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PREFACE
This thesis is written in manuscript form appropriate for submission to a scientific
journal. Consequently, the content has been condensed so as to omit repetitious and
detailed material from the methods and results sections. Details of procedures are given

in the appendices at the end of the paper.
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ABSTRACT

The Lower Brushy Canyon Formation of the Delaware Basin consists of a series
of overlying sand-filled channels and associated fans separated by laterally extensive
organic siltstone and carbonate interbeds. This laterally and vertically complex geology
creates the need for precise inter-well estimation of reservoir properties.

In this paper we integrate wireline log and 3-D seismic data in order to directly
predict porosity in the area of an existing oil field in southeast New Mexico. The 3-D
seismic data were used to interpret the location of major stratigraphic markers between
wells, and these seismic horizons were used to constrain a time window for a volume-
based attribute analysis. Step-wise regression and cross-validation were used to combine
seismic attributes to predict porosity in wells where the porosity was known from the
well logs. The results of é linear regression porosity model show good correlation
(r=0.74) between 7 seismic attributes and the observed porosity logs at 11 wells in the
study area, but the porosity volume created from the regression model did not display the
knbwn geologic features. A probabilistic neural network (PNN) was then trained to look
for a non-linear relationship between the input data (the 7 attributes) and the observed
porosity at the 11 wells. The correlation was better (r=0.82), but the biggest
improvement over the linear regression model came in the more geologically realistic

predicted porosity distribution.



INTRODUCTION

Prediction of subsurface physical properties is a fundamental problem confronting
geologists and geophysicists. This paper tests two different means of predicting porosity
between well locations using seismic attributes. Seismic attributes have been used to
predict reservoir ‘properties with sﬁccess (e.g. Russell et al., 1997; Schuelke and Quirein,
1998; Pearson and Hart, 1999; Hart and Balch, 2000), but recently neural networks have
been suggested by geophysicists as a means to increase the certainty of the predictions
over standard linear regression methods (Ronen et al., 1994; Schuelke et al., 1998).

A concern among geologists is that multiattribute studies may show
statistical significance between the attributes and a physical property, but there may be no
theoretical basis for using the attributes, and a resulting model may be geologically
unrealistic. Following the work of others (Ronen et al., 1994; Kalkomey, 1997; Hirsche
et al., 1997; Hart, 1999; Pearson and Hart, 1999), we emphasize the need for the results
of an attribute-based prediction to be geologically plausible (in addition to other criteria;
see below) before it is accepted. In this paper we use log and seismic data to investigate
the geology of the lower Brushy Canyon in the study area. We then employ two different
techniques, standard linear regression and a probabilistic neural network (PNN) to
generate porosity distributign models of the lower Brushy Canyon from seismic
attributes. By comparing the results of the two methods with the geology, we conclude
that the neural network provided a better image of the subsurface porosity distribution.
This is because the neural network architecture is better able to capture the non-linear
relationship between seismic attributes and log-based physical properties. As of the date

of completion of this paper, no previous work has been done using neural networks to



predict physical rock properties with an intent to conform strictly to pre-existing geologic
knowledge.
GEOLOGIC SETTING

The Delaware Basin is the westernmost basin in the Permian Basin complex of
western Texas and southeastern New Mexico. The basin is bound by the Central Basin
Platform to the East, The Northwestern Shelf to the North, and the Diablo Platform to the
West (Fig. 1). During relative lowstands of sea level in the Permian, siliciclastic
sediments bypassed the shelf and were deposited in the basin (Sageman et al., 1998;
Montgomery et al., 1999). The Delaware Mountain Group, which consists of the Bell
Canyon, Cherry Canyon and Brushy Canyon Formations in descending order, is an

example of this kind of sedimentation.

N Basin )

Figure 1: Regional paleogeographic map showing the Permian Basin complex.
Approximate location of the study area is noted by the star. After Yang and Dorobek
(1995). Also shown is the 16 square mile study area, the locations of the 77 wells, and
the location of the cross-section in Figure 3. '



The Brushy Canyon Formation includes three major facies: (1) submarine canyon
fills in the underlying Victorio Peak Formation, (2) slope deposits consisting of thick
successions of interbedded sandstones and siltstones, and (3) basin-floor deposits (Harms
and Brady, 1996). Brushy Canyon deposition was due to some gravity flow mechanism,
such as either turbidity currents or saline density currents. In addition, Brushy Canyon
channel features have previously been mapped extending 50 miles onto the basin floor
(Basham, 1996; Montgomery et al., 1999).

| The Brushy Canyon Formation consists of up to 1800 feet of interbedded fine-
grained sandstones and siltstones, and is informally subdivided into a lower, middle, and
upper part. Each of these parts are separated by laterally continuous organic-rich
siltstone marker beds that may be tracked throughout the basin using well log
information. The lowermost Brushy Canyon is on average about 325 feet thick and
thickens basinward. It is interpreted as a system of sand-filled feeder channels and
associated fans (Sageman et al., 1998).

MATERIALS AND METHODS

Our database consisted of a time-migrated 3-D seismic survey, wireline logs from
77 wells in and around the study area, and production data. The seismic data cbver an
area of about 16 square miles (41.4 square km) with a bin size of 110 feet by 110 feet
(33.5 m by 33.5 m) and a 3 second two-way travel time (TWT) record length. The 3-D
grid is laid out with crosslines oriented approximately north - south and inlines running
west - east perpendicular to the crosslines. The seismic data originally consisted of two
volumes that were processed into a single volume prior to our interpretation. No

information regarding processing was available to us.



We analyzed digital logs for 77 wells for lithology determination and stratigraphic
correlation. The main logs used in this study were gamma ray (GR), photoelectric factor
(PEF), deep resistivity, and density logs. Sonic logs were available for 21 wells and were
used to generate the synthetic seismograms, which were then used to tie the well logs to
the seismic date (See Appendix 1). The neutron porosity log was used in the
multiattribute study as the target log.‘ A good correlation (r=0.91) was found between
neutron porosity and sonic velocity assuring us that neutron porosity is dependant upon
rock physical properties and not biased towards lithology. Because there are no true
shales in the lower Brushy Canyon in this area, there is no reason for overly optimistic
neutron porosity values (Justman, in press).

Where possible, log-based stratigraphic horizons were auto-tracked through the
seismic data then smoothed. These seismic horizons were then used to constrain the time
window for the volume-based attribute study (e.g. Russell et al., 1997). This method was
preferred over the horizon-based approach because of the geologic complexity and
thickness of the lower Brushy Canyon. Attributes were extracted from the seismic data
and ranked by step-wise regression, and the results were tested by validation (Schuelke et
al., 1998). We used both standard linear regression techniques and a probabilistic neural
network (PNN) to create two predicted porosity volumes for the entire lower Brushy
Canyon Formation in the study area. These two models were then evaluated by their
ability to predict porosity and image stratigraphic features interpreted from the well logs.

Details of the mathematical basis for these two techniques are provided below.

For additional details on the PNN see Appendix 2. Although we had access to a multi-




layered feed-forward neural network (MLFN) architecture, we did not use this method

because of its "black box" character (Hampson et al., in press).
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Figure 2: Sample log through the lower Brushy Canyon in this study area. The logs
from left to right are the gamma ray (GR), and the photoelectric factor (PEF) logs. Note
the relatively thin organic siltstone and limestone layers that separate each of the
stratigraphic units. These interbeds are expressed either as abrupt increases in
radioactivity as shown in the GR curve (organic siltstones) or zones of low GR values
accompanied by high PEF values (limestones). '

STRATIGRAPHY
Lower Brushy Canyon Picks
We divided the basal Brushy Canyon Formation into 8 stratigraphic units based
on gamma ray (GR), photoelectric factor (PEF), deep resistivity, and density log

characteristics (Fig. 2). The units are named alphabetically A through H in descending



order, and are each separated vertically by organic siltstone and carbonate interbeds of
varying thickness (generally less than 30 feet). Each of these stratigraphic units have
unique well log signatures that could be correlated and tracked throughout the study area

with confidence (Fig. 3). For details on stratigraphic interpretations, see Appendix 1.
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Figure 3: NW-SE stratigraphic cross-section thi'ough the study area datumed at the lower
Brushy Canyon. The location of the cross-section is shown in Figure 1. The logs used
are the GR (left) and the PEF (right). The shaded regions denote the significant
sandstone bodies in the lower Brushy Canyon in this study area, and the letters within the
shaded regions correspond to the individual stratlgraphlc units.

Unit A is the top unit stratigraphically. It is about 5 to 20 feet below the top of the
lower Brushy Canyon pick. In the central and western parts of the study area, Unit A is a

massive sandstone ranging from 25 to 55 feet thick (Fig. 4A). In the eastern part, it is



characterized by a coarsening upwards package that is considerably less thick (less than
20 feet). |
Unit B is also a massive sandstone (40 to 65 feet thick; Fig. 4B) in the central and
western region, and a coarsening upwards sequence in the southeast (30 to 45 feet thick).
The thickest and cleanest sandstone in the lower Brushy Canyon Formation in this
area is Unit C. It ranges from 35 to 100 feet thick (Fig. 4C) and is almost everywhere
composed of 95 to 100 percent sand. Slightly higher siltstone contents may be found m

the extreme northwest and southeast regions.

1 1 Mlle o ”
Figure 4' Isopach maps for each of the units in the lower Brushy Canyon Formatlon
The contour interval is 10 feet with yellow tones denoting thlcker zones. The scale and

color scheme are the same for each map.




Units D and F are laterally equivalent units. Unit D consists primarily of
sandstone with some limestone interbedding to the east, and it is only present in a NNE -
SSW strip more than a mile wide in the middle of the study area (Fig. 4D). UnitF is a
package of approximately equal thickness that consists of organic siltstones with
dolomite interbeds. It is located on both the northwest and the southeast sides of Unit D.

Unit E is a heterolithic unit which made details of internal correlations
problematic. This unit is comprised of a massive sandstone in the northwest, a fining
upwards to coarsening upwards package in the center region, and a slightly more
carbonate unit in the southeast. The thickest (70 to over 100 feet) area is in the eastern to
southeastern regions where the unit is characterized by a higher siltstone content (Fig.
4E).

Below Unit E is Unit G. The thickest sandstones of this interval strike NNE -
SSW (Fig. 4F). To the southeast of this linear feature, Unit G primarily consists of a
limestone with little if any sandstone interbedding (generally less than 5 feet).

Unit H may be considered as a transitional unit from the underlying Bone Spring
Formation to the sandstone units of the basal Brushy Canyon. It is chiefly a dolomitic
limestone with varying siltstone content and negligible sandstone.

Seismic Horizons

Figure 5 shows a west - east transect through the center of the 3-D seismic data
volume. Once the wells were accurately tied to the seismic data by way of synthetic
seismograms, it was then possible to interpret horizons of interest m the seismic data.

The top of the lower Brushy Canyon is characterized by a peak that may be tracked



throughout the entire data set. The top of Unit C almost everywhere corresponds to the
trough directly below the lower Brushy Canyon reflector. Because of the thickness and
relatively low velocity of Unit C, it can accurately be tracked throughout most of the data
set as a high amplitude trough. At most locations within this study area, the other
stratigraphic um'té are below vertical seismic resolution due to the thinness of the bed and
the relatively low acoustic impedance contrast with adjacent units. For details on seismic

interpretations, see Appendix 1.

Figure 5: West - east seismic transect near the center of the study area. The lower
Brushy Canyon (LBC — white) is shown as a peak at about 1200 ms (TWT). Unit C (C -
black) is characterized by a high amplitude trough at about 1220 ms (TWT). The Bone
Spring Formation (BS - white) is shown as a discontinuous peak at about 1250 ms
(TWT). The wireline logs shown are the GR (left) and the PEF (right).
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At other locations within the Delaware Basin, the Bone Spring Formation is
characterized by a high amplitude peak because of a relatively abrupt transition from the
basal Brushy Canyon sandstones into the high-velocity Bone Spring carbonates (Hardage
et al., 1998; Hart, 1998). However, in our study area, the Bone Spring is overlain by up
to 80 feet of high-velocity sandstones and carbonates (Unit H and the eastern regién of
Unit G). In this case, the top of the Bone Spring corresponds to a peak although locally a
phase reversal is present where thick carbonates overlie the Bone Spring.

Discussion - Stratigraphy

The lower Brushy Canyon Formation is thought to be made up of a system of
channels that transported sandy sediment to the basin floor (Basham, 1996; Sageman et
al., 1998; Montgomery et al., 1999). All of the isopach, gross sand, and percent sand
maps, and the cross-sections show strong evidence for channel-like structures trending in
the N-S to NE-SW directions (Fig. 4). In places, isopach trends appear to be
discontinuous, lacking channel geometry. This could be due to: a.) the - contouring
algorithm's solution in areas of sparse well control; or b) geologic reasons, such as pre-
existing seafloor relief or post-depositional erosion by subsequent flows, that affect the
actual thickness of individual sandstone bodies.

A cross-section perpendicular to these channel trends (Fig. 3) shows that the
entire basal Brushy Canyon is thickest in the center region and thins to the west and the
east. Furthermore, the thickest part of each succession is located in the center of the
study area with each unit becoming thinner and less sandy away from the channels. This
suggests that the sediment source location and transport axes did not change significantly

during the deposition of the lower Brushy Canyon in this region as there is very little
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lateral shift from one channel to the next. The” only exception is the addition of a new
sediment source to the Northeast during the deposition of Unit B (Fig. 4B). |

The structure at the top of the underlying Bone Spring Formation appears to be
the primary determining feature for the channel locations (Fig. 6). Bone Spring
topography is thdught to have controlled basal Brushy Canyon channel locations at other
areas in the Delaware Basin (Thomerson and Catalano, 1996). At this level, the study
area is characterized by a prominent structural high just southeast of center. Each of the

subsequent channels filled in the structural lows of the underlying unit.

Figure 6: Depth-converted structure map of the top of the Bone Spring Formation
calculated from the seismic data. The contour interval is 10 feet, and the color scheme is
such that lighter tones depict structural highs. Note the north - south trending valley in
the center of the study area. - This valley was the pathway for the Unit G channel, and
subsequent channeling was likewise controlled by underlying structure.
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The isopach maps in Figure 4 show evidence of channel sediments overflowing
and spilling over the sides of the channel. This depositional pattern has been noted
elsewhere in the subsurface as well as in outcrop (Basham, 1996; Gardner and
Sonnenfield, 1996). The sandstone of Unit D is bordered on both sides of the channel by
the stratigraphically equivalent siltstones and dolomites of Unit F (Fig. 4D). It is possible
that the channel cut into the underlying sediments of Unit F, and as sand filled the
channel, it began to spill over the sides.

Vertical stacking and siltstone capping of channels is typical of low-stand fan
deposition. Successive density currents may take similar paths, each depositing a broad,
lenticular layer of sand overlain by a silty layer (Bouma, 1996). As a result, the lower
Brushy Canyon consists of a vertical succession of channeled sandstones each separated
by a laterally extensive siltstone or carbonate layer.

SEISMIC ATTRIBUTE STUDY
Methods

Having established a stratigraphic framework for the basal Brushy Canyon in this
study area, we sought a relationship between log-derived physical properties and seismic
attributes.  Quite simply, a seismic attribute is a derivative of a basic seismic
measurement which may be extracted along a horizon or suinmed over a time window
(Brown, 1996). There are several factors that go into seismic multiattribute analyses,
such as whether to perform a horizon- or a volume-based analysis, which attributes to
use, the weight assigned to each attribute in the final equation, and the number of

attributes to use.
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For and attribute study to be judged sﬁccessful, several criteria need to be met.
These are: a) the results must be statistically significant, b) a known or suspected
relationship between the attribute and physical properties must exist, c) the results must
be geologically plausible, and d) the results must agree with available engineering data.

We chose a volume-based approach due to the thickness and complexity of the
lower Brushy Canyon stratigraphy, and its effect on internal reflections in the seismic
data. The time window from the top of the Lower Brushy Canyon Formation to the Bone
Spring vwas chosen as the window of interest for seismic attribute extraction and all
seismic-guided interpretations. For details on attribute-based analyses, see Appendix 1.

The choice of which attributes to extract was defined by the capabilities of kthe
software. We ranked the attributes according to their correlation to the neutron porosity,
and weighted appropriately, by step-wise regression following the methods of Hampson
etal. (in press).'

The number of attributes used in this study was determined by cross-validation.
: In this approach, wells are excluded one at a time while the remaining wells are used to
predict the excluded one. This technique seeks to eliminate the problem of over-fitting
the data associated with using too many attributes (Schuelke, et al., 1998), a problem
recognized by Kalkomey (1997). The point at which the addition of a new attribute
increases the validation error and becomes too well-specific is the cutoff for tﬁe optimal
number of attributes to be used. Based on these results, a linear regression model was
used to create a predicted porosity volume over the time window of interest.

A probabilistic neural network (PNN) was then trained to predict porosity over

the same volume. Again, by performing the step-wise regression and validation tests
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- before training the neural network, we eliminate the problem of over-fitting the data

(Schuelke et al., 1998). Ronen et al., (1994) pointed out that in may be important to look

for non-linear relationships between seismic attributes and rock properties. Artificial
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neural networks (ANNs) can be trained to determine those non-linear relationships.

We then bompared the porosity volumes created from both the standard linear
regression model and the PNN model. The models were evaluated as to their statistical
significance and their ability to create a porosity volume that conformed to the log-based
geologic interpretations.

Results - Attribute Study

We extracted 19 attributes from the seismic volume, then narrowed that list down
to seven based on analysis of the validation error. These attributes are given in Table 1
along with associated application error (the average error using 11 wells with neutron
porosity logs that could be accurately tied to the seismic data) and validation error (the

average error leaving one well out at a time). The attributes are:

Seismic Attribute - Application Error Validation Error
1.) Smoothed Inversion? 2.64 2.76
2.) Integrated Absolute Amplitude 2.54 274
- 3.) Amplitude Weighted Phase : 245 2.7
4.) Average Frequency , 2.36 2.62
5.) Instantaneous Phase 2.31 2.61
6.) SQRT(Minimum Continuity) . 2.25 2.59
~7.) Derivative 220 2.58
8.) Amplitude Weighted Cosine Phase 212 2.62

Table 1: List of the seismic attributes chosen and ranked by step-wise regression and the
associated application error (includes all 11 wells) and validation error (excludes one well
at a time as the target well). The errors are average distances between the predicted
porosity at each sample and a Y=X line.

14



1. The Smoothed Inversion is a 50 ms smoothed rendering of the seismic
inversion constrained by the lower Brushy Canyon and Bone Spring horizons.
The inversion is an estimate of the seismic acoustic impedance based on the
well data and the seismic wavelet. Because this inversion is based on well
data, it is not a true seismic attribute. Accordingly, the inversion result should
be smoothed to where the well uniqueness is lost. The smoothed result keeps
the low-frequency component, or trend, making it useful for predicting rock
properties. Since acoustic impedance and porosity are generally inversely
related, the smoothed inversion proved to be a good starting point for porosity

prediction.

2. The Integrated Absolute Amplitude is the running sum of the reflection
strength minus a smoothed version of the reflection strength. This attribute
enhances strong amplitudes, whether positive or negative, which denote high
acoustic impedance contrasts which may be indicative of stratigraphic or
facies changes.

3. Amplitude Weighted Phase is the product of the reflection strength and the
instantaneous phase.

4. Average Frequenc3‘l is a running average of the instantaneous frequency. The
average instantaneous frequency tracks dominant frequency characteristics

that may be associated with changing lithology or stratigraphy.
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5. Instantaneous Phase is independent of the reflection strength, and thus
emphasizes weak coherent events. In stressing the continuity of events, it can
be useful in locating stratigraphic pinchouts and channel features.

6. Minimum Continuity, or coherency, is a measure of the lowest similarity from
one seiémjc trace to a neighboring trace over a time window. The results
show abrupt contrasts in impedance due to stratigraphic or facies changes.
Volumes of coherency data may be used to locate channel edges due to the
variance in reflection character at the channel margins (Bahorich and Farmer,
1995).

7. The Derivative is the difference between the seismic trace amplitudes of one
sample and the preceding sample. This emphasizes abrupt impedance

contrasts that may be due to stratigraphic or facies changes.
() = w, + Aw, (1) + A,w, + Ayw, + Aw, + Aws + Agwg + 4w, 1)

’The results of the linear regression multiattribute analysis are shown in Figure 7,
and a cross-plot of the data is shown in Figure 8. The results were obtained using
equation (1), where @ is porosity, A, is the attribute, w, is the weight applied to the
attribute, and t is time (Russell et al., 1997). bThe correlation coefficient for the linear
regression model is 1=0.74 with an average error of 2.2% (porosity units). The validation
testing yielded a corrélation' coefficient of ‘r=0.63 with an error of 2.6% (porosity units).
The regression method modeled the trends of the porosity curve, but it failed to
accurately pick up the extreme values in the curve. Figure 8 shows that the model over-

predicts the lower porosity values and under-predicts the higher values. The end model
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would thus be a smoothed version of the porosity curve, but the trends of high and low

porosity should be adequately predicted.

Figure 7: Application of the linear regression method to predicting porosity. The blue
horizontal lines at each well depict the time window from the lower Brushy Canyon to
the Bone Spring. Note that the model (red) adequately predicts the trends in the actual
porosity curve (black), but fails to pick up the extreme porosity values. The correlation is
only valid within the indicated time window.

Training the PNN provided better results (r=0.82 with an average error of 1.9%
(porosity units)). However, the validation error remained the same (r=0.62 with an error

of 2.6% (porosity units)). These results were obtained using the following equation:

iL,. exp(-D(x, x;))
L'= i=1n . ‘ ‘ (2) |
- Yexp(-D(x,x,))

i-1
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Figure 8: p ¢ linear regression model results. Eac point represents a
different well. The red line is a Y=X line. Note the tendency to over-predict the lower
actual porosities and to under-predict the higher porosity values.

where L' is the predicted porosity value at each sample, L; is the actual porosity value,
and D(x,x;) is the distance between the input point and each of the training poinfs.
(Masters, 1995; Hampson et al., in press). For details on the procedures and the
methodology of the PNN, see Appendix 2 at the end of the paper. The PNN results are
shown in Figure 9, and a cross-plot of the data is shown in Figure 10. Figure 9 shows
that the PNN is not only predicting the treﬁds in the porosity curves, but it is also better
predicting the extreme values. The cross-plot still reveals the tendency to smooth the
porosity curve, but now we expecf to sée greater detail in maps generated from this model

over the linear-regression model.
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Figure 9: Application of the probabilistic neural network to predicting porosity. As in
Figure 7, the blue horizontal lines depict the time window. The PNN modeled porosity
curve (red) more accurately predicts the actual porosity curve (black) than the standard
linear regression model. The PNN also appears to have predicted the extreme porosity
values. The correlation is only valid within the indicated time window.

Figure 11 is a smoothed average predicted porosity map of Unit C based on the
linear regression model. Some high porosity north - south striking linear features appear
in the southwestern portion of the study area, but they die out to the North. The
orientation of the nine wells in the center of the study area is approximately parallel to the
channel of Unit C (Fig. 4C). The two wells in the sputheaster corner a‘re‘ located outside

the channel.
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Figure 10: Cross-plot of the PNN results. Each data point color represents a different
well. As in Figure 8, the model tends to over-predict the low porosities and under-predict
the high porosities, but the PNN data points are arranged noticeably closer to the Y=X
line.

To enhance the linear features, because of the vertical stacking of the channels as
seen in Figure 4, we created an average predicted porosity map of units A through D (Fig.
12). As expected, the north - south linear features are enhanced because of the greater
time window, but the high porosity zones still appear to die out to the North. The edge of
the high porosity zone trends north - south just east of the wells in the center of the study

area. Howeyver, the porosity seems to be randomly dispersed in the western region.
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Figure 11: Linear regression predicted porosity map of the entire Unit C interval. Linear
trends of high porosity in the northeast - southwest direction occur in the Southwest, but
die out to the North.

Another map of the average predicted porosity of Unit C was created using the
PNN model (Fig. 13). In addition to the more distinct north - south linear feature that
runs through the center of the study area, the porosity distribution is more uniform in the
southern and northern halves than in the linear regression model (Fig. 11).

The PNN result was then used to create an average predicted porosity map of
units A through D (Fig. 14). As was the case in Figure 13, the néural network model

displays more evenly distributed porosity values than the linear regression model. The
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edges of the high porosity zone that runs north - south through the center of the study

area are much more distinct than the those the linear regression result predicted (Fig. 12).

Figure 12: Linear regression predicted porosity map of units A through D interval. Due
to the increased time window and the vertical stacking of channels in units A through D,

channel features are now enhanced, but the high porosity trends still die out to the North
in areas of greater well control.

Figure 15 shows an isopach map of Unit D (Fig. 4D) compared to the average
predicted porosity map of the same unit based on the PNN model. The linear feature in
the porosity map is not only identical in orientation to the channel in the isopach map, but

also in location. Stratigraphic picks on 77 well logs went into generating the isopach map
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on the left, while only 11 wells were used as input in ‘making the porosity map on the

right.

Figure 13: PNN predicted porosity map of the entire Unit C interval. Note that the high
porosity Zones in the Southwest are diminished from 15-16% (Fig. 11) to 10-11%. Other
- wells in this area show average Unit C porosities to be about 10.2%. The neural network
also predicted more uniform porosities throughout the channel, and more precisely
modeled the channel margins in the East and the West.

As a final test of the PNN prediction, we tested our results against eight wells
(selected because they represent various geographic locaﬁéns in the study area) that hvat.:ll
been excluded from the multiattﬁbute study because they lacked sonic logs. Tab1¢ 2
| shows the actual porosity compared to the vpredicted‘ayerage‘ poroSify over the Un_if‘ C.

time window using both the linear regresSibn and the PNN rh"odels. The PNN predictéd
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the actual average porosity within 1.4% (porosity units), whereas the regression model

predicted the average porosity within 2.2% (porosity units).

Figure 14: PNN predicted porosity map of stratigraphic units A through D. The channel
margins are now more enhanced because of the greater time window. Also, the PNN
predicted more uniform porosities over the entire channel volume than the linear
regression model (Fig. 12) despite the same sparse well coverage in the Southwest.

I_)is}cussion

The exact origin of the porosity in the lower Brushy Canyon is unknown. The
most likely explanation is that porosity is a combination of depositional and diagenetic
' pméesses, with the diégenetic évents destroying primary porosity (Behnken, 1996;

; ,M()ntgomery et al., 1999). Becausé cleaner sandstones typically have greater original
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porosity than poorly sorted sandstones, we would expect to see higher predicted porosity
in the high depositional energy channels where percent sand content is higher than

outside the channels.

Flgure 15: Companson of the Unit D 1sopach (F 1gure 4D) with a contour mterval of 10
feet and the smoothed average predicted porosity map of the entire Unit D time window
using the PNN model. In addition to capturing the true channel orientation, the predicted
channel also appears in the same location as interpreted from the isopach map.

Approximate Location Actual Regression Error PNN Error

. Porosity (%) (%) - (%) (%) (%)
South center main channel 10.7 12.5 1.8 10.0 -0.7
West of center of main channel 1.4 125 - 11 100 -14
Southwest of channel center 10.3 11.0 07 10.0 -0.3
Just outside channel to the west 8.1 14.0 59 95 14
Just outside channel to the east 10.5 75 -3.0 8.0 -25
Outside channel to the east 11.7 8.5 32 9.0 -27
South of center of main channel 12.4 12.0 -04 100 -24
Northeast of channel center 10.0 115 1;5_ - 10.0 0.0

Average Error 22 1.4

Table 2: A list of eight wells not used in the multiattribute study whose average Unit C
porosity is known and tested against the predictions of the regression and the PNN
models. Approximate locations relative to the channel are given next to the well number..
At wells located both inside and outside the channel, the PNN predlcted the poros1ty
‘more accurately than the standard linear regression model.
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The most obvious difference between the linear regression porosity maps:
11 and 12) and the neural network maps (Figs. 13 and 14) is the more even distribution‘ of
porosity from the southern to the northern half of the study area in the maps based on the
neural network model. The percent sand content maps we generated from log-based
lithology }ﬁtérpretaﬁons to assist our channel interpretations (not shown) depicted
relatively uniform sand distribution throughout the channel, and the percentéges
diminished with increasing distance from the channel axis. This suggests that porosity
should be evenly distributed throughout the channel and decrease with distance away
from the channel axis assuming spatially uniform diagenesis. Although maps produced
from both models show linear features where channels are seen on the isopach maps (Fig.
4), the PNN porosity maps show a more distinct channel edge on the eést and west sides.

Figure 11 shows patches of high porosity (15-16%) in the southwestern part of thé
study area. The actual average porosity from the well drilled in that region is 10.2%.
Similar porosities are recorded in other wells in that area that were not included in the
seismic attribute study because they did not have sonic logs (Table 2). A comparison
with Figure 13 shows that it also has patches of higher porosity in the same region, but
the values are lower (10-11%), and closer to the actual values. Porosity values predicted
using the regression model were closer to the actual porosities where there was greater
well control than in aréas of sparse well coverage. The measured average porosity from a
well in this area is 10.5%. The regression model predicted values of 10-12% in this area,

which is close to the actual porosity. The PNN model in Figure 13 shows predicted

porosities between 9 and 11% consistently throughout the channel. This raises the




question of why the neural network predicted porosity better and more consistently than
the linear regression model.

We believe that the neural network predicted the porosity more accurately
because the relationship between the seismic data and the well log data was a much’ more
complex one than the linear regression model was predicting. The regression model
accurately predicted the porosity in areas of dense well control, but failed where the well
control was limited (the Southwest). The PNN was able to successfully determine the
non-linear relationship between the seismic data and the well data.

Another way to test the accuracy of the PNN model is to compare the predicted
porosity map of a unit to its respective isopach map. Figure 15 shows the Unit D isopach
map (left) and the average predicted porosity over the Unit D interval as predicted by the
neural network (right). Because the porosity on either side of the Unit D channel is iower
than the porosity in the channel, as detérmihetl from the well logs, the porosity map
should be identical with the 1sopach map. In addmon to the near-perfect channel
orientation match, we note that the channel was s1m11ar in dimensions and location
desplte the significant reduction of well control. There is no well control west of the Unit
D channel with which to constraiknthe ‘_chanh,el‘ in the PNN model. Based solely t)n the
non-linear relationship between well log data and the seismic at&ibutes, the PNN was
éble to predict the edge of the high poroéity zone at the western channelvmai'gin.

! . Table 2 lists 8 wells scattered throughout the study area where the average
porosity of Unit C is known. Wells 4, 5, and 6 weré drilled outside of the main Unit C
channel where well coverage is minimal. The PNN still predicted the porosity within the

validation error, while the regression model greatly»dVer4predicted the low pdrosity and
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under-predicted the higher porosities. The other five wells were drilled ing
Unit C channel, but mostly away from the dense well coverage in the North_ The
regression technique over-estimated porosity in the southern half of the channel,_ Which?i“sf
inaccurate in light of the actual uniform (10-12%) channel porosity, whereas the PNN

predicted this uhiformly distributed porosity trend.

Figure 16: PNN-based average predicted porosity map of the entire units A through D
time window with cumulative basal Brushy Canyon production data overlain. We sorted
through scout tickets to identify those wells that produce only from the lower Brushy
Canyon. The larger bubbles indicate wells w1th better productlon Note that the best
- .,productlon comes from within the channels.’

ANALYSIS
The results of thls work have 1mphcat10ns that go beyond lower Brushy Canyon’l

S Vporosrty predlctlon in thls study area The se1sm1c attnbute analyses allow us to gam new:




insights into the geology. The results show a more stratigraphically coherent distribution
of physical properties than has been previously imaged in the lower Brushy Canyon using
seismic attributes (Hardage et al., 1998; Balch et al., 1998). Unlike these two studies, our
results show channel-like features of a scale comparable to those mapped in outcrop
* (Basham, 1996) émd in the subsurface (fhomerson and Catalano, 1996). Furthermore, we
can show that the best production comes from the stacked channel succession in the
center of our study area (Fig. 16).

The PNN model yielded more geologically reasonable results than the linear
regression model, but the physics (equation (2)) are much less intuitive. This stresses the
need to: a.) examine the physical basis for the seismic attribute selection into the input
data before the neural network is even applied, and b.) analyze the results in light of what
is known about the geology of the area.

CONCLUSIONS

This project sought to predict the porosity of the lower Brushy Canyon interval in
inte;—we]l areas. To do this, we began by evaluating the geology through log-based
stratigraphic analysis. The lower Brushy Canyon in ‘this area is characterized by a
Vertica]ly stacked series of channeled sandstoﬁes separated by thin layers of organic
siltstones and carbonates. This vertically complex géology caused zones of extreme high
and low porosity to appear in the logs. A reliable porosity model had to be able to predict
the extreme values, so as to not significantly over-predict the interbeds and under-predict
the channel porosity. |

We used both linear regression and a neural network in a volume-based approach

to model porosity distribution based on seismic attribute an_alyscs. The standard linear
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- regression model adequately predicted the porosity in areas of greater well control, but
failed in areas of sparse well control. As a result, the linear regression model did not
accﬁrately portray the channels that we interpreted from well log information.

The probabilistic neural network (PNN) was trained to find the best non-linear
relationship between the seven seismic attributes and the actual porosity log. The results
were an all around improvement over the regression model. Not only did the PNN yield
a higher correlation coefficient, ie relationship it found greatly reduced the problem of
sparse well coverage. This model also predicted edges of high porosity zones parallel to
the interpreted channel boundaries even in areas where there are no wells to constrain the
location of the channel.

These results indicate that, when propetly employed, neural networks can provide
B a means of improving subsurface physical property predictions, and avoiding the pitfalls

described by Schuelke et al. (1998) and Hart (1999).
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APPENDIX 1
Procedures, Methods, and Applications in Geologic Interpretations
Stratigraphic Interpretations
All stratigraphic interpretations were done in Landmark’s Stratworks application.
First, lower Brlishy Canyon and Bone Spring tops were picked in each of the digitized
well logs based on GR, PEF, LLD, and RHOB characteristics. Lower Brushy Canyon
pick depths range from 8264 feet in well #7 (Fig.17) to 8435 feet in well #6. Bone
Spring pick depths range from 8651 feet in well #9 to 8763.5 feet in well #10 (Table 3).
Next, we‘picked stratigraphic units within the lower Brushy Canyon interval based on log
cycles and laterally continuous interbeds. These .um'ts were named A through H in
descending order and correlated from well to well using tight-boxed cross-sections to
‘ensure the accuracy of the pick from one location to the next in Stratworks' Correlation
: pr_ogram. A]l isopach maps were contoured in Stratworks' Map View and calculated
_frqm the stratigraphic top of a lower Brﬁshy unit to the top of the underlying unit.
| The top of the lower Brushy Canyon Formation was picked at the top of a
max1mum flooding surface in the logs between 8250 and 8400 feet at most well
locations. At some ldcations, the lower Brushy top is characterized by carbonate material
at s1m11ar depths (Fig. 18). This material iS typically less than 30 feet thick, and may be
Scén in the high PEF, LLD, and RHOB log readings. At the base of this carbonate or
_brganic rich sﬂtstoﬁe and dolpmjte m_ate'rial is where the top of Unit A was picked. Unit
A‘ generally consists of a relatively thin (20 — 50 feet) massivé sandstone, but it is
charag:terized by a coérsening—upwards package towards the east as denoted by a gradual

upward decrease in the GR reading (Fig. 18).
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BSPG
Well #4
LBC

A

A lime
B

C

C lime

BSPG
Well #7
LBC
A
Alime
B
c -
C lime

BSPG

Depth(ft) Time{ms)

8336.5 1202.93
8352 1204.58
8382  1207.78
8392 1208.95
8439 1213.86
8517  1220.46
8528 1221.25
8580 1225.28
8584  1225.56

8652.5 1235.08
8695 1241.21
8731 1246.13

Depth(ft} Time(ms)
8315  1202.37
8334 1205.02

8365.5 1209.43
8377 1211.04

84255 1217.82

84985 1226.48
8506  1227.02

8555.56  1230.57

8626.5 1237.99

8670.5 1243.67

8704.5 - 1248.08

Depth(ff) Time{ms)
8264 1208.26
8284 1210.78
8325 121595
8331 1216.7
8385 1223.51
8457  1232.58

84785 1234.86

8513.5  1237.83

8573.5 - 1242.91

8615.5 1248.48
8652 . - 1254.05

Well #10 Depth_(f_t) Time{ms)

LBC
A
Alime
B

C

C lime

BSPG

8346
8365.5
8402.5
8409.5
8463.5

8537

8548

8596
8685.5
8728.5
8763.5

1204.35
1206.53
1210.67
1211.46
1217.5
1223.19
1224.02
1228.24
124277
1250.81
1256

Well #2 Depth(ft) Time{ms)

LBC
A
Alime
B

C
Clime
D

E

G

H

BSPG .

Well #5

LBC
A
Alime
B

B lime
C

F
E
G
H
BSPG

Well #8

LBC
A

“Alime

B
B lime

.C

C lime
D

D lime -

E
G
H
BSPG

8362
8379.5
8415.5
84225
8475.5
8544.5

8551

8605

8684

8730

8763

8380
8400.5
8418.5

8433

8479

8490
8534.5

8562
8656.5

8674

8701

8301.5
8326
8366
8378
8411

8424.5

8490.5

8505.5

8517.5

8534.5
8611

8641.5
8669

1211.61
1214.62
1220.82
1222.02
1230.71
1238.57
1239.18

1245.7
1258.73
1263.91
1266.82

Depth(ft} Time{ms)

1209.69
1212.38
1215.17
1217.07
1223.76
1225.13
1232.06
1235.28
1243.76
1245.22
1248.39

Depth(ft) Time{ms)

1209.39
1212.72
1218.02
1219.78
1224.26
1226.09
1233.53
1234.62
1235.55
1236.87
1244.35

1248.6
1252.67

Well #11 Depth(ft) Time{ms)

LBC
A
Alime
B

C

C lime
D

E

G

H
BSPG

8343.5
8362
8391.56
8397.5
8439
8525

8535

8574
8669.5
8717.5

8749

1212.05

1214.1
1217.38
1218.04
1222.64
1230.11
1230.85
1233.76

1244.9
1250.52
1253.73

Well #3 Depth(ft) Time(ms)

LBC 8312 1204.26
A 83345 1206.62
Alime 8377 1211.09
B 8384.5 1211.88
C 8436.5 1217.34
C lime 8506.5 1223.37
D 8516.5 1224.09
D lime 8571.5 1228.75
E 8574.5 1229
G 8648 1239.45
H 8689 1245.71
BSPG 8726 1251.36
Well #6 Depth{ft) Time(ms)
LBC 8435.5 1209.79
A 8453 1211.89
Alime 8466.5 1213.5
B 8480.5 1214.69
C 8515 1217.46
C lime 8569.5 1221.84
F 8577 1222.44
E 8612 1226.94
H 8684 1237.37
BSPG 8713 124157
Well #9 Depth(ft) Time(ms)
LBC 8268.5 - 1206.77
A 8289 . 1209.15
B 8349.5 1216.18
C 8384 1220.19
C lime 84495 1227.81

8470.5 1231.35
E 8515 1236.8
G 8570.5 1243.59
H 8605.5 1248.54
BSPG 8651.5 1253.87

Table 3: Time/depth pairs for every lower Brushy Canyon stratigraphic pick for each of
the 11 wells in the multiattribute study. The locations of these wells are given in Figure
17. LBC is the lower Brushy Canyon. BSPG is the Bone Sprmg Formatlon
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Flgure 17 iocétibﬁs ef the11 >'v>vezlls ﬁsed m ihe rhiﬂﬁatﬁrhute 'srudy. Refer :also'to the
white dots in Figure 15.

Either a thin organic rich silfstone/dolomite or a carbonate layer vertically
separates Unit A from Unit B (called A lime). This laterally extensive boundary proved
to be an excellent marker bed with which to separate the two units. Unit B consists of a
maésivé sandstone (relatively flat GR response) in most areas, but, similar to Unit A, it
changes to a coarsening-upwards package to the east.

Again, a laterally equivalent bed of either organic siltstone/dolomite or a

’ hmestone proved to be an excellent marker bed w1th which to vertlcally separate Unit B

from Umt C (called B hme) Umt C was very easy to correlate from well to we11 as it is

B vther thrckest, cleanest, and most productrve unit in the lower Brushy Canyqn in this study |

area.
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Figure 18: Well logs'and log-based lithblbgy column of a well southeast of center in the
study area. The logs are, from left to right: the GR, PEF, deep resistivity (LLD), RHOB,
and the sonic (DT) logs. The lithology column is log-derived, based on sand/shale lines
and carbonate lines using the GR and PEF logs. To the left of the column is and
engineering track showing perforation zones. ' '

At the base of Unit C is another thin bed of organic siltstone/dolomite “or
limestone (called C lime). This thin bed was laterally extensive throughc)ut the study
area, and again proved to be a reliable pick to vertically separate Unit C from the -
underlying unit. In the center of the study area, the unit beneath Unit C is Unit D. ‘Unit

D is a channeled sandstone that cuts throilgh the organic siltstone/dolomite of Unit F.

~ Unit D may be seen on the type log (Fig. 2), and Unit F may be seen here on Figure 18 N

Every log in the study area had either a Unit D or a Unit F pick as the two are

stratigraphically equivalent (Fig. 19).




In wells where Unit D is present, Unit E lies directly beneath either another
organic siltstone/dolomite or a carbonate bed at the base of Unit D (called D lime). Wells
where Unit F is present tend to show a gradual shift iﬁto Unit E as log characteristics are
similar (a package of relatively high GR readings). In this case, Unit E was picked at the
top of a fining-upwards package, which was correlated with the top of Unit E in wells
that contained Unit D. Unit E was the toughest unit to correlate due to internal
stratigraphic variation from well to well. It mostly consists of a massive sandstone in the
western region, a coarsening-upwards to fining-upwards package in the center, and a
carbonate towards the east.

Unit G underlies Unit E in most wells, although pinchouts do occur (Fig. 19).
The top of Unit G is characterized by an abrupt kick to the left in the GR curve (Fig. 18).
This unit generally consists of a massive sandstone in the west (with low porosity) and a
carbonate to the east. This was determined from the relatively high (around 5) .reading on
the PEF curve.

Unit H is the lowest unit stratigraphically in the lower Brushy in this study area.
It consists of mostly organic-rich carbonates as seen from the high GR and high PEF
| rgadings. | |
Synfheﬁc Seismograms

Upon determining a stratigraphic model for the lower Brushy Canyon Forﬁaation
in th15 study area, our next goal was to accurately tie the stratigraphic picks on tﬁe Well o
logs to the seismic (iata. This was done by way of synthetic seismogfams (Fig. 20). All
ﬁnél synfheﬁc_s were generated in Hampson and Russeﬂ's Stréta‘program (Landmark's

- PostStack PAL program was needed to convert the .3dv volume to a SEG-Y volume that
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Figure 19: A west — east cross-section showing basic lower Brushy 'Ca'_nyon’ stratigraphy.
The logs used are the GR and the PEF log from left to right. Note the stratigraphic
equivalent Units D and F, and the pinchout of Unit G in the second well from the right.

Strata vuould recogm;ze); Th1s software package loohs at the sonic (DT) and density
(RHOB) logs to determine the acoustic impedance. Once this is determined, the software-
generates a synthetic or model of what a seismic trace should look like that travels
through that partlcular section of rock The section we are interested in is the lower ;

Brushy Canyon mterval but an accurate synthetlc w1]1 tie log data and seismic data over: :

a much larger wmdow The thlckness (1n tlme) of the lower Brushy ranges from 32 to 56 |

ms in the 11 wells used in the multl-atinbute study (Table 3) These wells were’

accurately t1ed to the selsmlc data over a wmdow of at least 500 ms:. Wells typ1cally tledk 2




as far up in the log as the Bell Canyon Formation and as far down as the Wolfcamp
_(depending on the total depth of the well).

First, sonic and density logs were input into Landmark's Syntool program.
Syntool was used as a first step to get the wells tied over a bigger time interval before
ﬁhe-tuning them in Strata. Syntool will generate a synthetic and overlay it on seismic
traces imported in SEG-Y format. For the first well, we did not apply a time-depth table.
Since the sonic logs did not start at the surface, the software had to estimate a constant
velocity from the surface to the starting depth of the log. Because of this, we had to
apply a visually estimated time shift to get started. Syntool will then display the amount
of time to further shift the log to best match the synthetic curve to the seismic data.

After the time shift had been applied, we needed to adjust the phase of the
synthetic to match the seismic data. Syntool will display the degrees out-of-phase at the
bottom of the correlation window. This can be adjusted in the filter window. Once the
appropriate phase shift was applied, the frequency filter could be adjusted to match the
freqilency of the seismic data. This varied from well to well. The default filter is a
trapézoid filter w1th ﬁ'equency ranges of 8-14-40-60 for thé low cut, low pass, high pass,
and high cut respectively;» Our frequencies were typically in the 15 to 50 Hz range.

- The next Step was to extract a mixed phase wavelet from the seismic data
following the methods of Hampson and Russéll (1998). This will better match the
- 'éharacteristics of the synthetic to tﬁe seismic data to yield a higher correlation cﬁefﬁcient.
- The correlation coefﬁcient was used to measure the accuracy of the well — seismic ﬁe. A
¢61jrélation coefficient of 1.0 would mean a perfect_¢orrélaﬁbn. For the 11 wells used in

the attribute study, the correlation coefﬁcients ranged from 0.628 to 0.907 (Table 4). Due
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to the wavelength of the data, only wavelets of at least 400, preferably 500, ms were
eitracted. This correlates to approximately 3000 feet of rock, depending on lithology, so
only those wells with logs containing more than 3000 feet were used. Also, the
correlation time window could be changed to alter the correlation coefficient. This is the
time window in which the correlation coefficient is calculated. It is independent of the
window of wavelet extraction, but should fall within. Generally, the smaller the window,
»the better the correlation, but windows of at least 500 ms were desired here to show that
the correlation was good over as large a time window as possible

Since our seismic data were sampled at every 2 ms, it was necessary to accurately
tie the well log to the seismic at every sample to later perform the volume-based multi-
attribute study. The capabilities of the Strata program allowed us to stretch and squeeze

the synthetics where necessary and to extract a wave from the seismic data to increase the

correlation.
Well Number Wavelet Extraction Correlation Window Correlation Coefficient
' , Window '
1 900 - 1400 ms 900 - 1400 ms 0.628
20 800 - 1370 ms 860 - 1290 ms 0.907
3 850 - 1350 ms 1040 - 1400 ms 0.836
4 810- 1260 ms 1000 - 1260 ms - 0.769
5 900 - 1310 ms 1000 - 1310 ms 0.845
6 - 865 - 1275 ms 865 - 1275 ms 0.691
7 812 - 1262 ms 874 - 1262 ms 0.826
8 850 - 1262 ms 850 - 1262 ms 0.779
9 900 - 1400 ms 920 - 1340 ms 0.761
10 780 - 1420 ms 780 - 1420 ms 0.876
11 840 - 1290 ms 840 - 1290 ms 0.907:

Table 4: List of the correlation coefficients and time windows for each of the wells used
in the multiattribute study. Well locations are shown in Figure 17.
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Seismic Interpretations

Once the wells containing DT and RHOB logs were accurately tied to the seismic,
we could begin to track horizons in the seismic data. A peak in the seismic at around
1200 ms correlated to the top of the lower Brushy Canyon. This peak was auto-tracked
through the entire seismic data as the lower Brushy top (Fig. 21). The Bone Spring was
characterized as a peak at about 1250 ms (Fig. 22). In some areas, however, excessive
carbonate material was deposited on top of the Bone Spring, which threw off the seismic
response of the reflector. Nevertheless, the Bone Spring is characterized as a peak
throughout most of the study area. Most of the stratigraphic units within the lower
Brushy Canyon Formation did not regularly correspond to a peak or a trough due to the
thinness of the unit and its relative acoustic impedance with adjacent units. The only
exception is Unit C, which is characterized as a trough at about 1220 ms throughout the
data set.

All seismic horizon interpretations were done in Landmark's Seisworks
application. This program allowed us to pick a grid of seed lines for each horizon, and
then auto-track, or interpolate, the horizons over an area in the seismic data. We could
then create isochron maps between horizons (Fig. 23). This was done by calculating the
time (in ms) difference between the Bone Spring and the lower Brushy Canyon
reflection. An isochron of the lower Brushy interval reveals a time thickness range of 32
to 56 ms. The thickest areas in time correlate to the thickest areas in feet as shown on an
isopach map. This gave us added confidence that our well logs were accurately tied to

the seismic data. This tie is necessary before performing any attribute analyses.
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Figure 20: A synthetic seismogram tying the well log to the seismic data. The logs are

the RHOB and the sonic velocity log. The blue trace represents the synthetic and the

~ black traces are the actual seismic data. - Note the precise tie within the lower Brushy
- Canyon interval and the good tie well above and below the mterval Th1s pre01s1on is
: needed to perform the followmg mult1-attr1bute analyses ‘

' Se1sm1c Attribute Analysns |

Selsmlc data is made up of three domams amphtude phase and ﬁ'equency Most -

IR selsmlc attnbutes are vanatlons w1th1n elther of these domams All selsmm attnbute S

‘ 5ana1yses were done in Hampson and Russell's Emerge program ThlS software calculates ;




17 attributes from the seismic data, and allows external attributes to be imported for
analysis as well. The smoothed acoustic impedance was calculated in Hampson and
Rﬁsse_ll's Strata program following Hatﬂpson and Russell (1998). This was done as a
‘ biocky inv&sio‘n over a 400 ms (1000 — 1400 ms) time window using the average
extracted wave from the 11 wells used in the stﬁdy. The mmlmum continuity volume
was created in Landmark's PostStack PAL program (F—Scan 3-D) Other attributes we
calculated in PostStack were the energy half tlme and the arc length Nelther of these
attributes were chosen by step—wise regression, but the physical basis for using them was
deemed based on their equations. Each of these additional attributes needed to be
converted into SEG-Y format before use in Emerge. This was also done in PostStack.
Because SEG-Y files take up so much disk space, .thesevattdbute;s were only extracted

over a 400 ms time window as opposed to over the entire seismic volume.

. stacked channels m‘




Figure 22: Time-structure map of the top of the Bone Spring horizon in the seismic data.
The depth is in time and is given in ms in the legend. Note the high structural mound in
the southeast. This feature is seen in the depth converted structure map (Fig. 6).

Time {ms)

e Flgure 23: Isochron of the lower Brushy Canyon- interval in the seismic volume.

-~ Thickness is measured in ms and is given in the legend. Note the north — south thick - POy

- trend in the center of the study area. This i is showmg the limulatlon of sand from the LA
vertlcally stacked channels ' : : '




The attributes were first individually cross-plotted with neutron porosity, and the
correlation coefficients were noted. The blocky inversion, or seismic acoustic
impedance, correlated best with neutron porosity, but as stated above it could not be used
solely as a seismic attribute since it is log influenced. However, all of the wells were.

time shifted to méximize the correlation of the inversion. This fine-tuned the wells in the

; it ;
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: _Flgllre 24: Ind1v1dual cross-plots of attribute vs. neutron porosity for each of the seven
~ attributes used in the analysis. Note the low correlation coefﬁc1ents in each case when
i only one attnbute is used to predlct the porosxty Lo




seismic data to the best tie at each sample point. Even though the inversion could not be
used in the multiattribute study, it was used to aid in the tying of the well data, which
increased the individual correlations of the other attributes. The individual correlation
coefficients were typically very poor (the highest being Smoothed Impedance’ at r=0.47
and the lowest approaching 0 correlation) by themselves (Fig. 24).

The attribute with the highest correlation coefficient is ranked number one. The
remaining attributes are subsequently ranked by their ability to assist the number one
attribute in lowering the average regression error. This process is called step-wise
regression. The result is a list of as many attributes as the software will extract from the
seismic data, w1th a reduced error as each attributek is added to the list.

There is a maximum number of attributes to use. The process of validation
informed us that 7 attributes were necessary to best predict the neutron porosity. This
process leaves one well out at a tinie for prediction based on the other wells in the
training set. This is a controlled test that allows us to validate the predictive power of the
éhosen a’;tributes.‘ As attributeé are added and combined, the error will decrease until a
certain ?oinj; at which the attributes become too well-specific and cannot accurately
predict at andther well location outside thé training sét. The attribute that is added to give
the lowest validation error is the last attributg that may be used in the analysis. The
operator length was set at five for this ~expéﬁmént. This averages the attribute values in
t»heAsei:smic data over a wmdow of ﬁvab sémples‘,to. predict at each sample in the log
(Hampson et ai., in press)f The- ﬂefqults were used for all other parameters except the

integrate length (40 ms).
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The first technique we employed to model porosity was standard linear
regression. Details of this method are given in Masters (1995). Once the criteria of
which attributes to use and how many were determined by the methods described above,
the attribute values of the training data were used to determine the regression equatioﬁ
~ (equation 1). This equation was then used to predict porosity at other locations in the
study area. Weights were applied in the slope position of the equation to get the output
number in porosity units (i.e. pércent units). For example, acoustic impedance, which is
on the order of 10* would have a weight on the order of 107 applied to get the output to

the order of 10%. The weights are given in Table 5 along with the constant.

Attribute - e Weight ; Attribute Weight

Smoothed Inversion*2 -2.20044E-07 Instantaneous Phase -0.00732305
Smoothed Inversion*2 . 9.33039E-07 Instantaneous Phase -0.00615510
Smoothed Inversion*2 - -1.58664E-06 Instantaneous Phase 0.00768994
Smoothed Inversion?2 1.50134E-06 Instantaneous Phase 0.00182539
Smoothed Inversion’2 -6.53165E-07 Instantaneous Phase -0.14203500

Integrated Absolute Amplitude 0.00162035 SQRT Minimum Continuity 13.05430
integrated Absolute Amplitude -0.00147428 SQRT Minimum Continuity -28.16500
Integrated Absolute Amplitude 0.00137865 SQRT Minimum Continuity 16.16290

Integrated Absolute Amplitude -0.00307722 SQRT Minimum Continuity 6.46263
Integrated Absolute Amplitude 0.00189492 SQRT Minimum Continuity -4.78472
Amplitude Weighted Phase 5.69342E-07 Derivative 0.00139987
Amplitude Weighted Phase 1.29252E-06 = Derivative -0.00486141
Amplitude Weighted Phase -71.45931E-07 Derivative 0.00804671
Amplitude Weighted Phase -2.23499E-07 Derivative -0.00607878
Amplitude Weighted Phase - . 1.57712E-06 Derivative 0.00209453
Average Frequency 354.593 Constant 30.1649
- ‘Average Frequency : -803.984
Average Frequency ' 161.667
. Average Frequency 655.955
~Average Frequency = . = -367.817

Table 5: List of the weights applied to each attribute. Also shown is the constant in the

linear regression equation. Each attribute has five weights because the operator length is
five. Each attribute value is thus multiplied by each of the five pertaining weights and
summed. This value is then entered into equation 1 and is repeated for each of the seven
attributes. The constant is then added, and the output value is the predicted porosity at a
* given sample point.
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We then employed the PNN in the same manner to predict porosity using a non-

linear approach (see Appendix 2 for details). After both techniques were used to create a
porosity model, we could then predict porosity over the entire lower Brushy Canyon
interval in the seismic data. The two porosity volumes were created in Emerge. It was
then necessary to change the IBM 32-bit floating point SEG-Y format of the seismic data
in Emerge to a .3dv file that Landmark would recbgnize. This was done in PostStack
PAL, and the volumes were then imported into Seisworks for seismic display and
interpretation. Before making any kmap views in the porosity volumes it was necessary to
extract attributes along a seismic horizon or window. This was done in StratAmp. This
allowed us to display porosity values in mép view. Because the top of Unit C is the only

| lpwer Brushy Canyon horizon .we could tréck in the séismic data, we had to estimate the
locations of other horizons in order to generate fhe porosity maps. For example the maps
in Figures 11 and 13 were generated by taking the average porqsity of the window from
the C horizon to a parallel horizon 9 ms below. This window wés estimated based on the

| data’in Téble 3. Thek maps of the lower Brushy units A through D in Figures 12 and 14
were generate& over thé window ffom Vﬁyie: 10W§r Bnishy Canyon horizon to a parallél
hoﬁzon 36 ms béléw, iﬁFigufe 15, UmtD was eétimated to be in the window from the

parallel horizons Unit C plus 9 ms to Unitl c plus‘ 15 ms.
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APPENDIX 2
Definition, Application, and Methodology of the PNN

3L, exp(-D(x,x,)
Ll - i=l (2)

Y exp(-D(x,x,)

Definition of the PNN

The mathematics behind the PNN is given in Equation (2). In this equation, L is
the predicted value of neutron porosity at any given sample point in the seismic volume.
The valueof n is the number of training points in the training set. This is given as the
sum .of all seismic samples within the window of interest (WOI) at each well. For
example, atraining set with 10 wells and a WOI of 50ms in each well, sampled at every
_2ms, would yleld an n value of 250. L; 1s the actual log-derived porosity value at an |

md1v1dual trammg pomt The expression D(x x) is the multi-dimensional, or Euclidean,

| 7 , =
s PR X=X |
- D(x,x,) = )| L 3
: % B T L

e dlstance between the mput pomt and each of the trammg points, and is defined in
equahon (3) | ’

Here, the Vanable J refers to each md1v1dual seismic attribute. In this case, 7

,se1sm1c attnbutes were used in the equatlon xJ 1s the numencal value of each attribute (5)

- "at the locatlon of the mput pomt (the pomt at whxch the poros1ty is to be predlcted) Xy 1s

| : the numencal value of each attnbute (]) at the locatlon of each tra'lmng point (i). The
yvanable 1s the smoothmg parameter Th1s parameter is essentlally the rad1us of a bell

‘curve around each trammg pomt Th1s radlus is. determmed by the software by the
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process of validation, and it is used to determine the weight assigned to each‘training
point. These values are given in table 6. In summary, the closer the attribute value of an
input point is to the attribute value of a training point, the greater that training point will

be weighted in the porosity prediction of the input point.

Attribute Sigma

Attribute Sigma . ,

Smoothed Inversnon"2 0.2027284267 Instantaneous Phase 0.208855717
Smoothed Inversion”*2 1.4199470695 Instantaneous Phase 2.336766583
Smoothed Inversion”2 1.6915370842 Instantaneous Phase 2.401422952
Smoothed Inversion*2 1.8214523305 Instantaneous Phase 3.034134699
Smoothed Inversion*2 1.9432241511 instantaneous Phase 2.938657647

Integrated Absolute Amplitude 2.4517021069
Integrated Absolute Amplitude  2.3179706095
- Integrated Absolute Amplitude  2.3940202022
Integrated Absolute Amplitude 2.6502264368
Integrated Absolute Amplitude 2.8775218608

SQRT Minimum Continuity 1.740159102
SQRT Minimum Continuity 1.633219927
SQRT Minimum Continuity 2.030150413
SQRT Minimum Continuity 2.070806944
SQRT Minimum Continuity 1.820481520

Amplitude Weighted Phase 1.1731631196 Derivative 1.427516574
Amplitude Weighted Phase 0.5309439875 Derivative 1.628692820
Amplitude Weighted Phase 1.2355418908 Derivative 2.147438113
Amplitude Weighted Phase 2.7116294215 Derivative 0.224656397
Amplitude Weighted Phase 1.3841693286 Derivative 1.143277093
Average Frequency 1.7085301480 Global Sigma 1.066666668

1.7017318337
1.6935195564
1.6838092387
1.6731581328

Average Frequency
Average Frequency
Average Frequency
Average Frequency

Table 6: List of the sigma values for each attribute. There are five s1gmas listed for each
attribute because the operator length is five.
Procedures in Application and Methodology of the PNN

Before employing the PNN, it is necessary to first apply the processes of step-
wise regression and validation to the attributes extracted from the seismic data. This will
determine which attributes to use, and how many. Once these variables are determined,
the PNN may then be applied. The Emerge program will also employ a multi-layered

feed-forward neural network (MLFN), but the more easily understandable mathematics
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of the PNN made it more desirable than the MLFN, which tends to be more of a "black
box". |

Upon training the PNN, the software will include only the attributes selected by
step-wise regression and validation, and determine the optimal o; value by validation.
~ The result of the training will be a model of a non-linear relationship between the log-
derived porosity and the seismic attributes based on all training points in the training set.
This model may then be applied to the entire seismic volume within the WOI. In creating
this predicted porosity volume, the PNN compares the numerical attribute values at every
sample point within the WOI to the attribute values at each training point. Training
v pointS with attribute values a great distanée away from the value at an individual input
pbint will be essentially igndred, as ‘greater, weight is given to those training points with

similar attribute values to those at the input point. For this reason, it is necessary to have

a training set that is representative of each facies in the study area.
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