the chances of sample loss.
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5.4 (TMA step 4) Continue to add 30% H,0, in 1-ml aliquots with warming until the
effervescence is minimal or until the general sample appearance is unchanged.

Note: Do not add more than a total of 10 ml 30% H,0..

5.5 (TMA step 5) Dilute the sample to 50 ml in the folin tube.

5.6 (TMA step 6) Particulates in the digestate that may clog the nebulizer should be
removed by centrifugation at 2,000-3,000 rpm for 10 minutes or by filtration.

5.7 (TMA step 7) The diluted sample has an approximate acid concentration of 5.0%
(v/v) HNOj. The sample is now ready for analysis.
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Poison Canyon study site description and data collection




VEGETATION ON URANIUM MINES IN THE POISON CANYON AREA,
AMBROSIA LAKE, NM

Goal

The objective of this investigation was to find locations (natural or old mines)
with high uranium concentration in this area southeast of Ambrosia Lake and northwest
of Grants, New Mexico. Soils and plants would then be sampled in these high uranium
areas.

This area was the first discovered and may have been the first abandoned during
the uranium boom and bust of the 1960's through the early 1980's. As potentially some
of the first abandoned uranium mining areas, some of these old mine sites may have had
a larger vegetative recovery and possibly exhibit more plant diversity. Occurence of
new, previously uninvestigated plant species could possibly yield a new native

phytoaccumulator of uranium in semi-arid soils.

Methods
A gamma ray counter, GPS unit, and camera were used to identify and describe
each site. Plant samples were taken and pressed in newspaper within 12 hours of

sampling.

Results
Four mine sites were investigated: the Mesa top mine, two unnamed mines, and two
adjacent Poison Canyon mine sites. GPS coordinates (in the UTM projection, NAD 1927 datum)

for one corner of three areas are listed below.
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Mine Site Northing Easting corner

Mesa Top mine 13502433920 3914189 southeast
unnamed 1350243684 3914455 northeast
Poison Canyon S 1350242835 3914524 south-southwest

A. The Mesa top mine had an extent of approximately 250 m by 400 m. The entire
area sloped approximately 15 degrees to the northwest. It contained numerous little
mounds of mixed tailings and ore/ waste rock. There was also one 3 m high waste rock

pile, one iron mine ventilation shaft, one open adit (poorly fenced), and some scattered
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wood and metal machine parts. The waste rock was an yellow-orange sandstone, and the
ore a fine white-gray ash-like powder. Uranium readings in the area read ~10 uRem/ hr
or less background; ~ 20 uRem/ hr around the edges; and 50-200 uRem/ hr within the
mine area. Not all mounds had high readings, nor was there an obvious pattern between
the mounds. One area approximately 2 m x 10 m had a high reading, of up to 400 uRem/
hr. This area was in a sandy arroyo 1 m deep running southwest downslope from the
northeast corner of the mine. The area was also downslope of the old headframe and open

pit. This area was not noticably vegetated.

rhwm TN T

Enhanced picture of Mesa Top mine, Poison Canyon area. Dog for scale is
obscured in Pinon tree in right-center of picture.

There are quite a few Pinon and Juniper trees growing within the old mine site.
While there are a few Indian Rice grass plants growing on the piles, there is a low grass
species diversity across the area. Black and Blue grama grasses predominate, and ~20 -
30% of the soil surface is covered with vegetation. Opuntia cacti, Blazing star (stickleaf)

and Muhly grass were also noted at the site, but low-growing shrubs such as snakeweed,
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rabbitbrush or winterfat were absent.  Anecdotal new species at this mine site are

reported in the table below. Pictures, but no samples, were taken at this site.

Commeon name Species notes

Pine Spiderwort Tradescanta pineforum unusual for area
Four-o-clock Mirabilis multiflora low-growing form

Spiny bush Tetradymia spinosa leaves in clumps on stem
Sanvitalia S. abertii <10 cm tall

Annual goldenweed Machaeranthera gracilis abundant

Spurge or Rattlesnake weed ~Chamaesyce albomarginata  succulent leaves

B. The next two mine sites were located between the two named mines. The first
unnamed mine site is approximately 75 x 75 m. A middle disturbed plain is surrounded

by 2-3 x 2-3 x 1-2 m waste piles, with a small arroyo draining the area to the north.

Uranium readings were 200-300 uReny/ hr over much of this site. In the 50 cm deep
arroyo, outside of the main mine area, 100+ uRem/ hr was recorded. Vegetation in this
area was not terribly diverse. Black grama and fourwing saltbush predominated, with
some Indian rice grass, one annual Goldenweed, the same Spiny bush, and dead or tiny
Snakeweed. One large Pinon tree grew on the west side of the mine (@ 100 uRem/ hr).

Nine plant and three soil samples were taken at this site, but no pictures.

Common name Species U (uREm/ hr notes

Four o'clock 90 also surface soil sample
Fourwing saltbush Atriplex canescens ~800 also surface soil sample
Black grama 625 also surface soil sample

Hilaria 240 southeast mine

Sand dropseed Sporobolus cryptandrus 200 southeast mine

Spiny bush 60 southwest mine

Pinon Pinus edulis 100 southwest mine
XXXa 60 southeast of mine proper
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XXXb 60 southeast of mine proper

C. This mine site was very small (30 x30 m) and probably consisted of waste rock drilled
up for a ventilation shaft and dumped on the surface. The uranium readings were barely

above background (20uRem/ hr) and no vegetation was collected.

D. There are two mine sites at the Poison Canyon mine location. The first site is
much larger, at least 600 m long by 400 m wide. This site was all tailings that had been
formed into a relatively flat plain. There were three 15 m x 15 m tanks at low points
within this plain. All of the material was white powder and sand. The average uranium
reading in this area was 30 uRem/ hr, with a range of 10-60 uRem/ hr. Minor arroyos
and the tanks were not necessarily high points. The few high points (60) were apparently
randomly distributed.  Vegetation covered 10% or less of the surface and was not
diverse. Primarily there was a grazed and short probably seeded grass, probably
Kentucky bluegrass (Poa praetensis).  Healthy Fourwing saltbushes also covered the

site, but nothing else except a few small Indian rice grasses.

: = Enn = it =

View from above of first Poison Canyon site. Note extent of disturbed area, lack
of vegetation, and telephone poles for scale.
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The second site at the Poison Canyon location includes a large mine pile (20 x 80
x 4 m) and three small depressions (10x 10m) adjacent to a cliff-forming sandstone. The
site is much smaller, possibly up to 100 m x 250 m. The average uranium reading is 50
+/- 20 uRem/ hr. Some areas of outcrop, drainage and plain are up to 80 uRem/ hr--but it
is spatially variable and not consistent w/in the landscape. One 30 cm square spot held
up to 300 uRem/ hr. This spot was unvegetated and otherwise completely unremarkable.
The outcrop itself was also within this uranium reading range (30-70 uRem/ hr). The
site was generally predominated by Grama grasses and Fourwing saltbush. There were a
few Indian rice grass, Annual Goldenweed, and Stemless Evening Primrose at this site as
well as some New Mexico sunflowers, but not at significant levels of uranium

concentration.
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Second Poison Canyon mine location. Note telephone pole for scale, and waste pile.
The waste pile obscures two small ponds between the outcrop and the pile.

ICP-MS Uranium Concentrations
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samples listed in Table .

readings. Three soil samples were taken at the locations shown on figure _ .

At Poison Canyon, plants were sampled relative to Field gamma ray meter

Of the

Avg Plant U Stdev
Brickel Bush 1.81 1.77
Big Leaf 1.47
Pinon Pine 2.04 0.21
Saltbush 11.15 0.50
Pofe 0.99 0.58
Black grama 0.61
Nyctag 1.295 0.76
5 0.76
Tobosa Grass 2.27
Oxalis 7.6
Point Soil U (ppm) stdev
T1 1921.1 13.9
T2 236.2 27.9
T3 191.5 27.3

Table __. ICP-MS Uranium content of plant and soil samples, Poison Canyon.

Discussion and Conclusion

The goal of this field investigation was to identify whether new and different
plants grew on high uranium areas in Poison Canyon. Single or rare occurrences of plant
species new to this study have been identified here. However, these mines, at different
stages of being grown over, did not exhibit first-order differences in vegetation cover
from the other two sites (with the exception of the Pinon-Juniper). Any first order
differences were more in missing species diversity instead of additional diversity. These
sites had no Russian thistie, Kochia, Snakeweed, Winterfat, little Rabbitbrush, and very

little grass diversity.

141



Additional areas could be investigated, as outlined in the appendix. However, it is
likely that these areas experienced disturbance at the same time as the mines investigated
here, and in mining the same geologic units. Therefore, one might expect the same

vegetation at additional sites in the immediate area.

Appendix

Land access permission was obtained from the Schmitt brothers, especially Bob
Schmitt, 505-287-2266. Bob Schmitt and Terry Fletcher also provided instructions as to
where to look in Poison Canyon. Paula Watt, Earth Science Instructor for UNM-Gallup,
provided initial field suggestions (pwatt@gallup.unm.edu). Her suggested location was
not apparent until the end of the field session.

She suggested looking for a noticeable landmark rock spinnacle on the left at the
mouth of Poison Canyon. This was as one entered a private land from the south via a
gully. In the lower part of the outcrop on the left side of the mouth of Poison Canyon,
there are areas of low grade uraninite and pitchblende in sandstone. Adits and shafts and
associated activity in the lower part of the canyon are all covered over. Higher in the
geologic section, there is an oxidized zone with autinite as the principal uranium-bearing
member. In this flat area, there is a short adit. Paula Watt suggested that there might be
high readings for a small area surrounding this adit.

This adit is upslope stratigraphically and topographically from the rock spinnacle.
It is in the Red Brushy Basin (RBB) member of the Morrison formation. The RBB also
has uranium minerals that will fluoresce with black light (in the adit, where natural light

is diffused). This rock spinnacle is visible from the Poison Canyon mine. It is 1 mile
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west. The mesa top where Paula Watt's suggested adit is found is not marked as having a
mine; it should be stratigraphically similar with the Mesa top mine that was investigated
here. Paula Watt also suggested that carnotite could be found in the Todilto Formation

Limestone, on the other side of a faint dirt road.
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APPENDIX C

Grid Layout Description



Joy_sample_points_compilation2 Page 1

A B C | D F G H I J K L M N o] Q R S U v W X Y
1 decimal degress, (NAD 27) i {NAD 27) Latitude
2 Lengitude Latitude deg min sec deg min sec zone NORTH 1983 | EAST 1983 Zone | North 1927 | EAST 1927 dup | origeastings | dup | error(ft)|
3 4] 1 -107.7812424 | 35.4097977 107 46 3247 35 24 35.27 138 247390 3922048 138 247439.78 | 3921844.25 390 5
4 Z1 2 -107.7812576 | 354102554 107 46 52.53 35 24 36.92 138 247390 3922099 138 24743978 | 3921895.25 390 3922104 99 5
3 z2 3 -107,7812805 35410717 107 46 52.61 35 24 38.58 138 247390 3922150 138 247439.78 | 3921946.25 335 3922151 5
6 z3 4 -107.7812958 | 354111671 107 46 52.66 35 24 40.2 138 247390 3922200 138 24743978 | 3921996.25 390 3922204 5
7 Z4 5 -107.7811966 | 35.4116096 107 46 52.31 35 24 41.79 138 247400 3922249 138 247449.8 | 3922045.25 400 3922254 s
8 z5 6 -107.7812119 | 35.4120598 107 46 52.36 35 24 4342 138 247400 3922299 138 247449.8 | 3922095.25 247404 401 3922297 5
9 A5 7 -107.7806625 35.412075 107 46 50.39 35 24 4347 138 247450 3922299 138 247499.8 3922095.25 247453 452 5
10 Ad 8 -107.7807541 354116211 107 46 50.71 35 24 41.84 138 247440 3922249 138 247489.8 392204525 247451 449 3922195 198 5
11 A3 9 -107.7807388 | 354111786 107 46 50.66 35 24 40.24 138 247440 3922200 138 2474898 | 3921996.25 247447 447 3922148 149 5
12 A2 10 -107.7807236 | 35.4107208 107 46 50.6 35 24 38.59 138 247440 3922149 138 247489.8 | 3921945.25 247445 445 3922099 5
13 Al 11 -107.7807083 | 35.4102783 107 46 50.55 35 24 37 138 247440 3922100 138 247489.8 | 3921896.25 247447 443 3922051 50 5
14 A0 12 -107.7806931 | 35.4098091 107 46 50.5 33 24 35.31 138 247440 3922048 138 247489.8 | 3921844.25 247443 443 5
15 B0 13 -107.7801437 | 35.409832 107 46 48.52 35 24 354 138 247490 3922049 138 247539.8 | 392184525 247492 492 3922099 5
16 Bl 14 -107.780159 | 35.4102898 107 46 48.57 35 24 37.04 138 247490 3922100 138 2475398 | 392189625 247493
17 B2 15 -107.7801743 | 35.4107399 107 46 48.63 35 24 38.66 138 247490 3922150 138 247539.8 3921946.25 247495
18 B3 16 -107.7301895 | 35.4111938 107 46 48.68 35 24 40.3 138 247490 3922200 138 247539.8 3921996.25 247497
19 B4 17 ~107,7802048 | 354116325 107 46 48.74 35 24 41.88 138 247490 3922249 138 247539.8 392204525 247500 499
20 BS 18 -107.7801132 | 354120674 107 46 4841 35 24 43.44 138 247500 3922297 138 2475498 3922093.25 247503 3922299
21 Cs 19 -107.7795639 | 35.4120636 107 46 46.43 35 24 43.43 138 247550 3922295 138 2475998 | 392209125 247551 3922297
22 C4 20 -107.7796555 | 35.4115639 107 46 46.76 35 24 41.63 138 247540 3922240 138 2475898 | 3922036.25 247549 3922246
23 D4 21 -107.7789917 | 35.4114799 107 46 44.37 35 24 4133 138 247600 3922229 138 247649.8 | 3922025.25 247601 3922240
24 C3 22 -107.7796402 | 354112129 107 46 46.7 35 24 40.37 138 247540 3922201 138 247589.8 | 3921997.25 247548 3922195
25 c2 23 -107.7796249 | 35.4107437 107 46 46.65 35 24 38.68 138 247540 3922149 138 2475898 3921945.25 247543 3922145
26 Cl 24 -107.7796097 | 354102783 107 46 46.59 35 24 37 138 247540 3922097 138 247589.8 3921893.25 247542 3922094
27 Cco 25 -107.7795944 | 35.4098167 w7 46 46,54 35 24 3534 138 247540 3922046 138 247589.8 392184225 247540 3922045
28 Do 26 -107.7790451 | 35.4098206 107 46 44.56 35 24 3535 138 247590 3922045 i35 247639.8 | 3921841.25 247541 3922043
29 D1 27 -107.7790604 | 35.4102249 107 46 44.62 35 24 36.81 138 247590 3922090 138 2476398 | 3921886.25 247592
30 D2 28 -107.7791824 | 35410675 107 46 45.06 35 24 3843 138 247580 3922140 138 2476298 | 392193625 247595 3922142
31 D3 29 -107.7790909 | 354111366 107 46 44.73 35 24 40,09 138 247590 3922191 138 247639.8 3921987.25 247597
32 D5 30 -107.7790146 35412056 107 46 4445 35 24 434 138 247600 3922293 138 247649.8 3922089.25 247602
33 ES 31 ~107.7784576 | 35.4120712 107 46 4245 35 24 43.46 138 247650 3922293 138 247699.8 3922089.25 247653
34 E4 32 -107.7784424 | 35.4115944 107 46 42.39 35 24 41.74 135 247650 3922240 138 247699.8 | 3922036.25 247650
35 E3 33 -107.7785416 | 35.4111404 107 46 42.75 35 24 40.11 138 247640 3922190 138 247689.8 3921986.25 247648
36 E2 34 ~107.7785263 | 35.4106789 107 46 42.69 35 24 38.44 138 247640 3922139 138 247689.8 3921935.25 247645
37 El 35 -107.778511 35.4102402 107 46 42.64 35 24 36.86 138 247640 3922090 138 247689.8 | 3921886.25 247644
38 Eo 36 -107.7784958 | 35.4097977 107 46 42.58 35 24 35.27 138 247640 3922041 138 247689.8 3921837.25 247640
39 Fo 37 -107.7780533 35.40979 107 46 40.99 35 24 35.24 138 247680 3922039 138 247729.8 3921835.25 247689
40 Fi 38 -107.7779541 | 35.410244 107 46 40.63 35 24 36.88 138 247690 3922089 138 2477398 | 3921885.25 247693
41 F2 39 -107.777977 35.4106941 107 46 40.72 35 24 385 138 247650 3922139 138 247739.8 3921935.25 247698
42 F3 40 ~107.7778778 | 354111557 107 46 40.36 35 24 40.16 138 247700 3922190 138 2477498 3921986.25 247701
43 F4 41 -107.7778931 | 354116133 107 46 4042 35 24 41.81 138 247700 3922241 138 2477498 3922037.25 247702
44 F5 42 -107.7779083 | 354120827 107 46 4047 35 24 435 138 247700 3922293 138 2477498 | 3922089.25 247705
45 Go 43 -107.777504 | 35.4098129 107 46 39.01 35 24 35.33 138 247730 3922040 138 2477798 | 3921836.25 247739
46 Gl 44 -107.7774048 | 354102554 107 46 38.66 35 24 36.92 138 247740 3922089 138 247789.8 3921885.25 247742
47 G2 45 -107.717742 354107056 107 46 38.71 35 24 38.54 138 247740 3922139 138 247789.8 | 3921935.25 247746
48 G3 46 ~107.7774353 | 35.4111557 107 46 38.77 35 24 40.16 138 247740 3922189 138 247789.8 | 3921985.25 247748
49 G4 47 -107.7773438 | 35.4116173 107 46 38.44 35 24 41.82 138 247750 3922240 138 247799.8 3922036.25 247751
50 Gs 48 -107.777359 354120522 107 46 38.49 35 24 43.39 138 247750 3922288 138 247799.8 392208425 247754 13
51 H5 49 -107.7768097 | 354119911 107 46 36.51 35 24 43.17 138 247800 3922280 138 247849.8 3922076.25 247804
52 H4 50 ~-107.7769012 | 354115295 107 46 36.84 35 24 41.51 138 247790 3922229 138 247839.8 3922025.25 247797 12
53 H3 51 -107.776886 35.4111862 107 46 36.79 35 24 40.27 138 247790 3922191 138 247839.8 392198725 247796
54 H2 52 -107.7768707 | 35.4107285 107 46 36.73 35 24 38.62 138 247790 3922140 138 247839.8 3921936.25 247791
35 Hl 53 -107.7768555 | 35.4102325 107 46 36.68 35 24 36.84 138 247790 3922085 138 247839.8 | 392188125 247791
56 Ho 54 -107.776947 35409771 107 46 37.01 35 24 35.18 138 247780 3922034 138 247829.8 392183025 247789
57 Al- 55 -107.7806778 | 354093323 107 46 50,44 35 24 336 138 247440 39219935 138 2474898 392179125 247440 12
58 Z1- 56 -107.7813416 | 35.4093437 107 46 52.83 35 24 33.64 138 247380 3921998 138 247429.78 | 392179425 247388 11
39 Bl- 57 -107.7802353 | 35.4093361 107 46 48.85 35 24 33.61 138 247480 3921994 138 2475298 | 3921790.25 247485 1
60 Cl- 58 -107.779686 35.4093475 107 46 46.87 35 24 33.65 138 247530 3921994 138 247579.8 3921790.25 247537
61 Dl1- 59 ~107.7791367 | 354093513 107 46 44.89 35 24 33.66 138 247580 3921993 138 247629.8 3921789.25 247586 10
62 El- 60 -107.7785873 | 35.4093437 107 46 4291 35 24 33.64 138 247630 3921991 138 247679.8 | 3921787.25 247635 10
63 Fi- 61 -107.778038 | 35.4093323 107 46 40.94 35 24 33.6 138 247680 3921988 138 2477298 | 3921784.25 247685 12
64 Gl- 62 -107.7774887 | 35.4093246 107 46 38.96 35 24 33.57 138 247730 3921986 138 2477798 | 3921782.25 247735 11
65 Hl- 63 -107.7769394 | 35.4093285 107 46 36.98 35 24 33.58 138 247780 3921985 138 2478298 | 3921781.25 247786
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APPENDIX D

Laboratory Soil Analyses Data



7/12/2004 12:33 PM reorg for bruce by temp §27 400

A B c | o | | F | @ H
1 Sec 27 samples analyzed by 400 oven, 120 min
2
3 sample # | % OC stdev sample# | % OC stdev
4 1-0 3.89 -Al 2.31
5 1-5 Al 1.99 0.15
6 1- 10 3.95 A3 2.97
7 1-15 3.68 A5
8 1-20 -C1 2.20
9 1-25 Cl 1.12 0.00
10 1-30 3.41 C3 5.23
11 2-0 0.73 C5 3.06
12 2-5 0.69 -El 3.58
13 2-10 0.59 0.18 El 0.46
14 2-15 0.71 E3 1.12
15 2-20 0.86 ES 1.98
16 2-25 0.66 -G1 1.79
17 2-30 0.72 0.24 Gl 0.55
18 3-0 0.59 G3 0.90 0.18
19 3-5 G5 1.81
20 3-10 0.70 0.12 B2 2.80
21 3-15 D2 1.47 0.05
22 3-20 0.69 F2 0.37 0.03
23 3-25 0.77 H2 0.39
24 3-30 0.37 0.52 B4 2.67
25 C4 0.77
26 D4 0.24
27 F4 2.72
28 H4 1.69
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7/12/2004 12:36 PM reorg for bruce by temp all 400

K | L M N |
28 (400 for 120 min B
29| 547 27 1 20
30] 152 27 | A
31] 1.89 36 1 0
32| 165 36 1 7
33] 165 36 1 21
34] 152 36 1 35
35] 146 36 1 | 35dup
36| 057 36 1 49
37] 2.80 36 1 60
38| 312 36 1 70
391 210 36 2 0
40| 217 36 2 10
41| 175 36 2 20
42| 125 36 2 30
43] 108 36 2 40
44| 118 36 2 | 40dup
45] 116 36 2 50
46| 152 36 2 60
47] 748 36 3 10
48] 525 36 3 20
49| 435 36 3 30
50 450 36 3 40
51| 434 36 3 50
52| 430 36 3 60
53] 377 36 3 70

54| 2.79 36 A
55| 3.54 36 A2
56| 2.45 36 A
57| 1.58 36 B1
58| 3.94 36 B2
59| 2.1 36 B3
60| 2.31 36 Cl
61| 2.22 36 |Cldup
62| 3.90 36 C2
63| 292 36 C3
64| 224 36 D]
65| 5.18 36 D2
66| 3.09 36 D3
67| 2.16 36 El
68| 2.81 36 E2
69| 4.56 36 E3
70| 2.27 36 F1
71| 251 36 F2
721 246 36 F3
731 1.98 36 Gl
74| 3.00 36 G2
75| 2.34 36 G3
761 3.02 36 Hi
771 1.38 36 H2
78| 5.47 36 H3
79| 6.68 36 H3
80| 0.10 blank
81] 0.00 | blank
82| 0.08 |BLANK
83| 017 | blank |
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Sheetl §27 surface carbonate Page 1

A B | ¢ | b | E | F | G H 1 J K L

1 Chittick Measurement of Section 27 Surface Soil Carbonate

2 Sample coz2 Correction w/barometric

3 Dish Wt. Evolved | Temp. | Pressure Factor CaCO3 pressure

4 Date Label # [(3) (ml) Q) (inches) (%) adjustment

5 =((0.3866*HS*E5)/D5) | =((I5)-1.7381)/0.8797 |Point Average
6 | 29-May-02|  Al- 33k 5.5609 30 25.5 30.08 1.0288 2.15 0.46

7 | 30-May-02 Al- 5.5028 33 27 30 1.01741 2.36 0.71

8 | 30-May-02 Al 7.5656 63 28 30 1.01741 3.28 1.75

9 | 29-May-02 Al 681 7.1368 52 27 30.08 1.02018 2.87 1.29

10 | 29-May-02 A3 608 6.2483 i9 255 29.97 1.02323 1.20 -0.61

11 | 30-May-02 A3 6.6105 30 27 30 1.01741 1.79 0.05 Al- 0.706
12 } 29-May-02 B2 619 5.4061 32 25.5 30.08 1.0288 2.35 0.70 Al 1.747
13 { 30-May-02 B2 5.5893 35 25.5 30 1.026 248 0.85 A3 0.533
14 | 29-May-02 B4 634 5.4803 33 26 30.08 1.02594 2.39 0.74 B2 0.848
15 ] 30-May-02 B4 5.4827 40 25.5 30 1.026 2.89 1.31 B4 1314
16{ 29-May-02 Cl 640 6.1190 31 25 29.97 1.02626 2.01 0.31 -cl 1.24
17 27-Jun-02 Cl 616 19.001 100 27.5 30 1.0145 2.06 0.37 cl 0.37
18 | 29-May-02| Cl- 635 4.5803 22 25 30.08 1.02594 191 0.19 c3 0.00
19] 27-Jun-02] Cl- 215 15.1004 109 27.5 30 1.01450 2.83 1.24 c4 1.09
20 | 29-May-02 C3 653 6.0849 24 25.5 29.97 1.02323 1.56 -0.20 c5 2.63
211 27-Jun-02 c3 624 5.7578 23 25.5 30 1.026 1.58 -0.17 d2 0.00
22 | 29-May-02 C4 616 8.4059 46 26 30.08 1.02594 2.17 0.49 d4 0.40
23| 27-Jun-02 c4 620 8.6412 59 26.5 30.08 1.02306 2.70 1.09 El- 1.601
241 29-May-02 Cs 620 3.5653 24 26 30.08 1.02594 2.67 1.06 El- 0.368
25| 27-Jun-02 c5 640 3.5344 36 25.5 30.08 1.0288 4.05 2,63 E3 1.606
26 ] 29-May-02 D2 624 7.1938 23 26 30.08 1.02594 1.27 -0.53 ES 3.49
271 27-Jun-02 d2 33k 7.1427 25 25.5 30 1.02318 1.38 -0.40 F2 1.605
28 | 29-May-02 D4 621 4.4022 27 25.5 2097 1.02323 243 0.78 F4 1.864
29| 27-Jun-02 d4 634 13.4246 71 26.5 30.08 1.02306 2.09 0.40 Gi- -0.1302
30 | 30-May-02 El- 6.3995 48 26 30 1.02318 2.97 1.4 Gl 1.285
31 | 30-May-02 El- 6.0641 51 27 30 1.02318 333 1.81 G3 1.915
32 | 30-May-02 El 8.2937 42 26 30 1.02318 2 0.3 G5 3.779
33 | 30-May-02 El 8.3917 45 26 30 1.02318 2.12 0.44 H2 0.56
34 | 30-May-02 E3 8.9569 72 27 30 1.02318 3.18 1.64 H4 1.79
35 | 30-May-02 E3 8.8693 70 27 30 1.02318 3.12 1.57
36 | 30-May-02 E5 6.2975 68 27 30 1.02318 4.27 2.88
37 | 30-May-02 ES 6.2949 85 27 30 1.02318 5.34 4.1
38 7-Feb-03 E5 4.8383 57 25.5 29.86 1.02047
39 | 30-May-02 F2 10.1845 81 27 30 1.02318 3.15 1.6
40 | 30-May-02 F2 9.908 79 27 30 1.02318 3.15 1.61
41 | 30-May-02 F4 6.2324 56 27 30 1.02318 3.55 2.06
42 | 30-May-02 F4 5.561 45 26 30 1.02318 3.2 1.66
43 { 30-May-02 GI- 6.6714 21 26 30 1.02318 1.25 -0.56
44 | 30-May-02 Gl- 6.7179 34 26 30 1.02318 2 0.3
45 | 30-May-02 Gl 8.5257 59 27 30 1.02318 2.74 1.14
46 | 30-May-02 Gl 8.0456 61 27 30 1.02318 3 1.43
47 | 30-May-02 G3 7.7863 69 27 30 1.02318 3.51 2.01
48 | 30-May-02 G3 7.3443 62 27 30 1.02318 3.34 1.82
49 | 30-May-02 G5 6.8245 86 26.5 30 1.026 5 3.71
50 | 30-May-02 GS 7.1182 92 26.5 30 1.026 5.13 3.85
51} 7-Feb-03 G5 7.1602 98 27 29.86 1.01188
52 | 30-May-02 H2 7.8883 44 25.5 30 1.026 2.21 0.54
53 | 30-May-02 H2 8.1128 46 25.5 30 1.026 2.25 0.58
54 | 30-May-02 H4 6.8541 58 26.5 30 1.026 3.36 1.84
55 | 30-May-02 H4 6.7966 56 26.5 30 1.026 3.27 1.74
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pH
B

1 27 1 0 7.75
2 27 1 5 8
3 27 1 10 7.97
4 27 1 15 7.76
5 27 1 20 7.88
6 27 1 20 8.06
7 27 1 25 7.84
8 27 1 30 8.02
9

10 27 2 0 7.64
11 27 2 5 7.75
12 27 2 15 7.75
13 27 2 25 7.67
14

15 27 3 0 7.53
16 27 3 5 7.36
17 27 3 10 7.74
18 27 3 15 7.53
19 27 3 20 7.65
20 27 3 25 7.43
21 27 3 30 7.5
22
23
24 36 1 0 7.73
25 36 1 14 7.85
26 36 1 28 4,95
27 36 1 42 4.51
28 36 1 55 474
29 36 1 65 7.77
30

31 36 2 0 7.7
32 36 2 5 7.72
33 36 2 20 8.12
34 36 2 40 8.32
35 36 2 55 8.35
36 36 2 55 8.39
37 36 2 65 8.4
38
39 36 3 40 8
40 36 3 50 8.05
41 36 3 60 8.03
42 36 3la 7.67
43 36 3|Bk 7.99
44
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B

1 36 A1 7.63
2 36|A3 7.44
3 36/B1 7.58
4 36/B2 7.65
5 36,B3 7.42
6 36/C1 7.73
7 36/C2 7.72
8 36/C3 7.02
9 36 D1 7.96
10 36/D3 7.33
11 36 E1 7.68
12 36|E2 7.47
13 36|E3 7.37
14 36/F1 7.37
15 36|F2 7.46
16 36|F3 7.65
17 36|G1 7.73
18 36/G2 7.35
19 36/G3 7.6
20 36 H1 7.2
21 36|H2 7.78
22 36|/ H3 7.24
23

24 27 -A1 7.7
25 27| -C1 7.96
26 27| -E1 7.78
27 27 -G1 8.19
28 27 |1A1 7.93
29 27|A3 7.8
30 27|A5 8.1
31 27|B4 7.99
32 27|C3 7.71
33 27,C4 7.62
34 27/C5 7.77
35 27\D2 7.72
36 27\D2 7.76
37 27,D4 7.88
38 27|E1 7.75
39 27|E3 7.87
40 27\E5 8.04
41 27|F2 8.06
42 27|F4 7.2
43 27|G1 7.88
44 27/G3 7.57
45 27,G5 7.79
46 27(H2 7.73
47 27|H4 8.37




A | B ] C D E F G
48 |Section 27 Surface Soils
49 Locn |sand % of total silt % of total clay % of total
50 -A1
51 A1 70.44 15.18 14.39
52 A3
53 A5
54 B2
55 B4
56 -C1 50.77 35.29 13.94
57 C1 76.61 14.80 8.59
58 C3 11.10 52.19 36.72
59 C4 85.69 8.42 5.89
60 D2 61.46 21.41 17.14
61 D4 83.77 9.86 6.37
62 -E1 24.85 63.45 11.70
63 E1 81.25 11.34 7.41
64| E3dup 52.34 38.74 0.23 8.92 0.23
65] E3dup 52.34 13.14 38.42 13.07 9.24 0.07
66 E3 70.91 19.94 9.14
67 E5 50.50 27.87 21.63
68 F2 78.94 14.50 6.56
69 F4 57.04 23.72 19.25
70 -G1 55.38 32.89 11.73
71 G1 104.61 19.13 -12.66 19.20 8.06 0.06
721 G1dup 77.55 14.49 7.96
73 G3 80.48 12.32 7.19
74 G5 62.46 22.23 15.31
75 H2 82.79 10.67 6.54
76 H4 56.88 33.24 9.88
77
78
79 |Section 36 Surface Soils
80 Locn |sand % of total silt % of total clay % of total
81 A1 65.62 22.81 11.57
82 A2 42.31 46.19 11.49
83 A3 30.01 60.00 9.99
84 B1 75.86 22.64 1.50
85 B2 49.85 39.30 10.85
86 B3 47.66 41.37 10.96
87 F1 31.78 0.92 55.37 0.99 12.85 0.07
88| F1dup 30.47 56.77 12.76
89 C1 39.05 1.14 59.41 6.74 1.54 7.87
90 ] C1ldup 37.44 49.88 12.67
91 C2 32.01 59.03 8.96
92 C3 62.97
93 D1 30.25 53.42 16.33
94 D1 53.77 15.99
95 D2 34.88 39.92 0.25 25.20 0.25
96| D2 dup 40.27 24.85
97 D3 65.72 21.75 12.53
98 E1 34.40 50.18 15.42
99 E2 17.39 58.22 24.39
100 E3 25.39 53.78 20.83
101 F2 20.03 64.24 0.61 15.74 0.61
102| F2dup 65.10 14.88
103 D2 34.50 45.25 20.25
104 F3 59.44 30.23 0.50 10.32 0.50
105] F3dup 30.94 9.61
106 G1 40.10 59.90 0.00
107 G2 43.96 44,39 11.65
108 G3 51.23 34.08 4.61 14.69 4.61
109] G3 dup 40.60 8.16
110 H1 28.12 0.16 63.60 0.23 8.28 0.07
111 H1 dup 27.89 63.92 8.19
112 H2 26.18 61.85 11.97
113 H3 46.89 42.82 10.28




A | B C D E F G

1 |Section 27 Soil Profiles

2 Locn |sand % of total| std dev sand | silt % of total std dev silt clay % of total | std dev clay
3 1-0 15.84 39.63 4453
4 1-10 12.75 38.31 48.94

5 1-20 12.95 38.75 47.30

) 1-30 10.83

7

8 2-0 76.57 10.78 12.65

9 2-10 80.49 11.80 7.71

10| 2-20 65.90 10.27 23.84

11 2-30 79.62 10.10 10.28

12

13| 3-0D 79.65 0.25 11.21 0.56 9.14 0.31
14 3-0 79.29 12.00 8.71

151 3-10 82.30 10.61 7.09

16| 3-20 75.45 13.36 11.19

17 3-30 78.13 0.1 12.49 0.1 9.38 0.22
18| 3-30D 77.98 12.33 9.68

19
20
21 [Section 36 Soil Profiles
22| Locn | sand % of total silt % of total clay % of total
23 1-0 78.20 13.63 8.17

24 1-7 74.53 15.62 9.85

25| 1-21 74.00 15.65 10.35

26| 1-35 75.85 14.68 9.47

27| 1-49 87.13 7.92 4.95

28| 1-60 49.41 37.68 12.91

29| 1-70 33.49 46.83 19.68

30

31 2-0 63.57 21.33 15.10

32] 2-10 69.95 16.55 13.51

33] 2-20 72.00 14.78 13.22

34| 2-30 71.95 15.47 12.58

351 2-40 76.44 11.04 12.52

36} 2-50 71.76 14.09 14.14

371 2-60 54.59 29.74 15.67

38
39 3-10 34.06 47.79 18.15
40 3-20 21.92 46.19 31.89
41 3-30
42 3-40 17.95 57.85 24.20
43| 3-50 16.96 79.18 3.86
44| 3-860 15.37 49.40 35.28
45| 3-70 16.81 33.21 49.98
46
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APPENDIX G

Vegetation ICP-MS Uranium Data
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