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ABSTRACT

The work presented in this dissertation focuses on specific problems

of coupled fluid-solid mechanics in porous media. These types of problems have

been studied for many years with continuum methods. Continuum methods

yield information about the behavior of systems but rarely provide significant

insight into underlying physics. The work presented here is a departure from

continuum methods and explores the application of discrete physics to coupled

fluid-solid mechanics in porous media. I use these discrete methods to examine

the behavior of both dry and fluid saturated rock. My specific interest is in

identifying the role of fluids in the genesis of natural hydraulic fractures (NHFs)

in the subsurface.

Much debate exists over the importance of NHFs, with a considerable

amount of effort devoted towards understanding the conditions under which

they form. The goal of this dissertation was to explore what control fluids and

hydrologic properties of rocks exert on the initiation and propagation of opening

mode fractures. I present porous media analyses using the coupled fluid-solid

mechanics code LBDEM. Novel comparisons to classic poroelasticity problems

(such phenomena as pressurization from an applied stress) indicate that this

approach captures the essential physics. The LBDEM is used to explore the



detailed physics of natural hydraulic fracturing, through the conceptualization

of laboratory experiment. Results of the tests indicate that fluid permeability

and porosity either inhibit or prohibit the intensity of fracturing depending on

the magnitude of each. Heterogeneities pore throat size (local fluid permeabil-

ity) are considered, and are shown to increase the formation of fractures where

pore throats are increased relative to the surrounding matrix. The experi-

mental approach I developed is subsequently shown to produce fluid-induced

extension fractures. For a bedding perpendicular sample of the Abo formation,

one large macroscopic fracture and many microscopic extension fractures were

formed. These results indicate that hydrologic heterogeneities, which cause

pore fluid pressure gradients, are important for the genesis of natural hydraulic

fractures. This implies that rocks with different hydraulic diffusivities will ex-

hibit unique mechanical behavior under similar stress conditions, as rocks with

lower diffusivity can maintain higher pore fluid pressure.
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CHAPTER 1

INTRODUCTION

The coupling between fluid flow and deformation of rocks and sedi-

ments is a key component of many fundamental processes in the Earth’s shallow

crust. The effects of this hydromechanical coupling are ubiquitous in geology

and hydrogeology. Examples include deposition and erosion, faulting and earth-

quakes, earth tides, and barometric loading, all of which induce local rock strain

that may alter fluid pressure. Fluid pressure changes as a result of the above

processes affect hydrodynamics and sometimes cause extreme pressure anoma-

lies [Neuzil , 1995; Bredehoeft et al., 1994] that can occur over a vast range of

spatial and temporal scales. This coupling is also relevant to many significant

societal problems, from subsidence and other effects of mining groundwater

supplies [Galloway et al., 2000] to the mitigation of earthquake hazards (San

Andreas Fault Observatory at Depth). The attention of the scientific com-

munity to these issues is increasing as evidenced by recent issues of scientific

journals dedicated to this specific subject (see Kumpel [2003]; Stephansson

[2003]).

Fluid pressure has been found to offset crustal stresses and affect me-

chanical processes at depth. The concept of fluid pressure offsetting total stress

was first applied to geological problems by Hubbert and Rubey [1959]. This con-

cept, usually called effective stress, was first studied by Terzaghi [1925], and

1
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forms the foundation of our understanding of mechanical interactions between

fluid pressure and solid. Biot [1941] applied this concept together with theory

from solid mechanics and groundwater flow to form the basis of the field of

linear poroelasticity. The last 80 years produced significant advances in our

understanding of these couplings, leading to theories of consolidation and tran-

sient groundwater flow. It has since been shown that fluid pressure plays a

large role in the behavior of almost all mechanical processes in the shallow

crust. The importance of these fundamental theories is paramount; however it

is difficult to apply them to realistic field problems due to our inability to char-

acterize and conceptualize real systems. Despite this acknowledged role of fluid

pressure in crustal rock mechanics, we still have only limited understanding of

the complete coupling between rock deformation and fluid flow.

This dissertation examines the pore-scale hydromechanical system

where strong deformations not only change fluid permeability but fluid may

also change the state of stress within the deforming rock matrix. Specifically,

I examine the case of opening mode fractures (or joints) that are driven by

elevated fluid pressure. The formation of fractures is theorized to influence

mechanical and hydrologic behavior within sedimentary basins. I have used a

coupled discrete model of deformation and fluid flow to simulate the complex

hydromechanical system represented by a porous sedimentary rock subjected

to differential stress. Corresponding deformation experiments help elucidate

the role of fluid flow properties (such as fluid permeability and storage) in a

system undergoing deformation. This study attempts to fill a void in the lit-

erature, addressing fluid flow and pressure in the process of fracturing. The

results of this study are important for researchers who are concerned with the
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distribution, orientation, and physical properties of opening mode fractures in

addition to understanding the fundamental feedbacks between solid mechanics

and fluid flow.

1.1 Coupled Processes in Hydrogeology

Coupled processes in geology commonly involve strongly nonlinear

relationships among state variables (e.g., fluid pressure and temperature) and

their associated dependencies on rock properties. For example, fluid perme-

ability (k) in a porous medium relates fluid flux (q) and fluid pressure (p)

through

q = −k(σ)

µ
(∇p + ρg∇z) , (1.1)

where µ is fluid viscosity, ρ is fluid density, and g is gravity, z is elevation with

respect to a datum, and ∇ is the gradient operator. Here k can be a function

of stress (σ). In addition

σ′ = σ − p, (1.2)

where σ′ is effective stress, suggests that the stress acting on a plane is offset

and hence coupled to the fluid pressure (see Section 1.3 for more). This is a

very simple example of a coupling between fluid flux and the stress state in

the rock where k(σ) can be linear or extremely non-linear. Equation (1.1) does

not, however, express the degree of coupling.

Relations between the various state variables in a geologic system

can be quite complex (Figure 1.1). However, information about the coupling

between the thermal and hydrologic aspects of a system may be used to infer

properties about its mechanical state. A prime example of this is given by Saffer
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Figure 1.1: Coupled processes in hydrogeology, adapted from Yow and Hunt
[2002].

et al. [2003], who evaluated the mechanical properties of the San Andreas fault

by studying its thermal response to and perturbation by fluid flow. This type of

analysis is only possible if a detailed understanding of the coupling or feedback

loop between the two state variables is known. This dissertation focuses on the

feedback loop between hydrologic and mechanical properties, in an attempt

to elucidate a more detailed understanding of the coupling in systems with

elevated fluid pressure.

The coupling between the hydrologic and the mechanical processes

may be examined in two arbitrary ways: 1) the lone effect of fluid pressure on

the mechanical response (effective stress) and 2) the effects of mechanics (strain

and stress) on the hydrologic response, especially via permeability modification.

Both of these coupling pathways can be equally important. However, one or
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both are often ignored; many conditions or situations call for simplification in

the form of neglecting one ’direction’ of this coupling. For example, one of the

assumptions in the development of the transient groundwater flow equation

is that deformations are small and reversible (i.e., elastic deformation), and

permeability remains unaltered. Numerical models and analytical solutions can

aid in the analysis of the importance of the competing hydromechanical effects.

One framework used for this analysis is the theory of linear poroelasticity.

1.1.1 Linear Poroelasticity

The theory of linear poroelasticity brings together concepts from solid

mechanics and fluid flow through porous media [Biot , 1941]. Coupling between

the equations of fluid diffusion (Equation (1.3)) and mechanical equilibrium

(Equation (1.4)) is explicit because pore pressure (or more formally, increment

of fluid content, ζ) appears in the force equilibrium equations, and because

mean stress (or volumetric strain) appears in the fluid-flow equation [Wang ,

2000]. The following equations describe the fully coupled stress and fluid flow

behavior of a porous medium.

Sσ

[
B

3

∂σkk

∂t
+

∂pex

∂t

]
=

1

µ
∇ · k∇pex, (1.3)

and

∇2 (σkk − 4ηpex) = −1 + ν

1− ν
∇ · ~F , (1.4)
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where :

Sσ = three dimensional specific storage

B = Skempton’s coefficient

σkk = mean stress

pex = pore pressure in excess of hydrostatic

µ = fluid viscosity

k = permeability tensor

η = poroelastic stress coefficient

ν = drained Poisson’s Ratio

~F = body force per unit bulk volume.

The diffusion equation (Equation (1.3)) for pore pressure is called inhomo-

geneous because it includes changes in mean stress with time. The time-

dependent mean stress term is mathematically equivalent to a fluid source

whereas the fluid pressure gradient term in Equation (1.4) is equivalent to a

body force. The mechanical problem is elasto-static, which means that static

equilibrium is achieved for each instant of time. In reality, a finite amount

of time is required for a stress wave to transmit changes across the problem

domain, but the wave propagation term is ignored. If a stress or fluid pressure

change is applied suddenly to a poroelastic body, local displacements and pore

pressure adjust instantaneously to accommodate the change and maintain a

state of internal force equilibrium. Subsequent time-dependent fluid diffusion

occurs as a result of the delaying effects of finite permeability and storage.
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In the absence of coupling to fluid flow, the stress or mechanical equilibrium

equations will be time independent. This fact is extremely important when

treating the fluids in the Earths crust as dynamic [Bredehoeft et al., 1994]. If

fluid is considered to be static [Bradley , 1975], then flow is instantaneous and

the pressure in these ”static compartments” reaches a constant value. This as-

sumption is inherent in rock mechanics analyses in which no information about

the spatial distribution of fluid pressure is available. The following two sections

give examples of geologically relevant hydromechanical interactions.

1.2 Effects of Crustal Deformation on Fluid Flow

The most fundamental effect of deformation on fluid flow is to change

porosity or the space available for fluid, through volumetric strain of the rock.

Two aspects of this porosity change determine the behavior of the system of

interest. One is the rate at which the change takes place and the other is the

resulting spatial distribution of the change. Where porosity changes are slow

enough for fluid to equilibrate with the new conditions (drained response), no

changes in fluid pressure should be observed. But, as a consequence of the

porosity change, the permeability of the rock will be altered. The permeabil-

ity alteration will impact subsequent fluid flow paths. If porosity change is

fast enough (undrained response), fluid pressure will rise due to the fluid com-

pressibility. Neuzil [1995] showed that significant fluid pressure anomalies are

generated and maintained when

ε̇kk >
K

l
, (1.5)
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Figure 1.2: Observed fluid pressure-depth profile in Altamont field, Uinta
Basin, Utah (adapted from Bredehoeft et al. [1994]). Shown for reference is
a freshwater hydrostatic pressure profile (dashed line). This specific plot of
fluid pressure vs. depth is probably not a direct result of sediment compaction,
but may be more related to oil and gas generation, another source of hydro-
dynamic disequilibria that is not related to hydromechanical coupling. This
illustrates the magnitude of fluid over-pressures observed in the field.

where ε̇kk is the volumetric strain rate, K is the hydraulic conductivity, and l

is the distance from the center of the domain to the boundaries.

Geologic processes induce strain (porosity change) at a variety of spa-

tial and temporal scales. Many of these processes also induce hydrodynamic

disequilibria, such as sediment compaction, erosional decompaction, tectonic

deformation, barometric and earth tides, creep and seismic slip along faults,

and magmatic intrusion. Fluid pressure changes can be dramatic relative to the

hydrostatic (Figure 1.2). Compactive strain typically induces the largest and

most widespread disequilibria, although local changes due to creep and seismic

slip along faults can also be very large. In tectonically active regions, such
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as accrectionary prisms, fluid flow is almost solely driven by tectonic strain.

Simulations by Saffer and Bekins [2002] of accretionary prisms showed that

thrusting directly causes high fluid pressure. This is in stark contrast to fluid

flow in shallow basin sediments, which is usually driven by topography. Baro-

metric and earth tide forcings can typically cause very minute changes in fluid

pressure, but these changes are important in that they can be used to infer the

hydrologic properties (such as storage) of the aquifer itself.

1.3 Effects of Fluid Pressure on Crustal Mechanics

Fluids exert a strong control on the mechanics of the crust. From a

static perspective, fluids in the crust bear part of applied loads. Rock matrix

is subjected to a smaller load than if the fluid were absent. Karl Terzaghi first

discovered this phenomenon when researching consolidation of soils and termed

the resulting stress an ”effective” stress. An increase in applied tensional stress

expands a rock by about the same amount as an equal increase in pore pressure.

Similarly, equal changes in applied compressive stress and pore pressure tend

to offset each other, indicating the strong effect of fluid pressure on both stress

and strain of rocks.

Effective stress for a rock can be defined by tensor components σ′ij,

σ′ij = σij − αpδij, (1.6)

where σij are stress components (a positive stress is compressive, using the geol-

ogists convention), α is the Biot-Willis coefficient, p is pore fluid pressure (pos-

itive is an increase in pressure), and δij is the Kronecker delta. Pore pressure
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only affects the normal stress terms, and not the shear stress, because shear

stresses do not produce volumetric strains (hence the use of the Kronecker

delta). The Biot-Willis coefficient is a measure of the efficiency with which

pore pressure counteracts confining pressure to produce volumetric strain. The

coefficient is commonly assumed to be equal to 1, as Terzaghi first assumed,

but Berryman [1992], in work involving the Gassman equations, suggested a

range for the Biot-Willis coefficient that is less than or equal to 1 depending

on the rock type. Experiments on granites, sandstones, and other rocks [De-

tournay and Cheng , 1993] show that the Biot-Willis coefficient varies from 0.23

(Hanford basalt) to 0.83 (Pecos sandstone). These results suggest that this

coefficient may also vary with the deformation state (fractured or unfractured)

of the material. There is much debate over the validity and applicability of this

concept [Warpinski and Tuefel , 1992].

Fluid pressure that is elevated relative to hydrostatic, regardless of

cause, will offset some of the rock framework stress. For example, high pressure

commonly occurs where sediments are buried in a basin with a high deposition

rate. If the rate of burial-induced strain is faster than the rate of fluid flow

out of the system, the fluid pressure will increase, eventually resulting in a

rock framework that is under-consolidated with respect to ambient lithostatic

load. This phenomenon typically leads to higher than predicted porosity with

depth, commonly called compaction disequilibrium. High fluid pressure can

also play a role in the shear failure of rocks. Since fluid pressure can offset

normal stress, elevated fluid pressure can induce failure and/or slippage on pre-

existing discontinuities. This concept forms the motivation and focus of this

dissertation. Hubbert and Rubey [1959], in their classic paper on the mechanics
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of thrust faulting, employed Terzaghi’s effective stress principal to show that

elevated fluid pressures facilitate movement of large thrust blocks. Finally,

Hsieh and Bredehoeft [1981] demonstrated that fluid pressure increases and

subsequent diffusion are responsible for seismicity near injection wells. These

examples suggest a strong correlation between fluid pressure and the mechanical

stability of rocks in the subsurface.

Fluid pressure is known to locally reach magnitudes equal to that

of the far-feld minimum stress [Breckels and Eekelen, 1982; Engelder , 1993;

Engelder and Fischer , 1994]. Injection of fluid at elevated pressure into bore-

holes are used to stimulate oil and gas reservoirs by locally creating fractures,

which may increase permeability. Does a geologically equivalent process exist

by which fractures are created naturally in the shallow crust, thereby increas-

ing fluid permeability? In recent years a wealth of literature, using limited

empirical failure criterion, has suggested that fluid pressure initiates and prop-

agates fracture networks [Tuncay et al., 2000; LHeureux and Fowler , 2000;

Payne et al., 2000; McPherson and Bredehoeft , 2001]. This draws on the work

of Secor [1965] who explicitly linked rock jointing (mode-I fractures) to net

tensile stresses created by high fluid pressure. Secor [1965] showed that if fluid

pressure is greater than the least minimum stress (σ3), the effective minimum

stress (σ∗3) becomes tensile, as shown through the following relation

σ∗3 = σ3 − p. (1.7)

Depending on the stress regime, depth, and tensile strength of the rock, it ap-

pears that overpressures are required for natural hydraulic fracturing to occur,

due to the compressive state of the subsurface. Despite what is presented here,
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little is known about the physics governing the intimate coupling between fluid

flow and fracture growth under these conditions. This dissertation will examine

the feasibility of this process and evaluate the conditions (fluid pressure, stress,

and permeability) under which hydraulic fractures, or fluid-assisted fractures,

can form.

1.4 Literature Review

Previous work on fracture initiation, propagation, and generation

mechanisms has come from several fields including geology, mechanical and

petroleum engineering, and hydrology. I lump these approaches into two broad

but distinct categories: approaches that use empirical failure criteria and those

that use classical Griffith crack theory [Griffith, 1921; Irwin, 1957], or what I

will call crack-tip modeling (Figure 1.3).

Studies that use empirical failure criteria to determine whether rock

will fracture, employ Mohr diagrams to analyze and interpret joints and frac-

tures [e.g., Muehlberger , 1961; Hancock , 1985]. Although a Mohr diagram is a

useful tool for exploring homogeneous stress fields, it does not account for the

heterogeneous stress fields associated with a fracture [Pollard and Aydin, 1988].

A common assumption of empirical criterion studies is that fracture behavior

depends only on rock mechanical properties and far-field driving forces [Ramsay

and Huber , 1987]. Researchers typically incorporate pore pressure influences

using the concept of effective stress, but rarely describe the movement of pore

fluid itself. In most of these studies, pore pressures are homogeneously dis-

tributed, or uniform, throughout the domain of interest [Fischer , 1994; Fischer

et al., 1995; McConaughy and Engelder , 2001]. However, natural permeability
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heterogeneity may cause large pore pressure gradients on the same spatial scale

that effective stress concepts are thought to apply, e.g., at the scale of fracture

tips. Pore pressure gradients may be used as a proxy for effective stress gradi-

ents, if a constant remote stress is assumed. Effective stress gradients serve to

change the rock response, as indicated by classical poroelasticity theory [Rice

and Cleary , 1976; Rudnicki , 1985], and hence may initiate or even arrest the

propagation of a fracture. Rock hydraulic parameters must also be considered

because they control effective stress distributions.

The other broad category of fracture studies is based on mechanics

theories describing stress fields at crack tips, as discussed in Section 1.4.1, be-

low. These methods involve crack-tip modeling with either the application

of linear elasticity or poroelasticity. Overall, only a limited amount of work

has investigated fracture in poroelastic materials [Boone and Ingraffea, 1990].
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Techniques such as those used by Bai and Pollard [2000a,b] incorporate crack

tip stresses in a linear elastic medium within a finite element model. These

models are useful for analyzing fracture propagation where fluid flow and time-

dependent processes are assumed to have negligible effects on the system. Some

hydraulic fracture models simulate fracture fluid flow in an elastic medium us-

ing lubrication theory and do not directly account for flow into the formation

[Mendelsohn, 1984a,b; Advani et al., 1997]. For those processes in which flu-

ids are considered important, poroelastic crack-tip models are analyzed using

sophisticated coupled finite element and finite difference methods [Boone and

Ingraffea, 1990; Renshaw and Harvey , 1994].

A few researchers [Rice, 1979, 1980, 1981; Rudnicki , 1980, 1981, 1985]

studied the role of pore fluid diffusion in elastic and inelastic processes with spe-

cific emphasis on earthquakes. A major component of these works is that the

pore fluid diffusion introduces a time scale into an otherwise time-independent

process. An elastic, fluid-filled solid responds more stiffly to deformations that

are rapid compared to the time scale of diffusion [Rudnicki , 1985]. Thus, time

constants associated with fluid diffusion may be important considerations in

fracture development. For example, a time constant can characterize how

quickly a pulse or change in fluid pressure will travel some distance. Since

the change in pressure will alter effective stress distributions, time constants

will constrain the timing, and possibly the orientation, of fractures. These

aspects are lumped together in a parameter termed the hydraulic diffusivity,

defined as the ratio of the ability to transfer fluids (permeability) to the storage

capacity (storativity).
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1.4.1 Genesis and Propagation of Fractures

In general, fractures initiate and propagate when the stresses equal

or exceed the rock strength. Sources of stress in the Earth’s crust include

overburden (where addition or removal of material is caused by deposition or

erosion), fluid pressure, tectonic forces, and geological processes such as intru-

sion. Through the development of Linear Elastic Fracture Mechanics (LEFM)

[Lawn and Wilshaw , 1975] and subsequent experimental verification, a tremen-

dous amount has been learned about the initiation and propagation of cracks

and fractures.

Joints are inferred to initate at flaws, based on field evidence [Pollard

and Aydin, 1988]. Flaws may be anything from a simple grain contact to more

complicated features such as fossils, cavities (pores), or microcracks. Joints are

initiated where flaws perturb the local stress field such that the magnitude of

local tensile stresses next to the flaw exceeds the tensile strength of the rock.

This may occur under remote tension or remote compression. For example,

remote tensional stresses may be amplified by factors of 1.5 to 3.0 inside circular

inclusions [Jaeger and Cook , 1969] and, transfer of macroscopic compressive

stresses through a heterogeneous material, like rock, can induce micro-tensile

forces.

The initiation and propagation of tensile cracks in dry rocks under

remote compressive stresses has been verified through many laboratory exper-

iments [Peng and Johson, 1972; Tapponnier and Brace, 1976; Kranz , 1983].

The most common approach used is point loading of a circular shaped crack

or flaw. With the addition of fluids point-loading mechanisms are only exac-
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Figure 1.4: Three fundamental modes of fractures. Mode I - tensile, Mode II -
in-plane shear, Mode III - anti-plane shear

erbated. Pollard and Aydin [1988] identify cavities and microcracks subjected

to internal fluid pressure as most susceptible to joint initiation under remote

compression.

The stress field around the fracture tip controls fracture propagation,

and can be characterized by a stress intensity factor, which is a function of

the applied stress and the fracture geometry. Each fracture mode, shown in

Figure 1.4, has a stress intensity factor (KI , KII , KIII) and each is associated

with a unique stress distribution near the fracture tip. Consider the stress

intensity (KI) for an opening mode (tensile) fracture subject to uniform remote

stress (σ3; Figure 1.5). KI is defined as

KI = (p− σ3)[πa]1/2. (1.8)

The stress intensity factor is proportional to the driving stress (p − σ3), and

the square root of the fracture length. When stress intensity reaches a critical

value KI = KIC the fracture will propagate. The fracture toughness, KIC , is a

material property. This property is determined experimentally many different
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Figure 1.5: A mode I fracture of length 2a loaded by a remote compressive
stress (σ3) and fluid pressure (p).

ways, usually under biaxial compression and unsaturated, or under a vacuum

[Atkinson and Meredith, 1987]. As evident from the above analysis, an internal

pore pressure greater than the remote stress must be present for a Mode I crack

or fracture to propagate under a remote compressive stress.

Irwin [1957] determined that a propagation criterion based on the

above stress intensities is equivalent to the Griffith [1921] energy-balance crite-

rion, GI = Gc, for crack growth in a brittle elastic material. In this equation,

GI is the energy release rate, or the change in energy per unit crack extension,

and Gc is the critical energy release rate for propagation to occur. For the

crack pictured in Figure 1.5, the energy release rate is

GI = (p− σ3)
2πa

1− ν

2µ
, (1.9)

where ν is the Possion’s ratio and µ is the shear modulus.
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Joint propagation is related to the amount of joint opening. The

opening, UI , at the center of the crack in Figure 1.5 is [Pollard and Segall ,

1987];

UI = (p− σ3)2a
1− ν

µ
(1.10)

Equation (1.8) and Equation (1.10) imply that unless the pore pressure is

greater than the remote compressive stress, then no stress concentration will

develop and thus no fracture propagation will take place. The above analyses

are applicable if it is assumed that the inelastic deformation is restricted to a

relatively small region near the crack tip [Irwin, 1957].

For Mode I loading, the circumferential tensile stress at a small dis-

tance from the fracture tip is largest in the plane of the fracture. Therefore,

joints propagate in their own plane perpendicular to the direction of greatest

tension near the joint front. This occurs when the long axis of the crack is

oriented perpendicular to the remote least compressive stress as in Figure 1.5.

The complexity of single joint surfaces suggests that local principal stress di-

rections can vary considerably [Pollard and Aydin, 1988]. In isotropic rocks,

the joint path is primarily dependent on fluid pressure and the stress field.

Therefore, local pore pressure gradients may cause stress variations.

The preceding analysis assumes that crack growth is achieved under

quasi-static conditions. Inertial effects have been neglected. For propagation

velocities approaching elastic wave speeds (i.e. fast), inertial forces must be con-

sidered and the traditional linear-elastic and elastic-plastic fracture mechanics,

which assume quasi-static deformation, are inadequate.

Whether a fracture or crack will arrest (propagation velocity = 0)
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depends on the amount of energy available for crack growth. As the energy

release rate (Equation (1.9)) decreases to zero, fracture propagation depends

on the value of the remote stress and the fluid pressure. If Gc is held constant,

arrest can occur through either an increase in the remote compressive stress

or by a decrease in the fluid pressure. A drop in fluid pressure may occur

as a consequence of the increasing cross-sectional area of a growing fracture

[Secor , 1969]. Pollard and Aydin [1988] state that the effectiveness of this

arrest mechanism depends on how readily the pore fluid can recharge the fluid

pressure in the joint. Arrest may also occur as the crack or fracture moves

into a stiffer or more incompressible rock, as determined by the 1−ν
2µ

term in

Equation (1.9). The joint-propagation criterion, Gc, has also been shown to

vary with a number of other factors such as confining pressure, temperature,

chemical reaction rates, and microcracking [Atkinson and Meredith, 1987].

Lab experiments demonstrate that cracks also grow subcritically, un-

der conditions of GI < Gc. Several mechanisms for subcritical growth have

been suggested [Atkinson, 1984]. These include stress corrosion, dissolution,

diffusion, ion-exchange, and microplasticity. The chemical effects of pore water

in the crustal environment influence all of these mechanisms. It is also inter-

esting to note that subcritical cracking has been identified in glass under a

vacuum [Wiederhorn, 1974]. Atkinson and Meredith [1987] list 6 variables that

are important in subcritical crack growth:

• stress intensity factor

• temperature
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• chemical equilibrium

• pressure

• rock microstructure

• residual strain

These factors vary significantly in the Earth’s crust and hence the ability to

relate subcritical crack growth in the field to a single mechanism is difficult.

Overall, it has been suggested that some form of stress corrosion may be the

most significant form of subcritical crack growth under appropriate conditions

in the crust [Atkinson and Meredith, 1987].

In sum, all of these mechanisms rely heavily on (1) the presence of

fluids and (2) pore fluid pressure at or above hydrostatic levels. Pollard and

Aydin [1988] highlight the need for research on this subject. It is commonly

assumed that the hydrologic regime is in a steady state when the structural

regime is clearly transient. This suggests that processes, from a rock mech-

anist’s point of view, have been traditionally un- or semi-coupled. As stated

above, we know that fluids play important roles in the mechanics of rock, but

our understanding has not progressed much in the last 30 years.

1.4.2 Natural Hydraulic Fractures

Recent work by Renshaw and Harvey [1994] addressed the quasi-static

growth rates of natural hydraulic fractures (NHF). They simulated NHF in

poroelastic media using a displacement discontinuity boundary element method.

They noted that poroelastic effects may limit the rate of fracture growth, but



21

Figure 1.6: Plots of normalized fracture half-length (with respect to initial flaw
length) versus dimensionless time show that rocks with higher ratios (φ) of
amount of fluid required to sustain propagation (i.e., the change in area of the
fracture per unit extension) to amount of fluid readily available (i.e., matrix
storage) have fractures that grow slower. From Renshaw and Harvey [1994].

growth may still accelerate. In their model, the growth rate of isolated NHF

(of initial flaw length of ao) within many rock types is a function of the dimen-

sionless time
Kt

S∗a2
o

. (1.11)

Where characteristic (S∗a2
o

K
) time is dictated by the hydraulic conductivity as it

determines how quickly fluid is transmitted to the fracture. The growth rate

may be examined by considering the ratio of the amount of water required to

sustain propagation (i.e. the change in area of the fracture per unit extension)

to the amount of fluid readily available (i.e. matrix storage (S∗)),

φ =
(1− ν)ρg

µS∗
. (1.12)

The ratio (1−ν)
µ

controls the change in area. As S∗ increases and φ decreases,

more fluid is available to flow into the fracture. Shown in (Figure 1.6) are plots
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of the dimensionless growth rate (fracture length vs. time) of an isolated NHF

for various values of the dimensionless parameter φ. Note that unlike induced

hydraulic fractures, the fluid pressure within natural hydraulic fractures is al-

ways less than the ambient fluid pressure once propagation begins [Renshaw

and Harvey , 1994].

Much recent literature has focused on the subject of induced hydraulic

fracturing for enhanced geothermal and oil extraction. As discussed above, the

propagation of fractures explicitly depends on the stress distribution around

the fracture tip. Thus, many papers (e.g. Rice and Cleary [1976]; Advani

et al. [1987]) address pore fluid pressure at the crack tip. In general, theo-

ries under-predict the amount of pressure it takes to propagate an induced

hydraulic fracture [Advani et al., 1997]. A small region of reduced pressure at

the tip of a propagating fracture can significantly reduce the stress intensity

and thus require renewed abnormally high fluid pressure to propagate. This

lower-pressure region is termed the fluid lag region and is usually attributed to

excessive fluid flow into the formation. This suggests that fluid flow into the

fracture may be a limiting process in geologic fracture generation.

Petroleum engineering studies also suggest that inducing local regions

of high pore pressure via fluid injection may control hydraulic fracturing. Bruno

and Nakagawa [1991] showed that induced hydraulic fractures will propagate

toward regions of higher local pore pressure, or lower effective stress. Figure 1.7

is an adaptation of the experimental results of Bruno and Nakagawa [1991].

Higher injection pressures introduced greater deviation in fracture propaga-

tion direction. Bruno and Nakagawa [1991] also showed that stress concentra-
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Figure 1.7: Deviation of fracture induced by pore pressure gradient. Adapted
from Bruno and Nakagawa [1991].

tions at crack tips are influenced by pore pressure magnitude on a local scale.

Berchenko and Detournay [1997] used a numerical model to demonstrate that

pore pressures can alter the propagation path of an induced hydraulic fracture.

1.4.3 Pore Pressure Gradients

Many different factors cause pore pressure gradients in rocks. These

include transients caused by heterogeneous expulsion of connate water during

compaction, in-situ sources of fluid pressure (e.g. hydrocarbon generation),

and local pressure gradients driving fluid diffusion. In the special case where a

local, in-situ source of fluid pressure exists, fluid pressure gradients can signifi-

cantly exceed hydrostatic. Such localized pressure gradients may cause effective

stress to be low enough to influence fracture propagation near the fluid source
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and no fracturing some distance away. The rate at which these pore pressure

perturbations are diffused depends on the hydraulic diffusivity of the rock.

Hydraulic diffusivity describes the ability to transfer and store fluid

mass. In groundwater hydrogeology, where uniaxial strain and constant vertical

stress are commonly assumed conditions, the hydraulic diffusivity (κ) is

κ =
kρg

µSs

, (1.13)

where k is fluid permeability, Ss is one-dimensional specific storage. In coupled

systems this relationship is more complex. The typical assumptions of uniaxial

strain or constant vertical stress in every representative elementary volume

(REV) are not met near a pumping well. Different definitions of storage arise

because of its dependence on mechanical constraints. Since permeability can

change with both direction and space, we need to consider hydraulic diffusivity

to be a tensor property of the same order as that of the permeability. For

a three-dimensional anisotropic heterogeneous system, each REV will have 3

diffusivities (with off diagonal terms equal to zero) and the tensor is second

order symmetric.

If pressure changes occur within some time τ , then these pressure

pulses will propagate a distance on the order of
√

κτ . If permeability is hetero-

geneous and distance is greater than the defined REV, then a harmonic average

must be used to estimate κ. Also, a time of L2

κ
is required for a pressure change

to propagate a distance L, and is subject to the same averaging procedure.
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1.5 Modeling of Coupled Fluid-Solid Mechanics

Problems involving coupled processes are typically addressed with

continuum models that rely on constitutive relations developed through ex-

perimental work [Neuzil , 2003]. One concern with continuum-based models is

that they yield very little information concerning material behavior. Alterna-

tive discrete-based methods, such as the discrete element method (DEM) for

solid mechanics, use an approach that control and track many parameters, in-

cluding pore structure and contact forces. An advantage of using a method

like DEM is that the underlying physics are clearly resolved and the models

are inherently discontinuous and heterogeneous, reflecting those properties of

real geologic materials. A model such as DEM coupled with a discrete fluid-

flow solver would enable investigation, at pore-scale, into coupled fluid-solid

behavior in porous media. In this dissertation I take an approach that applies

direct simulation (developed by Cook et al. [2000], Cook [2001],and Cook et al.

[in press]) that couples the DEM with lattice-Boltzman (LB)1for application

to the problem of natural hydraulic fracturing. I now briefly review the model

used in this dissertation and then briefly compare the technique with other

methods in the literature.

1.5.1 Discrete Element Method

The DEM technique has been successfully used to approximate the

behavior of non-cohesive, granular systems under low stress conditions [Cundall

et al., 1982] and lithified sedimentary rocks [Bruno and Nelson, 1991; Potyondy

and Cundall , In Press; Hazzard et al., 2000; Boutt and McPherson, 2002]. In

this paper we are employing an existing two-dimensional DEM application
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[Rege, 1996]. DEM simulates the mechanical behavior of porous media by ide-

alizing the system as a collection of separate particles that interact at their

contact points. The method itself consists of (1) identifying elements in con-

tact and (2) resolving the contact physics. The calculations performed in the

DEM alternate between the application of Newton’s Second Law and a force-

displacement law (simple contact models) at the contacts between particles.

The force-displacement law relates components of force to the corresponding

components of the relative displacements through a generalized contact con-

stitutive model. The contact constitutive model applied here is one with two

parts, including a stiffness model and a slip model. The motion equations

are then integrated explicitly with respect to time to obtain particle positions,

are then used in the force-displacement calculations, and the calculation cycle

starts over again. A benefit of this approach is that the DEM constitutive

behaviors (stress and strain relations) are results rather than assumptions.

1.5.2 Lattice-Boltzmann and Coupled Model Theory

Fluid coupling with DEM was developed by Cook [2001] and Cook

et al. [in press] through the integration of LB with the DEM (LBDEM) frame-

work described above. A detailed development and validation of the coupled

method can be found in Cook et al. [2000], Cook [2001], and Cook et al. [in

press]. The two-dimensional simulations reported by Cook [2001] include such

complex phenomena as drafting-kissing-tumbling in multi-particle sedimenta-

tion simulations and the saltation phase of bed erosion. An extended descrip-

tion of the method can be found in Chapter 5.

In the LBDEM formulation it is assumed that a fluid force is only
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applied to the discrete elements if the fluid has a non-zero velocity. This implies

that static pressure, on the whole, is not captured. Conceptually, issues with

this assumption are avoided by treating changes in pressure within the model

to be dynamic pressure or changes from a static pressure condition. This

is accomplished by setting initial and boundary conditions to effective stress

conditions, which is simply done by taking the total stress and subtracting

off the static pressure. This limitation results in the poroelastic condition of

setting the Biot-Willis coefficient (discussed above) equal to 1.

1.5.3 Previously Used Techniques

Many different frameworks are used to model the coupled physics of

fluid-solid systems (See table 1.1) discussed above. These range from complete

continuum approximations [Wang , 2000] to complete discontinuous approxima-

tions [Bruno and Nelson, 1991; Boutt et al., 2003]. Most frameworks employ

empirical constitutive relations governing fluid flow (e.g. Darcy’s law) and fluid

coupling (e.g. effective stress). The most common example is the assumption

of Darcian flow. Below the REV scale (such as the case with discrete elements

that are assumed to be grains), Darcy’s law lacks physical meaning. A simple

example of where Darcy’ law won’t apply is the accelerating and decelerating

of flow through a pore throat. Regardless of this limitation, micromechanical

1The coupled LBDEM, originally called Modeling Interacting Multibody Engineering Sys-
tems (MIMES, [Rege, 1996]) was developed jointly by MIT (John Williams, PI) and Sandia
National Laboratories (Dale Preece, PI; Ben Cook, PI) through a multiyear collaboration
funded in part by the U.S. Department of Energy. The work of Cook [2001] highlights
the addition of the lattice-Boltzmann method to and extension of the MIMES framework
through funding provided by the National Oil and Gas Technology Partnership (NGOTP).
The lattice-Boltzman coupled model is now called SandFlow2D.



28

Table 1.1: Summary of previously used coupling techniques
Modeling
Technique

Coupling
Technique

References Solid Fluid Solid →
Fluid

Fluid
→Solid

Numerous Papers
[See Wang , 2000;
Stephansson, 2003,
for reviews]

Poroelasticity Darcy’s Pore Volume
Changes

Effective
Stress

Klosek [1997];
Sakaguchi and
Muhlhaus [2000];
Bruno et al. [2001];
Flekkoy and
Malthe-Sorenssen
[2002]

DEM Darcy’s Porosity-
Permeability
changes

Effective
Stress

Bruno [1994]; Li
and Holt [2001]

DEM Poiseuille Porosity-
Permeability

Effective
Stress

This dissertation DEM LB No-Flow Fluid
Stresses

models using discrete elements coupled with a continuum fluid flow scheme

based on Darcy’s law seem to provide meaningful results [Klosek , 1997; Sak-

aguchi and Muhlhaus , 2000; Bruno et al., 2001; Flekkoy and Malthe-Sorenssen,

2002]. Justifications for this approach suggest that discrete elements themselves

are not grains but a collection of grains larger than a REV for fluid flow. As a

result, these models must use empirical relations, such as the Kozeny-Carmen

equation, to relate porosity to permeability.

Fluid to solid coupling in Darcian (in 2-D) based discrete models is

achieved through integration of fluid force onto the solid, either at the solid

centroid or around the solid perimeter. By the addition of static fluid pres-
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sure to the solid grains, this applies the effective stress condition discussed

in Section 1.3. Movements of the solid grains inhibit or induce fluid flow via

porosity and permeability changes. In the case of a Darcy formulation, coupling

is achieved through modification of hydraulic conductivity in Darcy’s law. In

the case of a flow network model [Bruno, 1994; Li and Holt , 2001], fluid flow

is routed through cylindrical pipes governed by Poiseuille flow with the pipe

diameter acting as a proxy for pore throats. Pipes are given a nominal diam-

eter and as solids move away from one another this diameter is proportionally

increased. Thus, in both of these formulations, the coupling is somewhat indi-

rect because the conductance terms (pipe diameter or permeability) are tunable

parameters with little more than an empirical basis. The LB technique used

in this dissertation approximates the Navier-Stokes equations of fluid flow, no

empirical relations are necessary to relate fluid flux to pressure drop at the

pore scale. Also, the DEM approach does not require strict assumptions about

the relationship between fluid permeability and porosity. Within the LBDEM

framework the hydrodynamics simply evolve with the solid matrix.

1.6 Relationships between Micromechanical Properties and Macro-
scopic Concepts

In many instances throughout, the dissertation attempts to provide

traditional hydrogeologic contexts and interpretations yet the numerical models

utilized in the dissertation are founded on micromechanical theory. Interpre-

tation with traditional contexts is necessary since very little work has been

done using discretely coupled models. In addition, comparison of the models

in the framework of established contexts provides support for their applicabil-
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ity to the problems of interest. Below are a few commonly used continuum

based parameters in hydrogeology and their relationships to microscopic and

micromechanical properties.

1.6.1 Porosity

The porosity of a porous media is the defined as the total volume of

pore space divided by the total volume of the porous media. At a microscopic

level porosity is reflected as the individual pore space between, within, and

surrounding the granular material. Porosity is a quantity that results from

averaging a statistically significant volume of porous media (the REV), and

thus these conditions are not met at the microscale. Important parameters that

are quantifiable at the microscale and are related to the macroscopic porosity

include the mean pore diameter and the surface area to volume ratio.

1.6.2 Permeability

Macroscopic permeability, as used in the context of Darcy’s law, arises

out of the interaction of some fluid with a solid porous matrix. The most im-

portant micro-properties of the porous media that influence macroscopic per-

meability are the connectivity and size of pore throats. Typically as the volume

of pore space in a rock increases the permeability will also increase, reflecting

this relationship. One important aspect in determining the porous media’s

macroscopic permeability is the degree of connection between the porosity. For

example high porosity clay, with substantial pore volume in between clay layers,

will have very low permeability. But, connectivity alone is not a prerequisite

for a high permeability porous media, the length of connections (or tortuosity)
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will play a large role in the observed macroscopic permeability. Anisotropies

in macroscopic permeability arise from directional characteristics of the above

parameters.

1.6.3 Storage Capacity and Hydraulic Diffusivity

The storage capacity of a porous media is a measure of the amount of

the fluid that must be added to or removed from an REV to effect a given fluid

pressure change. Two fundamental micromechanical processes (and ultimately

properties) give rise to this macroscopic phenomenon: fluid compressibility and

the porous media compressibility. The compressibility of fluid occupying a pore

space can be a source or sink of fluid depending on the pressure conditions. At

the microscopic level the amount of fluid produced per change in fluid pressure

is a function of the pore space size and the fluid compressibility. The com-

pressibility of a porous media is defined here as a change in volume of porous

media per change in applied stress. As a result, the porous media compress-

ibility is a strong function of the boundary conditions under which a change

in stress takes place. For example, under drained hydrostatic compression the

compressibility is simply referred to as the bulk modulus. The bulk can be

further broken down into compressibility components related to the granular

material compressibility (i.e. the compressibility of quartz in a sandstone) and

the matrix compressibility. The matrix compressibility arises out of in-elastic

deformation of the porous media that results in pore volume change with no

change in grain volume. In a micromechanical context, the parameters that

control the matrix compressibility are those that limit grain rearrangement,

slippage, and grain breakage. In a micromechanical model these parameters
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are friction, pore space distribution, and grain strength.

As defined above the hydraulic diffusivity is the ratio of permeability

and storage capacity, and thus the micromechanical parameters that control the

macroscopic hydraulic diffusivity are intimately linked to those that determine

permeability and storage capacity. It is assumed that these parameters, such as

porosity, will scale similarly between the permeability and the storage capacity,

although very little work has been done on this subject. For completeness the

important micromechanical parameters in determining the hydraulic diffusivity

are the amount, shape, and distribution of pore space, the fluid compressibility,

the grain compressibility, and the porous matrix compressibility.

1.7 Purpose, Goals, and Scope

It is the goal of this research to explore what control fluids exert on

the initiation and propagation of opening mode fractures. This is accomplished

through utilizing a suite of micromechanical tools to capture macroscopic ma-

terial behavior. The DEM of Potyondy and Cundall [In Press] and the coupled

DEM and lattice Boltzmann method of Cook [2001] and Cook et al. [in press]

are used extensively in this research. A more detailed understanding of the

feedback loop between strong deformations and fluid flow will allow a broader

understanding of coupled processes in sedimentary basins, fault zones, and

geothermal fields.

The coupling between fluid flow and the mechanics of rocks is shown,

in the previous sections, to play a strong role in the behavior of hydrogeologi-

cal systems. In many cases, these examples are limited to systems with purely
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elastic deformations. This dissertation focuses on systems undergoing inelas-

tic deformation, such as fracturing, which have not been previously examined

in a hydrogeological context. The results of this dissertation will enable hy-

drogeologists to understand the importance of fluid pressure and flow on the

distribution of fractures within sedimentary basins. Fractures commonly con-

trol the distribution of permeability in these types of systems, and thus are

important factors in the mitigation of fluid pressure.

Understanding the conditions under which fractures form as the re-

sult of fluid overpressures is of critical importance for structural geologists.

Numerous examples of studies were presented above that call on fluid-induced

fractures, yet much debate still exists as to their prevalence in the geologic

record. Most of the controversy arises from an incomplete conceptual model of

fluid-induced fracture formation. This dissertation provides a physically based

mechanism that meets the requirements of previously described qualitative

models.

An additional and farther-reaching goal of this work is to understand

the relationships between the microscale physics and the resulting macroscopic

behaviors of coupled systems. With the further development of coupled mi-

cromechanical models of fluid-solid physics we can advance our understanding

of the linkage between microscopic and macroscopic behaviors. These types

of models can provide a context to interpret microscopic observations made

in the laboratory and in the field. This includes a better understanding of

the competing roles of mechanical and fluid heterogeneities in rock. With ap-

propriate tools, underlying micro-mechanical processes that control observed
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macroscopic fractures could be understood.

The specific tasks of this research included:

• Using a micromechanical approach (DEM) to capture observed macro-

scopic laboratory observations.

• Linking microscopic (DEM parameters) to macroscopic phenomena and

exploring alternative model representations.

• Demonstrating the application of a calibrated micromechanical model to

large scale fracturing in the Midland Basin, Texas.

• Demonstrating the validity of a coupled micromechanical model (LB-

DEM) to porous media applications.

• Devising numerical and laboratory tests to generate fluid-induced frac-

tures under realistic boundary conditions.

• Exploring the role of fluid pressure gradients in fracture genesis using

physically based micromechanical formulations.

• Demonstrating proof of concept of experimental approach to generating

hydraulic fractures using a laboratory test.

The results of a significant portion of this research apply to both

dry and saturated rock. Most of the work focuses on relatively small scales

and thus may be limited in application to larger spatial scales. Also, the

assumptions associated with the 2-D models used in this study may not allow

for the generalization of some of the specifics in this work to 3-D situations

with complicated stress fields.
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1.8 Organization of this Dissertation

Each chapter in this dissertation is a stand-alone document, suitable

for publication in a refereed journal. Additional supporting material is included

in the appendices, where appropriate.

The next 2 chapters (2-3) focus on micromechanical modeling of dry

rock at multiple scales. These chapters set the stage for chapters 4-6, which

investigate a coupled system of fluid and rock. Chapter 2 presents a discrete

element method application and calibration procedure for sedimentary rocks.

Chapter 2 has been published by Boutt and McPherson [2001]. Chapter 3

represents an application of the calibrated models from Chapter 2 to a large-

scale fracturing problem in the Midland Basin. Portions of Chapter 3 have

been accepted for publication in Geofluids journal.

Chapter 4 presents an alternative modeling approach to coupled fluid-

solid problems developed by Cook [2001] and Cook et al. [in press]. Since the

model has been only used previously for very specific applications, Chapter 4

explores the model’s capabilities in solving problems in porous media. Chap-

ter 5 examines some very detailed model comparisons to canonical fluid dy-

namics problems and 1-D poroelastic analytical solutions. Chapter 5 has been

submitted for publication to the Journal of Geophysical Research. Application

of the model presented in Chapter 4 and Chapter 5 to natural hydraulic fractur-

ing is addressed in Chapter 6. Detailed examinations of the physics governing

the process and associated implications for field relations are explored. The last

section of this chapter includes results of laboratory experiments replicating the

conditions used in the numerical study. Finally, conclusions and discussion of
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future work are included in Chapter 7.
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CHAPTER 2

SIMULATION OF SEDIMENTARY ROCK
DEFORMATION:

LAB-SCALE MODEL CALIBRATION AND
PARAMETERIZATION1

Abstract

Understanding the mechanical behavior of rock is critical for researchers and

decision-makers in fields from petroleum recovery to hazardous waste disposal.

Traditional continuum-based numerical models are hampered by inadequate

constitutive relationships governing fracture initiation and growth. To over-

come limits associated with continuum models we employed a discrete model

based on the fundamental laws of contact physics to calibrate triaxial tests. Re-

sults from simulations of triaxial compression tests on a suite of sedimentary

rocks indicate that the basic physics of rock behavior are captured. Evidence

for this conclusion lies in the fact that one set of model parameters describes

rock behavior at many confining pressures. The use of both inelastic and elas-

tic parameters for comparison yields insight concerning the uniqueness of these

models. These tests will facilitate development and calibration of larger scale

1Portions of this chapter appeared in Geophysical Research Letters: Boutt, D.F. and
B.J.O.L. McPherson, Simulation of Sedimentary Rock Deformation: Lab-Scale Model Cal-
ibration and Parameterization, Geophys Res. Letters, 29(4), 10.1029/2001GL013987, 2002.
Copyright by the Americal Geophysical Union.

47



48

discrete element models, which may be applied to a wide range of geological

problems.

2.1 Introduction

The mechanical behavior of sedimentary rocks is an important as-

pect of many investigations in the earth sciences. Previous workers analyzed

these behaviors in the laboratory and made fundamental advancements (See

Lockner [1995] for review). This paper highlights an investigation of the mi-

cromechanical behavior of sedimentary rocks using the discrete element method

(DEM) pioneered by Cundall [1971] and Cundall and Strack [1979]. This type

of DEM simulates the mechanical behavior of rock by idealizing the system

as a collection of separate particles bonded together at their contact points,

and utilizes the breakage of individual structural units or bonds to represent

damage. The DEM used successfully models the behavior of rocks, particu-

larly damage and non-linear behaviors, by employing simple contact models

[Potyondy et al., 1996; Hazzard et al., 2000; Potyondy and Cundall , In Press].

Models that explicitly include damage are unique and far more robust than

models that indirectly represent damage through empirical relations, such as

continuum models. In the DEM constitutive behaviors are results rather than

assumptions.

This study builds on previous DEM studies by exploring model be-

havior at a variety of stress states through attempting to explicitly reproduce

select rock behavioral properties and to identify correlations between model

results and observed rock behavior. In examining a variety of stress states

we found that particle clustering (groups of bonded particles) allow a more
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expanded range of micromechanical behaviors. In addition, by examining mul-

tiple stress states we determined important micro-parameter relationships that

are not otherwise apparent.

2.2 Modeling Approach

2.2.1 Limitations of Previous DEM Studies

Previous DEM studies [Hazzard et al., 2000; Bruno and Nelson, 1991;

Wang et al., 2000; Potyondy , 2002; Potyondy and Cundall , In Press] of lab-

oratory scale mechanical behavior examined very limited sets of tests under

similar stress states. Results of these tests and simulations may be too specific

to the chosen tested stress states and not adequately represent general rock

behavior. In many cases the microparameters (i.e., DEM model parameters)

that govern macroscopic rock behavior reproduce the specific stress state, but

do not provide a complete failure envelope. A more robust approach is to use

many stress states to define the relevant microparameters (i.e., macroscopic

rock properties). This would result in a more complete comparison and also

reduce the number of degrees of freedom. Other research (e.g., Li and Holt

[2001]) examined compaction and dilation of highly porous rock at different

confining pressures, but did not compare model results to laboratory test data.

2.2.2 Selection of Parameters to Calibrate

For our purposes, the most important material properties to calibrate

are the elastic and inelastic rock properties, including Young’s modulus, Pois-

son’s ratio, failure strength (at many confining pressures), and style of failure

(uniaxial splitting or shear faulting, cataclastic flow, ductile). The style of fail-
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ure is very important in a rock deformation model since it is an explicit control

on the distribution of brittle deformation taking place. We have observed that

strain localization in our models of rock can be somewhat distributed and duc-

tile in nature and still match the observed elastic and inelastic parameters.

Thus it is important to replicate both elastic and inelastic strain accumulation.

An exact match to the shape of the stress-strain curve is not sufficient since

most rocks undergo some inelastic deformation during laboratory tests due to

flaws in addition to the inherent randomness of both samples and models.

2.2.3 Methods

We are using a commercially available DEM code called Particle Flow

Code in 2 Dimensions (PFC2D), developed by Itasca Consulting Group, Inc

[Itasca Consulting Group, 1999]. A detailed description of the two- and three-

dimensional PFC model and the theory is provided by Potyondy and Cundall

[In Press] and Hazzard et al. [2000]. Mechanical measurements of a suite of

sedimentary rocks from the Midland Basin, Texas were selected for analysis.

The Midland Basin rocks vary in lithology from fine-grained sandstones to

laminated mudstones with little matrix porosity and exhibit a wide range of

unconfined failure strengths (between 137 MPa and 220 MPa). For more details

concerning the rocks, associated properties and data collection see Lorenz et al.

[2002] and Sterling [2000].

The bonded-particle model (BPM) detailed in Potyondy and Cundall

[In Press] is an implementation based on DEM that constructs a bonded DEM

system. The BPM consists of methods to generate elements, pack them into a

region, and prescribe particle and bond parameters. Use of the BPM allows a
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consistent means of generating and assigning parameters to a bonded-particle

model. In addition to particle density, particle shape, and particle size distri-

bution, a set of 8 parameters, 10 if using both contact bonds in addition to

parallel bonds, completely defines a BPM. These parameters are (equation (17)

of Potyondy and Cundall [In Press]):

{Ec, (kn/ks), µ} particle microproperties

{λ̄, Ēc, (k̄
n/k̄s), σc, τc, σ̄c, τ̄c} bond microproperties

(2.1)

where Ec and Ēc are the Young’s moduli of the particles and parallel bonds,

respectively; (kn/ks) and (k̄n/k̄s) are the ratios of normal to shear stiffness of

the particles and parallel bonds, respectively; σc and τc are the tensile and

shear strengths, respectively, of the contact bonds; λ̄ is the radius multiplier of

the parallel bonds; µ is the particle friction coefficient; and σ̄c and τ̄c are the

tensile and shear strengths, respectively, of the parallel bonds. Equation (18)

of Potyondy and Cundall [In Press] is used to relate the particle and parallel-

bond moduli to the corresponding normal stiffnesses such that the particle and

parallel-bond stiffnesses are assinged as

kn := 2tEc, t = 1,

ks := kn

(kn/ks)

k̄n := Ēc

R(A)+R(B)

k̄s := k̄n

(k̄n/k̄s)

(2.2)

where R is the particle radius of particle A and B.

In this chapter we explore the effect of an additional parameter,

namely the maximum number of elements within clusters (Sc). Particle clus-

tering (Potyondy and Cundall [In Press]) refers to the process of bonding 2 or
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more particles with a normal and shear strength greater than the strengths of

the bonds between the clusters themselves (inter-cluster bonds). In practical

terms, clustering is intended to make the DEM particles or particle clusters

more closely mimic the mechanical behavior of rock grains or groups of grains.

Laboratory conditions are explicitly reproduced in the model, includ-

ing servo controlled confining pressure, platen velocity, and sample size. The

particle size distribution was uniformly distributed with the smallest particle

being 1.0 mm (Dmin) and the largest being 1.66 mm (Dmax) in diameter in an

area 0.0254 m wide by 0.0508 m long. Models specimens were built using the

material-genesis procedure described in Potyondy and Cundall [In Press]. This

process consists of placing a pre-calculated number of particles in a box and

iteratively increasing their size until the assembly is well packed. Care is taken

such that the minimum number of contacts on each particle was close to three.

Isotropic stress (the initial stress state) in the assembly is then adjusted to 1

MPa by changing particle size iteratively until the desired value is reached. At

this point the elements in contact are then bonded together.

We do not stipulate that a single particle will represent a single rock

grain, but rather the assembly represents a collection of spatially averaged

grains [Hazzard et al., 2000]. Each model therefore consisted of roughly 1000

particles giving an average of 22 particles along the shortest dimension of the

model. This number of particles ensures the model is not sensitive to our choice

in particle size, using the criteria of Huang et al. [1999].

Table 2.1 gives the values of input microparameters for each of the 4

models. Particle densities were set at 2600 kgm−3 for all models. For all the
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models described in this chapter, a local non-viscous damping was used with

a coefficient of 0.7 to approximate quasi-static behavior. Both contact and

parallel bonds were used in all of the models. The addition of contact bonds

with different strengths than the parallel bonds allows for a two-step failure of

the material. The presence of contact bonds at different strengths than that of

parallel bonds appears to improve the ability of the model to capture the trend

of increasing material strength with confining pressure. All bonds (contact and

parallel) within clusters had 650 MPa strength magnitudes, whereas all bonds

between clusters had the strengths shown in Table 2.1. Cluster size (Sc) varied

between 2 and 3 for the models presented.

Clusters in these models were generated from a densely packed par-

ticle assembly by traversing the bonded-particle contacts (See section 3.4 of

Potyondy and Cundall [In Press]). Each cluster is grown by selecting an indi-

vidual particle and then adding adjacent particles to the cluster until the value

of Sc is reached. This results in a distribution of cluster sizes throughout the

packed assembly (Figure 2.1). Preliminary work on effects of cluster geome-

try indicates that it has a strong influence on the slope of the compressional

strength envelope.

2.3 Results and Discussion

2.3.1 General Relationships Among Microparameters and
Macroparameters

Our procedure for attempting to reproduce the rock behavior began

with an extensive sensitivity study attempting to elucidate which microparam-

eters exerted the strongest control on the macroparameters of interest. We
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Table 2.1: Input Microparameters for DEM Models. Parameters notation is
consistent with the notation of Potyondy and Cundall [In Press] to allow for
comparison.

1U-1 5U-3 5U-4 5U-6

kn/ks, k̄n/k̄s (-) 0.5 0.5 0.5 0.5

Ec, Ēc (GPa) 23.5 13.5 23.5 22.0
µ (-) 0.7 0.6 0.7 0.5
σ̄c (MPa) 18.0 10.45 10.5 12.5
τ̄c (MPa) 144.0 83.6 84.0 100
σc (MPa) 24.0 20.9 15.75 25.0
τc (MPa) 192 167.2 126.0 200.0
λ̄ (-) 1.0 1.0 1.0 1.0
Sc (-) 3 2 3 2
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Figure 2.1: A histogram of the distribution of cluster sizes in a 3 cluster model
indicates that not all of the clusters are 3 large. A small number of 2 clusters
and single elements are present.
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attempt to describe what microparameters were found to control which macro-

scopic model behaviors (macroparameters). The particle friction coefficient (µ)

and particle clustering (Sc) attributes were found to increase the slope of the

compressive failure envelope. This results in an increase in failure strength

of the higher confining pressure samples, possibly due to interlocking of the

clusters [Boutt and McPherson, 2001]. We suggest that the particle friction

coefficient has a similar effect on failure strength.

The normal and shear contact and parallel bond moduli (Ec, Ēc) in-

fluence the elastic parameters, with the ratio of the normal to shear stiffnesses

(kn/ks, k̄n/k̄s) having a larger effect on the exhibited Poisson’s ratio of the

assembly. The contact and parallel bond strength (σc, τc, σ̄c, τ̄c) of the inter-

cluster bonds of a clustered material is set such that it controls the uniaxial

compressional strength with the particle clustering controlling the slope of the

failure envelope.

2.3.2 Calibration of Failure Mode

Our initial modeling efforts suggested that even though quantitative

and consistent calibrations between the simulated and observed material prop-

erties were possible, the type and mode of failure was quite different in the

model than those measured or observed in the actual rock deformation tests.

In some cases a somewhat non-localized ductile type of failure was observed.

We believe that the model assembly was failing in a non-localized manner be-

cause shear and normal bond strengths were similar. The model was failing

preferentially through shear bond breakages, whereas failure and localization

depend on differential stress and interparticle shear strength. Models with
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high ratios of shear to normal bond strength (> 4) produce a well defined

shear plane, as illustrated in Figure 2.2. A similar conclusion was documented

by Huang et al. [1999]. In summary, the ratio of shear to normal bond strength

in the DEM plays an important role in strain localization. Greater than 90%

of the bonds in each model failed in tension, indicating that the interparti-

cle tensile strength is the key micro-process controlling both localization and

failure in the specimens. By using quantitative (and qualitative) measures of

inelastic processes in addition to elastic properties for comparison we derive

microparameter relationships that are otherwise undeterminable.

The evolution of strain localization in a modeled sample via a through-

cutting shear fault is depicted for a sample under uniaxial stress in Figure 2.2.

In this plot, gradients of displacement are contoured to emphasize areas under-

going differential movement [Morgan and Boettcher , 1999]. A stark contrast in

displacement gradient magnitudes indicates that regions on either side are mov-

ing coherently. The gradients are then plotted at different times throughout

the test and are related to the axial stress-strain plot by the numbers above the

individual plot. Before peak stress, stage 1 through 2, the sample exhibits very

low magnitudes of displacement gradients. A slight amount of localization is

developed in stage 3 where a linear feature first appears. At peak stress, stage

4, the sample begins to show displacement gradients that resemble a failure

plane. Stages 5 through 7 show the post peak behavior where the through go-

ing shear fault is realized and destruction of the sample begins by development

of splays off the main fault. This is consistent with our laboratory observations

and with the results of Menendez et al. [1996]. Progression of strain localization

in the modeled samples is captured with the calculated displacement gradients,
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which indicate a good match between the model and laboratory observations.

2.3.3 Strength Envelopes

Using the above results as a guide, we used an iterative process in an

attempt to mimic the full compressive strength envelope of the rock as well as

appropriate failure modes, using a single and unique set of micro-parameters.

This entailed generating multiple DEM assemblies with the same microparam-

eters and running simulations at the same confining pressures as the laboratory

tests. Figure 2.3 shows the comparison between simulated and observed com-

pressive failure envelopes for four different rock samples, at various confining

pressures. The match is qualitatively consistent – the differences in the model

results compared to the laboratory tests are well within the reproducibility

of the laboratory test results. The clustered material appears to increase the

overall slope of the compressive failure envelope, which is not attainable using

unclustered material and realistic microparameters.

2.3.4 Stress-Strain Curves

In the DEM model, we calibrated the slope of the stress-strain curves

to the intrinsic elastic properties of the rock. Both the observed and simu-

lated differential stress versus axial strain and volumetric strain versus axial

strain including load-unload loops are plotted in Figure 2.4 (See Jaeger and

Cook [1969] for discussion of load-unload loops). The dashed lines indicate the

curves for the simulated rock and the solid line the observed rock. Since the

model is calibrated to the intrinsic elastic properties and not the damaged rock

the stress-strain curves take on different forms, as illustrated in Figure 2.4a.
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Figure 2.3: Simulated and observed compressive failure envelopes for 4 different
groups of sedimentary rocks from the Midland Basin. Failure envelopes were
determined by plotting peak stress at the given confining pressure. A good
match is achieved through adjusting the main parameters controlling the slope
of the compressive failure envelope, particle friction (0.5 in all models) and
cluster size. Note the difference in slope between the unclustered material and
the models in this study.
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Much more strain is observed in the real rock due to processes not captured

in the simulated rock, such as grain boundary sliding and preexisting cracks.

The plots of volumetric strain versus axial strain (Figure 2.4b) highlight vol-

ume changes in the samples over the course of the triaxial tests. As sample

loading begins, initial compaction takes place (positive volumetric strain) un-

til approximately 0.9% axial strain, then a sharp increase in volume occurs.

This is documented in both the laboratory and the model and is termed shear-

enhanced dilation, common in low porosity, fined-grained sedimentary rocks

[Brace, 1978; Wong et al., 1992]. The simulated and observed stress-strain

curves are quite similar in terms of their general trends in volume changes as

well as timing of these events.

The post-peak behaviors in the simulated samples are quite different

than in the laboratory as shown in Figure 2.4. This may be best explained

by considering the stiffness of the testing machine vs. the model stiffness. In

a very compliant system, as typically most triaxial compression devices are

[Shimamoto et al., 1980], a significant amount of energy is absorbed by the

machine and consequently released upon failure of the sample. This energy

causes inertial effects in the sample, rapid propagation of the shear fracture,

and a steep drop in stress. Post peak comparison of stress-strain curves using

this data is not possible.

2.4 Conclusions

The numerical approximation of the mechanical behavior of rock is

difficult using traditional continuum-based models that typically are hampered

by inadequate constitutive relationships governing crack initiation and growth.
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Figure 2.4: Simulated and observed differential stress and volumetric strain
versus axial strain curves for sample 5U-4. Solid lines represent observed lab-
oratory data at the confining pressure marked on the plot and dashed lines
represent simulations. Differences in the position of the curves along the x axis
are due to a choice in elastic parameter calibration (intrinsic versus damaged
rock properties). The general trends in the curves are captured.
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The discrete model applied in this study has been shown to match the observed

laboratory data very well with model microparameters chosen by comparing

elastic and inelastic material behavior. Calibrated models of rock behavior

could be used to explore scaling relationships as well as provide insight into the

micromechanics of rock fracture.

The modeled progression of strain localization in the samples is clearly

captured with the calculated displacement gradients that indicate a good match

between the model and laboratory observations. Post-peak comparison of

stress-strain curves using data from a non-stiff triaxial machine is not possible.

The ratio of shear to normal bond strength in the DEM plays an important role

in strain localization. Clustered material appears to increase the overall slope of

the compressive failure envelope, which is unattainable using un-clustered ma-

terial and realistic microparameters. The simulated and observed stress-strain

curves are quite similar in terms of their general trends in volume changes as

well as timing of these events. Finally, by utilizing more than one calibration

parameter, looking at failure envelopes and failure modes, we have identified

microparameter relationships that would not be apparent otherwise.
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CHAPTER 3

APPLICATION OF DISCRETE ELEMENT
MODELING TO UNDERSTANDING

THE FORMATION OF SHEAR FRACTURES IN THE
SPRABERRY TREND, MIDLAND BASIN1

Abstract

The Spraberry Formation in the Permian Basin, Texas, is a textbook example

of a highly fractured formation, including extension and shear fractures. Within

local areas of the Midland Basin, at least two sets of natural fractures exist in

two reservoir intervals, but exhibit different characteristics. One hypothesis re-

garding the genesis of Spraberry Formation fractures is that high fluid pressures

reduced effective stresses during the basin’s geologic history, allowing ambient

but unremarkable (i.e. very low) tectonic stresses to induce failure. Another

hypothesis is that weak Laramide-age compressional stresses alone caused the

fracture sets. Initial modeling of basin evolution suggests that high pore fluid

pressures were not attained, at least at regional scale. Therefore we explore

the possibility of inelastic deformation in the absence of high fluid pressures.

We focus on this point, using a calibrated DEM model of Spraberry Forma-

tion strata to investigate whether weak compressional forces of the Laramide

1Portions of this chapter have been submitted to GEOFLUIDS: McPherson, B.J.O.L.
Boutt, D.F. The role of fluids in causing fracturing in the Spraberry Trend, Midland Basin.

66



67

orogeny could have caused the shear fractures to form. Despite model limita-

tions, 2-D plane parallel model (modeling shear mode only) and current-day

rock properties, simulation results suggest that a mild compressional episode

of geologically short duration may induce deformation, in the form of shear

fractures. The interactions between mechanically distinct units are observed

to deflect and transfer stresses resulting in more deformation in some beds and

restricting deformation in others compared to a homogeneous model. Char-

acterization of the mechanical properties, such as the Young’s modulus and

Failure strength, of significant lithologic units could enable a better under-

standing of the role of mechanical stratigraphy in tectonically quiescent basin

settings.

3.1 Introduction

The hydrodynamic regimes of deep sedimentary basins are usually af-

fected, and often controlled, by fractures. Much research has been devoted to

understanding the effects of faults and fractures on fluid flow patterns (e.g., Mc-

Caig [1989]; Forster and Evans [1991]; Nordqvist et al. [1992]; Bai et al. [1993];

Caine et al. [1996]). Many studies specifically acknowledge that fractures form

in the presence of fluids with fluid pressures at or above hydrostatic, some ex-

amples being Hubbert and Rubey [1959], Secor [1965], Atkinson [1984], Pollard

and Aydin [1988], Boone and Ingraffea [1990], Lorenz et al. [1991], Cheng et al.

[1993], and Renshaw and Harvey [1994]. For example, Secor [1965] used the

concept of effective stress outlined by Hubbert and Rubey [1959] to show that

tensile fractures form under compressive stress if pore fluid pressures are great

enough. More recent studies, for example Boone and Ingraffea [1990] and Ren-
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shaw and Harvey [1994], focus on poroelasticity and crack-tip modeling using

sophisticated coupled finite element and finite difference models.

This study builds on these earlier works, with a primary hypothesis

that is fairly specific: fractures commonly form preferentially in overpressured

areas of sedimentary basins, inasmuch as high fluid pressures facilitate the for-

mation of fractures and regional-scale fracture networks. In other words, fluid

pressures may reduce effective stresses enough to permit otherwise insufficient

tectonic stresses to induce fracturing.

The Spraberry Formation in the Midland Basin, Texas, is a highly

fractured formation that has been deemed the ”largest uneconomic oil field in

the world” [Guevara, 1988]. Fracture genesis in the Spraberry Formation has

been attributed to range of possible forces. Changes in sediment volume due

to compaction, regional tension and local uplift were all possible mechanisms

cited by Warn and Sidwell [1953] and Guevara [1988]. Another hypothesis has

been that the fractures are due to a weak force sustained over a long period

of time [Schmitt , 1954]. Winfree [1995] and Lorenz et al. [2002] suggest that

compressional forces exerted on the region during the Laramide orogeny are

the primary cause of fracturing, whereas Sterling [2000] suggests that high

fluid pressures during the basin’s history likely played an important role in

fracture genesis.

Modeling of basin evolution suggests that high pore fluid pressures

were not attained, at least at regional scale. Therefore it is useful to explore

the possibility of inelastic deformation in the absence of high fluid pressures.

Rather than provide a systematic test of different options, will focus on this
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point, using a regional-scale approach and geologically reasonable loading pa-

rameters. Our regional-scale approach is particularly suitable for the Midland

Basin because of its very simple structure and stratigraphy, and its simple geo-

logic history. Additionally, fractures in this basin appear to be regional-scale in

origin as suggested by the fact that fractures produced by local flexure would

not have regional parallel orientations [Winfree, 1995]. The parallel orienta-

tion of fractures across the entire region suggests that the fractures formed by a

large-scale mechanism probably associated with regional tectonic compression

[Lorenz et al., 1991; Winfree, 1995], perhaps in tandem with the regional-scale

overpressuring that is common to many sedimentary basins [Law and Spencer ,

2000]. We are restricted to use the current rock properties, which may or may

not be similar to those of the rocks during the laramide, and investigate model

response to end load using a 2D plane parallel model. Thus, are effectively

investigating out-of-plane deformation (which precludes consideration of ex-

tension fractures) of system similar to present-day system. Although not a

comprehensive approach, this is nevertheless a good beginning point for con-

sidering mechanics of an evolving basin.

3.2 Geologic Setting and Background

The Midland basin consists of shallow-marine shelf to shelf-margin

carbonate and deep-basin deposits of Pennsylvanian and Permian age [Galley ,

1958; Handford , 1981; Guevara, 1988]. Figure 3.1 includes a structure-contour

map of the upper Spraberry Formation (adapted from Bai [1989]) for a 64 km

by 31 km area within the basin, illustrating that the Spraberry Formation is

generally homoclinal with a gentle dip of less than 1o to the west and into
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the deepest part of the basin. The Spraberry Formation lies between units of

contrasting mechanical and hydrologic properties. The Spraberry Formation

consists of a series of interbedded sands and shales, ranging in thickness from

200 m at the margins to 400 m at the basin’s depositional center [Stanley

et al., 1951; Guevara, 1988]. These sediments are interpreted as submarine

fan complex deposits [Tyler and Gholston, 1988; Guevara, 1988]. In recent

literature, the Spraberry Formation has been divided into sub-units, primarily

to distinguish between areas of high and low oil production [Guevara, 1988;

Lorenz et al., 2002]. In particular, the 10 to 15 feet thick 1U and 5U sands of

the Spraberry Formation are designated as the most productive reservoir units

in the Midland County area, but production is rare to nonexistent in shale

layers [D. Schechter, personal communication, 1998].

3.2.1 Observed Fractures

Extensive natural fractures are observed in the Spraberry Formation,

despite its stable geologic setting with minimal folding and faulting [Lorenz

et al., 2002]. Analysis of horizontal core from the E. T. O’Daniel #28 well

indicated that a minimum of three sets of fractures are observed in the up-

per Spraberry Formation. The three sets are different in orientation, location,

spacing, type and mineralization (Figure 3.2). The first set consists of exten-

sion fractures that have a northeast strike (average 43o; Figure 3.2). These

northeast (NE) striking fractures are limited to the 1U sand and silt reservoir

facies, and have a low variability in strike [Lorenz et al., 2002]. The second

set consists of right-lateral shear fractures that strike north-northeast (average

32o; Figure 3.2). This set is only observed in sand and silt layers in the 5U.
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Figure 3.2: Rose diagram showing the trends of observed fracture sets in the
Spraberry Formation.

The last fracture set strikes east-northeast (average 70o), and also includes ex-

tension fractures. This set is observed within the 5U-reservoir sand and silt

unit, as well as within the black shales that overlie both 1U and 5U reservoirs.

Lorenz et al. [2002] provides a thorough description and analysis of observed

fractures in the Spraberry Formation within the area of interest of this study.

3.2.2 Possible Fracture Mechanism

Observed fractures in the Spraberry Formation (Figure 3.2) provide

a number of clues about the potential forces and orientations of stresses that

caused them. The geometry of observed shear fracture sets in the Midland

basin suggests that at the time of failure, σ1 was horizontal and trended

northeast or northwest. Two sets of surface lineaments and fractures, strik-
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ing both northeast and northwest, were observed and described by Stanley

et al. [1951] and Guevara [1988], and were linked genetically to Spraberry For-

mation shear fractures by Stanley et al. [1951]. If this analysis is correct, it

suggests that Spraberry Formation fractures formed since the deposition of sur-

face sediments in the early Cretaceous, coincident with timing of the Laramide

orogeny, ∼ 80 − 40 Ma. The inferred northeasterly orientation of σ1 is also

consistent with the direction of weak regional compressive forcing imparted by

the Laramide orogeny. Recent sonic velocity anisotropy orientation measure-

ments of Spraberry Formation core suggest that present-day stresses are ori-

ented in the northeastern direction, too [D. Holcomb, written communication,

1998]. Additionally, Winfree [1995] suggests that subsequent extension has

helped maintain or keep fractures open. In sum, this evidence suggests that

fractures in the Spraberry Formation could possibly be related to Laramide

forces, whether caused exclusively by compressional forces and maintained by

extension, or by a combination of these forces with elevated fluid pressures, as

discussed in McPherson and Boutt [Accepted].

3.3 Role of Laramide Compression in Fracture Formation

The basin evolution model analysis presented in McPherson and Boutt

[Accepted] suggests that high fluid pressures were not likely to have formed in

the Midland basin during its history. At the minimum, observed present-day

rock properties do not favor overpressuring. Based on these results, it is con-

cluded that elevated fluid pressures probably played a minor role, if any, in

causing observed fractures in the Spraberry Formation. We turn our attention

to whether or not inferred low strain rates (resulting from small stresses) asso-
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ciated with the Laramide orogeny could induce significant fracturing, unaided

by high fluid pressures. This issue is addressed using a 2-dimensional (2-D)

discrete element method (DEM) modeling approach.

3.3.1 DEM Model of Laramide Compression

The DEM entails simulating the mechanical behavior of rock by ide-

alizing the system as a collection of separate particles bonded together at their

contact points and utilizing the breakage of individual structural units or bonds

to represent damage [Cundall and Strack , 1979; Cundall , 1986; Potyondy et al.,

1996]. Each particle has unique properties and represents a collection of me-

chanical units. The particles do not represent grains, but are meant to discretize

space much like cells or elements in continuum models. This method is unique

because of its inherent ability to represent damage or fractures in a direct fash-

ion as well producing realistic non-linear behavior using simple contact laws

governed by Newtonian mechanics [Saltzer and Pollard , 1992; Hazzard et al.,

2000; Potyondy and Cundall , In Press]. Details of model input parameters

and algorithms used in DEM code for the modeling is provided Chapter 2 and

Potyondy and Cundall [In Press].

Our DEM model was calibrated to the measured mechanical proper-

ties of the Spraberry Formation calculated from laboratory triaxial tests that

are detailed by Sterling [2000]. Details of the calibration process are described

by Boutt and McPherson [2001] and Potyondy and Cundall [In Press]. Rocks

from each individual sub-unit of the Spraberry Formation were calibrated sep-

arately and the parameters recorded.
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DEM assemblies were built by generating particles through the fill

and expand technique with a uniform normal distribution to completely fill

the domain of interest, and then compacted until a low isotropic stress was

achieved. The final step was assignment of the parameters to the Spraberry

Formation model units. Boundary conditions assigned to the top and bottom

of the model were constant stress (representing the minimum stress direction).

This implies that the assembly can strain from the top and the bottom, but

the overall stress will remain constant. This is justified because the assembly

was loaded to emulate the burial conditions imposed on the unit during the

Laramide orogeny. As predicted by the burial history [McPherson and Boutt ,

Accepted], the amount of overburden on the unit during the Laramide orogeny

was essentially constant, therefore no change in the minimum stress was im-

posed. The boundary conditions on the sides of the model were assigned as

constant strain rate. No measured strain or shortening rates for the Midland

basin exist, and therefore we used a strain rate typical of mildly compressive

regions [Twiss and Moores , 1992]: a strain rate of 3 ∗ 10−171
s

wasapplied for

5.4 Ma, inducing a cumulative strain of 0.0051 or 0.51 % in the direction of

compression. This strain is significantly higher than those reported by Lorenz

et al. [2002]. They reported a strain of 0.1 % for extension fractures parallel

to the assumed maximum stress direction during the Laramide. Given that

this strain is normal to our direction of compression and the small Poisson’s

Ratio reported for these rocks (0.03-0.11), our value of strain rate used is very

appropriate. This amount of strain is also consistent with the lack of structures

found within the Midland Basin [Winfree, 1995].

Our modeling results are limited by the two-dimensionality of the
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model. It is well established that the fractures present in the Spraberry For-

mation are three-dimensional structures. In this initial idealization, we chose to

model 2-D sections oriented parallel to the assumed shortening direction. This

is justified because (1) boundary conditions are established for this section and

(2) a wealth of information exists for stratigraphy in this orientation. As a

consequence of modeling this particular section we are not able to resolve the

exact orientation of fractures observed in the Spraberry Formation. Instead, we

are simply attempting to show whether, for a given set of material properties,

the assumed strain rates were or were not large enough to cause deformation

in the Spraberry Formation.

Plots of results are generated by first gridding the cumulative dis-

placements for all particles in the DEM model for a timestep and then taking

the spatial gradients of the resultant vectors (See Chapter 2 for an example).

This technique highlights differential movements in the assembly by highlight-

ing areas where strong contrasts in displacements occur. A fracture or fault

marks a discontinuity in an otherwise coherent medium and thus will show a

strong gradient of overall movement (cumulative displacement) with respect to

some coordinate system. Figure 3.3 depicts results of a homogeneous one layer

model of the Spraberry Formation. The boundary conditions are depicted in

Figure 3.3. The estimated Laramide strain rate described above was applied

as the side boundary conditions. This model is composed of 5U rocks and the

elastic properties of the rock type is summarized in Table 3.1.

Displacement gradients are also shown in Figure 3.3. The deformation

field is very heterogeneous, highlighted by distinct regions of high magnitude
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Table 3.1: Elastic and in-elastic data for units used in the 1-layer and 3-layer
models.
Property 1U-3 5U-6 3 Layer Model
Young’s Modulus (GPa) 40.2 20.8 20
Poisson’s Ratio 0.088 0.112 0.03
Failure Strength (MPa) 250.3 159.2 N/A
Bulk Modulus (GPa) N/A N/A 12.2

displacement gradients (brighter regions of Figure 3.3). Large displacement

gradients exist throughout the model and are coincident with the occurrence

of bond breakages between the individual discrete elements.

These deformation patterns (Figure 3.3) are not apparent from simply

examining the cumulative displacement field; the gradients must be calculated.

We interpret these patterns to represent areas of strain localization where ad-

jacent regions are undergoing differential movement. That is to say that the

regions represent discontinuities, or in this case, shear fractures, consistent with

the interpretations of Lorenz et al. [2002]. In sum, even for the relatively small

strain rates applied, distinct deformation zones form in the model. We sug-

gest that the relatively weak compression rates associated with the Laramide

orogeny are sufficient to induce deformation, without the need for excessive

fluid pressures to reduce effective stress.

3.3.2 Fracture Variability: DEM Model Simulations

We believe that mechanical interactions (both inelastic and elastic)

or stress amplifications (see Lorenz et al. [1991] and Eshelby [1957]) among the

units of the Spraberry Formation may cause variability in induced fractures.

This hypothesis suggests that elastic and inelastic behavior of any given rock
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Figure 3.3: Results of the 5U simulation plus boundary conditions. Spraberry
Formation strata consist of thin reservoir sands surrounded by thicker fine
grained silts and shales. Resultant displacement gradient contours of the 5U
model show significant deformation. It is possible that the properties of the
surrounding units may influence how individual units behave mechanically.
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unit is influenced by the surrounding rock units. In other words, the effective

elastic and inelastic properties of a suite of units may be different from the

properties of the individual units. We used 2-dimensional DEM models to

evaluate this problem.

Scaled DEM models of the Spraberry Formation stratigraphy were as-

sembled using the calibrated parameters. We assembled 3-layer models in the

vertical direction, rather than a homogeneous model in the horizontal direc-

tion (Figure 3.3), attempting to capture the physics of mechanical interactions

between layers. The top and bottom boundary condition was set to the over-

burden load as determined via the basin evolution model. We examined several

different scenarios using a combination of the different material properties of

the Spraberry Formation. The model discussed here is a 5U reservoir sandstone

sandwiched between 2 equally thick 1U shales. The significance of reconstruct-

ing a heterogeneous set of units (i.e. mechanical stratigraphy) is that they may

influence each other in terms of their abilities to transfer and deflect stresses.

Simulation results are depicted in Figure 3.4. This model has two

equally thick outer layers (50 % of total thickness) of the properties of the

Spraberry Formation 1U-3 unit and one middle layer of the 5U-6 unit which

also makes up 50 % of the thickness. The elastic and inelastic properties

for these units are summarized in Table 3.1. The geometry is illustrated in

Figure 3.4b by the dashed lines. The 1U-3 unit is much stronger and stiffer,

both in terms of its unconfined failure strength and its modulus of elasticity,

compared to the 5U-6 unit. The strength of the bonds between layers was

assigned as the average of the of the 1U-3 and 5U-6 layers. Results suggest this
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heterogeneity has a strong influence on the behavior of the systems. Figure 3.4a

depicts a gridded, filled contour plot of cumulative spatial displacement. The

overall direction of the displacement vectors is horizontal and towards center,

indicative of compression. We observed small changes in the direction of the

displacement vectors at a local scale. Spatial displacement gradients of this

field (Figure 3.4b) show a heterogeneous deformation field.

We suggest that the units are responding differently to the applied

stress solely because of contrasts in their properties. To isolate or highlight con-

trasts in behavior among the two units, we subtracted the 5U-6 displacement

gradient results shown in Figure 3.4b from those for a 1-layer (i.e., homoge-

neous) model with the properties of the 5U-6 unit (Figure 3.3). This is depicted

in Figure 3.4c, illustrating a distinct difference from the homogeneous case by

having non-zero displacements in the middle layer. The organization of the

displacement gradients of the 5U-6 layer suggests that this layer is undergoing

strain localization differently than that observed for the homogeneous case.

Lastly we examined the effect of relative proportions of the 1U and

the 5U on the overall failure behavior of an ensemble. Simulations with 0, 25,

50, 75, and 100 percent 1U units were generated with the same dimensions

as described above. In all cases where the 5U unit was present, it was placed

between two 1U layers with thicknesses of that given by the above percentages.

For example, the model described above is the 50 % case where the 5U unit is

sandwiched between two smaller 1U units. In these cases we loaded the layered

system until failure, as determined by a loss in strength of the assembly, and

the time of failure was noted.
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Figure 3.5 depicts curves showing the stress parallel to loading versus

time to failure for the assemblies composed of the different percentages of 1U

and 5U units. The two end-members, 0% and 100 % 1U, show very different

magnitudes and the timing of peak stress. The 100 % 1U simulation reaches

peak stress first and attains the highest stress whereas the 0 % 1U simulation

is the exact opposite, showing the lowest peak stress reached after the longest

amount of time. The two simulations also differ in terms of the shape of their

stress versus time curves. The more brittle 100 % 1U simulation shows a more

pronounced failure peak which is quite different than the 0 % 1U simulation

with a more rounded and smoothed peak.

It might be expected that the intermediate percentage simulations

would follow a linear transition from 0% to 100% 1U behavior. This is clearly

not the case (Figure 3.5). The smallest percentage of 1U, 25%, is much stronger

than the 0% 1U and also fails much sooner. Its strain curve is more similar

to the 100% 1U simulation than to the 0% 1U simulation. The rest of the

intermediate percentages follow a similar pattern. These results indicate that

even small percentage of the stronger and more brittle 1U units influences the

mechanical behavior of the package as a whole. In fact, they can even alter

the timing and location of failure as shown in this and the previous section.

Of course, these simulations assume a constant strain rate, but if the period of

loading is short these results imply that some layers will fail whereas other will

not.
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Figure 3.5: Stress perpendicular to loading v.s. simulation time for assemblies
composed of the stated percentages of 1U and 5U units. The different percent-
ages of the units tend to lower the affect both the strength of the unit and the
timing of failure.
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3.4 Conclusions

A discrete element model was used to simulate geomechanical as-

pects, including elastic and inelastic rock behavior. Our primary goal was to

determine whether fluid pressures were required for shear fracture genesis, or

if regional tectonic forces alone could produce them.

Our basin evolution model simulation results [McPherson and Boutt ,

Accepted] suggest that high fluid pressures did not occur during the basin’s

history. Furthermore, the DEM simulations suggest that such fluid pressures

are not necessary to explain the origin of observed fractures, and that fractures

may form during a mild compressional episode of geologically short duration,

without excessive fluid pressures. Results of our study support the findings

and interpretations of Lorenz et al. [2002].

In sum, important conclusions include:

• Simulations using estimated Laramide strain rates suggest that a mild

compressional episode of geologically short duration can induce shear

fractures without excessive fluid pressures.

• Simulation results of the 3-layer DEM models suggest that mechanical

interactions between distinct units with different properties influence the

overall mechanical behavior of the system as well as the local behavior.

Additionally, the layered heterogeneous models provide other insight

regarding the general elastic and in-elastic mechanical interactions of layered

systems under controlled conditions. More commonly applied analysis using

single layer properties and assumptions of homogeneous stress fields (Mohr
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circles) may not be adequate to capture the full range of physical processes

occurring in a layered system.

Our results have important implications for fracture prediction. The

initial plan was to simulate the mechanical evolution of the unit from deposi-

tion to burial, but we abandoned it when simulation results included complete

failure (deformation) only 15 Ma into the burial history. This result was in-

tuitive since the model was calibrated using experimental results associated

with present-day, completely lithified rock core, and burial rates during initial

compaction are relatively high during initial portions of the burial history. In

other words, we were simulating the strata’s full geologic history, albeit the

rock properties pertained only to the present-day, final state. It is clear that

we are limited to simulating mechanical behavior during a window of time in

which the present day mechanical properties may more closely match those

during which the fractures formed.
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CHAPTER 4

NUMERICAL MODELING OF COUPLED
FLUID-SOLID MECHANICS:

MODEL PROPERTIES AND LIMITATIONS1

4.1 Introduction

Continuum numerical methods for studying fluid-solid mechanics are

well established and are the most common approach for investigating coupled

poroelastic problems. Recently, however, discrete methods of fluid-solid me-

chanics have been applied to coupled problems in porous media. Since such

discrete techniques are relatively new, model testing and comparison to contin-

uum methods are desirable. This chapter presents basic testing of the coupled

lattice-Boltzmann and Discrete Element Method (LBDEM) technique devel-

oped by Cook [2001] and Cook et al. [in press]. Cook [2001] previously used

the LBDEM technique to model complex phenomena such as drafting-kissing-

tumbling in multi-particle sedimentation simulations, but properties of the

model had not been previously evaluated in porous media applications. For

this effort, it was necessary to modify the formulation to include additional

features (e.g., boundary conditions) important for porous media applications.

An overview of the coupling technique and justification of its use is presented,

1Portions of this chapter have been published in the Proceedings of 2003 Soil and Rock
America: Boutt, D.F. Cook, B.K. McPherson, B.J.O.L. and J.R. Williams, Application of
a directly coupled numerical model of fluid-solid mechanics

91
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in addition to the results testing of the model for porous media applications.

4.2 Modeling Approach

4.2.1 Discrete Element Method

This dissertation details an investigation of the hydromechanical be-

havior of porous media using aDEM [Cundall , 1971; Cundall and Strack , 1979].

DEM simulations have been shown to successfully approximate the behavior

of non-cohesive, granular systems under low stress conditions [Cundall et al.,

1982], as well as lithified sedimentary rocks [Bruno and Nelson, 1991; Potyondy

et al., 1996; Hazzard et al., 2000; Boutt and McPherson, 2002]. In the remaining

three chapters of the dissertation an existing two-dimensional DEM applica-

tion [Rege, 1996] is employed. DEM simulates mechanical behavior of porous

media by idealizing the system as a collection of separate particles that interact

at their contact points. The method itself consists of (1) identifying elements

in contact and (2) resolving the contact physics. The calculations performed

in the DEM alternate between the application of Newton’s Second Law and a

force-displacement law (simple contact models) at the contacts between parti-

cles. The force-displacement law relates components of force to corresponding

components of relative displacements through a generalized contact constitu-

tive model. The contact constitutive model applied here has two parts: a

stiffness model and a slip model. The motion equations are then integrated

explicitly with respect to time to obtain particle positions. Positions at each

time step are then used in force-displacement calculations and the calculation

cycle starts over again. It is important to note that constitutive behaviors

modeled with a DEM, including stress and strain relations, are results rather
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than assumptions.

4.2.2 Coupled Model Theory

Fluid coupling with DEM was developed by Cook [2001] and Cook

et al. [in press] through explicit integration of an LB (lattice-Boltzmann) algo-

rithm with the DEM framework described above. Cook’s approach is reviewed

here. The fluid-solid coupling scheme is depicted in Figure 4.1. The velocity

of the fluid is set to maintain a no-slip boundary condition on the solid par-

ticle. As a result of this condition, a momentum imbalance between the fluid

and solid particle arises. This imbalance is resolved through the addition of

momentum from the fluid to the solid, resulting in a net force on the solid.

These codes are weakly coupled [Celia and Gray , 1992] and all simulations in

this paper use a 1:1 DEM to LB timestep unless otherwise noted. A detailed

development and validation of the coupled method can be found in Cook et al.

[2000], Cook [2001], and Cook et al. [in press].

In the LB approach, fluid is represented as packets of mass that move

about a regular lattice, or grid, defined with appropriate boundary conditions.

Collision and redistribution, or streaming, of fluid packets occur at lattice nodes

according to relationships that conserve mass and momentum, and recover the

Navier-Stokes equation to the second order in space and time. Most of the

computational cost incurred at each timestep is associated with the collision

phase, which is local in nature. The only data exchange between lattice nodes

occurs during the streaming of the distributions. The model uses the linearized,
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Figure 4.1: The coupling between lattice-Boltzmann and DEM is a function of
both element location and velocity. Resulting forces from the fluid are applied
to the solid and integrated for new position and velocity.

Bhatnagar-Gross-Krook (BGK) single-time relaxation form of the LB equation,

fi(x + ei∆t, t + ∆t) = fi(x, t)− ∆t

τ
(fi(x, t)− f eq

i (x, t)), (4.1)

where fi(x, t) is the fluid particle density distribution with velocity ei at a

node located at position x for a given time t; τ is the relaxation time; and

f eq
i (x, t) is the equilibrium density distribution for the fluid. Cook’s (2001) two-

dimensional model uses a square, nine-velocity lattice typically referred to as

the D2Q9 model [Qian et al., 1992]. Each node has eight density distributions,

fi, with non-zero velocities in addition to a zero-velocity or rest distribution at

each node, f0. The macroscopic fluid variables at a node, density ρ and velocity

v, are associated with the moments of the fluid particle density distribution:

v =

∑
i

fiei

ρ
, ρ =

∑
i

fi. (4.2)
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Lattice-Boltzmann simulates a slightly compressible fluid; consequently, fluid

pressure, p, is given by the following equation of state

p = c2
sρ, (4.3)

where cs is the fluid’s speed of sound (defined as the ratio of the spatial dis-

cretization and the temporal discretization). This simple relationship for pres-

sure gives LB a distinct advantage over traditional Navier-Stokes solvers, which

must solve the Poisson equation for pressure. Coupling with discrete elements

was accomplished through a moving solid boundary condition. At a minimum,

a physically correct condition must impose identical velocities along fluid-solid

interfaces. For computational expediency, Cook (2001) adopted an immersed

moving boundary scheme proposed by Noble and Torczynski [1998]. The mod-

ified LB equation for solid-covered nodes becomes

fi(x + ei∆t, t + ∆t) = fi(x, t)− ∆t

τ
(1−B)(fi(x, t)− f eq

i (x, t)) + BΩS
i , (4.4)

where B is a weighting function that depends on the local solid fraction or solid

ratio, ε, defined here as the fraction of the nodal area covered by a solid(s),

and the dimensionless relaxation time, τ ∗, as

B(ε, τ ∗) =
ε(τ ∗−1/2)

(1−ε) + (τ ∗−1/2)
. (4.5)

ΩS is an additional collision term that bounces back the non-equilibrium part

of the distribution and is given by

ΩS
i = f−i(x, t)− fi(x, t) + f eq

i (ρ,vs)−f eq
−i(ρ,v), (4.6)

where vs is the solid’s velocity at time t, and −i is used to denote the distri-

bution component having the opposite direction to i. The effect of LB Equa-

tion (4.4) is to modify the density distributions at those nodes covered by a
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solid in such a way that the fluid velocity matches the solid’s rigid body mo-

tion, enforcing a no-flow condition at the interface. An important advantage

of this boundary condition is that it allows for sub-grid resolution of moving

boundaries through the solid ratio term.

Fluid dynamics in a particle-fluid system are influenced by the pres-

ence of solids, and the displacements of solids (discrete elements) are, in turn,

driven by fluid-induced forces. The moving boundary condition presented

above accounts for the effect of moving solids on fluid flow; coupling is com-

pleted with the computation of the fluid-induced forces on solids. The force of

the fluid, Ff , on a discrete element is calculated by summing up the momentum

transfer that occurs over the n nodes covered by the element as

Ff =
h2

∆t

∑
n

Bn

∑
i

ΩS
i ei, (4.7)

where h is the nodal spacing. Fluid-induced torque, Tf , is found through a

similar computation,

Tf =
h2

∆t

∑
n

[(x− xs)× (Bn

∑
i

ΩS
i ei)], (4.8)

where xs is the centroid of the solid particle at time t. Fluid-particle coupling

is realized at each timestep by first computing the fluid solution, and then

updating solid particle positions by integration of the equations of motion.

It should be noted that in the LBDEM formulation it is assumed

that a fluid force is only applied to the discrete elements if the fluid has a non-

zero velocity. This implies that static pressure, on the whole, is not captured.

Conceptually, issues with this assumption are avoided by treating changes in
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pressure within the model to be dynamic pressure or changes from a static pres-

sure condition. This is accomplished by setting initial and boundary conditions

to effective stress conditions, which is simply done by taking the total stress

and subtracting off the static pressure. This limitation results in the poroe-

lastic condition of setting the Biot-Willis coefficient (discussed in Chapter 1)

equal to 1.

4.3 Why Navier-Stokes and the LBDEM technique?

A brief review of previous numerical techniques used to model coupled

fluid-solid mechanics in porous media was presented in Chapter 1. Justification

for the fluid part of the LBDEM approach is developed here. In the LB method,

the Navier-Stokes (N-S) equations of incompressible fluid flow are solved to

a second order in space and time. From a computational standpoint, these

calculations in porous media flow are much more expensive than a Darcy’s law

approach. The following question could then be asked: what is the advantage

of the increase in computational expense? The answer depends on the nature of

the problem and questions being answered by the simulation. For the problems

of interest in this dissertation, solving the N-S equations is superior to a Darcy’s

implementation for the following reasons:

• It allows relaxation of continuum assumptions associated with Darcy’s

law [Ferreol and Rothman, 1995; vanGenabeek and Rothman, 1996; O’Connor

and Fredrich, 1999].

• It accurately resolves pore-scale flow processes [Ferreol and Rothman,

1995; vanGenabeek and Rothman, 1996].
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• It includes inertial physics of fluid [Chen and Doolen, 1998].

• It handles fluid properties (such as compressibility) without additional

terms.

Relaxing inherent limiting assumptions in continuum formulations is

one of the major advantages to modeling porous media with pore-scale solutions

of fluid flow. The most basic assumption that can be discarded is that of the

hydraulic conductivity parameter in Darcy’s law. Since the N-S equations are

explicitly solved in a known geometry of porous media, the hydraulic conductiv-

ity of the porous media is an outcome of the model, not a specified parameter.

This is extremely important when permanent deformations in the material oc-

cur that cause porosity and corresponding permeability changes. No a priori

assumptions about porosity and permeability relationships are needed with the

LBDEM. By comparison implementations based on linear poroelasticity don’t

assume any change in permeability associated with changes in volumetric strain

[Wang , 2000].

Not only does this formulation allow for flexibility in model param-

eterization, but representative elementary volume (REV) restrictions assumed

in any application of Darcy’s Law are also avoided. Previous research appli-

cations of coupled Darcy schemes with DEM [Klosek , 1997; Sakaguchi and

Muhlhaus , 2000; Bruno et al., 2001; Flekkoy and Malthe-Sorenssen, 2002] are

vague with respect to whether REV conditions are met. It can be shown that

Darcy’s law does not capture grain-scale fluid-flow phenomena because of the

assumed linear pressure drop. Typically, a finite element mesh is solved over a

region comprising a few discrete elements. It is unclear in most of these studies
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whether these elements were envisioned as grains or assemblages of grains. In

general, modeling grain micromechanics with Darcy’s Law often violates REV

conditions and imposes over-restrictive constraints on permeability distribu-

tions.

4.4 Model Boundary Conditions

Boundary conditions implemented by Cook [2001] for the LBDEM

model included periodic, no-flow, slip, and external forcing. The LBDEM was

extended in this study to include a more realistic pressure boundary condi-

tion for the simulation of flow through porous media and representation of

conditions typically applied in experimental tests.

4.4.1 Pressure Boundary Condition

Pressure conditions are imposed in many numerical and experimental

setups to create fluid pressure drops through porous materials. For flow through

porous media, these conditions are necessary to determine fluid permeabilities.

To extend our model, we chose to incorporate the boundary condition of Zou

and He [1997]. This was a good choice since it is general, local, and relatively

efficient compared to the image-node pressure boundary conditions of Chen

et al. [1996] and Maier et al. [1996]. When using pressure boundary conditions

(constant density condition), special care must be taken to satisfy numerical

constraints of the method while maintaining the desired numerical value of

the pressure at the inlet and outlet. This complication occurs because of the

equation of state for pressure, where pressure is a function of the density and

also the ratio of node spacing to timestep. Results for density and velocity
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errors for flow between parallel plates using the pressure boundary condition

indicate that both the density (pressure) and velocity profiles slowly converge

towards a steady-state distribution (Figure 4.2).

An additional test was designed to examine errors associated with

fixing large density differences across the channel that cause large pressure

gradients. Many problems of interest that involve fluids in geomechanics also

involve large fluid pressure gradients. Understanding the upper limits of this

method in terms of errors resulting from fluid pressure gradients is of utmost

importance. A plot of relative velocity error vs. percent density change along

the flow channel is depicted in Figure 4.3. The plot indicates that even with

relatively large density drops, the maximum error is still relatively small. The

error at small percent density drops is attributed to discretization error.

4.4.2 No Slip

The current version of the LBDEM code uses one of two boundary

conditions to enforce a no-slip boundary condition. The immersed moving

boundary, presented above, can be used for both moving and stationary solids.

The more traditional no-slip boundary condition, also known as the bounce-

back or natural condition, is a stationary boundary condition. Testing indi-

cated that both conditions properly enforce a no-slip condition and provide

numerically accurate results.

4.5 Model Properties

Solving the N-S equations accurately with LB requires that certain

numerical parameters meet specified conditions. Numerous sources of error may
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Figure 4.2: Convergence from an initial condition of rest towards steady state
for velocity and pressure using pressure boundary condition of Zou and He
[1997] compared to an analytical solution for steady-state Poiseuille flow. The
top gives the density difference and the bottom plot shows the relative flux
difference.
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arise due to improper grid resolution, large fluid velocities relative to fluid speed

of sound, and improper model parameterization leading to spurious solutions.

Each one of these aspects is explored below in addition to an investigation of

the LB formulation’s compressibility properties.

4.5.1 Grid Resolution

One of the most important aspects of numerical modeling is the proper

allocation of computer resources. The level of spatial and temporal resolution

necessary to capture the essential physics of a problem dictates the computa-

tional requirements of a given simulation. The model’s computational demand

can be optimized through determination of the minimum level of discretiza-

tion required to accurately simulate pore flow. To provide this guidance, an

idealized study was devised to determine the amount of error, relative to the

analytical solution for Poiseuille flow (Figure 4.4), associated with a particular

discretization level. Poiseuille channel flow was simulated at varying discretiza-
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tions with a set of models that had identical physical (domain) dimensions. A

total of 11 models were created with the number of nodes across the channel

ranging from 3 to 39 using the bounce-back condition for the no-slip bound-

ary. Results from the study are shown in Figure 4.5 and Figure 4.6. In Fig-

ure 4.5, four different velocity profiles are shown and compared to Poiseuille

flow. By increasing the number of nodes the simulation converges to the ana-

lytical solution. In theory, since LB is second order and the theoretical velocity

profile parabolic, the model should reproduce exactly the analytical solution

for Poiseuille flow (within round-off error) [Chen and Doolen, 1998]. However,

first-order boundary conditions are used here, which degrade the accuracy of

the solution across the fluid domain. A summary data plot is presented in

Figure 4.6. This figure depicts percent error as a function of the number of

nodes defining the channel. Error decreases as the number of nodes increases,

revealing roughly first-order numerical convergence in the solution as a result

of the lower-order boundary conditions. Overall, these results imply that four

or five nodes between solid particles should be sufficient to achieve accurate

simulations in large-scale applications.

4.5.2 Relaxation Time

The relaxation parameter in LB is typically constrained to have a

numerical value between 0.5 and 1 to ensure numerical stability and accuracy.

This parameter relates the simulated fluid viscosity to the spatial and temporal

discretization. In nondimensional form, the relaxation parameter is given by

1

2
+

3ν∆t

h2
= τ. (4.9)
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Figure 4.5: Comparisons of LB solutions (stars) to analytical solutions (lines)
for 3, 4, 5, and 37 nodes in the channel. These errors allow the determination
of the required number of nodes for numerically accurate resolution of flow.



106

10
0

10
1

10
-1

10
0

10
1

10
2

# of Nodes

%
 E

rr
o

r 
in

 F
lu

x

Tau=0.946

Tau=0.8  

Tau=0.625

Figure 4.6: A log-log plot of error vs. number of nodes shows roughly first
order numerical convergence. The influence of relaxation time, τ ∗, on relative
flux error is relatively small, but observable.

Figure 4.6 shows the influence of the dimensionless relaxation time on the

numerical accuracy of LB for Poiseuille flow between parallel plates. As shown,

a smaller relaxation time gives a more accurate result. However, this is not

always the case, as other studies have shown that relaxation times smaller

than 0.625 resulted in more error [Cook , 2001].

4.5.3 Computational Mach Number

In the LB scheme, error increases with computational Mach number

squared [Reider and Sterling , 1995]. Thus, this parameter must be kept fairly

small (Figure 4.7). For the special case of Poiseuille flow in a channel, we

can exploit the analytical solution to explore the constraints that the small

Mach number requirement places on LB simulations. In the LB scheme, the



107

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Normalized Velocity

N
o
rm

a
liz

e
d
 C

h
a
n
n
e
l 
H

e
ig

h
t

Mach # 0.194       

Mach # 0.097       

Analytical Solution

Figure 4.7: The relative flux error for Poiseuille flow increases as the Mach
number squared. It is important that this number be small (i.e. much less
than 1.0). A computational Mach number greater than one implies that fluid
velocity is traveling faster than the method can transfer information causing
instability.



108

computational Mach number is defined as

M =
vmax

c
, (4.10)

where vmax is the maximum fluid speed, c is the lattice speed given by

h

∆t
, (4.11)

and h is equal to the spacing between lattice nodes. For Poiseuille flow, vmax

is equal to

vmax =
∆P

∆L

H

2νρ
, (4.12)

where ∆P is the change in fluid pressure across the distance ∆L, H is the

channel height, and ν is the fluid viscosity. As stated above the fluid pressure

in LB is related to the fluid density by the equation of state in Equation (4.3).

Substituting this relation into Equation (4.12) we obtain

vmax =
3

14

h2

∆t2
∆ρ

∆L

H

νρ
. (4.13)

We can substitute Equation (4.13) into the definition of the computational

Mach number (M) and make use of the lattice speed definition to yield

M =
3

14

h

∆t

∆ρ

∆L

H

νρ
. (4.14)

Equation (4.9) demonstrates that the fluid viscosity is a function of timestep,

node spacing, and relaxation time. This relationship, written in terms of the

timestep, is equal to

∆t =
(2τ − 1)h2

6ν
, (4.15)
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where τ is the relaxation time, a numerical stability parameter. Substituting

the expression in Equation (4.13) we find

M =
9

7

∆ρ

∆L

H

h(2τ − 1)ρ
. (4.16)

Typically, the grid resolution, relaxation parameter, and density variations are

constrained, which leaves ∆L, the total length of the domain (parallel to flow)

as the only free parameter.

4.5.4 Fluid Compressibility

As shown earlier, error in the LB method increases with density gra-

dients. Although the LB method solves the Navier-Stokes equations for incom-

pressible fluid flow the numerical fluid density can vary. As long as density gra-

dients are kept relatively small; the errors in LB are sufficiently small. Thus,

the method can accommodate a weakly compressible fluid, such as water or

brine, which are the fluids of interest in most hydrogeologic problems. Fluid

compressibility is an important property of a hydrogeologic system, since some

storage is from this property. Also, fluid compressibility plays a role in poroe-

lastic response, since the fluid itself can support a certain amount of stress. The

following test problem is designed to explore the compressibility properties of

the LB fluid.

The important parameters in determining the compressibility of a

fluid are (1) density change (∆ρ) and (2) an applied stress (σo). For a Newto-

nian fluid one can write the compressibility of a fluid β as

β =
1

ρo

∆ρ

σo

, (4.17)
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where ρo is the initial fluid density. This implies that a positive change in

density of the fluid with a positive applied stress is linear. The inverse of the

fluid compressibility (β) is the fluid modulus of elasticity (E). These equations

could also be written in terms of volume, where volume would replace density

and a negative sign would be placed in front to signify a reduction in volume

with an increase in σo.

In Figure 4.8, a very simple model is used to test the LBDEM fluid

compressibility properties. The initial conditions are equilibrium pressure with

the platens applying the stress at rest. All model properties are listed in Table

4.1. The test begins with an application of stress on all four sides of a unit

volume of fluid. The boundary conditions for the solid elements are ”servo”

controlled such that they apply a constant stress. A plot of applied stress vs.

time for the above conditions is shown in Figure 4.9. Since we are simulating

a dynamic system, the stress applied at the boundary takes some finite time

to reach its ultimate value. This takes roughly 0.03 seconds of model time to

reach the specified stress. Plots of fluid density change and fluid velocity vs.

time are given in Figure 4.10. As the applied stress increases, the resulting

density change is roughly linear and reaches a mean value of 1.9 ∗ 10−4. The

movement of the boundary elements also forces fluid movement (flow) to occur

until a quasi-steady state is reached. Given a density change of 1.9 ∗ 10−4 and

the initial properties of the system (Table 4.1), the compressibility of the fluid

in this model is 1.9 ∗ 10−6Pa−1.

In LB information travels at a finite speed. The fluid speed of sound



111

o

V

1
 c

m

3
1cmV

o

Fluid

Figure 4.8: Conceptual model (left) and screenshot (right) of fluid compress-
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Table 4.1: Parameters of fluid compressibility simulations

Parameter Value

Viscosity ( cm2

s
) 0.1

Relaxation Time (-) 0.875
Node Spacing (cm) 0.011
Timestep (s) 1.5e− 4
Number of Nodes (-) 10201
Fluid Speed of Sound ( cm

s
) 142.8

Applied Stress (Pa) 100
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Figure 4.9: In LBDEM, a constant stress boundary condition is used to deter-
mine parameters defining the fluid compressibility. As a result of an applied
stress, a volume of fluid will come to equilibrium as the fluid resists a change in
volume. The corresponding density change yields information about how the
fluid responds to changes in pressure.

of the lattice (cs) is related to the fluid compressibility (β) by

cs =

√
1

βρ
, (4.18)

and solving for β provides

β =
1

c2
sρ

. (4.19)

The compressibility of the fluid via the model parameters is 4.9 ∗ 10−5Pa−1.

This value is slightly larger than the value calculated via the model test, but

nevertheless is within an order of magnitude of each other. Given this relation

between fluid compressibility and the fluid speed of sound, it enables us to eval-

uate potential problems, such as in applying the LBDEM. Further comparison

of the LBDEM to a problem with significant fluid compressibility is presented

in Chapter 5.
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CHAPTER 5

NUMERICAL INVESTIGATION OF THE
MICROMECHANICS

OF FLUID SATURATED ROCKS1

Abstract

A detailed understanding of the coupling between fluid and solid mechanics is

important for understanding many processes in the Earth sciences. Numerical

models are a popular means for exploring these processes, but most models

do not adequately handle all aspects of this coupling. This paper presents an

application of a robust fluid-solid coupling scheme, LBDEM, for porous media

simulation. The LBDEM approach couples a discrete element method (DEM)

for solid mechanics and a lattice-Boltzmann (LB) method for fluid mechan-

ics. To illustrate its application to porous media, fluid flow through periodic

arrays of cylinders at various Reynolds numbers are examined and compared

to previously published experimental and numerical results. For a range of

solid concentrations, fluid flow simulation results are very consistent with the

results of previous studies, suggesting that fluid mechanics are being effectively

resolved. We also compared model results to basic Darcy’s law calculations

for flow through stationary porous media, also to porosity-permeability rela-

1This chapter has been submitted to the Journal of Geophysical Research: Boutt, D.F.
Cook, B.K. McPherson, B.J.O.L. and J.R. Williams, Direct simulation of fluid-solid me-
chanics in porous media using the lattice-Boltzmann and discrete element methods

117
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tionships predicted by the Kozeny-Carmen equation. Quantitative comparison

to a one-dimensional analytical solution for fluid flow in a slightly deformable

medium suggests a reasonable fluid diffusion-like profile. Finally, full coupling

of the numerical formulation is demonstrated through simulation of porous

medium consolidation. Results of these simulations are consistent with those

predicted by poro-elastic theory. In sum, the LBDEM model captures the full

dynamics of fluid-solid micro-mechanics, and facilitates detailed and effective

investigations not possible before.

5.1 Introduction

Fundamental problems in geology and geological engineering com-

monly involve analysis of coupled processes in heterogeneous systems, such as

thermomechanical, hydromechanical, and chemomechanical processes. Analy-

sis and interpretation of coupled problems typically rely on more sophisticated

conceptual models and have more degrees of freedom than uncoupled problems

[Yow and Hunt , 2002]. We are trying to understand the dynamics of coupled

fluid-solid processes in hydrogeology and geomechanics. One example is the

generation of deep subsurface rock fractures by anomalous fluid pressures. In

sedimentary basins, fluid pressures may be elevated by many different processes

[Neuzil , 1995] and attain large magnitudes relative to hydrostatic, sometimes

exceeding the least principal stress [McPherson and Bredehoeft , 2001]. The rate

of pressure dissipation is governed by rock hydraulic diffusivity and the rate of

pressure generation. Macroscopic (i.e. continuum) descriptions of these pro-

cesses typically yield first-order controls on system behavior but do not address

smaller-scale processes responsible for observed inelastic rock deformation. Of
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particular importance are the initiation and propagation of extension fractures

and associated feedbacks between the fluid flow field and the mechanical state

of the rock. A detailed understanding of the coupled pore-scale physics will

facilitate better designs and fewer limitations of experimental tests, and more

effective interpretation of field data.

Recent discussion in the literature has focused on evidence for a strong

hydrologic control on the state of stress in the Earth’s crust [Simpson, 2001;

Moore and Iverson, 2002; Saffer and Bekins , 2002]. For example, deciphering

the role of fluid pressure and fluid flow on crustal mechanics is of critical im-

portance to understanding what causes earthquakes. It is difficult to isolate,

from experiments and field data alone, the competing effects of fluids on the

stress field and the stress field on the fluids.

Problems involving coupled processes are typically addressed with

continuum models that rely on constitutive relations developed through ex-

perimental work [Neuzil , 2003]. Yet, continuum models typically yield little

information concerning material mechanical behavior. Another approach is

to use a discrete mechanical approach that controls and tracks many param-

eters, including pore structure, such as the discrete element method (DEM).

An advantage of using DEM models for solid mechanics is that the underlying

physics are clearly resolved and the models are inherently discontinuous and

heterogeneous. In this paper we apply a coupled model [Cook et al., 2000;

Cook , 2001; Cook et al., in press] that uses DEM for resolving solid mechanics

and the lattice-Boltzmann method (LB) to simulate fluid mechanics. LB is an

efficient method for solving the Navier-Stokes equations of incompressible fluid
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flow. The solid and fluid mechanics are directly resolved by simulating flow at

the pore-scale and computing fluid-grain coupling. Implicit assumptions about

effective stress and heuristic porosity-permeability relationships are not neces-

sary. Since the solid framework is made of discrete elements, their deformation

and movement will directly change porosity and hence permeability of the sys-

tem. Constitutive relations between porosity and permeability are therefore

results rather than assumptions.

With this numerical model we simulated steady and unsteady fluid

flow through stationary and non-stationary discrete media. Pore-scale fluid

flow through simple square periodic arrays of cylinders at various Reynolds

numbers was compared to previously published experimental and numerical

results. Additional comparisons of model results to those predicted by Darcy’s

law for flow through stationary porous media were carried out. These include

comparison of resulting model permeability to porosity-permeability relation-

ships predicted by the Kozeny-Carmen equation. A quantitative comparison

to a 1-D analytical solution fluid flow in a slightly deformable medium was also

made. Finally, simulations of porous medium consolidation were compared to

results predicted by poroelasticity theory. Thus, it is our goal to demonstrate

the validity of the new LBDEM coupled model to applications for flow through

both stationary and non-stationary porous media.

5.2 Fluid-solid Coupling in Porous Media

Coupling between fluids and solids in a porous medium results from

direct interaction in pores. For instance, as the volume of a pore space collapses,

fluid is forced to either compress or flow out of its pore. Conversely, a fluid
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pressure change may impart a tangible force on the solid grain ”walls” of the

pore. This microscale interaction is the most fundamental feedback loop or

coupling. On a macroscopic scale, coupling between fluids and solids result

from changes in pore-space (mechanical to fluid) and/or changes in effective

stress (fluid to mechanical) [Figure 1 of Yow and Hunt , 2002].

Many different frameworks are used to model the coupled physics of

fluid-solid systems (Table 5.1). These range from complete continuum approx-

imations [Wang , 2000] to purely discontinuous approximations [This paper;

[Bruno and Nelson, 1991]]. Most frameworks employ some empirical constitu-

tive relations governing fluid flow (e.g., Darcy’s law) and fluid coupling (e.g.,

effective stress). The most common example is the assumption of Darcy flow.

Several micro-mechanical models were recently developed using discrete ele-

ments coupled to a continuum fluid flow scheme based on Darcy’s law with

good results [Klosek , 1997; Sakaguchi and Muhlhaus , 2000; Bruno et al., 2001;

Flekkoy and Malthe-Sorenssen, 2002]. Several authors justify this type of ap-

proach by suggesting that individual discrete elements are not single grains

but rather are groups of grains. As a consequence, these models must use em-

pirical relations, such as the Kozeny-Carmen equation, to relate porosity to

permeability.

Fluid-solid coupling in models coupled with Darcy’s law is achieved

through the summation of fluid forces imparted on the solid (i.e. effective

stress), summed either at the solid centroid or around the solid perimeter.

Movements of the solids inhibit or promote fluid flow (i.e. through poros-

ity/permeability changes). In the case of the Darcy formulation mentioned
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Table 5.1: Summary of previously used coupling techniques
Modeling
Technique

Coupling
Technique

References Solid Fluid Solid →
Fluid

Fluid
→Solid

Numerous Papers [See
Wang , 2000;
Stephansson, 2003, for
review]

Poro-
elasticity

Darcy’s Pore
Volume
Changes

Effective
Stress

Klosek [1997];
Sakaguchi and
Muhlhaus [2000];
Bruno et al. [2001];
Flekkoy and
Malthe-Sorenssen
[2002]

DEM Darcy’s Porosity-
Permeability
changes

Effective
Stress

Bruno [1994]; Li and
Holt [2001]

DEM Poseuille Porosity-
Permeability

Effective
Stress

This paper DEM LB Impedes
Flow

Momentum
Transfer
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above, coupling is achieved through modification of the hydraulic conductivity

term in Darcy’s law. For example, in the case of a flow network model [Bruno,

1994; Li and Holt , 2001], where fluid flow is routed through cylindrical pipes

(Poiseuille flow), the pipe walls act as a proxy for pore throats. These pipes are

assigned a nominal diameter, and as solids move away from one another, this

diameter is proportionally increased. Thus, in both of these formulations, cou-

pling is indirect because the conductance terms (pipe diameter or permeability)

are adjustable parameters based on empirical or proxy processes.

We take a different approach to this problem by applying a direct

simulation approach developed by Cook [2001] and Cook et al. [in press]. No

empirical relations are necessary to relate fluid flux to pressure drop at the pore

scale. Also, since the model directly simulates movement and deformation of

the solid matrix, no a priori assumptions about the relationship between fluid

permeability and porosity are necessary. The hydrodynamics simply evolve

with the changing solid matrix.

5.3 Modeling Approach

5.3.1 Discrete Element Method

This paper details an investigation of the hydromechanical behavior

of porous media using DEM [Cundall , 1971; Cundall and Strack , 1979]. The

technique has successfully approximated the behavior of non-cohesive, granular

systems under low stress conditions [Cundall et al., 1982], including lithified

sedimentary rocks [Bruno and Nelson, 1991; Potyondy et al., 1996; Hazzard

et al., 2000; Boutt and McPherson, 2002]. In this paper, we employ an existing

two-dimensional DEM application [Rege, 1996]. DEM simulates mechanical
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behavior of porous media by idealizing the system as a collection of separate

particles that interact at their contact points. The method itself consists of

(1) identifying elements in contact and (2) resolving the contact physics. The

calculations performed in the DEM alternate between the application of New-

ton’s Second Law and a force-displacement law (simple contact models) at the

contacts between particles. The force-displacement law relates components of

force to corresponding components of relative displacements through a gener-

alized contact constitutive model. The contact constitutive model applied here

is one with two parts, including a stiffness model and a slip model. The motion

equations are then integrated explicitly with respect to time to obtain particle

positions. Positions at each time step are then used in force-displacement calcu-

lations and the calculation cycle starts over again. It is important to note that

DEM constitutive behaviors, including stress and strain relations, are results

rather than assumptions.

5.3.2 Coupled Model Theory

Fluid coupling with DEM was developed by Cook [2001] andCook

et al. [in press] through explicit integration of an LB algorithm with the DEM

framework described above. Cook’s approach is reviewed in the appendix of

this chapter. The coupling scheme is depicted in Figure 5.1. The velocity of the

fluid is set to maintain the no-slip boundary condition on the solid particle. As

a result of this condition, a momentum imbalance between the fluid and solid

particle arises. This imbalance is resolved through the addition of momentum

from the fluid to the solid, resulting in a net force on the solid. These codes are

currently weakly coupled and all simulations in this paper use a 1:1 DEM to LB
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Figure 5.1: The coupling between lattice-Boltzmann and DEM is a function of
both element location, velocity, and rotation. Resulting forces from the fluid
are applied to the solid and integrated for new position and velocity.

timestep unless otherwise noted. A detailed development and validation of the

coupled method can be found in Cook [2001]. The two-dimensional simulations

reported by Cook [2001] include such complex phenomena as drafting-kissing-

tumbling in multi-particle sedimentation simulations and the saltation phase

of bed erosion.

5.3.3 LB Boundary Conditions

A variety of options are available for simulating boundaries in LB

methods. The model by Cook [2001] described above includes no flow, slip, and

periodic boundary conditions. In this paper we employ the periodic condition in

the Cook [2001] model and implement Zou and He [1997]’s pressure boundary

condition. A periodic boundary condition implies that fluid exiting a boundary

is inserted in the opposite boundary yielding an infinite array of the domain that
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is simulated. This condition was only used for simulations where comparisons

were made with other periodic results. The pressure boundary condition was

used for all the other simulations reported in this paper.

5.3.4 Model Two-Dimensionality

The most limiting aspect of this modeling scheme is the assumption

of a two-dimensional system. However, many fundamental problems can still

be addressed. In a compacted or very densely packed two-dimensional assem-

bly of discrete elements, a physically unrealistic situation arises in the form

of no connected paths for fluid to flow through. To facilitate the use of fluid

coupling in this context, an assumption about the fluid flow paths must be

made. This problem has been addressed before for the case of flow network

models [Bruno and Nelson, 1991; Bruno, 1994; Li and Holt , 2001] and contin-

uum Darcy’s models [O’Connor et al., 1997]. In both cases, fluid is assumed to

flow out of plane and around solids. In our case we take a similar approach to

O’Connor et al. [1997] and assume that fluid is flowing out the plane. The LB

is assumed to only interact with a defined percentage of the discrete elements.

For all simulations reported in this chapter the percentage was constant. This

effectively results in a smaller radius used to resolve the fluid through the as-

sembly. Changing the ”effective” fluid radius results in changes in pore throat

sizes and resulting macroscopic parameters, such as permeability.

5.4 Fluid Flow Through Periodic Arrays of Cylinders

The first series of fluid-flow simulations were conducted with solids

fixed in space. One motivation for the study of fluid flow around stationary
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objects is the design of heat and mass transfer equipment. A fundamental paper

published on flow past spatially periodic arrays of cylinders was authored by

Sagani and Acrivos [1982]. They approximated the creeping flow equations

using multipole expansions and calculated the drag on square and hexagonal

arrays of cylinders. Their solutions are shown to be in excellent agreement with

the corresponding analytical expressions for flow around stationary cylinders.

Subsequent to their work, Edwards et al. [1990] used finite elements to assess the

influence of Reynolds number on the apparent permeability of periodic arrays

of cylinders. Edwards et al. [1990] results were consistent with those of Sagani

and Acrivos [1982] . Koch and Ladd [1997] also examined flow through spatially

periodic and random arrays of cylinders, but used a lattice-Boltzmann scheme

with solid boundaries modeled with a bounce-back scheme (see appendix).

Following Koch and Ladd [1997] and Hill et al. [2001], we will employ a similar

approach, but using the coupled LB-DEM model with an immersed boundary

condition for solids (see appendix). In general experimental data for flows over

stationary cylinders at low Reynolds number are very limited.

5.4.1 Low Reynolds Number Flows

Comparisons of previous numerical methods to the coupled LB-DEM

model have been performed for the case of fluid flow around a stationary simple

square array of cylinders at low Reynolds numbers, with Reynolds number

defined by

Re =
UD

µ
, (5.1)

where U is the mean fluid velocity, D is the cylinder diameter, and µ is the

dynamic fluid viscosity. Figure 5.2 illustrates the modeled domain and flow
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Figure 5.2: Dimensionless drag vs. solid concentration for low Reynolds flow
around a periodic array of cylinders for solid concentrations ranging from 0.2
to 0.6. As solid concentration increases so does the drag on the cylinder.

direction. Boundary conditions on all sides of the model are periodic with an

immersed boundary condition for the solid (see appendix). As Koch and Ladd

[1997] point out, some error may be attributed to discretization of the solid onto

the fluid lattice. The use of the immersed boundary condition helps reduce this

error, but a small amount of irregularities still exist in the solid discretization.

This may introduce a small amount of additional error compared to methods

that can handle smoothed boundaries, such as the finite element method. The

solid concentration C is defined as the area of the solid divided by the area of

the unit cell of the periodic array and it was varied between runs.

Dimensionless drag force is defined as

F̄ =
F

Uµ
, (5.2)

where F is the force per unit length of the cylinder. The force per unit length
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Figure 5.3: Qualitative comparison of pressure contours at a solid concentration
of 0.5 for FEM results of Edwards et al. [1990] and our LBDEM results. A good
match between the two solutions is achieved.

of the cylinder was calculated using a force balance at steady state through the

relation

F =
∆P

∆l

πr2

C
, (5.3)

where ∆P/∆l is the pressure gradient, r is the radius of the cylinder, and C is

the solid concentration. A larger cylinder area should result in a larger overall

fluid drag by the cylinder. In Figure 5.2 simulations with solid concentrations

ranging from 0.2 to 0.6 are compared to the results of Sagani and Acrivos

[1982],Edwards et al. [1990]. Pressure contours of flow around a cylinder at a

solid concentration of 0.5 are plotted in Figure 5.3, where l is the length of the

periodic domain. Note the good qualitative match between the finite element

solution of Edwards et al. [1990] and the LBDEM simulation.

5.4.2 High Reynolds Number Flows

Higher Reynolds number flows are sometimes encountered in porous

media, such as fluid flow near well bores. Some experimental data at higher

Reynolds flows are available [Bergelin et al., 1950], and serve as a good bench-
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mark for the LBDEM coupled model. The modeled domain for this set of simu-

lations is identical to that for the low Reynolds number flows. In this case, our

results are compared with the experimental data of Bergelin et al. [1950] and

the numerical results of Edwards et al. [1990]. Bergelin et al. [1950] measured

pressure drop through a simple square arrangement of cylindrical tubes. We

compare our results for dimensionless pressure drop, which is defined by

∇P̄ =
∆P

∆l

l

ρU2
, (5.4)

for Reynolds numbers ranging from 0.001 to 180, in Figure 5.4. As Reynolds

increases, viscous energy dissipation becomes less important and thus the di-

mensionless pressure drop over the cylinders is reduced. All three results plot-

ted on Figure 5.4 show this trend quite well, and the match between all three

sets of data is reasonable. Deviations from the experimental data are probably

a result of boundary conditions associated with the periodic condition used in

the numerical solutions.

Sources of error in the LB solutions were evaluated by Boutt et al.

[2003] and found to be small for the problems of interest. In these simula-

tions errors arise from two sources. First, a smooth disc is represented with

stair-stepped features due to the level of spatial discretization in the numerical

method. These small irregularities can result in the propagation of errors not

seen in analytical solutions and experimental data. Additionally error may arise

from the simplification of using periodic boundary conditions to model a finite

domain. As seen in Figure 5.4, this same source of error may be influencing

the finite element solution of Edwards et al. [1990].
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Figure 5.4: Dimensionless pressure drop vs. Reynolds number for flow around
a periodic array of cylinders for a solid concentrations of 0.5. As the Reynolds
number increases, the pressure drop decreases, as viscous dissipation is lessened.

5.5 Steady Flow Through Stationary Porous Media

Understanding steady flow through porous media is important for

many scientists and engineers. Although Darcy’s law is accepted as valid for

low Reynolds number flow in porous media; the relatationship between perme-

ability and some measurable property of the porous matrix is open to debate.

One of the most widely accepted permeability relationships for porous media

was developed by Kozeny [1927], who treated the medium as a bundle of capil-

lary tubes. LB and other numerical schemes that solve the Navier-Stokes equa-

tions can be used to test theoretical and empirical permeability relationships

[O’Connor and Fredrich, 1999]. In this work, a coupled model simulates steady

flow through stationary porous media and resulting permeability-porosity re-

lationships are compared to established theoretical derivations.
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5.5.1 Darcy’s Law

To examine the relationship between fluid flux and pressure gradient,

an LBDEM model composed of 200 discrete elements was developed. All solid

elements in the model are fixed in space on a regular lattice. The fluid lattice

is discretized at a high level to minimize grid resolution errors [Boutt et al.,

2003], with a minimum of 5 lattice nodes per pore throat . Pressure is fixed at

a constant value at the top and bottom of the system and the system is allowed

to evolve from an initial condition of constant pressure throughout the domain,

as depicted in Figure 5.5a. As a result of the pressure boundary conditions,

flow is driven from top to bottom of the assembly. Upon reaching steady state,

defined here as flux-in equal to flux-out, the model run was terminated and

fluid flux recorded. Fluid flux vs. pressure gradient are plotted in Figure 5.5b,

and demonstrate a linear relationship. This linearity is consistent with Darcy’s

law with the slope of the line proportional to the permeability.

5.5.2 Porosity-Permeability Relationships

The Kozeny permeability formulation is written in terms of porosity,

n, specific surface area with respect to a unit volume of porous medium, M ,

and Kozeny’s constant, co, according to

k =
con

3

M2
. (5.5)

Carmen [1937] used the previous equation, but expressed the specific surface

with respect to the unit volume of solid, Ms, and used co = 0.2 derive the

Kozeny-Carmen equation,

k =
0.2n3

M2
s (1− n2)

. (5.6)
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For cylinders of constant diameter D,

Ms =
4πr2

2πr3
=

2

D
,wherer = 2D. (5.7)

Substituting yields,

k =
n3

20(1− n2)
D2. (5.8)

For the coupled model studied here, the porosity and particle diameter are both

known, thereby providing a relationship between these physical parameters and

the permeability of the porous medium.

We examined this relationship with the LBDEM model for a range of

model porosities and element (disc) diameters. Four models were developed,

each with 200 circular discrete elements fixed in space. Model porosity was

varied by changing the size of discrete elements. Boundary conditions and

model geometry were identical to models used for the Darcy’s law test, of

Section 5.5.1. Relationships between porosity and permeability of the medium

produced by the LBDEM are compared to the Kozeny-Carmen Equation, 5.8

in Figure 5.6. A reasonable match between theoretical and numerical results is

demonstrated; however, these results are expected for such a simple geometry.

When 5.8 is applied to more complicated models, with variable grain sizes and

spatial distributions, the fit is not as consistent. The LBDEM is a tool that may

be used to explore porosity-permeability relationships in systems too complex

for theoretical analysis.

5.6 Unsteady Flow Through Non-Stationary Media

To test the full capability of the coupled LBDEM model, we examined

unsteady fluid flows through non-stationary porous media. Most flows through
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Figure 5.6: Permeability-Porosity relationships for simple models show a good
match to what is predicted via Kozeny-Carmen theory.

porous media fall into this category. For example, flow to a shallow groundwater

well in a confined aquifer includes elastic deformation of the aquifer material

due to fluid pressure changes and converging flow around the well bore [Helm,

1994]. Sources of water for the well include deformation of the aquifer that

releases water from storage and expansion of water volume following pressure

reduction.

In the simpler problem of one-dimensional (1-D) consolidation of a

layer of porous media, compaction of the aquifer material results in an increase

in fluid pressure that forces fluid to flow out of the formation. Like the problem

of flow to a well, elastic deformations of the solid framework and the fluid com-

pressibility act together to influence changes in fluid pressure. In the following

section we compare a simple 1-D analytical solution for fluid flow in a slightly
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compressible elastic porous medium to LBDEM model simulations. We further

compare the LBDEM model to poroelasticity theory using an extension of the

analytical solution to a 1-D consolidation problem.

5.6.1 Fluid Flow in Slightly Compressible Porous Media

All of the previous results addressed steady-state porous media flows.

We conducted several additional simulations to examine transient behavior in

the LB-DEM models and to derive continuum parameters governing fluid flow,

such as hydraulic diffusivity. We compared results of these simulations to those

of an analytical solution.

In discrete models of porous media, averaged quantities such as per-

meability and diffusivity are not easily calculated, especially because of their

scale dependence. In order to parameterize a porous media model, it is nec-

essary to determine ”micro” parameters, such as pore throat sizes and bond

stiffnesses, as well as more intuitive ”macro” or continuum parameters, such as

permeability and Young’s modulus. This has been previously accomplished for

DEM models [Boutt and McPherson, 2002; Potyondy and Cundall , In Press]

by comparing laboratory experimental results to numerical simulation results.

In this paper, we are not specifically interested in comparing model results to

actual observations in rocks, although we are currently performing this work.

Thus, we will only compare the LBDEM to an analytical solution of fluid flow,

and from those results infer continuum parameters governing the behavior of

our current model setup.

The governing equation for 1-D slightly compressible fluid flow in an
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isotropic homogeneous porous media in the absence of body forces is:

∂P

∂t
= c

∂2P

∂x2
, (5.9)

where P is fluid pressure, t is time, x is a spatial coordinate, and c is the

hydraulic diffusivity. The hydraulic diffusivity can be defined as

c =
k

µS
, (5.10)

with the parameter (c) being a combination of the porous medium perme-

ability (k) and storage capacity (S) or commonly referred to as the specific

storage (S = Ss

ρg
). This is the only material parameter needed to fully define

the transient flow field of an isotropic homogeneous porous medium. The spe-

cific storage is one of four properties in the general constitutive poroelastic

equations and contains fluid and medium compressibility components [Green

and Wang , 1990]. Through a structural homology with the mathematics of

diffusion and heat conduction, Equation (5.9) is commonly referred to as the

diffusion equation. Analytical solutions of this equation for various boundary

conditions and initial conditions are widely available (e.g. Carslaw and Jaeger

[1959]). One example is the 1-D fluid flow through a bounded domain subjected

to constant fluid pressure boundaries with an initial condition of constant fluid

pressure (Po) throughout the domain. The analytical solution between

−L ≤ x ≤ +L, (5.11)

for the boundary conditions

P (−L, t) = 0, P (L, t) = 0,
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and the above described initial condition is

P (x, t) = Po − Po

∞∑
n=0

(−1)n
{

erfc
(2n + 1)L− x

2
√

ct

+ erfc
(2n + 1)L + x

2
√

ct

}
.

(5.12)

The above analytical solution yields a pressure profile (pressure vs. length)

that is diffusion-like. This type of behavior is important because it reflects

both the storage and fluid transport properties of porous medium.



139

Table 5.2: Parameters for transient fluid flow and consolidation problem.

Solid Values

Friction (-) 0.5
Normal Stiffness (Dyne/cm) 8.00e + 04
Shear Stiffness (Dyne/cm) 8.00e + 04
Element Size Range (cm) 0.11-0.07
Fluid Radius (-) 0.8
Fluid Values

Viscosity ( ) 0.1
Relaxation Time (-) 0.875
Node Spacing (cm) 0.0067
Timestep 5.5e− 5

5.6.2 Transient Fluid Flow Through Porous Media With
LBDEM Model

A LBDEM model was built to compare quantitatively the calculated

results to expected analytical solution results. An assembly of approximately

1000 ellipse-shaped elements is packed into a 18 cm by 9 cm rectangular region

bounded by discrete elements represented as lines (Figure 5.7). Physical prop-

erties of the discrete elements were assigned to mimic those of quartz grains

(Table 5.2). No cohesion between elements was applied. The packing proce-

dure consists of generating a uniform distribution (see Table 5.2 for range of

radii) of elements on a regular lattice and letting them settle under gravity.

Upon reaching equilibrium, the assembly is walled off and released from grav-

itational loading and allowed to come to equilibrium once again. Finally, the

assembly is loaded via the walls to a desired stress state in this case, equivalent

to atmospheric pressure on the side boundaries.
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Because the LBDEM model is currently 2-D, it was necessary to apply

different boundary conditions for the solids than those for the fluids to make

it possible to compare results to the 1-D analytical solution. The dimension of

the LBDEM model perpendicular to the fluid flow direction (horizontal in Fig-

ure 5.7) was extended and the boundaries assigned a no-displacement condition

for solids and a no-flow condition for fluids. This assumption is similar to that

of applying Equation (5.12) to fluid flow in an axi-symmetric right cylinder

under similar boundary conditions. The boundary conditions for the fluid-flow

parallel direction (vertical in Figure 5.7) for the LBDEM model are identical

to those for the analytical solution with the solids given a free boundary. The

fluid lattice was assigned dimensions of 735 by 401 for a total number of fluid

nodes just under 300,000. The fluid lattice was initialized with a constant den-

sity (pressure) of 1 and both boundaries were fixed with a constant density of

0.999 during the simulation. The model was executed until the pressure in the

pore spaces came to equilibrium with the boundary condition.

One-dimensional cross-sections through the model were chosen for the

purpose of comparison to the analytical solution. A typical cross-section (A-A’

on Figure 5.7) is plotted in Figure 5.8, depicting solid ratios as a function of

distance along the flow-parallel direction of the model. A single cross section

may consist of more than 70% solid particles. Eleven separate vertical cross

sections through the model were chosen such that only fluid pressure values

from fluid-only nodes (solid ratio =0) were considered. The values were then

arithmetically averaged and plotted on an x-y plot with respect to normal-

ized pressure ( P
Po

) and distance along the flow direction. The results for eight

different times during the model run are illustrated for half of the domain in
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Figure 5.8: The solid ratios along cross-section A-A’ in Figure 5.7. An averag-
ing scheme was used such that only completely fluid-filled nodes are analyzed.
Gray filled areas are solids.

Figure 5.9, with x = 0 corresponding with the outer boundary where the pres-

sure is held constant at 0 (and x = 4.5 corresponding with the center of the

specimen) . The data portray diffusion-like profiles, where higher fluid pressure

is forced to come into equilibrium with lower pressure boundary conditions. In

each plotted curve, especially later time curves, small inconsistencies between

the smooth analaytical solution and the LBDEM exist. It is hypothesized that

heterogeneous pore body and throat size distributions are causing these devi-

ations. Deviations are similar for results plotted at the same location but at

different times, suggesting the deviations are location specific. On average, the

variability is fairly small with respect to the overall pressure magnitude.

The analytical solutions (solid lines) to Equation (5.12) are plotted
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on Figure 5.9. Best fit results were computed with a hydraulic diffusivity of

7.9 cm2

s
. This value is higher than those reported by Wang [2000] for sandstone

(c ≈ 1 cm2

s
), but not unexpected for a 2-D model with less tortuousity of flow

paths that would exist in a real rock. Larger values of hydraulic diffusivity will

cause fluid pressure to reach equilibrium faster. It appears that the fit between

the calculated fluid pressure and the analytical solution is a strong function

of time. Larger discrepancies between the solutions occur at the boundaries.

Sources of error in the LBDEM compared to the presented analytical solution

may arise from multiple sources. First of all the analytical solution is for a

homogeneous material, which this model does not satisfy. Second, assumptions

in the analytical solution may not be met near the boundaries of the model.

5.6.3 Conceptual Model of 1-D Consolidation

Consolidation of saturated porous media was first examined by Terza-

ghi [1925, 1943] and later applied to many problems in geomechanics and hydro-

geology (e.g. Domenico and Mifflin [1965]). In Terzaghi’s formulation of 1-D

consolidation, a sudden stress of σo is applied on the surface of a finite length

(L) fluid-saturated porous medium with an impermeable bottom boundary.

The top boundary is drained, such that fluid can freely leave the system. The

governing equation for this problem is identical to the fluid diffusion problem

described above if the stress applied is not a function of time, which is the clas-

sic assumption. This allows the pore fluid diffusion equation to be uncoupled

from the mechanical equilibrium equations and results in an analytical solution

that is similar to Equation (5.12).

As predicted from poroelasticity theory, the instantaneous pressure
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change in the porous medium is described by γσo, where γ is the loading

efficiency. Note that the γσo response is identical to an undrained response. If

γ = 1, the entire applied load is converted into an exactly equivalent pressure

change in the porous media. In reality γ is << 1, as some of the load is not

directly transmitted to the fluid. Valliappan et al. [1995] showed that the effect

of the pore fluid is dominant only for fully saturated soils with incompressible

solid grains and low permeability. For partially saturated, compressible or very

permeable media (this study), the stresses would be largely transferred to the

solids. The instantaneous pressure distribution, which is a function of applied

stress, is used as the initial condition in the solution of the governing equation.

The analytical solution in terms of pore pressure [Wang , 2000] is

P (x, t) = γσo − γσo

∞∑
n=0

(−1)n
{

erfc
(2n + 1)L− (x− L)

2
√

ct

+ erfc
(2n + 1)L + (x− L)

2
√

ct

}
,

(5.13)

where x and t are spatial and temporal dimensions. This uniaxial strain for-

mulation assumes elastic reversible deformation in the grain framework with

negligible grain compressibility. The increase in fluid pressure due to the con-

solidation in the sample results in a net pressure gradient in the direction of the

drained top boundary. As fluid leaves the sample the system slowly returns to

equilibrium. The primary parameter governing how quickly fluid escapes the

porous medium is the hydraulic diffusivity (c). These properties of the analyt-

ical solution are shown in a depth vs. time plot of the analytical solution for

γ = 1 and c = 7.9 in Figure 5.10a. Highest fluid pressures are adjacent to the

bottom no-flow boundary.
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Figure 5.10: Analytical solution and LBDEM solution for Terzaghi’s consolida-
tion problem. Analytical solution assumes ideal poroelastic response therefore
solutions are not identical.

5.6.4 Results of 1-D consolidation With LBDEM Model

We explored consolidation behavior using the coupled model using

the setup depicted in Figure 5.11. An assembly of approximately 1000 discs

is packed into a 11 cm by 6 cm rectangular region bounded by discrete ele-

ments represented as lines. Physical properties of the discrete elements were

assigned to mimic those of quartz grains (Table 5.2). The assembly of elements

in Figure 5.11 was prepared identically to the previously described model of

Figure 5.7. Since the analytical solutions uses an assumption of idealized poroe-

lastic behavior and hence simplifies the governing equation, the main test for

the LBDEM model is to demonstrate fluid pressurization as a result of an ap-

plied stress. The top boundary was assigned at a constant applied stress with

a porous discrete element such that fluid flow is not impeded by the element.

The fluid at this boundary is maintained at zero gauge pressure. The bottom
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Figure 5.11: Conceptual model for consolidation problem. Top boundary con-
dition is drained and held at constant fluid pressure.

boundary is specified as a no-flow and no-displacement boundary. Initially

the solid framework is in equilibrium with boundary conditions and the fluid

pressure is constant throughout the assembly.

The simulation begins with an application of the stress boundary

condition on the drained boundary (top). In response to this condition, the

assembly of cylinders begins to consolidate and fluid pressure rises. Early time

results of Figure 5.10b illustrate this behavior for the fluid pressure response.

The averaging technique used for the fluid diffusion problem was also applied

to the consolidation problem. The smoothed filled contour plot in Figure 5.10b

was generated through interpolation of the completely fluid filled nodes from

the 11 cross-sections. A comparison of the two results suggests a lag time in

the response of fluid pressure in the LBDEM simulation with respect to the

maximum value of fluid pressure (dashed line on Figure 5.10b). Unlike the an-
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Table 5.3: Fluid wave speeds for simulated fluid and real fluids (at STP)

Fluid Fluid Wave Speed (m
s
)

LB simulated fluid 2.3
Air 331
Water 1482
Brine 1534

alytical solution (Figure 5.10a), which assumes an ideal poroelastic response of

γσo as an initial condition, the coupled model has a finite wave speed. There-

fore, the response of the assembly to the new boundary condition takes a finite

amount of time to reach the maximum fluid pressure. In reality, experimental

evidence [Gunaratne et al., 1996] using a dynamically applied stress suggests

that the time to reach peak fluid pressure is finite and on the order of tenths

of seconds depending on material properties. These properties have been sug-

gested [Gunaratne et al., 1996; Valliappan et al., 1995] to include the degree of

saturation, permeability, and media compressibility.

The two dynamic wave speeds in LBDEM are the solid wave speed

and the fluid wave speed. The solid wave speed is a function of element stiffness,

where as the fluid wave speed is related to model viscosity and discretization.

The numerical value of fluid wave speed in the LB method is significantly

smaller than actual wave speeds in real fluids (Table 5.3). In a model with

finite solid and fluid wave speed, attaining a fluid pressure response that is

exactly equivalent to that of the initial condition of the analytical solution is

impossible. The sensitivity of these two parameters and their pressure response

is now explored using the above consolidation problem.
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To assess the poroelastic response of the LBDEM model, we analyzed

the time it took to reach the maximum value of fluid pressure as a function

of both the fluid wave speed and the solid wave speed. The solid wave speed

was varied by over 5 orders of magnitude by changing the element-to-element

contact stiffness. All other model parameters, including fluid wave speed, were

held constant in the simulations. The element stiffness, which is related to the

characteristic frequency of the system and inversely related to the numerical

timestep, is proportional to the modulus of the material [Potyondy and Cun-

dall , In Press]. Thus higher stiffnesses between elements typically yields an

effectively stiffer modeled rock. Plotted in Figure 5.12 are the results for the

solid wave speed sensitivity as a function of peak fluid pressure following an

applied load. This measure was chosen because this response is only a function

of the poroelastic properties of the models (see Figure 5.10). As the element

stiffness is increased, the time to reach the peak fluid pressure is reduced. The

change from a fairly slow response (∼ 6 seconds) to quick response (∼ 0.03

seconds) occurs over a small change in element stiffness. Similar increases in

element stiffness do not change the time to reach peak fluid pressure signifi-

cantly. A two parameter exponential model fits this trend quite well (within

the 95% confidence interval). This suggests that some threshold solid wave

propagation speed exists at which the fluid pressure response is not signifi-

cantly affected. Regardless of this fact, element stiffness dramatically affects

fluid pressure rise in the consolidation problem. We now explore the fluid wave

speed effect on fluid pressure response.

Fluid wave speeds or speeds of sound (cs) were varied by refining

the discretization of the fluid lattice and keeping all other model properties
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Figure 5.12: The sensitivity of the time for the fluid pressure to reach its peak
value is a function of the solid wave speed. With small changes in element
stiffness, the time to reach the peak fluid pressure in the system is much smaller.

constant. The numerical fluid speed is the velocity with which information is

propagated across the fluid lattice. The sensitivity of the fluid speed of sound

on the timing of the peak fluid pressure is plotted in Figure 5.13 for five different

fluid wave speeds. The response of the system to the applied loading is clearly

a function of the fluid speed of sound, but the response occurs over a much

smaller range of values than for the solid wave speed presented above. From

the figure it is evident that the peak fluid pressure is reached sooner in the high

fluid speed models vs. the low fluid speed models. This behavior results from

the faster transfer of changes in boundary conditions (and resulting particle

displacements) to the fluid. This response is not linear, but is better fit by a 2

parameter exponential model (solid line).

Recall that the coupling between the LB and the DEM is achieved

through a fluid velocity condition on the element boundary. This coupling
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Figure 5.13: The time for the fluid pressure to reach its peak value is much less
sensitive to fluid wave speed than solid wave speed. Relative to the solid wave
speed sensitivity, the time quickly levels out and fluid speeds well below that
of water can approximate this response well.

method together with the evidence presented above suggests that the propa-

gation of boundary conditions to the interior of the model is most important.

Secondly, once the change in far-field boundary conditions reaches the element

this information is then transmitted to the fluid. Since the fluid occupies a

relatively small volume compared to the solid elements, the time constant for

that process is small. Overall, the affect of fluid wave speed on the poroelastic

response is important on the local element scale and not on the scale of the

overall length of the model specimen for the problems of interest. This suggests

that the much smaller fluid wave speeds in the LB can produce first order be-

havior in these types of problems. In LBDEM problems with large fluid voids

and cavities, the discrepancy between the fluid wave speed of the LBDEM and

real fluids will be more significant.
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An additional advantage of this formulation is that it is possible to

probe deeper into the model by examining different micromechanical variables

associated with the solid and fluid components of the system. Contact forces

(a) and fluid speeds (b) are depicted in Figure 5.14 for the whole 2-D section

at 15s. Contact forces (brown indicates normal and gray shear force) show the

effect of applying the constant load on the top boundary. Fluid speeds (warm

colors indicate higher speeds where as cool colors are lower speeds) indicate

that fluid is flowing toward the constant pressure boundary condition. Note

the variability in fluid flow throughout the specimen, which is a function of

pore throat size.

5.7 Conclusions

This paper presents the application of a robust, direct fluid-solid cou-

pling scheme to the mechanics of fluid-solid coupling in porous media. The

model is built on discrete methods of solid (DEM) and fluid (LB) mechanics.

Coupling is achieved through momentum transfer from the fluid to the solid

and through the enforcement of a no-slip condition of the solid onto the fluid.

By handling the coupling directly we avoid the typical assumptions of Darcy

flow and effective stress and are able to model a variety of problems includ-

ing deforming materials (such as fractures). We show the applicability of the

model by first examining some idealized flow through stationary porous media

and then performing more complex simulations using the full capability of the

coupled model.

The previously validated model [Cook , 2001] was extended for use

in porous media applications by adding boundary conditions and idealizing
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Contact forces

Fluid speeds

A)

B)

Figure 5.14: Additional data from the consolidation test can give insight into
the physics of the coupled system. Shown here are contact forces (A) and fluid
speeds (B) for the consolidation test. Normal contact forces are depicted as
thick lines parallel to contact normal. Higher fluid velocities are represented as
brighter contours that converge on the draining boundary.
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the 2-D flow domain. Modeled fluid flow through periodic arrays of cylin-

ders at various Reynolds numbers are shown to match very well with previous

experimental and numerical results. For a range of solid concentrations we

accurately match the results of previous researchers, indicating that the cor-

rect fluid mechanics are being resolved. Simulations of flow through stationary

cylinders yield a linear relationship between volumetric fluid flux and pressure

gradient across the sample. Comparisons of porosity-permeability relationships

predicted by the Kozeny-Carmen equation and the LBDEM model results are

consistent for simple geometries.

LBDEM models were developed that enabled the comparison of 1-D

analytical solutions of fluid flow in slightly compressible porous media. The

results from this comparison indicate that the LBDEM is achieving a good

match with the analytical solution. Deviations occur as a result of pore-scale

nature of our model. In addition, the hydraulic diffusivity is slightly larger

than that of similar geologic material. This may be due to the fact that the

models have a fairly small number of particles and their permeability is higher

than the equivalent geologic material.

The consolidation of saturated porous media showed the dynamic and

poroelastic response of the LBDEM model. Given that we are solving the fully

dynamic equations of motion for both the fluid and solid, direct comparisons

with instantaneous undrained responses are not possible. With this in mind,

the model qualitatively captures consolidation behavior appropriately, includ-

ing both initial pressurization and fluid flow out of the domain.

The control of the numerical fluid wave speed on the poroelastic re-
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sponse is important on the local element scale but not on the scale of the overall

length of the model specimen for the problems of interest. This suggests that

numerical fluid wave speeds smaller than those of real fluids are not necessary

to produce first order behavior in these types of problems. In LBDEM problem

domains with large fluid voids and cavities, the discrepancy between the fluid

wave speed of the LBDEM and real fluids will be more significant.

5.A Appendix: Lattice-Boltzmann and Coupled Model Theory (ex-
cerpted with permission from Cook [2001]

In LB techniques, fluid is represented as packets of mass that move

about a regular lattice, or grid, defined with appropriate boundary conditions.

Collision and redistribution, or streaming, of fluid packets occur at lattice nodes

according to specific relationships that conserve mass and momentum, and

recover the Navier-Stokes equation to second order in time and space. Most of

the computational cost incurred at each timestep is associated with the collision

phase, which is local in nature. The only data exchange between lattice nodes

occurs during the streaming of the distributions. The model uses the linearized,

Bhatnagar-Gross-Krook single-time relaxation form of the LB equation,

fi(x + ei∆t, t + ∆t) = fi(x, t)− ∆t

τ
(fi(x, t)− f eq

i (x, t)), (5.14)

where fi(x, t) is the fluid particle density distribution with velocity ei at a

node located at position x for a given time t; τ is the relaxation time; and

f eq
i (x, t) is the equilibrium density distribution for the fluid. Cook [2001]’s two-

dimensional model uses a square, nine-velocity lattice referred to as the D2Q9

model [Qian et al., 1992]. At each node there are eight density distributions, fi,
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with non-zero velocities. There is also a zero-velocity or rest distribution at each

node, f0. The macroscopic fluid variables at a node, density, ρ, and velocity,

v, are found from the moments of the fluid particle density distribution:

v =

∑
i

fiei

ρ
, ρ =

∑
i

fi. (5.15)

LB simulates a slightly compressible fluid; consequently, fluid pressure, P , is

given by the following equation of state

P = c2
sρ. (5.16)

This simple relationship for pressure gives LB a distinct advantage over tradi-

tional Navier-Stokes solvers, which must solve the Poisson equation for pres-

sure. Coupling with discrete elements is accomplished through a moving solid

boundary condition. At a minimum, a physically correct condition must impose

identical velocities along fluid-solid interfaces. For computational expediency,

Cook [2001] adopted an immersed moving boundary scheme proposed by No-

ble and Torczynski [1998]. The modified LB equation for solid-covered nodes

becomes

fi(x + ei∆t, t + ∆t) = fi(x, t)− ∆t

τ
(1−B)(fi(x, t)− f eq

i (x, t)) + BΩS
i , (5.17)

where B is a weighting function that depends on the local solid fraction or solid

ratio, ε, defined here as the fraction of the nodal area covered by a solid(s),

and the dimensionless relaxation time according to

B(ε, τ ∗) =
ε(τ ∗−1/2)

(1−ε) + (τ ∗−1/2)
. (5.18)
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ΩS is an additional collision term that bounces back the non-equilibrium por-

tion of the distribution and is given by

ΩS
i = f−i(x, t)− fi(x, t) + f eq

i (ρ,vs)−f eq
−i(ρ,v), (5.19)

where vs is the solid’s velocity at time t, and −i is used to denote the distri-

bution component having the opposite direction to i. The result from (5.17) is

to modify the density distributions at those nodes covered by a solid in such

a way that the fluid velocity matches the solid’s rigid body motion, thereby

enforcing a no-flow condition. An important advantage of this boundary condi-

tion is that it allows for the sub-grid resolution of moving boundaries through

the solid ratio term.

Fluid dynamics in a particle-fluid system is influenced by the presence

of solids, and the displacements of solids (discrete elements) are, in turn, driven

by fluid-induced forces. The moving boundary condition presented above ac-

counts for the effect of moving solids on fluid flow; coupling is completed with

the computation of the fluid-induced forces on solids. The force of the fluid,

Ff , on a discrete element can be found by summing up the momentum transfer

that occurs over the m nodes covered by the element as

Ff =
h2

∆t

∑
m

Bm

∑
i

ΩS
i ei, (5.20)

where h is the nodal spacing. Fluid-induced torque, Tf , is calculated similarly,

Tf =
h2

∆t

∑
m

(x− xs)× (Bm

∑
i

ΩS
i ei), (5.21)

where xs is the centroid of the solid particle at time t. Fluid-particle coupling

is realized at each timestep by first computing the fluid solution, and then

updating solid particle positions through integration of the equations of motion.
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CHAPTER 6

NUMERICAL AND EXPERIMENTAL
INVESTIGATION OF THE ROLE OF

FLUID PRESSURE GRADIENTS IN FRACTURE
GENESIS

Abstract

Empirical and theoretical criteria define the amount of stress a given body

of rock can support before fracturing, but lack a direct connection between

fluid transport and mechanical properties. In this dissertation I develop these

concepts using poroelasticity theory, and devise a new experimental test to

address these issues. This test is employed in a discrete numerical model of

coupled fluid and solid physics. The LBDEM formulation couples the lattice-

Boltzmann method (LB) for fluid mechanics and the discrete element method

(DEM) for solid mechanics. Previous studies demonstrated that LBDEM, a

directly coupled, physically based model, captures basic poroelastic behavior.

The numerical simulations of fracture formation produce opening mode frac-

tures that are demonstrably fluid driven. The effect of increasing permeability

in the models is to increase the fracture propagation rate and to slightly de-

crease bond breakage. It appears that bulk forcing of the solid by the fluid is

one of the factors driving fracture genesis. In models with identical bulk fluid

pressure gradients, local fluid pressure gradients strongly influence the state of

stress in the solids, and on the fracture growth. Additionally, experimental im-

163
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plementation under the same conditions imposed in the numerical simulations

produced similar through going extension fractures.

6.1 Introduction

Pore fluid pressure within the Earth’s shallow crust can reach high

values relative to the hydrostatic gradient [Neuzil , 1995]. Previous research

suggests that the fluid pressure can reach levels high enough to fracture the

rock. The importance and existence of these so-called natural hydraulic frac-

tures (NHF) in the Earth’s crust has been debated for over 30 years [Secor ,

1965], yet the conditions under which NHFs form remains controversial. Struc-

tural geologists commonly interpret extension fractures found in sedimentary

basins [Engelder and Lacazette, 1990; Cruikshank et al., 1991; Capuano, 1993;

Foxford et al., 2000; Bahat et al., 2003]. Additionally, NHFs are called upon

to mitigate high pore fluid pressure in basins through increased permeability

[McPherson and Bredehoeft , 2001; LHeureux and Fowler , 2000; Bradley and

Powley , 1994; Roberts and Nunn, 1995]. When viewed from either perspective,

NHFs form a large piece of the feedback loop between structural (mechanical)

and hydrological processes in sedimentary basins. A better understanding of

the intrinsic and extrinsic conditions under which NHFs form will allow struc-

tural geologists and hydrogeologists to make better estimates of their extent

and importance in the geologic record.

The focus of this paper is the hydrological properties of rocks in the

genesis of NHF’s. This is accomplished through the development of a new set of

conditions that cause fluid-induced extension fractures to form with appropriate

boundary conditions. The hydraulic fracture setup is implemented in a fully-
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coupled numerical model, which is executed for a variety of rock permeabilities.

6.2 Previous Work

Recent work by Renshaw and Harvey [1994] addressed the quasi-static

growth rates of NHFs. They simulated NHFs in poroelastic media using a dis-

placement discontinuity boundary element method. They noted that poroelas-

tic effects may limit the rate of fracture growth, but growth may still accelerate.

In their model, the growth rate of isolated NHF within many rock types is a

function of the characteristic time.

Kt

S∗a2
o

, (6.1)

where K is hydraulic conductivity, S∗ is matrix storage, and ao is fracture

aperture. Characteristic time is dictated by the hydraulic conductivity; the

conductivity determines how quickly fluid is transmitted to the fracture. Plots

of the dimensionless growth rate (fracture length / time) of an isolated NHF

for various values of the dimensionless parameter φ are presented in Figure 6.1.

The ratio of the amount of water required to sustain propagation (i.e. the

change in area of the fracture per unit extension) to the amount of fluid readily

available (i.e. the matrix storage),

φ =
(1− ν)ρg

µS∗
. (6.2)

The ratio (1−ν)
µ

controls the change in area. As S∗ increases, more fluid is

available to flow into the fracture. Note that unlike induced hydraulic fractures,

the fluid pressure within natural hydraulic fractures is less than the ambient

fluid pressure after propagation begins.
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Figure 6.1: Plots of normalized fracture half-length (with respect to initial
flaw length) versus dimensionless time show that rocks with higher ratios (φ)
of amount of fluid required to sustain propagation (the change in area of the
fracture per unit extension) to amount of fluid readily available (matrix storage)
have fractures that grow slower. From Renshaw and Harvey [1994].

Recent literature has focused on the subject of induced hydraulic

fracturing for enhanced geothermal and oil extraction. The propagation of

fractures explicitly depends on the stress distribution around the fracture tip.

Thus, many papers (e.g. Rice and Cleary [1976]; Advani et al. [1987]) address

pore fluid pressure at the crack tip. In general, theoretical arguments under-

predict the amount of pressure it takes to propagate an induced hydraulic

fracture [Advani et al., 1997]. A small region of reduced pressure at the tip of

a propagating fracture can significantly reduce the stress intensity and require

renewed abnormally high fluid pressure to propagate. This lower-pressure re-

gion, or the fluid lag region, is usually attributed to excessive fluid leak-off into

the formation. This suggests that fluid flow into the fracture may be a limiting

process in geologic fracture generation.
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Figure 6.2: Deviation of fracture induced by pore pressure gradient. Adapted
from Bruno and Nakagawa [1991].

Petroleum engineering studies suggest that hydraulic fracturing may

be controlled by inducing local regions of high pore pressure via fluid injec-

tion. Bruno and Nakagawa [1991] showed that induced hydraulic fractures

will propagate toward regions of higher local pore pressure, or lower effective

stress (Figure 6.2). Higher injection pressures introduced greater deviation in

fracture propagation direction. Bruno and Nakagawa [1991] found that stress

concentrations at crack tips are locally influenced by pore pressure magnitude.

Berchenko and Detournay [1997] used a numerical model to demonstrate that

pore pressures can alter the propagation path of an induced hydraulic fracture.

The work presented in this paper is a logical extension of the above-

described work. We take a different numerical and theoretical approach to

the physics of the problem compared to Renshaw and Harvey [1994]. We use
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a fully coupled discrete technique that simulates the full dynamics of porous

media at the grain scale. This enables us to relax assumptions associated with

porosity-permeability relationships and lets the porous media fully evolve with

changes in boundary conditions. Fractures are modeled as breakage of bonds

placed at boundaries between neighboring grains. No crack distribution inside

the model is assumed; fractures initiate and propagate where dictated by the

physics. Since fracture genesis (or damage) is modeled explicitly, feedback to

both fluid flow and the mechanics of the simulated rock is also explicit. An

additional advantage to using this numerical technique is its ability to carry

out sensitivity analyses by holding key parameters constant (i.e. grain-size

distribution), which is difficult to do in the laboratory. This is demonstrated

with a sensitivity analysis of rock permeability on fracture behavior.

6.3 Theory of Natural Hydraulic Fracturing

Replicating the conditions under which NHFs are thought to form in

sedimentary basins is difficult in the laboratory. Secor [1965] showed that if

the fluid pressure was greater than the least minimum stress σ3, the effective

minimum stress σ∗3 became tensile. This can be shown through

σ∗3 = σ3 − p. (6.3)

If this relation is correct, than either a decrease in σ3 or an increase in p is

needed to fracture a rock. This relationship is widely used throughout geology

and hydrogeology and is referred to as the hydraulic fracture criterion. The

physics of this criterion are now examined.



169

6.3.1 Fluid Pressure and Confining Stresses

Consider a 2-D, box-shaped, fluid-filled, homogeneous and isotropic

porous solid with negligible tensile strength, dimensions of infinite extent, and

remote minimum far-field boundary conditions of σr
1 on top and bottom and

σr
3 and the left and right. Also assume that the fluid is stationary (no pressure

gradients) and is held at a pressure greater than σr
3. This meets the failure

condition that described by Secor [1965]. Where are the net tensile stresses

located? Stress is a tensor and has a magnitude as well as a directional com-

ponent, whereas fluid pressure is a scalar with finite magnitude and acts in all

directions uniformly. With the condition of constant fluid pressure, this implies

that on all planes (normal to σr
3) internal to the fluid filled solid, fluid pressure

magnitudes and their resulting forces on the solid framework (assuming 100%

efficiency) act to cancel one another out. The only place a net tensile force

exists is at the remote location where σr
3 is applied. Note that this is also the

location of the highest fluid pressure gradient in the system. In this case frac-

tures would form at the boundary of σr
3. This is not intuitively obvious since

Secor [1965]’s original condition is met everywhere internal to the solid. It is

important to note that Secor [1965]’s condition neglects the confining effects

of the fluid on the solid mechanics.

This concept may also be demonstrated by considering the local σ3

in a commonly used set of conditions (e.g., [Lorenz et al., 1991; Engelder and

Lacazette, 1990; Roberts and Nunn, 1995; Wang , 2000; Bessinger et al., 2003])

for a tectonically relaxed basin (one in which horizontal stress is only the result

of vertical stress, or uniaxial strain conditions) with hydrostatic fluid pressure
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Figure 6.3: Schematic of commonly used conditions to evaluate the likelihood
of natural fracturing in sedimentary basins. These conditions assume a very
long basin relative to it’s height with no applied confining stress and minimum
stress only a result of the vertical load. On left hand side of the figure are the
assumed pore pressure (dotted line) and stress (solid line) vs. depth curves.
No horizontal flow is allowed.

during burial in a sedimentary basin (Figure 6.3). The constitutive equations

(in terms of stress-strain and pore pressure) for uniaxial strain [Wang , 2000]

are

σ3 |ε3=0 =
2Gν

1− 2ν
ε1 + αp, (6.4)

and

σ1 |ε3=0 =
2G(1− ν)

1− 2ν
ε1 + αp, (6.5)

where σ1 is gravitational loading stress, G is shear modulus, ν is Poisson’s ratio,

and α is Biot-Willis coefficient. The Biot-Willis coefficient is a measure of the

efficiency with which pore pressure counteracts confining pressure to produce

volumetric strain. The coefficient is assumed to be equal to 1 as Terzaghi
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[1925] first assumed. We can solve Equation (6.4) for ε1 and substitute into

Equation (6.5) to show that

σ3 |ε3=0 =

[
ν

(1− ν
(σ1 − αp)

]
+ αp. (6.6)

Simplifying the above equation produces

σ3 |ε3=0 =
ν

(1− ν)
σ1 +

1− 2ν

(1− ν)
αp. (6.7)

The uniaixal strain case predicts that σ3 increases linearly with pore pressure,

but it is a strong function of Poisson’s ratio and the Biot-Willis parameter.

The Biot-Willis parameter not only affects the amount of pressure added to

the confining stress, but also influences the amount of offset of the effective

stress. This is illustrated in Figure 6.4, a contour plot of effective stress as a

function of pore fluid pressure and Biot-Willis parameter values. Four different

values of Poisson’s ratio are presented for a depth of 3 kilometers in a basin

with a lithostatic gradient of 23MPa
km

and a hydrostatic gradient of 10MPa
km

.

Fluid pressure ranges between the hydrostatic and the lithostatic. If the tensile

strength of the rock is neglected, the critical fluid pressure needed for fracturing

is located where the effective stress is zero. For all four values of ν, this fluid

pressure is identical. For a constant α, ν serves to change the magnitude of

the effective stress. If a tensile strength greater than 0 is assumed, the critical

fluid pressure will be different, as a function of ν. If the confining term in

Equation (6.7) is neglected, much lower fluid pressure is needed for fracturing

(Figure 6.5). At low values of ν, the critical fluid pressure is greater than the

hydrostatic pressure.

These pertain to an idealized, tectonically relaxed basin with no hori-

zontal fluid pressure gradients. If a finite horizontal force is externally applied,
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Figure 6.4: The least minimum stress (σ3) in a tectonically relaxed basin is a
strong function of σ1 and fluid pressure. Poroelastic effects severely influence
the resulting effective stress distribution (σ∗3). This is shown for values of ν and
α as a function of fluid pressure using Equation (6.7). Critical fluid pressure
values, where effective stress = 0, are the same for all ν.
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meaning that σ3 is not a function of σ1, the fluid pressure needed for fractur-

ing is significantly higher. In the case of the box example presented at the

beginning of this section, the σr
3 is not a function of the σr

1 and the bound-

ary conditions used this analysis is not valid for the problem. For values of

Poisson’s ratio that are close to 0 and a Biot-Willis coefficient that is equal

to 1, as in the 2-D box analysis, the effective stress will not go to 0 except at

the boundaries. In situations where σ3 is not a strong function of σ1 or cases

with large fluid pressure gradients, physical boundaries will strongly influence

effective stress conditions and thus natural hydraulic fracturing. The presence

of fluid pressure gradients will reduce the amount of confining stress added

to Equation (6.7), because the assumption in the solution is that of spatially

constant fluid pressure.

Nur and Byerlee [1971] concluded in their classic study that the ef-

fective stress law was valid. Their experimental setup consisted of a cylindrical

rock specimen subjected to an axial load, with a circumferential confining fluid.

Pore fluid in the rock was isolated from the confining fluid by a thin imperme-

able membrane. A series of tests performed with different pore pressure in the

samples were analyzed with plots of volumetric strain vs. effective stress. Plots

of volumetric strain versus effective stress for different internal pore pressures

plotted along similar lines, suggesting that the effective stress law is valid. The

boundary between the sample and the thin membrane played a significant role.

For the case of a confining stress equal to a constant pore fluid pressure, the

rock does not ”feel” the boundary. Any increase in stress above static fluid

pressure at the boundary is transferred to the rock. Therefore, even though no

fluid flow takes place, a large gradient in pressure exists at the boundary. This
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Figure 6.5: Plots illustrating the effect of fluid pressure on confining stress in
a tectonically relaxed basin. Contours are results of solving Equation (6.7)
neglecting the last term. This reduces the critical fluid pressure needed to drop
effective stress (σ∗3) to 0.
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pressure gradient (or stress gradient) is responsible for the observed effective

stress. It is the boundaries (or features that cause stress or pressure gradients)

that are controlling the system behavior.

In induced hydraulic fracturing (IHF), boundaries also play an impor-

tant role. IHFs are produced under conditions of elevated pressure in the flaw

or well bore compared to the formation pore pressure. Under these conditions,

hydraulic fractures are created because large pressure gradients between the

well bore and the formation are present. The boundary or pressure difference

between the well bore and the formation plays a critical role in the propagation

of the fractures.

6.3.2 Fluid Pressure Gradients and Drag Forces

In saturated flow through a porous medium, force is exerted by the

fluid on the solid particles (See Section 5.4.1). Following Terzaghi [1943], three

forces act on the solid particles through which flow occurs. The first is the

weight of the overlying solids F1 acting downward. This is given by

F1 = −γs(1− n)∇z, (6.8)

where γs is the specific weight of the dry solid particles, n is the porosity, and

∇z is the gradient in elevation (parallel to the gravitational field). The second

force is the buoyancy force F2, defined as

F2 = −(1− n)∇p, (6.9)
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in terms of force per unit volume. The final force is the drag (or seepage) force

F3 which, per unit volume of porous medium, is equal to

F3 = −nγf∇ψ, (6.10)

where γf is the fluid’s specific weight, and ∇ψ is the fluid potential defined as

∇(z +
p

γf

). (6.11)

The fluid potential is a measure of the available energy per unit weight of fluid

and is dissipated as viscous friction at fluid-solid interfaces. As this energy

is dissipated, a force is exerted on the solid matrix in the direction of fluid

flow. The first two terms in Equation (6.10) can be attributed to properties

of the porous medium in question. The porosity is obviously a property of

the porous medium, but the potential gradient can also be attributed to the

medium through the permeability. Terzaghi [1943] neglected any external ap-

plied forces, but these can easily be incorporated through force summation over

a volume of porous media. The three forces can be summed and evaluated for

conditions of piping (sand production) and quicksand ( where F3 > F1 + F2)

phenomena [Bear , 1972]. Note that if ∇p = 0 (i.e. no flow) then F3 = F2 = 0.

This implies that the static fluid pressure, P , is not a significant hydraulic

fracture criterion if the Biot-Willis coefficient is equal to 1(α = 1). The value

of ∇p determines the stress state in the solid and may be a more effective cri-

terion. Thus, it may be possible to define a critical gradient (similar to that

for quicksand conditions [Bear , 1972]) for hydraulic fracturing, based on rock

parameters. The two processes are similar in that both require effective stress

to tend towards zero, although in quicksand problems the vertical stress is the
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stress of importance. Parameters of importance in the hydraulic fracturing

problem are the rock tensile strength and the Biot-Willis parameter.

In summary, fluid pressure gradients play a significant role in creating

net tensile stresses in porous solids. Many different factors cause pore pressure

gradients in rocks. These include transients caused by the spatial heterogeneity

of the expulsion of connate water during compaction, in-situ sources of fluid

pressure, and local gradients driving fluid flow. Spatial heterogeneity, at all

scales, may play an important role in dictating where fractures nucleate. These

issues are explored below through development of a new numerical test design

and simulation.

6.4 Numerical Test Design

The conditions outlined in the above section are not simple to impose

in a laboratory test. Dropping σ3 while maintaining a condition of higher p is

impossible in a standard cylindrical triaxial pressure cell. This is because these

setups typically apply σ3 with a loading piston axially attached to the endcaps

of the sample. It is inevitable that when σ3 is dropped lower than p, fluid

will leak between the endcaps and the rock, creating an ”extension fracture”

between them. An alternative technique of applying a minimum stress would

be through a confining pressure surrounding the long axis of the specimen,

but when σ3 is dropped lower than p, fluid will break the seal between the

sample and the confining fluid. Without designing a new testing apparatus,

dropping σ3 and holding p constant is not possible. It is also apparent that a

resulting increase in p while holding σ3 constant suffers from the same problems

as discussed above.
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A new method to generate fluid-pressure-induced fractures was de-

signed to overcome the limitations of imposing laboratory boundary conditions.

The test, shown in Figure 6.6, is a combination of both end member cases dis-

cussed above. Initial conditions on the cylindrical sample of rock saturated with

a fluid pressure Po are typical of traditional triaxial tests with the exception

that the σ3 is axial and σ1 laterally confines the sample. At the start of the test,

both Po and σ3 are instantaneously lowered. These conditions will not cause

leaking at the boundaries or through the sample jackets since (1) P is lower

than σ3 at the boundary and (2) P is lower than σ1 everywhere. The drop in

both stress and fluid pressure at the boundary will create conditions conducive

to the generation of extension fractures in the sample. These conditions consist

of fluid pressure at the center of the sample greater than the local axial stress

which, assuming quasi-equilibrium with new boundary conditions, should be

σ3. As a result, extension fractures should form perpendicular to σ3 in areas

of high p and low σ3. In NHFs, unlike induced hydraulic fractures, ambient

fluid pressure is higher surrounding the fracture than inside the fracture itself.

This condition imposes several constraints on how resulting fractures initiate

and interact.

Differing time constants governing fluid flow and mechanical equilib-

rium are responsible for creating a condition of high p and low σ3 at the sample

center. Specifically, the fluid diffusion time constant is much lower (i.e. slower)

than the mechanical equilibrium time constant. In porous media, the time it

takes for a given fluid pressure to come to equilibrium with a change in bound-

ary conditions is a function of the rock’s hydraulic diffusivity. In groundwater

hydrogeology studies, uniaxial strain and constant vertical stress are typically
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Figure 6.6: Initial and boundary conditions for experimental approach to gener-
ating natural hydraulic fractures. Fluid pressure in the system is kept elevated
relative to the minimum stress by the lag time that occurs as a result of fluid
flow (pressure gradients).



180

assumed, and hydraulic diffusivity (κ) is thus defined as

κ =
kρg

µSs

, (6.12)

where Ss is the one-dimensional specific storage, k is the intrinsic permeability,

ρ is the fluid density, g is gravitational acceleration, and µ is fluid kinematic

viscosity. Note that κ has mks units of length2

time
- m2s−1. A time of L2

κ
is required

for a pressure change to propagate a distance L. The diffusion time is function

of the rocks hydrologic properties (k, Ss) and it relies on the fluid properties

(ρ, µ). In this study, we will focus on the role that κ plays in the initiation and

propagation of fractures using the experimental test designed above.

6.5 Modeling Approach

We analyzed hydraulic fracturing processes with a direct simulation

method developed by Cook et al. [2000] andCook [2001]. The approach couples

the Discrete Element Method (DEM) for solid mechanics with the lattice Boltz-

man (LB) for fluid mechanics. Since the LB approximates the Navier-Stokes

equations of fluid flow, no empirical relations are necessary to relate fluid flux

to pressure drop at the pore scale (i.e. Darcy’s law). Also, the DEM does not

require a priori assumptions about the relationship between fluid permeabil-

ity and porosity. The hydrodynamics develop with the evolving solid matrix.

These techniques are briefly reviewed below.

6.5.1 Discrete Element Method

The DEM technique has been successfully used to approximate the

behavior of non-cohesive, granular systems under low stress conditions [Cundall
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et al., 1982] and lithified sedimentary rocks [Bruno and Nelson, 1991; Potyondy

et al., 1996; Hazzard et al., 2000; Boutt and McPherson, 2002]. In this paper

we are employing an existing two-dimensional DEM application [Rege, 1996].

DEM simulates the mechanical behavior of porous media by idealizing the sys-

tem as a collection of separate particles that interact at their contact points.

The method consists of (1) identifying elements in contact and (2) resolving

the contact physics. The calculations performed in the DEM alternate between

the application of Newton’s Second Law and a force-displacement law (simple

contact models) at the contacts between particles. The force-displacement law

relates components of force to the corresponding components of the relative

displacements through a generalized contact constitutive model. The contact

constitutive model has two parts, a stiffness model and a slip model. The mo-

tion equations are integrated explicitly with respect to time to obtain particle

positions, then used in the force-displacement calculations, and the calculation

cycle starts over again. A advantage of this approach is that the DEM constitu-

tive behaviors (stress and strain relations) are results rather than assumptions.

6.5.2 Lattice-Boltzmann and Coupled Model Theory

Fluid coupling with DEM was developed by Cook [2001] and Cook

et al. [in press] through the integration of LB with the DEM framework de-

scribed above. A detailed development and validation of the coupled method

can be found in Cook et al. [2000], Cook [2001], and Cook et al. [in press].

The two-dimensional simulations reported by Cook [2001] include such com-

plex phenomena as drafting-kissing-tumbling in multi-particle sedimentation

simulations and the saltation phase of bed erosion. An extended description of
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the method was presented in Chapter 5.

6.6 LBDEM Conceptual Model

Unlike continuum formulations, discrete models require significant up-

front effort to build a model domain. The first step in the LBDEM is to develop

a mechanical model out of discrete elements. Models used in this study were

built using a space-filling algorithm that packs the discrete elements into a

rectangular space (see (Chapter 2). Roughly 1000 ellipse-shaped elements with

an aspect ratio of 0.5 were packed into a 7 cm long by 3.5 cm wide box (Fig-

ure 6.7). Ellipse-shaped elements were chosen for their superior frictional and

mechanical properties compared to circular elements. Similar to a laboratory

test, boundary conditions are applied to the discrete element assembly with

platens (rectangular discrete elements) until a specified stress is reached.

To simulate the behavior of a cohesive rock, individual discrete el-

ements were bonded to one another. Bonds are modeled as point-to-point

constraints between neighboring particles using the spring formulation as

Fb = kb∆x, (6.13)

where Fb is the force in the bond, kb is bond stiffness, and ∆x is relative

displacement of the neighboring particles. Bonds are aligned with the surface

normals and connect the closest surfaces of the two particles of interest. If Fb

is greater than or equal to the bond strength F crit
b the constraint is removed

and bonded elements are allowed to move freely. A limitation of this bonding

approach is that it has no implicit shear strength. In reality, the bond has

some finite shear strength since it is modeled as a surface-to-surface contact,
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Figure 6.7: Base discrete element model for all fracture simulations. Roughly
1,000 ellipse-shaped elements were packed into a 7 by 3.5 cm area.

and any offset (normal or tangential) great enough to exceed the F crit
b will cause

the bond to fail. Another limitation of the bonding scheme is that it has no

interaction with the flowing fluid. Properties of the discrete element portion of

the simulations are listed in Table 6.1.

The simulated LB fluid has a dynamic viscosity of 0.2 cm2

s
, similar to

that of water (Table 6.2). Each simulation consisted of approximately 500,000

fluid nodes. The fluid lattice, shown as the colored area in Figure 6.7, extends

beyond the edge of the discrete elements to allow straining of the element

assembly during fracturing. The sample in Figure 6.7 was tested under a

constant fluid pressure drop and the resulting steady-state discharge through

the system recorded. Resulting permeability of the model specimen was 1.3 ∗
10−4cm2 or 1.3∗10−8m2, a high value relative to cemented rocks (10−9−10−19).

This is attributed to the model being only 2-D. Specific properties of the fluid
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Table 6.1: Parameters of Solid Assembly

Parameter Value

Friction (-) 0.5
Element Normal Stiffness (Dyne/cm) 1 ∗ 105

Element Shear Stiffness (Dyne/cm) 6 ∗ 105

Element Size Range (cm) 0.11-0.07
Bond Strength, F critb (Dyne) 700
Bond Stiffness, kb (Dyne/cm) 1 ∗ 105

Table 6.2: Parameters of Fluid Lattice

Parameter Value

Viscosity ( cm2

s
) 0.2

Relaxation Time (-) 0.625
Node Spacing (cm) 0.009
Fluid Radius (-) 0.6
Timestep (s) 1e− 5

lattice are given in Table 6.2.

The initial conditions described above for the fracturing test applied

to the LBDEM model are shown in Figure 6.7. Initially the sample is loaded

hydrostatically to an effective stress of 50dynes
cm2 (500 kPa), then the effective axial

stress (sample short axis) is dropped to 40dynes
cm2 while holding the lateral stress

constant. The lateral (sample long axis) stress is maintained via platens while

the axial stress is applied through the discrete elements along the boundary of

the model. This allows both the application of a stress and movement of fluid

through the boundary. The initial fluid pressure within the sample is constant.

The bond strength of the elements is 700 dynes for all models. This value is
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reasonable when compared to the initial fluid pressure drop across the sample,

1.7dynes
cm2 . In relative terms, the bond strength is akin to a tensile strength of 7

MPa for a fluid pressure drop of ∼ 17 MPa across the sample.

The test begins with a drop in both the axial stress and fluid pressure

at the boundaries. For all tests, the axial stress is dropped to 0.1dynes
cm2 and the

fluid pressure difference (Po − P ) is 1.7dynes
cm2 . Fluid pressure and fluid velocity

were monitored along a cross-section parallel to the long axis of the model

specimen. In addition, screenshots of the model were taken at 0.001 second

intervals.

6.7 Fluid-Induced Fracture Results

The model (Figure 6.7) was executed under the conditions described

above for 2 seconds of model time, about the time required for the system to

come to a new equilibrium state. Snapshots of model state are presented in

Figure 6.8 for early through late time model behavior. As the axial stress is

dropped on both boundaries, forces between individual elements are lowered,

resulting in an overall extensional strain in the elastic framework. The ad-

ditional fluid pressure drop on the boundaries causes large pressure gradients

toward the ends of the discrete element assembly. The overall pressure gradient

is sufficiently high to cause breakage of the element bonds. These individual

bond breakages coalesce into larger macroscopic features that split the assembly

parallel to the maximum stress direction. Figure 6.9 highlights these fractures,

emphasizing element speeds, and illustrating that individual blocks within the

assembly are moving as coherent groups.
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Test runs of dry models with identical boundary and initial conditions

were performed with no resulting fractures but with less than 1% axial strain.

Saturated models with no fluid pressure drop on the boundaries, but with a

drop in the axial stress, also did not form fractures.

The fracture growth results in Figure 6.8 demonstrate that bond

breakages are initiated closer to the boundaries before the central fractures

form. Although this may be counterintuitive, fast wave speeds through the

discrete element assembly cause elements near the boundaries to relieve force

first, and the fluid pressure gradients then cause bond breakages. These bond

breakages rarely coalesce into the larger macroscopic fractures seen in the center

of the assembly. This is probably because pressure gradients near the bound-

aries drop faster than those in the middle of the model (see Figure 6.13a).

The orientations of both the large through-going fractures and smaller

fractures are roughly perpendicular to the minimum stress direction. This re-

sult is consistent with predictions from a Mohr circle analysis. Slight deviations

in fracture orientation are local in nature and represent preferential breakage

of weak bonds around stronger bonds. In appears that the preferential path of

a given fracture is through areas where elements are oriented with their long

axis normal (broadside) to the overall fluid pressure gradient direction. One

proposed mechanism for this is because such elements have more surface area

exposed to prevailing fluid pressure gradients, resulting in larger net forces on

the elements (Figure 6.10). Disc-shaped elements will not exhibit this phe-

nomenon. It is also possible that mechanical anisotropy could be causing this

phenomena. Additional tests using different packing geometries could discern
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Figure 6.9: Time series of particle speeds (hot element colors indicate higher
speed) illustrating fracture development as the simulation progresses. Outer
blocks are moving at higher rates than inner blocks.

between the two hypotheses. The effect of anisotropy in element packing on

resulting fracture orientations has not yet been studied in detail but the orien-

tation used in these simulations does affect the orientation of fractures.

6.7.1 Fracture Initiation

One important physical fracture process that the LBDEM technique

can capture is fracture initiation. Continuum-based formulations require as-

sumptions about initial crack or fracture length that limit model applicability

or generality. The LBDEM method’s smallest length scale (element size) has a

first-order control on initial fracture length. The relative location and orienta-

tion of the elements also controls where the fractures are located (i.e., fracture

spacing less than element size is not possible). Most extension fractures form

along grain boundaries [Kranz , 1983]. Thus, if the element size is assumed to
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Figure 6.10: Element long axes are plotted in a rose diagram to visualize trends.
The numbers correspond to the quantity of elements with the indicated orien-
tation This preferred orientation of elements is coincident with the orientation
of some of the major fractures in the model.
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be equivalent to the grain size, this assumption is appropriate.

Fluid pressure gradients develop as a result of low pressure at the

boundaries and higher pressure within the system. The gradients induce inter-

particle stresses sufficient to break bonds. Figure 6.11 focuses on a particle

pair central to the model in Figure 6.7. Pre- and post-bond breakage plots are

shown together with a contour plot of the fluid velocity field. These particles

are being forced apart through bulk loading of fluid on the assembly. The

velocity magnitudes in the pre-bond breakage plot of Figure 6.11 reveal a low

velocity zone in the vicinity of the impending bond breakage. After the bond is

broken, fluid adjacent to the particles is influenced by the particle movement.

The velocity vectors in the high pressure zones on either side of the bond point

in opposite directions, causing a bulk loading in the assembly, which pulls apart

the two particles. Velocity vectors beneath the particles indicate an extensional

failure of the bond.

6.7.2 Fracture Propagation

Propagation or growth of fractures in the LBDEM is more explicit

than in an equivalent continuum model. No remeshing or damage parameters

are introduced to simulate a growing fracture. Fractures are visualized as

the grouping of bond breakages. An advantage to this method is that when

fractures form, no modification to the fluid lattice needs to occur to handle the

change in local permeability.

After initial bond breakage, fluid pressure drops in the newly opened

fracture and causes positive fluid-pressure gradients toward the fracture (Fig-
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Figure 6.11: Pre- and post-bond (shaded particles) breakage is illustrated (top
images) for a pair of particles in the central portion of the assembly. In the
bottom images velocity magnitudes (dark shading is low velocity) and velocity
vectors indicate a bulk extensional loading on the assembly. The bottom images
are of the same region indicated in the top image, but blown up to show vectors
more cleary.
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ure 6.8). Despite this local forcing (Figure 6.12), macro-scale fluid pressure

gradients are large enough to cause the particles to move apart. The plot in

Figure 6.12 indicates that local fluid forces are not high enough to cause the

bond breakage. This suggests that local-scale pressure gradients are not impor-

tant in fracture propagation at the macro-scale. As the simulation progresses,

the fractures are pulled further apart until the system returns to equilibrium.

A small oscillation between fracture opening and closing in the system was

observed as system energy was attenuated.

6.8 Role of Rock Permeability

In this section the role of rock permeability in fracture generation is

explored. Three additional models with initial permeabilities varying over 2

orders of magnitude were executed under identical initial and boundary condi-

tions as for the 1st simulation. Model permeabilities were modified by varying

the discrete element’s fluid radius. Changing the fluid radius does not change

the solid (DEM) porosity, but it does change the amount of space available for

fluid. By changing the ”fluid-porosity” of the sample, the amount of sample

storage changes slightly. Table 6.3 lists the properties of the models used for

the permeability sensitivity study. Permeabilities of the samples were calcu-

lated using Darcy’s law with a steady-state, constant pressure drop. Storage

of the samples is evaluated using a transient technique described in Chapter 5.

Even though permeabilities of the samples vary by more than 2 orders of mag-

nitude, storage of the samples shows less variance. Hydraulic diffusivities of

the samples vary no more than one order of magnitude. The time constants

for the samples are correspondingly different by an order of magnitude. Run
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Figure 6.12: Contact forces and fluid-induced forces for two particles central to
the model (See Figure 6.11) are shown here. After initial bond breakage, local
fluid pressure in the fracture is lower, giving rise to fluid pressure gradients
that are towards the fracture. Fluid loading on the assembly appears to be
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Table 6.3: Properties of models used for permeability sensitivity study

ID LB Ra-
dius

Porosity
(%)

Permeability
(cm2)

Diffusivity
(cm2s−1)

Storage
(cm−1)

Time Con-
stant (s)

1 0.6 62.6 1.2E-4 23.5 0.027 0.41
2 0.725 49.3 7E-5 15.5 0.009 0.62
3 0.8 40.4 2.39E-5 5.4 0.0067 1.78
4 0.95 19.5 1E-6 1.9 0.0027 5.06

times to reach mechanical equilibrium in the assemblies were different because

of different sample diffusivities.

Results of the four models with varying hydraulic diffusivities are

presented in Figure 6.13 and Figure 6.14. The top model in Figure 6.13 is the

base model described above. The additional three models are positioned in

the order of decreasing permeability. Two main features of the base model are

important (Figure 6.13, top). The first is the time delay in the response of the

fluid pressure as a function of distance from the pressure boundary condition.

This time delay is directly related to the hydrologic properties of the models.

The slight change from a deep red hue to a more cherry red is a poroelastic

pressure drop associated with reduced stress on the boundary. In this model,

most of the fluid pressure has decayed to the boundary condition pressure by 0.2

seconds of time. This delay is important with respect to fracture propagation

and initiation.

The second important feature of the base model includes the location

and timing of fluid pressure drops with distance. These pressure drops correlate

with the location of hydraulic fractures forming throughout the model. As pre-
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viously described, the fluid pressure within the fractures drops as the fracture

is formed. Local gradients surrounding the fracture are pointing inward acting

to hinder fracture propagation. A high velocity zone that can be attributed to

fluid flowing into a newly opened fracture is evident at later time in the fluid

speed plot.

Fracture patterns and damage at 0.2 seconds are different for the 4

models. The most obvious difference is in the apertures of the fractures. The

highest permeability model had the largest apertures, while the lowest perme-

ability model had the smallest. The number of fractures (or number of bond

breakages) in the model increases as a function of hydraulic diffusivity. This

is in agreement with the fact that as the diffusivity decreases, fluid pressure

within the pore spaces is higher for a longer duration, providing more oppor-

tunity for fracture growth. The highest permeability model has very localized

deformation completely surrounding the main hydraulic fractures. As the hy-

draulic diffusivity of the model is decreased, deformation becomes less localized.

Fracture propagation was faster in the higher permeability than in the lower

permeability models.

Similar observations of fluid pressure and speed plots can be made

in the lower permeability models of Figure 6.13 and Figure 6.14. Differences

between lower and higher permeability models are due to the fact that high

pressure resides longer in the lower permeability models. This result is intuitive

from time constant calculations. Timing of fluid pressure drops is consistent in

all models. The locations of these drops are different, and may be attributed

to the location of the fractures that develop. Another interesting aspect is
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that although the magnitude of fluid speeds at early times are similar in the

high permeability and lowest permeability model, the later time magnitudes

are strikingly different. This attribute, which is tied to fracture development,

reflects differences in permeabilities of the models.

Fluid forcing on the solid framework plays a major part in the gen-

eration of these fractures. In Section 6.3.2, the force of fluid on the solid was

shown to be proportional to the porosity of the rock and the fluid pressure gra-

dient. In the permeability sensitivity study, the fluid pressure drop across the

sample was constant. This implies that the initial fluid pressure gradient in the

system was the same for each model. Assuming this, the porosity differences

between the models (see Table 6.3) should indicate the relative force applied to

the solids. The highest porosity model (also highest permeability) has 3 times

more fluid force applied to the solid framework than the lowest porosity model.

These differences in applied forces result in a difference in fracture generation

and distribution, resulting in 3 distinct macroscopic fractures and little other

deformation in the high porosity to the low porosity model (Figure 6.15). The

low porosity model has fewer macroscopic fractures and more evenly distributed

deformation.

The overall pressure gradients are the same amoung the models, but

the pressure gradients at the multiple grain scale are different. This is a function

of pore throat size, which varies from the high permeability model to the low

permeability model. Figure 6.13 and Figure 6.14 show that the internal pressure

gradients throughout the low permeability models were much higher than the

high permeability models. I contend that these ”local” gradients are responsible
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Black 1

Red 2

Yellow 3

Blue 4

Figure 6.15: Interpretation of fractures for the permeability sensitivity study.
Colors correspond to models with different permeabilities, 1 the highest and 4
the lowest. The thickest solid lines indicate large open fractures, whereas thin
solid and dashed lines indicate smaller and minor fractures respectively.

for the more distributed deformation in the lower permeability models. This is

explored in the next section through the imposition of hydrologic heterogeneity

in the models.

6.8.1 Hydrologic Heterogeneity

Six additional numerical models of fracture genesis were developed

to explore the competing roles of hydrologic heterogeneity, defined here as

variations in pore throat size (which is related to fluid permeability), and me-

chanical properties. Two cases were examined, one in which pore throat sizes is

increased (from a LB radius of 0.95 → 0.6, which effectively decreases element

size) relative to the surrounding matrix and the other where pore throat sizes

is decreased (from a LB radius of 0.6 → 0.95) relative to the matrix. Each one

of the cases was performed with a vertical, a positively angled, and a negatively
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angled heterogeneity. The locations of these heterogeneities are presented in

Figure 6.16 as black lines. The vertical case contains a heterogeneity oriented

perpendicular to the overall fluid pressure gradient. The negatively angled het-

erogeneity is parallel to the orientation of the major mechanical anisotropy (el-

lipse long axes) and the positively angled heterogeneity is tilted in the opposite

direction. These heterogeneities mimic the planer features (such as bedding)

commonly found in sedimentary rocks. The insertion of these variations intro-

duces an anisotropy in the system. These results could be interpreted within

the context of having both heterogeniety and anisotropy.

The simulations in which pore throat size is increased relative to the

matrix (Figure 6.16) demonstrates a dramatic impact of permeability vari-

ations on damage and fracture orientation. Vertical and negatively angled

heterogeneities appear to aid in the generation of fractures compared to the

homogeneous case. These models exhibit a significant increase in damage and

fractures. Fractures are most abundant in the simulations with vertical het-

erogeneity. The fractures are sub-parallel to the heterogeneities and nucleate

at the boundaries between changes in pore throat size. The overall fluid pres-

sure gradient in the system is parallel to these features, possibly maximizing

their effect. Fractures in the negatively angled case are less abundant than

the vertical case but also appear to be influenced by the spatial distribution

of heterogeneity. The mean axis of the ellipses used in the numerical mod-

els is (qualitatively) coincident with the negatively angled heterogeneity. This

relationship seems to aid the generation of fractures in the negatively angled

case, since the major mechanical and hydrologic heterogeneities are aligned.

The positively angled heterogeneities model contains only one large fracture
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Homogeneous Vertical Heterogeneity

Negative Angled Heterogeneity Positive Angled Heterogeneity

Figure 6.16: Results from increasing the pore throat size relative to the ma-
trix. Black lines indicate the location of changes in pore throat size, where
from left to right the lines enclose the changes. Models with imposed hetero-
geneities have similar porosities. Large differences between the ”homogeneous”
and heterogeneous models are evident. See text for further discussion.
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and a similar amount of minor damage. This model includes the only fracture

that cuts across multiple bands of permeability heterogeneity, indicating the

heterogeneity is a weak control on the fracture formation. Lack of coincidence

between the major mechanical control and the hydrological variation seems to

be important in this case.

Figure 6.17 presents the results for simulations in which heterogeneities

are represented by decreases in pore throat sizes relative to the matrix. The

imposed vertical and steeply dipping heterogeneities have little effect on the

fractures produced in these models. A minor amount of bond breakage is ob-

served in the higher gradient (smaller pore throat) regions. Local deviations

of the fractures in the vertical and negatively angled models, although minor,

are coincident with the imposed heterogeneities. Consistent with this result is

the observation that the homogeneous model fractures propagate more cleanly,

with less bond breakages. This is similar to observations in the increased pore

throat models. Overall, the reduction in size of pore throats in an overall high

permeability matrix slightly increases the amount of resulting damage. This is

in contrast to the increased pore throat size case, where significant differences

between the homogeneous case and the heterogeneous case are observed.

6.9 Experimental Demonstration of Numerical Simulations

The design presented in Section 6.4 was implemented experimentally

to provide a proof of concept of the technique. The exact conditions of Fig-

ure 6.6 were performed on cylindrical samples of rock in the Sandia National

Laboratories Rock Mechanics laboratory. A cemented fine-grained channel

sand was collected from the Abo Formation, where it outcrops east of Socorro,
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Homogeneous Vertical Heterogeneity

Negative Angled Heterogeneity Positive Angled Heterogeneity

Figure 6.17: Results from decreasing the pore throat size relative to the ma-
trix. Models with imposed heterogeneity have similar porosities. Very small
differences in fracture patterns between the models are observed. See text for
further discussion.
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New Mexico, USA. The Abo Formation includes a variety of generally low per-

meability clastic sediments, ranging from mudstone to sandstone. The sample

was chosen for this suite of tests because of its low permeability, lack of slaty

cleavage, and clastic origin. A core of this sample was made, with the long axis

of the core oriented at a high angle to bedding. The first test on this sample

was successful, with one large mesoscopic fracture and many small fractures

visible in thin section. The mesoscopic fracture formed parallel to bedding.

6.9.1 Sample Characteristics

The sample taken from the Abo Formation has a permeability (nor-

mal to bedding) of 10−13cm2 as calculated by a steady state flow test. This

permeability and assumed low storage (given a porosity of 12%) makes the

sample an ideal rock for this test. The tensile strength of the sample was mea-

sured at 8 MPa using a standard brazil test with a 2.54 cm diameter sample.

As discussed throughout this dissertation, the time required for fluid pressure

to come to equilibrium with a change in boundary conditions is related to the

sample permeability and storage. For the conditions of this test, the longer

the time for the fluid to come to equilibrium the more likely the fracture will

sample. This is because the time needed to change boundary conditions in the

laboratory is finite. A plot of the time for pressure equilibrium vs. rock per-

meability can give an estimate on the lower limit at which the change in stress

must take place. This is depicted in Figure 6.18 for fluids with 4 different vis-

cosities. As the viscosity is increased, so does the reaction time of the fluid to

the change in boundary conditions. The solid line placed at 1 second is the as-

sumed reaction time of the laboratory equipment. For the lowermost viscosity
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Figure 6.18: A log-log plot of sample time constants and fluid permeability
defines the lower limit in which the stress on the rock can be removed. Four
curves are shown here, each for a unique fluid viscosity. The lowermost curve
is for that of water and the upper curves are for a viscosity of 10x, 100x, and
1000x of water. The solid line at 1 second is the assumed response time of the
laboratory equipment.

curve (viscosity of water) any rock with a permeability greater than 10−12cm2

will have a fluid pressure reaction time greater than that of the machine. The

Abo sandstone is well above this value. The time constant of the sample, with

a pore fluid viscosity 50 times that of water, is roughly 200 seconds.
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6.9.2 Experimental Setup

The experimental design introduced in Section 6.4 relied on the con-

fining pressure to be the maximum principal stress. This requires a special

experimental setup that allows for such a differential stress. The rock mechan-

ics lab at Sandia National Laboratories (SNL) has these facilities. All tests

described in this section were performed at the rock mechanics lab at SNL by

technician Bob Hardy. The endcaps, shown in Figure 6.19, were designed to

allow significant axial extension while restricting the confining fluid to infiltrate

the sample. The specimen was first jacketed with polyolefin heat shrink tubing

and then coated with a polyurethane epoxy to the sample endcaps. The sample

was also equipped for measuring axial and lateral displacements via LVDT (lin-

ear variable differential transducers). Two LVDTs were placed along the long

axis of the sample to measure axial displacements and a circumferential split

ring enables an additional LVDT to measure circumferential displacements.

The sample (with end cap assembly) was loaded into the pressure

vessel and the 220 KIP load frame (Figure 6.20). The sample was loaded

hydrostatically to 20 MPa and the axial load was dropped to 18 MPa. For

each test, a dry run was executed where the sample was loaded hydrostatically

and the axial load dropped to 0 MPa. This was done to determine if the amount

of differential stress, 20 MPa, was great enough to induce a fracture. A silicone-

based pore fluid (Dow 250 - 50 centistokes) was pumped into the bottom of the

sample while maintaining a 10 MPa pressure drop until breakthrough out of

the top was observed. Pump directions were then reversed and fluid is pumped

until the sample reached a fluid pressure of 15 MPa. Valves were attached to
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Figure 6.19: The endcaps used in the extension tests are able to support dif-
ferential stresses, such that the maximum stress is the confining stress. Total
assembly height is approximately 20 inches tall.

the top and bottom inlets to the pressure vessel, to allow for the simultaneous

dropping of fluid pressure to atmospheric pressure at both ports.

6.9.3 Testing Results

The design dictates that both the fluid pressure at the end caps and

the axial stress are dropped simultaneously. As mentioned above this is not

possible with the available equipment, thus we use the slower fluid equilibrium

time to adjust for this. Fluid pressure is always dropped first and then the stress

is dropped. The duration between the drops usually took about a second. A

plot of fluid pressure, confining pressure, and axial stress, vs. time is presented



208

Figure 6.20: Pressure vessel and load frame used for generating hydraulic frac-
tures. Tubing on right hand side allows for the simultaneous dropping of fluid
pressure at top and bottom end caps.
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Figure 6.21: A plot of percent axial strain vs. axial stress for a dry extensional
test. A small amount of elastic strain takes place as the axial stress is dropped.
Arrows indicate unloading and reloading of the speciment. A small amount of
hysteresis is observed.
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Figure 6.22: A plot of pore pressure, confining pressure, and axial stress, vs.
time shows the relative timing of dropping the fluid pressure and the axial
stress. Two prominent increases in axial stress after the start of the test mark
the extensional fracturing and the slippage of a major extension fracture. A
dip in the confining stress is coincident with the slippage due to perturbation
of the confining fluid.

in Figure 6.22. Before the fluid pressure is dropped at the end caps, the values

are holding steady. After the fluid pressure is vented to the atmosphere, the

axial stress is lowered. This reduction is stress was achieved by moving the

loading piston away from the sample end caps (about 1 millimeter). After about

10 seconds, the loading ram was moved an additional tenth of a millimeter.

Soon after. a sharp jump in axial stress occurred and marked the time at

which the rock fractured in extension. Draining of fluid out of the rock and

straining of the rock resulted in an increase in axial stress. The additional

increase in axial stress resulted from the rock failing in shear. As the rock

failed in shear, the confining fluid pressure was perturbed slightly and a small
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Figure 6.23: As the sample is unloaded, measurable extension (negative strain)
of the rock occurs. The strain in the fluid saturated test is 4 times greater than
the dry test. A sharp increase in the axial stress marks the time where the
extension fractures were formed.

dip in confining pressure was coincident with the second jump in axial stress.

The rock was allowed to drain for 4 hours before the sample assembly was

removed from the pressure vessel.

A plot of axial stress vs. axial strain is given in Figure 6.23 to high-

light the above-described features of the test. This plot looks similar to the

dry test, but 4 times more strain took place in the saturated test. This was

expected because the fluid pressure contributes to the strain as the fluid drains

toward the boundaries. At −0.7% axial strain, a jump in the axial stress sig-

nifies the contribution of fluid drainage to the axial strain of the specimen. At

−0.9% axial strain the platen was backed off slightly to decrease the axial load,

indicated by a drop in stress, and soon afterward a sudden increase in stress
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represented an extension of the specimen interpreted as the formation of frac-

tures. An increase in axial strain also marked this event. At the end of the test,

an increase with axial stress and slight extension marks the time of shearing of

the extension fracture. A plot of axial stress vs. lateral strain (Figure 6.25) also

indicates an expansion (negative strain) of the rock coincident with the timing

of the shear fracture. The macroscopic feature is shown in Figure 6.24. The

initial extension fracture was angled relative to the long axis of the specimen,

creating a component of shear along its surface. Even though the confining

pressure was acting equally on all sides of the rock, this angle was large enough

to cause slip on the fracture plane. In addition to the macroscopic fractures, a

significant amount of microscopic damage was observed in the rock. A series of

extension cracks perpendicular to the fluid pressure gradient were present (Fig-

ure 6.26). This orientation is coincident to the major mechanical anisotropy

(and heterogeneity) in the rock, the bedding planes. The bedding planes are

at a high angle to the long axis of the specimen (roughly 80o% to the vertical).

Observations in thin section suggest that these planes may be the areas where

the fractures are localized. Brazilian style extension tests performed to isolate

the strength of the bedding planes indicate that the planes may be up to 50 %

weaker than the rock between the planes.

6.10 Discussion

The conditions presented in Section 6.4 were successful in producing

hydraulic fractures in numerical simulations and in laboratory experiments.

Despite this fact, it is unclear whether the existence of elevated pore fluid

pressure (i.e. static pressure) or fluid pressure gradients are responsible for
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Figure 6.24: Generation of a shear fracture along a pre-existing extension frac-
ture is the result of the angle of the extension fracture. The slip on the fracture
is limited by the amount of stretching in the jacket of the specimen.
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Figure 6.25: As the rock is relieved of axial load, the rock compresses in the
lateral direction. This plot of axial stress vs. lateral strain shows this rela-
tionship. The fracturing of the sample cause local changes in the amount of
compression.
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Figure 6.26: Large numbers of extension fractures are observed parallel to
bedding and sub-parallel to the fluid pressure gradient. Thin section analysis
will be used to quantify the number of fractures in the future.

facilitating fracturing. Analysis of the LBDEM simulations indicate that the

bulk loading of fluid flow on the solid matrix was a key factor in producing

the observed extension fractures. The LBDEM model does not include static

pressure components and will not capture static behavior. Analysis of the ex-

perimental data has not yielded convincing support for either fracturing mech-

anism and it is unclear whether it can be determined from this type of data.

It is possible that mechanical heterogeneity and anisotropy are responsible for

the location and rough orientation of the numerically simulated and laboratory

fractures. More work, particularly in the numerical simulations, on the role of

these variables, is necessary. Regardless, both the numerical simulations and

experimental results suggest tensile failure as a result of fluid pressure.

In Section 6.3 it is argued that elevated fluid pressure alone is not

sufficient to cause fracturing, and that pressure gradients are needed for frac-
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turing. In this case the fluid acts against a boundary (which must be virtually

impermeable) in which the net force is outward (in tension), resulting in frac-

turing of the rock. An additional mechanism is a process where flowing fluid

imposes a body force in the rock skeleton causing net forcing in the direction

of the flow. Flow diverging from a central location in a rock will cause ex-

tensional strain about that location. The conditions presented in Section 6.4

included both of these processes, thus separating their effects is impossible.

Additional tests designed to isolate these competing effects can be performed

numerically or experimentally. A numerical simulation to test the feasibility

of static-pressure-induced fracture formation could include the pressurization

of a small impermeable cavity in the LBDEM. Such a test, analogous to the

hypothesized internal source due to oil/gas generation, does not include fluid

flow (and thus bulk forcing) and would provide some insight into the process

of fluid pressure-induced fracturing.

It is well known that the processes of rock fracture and fluid flow

operate across many ranges of spatial and temporal scales. The ability to

scale the results presented here in both space and time is intimately tied to

understanding the importance of static pressure versus bulk loading of fluid.

Understanding the underlying processes responsible for generating hydraulic

fractures and how they scale in space and time is important for any discussion

of the broader implications of this work. Once this information is discerned,

possibly using the tests described above, the sensitivity of the results to both

spatial and temporal scales can be grasped. Additional numerical tests to ex-

plore the scaling of the mechanics discussed in this dissertation could also be

performed. To investigate spatial scaling larger LBDEM models comprising
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similar numbers of elements could be tested under identical fluid pressure gra-

dient conditions. Since the model lacks the ability to capture the static pressure

response of materials, it is anticipated that the results of the modeling will scale

poorly as the spatial scale is increased. Additionally, some understanding of the

scaling properties of the bulk material parameters, such as hydraulic diffusiv-

ity, may yield insight into the scaling of the processes involved. Recent reviews

by Bonnet et al. [2003]; Neuman and Di Federico [2003] in the fields of frac-

ture mechanics and hydrogeology respectively suggest that our understanding

of the scaling of these systems is improving. The work in this chapter is solely

focused on the spatial scale of centimeters (core-scale) and temporal scales of

seconds. Until these issues of scales are well-understood, direct comparisons

to field examples should initially be limited to cases where similar spatial and

temporal scales are present.

6.11 Conclusions

I have shown that fluid pressure gradients may play a significant role

in the genesis of natural hydraulic fractures. Theoretical and numerical argu-

ments suggest the importance of properties that govern fluid pressure gradients

in rock in both generation and propagation of fractures. Properties that are

deemed the most important are the hydraulic diffusivity (controlling timing

of fracturing) and rock permeability. Numerical modeling of a newly devel-

oped experimental approach to hydraulic fracturing investigates the role of

grain-scale processes involved in the genesis and propagation of these fractures.

Constructive interference between mechanical anisotropy and hydrologic het-

erogeneities is important to fracture genesis. Experimental verification of the
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conditions used in the numerical tests corroborates the genesis of a hydraulic

extension fracture.

Theoretical considerations using poroelasticity and force-balance equa-

tions suggest interpreted fracture locations are strongly dependent on the types

and locations of boundaries. Force-balance considerations suggest that fluid

pressure effects can act to limit the presence of net tensile forces needed for

extensional fracture generation. Poroelastic effects, such as the Biot-Willis

parameter, in addition to stress coupling (the Poisson effect) may aid in the

formation of net tensile forces. Bulk loading induced via high fluid pressure

gradients may play an important role in the generation of net tensile forces.

These forces arise out of drag of fluid on the bulk medium and indicate that

fluid pressure gradients should be quantified for systems of interest. This high-

lights the importance of measuring fluid permeability of the rocks of interest.

LBDEM numerical models were developed to evaluate fracture gen-

esis as a result of different permeabilities. Although the initial fluid pressure

gradients of the systems were identical, local gradients created where initial

fractures formed affected the time-evolution of damage in the numerical spec-

imens. The lower permeability models showed more damage and less overall

development of the main fractures. The higher permeability models were less

sensitive to local fluid pressure gradients and the primary fractures propa-

gated without hindrance. This suggests that local-scale pressure gradients are

not that important in driving these fractures to propagate at the macro-scale.

These points are also emphasized in the hydrologic heterogeneity study, where

3 types of heterogeneity were imposed on the systems. Heterogeneities oriented



217

perpendicular to the maximum fluid pressure gradient direction aided the for-

mation of fractures. Heterogeneities with orientations coincident with planes

of mechanical weakness also influenced fracture development. Cases where the

heterogeneities decreased the local permeability had very little effect on frac-

ture development, whereas heterogeneities that increased the local permeability

were very important.

The experimental method presented in Chapter 6 was executed in

the laboratory. The test, on a low permeability siliclastic rock (the Abo sand-

stone), was successful in generating a number of extension fractures throughout

the specimen. One large macroscopic fracture was formed and subsequently

sheared, as the generated extension fracture was preferentially oriented to the

confining stresses. This is consistent with and corroborates the numerical re-

sults presented, but also adds the complexity of mechanical anisotropy and

heterogeneity. Initial analyses of thin sections suggest that multiple extension

fractures are present in the rock sample. Fractures are parallel to bedding

planes, and are therefore possibly localized at sites of mechanical anisotropy

(and heterogeneity). The planes of bedding are at a high angle to the long

axis of the specimen (roughly 80o% to the vertical). These zones of mechanical

weakness could be nucleation sites for fractures. The results of this test will

enable us, with confidence, to apply similar tests to rocks of different perme-

abilities and explore their responses.

These results are of great importance to understanding fracture devel-

opment in sedimentary basins. This includes the space-time evolution of such

systems due to the strong link between hydrological and mechanical processes.
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Other instances of importance are faulting problems, where abnormal fluid

pressure may play role. The addition of the time dependence of fluid flow may

give more insight into the temporal and spatial evolution of fault and damage

zones. In addition, problems of fracturing in hot and pressurized hyperthermal

aquifers may be addressed by a model similar to that developed above [Natale

et al., 1998; McTigue, 1986; Merlani et al., 2001; Natale and Salusti , 1996].
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The work presented in this dissertation focuses on specific problems

of coupled fluid-solid mechanics in porous media. These types of problems

have been studied for many years with continuum methods. Continuum meth-

ods yield insightful information about the macro-scale behavior of systems but

rarely provide significant insight into the underlying physics. Detailed under-

standing of the micromechanical physics will allow the development of better

conceptual models of processes and mechanisms. The work presented here is a

departure from continuum methods in that I explore the application of discrete

physics to coupled fluid-solid mechanics in porous media. The testing and ap-

plication of these discrete methods have utility outside of fluid-solid mechanics

problems. The ability to understand and relate micro-mechanical processes

and properties to macroscopic behavior has wide ranging applications. The

variability inherent in discrete-based particle models, much like that in nature,

is expressed in mathematically simple relationships. Capturing this variabil-

ity may prove to be the most useful application of these types of methods.

This dissertation provides a foundation to apply discrete methods to fluid-solid

mechanics problems.

I used discrete methods to examine the behavior of both dry and fluid

224
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saturated rock. My specific interest was in identifying the role of fluids in the

genesis of natural hydraulic fractures (NHFs) in the subsurface. Much debate

exists over the importance of NHFs in the geologic record, with a considerable

amount of effort devoted towards understanding the conditions under which

they may form. This effort includes the application of continuum methods to

the problem with limited success, typically due to the constraints from over-

restricting assumptions or limitations of the numerical analysis. This type of

problem is inherently discrete and thus numerical discrete methods are a good

tool. This dissertation is the first body of work to use discrete methods to

analyze NHFs.

Discrete particle methods are relatively new and less mature than

their equivalent continuum based methods, such as the finite element method.

In this respect, discrete methods require more testing and understanding to ap-

propriately apply them to realistic problems in geology and hydrology. Many

details of the model are still be explored [Potyondy and Cundall , In Press].

Issues associated with the appropriate representation and parameterization of

dry granular material in the DEM are investigated using a commercial code

through a number of specifically designed numerical experiments. The under-

standing of the dry case is the first step in developing appropriate models of

the coupled fluid-solid system.

There are many advantages to using discrete rather than continuum

methods to study natural hydraulic fracturing. First, the representation of

damage or fracturing in the material is straightforward in discrete methods.

In a continuum formulation, a significant amount of computational overhead
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is applied to model fracture initiation and propagation. Second, the coupling

of fluid flow to solid mechanics with LBDEM allows complex variations in per-

meability to be represented without relying on assumed porosity-permeability

relationships. This is an important aspect, since the time-space evolution of

microscale flow paths will locally control fluid pressure values and gradients

and thus may impact fracture propagation. Most previous numerical models of

NHFs do not treat the dynamics associated with fluid flow. This dissertation

is the first modeling of NHFs to resolve the fully coupled physics associated

with the initiation and propagation of fluid-induced fractures under geologically

consistent boundary and initial conditions.

Experimental analysis of the role of fluid pressure in the initiation

and propagation of fractures had been limited to the induced hydraulic frac-

ture. Induced hydraulic fractures differ from NHFs in that the fluid pressure

inside the fracture is always greater than fluid pressure within the surrounding

matrix. The conditions under which NHFs are thought to form involve a fluid

pressure in the incipient fracture that is similar to that outside the fracture.

Imposing the conditions to form an NHF in this way are difficult to perform

in the laboratory, but a new test relying on the relative speed of fluid flow to

stress wave propagation is developed. This test is the first to experimentally

demonstrate that natural hydraulic fractures are possible.

7.1.1 Contributions to the Scientific Community

The overarching goal of this dissertation is to develop an understand-

ing of the process of natural hydraulic fracturing and to develop a modeling

methodology to simulate the process. The methods in this work used a com-
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bination of discrete numerical techniques and focused experimental tests. The

contributions of this dissertation can be subdivided into four main parts: (1)

contributions to our understanding of the role of particle shapes and initial

conditions in discrete-based particle models, (2) development of an application

methodology of a discretely coupled fluid-solid model through comparisons to

known solutions, (3) development of a laboratory-based test of natural hy-

draulic fracturing, and (4) numerically exploring the role of microscale proper-

ties in controlling the initiation and propagation of natural hydraulic fractures

through the numerical replication of the above experimental test.

In the beginning chapters of this dissertation, dry discrete-based mod-

els were developed using PFC2D to explore the sensitivity of various model

parameters on modeled bulk material properties. The use of non-circular par-

ticle shapes (through clustering) allowed a better match to observed labora-

tory data for a variety of loading conditions. The DEM micro-parameters were

found to be fairly non-unique unless care was taken to compare multiple types

of laboratory data to elastic and inelastic model behaviors. Initial conditions

of the DEM models, through the initial packing and force distribution, have

significant impact on resulting behavior. Consistent model development with

discrete models requires the careful preparation of the initial model specimen.

Regardless of this observation, a number of plausible and justifiable techniques

to create initial specimens could be used. A large number of models should

be developed and executed to perform statistical calculations. These concepts

were incorporated into the development of more models used to explore the

micromechanics of natural hydraulic fracturing.
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A relatively new model [Cook , 2001] based on the coupling between

the lattice-Boltzmann method for fluid mechanics and DEM for solid mechan-

ics was compared to basic poroelastic solutions. It is of importance that the

selected numerical technique be able to handle the large variations in fluid pres-

sure that are necessary for fracturing. An exploration of errors arising from

large pressure gradients in the LB suggest that the error is reasonable for a

wide range of pressure gradients. Another important poroealstic phenomenon,

the compressibility of the simulated fluid, was determined using a simple test

and found to be proportional to the numerical lattice speed. The consolidation

of saturated porous media showed the appropriate dynamic and poroelastic

response of the LBDEM model. Given that the model solved the fully dynamic

equations of motion for both the fluid and solid, direct comparisons with in-

stantaneous undrained responses were not possible. Sensitivity studies, with

respect to both fluid and solid wave speed, suggested that in the limit the model

can approach an idealized undrained. From this series of tests we conclude that

the LBDEM can be safely applied to fluid flow in porous media and can handle

dynamic poroelastic problems.

An experimental method was developed to form natural hydraulic

fractures under laboratory conditions. The test, on a low permeability sili-

clastic rock (the Abo sandstone), was successful in generating a number of

extension fractures throughout the specimen. One large macroscopic fracture

was formed and subsequently sheared, as the generated extension fracture was

preferentially oriented to the confining stresses. This is consistent and corrob-

orative with the numerical results presented in Chapter 6. Initial analyses of

thin sections suggest that multiple extension fractures are present in the rock
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sample. The results of this test will enable us, with confidence, to apply similar

tests to rocks of different permeabilities and explore their response.

Numerical tests replicating the above experimental setup indicated

that fluid pressure gradients play a significant role in the genesis of natural hy-

draulic fractures. Theoretical arguments also suggested a strong role of prop-

erties that govern fluid pressure gradients in rock. Properties that are deemed

most important are the hydraulic diffusivity (controls timing) and related rock

permeability and storage. The conceptualization of boundary conditons for the

problem of interest is of utmost importance. In tests with varying permeability,

the initial fluid pressure gradient of the systems were identical, but the local

gradients created when initial fractures form played an important role in the

time-evolution of damage in the numerical specimens. The lower permeability

models show more damage and less overall development of the main fractures.

The higher permeability models were less sensitive to the local gradients and the

main fractures propagated without hindrances. This suggests that local scale

pressure gradients under these conditions are not important in driving these

fractures to propagate at the macro-scale. Constructive interference of mechan-

ical and hydrologic heterogeneities also plays a role in the genesis of fractures.

Situations with heterogeneities that are oriented perpendicular to the maxi-

mum fluid pressure gradient direction aided the formation of fractures. Het-

erogeneities with orientations coincident to planes of mechanical weakness also

influenced fracture development. Cases where the heterogeneities decreased

the local permeability had little effect on fracture development, whereas het-

erogeneities that increased the local permeability had major effects on fracture

development. These results suggest that rocks with higher permeability (and
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thus higher hydraulic diffusivity) should have fewer, more developed fractures

with larger spaces between them. Lower permeability (and thus lower hydraulic

diffusivity) rocks will have many smaller, less developed fractures with smaller

spacing between them. Strong hydrologic heterogeneities in rock will serve to

assist or inhibit fracture development depending on whether they increase or

decrease the local permeability.

The dissertation provides traditional hydrogeologic contexts and in-

terpretations of results, but these can be misleading since the models utilized in

the work are founded on micro-scopic phenomenon and not continuum behav-

ior. Microscopic properties are more fundamental, are not subjected to REV

constraints, and are easily observed in the LBDEM model. Despite this, the

quantification of these parameters is not straightforward. For example, pore

shapes and grain shapes are extremely challenging and complex to quantify and

qualitative descriptions referring to the distribution of voids and grains are re-

lied upon. Here I briefly review some of the important conclusions of the work

with respect to micromechanical concepts and constructs. As described in the

introduction there are a set of micromechanical processes that give rise to the

bulk hydrogeologic behavior observed in the laboratory and the field. The most

important micromechanical parameters are the amount, shape, and distribu-

tion of the pore space (including pore throat size), fluid compressibility, grain

compressibility (stiffness), and porous matrix compressibility. Results from the

porous media consolidation problem suggested that the speed of pressurization

is a strong function of the grain and matrix compressibility. In numerically

modeled hydraulic fractures, the amount of pore space and the size of the pore

throat controled the timing of the fracturing. Fluid pressure gradients in the
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low permeability models, the result of smaller pore throat sizes, controled the

time necessary for the fluid to reach the boundaries of the model.

7.2 Limitations and Future Work

Limitations of the analyses in this work are briefly discussed in the

context of future improvements to the techniques and methods used within

the dissertation. Recommendations for future analyses lie in two categories.

The first, are improvements to the analyses themselves, such as the extension

of the methods to 3-dimensions. The second are extensions of the work to

a broader category of problems and conditions, including both experimental

and numerical analysis. The application of the numerical techniques discussed

within is currently being applied to larger scale problems of sand production.

They are anticipated to have applicability to a wide range of problems, the most

attractive of them being liquefaction and problems with a significant amount

of dynamic motion and multiphase (particle-fluid) interaction.

7.2.1 Limitations

One of the most limiting aspects of the LBDEM modeling scheme

is the assumption of a two-dimensional system. However, many fundamental

problems can still be addressed. In a compacted or very densely packed two-

dimensional assembly of discrete elements, a physically unrealistic situation

arises in the form of no connected paths for fluid to flow through. To facilitate

the use of fluid coupling in this context, an assumption about the fluid flow

paths must be made. This problem has been addressed before for the case of

flow network models [Bruno and Nelson, 1991; Bruno, 1994; Li and Holt , 2001]
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and continuum Darcy’s models [O’Connor et al., 1997]. In both cases, fluid

is assumed to flow out of the plane and around solids. In this case, I take a

similar approach to O’Connor et al. [1997] and assumed that fluid was flowing

out the plane. The LB is assumed to only interact with a defined percentage

of the discrete elements. This effectively resulted in a smaller radius used to

resolve the fluid through the assembly. Changing the ”effective” fluid radius

resulted in changes in pore throat sizes, pore volumes, and the macroscopic

parameters (porosity, permeability, and storage capacity).

Unlike poroelastcity theory, which assumes an instantaneous response

of fluid pressure to a change in pore volume, the coupled LBDEM model has a

finite response based on the wave speed of the simulated fluid. Simulated fluid

wave speeds in the LB technique are much smaller than real fluids and are

dependent on the discretization level. Therefore, the response of any assembly

to a boundary condition change takes a finite amount of time to reach the

maximum fluid pressure. In reality, experimental evidence [Gunaratne et al.,

1996] using a dynamically applied stress suggests that the time to reach peak

fluid pressure is finite and is on the order of tenths of a second depending on

material properties. The two dynamic wave speeds in LBDEM are the solid

wave speed and the fluid wave speed. The solid wave speed is a function of

element stiffness, whereas the fluid wave speed is related to model viscosity

and discretization. The numerical value of fluid wave speed in the LB method

is significantly smaller than actual wave speeds in real fluids (Table 5.3). The

sensitivity of these two parameters and their pressure response was explored

using Terzaghi’s consolidation problem in Chapter 5. Results indicated that

this assumption was acceptable, but caution should still be used when applying
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the this modeling approach to dynamic problems.

In the LBDEM formulation it is assumed that a fluid force is only

applied to the discrete elements if the fluid has a non-zero velocity. This implies

that static pressure, on the whole, is not captured. Conceptually, issues with

this assumption are avoided by treating changes in pressure within the model

to be dynamic pressure or changes from a static pressure condition. This

was accomplished by setting initial and boundary conditions to effective stress

conditions, which was done by taking the total stress and subtracting off the

static pressure. This limitation resulted in the poroelastic condition of setting

the Biot-Willis coefficient (discussed in Chapter 1) equal to 1.

Although the experimental test was successful, it is still unclear what

the underlying mechanism responsible for the generation of the fracture was.

Two hypothese remain as to the source of forces responsible for inducing the

observed extension fractures. Fluid pressure gradients are a plausible expla-

nation in that they induce net fluid forces on the solid grains and create an

extension of the rock. In the numerical model, these are unequivocally the

forces responsible for failure, because of the lack of effective stress. In theory,

any arbitrary plane of homogeneous and isotropic rock the absence of a fluid

pressure gradient causes a zero net fluid force. This implies that the fluid pres-

sure is 100% efficient in counteracting the granular skeleton force. We know

that for rocks this is not the case, hence the presence of the Biot-Willis coeffi-

cient. Thus it is possible for a net fluid force to exist on the granular skeleton

of rock in the absence of a fluid pressure gradient. It is then plausible that

the extension of the rock sample (due to the removal of the end load) and con-
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tributions from the Biot-Willis will be large enough to initiate and propagate

fractures. Without knowledge of Biot-Willis coefficient for the Abo sandstone,

calculating this effect is not possible.

The importance of mechanical heterogeneities on fracture initiation

is well known. These heterogeneities can take on many forms, such as bedding

planes, and can also act as mechanical anisotropies. The bedding planes in

the sample of Abo Formation most likely were responsible for determining the

location of fracturing. Additional tests on samples of Abo Formation will be

performed parallel to bedding to gain a better understanding of these bedding

planes.

7.2.2 Future Work

Obvious conceptual issues with the 2D current analyses will be over-

come with 3D implementations. With a move to 3D problems, the computa-

tional load becomes more burdensome. To maintain a similar type of resolution

for the 2D fracturing problems that are presented in this dissertation will re-

quire more than 1000 times the computational effort. A 3D framework for the

LBDEM is currently being developed. This will allow relaxation of assump-

tions with respect to the fluid radius and allow us to resolve 3D structures are

most assuredly associated with fracturing. As we interpret in naturally formed

extension fractures, local deviations of fractures are abundant and may be the

result of local stress fields. Work with the 3D implementation will help quantify

this for fluid induced fractures. Despite the increased effort, this functionality

is not easily modeled with linear elastic fracture mechanics-based codes.
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The extension of the LBDEM code to multiphase fluid flow is of con-

siderable importance when applying the model to the deep subsurface. Most

deep aquifers contain some amount of oil and gas and require the considera-

tion of capillarity effects in fluid flow processes. For example, the generation

of oil from kerogen (a commonly assumed source of abnormal fluid pressure)

will create a multiphase system. In order to understand the fluid dynamics

and its resulting effects on the mechanical system, a multiphase flow simulator

is needed. The incorporation of multiphase aspects in the LBDEM, in princi-

ple, is straightforward. A variety of multiphase LB formulations are currently

available. The most challenging aspect is handling capillary forces and the

incorporation of those forces into the mechanical framework of DEM. Nonethe-

less, a wide variety of problems could then be examined with this type of model.

Most attractive are some of the problems associated with wormhole develop-

ment in reactive multiphase flow. These problems are characterized by local

regions of non-Darcian flow, which include strong mechanical degradation of

the porous media.

The experimental work presented in this dissertation is in the early

stages. The demonstration of the proof of concept of the technique will allow

us to explore more rocks and different types of rocks. A test design will be

developed to help discern the role of fluid pressure gradients versus static pres-

sure in the genesis of fractures. More detailed measurements of the poroelastic

parameters, such as the Biot-Willis coefficient, of the tested rocks will be made

to enable further analysis of test results. The use of acoustic emissions to mon-

itor rock fracture through time during the experimental test will allow us to

constrain the timing of fracturing versus the time characteristics of fluid flow.
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This will enable insight into the extension fracturing process and may provide

more details on the fluid pressure gradients in rock extension.

The ability to scale (both spatially and temporally) the results of this

chapter is intimately tied with understanding the role of static pressure vs. bulk

loading of fluid on fracture genesis. Once this information is discerned, possibly

using the tests described above, the sensitivity of the results to both spatial

and temporal scales can be grasped. Additional numerical tests to explore the

scaling of the mechanics argued in this dissertation could also be performed.

To investigate spatial scaling, larger LBDEM of the models presented in Chap-

ter 6 comprising similar numbers of elements could be executed under identical

fluid pressure gradient conditions. Since the model lacks the ability to capture

the static pressure response of materials, it is anticipated that the results of

the modeling will scale poorly as the spatial scale is increased. Further work

on understanding the importance of the different parameters in the LBDEM

model, such as element stiffness and the effective radius, on resulting behavior

may lead to insight into model scaling parameters

Additionally, some understanding of the scaling properties of the bulk

material parameters, such as hydraulic diffusivity, may help discern the scaling

of the processes involved. Recent reviews by Bonnet et al. [2003]; Neuman

and Di Federico [2003] in the fields of fracture mechanics and hydrogeology

respectively, suggest that our understanding of the scaling of these systems is

drastically improving.

Further testing of the Abo formation will yield details on the control

of bedding planes on fracture genesis. Testing the rock with the parallel-to-
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bedding direction oriented with the major fluid pressure gradient will allow an

understanding of the range of applicability of the experimental setup. With the

ultimate goal of probing the relative importance of mechanical heterogeneities

vs. hydrologic heterogeneities in fluid induced fracture genesis, a suite of ex-

periments of rocks with varying degrees of permeability and storage will be

investigated. With this knowledge a better conceptual model of fracture ori-

entations and distributions will be gleaned. Also relevant are the implications

that this information may have on fault and fracture zones, where the spatial

distribution of fractures and their apertures will have some control on fault

behavior.

The quantitative relationships between microscopic processes and macro-

scopic phenomena in hydrogeology, such as hydraulic diffusivity, remain am-

biguous. A significant amount of work is now being performed in an attempt to

quantify the microscopic parameters that are relevant for observed macroscopic

permeability variations. It is anticipated that some of the same microscopic

controls on permeability will be important for understanding storage capacity

and associated parameters that control transients in fluid pressure in hydroge-

ology. One avenue of future research would be to further study the microscopic

controls on storage capacity and hence hydraulic diffusivity. Current micro-

scopic techniques, such as laser confocal microscopy, could be used to observe

fluid pressure transients (through the displacement of rock framework) in small

sections of rock. Ultimately, information from these and other methods could

be used to develop improved conceptual models, scaling relationships, and the

parameterization of discrete models such as the LBDEM.
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