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ABSTRACT

In this dissertation, we show for the first time that bias in property measurements
hinders our ability to characterize spatial variability and model flow and transport in
heterogeneous systems. Spatial statistics of hydraulic properties can be accurately
estimated when measurement errors are unbiased. Unfortunately, measurements are
usually spatially biased (i.e., their spatial pattern is systematically distorted) because
random observation errors are propagated through non-linear inversion models that may
incorrectly describe experimental physics. Measurement bias can be experimentally
evaluated and removed through the use of calibration standards. The entire instrument
including the inversion model must be calibrated to overcome the inversion non-linearity,
and this is often infeasible in hydrology because physical standards do not exist and
inversion-model errors vary unpredictably between individual samples. It is also
impossible to fully calibrate estimates of the spatial statistics. Therefore, the effect of
bias on spatial statistics cannot be directly quantified, and instead must be examined
indirectly.

We develop a new Monte Cgrlo approach for indirectly determining the spatial
bias in field- and laboratory-estimated unsaturated hydraulic properties subject to
measurement errors. We find that hydréulic properties are strongly biased by small,
simple observation and inversion-model errors. This bias can lead to order-of-magnitude
errors in spatial statistics, artificial cross-correlation between measured properties, and

the inclusion of parameters in the inversion model that are simply artifacts of the errors,

yet show realistic spatial statistics. We also find that measurement errors amplify




uncertainty in experimental variograms caused by limited spatial sampling and can
preélude identification of variogram-model parameters. The use of biased spatial
statistics in stochastic flow and transport models causes in order-of-magnitude errors in
critical transport results, including the mean velocity, velocity variance, and velocity
integral scale. The effects of observation and inversion-model errors are insidious, as
hydraulic property estimates may appear reasonable and generate realistic looking spatial
statistics that are, however, inaccurate and misleading.

Robust estimation of ﬁnsaturated hydraulic properties for spatial variability
studies and stochastic modeling is not possible with most current instruments and
inversion inodels, because spatial bias cannot easily be removed by calibration or error
analyses such as presented here. Bias is extremely sensitive to different inversion-model
errors, and it is not possible to identify a priori all types of inversion-model error that
affect a particular property estimation method. Error analyses cannot be used to uniquely
identify all material.types or conditions under which a particular instrument or inversion

model will perform best or to remove bias caused by measurement errors.
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T EVRTR

- CHAPTER 1 — INTRODUCTION

Despite over twenty-five years of environmental clean up and restoration,
environmental pollution continues to be a major problem for the United States. At the
end of 1995 the U.S. Environmental Protection Agency (EPA) inventoried over 40,000
contaminated sites and had 1,296 contaminated sites on the National Priorities List
(Browner, 1995). Recently, the EPA esﬁmated that there may be as many as 600,000
other contaminated sites within the U.S. (EPA, 2000). The estimated cumulative clean-
up costs of these sites could reach over $1 trillion (Russel et al., 1991). Groundwater
contamination is an important component of the problem at many contaminated sites.
Unfortunately, the groundwater problem is not limited to the saturated zone. The
unsaturated zone is the primary conduit for contaminants to reach the water table and may
act as a continuing source of contamination long after removal of the contaminant source.
In fact, the U.S. Department of Energy (DOE) estimates that approximately half of it’s
total clean up costs, or $113 billion, will be spent remediating unsaturated zone materials
(ERRRD, 1997).

Remediation of unsaturated media is hampered by the lack of a comprehensive
understanding of critical processes affecting flow and transport. Predictive models often
lack the appropriate physics, and model boundary conditions may be poorly defined, both
temporally and spatially. The hydraulic properties that are required by these models are
difficult to accurately measure and are distributed heterogeneously in the subsurface.

It has long been recognized that unsaturated hydraulic properties are heterogeneous (e.g.,

Russor and Bresler, 1981; Wierenga et al, 1991; Shouse and Mohanty, 1998) and a



geostatistical approach is commonly employed to characterize observed heterogeneity in
terms of spatial statistics (e.g., Mohanty et al., 1994; Russo et al., 1997). Statistical
’parameters can easily be incorporéted in probabilistic models of flow and contaminant
transport (e.g., Yeh et al., 1985a,b; Zhang et al., 1998). While a number of workers have
‘focused on improving estimates of spatial statistics (e.g., Russo, 1984; Warrick and
‘Myers, 1987), none have investigated the impact of property measurement errors on

estimates of spatial statistics, the focus of this dissertation.

1.1 MOTIVATION

The primary motivation driving this work is the need for adequate
characterizétion of unsaturated hydraulic properties at contaminated sites. The spatial
variability of unsaturated hydraulic properties directly influences the movement of
contaminated water and non-aqueous phase liquids. In unsaturated materials, capillary
forces amplify the influence of heterogeneity on flow and transport processes, because
permeability is a function of both geologic heterogeneity and the fluid saturation. Local
contrasts of the unsaturated permeability in adjacent strata are significantly greater than
for saturated permeability, and the orientation of bedding layers may cause convergence
or divergence of a mobile contaminant.

These processes strongly affect the design, final cost, and effectiveness of
remedial actions at contaminated sites. Poor characterization of site-specific

heterogeneity may lead to ineffective remedial designs and increased risk, requiring

subsequent additional remedial actions at increased costand time. Although many




- techniques exist for incorporating site-specific heterogeneity into a probabilistic risk
framework for decision analysis, they cannot be reliably applied without first quantifying
the uncertainty in hydraulic parameter data and assessing data worth.

A nﬁmber of researchers have focused on evaluations of data worth, with the goal
'of optimizing data sampling locations. In particular various strategies have been
proposed to optimize sampling locations for determining spatial statistics (e.g., Russo,
1984; Warrick and Myers, 1987). Some workers consider the trade off between the
number of samples and remediation costs (e.g., James and Gorelick, 1994). Other
workers have examined the relationship between scales of individual measurements and
field het:srogeneity (e.g., Beckie, 1996; Tidwell, 1999). Still others (e.g., Maxwell et al.,
1999) integrate site characterization activities into the prediction of human health risk.
Most of these treatments of data worth assume that parameter uncertainty Ipainly arises
from incomplete sampling and non-ideal sample locations. Measurement errors are
typically neglected, or it is assumed that measurement errors are unbiased. As we show
in this dissertation, these assumptions are generally invalid because measurement errors
are often biased, or systematically distorted, in space, and this bias ampliﬁes sampling

uncertainty.

1.2  THE BIAS PROBLEM

Bias in property measurements is a serious potential problem that could affect our

ability to characterize spatial variability and model flow and transport in heterogeneous

systems. Hydraulic property measurements are prone to bias because most properties




~ (e.g., hydraulic conductivity) are estimated indirectly using: 1) instruments that observe

the response of a hydrologic system to a time-varying or steady boundary condition, and
2) non-linear mathematical-inversion models that infer property values from the observed
responses. Because properties depend on non-linear inversion models, purely random
error in the observation can lead to a systematic error, or bias, in the derived property
value (Mandel, 1964). Bias may also result when thé inversion model is inadequate
(Kempthorne and Allmaras, 1986). Throughout this dissertation, we refer to these two
contributions to measurement error as “observation error” and “inversion-model error”,
respectively. |

Most texts on error analysis (e.g., Mandel, 1964, Doebelin, 1966) suggest that
measurement bias can be directly evaluated and removed through the use of calibration
standards. While individual components of an instrument may be calibrated, such as
transducers used to observe response, the entire instrument including the inversion model
must be caliBrated td overcome the inversion non-linearity. Unfortunately, most
instruments and methods for estimating hydraulic properties are not directly calibrated
because physical standards do not exist, and furthermore may never be calibrated because
inversion-model errors vary unpredictably between individual field samples. In spatial
variability studies, it is also impossible to fully calibrate estimates of the spatial statistics.
Therefore, the effect of bias on spatial statistics cannot be directly quantified, and instead
must be examined indirectly.

We hypothesize that measurement bias is potentially disastrous in the context of
spatial variability studies and modeling of flow and transport in heterogeneous media.

Property measurement errors are likely to be correlated to the sampled hydraulic property

4




* because the qbserved response depends upon the hydraulic properties of the system. The
spatial pattern of estimated hydraulic properties may bécome distorted in space, and
estimated spatial statistics could also become biased and no longer representative.
Deterministic and stochastic flow and transport results will also show systematic errors if

biased spatial statistics are used in the models.

1.3 OBJECTIVE AND APPROACH

The objective of this dissertation is to evaluate for the first time the origin, impact
and relevance of spatial bias in field- and laboratory-estimated unsaturated hydraulic
properties due to simple errors in observations and inversion models. To fulfill this

objective, we focus on these fundamental questions:

1) Do simple observation and inversion-model errors cause bias in spatial statistics; if
so, how does this bias originate and what is its magnitude?

2) Can we characterize the spatial statistics of unsaturated hydraulic properties in the
presence of measurement errors?

3) Are probabilistic models of flow and transport sensitive to spatial bias caused by

measurement error?

To answer these questions, we develop a new Monte Carlo approach for indirectly

determining the spatial bias in estimates of hydraulic properties subject to simple

observation and inversion-model errors.




Our approach is straightforward (Figure 1-1). Uging standa-rd methods (e.g.,
Robin etal., 1993), we generate and sample a series of aﬁiﬁcial spatial realities (sets of
parameter fields). At each sampled location, observation and inversion-model errors are
propagated through numeric‘al simulations of parameter measurements. The spatial
structure of the resulting parameter estimates is compared to the spatial structure of the
underlying reality, revealing the extent of spatial biéé. To evaluate the sensitivity of bias
to the true field statistics, this procedure is repeated a across parameter spaces selected to
represent a range of realistic materials.

To estimate properties three different types of models are used: 1) models for
determining the system response due to a perturbation, 2) models for errors affecting
observations of the perturbation and state variables, and 3) technique-specific inversion
models for estimating parameters. When inversion-models are simple and require only
steady-state data (e.g., the tension infiltrometer), the system response is modeled using
analytical models. Otherwise, finite-difference methods are used to simulate the
unsaturated system response. Inversion-model errors are incorporated within the
system-response model, while observation errors are added to observations of the
perturbation and state variables prior to use in inversion models for estimating
parameters. Inversion-models for estimating parameters follow published methods.

Observation-error models are constructed using data collected for instruments in
our laboratories (New Mexico Institute of Mining and Technology and Sandia National
Laboratories). Models for inversion-model errors are developed based on our
experiences in the laboratory and field. It is not our objective to study these errors in

detail, but to examine their influence on estimates of spatial statistics.
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Figure 1-1. Schematic of the Monte Carlo process used to evaluate bias in spatial

statistics.




1.4  ORGANIZATION

This dissertation is written in the style where each chapter, except Chapters 1 and
5, has been composed as an independent, peer-reviewed journal publication. As a result,
~ each chapter contains its own literature review and references. Short summaries of each

chapter are provided below.

Chapter 2 — This chapter focuses on spatial bias in field-estimated unsaturated hydraulic
properties. We use a Monte Carlo error analysis to evaluate spatial bias in unsaturated
hydraulic properties estimated using a tensioﬁ infiltrometer, a device commonly
employed for spatial variability studies. Two types of observation error (error in steady
flux rate and applied tension) are considered, along with one inversion-model error
resulting from poor contact between the instrument and the medium. Bias in estimates of
spatial statistics, including the mean, variance, and variogram-model parameters, is
evaluated across a parameter space representative of poorly- to well-sorted sandy silt to

very coarse sand. Within the parameter space, we conduct 221 Monte Carlo simulations

using random parameter fields consisting of 262,144 (512x512) points.

Chapter 3 — In this chapter, we consider bias in laboratory-estimated hydraulic
properties, including the saturated hydraulic conductivity, porosity, and parameters that
describe the moisture characteristic curve. Only observation errors (volume, length,

weight, pressure and time) are considered when estimating the saturated hydraulic




conductivity and porosity. Moisture-characteristic curves are estimated in four different
error scenarios with progressively larger errors, including observation, equilibrium,
boundary, and repacking errors. The geometric mean # is systematically varied from 1.5

to 7.0, representing materials from soils to eolian sands. Because of computational
expense, random fields used in this study are smaller consisting of only 16,384 (128x128)

points. The chapter ends by evaluating the relative impact of spatial bias in structural

error, due to incomplete sampling of spatial locations.

Chapter 4 — We evaluate the impact of measurement errors in field-estimated hydraulic
properties on 1D and 3D unconditional unsaturated stochastic models of unsaturated flow
and transport. Hydraulic properties are determined by simulating tension-infiltrometer
measurements across a parameter space representative of poorly- to well-sorted, sandy

silt to coarse sand. Within the parameter space, we conduct 221 Monte Carlo simulations

using random parameter fields consisting of 262,144 (512x512) points. Two types of
observation error are considered, along with one inversion-model error resulting from
poor contact between the instrument and the medium, the same types of errors studied in
Chapter 2. Bias in estimates of the mean, variance, and integral scale of vertical

unsaturated velocity and longitudinal macrodispersivity is determined.
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CHAPTER 2~ SPATIAL BI1AS IN FIELD-ESTIMATED UNSATURATED
HYDRAULIC PROPERTIES ’

2.1 ABSTRACT

Hydraulic property measurements often rely on non-linear inversion models
‘whose errors vary between samples. In non-linear physical measurement systems, bias
can be directly quantified and removed using calibration standards. In hydrologic
systems, field calibration is often infeasible and bias must be quantified indirectly. We
use a Monte Carlo error analysis to indirectly quantify spatial bias in the saturated

hydraulic conductivity, K, and the exponential relative permeability parameter, o,

estimated using a tension infiltrometer. Two types of observation error are considered,
along with one inversion-model error resulting from poor contact between the instrument
and the medium. Estimates of spatial statistics, inclgding the mean, variance, and
variogram-model parameters, show significant bias across a parameter space

representative of poorly- to well-sorted silty sand to very coarse sand. When only

observation errors are present, spatial statistics for both parameters are best estimated in

materials with high hydraulic conductivity, like very coarse sand. When simple contact
errors are included, the nature of the bias changes dramatically. Spatial statistics are
poorly estimated, even in highly conductive materials. Conditions that permit accurate
estimation of the statistics for one of the parameters prevent accurate estimation for the

other; accurate regions for the two parameters do not overlap in parameter space. False

cross-correlation between estimated parameters is created because estimates of K, also
depend on estimates of « and both parameters are estimated from the same data.
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2.2  INTRODUCTION

In recent years, there has been an increased focus on characterizing the spatial
variability of unsaturated hydraulic properties. Because laboratory methods for
estimating unsaturated properties are expensive, time-consuming, and may not yield
results representative of heterogeneous field conditions, simple and rapid field methods
for éstimating in situ unsaturated properties are appealing and potentiallyicost—effective.
As aresult, a variety of ﬁeld methods for estimating in situ hydraulic properties have
been developed (e.g., Reynolds and Elrick, 1985; Ankeny et al., 1991; Simunek and van
Genuchten, 1996), and applied in spatial variability studies (e.g., Istok et al., 1994; Jarvis
and Messing, 1995; Mohanty et al., 1994; Russo, et al., 1997; Shouse and Mohanty,
19985. Although most studies carefully document instrument procedures, little attention
has been paid to examining hydraulic property measurement errors in the field. The
absence of a rigorous treatment of property measurement errors in many of these studies
is a potentially serious oversight, especially when hydraulic property data are used to
characterize spatial variability.

Field measurement methods are often validated through limited testing in a known
medium (e.g., Reynolds and Elrick, 1987; Simuﬁck, et al., 1999) or by numerically
simulating experimental results (e.g., Reynolds and Elrick, 1987; Simunek and van
Genuchten, 1996; Wu, et al., 1997). In some cases, a cursory examination of errors has
been performed (e.g., Simunek and van Genuchten, 1996; Russo et al., 1997). These

types of validation can show that a method is useful for measuring in situ properties in
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the studied material. However, it is not sufficient for validating the use of a method in -
spaﬁal variability studies where material properties vary over orders of magnitude.
Measurements are only useful when they are sufficiently accurate for their intended
purpose (€.g., Doebelin, 1966). Proper validation of a m?asurement technique for spatial
variability studies should include systematic error analyses that considers the impact of
measurement error on estimated spatial statistics, including the variogram. Without such
a systematic evaluation, the reliability of data collected in spatial variability studies of
unsaturated hydraulic properties remains suspect.

Errors in measured hydraulic properties are difficult to quantify. Most in situ
hydraulic properties (e.g., hydraulic conductivity) aré estimated indirectly using: 1)
instruments that observe the response of a hydrologic system to a time-varying or steady
boundary condition, and 2) non-linear mathematical-inversion models that infer property
values from the observed responses. Because properties depend on non-linear inversion
models, purely random error in the observation can lead to a systematic error, or bias, in
the derived property value (Mandel, 1964). Bias may also result when the inversion

model is inadequate (Kempthorne and Alimaras, 1986). We refer to these two

contributions to measurement error as “observation error” and “inversion-model error”,
respectively.

Most texts on error analysis (e.g., Mandel, 1964, Doebelin, 1966) suggest that
measurement bias can be experimentally evaluated and removed through the use of
calibration standards. While individual components of an instrument may be calibrated,
such as transducers used to observe response, the entire instrument including the

inversion model must be calibrated to overcome the inversion non-linearity.
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- Unfortunately, most instruments and methods for estimating in situ hydraulic properties
are not directly calibrated because physical standards do not exist, and furthermore may
never be calibrated because inversion-model errors vary unpredictably between individual
field samples. In spatial variability studies, it is also ’impossible to fully calibrate
‘estimates of the spatial statistics. Therefore, the effect of bias on spatial statistics cannot
be directly quantified, and instead must be examined indirectly.

Measurement bias is potentially disastrous in the context of spatial variability
studies. Because the observed response depends upon the hydraulic properties of the
system, property measurement errors are correlated to the sampled hydraulic property.
The spatial pattern of estimated hydraulic properties is distorted in space and estimated
spatial statistics are also corrupted by bias and no longer representative. In summary, we
hypothesize that field measureme;lts of unsaturated hydraulic properties, and their spatial
statistics, are spatially biased.

In this chapter, we use a Monte Carlo error analysis to systematically evaluate for

' the first time the extent of bias in the spatial statistics of unsaturated hydraulic properties.
Although the total inaccuracy of a measurement includes the effects of both bias and
random errors (€.g., Mandel, 1964; Doebelin, 1966), bias is the most insidious component

of error because it is difficult to identify or remove without calibration. Unsaturated
property field instruments are seldom calibrated. We therefore focus on the issue of bias
in this study. In particular, we consider tension-infiltrometer estimates of the saturated
hydraulic conductivity and the pore-size distribution parameter for the exponential
unsaturated hydraulic conductivity model. To keep our analysis tractable, we create an

artificial reality in which the only errors affecting measurements are simple observation
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and inversion-model errors. This paper is not intended to be a detailed evaluation of all
measurement error induced bias in spatial statistics tension-infiltrometer-estimated
hydraulic properties. Instead, we focus on quantitatively revealing for the first time the

impacts of measurement error bias on estimated spatial statistics. We do not consider

“ sampling bias or uncertainty due to non-ideal sample locations or incomplete sampling.

2.3  METHODS

The tension infiltrometer is an instrument commonly used for examining the
spatial variability of unsaturated hydraulic properties (e.g., DOE, 1993; Mohanty, et al.,
1994; Jarvis and Messing, 1995; Shouse and Mohanty, 1998). It is a simple device for
applying a constant (negative) pressure boundary condition to unsaturated soil (Figure 2-
1). Contact with the soil is established using a porous membrane on the base-plate ring.
Typically, a ring is placed on the soil surface and filled with fine sand. The base plate is
placed upon the sand, which provides contact with the soil. Flow from the instrument is
primarily caused by a capillary gradient. The flux from the instrument is determined by
monitoring the declining water level in the Mariotte bottle (Figure 2-1). The design and
operation of the tension infiltrometer is described by Ankeny et al. (1988).

A common inversion approach for the tension infiltrometer requires that the

unsaturated hydraulic conductivity be described by an exponential relative permeability

model, exp(aw), where
K(y) =K, exp(-ay), (2-1

w is the tension or the absolute value of the matric potential, « is the slope of
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Figure 2-1. Schematic of the tension infiltrometer. The base plate (on the right) is in

contact with the sampled medium.

In[K(w)]/ v, and K is the saturated hydraulic conductivity. The exponential relative
permeability model is commonly used in stochastic models of unsaturated flow (e.g., Yeh
etal., 1985a, b, c; Mantoglou and Gelhar, 1987a, b; Polmann, et al., 1991; Indelman, et

al., 1993; Russo, 1995; Harter and Yeh, 1996; Zhang et al., 1998). With knowledge of

two applied tensions (y; and ) and corresponding observed steady-state flux rates (Q,
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and (), parameters  and K| can be estimated using the analytical approximation of
Wooding (1968).
We employ a Monte Carlo approach to conduct our analysis. We generate 221
pairs of statistically homogeneous independent Gauésian random fields of In(¢) and
| In(K,), with a zero specified point covariance between In(c) and In(X,). The pore-size
parameter, ¢, is typically assumed to follow a normal distribution in most unsaturated
stochastic models (e.g., Yeh et al., 1985a, 1985b, 1985¢; Mantoglou and Gelhar, 1987a,
1987b; Indelman, et al., 1993; Zhang et al., 1998). However, we have chosen to describe
a with a log-normal distribution because a log-normal distribution may be more realistic
(e.g., Whjte and Sulley, 1992; Russo et al., 1997). At each spatial location in a Monte
Carlo simulation, we estimate the true flux and applied tension, add observation error to
these values, and re-estimate In(@) and In(K,). To simplify our analysis, we assume that
(2-1) describes the unsaturated hydraulic conductivity, Wooding’s (1968) approximation
 is exact, and that sub-sample-scale heterogeneity (including macropores) does not exist.
We consider only two types of observation error, error in estimated steady flux and error
in applied tension, and only one type of model inversion error, error in contact between

the disk and the medium. As in practice, we reject physically implausible results during

the re-estimation. We examine biases affecting the mean, variance, and variogram model
parameters for In(a) and In(K,) and define the parameter space in which these statistics
can be predicted with minimal bias.

In this study, we do not consider the effects of structural errors, caused by a

limited number of samples and non-ideal sampling locations, on variogram estimation.
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Most spatial variability studies are based on several hundred points or less, and structural
errors introduce significant uncertainty in spatial statistics (e.g., Russo, 1984; Warrick

and Myers, 1987; Russo et al., 1987a, b).

. 2.3.1 Random Fields

For each Monte Carlo simulation we generate over 262,000 pairs (a 512 by 5-12
random field) of log-normal « and K, with a fixed geometric mean and variance of & (a°
and oﬁ(a)) and K, (K° and O',f,( x,))- The geometric means of o and K, are varied between
simulations. Philip (1969) suggests that the parameter a ranges between 0.002 to 0.05

cm’, although other reported values are both smaller than 0.002 cm™ (e.g., Bresler, 1978;

Russo and Bouton, 1992) and greater than 0.05 cm™ (e.g., Clothier et al., 1985; Russo et
al., 1997). a“is varied from 10 t0 0.1 cm™ to encompass this range of values.
Similarly, we vary K¢ from 10° cm/s to 0.1 cm/s. This range is consistent with the

range of hydraulic conductivity values reported in tension infiltrometer studies (e.g.,

Ankeny et al., 1991; Hussen and Warrick, 1993; Shouse and Mohanty, 1998) and is

representative of silty sand to coarse sand (e.g., Freeze and Cherry, 1979). The variances

of In(@) and In(X}) remain arbitrarily fixed at 1.0 which are consistent with the range of

values reported from field studies (e.g., Russo and Bouton, 1992; Mohanty et al., 1994;
Istok et al., 1994; Russo et al., 1997). Across our entire parameter space, we conduct 13 x
17 =221 Monte Carlo simulations, in which the means of In(K,) and In(a) are each

incremented by steps of size 0.576 between simulations.
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In Richard’s equation, the parameter « scales the influence of gravity (e.g., Philip,
1969). As ais increases, the slope of the K( ) relationship increases indicating a
narrowing of the pore-size distribution. By assuming that the pore-size distribution is
proportional to the grain-size distribution, we can imply that the degree of sorting is
inversely proportional to o. We can also infer that KS‘ increases with the average grain
size. Across the parameter space the geometric mean vélues of o and K| represent poorly
to well-sorted silty sand to very coarse sand.

Random fields are generated using the FFT method (e.g., Robin et al., 1993). We

employ a 2D, isotropic, exponential variogram model

y*(h) =0 [1 - exp[- %H (2-2)

where 67 is the variance of the random process, h is a separation vector, and A, is the
correlation length. In stochastic models, it is often assumed that the correlation lengths of
unsaturated parameters are the same (e.g., Yeh et al., 1985a, b, ¢; Mantoglou and Gelhar,

1987a, b) and, for convenience, we set all correlation lengths equal to 10 length units.

2.3.2 Observation Errors

Two sets of observations, each consisting of an applied tensién and an observed
steady-state flux, are required to estimate @ and K,. We assume that the applied tension is
observed using a standard pressure transducer in the base plate (Figure 2-1). The flux
from the Mariotte bottle is estimated by observing the height of water in the bottle with

pressure transducers at two different times (e.g., Ankeny et al., 1988). Errors, in this
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case, are limited to transducer error and changes in tension due to bubbling within the

‘Mariotte bottle.
The estimated tension, i , at the base-plate membrane is expressed as

w=w+¢& (2-3)
where y is the true tension and & is the error due to transducer noise and drift and
bubbling error. Because bubbling error is a time dependant phenomena, & has a temporal
correlation. Ankeny et al. (1988) examined this issue and concluded that, in most cases,
temporal correlation can be neglected. We assume that £is an independent, mean-zero,
normally-distributed random variable and neglect transducer drift, implying that the
transducers themselves are perfectly calibrated. With the assumption of independence,

the variance of y is defined as

2
(o}

.y (2-4)

where 0'2 1s the variance of £ and M is the number of times the transducer is polled.

Ankeny et al. (1988) reports that the standard deviation of observed pressure within their

tension infiltrometer device is 0.62 cm. We assume that this variability is representative
of the tension variation at the disk and set 0'§ =04 cm’.

Estimates of the flux rate from a tension infiltrometer are most commonly based
upon a method described by Ankeny, et al. (1988). Two transducers in the Mariotte tube
are used to minimize, but not eliminate, the effect of bubbling errors. The flux rate, Q , 18
estimated by determining the decline of water-level in the Mariotte tube as infiltration

occurs and applying
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AR

O=——xr, (2-5)

where AH = H (t,) - H (t,), At =t, —t, (the polling interval for the transducers), 7; is the

radius of the Mariotte tube, and H (t) is the estimated height of the water in the Mariotte
tube at time 7. Flux errors are caused by errors in estimating the height of the water in the
Mariotte tube,

HO=H{®)+¢ (2-6)
where H(?) is the true height of the water in the bubbling tube at time ¢ and £is an
independent, mean-zero, normally-distributed error with variance o;>. As with the error

in observed tension, the assumed distribution and assumption of independence of ¢is an
approximation that improves when the sampling period is much greater than the bubble

frequency. If N flux estimates are averaged, then the variance of this estimate is

202 7%r!
ol=""g" 1t 2.7
" APN &)
We estimate o7 = 0.0025cm? from the results of Figure 2 of Ankeny et al. (1988), with

spurious data removed. We also assume that the radius of the bubbling tube ryis 1 cm,
that the pressure transducer is polled once per second, and 30 seconds worth of data are

averaged to estimate the steady-state flux rate. Using (2-7), the variance of estimated flux

rates is 0'; =0.00165 cm®/s>.
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2.3.3 Contact Error

We consider only one type of inversion-model error, a “contact error” resulting
from poor contact between the base-plate membrane and the sample medium. Itisa
common problem during use of the tension infiltrometer and, in our experience, appears

“to occur more frequently for observations made at higher tensions. This type of error
reduces the area for flow and alters the flow geometry. Flaws in the sand contact between
the disk and the medium act as large pores, which do not fill at high tensions. At lower
tensions, these pores fill eliminating or reducing the error. Since the tension infiltrometer
requires at least two observations, one at a higher tension, this error is often more
pronounced at the higher tension.

We are not interested in studying contact error in detail, but only its impact on
estimating spatial statistics. Consequently, we develop and apply a simple approximation
based upon the reduction of area for flow. We assume that the flow geometry does not
change and that only the disk area is reduced due to poor contact. We apply this error
only at the highest applied tension. The disk area is multiplied by a scaling factor (1- f),
where fis selected from a uniform random distribution over 0.0 to 0.1. Because estimates
of o and K, require two flux observations, this error introduces an additional bias in the
estimated hydraulic properties. In the following sections, the contact error scenario

includes both the contact and observation errors.

2.3.4 Hydraulic Property Estimates
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We assume that the tension values used for each observation are estimated to be
W, =2.0cmand ¥, =7.0cm. The true tensions () are calculated by subtracting & from
¥,, forn=1,2. For each observation, the value of &is determined by randomly sampling
a mean-zero normal distribution with 0'52 =04cm’. Given y,, a, and K, we calculate the

true flux from the tension infiltrometer using (Wooding, 1968)

4 ) v} (2-8)

zr,
where r is the radius of the disk and is equal to 10 cm.

Once the true rﬂux rate is determined, we calculate the estimated flux Qn by
adding mean-zero, normally distributed error with o,2 = 0.00165 cm*/s’. Sampling
locations where Q < Q2 are discarded, as théy would be in practice. Although we and
others (e.g., Mohanty, pers. comm., 2000; Ankeny, pers. comm., 2000) have both
observed and followed this practice in field studies, it is not well documented in the

literature. The percentage of discarded points is usually small. For our field studies it is

typically around 5%.
When contact errors are considered, Q] is estimated using the procedure outlined

above, while 0, is estimated using the same variance for qu but is estimated using an

altered disk radius

re=roi-f (2-9)
where fis sampled from a uniform distribution over 0.0 to 0.1. This means that the disk

radius may be reduced from 10 cm to a minimum of ~ 9.5 cm.
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The relative permeability parameter, «; is then estimated with (Reynolds and

Elrick, 1991)

., In(0, /0
4= 1n@:/0:) (2-10)
v, —¥,
. and the saturated hydraulic conductivity, K, is estimated with
~ . Y ) &V;1
R =29 @-11)

s T A 2
arnr; +4r,

This procedure is repeated for all pairs of @ and K, values.

2.3.5 Statistical Property Estimates

For each spatially correlated random field, the mean, variance, and cross-

covariance between In(e) and In(K,)are determined. In addition, local variograms are

calculated for In(@), In(X,), In(@), and ln(]%s) using the GSLIB subroutines gam?

(Deutsch and Journel, 1998)

1 N(h) )
y(h) =D 2 [U(xi +h)-Ux,)] (2-12)

where N(h) is the number of samples in lag interval h and U(x) is the random field. All
of the resulting 221 experimental variograms are fit using a Levenberg-Marquardt

algorithm with the exponential variogram model

7" (h) = o’ [l - exp(— ?;:hﬂ +o? (2-13)

(4

where 4, is the estimated “correlation length”, &} is the “model variance”, and 6is the

nugget variance. It is important to note that the model variance differs from the variance
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in that it is a fitting parameter while the variance is a directly calculated statistic. The

variance of the fitted data is the sum of model and nugget variances. When a variogram

' is constant for all lag distances, we refer to it as a “nugget variogram” in which &2 = 0.0

and /ic =0.0. In classical geostatistics, nugget variograms represent white noise

processes that have no spatial correlation. Bias for each statistical parameter is shown

using a ratio
Py [P, (2-14)
where ﬁE is the statistical parameter (e.g., mean, variance, or variogram model

parameters) for a random field of estimates and ]3T is the statistical parameter determined

for the true random field. The ratio equals 1.0 for an unbiased statistic.

24  RESULTS

Here, we present the results of our Monte Carlo analysis. We show that both the
fraction of points discarded because of a physically implausible result ( Ql < Q2 ), and the
bias in the mean, variance, and variogram-model parameters for In(@) and ln(]% ), are
functions of the field values of K¢ and &“. In addition, we illustrate how measurement
errors introduce false cross-correlation between In(&) and ln(I%s) . When only
measurement errors are considered, bias in spatial statistics increases for those geometric

mean values that produce low flux rates (e.g., small K and high o) and appears to

correlate with the fraction of points discarded. When inversion-model errors, in the form
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of a contact error, are included, the pattern of bias in spatial statistics changes

éigniﬁcantly and depends less on the fraction of points discarded.

2.4.1 Fraction of Points Discarded

Figures 2-2a and 2-2b plots across parameter space the fraction of points
discarded (FPD) because of an unrealistic result, Q < Q2 . When only observation errors
are considered (Figure 2-2a), the FPD is a function of both K¢ and a®. The FPD
increases with ° and decreases with K¢. This result is not surprising, because relative
errors in flux rates increase when the flux rates are small and small flux rates result from
high aand small K (2-8). In the upper left corner (high @® and small K%), estimated
fluxes QI and Q2 are dominated by errors and are nearly independent of the sampled
values of aand K. In these regions, the likelihood that Ql < Q2 is high, and the FPD
increases. When contact error is included (Figure 2-2b), the FPD tends to become less
dependent on the value of K, at low a, and the FPD decreases across much of the
parameter space. This occurs because contact error tends to decrease Q2 , reducing the

likelihood that 0, < 0, .

2.4.2 Bias in Estimated Mean
Figure 2-3a presents the bias, expressed as a ratio, in the geometric mean of & , or &%,

across parameter space. As the field value of either @ or K¢ decreases (lower left
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~_ portion of parameter space), the amount of bias in ¢° increases significantly to over five

times the true value. It is not surprising that bias would increase at small K°, because
Ql tends to be overestimated and Q2 tends to be underestimated as the FPD increases.
However, it seems contradictory that bias is less at high a ¢, because the FPD increases

there. This occurs because bias in the log flux ratio, ln(QA1 / QZ) from (2-10) differs from

bias in the flux rates themselves, Q and Qz. Atasmall o, flux-rate errors are
relatively small, but errors in the log ratio are very large. Therefore, relatively small

errors in flux-rates cause large, positively biased errors in the flux ratio and & .

The bias in the geometric mean of the estimated K|, or K SG , 1s shown in Figure
2-3c and is similar to the bias in @°, except that it is less sensitive to . The parameter
K, is a linear function of Ql (2-11), and, as K¢ decreases, QI is overestimated because
the FPD increases. Therefore, bias in IQSG is nearly independent of .

Figures 2-3b and 2-3d show that the bias in &° and K S changes drastically when
contact error is added. & is only accurately estimated in a narrow region at high €,
near the top of parameter space, while IE'SG is overestimated across the entire parameter
space. There is much less dependence on K, and the bias is much greater at low a©.
The contact errors decrease Q2 , leading to an increase in the flux ratio and overestimation

of & and I%s . For low &’s the biased estimates, @° and I%SG , are both well over an order

of magnitude too high.

30




2.4.3 Bias in Estimated Variance

Bias in the variance of In(@) is depicted across parameter space in Figure 2-4a.
The bias increases as o and K decreases (lower left corner of parameter space), except
at very small K (far left portion of parameter space) where the bias decreases again. As
a®or K€ decreases, the variability of the log ratio in (2-10) increases, causing the
variance of In(&) to increase. At very small K¢, however, Ql and Q2 are dominated by

errors and are independent of sampled a and K,. The variability of the log ratio is

reduced, and the variance of In(@) decreases.

Figure 2-4b illustrates bias in the variance of In(&) when contact errors are
added. There is much less dependence on the K¢, and the variance of In(@) is
underestimated at large K. In this case, Qz tends to underestimate Q, because the disk
area is reduced. The log ratio in (2-10) is consistently overestimated, and the amount of

overestimation increases at low a® where the true flux ratio is small. This effect is most |
pronounced for higher K¢, where Ql and Q2 are strongly dependent upon the values of
K, and a. The variability of the log ratio and the variance of In(& ) decreases. Contact
effects decrease as K decreases, because both Ql and Q2 become increasingly
independent of o and X (i.e. independent of O, and Q,).

Figure 2-4c shows bias in the variance of ln(Ies) . Bias increases at high «“ and

small K¢. Recalling that K .is a function of both ¢ and Ql , this relationship appears

counter-
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intuitive, because the variance of In(&) decreases as a increases and the variability of Ql
decfeases at high ¢ and low K. Compensating effects, however, cause the observed
behavior. Consider the covariance between Ql and & in
var[ln(ks)] o varln(d@)]+ var[ln(Q )]+ 2 cov[ln(d), m(g)] (2-15)

In general, estimated ln(Ql) and In(&) ¢xhibit a large negative covariance, except for that
portion of our parameter space where the fluxes become independent of @ and K..
Independence occurs at high «® or small K¢, where more points are discarded (Figure
2-2). Here the negative covariance between In( @ ) and In( Ql ) approaches zero faster
than the positive variances of In(& ) and In( Q1 ) decrease. Therefore, the variance of
ln(I% ,) increases for high « or small K¢.

The bias in the variance of ln(K ,) changes significantly when contact errors are

present (Figure 2-4d), as overestimation increases. At high K, the bias is nearly

independent of K¢ and increases dramatically as & decreases. When contact errors are

present, & tends to be overestimated leading to overestimation of K , (Figures 2-3c and
2-3d). This effect is most pronounced in parameter space where the flux rates are
strongly dependent on « and K, that is in the lower.right corner of the parameter space
where K¢ is large and ®is small. In this region, ¢ depends primarily on the errors in

the estimate of Qz , and the correlation between Ql and @ decreases. Consequently, the

variance of ln(les) tends to increase (2-15).
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' 2.4.4 Bias in Variograms
Bias in the variogralﬁ model variance and correlation length for In(¢) are shown
-in Figures 2-5a and 2-5b, respectively. The model variance is mostly overestimated,
while the correlation length is underestimated. The pattern of error in the model variance
is similar to the pattern of error in the variance of In(&) (Figure 2-4a), except in the
: Loon ‘ B N T e
upper left cdmef of parameter space (high «“ and small K¢) where the model variance
approaches zero. Correlation lengths are accurately estimated, with bias values near one,
across most of the parameter space. As with the model variance, coqelation lengths
become inaccurate in the upper left corner of parameter space (Figure 2-5b), with a bias
ratio approaéh{hé’*iéfé. ’Correlation lengths and model variances approach zero as
estimates of the flux rates become dominated by errors, rather than the true values of «
and K,. Atlow «®and small K9, flux-rate errors greatly increase the variance of In(&)
(Figure 2-4a), but do not disrupt estimation of spatial correlation, because bias in the
flux-rates accentuates spatial differences of In(2).
“Figures 2-5¢ and 2-5d display the bias in the model variance and correlation length for
In(@) when contact errors are added. Both are underestimated. The underestimation is

significant at high & and small K¢ and across a broad region characterized by low a©.

In the upper left corner of parameter space where a” is high and K¢ is small, as with
the case with no contact error (Figures 2-5a and 2-5b), flux rates are dominated by errors,

and In(&) loses spatial correlation. However, along the bottom of the figure, with low

a®, estimates of Qz are too small leading to consistent
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Figure 2-5. Variogram model parameters for In( & ),shown as a ratio of
“estimated”/“true”: a) model variance with measurement errors only, b) correlation
length with measurement error only, ¢) model variance with contact error, and d)
correlation length with contact error. The most accurate region, ratio value between 0.95

and 1.05, is shaded. Regions equal to zero are patterned indicating nugget variograms.
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overestimation of In(é&) and a reduction of spatial correlation. The spatial statistics are
those of a nugget.

Figures 2-6a and 2-6b present the bias in the model variance and correlation
length for ln(I% ) - Model variances and correlation lengths are accurately estimated
across most of the parameter space, but greatly underestimated at small K, especially in

combination with a low a“. The variogram of ln(Ie ,) is proportional to

Vi@ Vo T 2 Y@y ndy)? where y,,, is the variogram of In(@), Vg 18 the variogram

of ln(Ql) , and Y@y, is the cross-variogram between In(&) and ln(Ql). This
relationship is primarily responsible for the batterns displayed by errors in the model
variance and correlation length. Of particular importance is y,_ @ ndn) which tends to
reduce the variogram of ln(Ie ,) because In(@) and ln(Ql) are negatively correlated. At
high «%and small K¢ (upper left corner), flux rates are dominated by errors, and V@)

Yo and Y m@yind,) have little correlated spatial structure. Consequently, the model
n{{/; a),in( -

variance and correlation length of ln(I% .) are reduced in this region. Atlow ¢,

however, spatial structure is preserved in 7,4, 7, &)’ and y,_ @y but the negative
correlation between In(&) and ln(Ql) is strong, and little spatial structure is preserved in
the variogram of ln(I%s). Atlow ¢ and small K (lower left corner), In(Q) is

dominated by errors in Q1 ,as Q1 tends to have more error than Q2 , and the magnitude of

the cross-covariance between In(&) and ln(Ql) increases.
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shaded. Regions equal to zero are patterned.
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When contact error is added, patterns of bias in the model variance and correlation
length of ln([% ,) change (Figures 2-6¢ and 2-6d). Similar to errors in the variance of
ln(le ,) (Figure 2-4d), model variance bias increases significantly at low . Errors in

‘the cross-variogram between In(@) and ln(Ql) still strongly control the variogram of
In(]%s). Atlow a9, In(Q) is controlled by errors in Qz, and Y m@yndyy is small. Asa
result, the estimated correlation length of ln(I% ,) 1s fairly accurate (Figure 2-6d), but the
model variance is greatly éverestimated (Figure 2-6¢). As with the case with no contact

error, model variances and correlation lengths approach zero at high ¢ and small K¢

(upper left corner), because flux rate estimates are dominated by errors.

2.4.5 Cross-Correlation
Although true properties In(a) and In(K,)are statistically independent, we

observe significant cross-correlation between estimated properties In(@) and
ln(le ,) (Figure 2-7). False cross-correlation between In(¢) and ln(l% ,) results because

both & and K , depend on QI (2-10 and 2-11), and K , depends on and increases with

a (2-11), yielding positive point correlation functions. When only measurement errors

are present, the correlation coefficient for In(¢) and ln(I% .) appears to increase as K

decreases, reflecting increasing errors in the flux rates. When contact errors are also

present, the pattern of the correlation coefficient changes, and strong cross-correlation is

observed at both large X7 and low a“ (lower right corner), and small K¢ and high o
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(upper left corner of parameter space). This occurs because ¢ tends to be overestimated
in this region of parameter space (Figure 2-3b).

With the tension infiltrometer we use one parameter (& ) to estimate another

(I% . ). Errors in the first parameter generate erfors in the second, resulting in apparent
cross-correlation. Similar cross-correlation can occur if a single data set is used to
estimate multiple parameters, because errors in the data set will propagate through
multiple inversions. Cross-correlation due to measurement error may enhance or obscure

the true cross-correlation between hydraulic parameters.
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25 DISCUSSION

In this paper, we focus on revealing some of the impacts of tension infiltrometer
measurement error on estimated spatial statistics. In the following discussion, we argue
that our results are over optimistic for many applied field situations. We first show that
observation errors are likeiy to be much greater than those used in this study. We have
also neglected a large number of inversion-model errors that can cause spatial bias. We
then discuss the implications this work for tension infiltrometer field studies. Finally, we

illuminate the general problem of bias in hydrologic property measurements.

2.5.1 Range of Observation Errors

In most field studies, observation errors are likely to be greater than those used for
this study. The flux-rate errors used here were based on instrument observations reported
by Ankeny et al. (1988). Because their observations were made under highly controlled

laboratory conditions (Ankeny, pers. com., 1998), we conducted a series of laboratory
repeatability studies to directly evaluate the flux-rate variance, 0'3 , during realistic

tension infiltrometer operation. A large sandbox was constructed and filled with well-
sorted, fine sand. The tension infiltrometer (manufactured by Soil Measurement Systems
of Tucson, Arizona) was calibrated using standard methods (e.g., Soil Measurement
Systems, 1992), and applied following normal procedures. After each test, the sand was

returned to a constant initial condition by applying a vacuum to a pressure plate at the

base of the box. For these tests, O'j was determined to be 0.06 cm®s®. This value may
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be a more representative more representative of field studies than the flux-error variance
used here (2 = 0.00165 cm¥/s?).

Errors in applied tension at the disk source may also be much larger than
considered here. Many tension infiltrometers do not have a pressure transducer located at
the disk source. Instead the applied tension at the disk is traditionally calibrated at a
given bubble rate (e.g., Soil Measurement Systems, 1992). A constant bubble rate is
achieved by establishing a vacuum on the Mariotte bottle, and a manometer is connected
to the source tube for the disk. The depth of the air entry tubes is adjusted until the
desired tension in the source tube is reached. This approach, however, is subject to a
variety of errors. Because temperature changes will affect the expansion of bubbles,
effective steady-state tensions will systematically vary from the caiibrated values. In
addition, some tension infiltrometers have a separate disk, and errors will be introduced if

the disk is not at the correct elevation relative to the Mariotte bottle.

2.5.2 Neglected Inversion-Model Errors

Infiltrometer operators generally try to minimize observation errors by calibrating
some of the components of infiltrometer and changing the diameter of the Mariotte bottle
(Ankeny et al., 1988). In principle, bias due to observation errors can be significantly
reduced by virtually eliminating these errors, provided that the inversion model is not too
non-linear. Changing the inversion model can also reduce bias due to inversion-model
error. Because it is virtually impossible to completely and accurately incorporate all of

the physics relevant to a hydraulic property measurements at every sampled location
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- (Beckie, 1996), it is unlikely an inversion model can be found that is completely free of
error. As our results show, a simple inversion-model error, contact between the disk
source and the sampled medium, can lead to large amounts of spatial bias. A variety of
other types of invgrsion—model error could cause a different, yet still significant, bias in
spatial statistics.

Consider the effects of viscosity errors due to temperature changes. Standard
inversion models for the tension infiltrometer assume that the viscosity of the infiltrating
water remains constant (e.g., Ankeny, 1991; Reynolds and Elrick; 1991). This is very
unlikely, especially in the field where the temperature of water in the infiltrometer will
almost certainly be different from the soil temperature. A temperature drop of 1° C will
result in an increase in the viscosity of pure water of ~2% (Weast, 1972), resulting in a
~2% decrease in unsaturated hydraulic conductivity. This change could cause significant
bias in properties estimated with the tension infiltrometer.

In a field situation, bias due to viscosity errors would be temporal. In the

morning, the water temperature in the infiltrometer could be greater than that of the soil
and soil water. Infiltrating water would cooler during the measurement of Q2 and
warmer during the measurement of Ql . These differences would lead to a smaller FPD

and an overestimation of the flux ratio, & , and K .. In the afternoon, the situation could
be reversed. In this situation, the temporal bias due to viscosity errors would appear as
noise that may cause underestimation of the model variance and the correlation length.

A variety of other inversion-model errors will also produce bias that affects spatial

statistics. Other potential sources of bias include sub-sample-scale heterogeneity,

42




changes in the medium due to infiltration, soils with non-exponential hydraulic
conductivity functions, and air entrapment. As with our contact error, many of these
errors could cause significant bias in estimated spatial statistics, and their impact should

be studied.

2.5.3 Implications for Tension Infiltrometer Studies

Our results indicate that tension infiltrometer observation and contact errors will

lead to overestimation of both & and K .- This is consistent with Ankeny et al. (1991),

who observed that on average tension infiltrometer measurements of K, overestimate

laboratory measurements by a factor of 3. The mathematical character of tension
infiltrometer inversion models leads to overestimation of & and K , in the presence of

observa;[ion errors. Data with 0, < 0, are rejected because they yield an unreasonable
result, that is negative values of & . A large FPD is therefore an indicator of potential
bias in tension infiltrometer results.

It is important to recognize, however, that a small FPD does not necessarily imply
a small spatial bias. Three possible explanations can account for a small FPD in field
studies. Measurement errors could be very small, the mean value of the sampled K,
could be large and the mean & could be small, or inversion-model errors could reduce the
FPD. Recall that our contact error reduces the FPD across parameter space, yet causes
much more bias in spatial statistics than observation errors. Other inversion-model

errors, including viscosity errors, could cause a similar effect.
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Our results also indicate that measurement errors can introduce false cross-

correlation between & and K .. Because K , 1s proportional to & , correlation
coefficients will show a positive bias, and very large positive correlation coefficients are
a possible indicator of error. Negative correlation cOéfﬁcients, however, do not indicate
the absence of measurement error bias.

The other spatial statistics (me‘ar‘l, variance, and variogram) offer few diagnostic

‘indicators of measurement bias. In fact, spatial statistics can appear realistic, but still be
strongly biased. Nugget variograms could indicate either strong bias or lack of spatial
correlation. Similarly a nugget effect in the variogram, a positive difference between the
variance and model variance, could indicate bias but may also indicate uncorrelated
random errors, sub-sample scale heterogeneity, or non-ideal sample location (e.g., Journel
and Huijbrggts, 1978).

Unfortunately, we find no unique indicators of bias in tension infiltrometer data.
Certain results (e.g., large FPD, large positive correlation coefficients, and nugget
variograms) can strongly suggest the presence of bias, but indicators of little or no bias
are not obvious from our results. Investigators should take care to minimize observation
errors, thereby reducing observation error bias. In addition, workers should diligently
attempt to identify, quantify, and treat, possibly with error analyses, inversion-model
errors that are likely to affect their measurements. Finally, spatial statistics should be
considered with skepticism unless they are validated through an error analysis or

independent metric.
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2.5.4 The Bias Problem
o Bias in property measurements is a critical problem in groundwater hydrology
that potentially affects many hydraulic property measurements. For most measurement
systems in physics and engineering, calibration is used to quantify and remove
‘measurement bias (e.g., Mandel, 1964; Doebelin, 1966). Although the individual
components of many devices used for measuring hydraulic properties are calibrated (e.g.,
Ankeny, 1988), calibration of device components does not insure the elimination of
measurement bias. Unbiased errors in the device response can still lead to bias in
measurements that use a non-linear inversion model (e.g., Mandel, 1964). Calibration
standards are available and incorporated into some field hydraulic property measurement
procedures (e.g., Davis, et al., 1994). Using calibration standards, bias can be effectively
quantified and eliminated from measured hydraulic properties only when the physical
processes, including process time and length scales, in the standard and the sample are
similar.

For many field methods used to estimate porous media hydraulic properties, like
the tension infiltrometer, whole instrument field calibration standards are not feasible or
practical, and the exact nature of the bias induced by property-measurement errors cannot
be directly quantified or removed. For these methods, bias can only be quantified using
indirect approaches such as a Monte Carlo error analysis. Given the wide range of types
of error that may affect measurements of properties, however, it may be impossible to

identify and model their effects for every property estimation technique.
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SUMMARY AND CONCLUDING REMARKS

In this paper, we show that small observation and inversion-model errors bias
ﬁnsaturated hydraulic properties estimated with the tension infiltrometer and that this bias
can preclude accurate estimation of spatial statistics. For this analysis, we develop Monte
Carlo models to evaluate the effects of small, simple observation and inversion-model
errors on estimated spatial statistics for the saturated hydraulic conductivity, K, and the
single parameter for an exponential relative permeability, a. Observation errors consist
of simple errors in infiltrometer flux-rates and applied tension at the infiltrometer source.

- Only one type of inversion-model error is modeled, a simple contact error. We generate
spatially correlated random fields of & and K, simulate tension infiltrometer

measurements with errors, and estimate @ and K, from the resulting tension infiltrometer

data. When tension infiltrometer errors are due to observations only, spatial statistics of
estimated hydraulic properties are most biased when the field mean « is high or.the mean
K, is low, because flux rates are dominated by errors. When simple contact errors are
included, the nature of the bias changes dramatically, and spatial statistics are most biased
at low mean . False cross-correlation between estimated parameters occurs because
estimates of K, depend on estimates of « and because both parameters are estimated
from the same data.

Our results have broad implications for all other types of instruments used for

£
&

characterizing spatial variability. All hydraulic properties are experimentally estimated
using an instrument that observes the response of the hydrologic system to a transient or
steady perturbation. Observed system states (e.g., pressure and flux-rates) are used in a
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mathematical inversion of the governing equations tb infer the hydraulic property values.
Obsérvation and inversion-model errors lead to biased property estimates because most
inversion models are non-linear. As a result, estimated hydraulic properties and their
spatial statistics are biased. The extent of this bias depends on the non-linearity, the true
values of the sampled hydraulic properties, and the nature of measurement and inversion-
model errors present. Strong bias can produce or eliminate cross-correlation between
parameters and preclude accurate estimation of the mean, variance, and variogram. The
effects of OBservation and inversion-model error can be insidious, as hydraulic property
estimates may appear reasonable and generate realistic-looking spétial statistics, which
are, however, inaccurate and misleading. The geostatistical approaches used in spatial
variability studies offer no formal approaches for detecting and treating measurement
bias.

Robust field-estimation of hydraulic properties for spatial variability studies may
not be possible with many current instruments and inversion models, because multiple
parameters are estimated using a single, nonlinear model. In addition, bias in spatial
statistics of estimated hydraulic properties is extremely sensitive to different inversion-
model errors, and it is not possible to identify a priori all types of inversion-model error
that may affect a particular property estimation method. Therefore, error analyses cannot
be used to uniquely identify all material types or conditions under which a particular
instrument or inversion model will perform best or to remove bias caused by
measurement errors. For spatial variability studies, hydraulic properties are best

estimated using direct measurements of the property or an essentially linear inversion
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model. If non-linear inversion-models are required,‘only one parameter should be
estixﬁated from a single model and data set. |

Despite the difficulty and added cost, laboratory-estimated hydraulic properties
may be preferable to ﬁeld-e-stimated properties, because some properties are directly
‘measured, measurement errors are smaller, and inversion-model errors can, to some
extent, be controlled. However, this suggestion must be tgsted by studies of bias in
estimated spatial statistics of laboratory-estimated hydraulic properties. Finally, the
impact of bias in spatial statistics on stochastic models of flow and transport remains to

be assessed.
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'~ CHAPTER 3 - SPATIAL BIAS IN LABORATORY-ESTIMATED UNSATURATED
HYDRAULIC PROPERTIES

3.1 ABSTRACT

We use a Monte Carlo error analysis to evaluate spatial bias in the log transform

of hydraulic conductivity ( K| ) estimated with Darcy columns, porosity () estimated

using the saturated weight of samples, aﬁd van Genuchten (1980) parameters (« and »)
estimated by fitting experimental moisture"characteristic [6(y) ] data. Estimates of
In(X,)and In(¢) appear unbiased in space, because observation errors are small and their
inversion models are simple. Moisturé-characteristic curves are estimated in four
different error scenarios across a parameter space characterized by a systematically varied
geometric mean n. Measured moisture-characteristic curves are overestimated, and the
average error increases with tension and geometric mean » (essentially the degree of
sorting). The van Genuchten (1980) model is fit to the biased data. The spatial statistics

of fitting parametersIn(@) and In(s) show modest bias that increases when equilibrium

o s

errors are considered and varies depending on the errors present and the geometric mean

TR,

n. A surrogate metric for pore-water velocity shows significant errors. Under one error-

scenario, variogram-model parameters for In(n) cannot be reliably estimated from a
limited number of samples. Spatial bias due to measurement error greatly increases the

uncertainty due to limited sampling.
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3.2 INTRODUCTION

It has long been recognized that field scale unsaturated hydraulic properties vary
in space (e.g., Russo and Bresler, 1981; Wierenga et al, 1991, VShouse and Mohanty,
1998), and the impact of this heterogeneity on prediction of flow and transport has been
the focus of substantial research. Theoretical and numerical stochastic models of
ensemble flow and transport behavior in the unsaturated éone (e.g., Yehetal., 1985a, b,
c; Mémtoglou and Gelhar, 1987a, b; Hopmans et al., 1988; Polmann, et al., 1991;
Indelman, et al., 1993; Russo, 1995; Harter and Yeh, 1996; Zhang et al., 1998) require
knowledge of the spatial statistics (mean, variance, and correlation length) of unsaturated
hydraulic properties. We have previously shown (Chapter 2) that measurement errors
bias properties estimated with the tension infiltrometer, a common field instrument
employed in spatial variability studies. Biased estimates of properties result when small
obsewation errors are propagated through a non-linear. inversion model and from errors in
the inversion model itself. For the tension inﬁltromefer, bias in property estimates
precludes robust estimation of spatial statistics (Chapter 2).

Laboratory methods have also been used to estimate properties for unéaturated
zone spatial variability studies (e.g., Wierenga et al, 1991, Healy and Mills, 1991; Istok,
et al, 1994; Mallants et al., 1996; Shouse, et al, 1995; Bosch, and West, 1998). In the
absence of sampling difficulties (e. g.; alteration of properties during sampling), |
laboratory-estimated properties are, in principle, subject to smaller observation and fewer
inversion-model errors than field measurements. In addition, many errors, particularly

observation errors, are more readily quantified and controlled in a laboratory setting. If
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sampling issues are resolved, laboratory measurements may be the only viable way of -
estirhating spatial statistics of unsaturated hydraulic properties. Our objectives are to
evaluate the extent of measurement error bias in spa\tial statistics of laboratory-estimated
properties and to answer the question, “for which unsaturated zone properties can
laboratory methods be used to accurately estimate sp’atial statistics?”

We use a Monte Carlo approach to propagate simple observation and inversion-
model errors through numerically simulated laboratory measurements of properties. In
particular, we consider estimates of saturated hydraulic conductivity, porosity, and
pérameters that describe the moisture;retention curve. We neglect sampling issues and
assume that sample‘properties are not significantly altered from their in situ condition.
We generate and numerically sample a series of artificial realities with known spatial
statistics and estimate the properties using standard laboratory techniques subject to
known errors. We use our property estimates to determine bias in the spatial statistics of

laboratory-estimated unsaturated hydraulic properties.

33 METHODS

We investigate the impact of laboratory measurement errors on estimated spatial

statistics by simulating laboratory analysis of samples in a series of different of artificial

realities. We assume that the tension-saturation curve, S(1), is a monotonic function

described by the van Genuchten (1980) parametric model




S() = (-1)

b+ Cavy ]

where is the matric potential, # is a parameter related to standard deviation of the

effective pore radii, and « is a parameter that is related to an air entry pressure. The
moisture-characteristic curve, & y), is described by

ow)=($-6,)S(w)+9, (3-2)
where ¢ is the porosity, and 4, is the residual moisture content, here assumed to be zero.

We assume that the relative permeability, k(y), is completely described using Mualem’s

(1976) relationship, which for the van Genuchten model (1980) is

. Y z
k,<w>=S(w)"{1—[l—S(w)n-l} } (3-3)

where [ is a parameter that accounts for tortﬁosity and the correlation between adjacent
pores. The unsaturated hydraulic conductivity, K(), is given by
K(y)=K k() (3-4)
where Ky is the saturated hydraulic conductivity.
We generate four independent random fields with knoWn statistics for K, ¢, o,
and f. Each of the four random fields span properties representative of clastic materials
consisting of poorly- to well consolidated, argillaceous to sandy deposits. We corﬁbine

the K, ¢, o, and /S fields with seven different random fields of #, each with a different

geometric mean representing materials with different pore-size distributions, and estimate

K, ¢, o, and n using simulated laboratory methods subject to simple observation and

inversion-model errors.
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Standard laboratory methods (e.g., Hillel, 1980; Klute, 1986; Hendrickx, 1990;
Ste}ﬁhens, 1995) are numerically simulated to estimate properties. Porosity is estimated
from the saturated and dry weight of the saniple. Moisture-characteristic curves are
measured directly using hanging columns and pressure chambers. The saturated

‘hydraulic conductivity (X,) is estimated using a Darcy column. We consider four different

scenarios with progressively larger and more realistic errors.

3.3.1 Error Scenarios

We begin with a very idealistic scenario, where only observation errors are
present and measurements reflect true equilibrium conditions. Observation errors are
limited to mean-zero, white-noise errors associated with estimates of volume, length,
weight, pressure, and time. Porosity, ¢, and saturated hydraulic conductivity, K are
estimated. Moisture-characteristic [ y)] curves are measured and fit with van
Genuchten’s (1980) parametric model to estimate « and n.

Our second scenario is more realistic, because we consider both equilibrium and
observation errors in estimates of the moisture characteristic curve. When estimating
& y) curves, equilibrium is assumed when the sample weight changes less than a
specified amount over a fixed period of time (e.g., less than 0.01 gm vin 24 hours).
Depending on the sample properties and history, the moisture content at this “appa.lrent”

equilibrium may be very different from the true equilibrium moisture content. We

account for equilibrium errors by generating moisture-characteristic data with a transient,

1D, finite-difference model. Observation errors are added to the results, and moisture-
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characteristic data are fit with the van Genuchten (1980) parametric model to generate a
o s
second estimate of o and ».

In the boundary error scenario, moisture characteristic data are affected by

heterogeneity in « at the base of the sample, to account for disturbance and errors in the

‘sample apparatus, and by errors in observations and equilibrium time. The boundary

error diminishes the connection of the sample with the porous plates in hanging columns
and pressure pots at higher tensions and can substantially lengthen equilibrium times,
resulting in non-equilibrium observations of moisture content. Moisture-characteristic
curves with these boundary errors are used to generate a third set of van Genuchten
parameters,  and n.

In our final scenario, we examine moisture-characteristic curves generated from
repacked or disturbed samples, while also including observation, equilibrium, and
boundary errors. We develop simple models for modifying « and » based upon the
Haverkamp and Parlange (1986) empirical mapping of cumulative grain-size distributions
to pressure-saturation curves using bulk density data. We assume that the sample is
repacked to its original bulk density, but the sample properties are altered because the
bulk density of the repacked sample is erroneous. These curves provide a fourth set of
estimated «and n.

For each reality, the mean, variance, and variogram for each estimated property is
then determined, and variograms are fit with the exponential model (eliminating error in
the choice of variogram model), yielding estimates of correlation length, variance, and

nugget variance. Relative errors in the statistics and variogram-model (VM) parameters
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are calculated by comparing “estimated” versus “true” values. Bias affecting the spatial

statistics is revealed by the relative error. Details are discussed below.

3.3.2 Random Fields

In fhis study the parameters K, ¢, &, n, and 3 are considered spatially correlated
random fields, where the first four parameters are log-normally distributed and fis
normally distributed. Although all five parameters can be related conceptually to the
pore-size distribution, the exact nature of the cross-correlation between parameters is
unknown, and we assume no specific cross-correlation between the parameters for this
study.

The zero-mean random fields of all five properties are generated using an the FFT

method (e.g., Robin et al., 1993) with an isotropic, exponential variogram model

y¢(h) =o? l:l - exp(— —}h-ﬂ (3-5)

where ¢’ is the variance of the random process, h is a separation vector, and A 1s the
correlation length. Final random fields are constructed by adding the mean to the zero-
mean field. Each random field consists of 16,384 points located on a square lattice (128
by 128), spaced one unit apart. Required input spatial statistics for all parameters are
summarized in Table 3-1. For convenience (e.g., Yeh et al., 1985a, b, ¢; Mantoglou and
Gelhar, 1987a, b), the correlation lengths for all parameters are the same, 10.0 length

units.
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In(K,) In(g) In(e) In(n) B
In(cmy/s) In(1/cm)

9.2 -1.4 4.6 Variable 0.5
Mean (-9.) (-1.33) (-4.5) (0.48)
Variance 1.0 0.05 0.5 0.02 0.1
(0.90) (0.047) (0.37) (0.018) (0.094)

Correlation 10.0 10.0 10.0 10.0 10.0
Length 9.5) (14.4) 6.7) 9.5) (9.0)

Table 3-1. Input and calculated, in parentheses, spatial statistics for generated random

fields.

We generate only one random field each for K, ¢, , and . The ranges of K

~(5x10° to 3x10° em/s), ¢(0.13 to 0.50), and @ (0.001 to 0.1 1/cm) are representative of
mixed clastic materials containing poorly- to well-consolidated, argillaceous to sandy
deposits. Because there is little information about the range of £ in nature, we assume
that its range is —0.7 to 1.7 with a mean of 0.5. The parameter # is inversely related to the
width of the pore-size distribution and controls the slope of both the moisturé
characteristic and unsaturated hydraulic conductivity curves. A small » indicates a wide
pore-size distribution and poor sorting of grain sizes (e.g., a paleosol deposit), while a
large n signifies a narrow range of pore sizes and a high degree of sorting (e.g., an eolian
sandstone). We generate seven different random fields for n, with the geometric mean »

varying from 1.5 (e.g., argillaceous sand) to 7.0 (well-sorted sand). The four random
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- fields for other properties are combined with each random field of 7 to create seven
different realities, which are then completely sampled for each of our scenarios, allowing
us to assess bias in spatial statistics as a function of # and the type of error considered.
The random fields used in this study differ from those used in Chapter 2 because
the domain size is much smaller, 128x128 versus 512x512. We elected to use a smaller
domain because our error calculations are computationally expensive. Although our

fields are not strictly ergodic, our results with a 128x128 field differ from those of a

512x512 field by only a few percent. As a result of the smaller domain, actual correlation
lengths and model variances differ from theoretical values (Table 1), and minor amounts
of cross correlation are observed between In(cr) and In(n), correlation coefficient of
~0.08. Because the objective of any spatial variability study is to characterize the local
variogram rather than the theoretical variogram (Journel and Huijbregts, 1978), the

smaller domain size is acceptable for this study

3.3.3 Observation Errors

Errors affecting laboratory hydraulic property estimates occur during the
observation of weight, length, volume, time, and pressure. We assume that all
observation errors are mean-zero, derived from a normal distribution, and have a constant
variance. Our error estimates were obtained for typical instruments and methods used in
our two laboratories (New Mexico Institute of Mining and Technology and Sandia
National Laboratories) for these kinds of measurements. Observed weights for an object /

are determined using
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W, =W, +¢ (3-6)
where W] is the true weight of the object / and g is the error in the balance which is

characterized by a variance of o =1.4x10™ gm’. Similarly, an estimated length of an

object / is calculated using

L=L+¢ (3-7)
where L] is the true length of the object / and &] is the error in thé observation which has a
variance of o} =2.5x107cm’ .

For hanging column observations of the moisture-characteristic curve, we assume
that pressure is estimated using the height 9f the Buchner funnel. We consider only
white-noise errors in the estimate of the height, such that for an observation / the
observed pressure is

W, =v, +¢ (3-8)
where 7 is the true height and &; is an error in length. When pressure chambers are used,
pressures are determined by reading a pressure gauge. Based upon the reported precision
of pressure gauges in our laboratories, the variance of pressure-gauge readings is
estimated to be 111 cm®.

We assume that all sample containers are cylinders. The estiinated volume of a

cylinder / is given by

~ 2
v = L‘h(fi} n (3-9)
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 where ih is the estimated height of the cylinder and L . 1s the estimated diameter of the
cylinder. Errors are common in the estimate of the original volume of a field sample.

We assume that the volume of the field-sample container (V) is equal to 102 ¢m’ and that

the true sample volume is equal to

A

V.=V +v, (3-10)
where v, is the error in the estimate of thé volume of sampled material. Because highly
porous, granular materials are typically more friable and less cohesive than similar
materials with low porosity and clay-rich materials are likely to be readily deformed, we

assume that sample volume errors increase in materials with a high porosity. We use an
arbitrary relationship to calculate the variance of v, (c)
o2 ($) =304 +1) | (3-11)
Using this relationship (3-11), the estimated volumes to 95% confidence are
V.=V, £2.5% at ¢=0.1and V, =V, +16.7% at ¢=0.5.
Estimates of time are calculated using fQ =1, +7,, where 10 is the true time and

7() is the error in a time observation, which has a variance of cl=10s".

3.3.4 Equilibrium Error

True equilibrium conditions are difficult to achieve in unsaturated materials.
During measurements of moisture characteristic curves, equilibrium is often assumed
when the sample weight changes less than a specified amount over a fixed period of time.

With this procedure, “apparent” equilibrium is reached when the flux rate from the
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- sample falls below a critical value. Depending on the sample properties, the moisture
content at an apparent equilibrium may be much larger or smaller than the “true”
equilibrium moisture content, because the sample has not completely drained or wetted. -
Equilibrium errors are a type of inversion model error, because moisture characteristic
data are fit with a parametric model that implicitly assumes equilibrium conditions.

We account for equilibrium errors by simulating the transient drainage of each
sample using a block centered finite difference model of Richard’s equation. The change
in weight of our samples over 24 hours is monitored, and the “apparent” equilibrium
moisture content is determined when the sample weight changes less than a 0.01 gm (the
resolution of our scale) in a 24 hour period. Once apparent equilibrium is reached, the
weight of the sample is determined and used to estimate moisture content. This is the
standard procedure in our laboratories and many others. We begin with a fully saturated
sample and measure a drainage curve by allowing the sample to reach an apparent
equilibrium at a series of increasing tensions. For each measurement, the final moisture
content profile at apparent equilibrium is used as the initial condition for the subsequent

measurement.

3.3.5 Boundary Error

In our experience samples used for measuring moisture characteristic curves can

be heterogeneous at their base. This heterogeneity results from disturbance of the lower
part of the sample itself and apparatus used to contain the sample. At the top and bottom
of the sample, grains may be plucked from the sample, and pores may dilate due to

vibrations and other disturbances. Pores deep within the sample are less likely to be
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- disturbed, because the sample ring confines grains. We assume that the base of a sample
is covered with a porous cloth to prevent the sample from falling out of the ring. The
cloth can not completely conform to the individual grains present at the lowér edge of the
sample, and it may bridge irregularitie/As on the sample surface. These small
heterogeneities can drastically increase the sample equilibrium time. Larger pores at the
base of the sample drain at lower tensions, decreasing the hydraulic conductivity of the
lower part of the sample and increasing the time required to drain the portion of the
sample above the heterogeneity. When boundary error is significant, equilibrium errors
increase.

We are not interested in exploring thié type of error in detail but only in its impact
on estimated spatial statistics, and employ a simple model for altering the properties of
the lower 1.0 mm of the sample. In the van Genuchten parametric model (3-1) effective
pore radii are scaled by the parameter . We allow the parameter a tovbe randomly
increased by a scaling factor to simulate a dilation of pores in the lower 1mm of the
sample and larger pores between the sample and the cloth. The scaling factor is drawn
from a uniform distribution between of 1.0 to 2.0. The properties within the rest of the
sample remain unchanged. The sample weight at apparent equilibrium is determined

using the finite difference approach described above.

3.3.6 Repacking Errors

Field samples are often disturbed or repacked prior to laboratory analysis for S(w).

The repacking of samples, while convenient, may alter the sample hydraulic properties,
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 creating a form of inversion-model error. Repacking destroys the original sample pore-
strucfure and it is ﬁot possible, due to observation errors, to repack a sample to its original
bulk density. These dissimilarities between the original and repacked samples lead to
errors in estimates»of the field properties and their parameters. We develop simple
models to describe how parameters « and » are altered when samples are repacked.

Models for modifying « and » are based upon the Haverkamp and Parlange

(1986)‘ empirical mapping of cumulative grain-size distributions to pressure-saturation
curves using bulk density data. The derivation of these models is presented in Appendix
A. We assume that the pore structure of intact samples is truly homogeneous and that all
modifications to the parameters « and » occur because the repacked-sample bulk density
is not equal to the intact-sample bulk density. Repacked samples do not retain the bulk
density of the original sample. In a container of known volume, samples are typically

repacked to a target weight. The target sample weight is

W = 5,7, (3-12)
where 17, is the estimated volume of the sample ring determined using equation (3-9) and
P, is the estimated intact-sample bulk density given by

~ Py Vit — &
, =
V. +v,

(3-13)

5 in which ¢, is the error in the weight of the sample and its container, ¢, is the error in the

weight of the container, and p, is the true intact-sample bulk density. The intact-sample

bulk density is calculated from
Py = pal-9) (3-14)
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where pg is the sample grain density and ¢is the sample porosity. Prior to repacking the
samﬁles into a ring, the ring is weighed and the volume of the sample ring is estimated.
The ring is filled until the estimated weigﬁt of the dry sample and the sample ring is equal
to the target weight. The true dry weight of the-sample is determined using

W,=W, —&, +¢&, (3-15)
where &, is the error in the estimated weight of the ring and sample material and &, is

the error in the estimated weight of the ring. The true bulk density of the sample in the
ring is calculated by

P =t (3-16)
where 7} is the true volume of the sample ring. The true bulk density of the sample in

the ring (oy,) provides the basis for altering the parameters « and » due to repacking. For

a known value of »n, we calculate a modified n parameter (Appendix A)

" =(p—"'j 2(n—1)+1 (3-17)
P

where a, is a constant equal to 3.8408. We calculate an ¢ parameter that is modified due
to repacking using

b, +b,(n—1)+b,(n-1)
a,=a >
b +b2(nm —1)+b3(nm _1)

(3-18)

where b, = 17.1736, b, = -4.7043, and b, = 0.4. Note that b, differs from that of
Haverkamp and Parlange (1986), because their value yields physically implausible results
at high ».

We assume that the saturated hydraulic conductivity can be described by a bundle

of capillary tubes model, with a series of effective hydraulic radii. In addition, we
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assume that, at any matric potential, the effective hydraulic radius scales like the effective

pore radius. We determine a scaling factor for the effective pore radius using

f=— (3-19)
o
The true saturatedbhydraulic conductivity of the repacked sample is determined using
K, =1k, (3-20)
We also develop a simple model for alterigg B in (3-3) due to repacking. Mualem

(1976) evaluated the “best” value of the parameter f, using 45 sets of S() and K(y) or

K(0) data and concluded that the “best” value for £is 0.5. The majority of samples used

in Mualem’s study, however, were repacked, suggesting that for repacked samples the

optimal value of #is 0.5. When a sample is repacked, we determine the repacked B with

IBrepacked = ﬂ * giﬂ - 05

, where g is a random number uniformly distributed between 0

and 0.9 and the rightmost term is added when £ <0.5 and subtracted when £ >0.5.

3.3.7 Hydraulic Property Estimates

Moisture content observations are determined using simulations of hanging
column and pressure-chamber devices. Nine different tensions (25, 50, 75, 100, 125, 200,
330, 1000, and 3000 cm) are selected to capture the air-entry pressure and the slope of the
moisture characteristic curve for most samples. Moisture content measurements at
tensions at and below 200 ¢cm are made in hanging columns, while measurements at
higher tensions are made in pressure chambers. For equilibrium conditions (the

observation error scenario), errors arise from observations of weight, estimates of the
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applied pressure, and averaging of moisture content through the sample. We assume that
all moisture content observations reflect drainage. The average moisture content at the
applied tension is‘determined using equation (3-2) in

B A

Oy)=— [6w)dy (3-21)

royi+u-H, /2

where v/, is the ith applied tension , i = 1, ...,9 for each of the tensions used to measure
the moisture content, H, is the height of the sample ring and v is the etror in pressure at
the center of the sample ring. The error in pressure v is considered an error in length ,
& , for moisture-content observations made in hanging columns and an error in pressure,
¢ , for moisture-content observations made in pressure-chamber devices. For non-

equilibrium conditions (equilibrium, boundary, and repacking error scenarios), errors

arise from observations of weight, estimates of the applied pressure, averaging of
moisture content through the sample, and incomplete drainage of the sample. o is
determined by numerically simulating drainage from the sample with a lower boundary
condition set equal to ; + v — H, /2. The sample is allowed to drain until the sample
weight changes less than 0.01 gm in 24 hours, and the resulting moisture content profile
is averaged over the entire sample to derive @ . Assuming that the density of water is

equal to 1 gm/cm’, the estimated moisture content at tension y; is

é(‘//i)= Q(Wi)VrI}+ &€ — & (3-22)

r

where &, is the error in the combined weight of the wet sample and container and £, is

the error in the combined weight of the container and dry sample. This procedure is
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| repeated for the predetermined y/,, providing a é(lf/,) data set which is fit with equations
(3—ij and (3-2) using a Levenberg-Marquardt algorithm, resulting in estimates of the van
Genuchten (1980) parameters «rand n, represeﬁted by the symbols & and 7. The
estimated porosity ((/;) is determined by substitutiﬂg the porosity (¢) for the average
moisture content (@ ) in equation (3-22).

The saturatéd hydraulic conducﬁvity is estimated using a Darcy column. A

constant head is applied to the inlet, the outlet is open to the atmosphere, and a steady

flux rate is measured. The true flux through the column is determined from

L. (LY
=K ZH | Zp 323
0, o1, (2) (3-23)

where Ly is the height between the constant head reservoir and the inlet, L; is the length
of the column, and L, is the diameter of the column. The saturated hydraulic

conductivity is estimated using

.V, 4l
K, =2t (3-24)
lo Ly wL

where the flux rate is estimated using the observed volume of water (T}Q )eluted as a
function of observed time (7, ).

We only determine only one set of porosity and saturated‘ hydraulic conducﬁvity
estimates, ¢3 and K . » because they are independent of n. Multiple estimates of van

Genuchten (1980) parameters « and » are made because their errors vary with the
geometric mean » and with each of the four the error scenarios considered. The

parameters & and 7 are determined by fitting the van Genuchten, (3-1) and (3-2)
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parametric model to the estimated moisture characteristic data. é(y/) data that fall below

the detection limit for moisture content (1.7 x10™ cm®/ cm®) are not fit. The residual
moisture content, @, , is considered to be zero for the observation error scenario. For all

other scenarios, however, the best estimates of « and » are achieved when the residual
moisture content is included in the fit. All fits are performed using a Levenberg-

Marquardt algorithm. For each of the 16,384 sampled points in our seven realities, the

four sets of é(z//) data, corresponding to the obseﬁation, equilibrium, boundary, and

repacking error scenarios, are fit yielding four sets of & and 7, and three sets of

A

estimated residual moisture contents, 4, .

3.3.8 Statistics and Variogram—Modei‘(VM) Parameters

The mean and variance of all “true” and “estimated” parameters are determined,
and local variograms are calculated using the GSLIB subroutines gam?2 (Deutsch and
Journel, 1998)

1

YU, +0)-UE)f (3-25)

W= &

where N(h) is the number of samples in lag interval h and U(x) is the random field. All
of the resulting variograms are fit, using a Levenberg-Marquardt algorithm, with the
exponential variogram model

7" (h) =0} {1 - exp(— %llﬂ +o? (3-26)

(4
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where A, is the estimated “correlation length”, & is the “model variance”, and & is the

nugget variance. Itis important to note that the model variance differs from the variance
in that it is a fitting parameter while the variance is a directly calculated statistic. The

variance of the fitted data is the sum of model and nugget variances. When a variogram is

A

flat for all lag distances, we refer to it as a “nugget variogram” in which 62 =0.0 and A

(4

= (0.0. In classical geostatistics nugget variograms represent white noise processes that

have no spatial correlation. Bias for each statistical parameter is shown using a ratio
13E / f’T where f’E is the statistical parameter (e.g., mean, variance, or variogram model

parameters) for a random field of estimates and f’T is the statistical parameter determined

for the true random field. The ratio equals 1.0 for an unbiased statistic.

3.4 BIAS DUE TO MEASUREMENT ERROR

This section errors presents errors in the spatial statistics of our estimated
parameters. We first show that observation errors introduce little bias in the spatial

statistics for the log transform of the saturated hydraulic conductivity and porosity,
ln(I%s) and 1n(¢?) . We then examine errors in the estimated moisture-characteristic
curves, é(t//) , to provide the basis for diagnosing bias in estimates of van Genucthen
parameters ¢ and 7. We present the bias affecting the spatial statistics of In(&) and

In(n). Because we must include the residual moisture content to achieve good estimates

of @ and 7 in the equilibrium, boundary, and repacking error scenarios, we show the

spatial statistics of é, and discuss the relationship between é, and estimates of the
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parameters K, ¢, @, n, and f. Recall that true parameters and » are uncorrelated.

Because the errors in é(y/) are propagated through the non-linear van Genuchten model,
(3-1) and (3-2), apparent cross-correlation develops between In(&) and In(7). We show

this cross-correlation and discuss its relationship to the geometric mean » in our random

fields.

3.4.1 Hydraulic Conductivity (K,) and Porosity (¢)
Measurement errors affecting the hydraulic conductivity, ln(ks) , and the
porosity, ln(qs) , are small and minimally impact spatial statistics. On average,

measurement errors cause a bias in ln(]%s) and 1n(¢3) of less than a tenth of a percent in

these simulations. Estimated statistics (mean and variance) and variogram-model

parameters for the log-transformed parameters ln(I%s) and 1n(¢3) show no significant bias

(Table 3-2).
Mean Variance Model Correlation
Variance Length
In( 125) /In(K,) 1.000 1.001 1.005 0.993
In(@)/In(g) | 0999 1.011 1262 0.994

Table 3-2. Biasin In(K,) and In(4)
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These results illustrate that spatial statistics can be estimated for parameters with

inversion models that are linear, or nearly linear, with respect to small observation errors.

Although ln(les) and ln(¢?) are not strictly linear functions of observation error, their

measurement errors appear unbiased in space because observation errors are small and
their inversion models are simple. On the other hand, we have not considered inversion-

model errors for these two measurements; their presence, especially in determining

ln(l%s) , could well produce spatial bias in estimated parameters.

3.4.2 Moisture Content &) Data
We explore errors in é(z//) data to provide the necessary background for interpreting bias
in the spatial statistics of van Genuchten (1980) parameters & and 7. Figure 3-1 shows

arithmetic mean of é(!//) for all scenarios, at three geometric mean n. In general,
moisture-characteristic curves are overestimated, and the average error increases with
tension, geometric mean  (as the pore-size distribution narrows), and additional types of
€rTor.

For the observation error scenario, average errors in é(t//) are relatively small

across all tensions, except when the moisture content approaches its detection limit

(£1.7%x10™* ecm® cm®). When equilibrium errors are considered, errors in é(t,y) increase

significantly, especially at high tension. At high tension and large geometric mean #,

average é(l//) abruptly flattens to an apparent residual moisture content. When boundary
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Figure 3-1. Average moisture contents for a) n=2.0,b)n=>5.0,and c) n= 7.0. Points

represent the arithmetic mean moisture content for the entire sampled field.
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errors are added, average é(l//) increases further but does not flatten as quickly at high

tension. This behavior is most evident in Figure 3-1c. When repacking errors are

included, average é(l//) shows the most error, the highest apparent residual moisture

content, and the shallowest slope across intermediate tensions.

In the observation error scenario, errors in #(y) arise from errors in the sampled

tension, estimates of sample weights, aﬂd estimates of container volume (3-9). Atlow
tension, relative errors affecting é(x//) are small and essentially unbiased with respect to
w and constitutive parameters. These errors cause a bias of under 1% and measurement
uncertainty of no more than ~ + 4%. At low tension, errors in é(l//) are dominated by
pressure and container volume errors, because relative errors in é(l//) due to weight are
mean-zero with an uncertainty, to 95%, of £1.7x107*% of (). As é(w) decreases,
however, relative errors in é(t//) become increasingly larger, due to the errors in weight.
When the change in é(l//) between consecutive tensions approaches the detection limit
for moisture content (£ 1.7 x 10~ cm®/ cm®), errors in weight generate a large, up to orders
of magnitude, positive bias in é(!//) .

In the equilibrium error scenario, both errors in observations and equilibrium
times cause errors in é(t//) data. Equilibrium errors in é(y/) depend on the flux rate

from the sample and are, therefore, a function of K(w). As K(y) decreases, flux rates
decrease, and equilibrium errors increase. Consider a series of apparent equilibrium

moisture contents for three different values of K, but where all other parameters are the
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Figure 3-2. Illustration of the effects of equilibrium time errors on observed moisture

contents for three different K .

same (Figure 3-2). K(w) is proportional to K (3-4). As K decreases, equilibrium errors
increase and become significant at progressively lower tensions. Equilibrium errors are
greatest at higher tensions and cause the measured moisture characteristic curves to
flatten abruptly (Figures 3-1 and 3-2). Similar behavior results when either ¢, », or fis
large, because the unsaturated hydraulic conductivity decreases. Equilibrium errors also
depend on porosity. When porosity increases, the volume of fluid drained from or added
to the sample at equilibrium increases, but the hydraulic conductivity does not change.
The equilibrium time increases, causing larger equilibrium errors.

We find that equilibrium errors also depend on the drainage or wetting history of
the sample. Incomplete drainage or wetting at apparent equilibrium increases the error in

subsequent measurements. If the number of measurements or the tensions were changed,
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a different measured moisture characteristic curve would result. Although we do not
speéiﬁcally address ’/hysteresis in this study, it is important to note that equilibrium errors
can profoundly affect the measurement of hysteretic moisture characteristic curves, and
hysteretic moisture cilaracteristic curves can result from equilibrium errors, even if the
true moisture characteristic function is monotonic.

In the boundary error scenario, é(w) is affected by both errors in observations,
equilibrium time, and heterogeneity in « at the base of the sample. We randomly alter «
in the lower 1mm of the sample to account for larger pores due to sample disturbance and
the sample apparatus. At moderate to high tensions, the hydraulic conductivity in the
lower part of the sample decreases significantly relative to the remainder of the sample,

and flow from the sample is restricted. Because sample flux rates are reduced,
equilibrium time errors are enhanced, and é(y/) curves tend to flatten and become more
sigmoidal (Figure 3-1), especially at high » (e.g., well-sorted materials).

When repacking errors are included with the other errors, é(y/) is consistently
overestimated, especially at high tensions (Figure 3-1). Because our repacking model
tends to decrease » and increase ¢, and equilibrium errors increase with «, é(w) for the

repacking error scenario tends to be larger than that for the boundary error scenario. This

difference increases with the geometric mean # (e.g., sorting).

3.4.3 van Genuchten Parameters (o and »)
In the following, we present and discuss errors in the spatial statistics for In(&)

and In(n) as a function of the geometric mean » for each of our four error scenarios.
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Because & and # are determined by fitting 6() data, we emphasize the connection

between errors in é(l//) and the spatial statistics of In(&) and In(#). Finally, we discuss
several important cdncepts illustrated by our results.
The spatial statistics of In(&) and In(#) show the least bias in the observation

error scenario (Figure 3-3) and are best estimated at smaller values of geometric mean n

(e.g., poorly sorted materials). Observed trends reflect errors in 'é(y/) , Which increase

3
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Figure 3-3. Bias in spatial statistics of a) In(&) and b) In(#) for the observation-error

scenario.
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* with tension and 7. Errors in the means of In(@) and In(#) are very small, because é(l}/)

values below the detection limit are excluded from the van Genuchten model fitting and
average errors in the remaining é(w) data are very small. At high geometric mean n,

errors in é(;//) are potentially larger and more variable. This variability causes larger
errors in the variance (ie, the sum of model and nugget variances), the model variance,

and the correlation length of In(@) and In(#). Errors are generally worse for In(#),
because 7 depends on the slope of é(w) at high tensions, where é(y/) errors are the

greatest. Errors for In(&) are smaller, because @ is most sensitive to é(l//) at low
tensions.

When equilibrium errors are included, they minimally alter the spatial statistics of
In(@) from the observation error scenario (Figure 3-4a). The spatial statistics of In(&)
show slightly more error at lower geometric mean » (e.g., poorly sorted materials) and
slightly less error in the variance at high geometric mean » (e.g., well-sorted materials).
Errors in spatial statistics for In(#) increase significantly, especially when the geometric
mean 7 is small (Figure 3-4b), as in poorly sorted materials. The mean, variance and
model variance for In(n) overestimate those for In(r), while the correlation length of
In(#1) consistently underestimates that of In(n). For the equilibrium error scenario, the
spatial statistics of both In(&) and In(#) are best estimated when the true geometric

mean # is between 3.0 and 4.0.
Equilibrium errors in é(y/) tend to increase with n (e.g., sorting) and tension.

Because é(l,//) errors are small at low tensions, the spatial statistics of In(&) change little
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Figure 3-4. Bias in spatial statistics of a) In(@) and b) In(n) for the equilibrium-error

scenario. Observation errors also affect results.

from the observation error scenario. Because equilibrium errors cause é(!//) to abruptly
flatten to an apparent residual moisture content, the best estimates of & and 7 are
achieved when a non-zero residual moisture content is included in (3-2) during the fitting.
A larger value of 7 is required to accommodate the residual moisture content (ér )
leading to consistent overestimation by the mean In(#). When the geometric mean » is
small, equilibrium errors affect fewer samples, but the differences between the affected
and unaffected samples increases, causing the variance and model variance of In(#) to be

greatly overestimated. At a larger geometric mean », most samples are affected by
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Figure 3-5. Bias in spatial statistics of a) In(&) and b) In(n) for the boundary-error

scenario. Observation and equilibrium errors also affect results.

equilibrium errors and the variability of In(#) is less. Because of distortion in the In(n)
field, correlation lengths for In(#) underestimate the true correlation length of In(n),
particularly at high geometric mean # (e.g., well-sorted materials).

Spatial statistics for In(@) and In(s) change significantly when boundary errors
are included (Figure 3-5). Below a geometric mean »n of 3.0, the spatial statistics of
In(&) and In(#) differ little from the equilibrium error scenario. Above that, the variance
and model variance for In(@) markedly increases, while the mean and correlation length

change very little. The mean In(n) decreases and underestimates the mean In(n). The
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variance of In(#) increases d;amatically and overestimates the variance of In(n), by a -

fac’tér of 12 at a geometric mean n of 7.0. Between a geometric mean » of 3.0 and 6.0,

the model variance of In(n) underestimates that of In(n) by as much as 38%. Ata

geometric mean n of 7.0, the model variance of In(x) is overestimated by 72%. Above a
| geometric mean 7 of 3.0, the correlation length of In(7%) underestimates that of In(n) by

as much as 34%.

The boundary error causes é(y/) to gradually flatten to a residual moisture

content and these effects increase with n. Because of the more gradual approach to the

apparent residual moisture content, a smaller value of 7 is required to fit the é(l//) data.
As aresult, 72 tends to be underestimated at high geometric mean n. Because the
boundary errors are a random variable, they add significant noise to the In(n) field,
especially at large geometric mean n. This noise results in an increase of the variance of
In(n) aﬁd a decrease of the model variance and correlation length.

When repacking errors are also included, errors in some spatial statistics show
another significant change (Figure 3-6). The variance of In(&) increases, while estimates
of the mean, model variance, and correlation length change little from the boundary error
scenario. The mean of In(#) also changes little from the boundary error scenario, but
errors in the variance, model-variance, and correlation length of In(#) increase, yet still
follow the same pattern as the boundary error scenario. The variance of In(n) is
significantly overestimated, while the model variance and the correlation length is

underestimated.
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Figure 3-6. Bias in spatial statistics of a) In(@) and b) In(#) for the repacking-error

scenario. Observation, equilibrium, and boundary errors also affect results.

Because repacking errors tend to increase with n, they affect the spatial statistics
of In(#) more as the geometric mean » increases. As with the boundary errors, repacking
errors are random functions, and they increase the noise in the In(n) field. As a result,
variance, model variance, and correlation length errors increase.

Our results show that the character of spatial bias in estimated parameters changes
with the type of error affecting measurements. Spatial bias may either increase or

decrease when a different kind of error affects measurements. Consider estimates of
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variance of In(72) between the observation error scenario (Figure 3-3b) and the
equﬂibrium error scenario (Figure 3-4b). When equilibrium errors are added, the amount
of overestimation in the variance of In(#) increases at low geometric mean # and
decreases at high geometric mean n. Overestimation of the variance increases
significantly at high geometric mean n, when heterogeneity is present at the lower sample
boundary (Figure 3-5b). Because significant changes in spatial bias occur with different
types of error, a priori knowledge of all errors is required for a complete error analysis.
Bias in spatial statistics is most sensitive to inversion-model errors. The
maghnitude and potential effect of inversion-model errors is unconstrained compared to
those of observation errors, which are minimized by design and limited by the inversion
model. Inversion-model errors may be either systematic functions of the hydraulic
properties of the medium (e.g., equilibrium ‘errors) or random errors that depend on
sample-specific conditions (e.g., boundary or repacking error). Systematic inversion-
model errors act as filters, whose response depends on media properties, and affect all
measurements to some degree. They distort the underlying spatial pattern in estimated
parameter fields, but introduce little noise. Inversion-model errors with a random
component add noise to estimated parameter fields, which tends to obscure spatial
correlation. In the boundary and repacking error scenarios, large differences between the
variance and model variance (i.e. a large nugget) reflect the addition of noise to In(&)
and In(n) fields.
The degree of spatial bias in multiple parameters, estimated from a single set of

observations, varies with parameter sensitivity to observations. Our observations of
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é(y/) are biased with respect to tension, and this leads to differences between errors in
statistics for In(&) and In(#). The parameter & is most sensitive to é(t//) at low
tensions, while the parameter # is related to the slope of é(w) at high tensions. Because

errors in é(t//) increase with tension, the spatial statistics of In(#) generally show more
error than those of In(@), regardless of geometric mean n.

It is important to recall that our results are presented for log-transformed variables
and small differences in the statistics between our estimated and true values, say In(n)
and In(n), reflect much larger differences in non-transformed variables, # and n. When
the geometric mean » = 7.0 in our repacking error scenario, the ratio of In(#) to In(#n) is
0.79 while the ratio of 7 to nis 0.67. Although these differences may seem small, they
can cause orders of magnitude difference in the moisture content and unsaturated
hydraulic conductivity. Using the values of # and » with &= 0.01 cm™, the moisture

content would be overestimated by a factor of 87 at -500 cm tension.

3.44 Residual Moisture Content

While we recognize that there are many physical reasons to have non-zero
residual moisture contents in most porous media, we have chosen to fix the “real”
residual moisture content to 0.0 for this study. When only observation errors are present,
good estimates of ¢ and 7 can be achieved with zero residual moisture content. When

equilibrium errors are present (the equilibrium, boundary, and repacking error scenarios),
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we must include a non-zero residual moisture content (ér ) to achieve the best estimates
of & and A from G(y) data.
The spatial statistics of ér reflect errors in é(l//) . Trends in the mean ér (Figure

3-7) reflect averagé errors in é(l//) at high tension; (Figure 3-1). The coefficient of
variation (CV) (Figure 3-7) reflects the hydraulic property variability in the sampled field
and the type of measurement error present. For geometric mean # less than 3.0, the CV
decreases with increasing geometric mean » and added measurement errors. Fewer points

in the sampled field have small » values (large é,) as the geometric mean » increases, so

the variability of é, decreases. When boundary and repacking errors are added, ér
becomes less sensitive to #n, and the CV decreases. For geometric mean n greater than
3.0, the CV increases with the geometric mean » and added errors. In the equilibrium
error scenario, the CV gently rises with increasing geometric mean », because ér
becomes more sensitive to n. When boundary and repacking errors are included, the
additional noise from these random inversion-model errors causes the CV to increase

significantly at high geometric mean #.
Variograms of ér are readily fit with the exponential model, with the exception of
geometric mean 7 of 1.5 where all variograms show a trend. Correlation lengths for ér

are roughly equivalent to the correlation lengths of In(X ), In(ex), In(n), In(#), or B

and range from ~ 22 to ~29 length units. The model variance closely follows the

variance, except at high geometric mean » when random inversion-model errors generate
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Figure 3-7. Mean (a) and coefficient of variation (b) for the estimated residual moisture

content.

substantial nugget variance. Variogram results suggest a strong relationship between the

estimated residual moisture content é, and the true hydraulic properties in our fields.

The residual moisture content shows cross-correlation with other, real parameters
(Figure 3-8), because the measurement errors depend on those parameters. In the
equilibrium error scenario (Figure 3-8a), cross-correlation with ér is strongest with fand

In(X,), followed by In(ex), In(¢), and In(n). Ata geometric mean » of 1.5, the

correlation with In(#) is negative, because é(l//) increases with decreasing » for n below
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 ~2.0. In the boundary and repacking error scenarios (Figure 3-8b and 3-8¢), correlation
betwéen é, and the hydraulic properties changes significantly. Correlation with In(a)
decreases at high geomgtﬁc mean 7, because « is randomly altered in the lower 1 mm of
the sample. Because é(l//) errors are controlled by the heterogeneity at the base of the
sample, the magnitude of the negative correlation between ér with In(K ) decreases at
high geometric mean #. In the boundary error scenario, correlation with £ decreases at
high geometric mean # for similar reasons. In the repacking error scenario, correlation
between ér and f decreases significantly, while correlation with ln(¢) increases, because
[ is randomly altered and repacked parameters are independent of .

These results suggest that accuracy of residual moisture content data is
questionable. Because ér results appear realistic, it is virtually impossible to determine
from the data whether or not the residual moisture content is uniquely describing physical
characteristics of thé medium. Estimates of residual moisture contents can be determined
by measurement errors, which are functions of the hydraulic properties of the medium.

For field data, it may not be possible to unravel the relationship between the residual

moisture content and hydraulic parameters. In two of our error scenarios, the residual
moisture content shows the strongest correlation with the parameter £, which is an
unmeasured parameter. Artifactual parameters, like ér , are an insidious byproduct of

estimating multiple parameters from a single data set subject to observation or inversion

model errors.
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3.4.5 Induced Cross-Correlation

Estimated fields of ln(dj and In(n) show cross-correlation that depends on the
type of errors present and the geometric mean » (Figure 3-9). Although the original
random fields of In(a) and ln(ﬁ) were generated with zero specified cross-correlation,
some crbss-corrf;lation occurs between In(e) and In(n) because our random fields are
relatively small (only ~ 4 correlation lengths across). However, the observed cross-
correlation between estimated values, In(&@) and In(#7), is significantly different, because

they were estimated using a non-linear model (the van Genuchten model) from a single
data set containing errors [é(x//) 1-
Generally, the strength of the cross-correlation between In(&) and In(#) increases

as more errors are added (Figure 3-9). In the observation error scenario, In(¢) and In(7)

are negatively correlated, because é(l//) is overestimated, leading to a smaller 7, when

is large. When equilibrium errors are present, In(@) and In(#) are positively correlated
at small geometric mean »n, because ér increases with large & and accommodation of ér

requires a larger 1. At large geometric mean » and large ¢, é(l//) tends to be
overestimated at moderate tensions, leading to smaller 7. As aresult, In(@) and In(%)
~ are negatively correlated.

When multiple parameters are estimated through a single inversion model from a
biased data set, strong, but false, cross-correlation between the estimated parameters can

develop. Cross-correlation due to measurement errors can completely obscure the “true”
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- cross-correlation between parameters. Using single-parameter inversion models with

independent data sets may alleviate this problem.
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Figure 3-9. Correlation coefficients between In(&) and In(#). Horizontal gray line

represents the true correlation coefficient in the sampled field (0.08).

3.5 POTENTIAL IMPACT OF MEASUREMENT ERROR BIAS ON FLOW AND TRANSPORT
PREDICTIONS

The geometric mean of the unsaturated hydraulic conductivity, K (i) and the
arithmetic mean moisture content, (9(1//)> , are two parameters commonly used in

probabilistic models of contaminant transport. The ratio of these parameters is a
surrogate for the mean velocity under unit gradient conditions, and for some constitutive
relationships, like the Gardner-Russo models for unsaturated hydraulic conductivity and
moisture retention, this ratio is exactly a first order approximation to the mean velocity

(e.g., Zhang et al., 1998).
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To illustrate the potential impact of measurement errors on flow and transport

predictions, we compare K (), (8(w)), and the ratio K¢ (y)/(6(y)) calculated using

our estimates and the true values of K, n, @, ¢, and 6,. We arbitrarily chose w=-500

cm for this comparison, typical of a semi-arid vadose zone. It is important to recall that
the true residual moisture content is zero. The results of our comparison are shown in-

Figure 3-10. In the following discussion, we refer to the geometric mean K(y) and the
mean moisture content determined from our estimates as K © (v) and <é(y1)> ,
respectively.

When only observation errors are present, K¢ ), <é(t//)> , and their ratio is

relatively accurate, suggesting that flow and transport predictions would also be accurate.

When equilibrium errors are considered, # tends to be overestimated leading to

underestimation of K¢ (i) by up to an order of magnitude at high geometric mean »

(e.g., well-sorted material), and the addition of an artifactual residual moisture content
causes overestimation of <é(w)> . The ratio K¢ W) / <é(t//)> is consistently

underestimated, implying that the velocity could be underestimated by nearly two orders

of magnitude. When the boundary error is included, K¢ (w) is underestimated at low
geometric mean n (e.g., poorly sorted materials) and overestimated by over three orders

of magnitude at high geometric mean n. Not unexpectedly, these trends are the opposite

of the mean In(71). The overestimation of <é(1//)> is greater than that for the equilibrium

scenario because é, increases. K¢ (w) / <é(gy)> mimics K¢ (v) , indicating that velocities
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Figure 3-10. a) The geometric mean conductivity K¢ (w) , b) the mean moisture content

<é(l//)> , and c) the ratio Ks ) / <é(w)> , for w=-500 cm.

96




- could be underestimated by nearly an order of magnitude at low to moderate geometric
mean # and overestimated by over two orders of magnitude at high geometric mean 7.
When samples are repacked, the magnitude of these errors increases.

These results mainly reflect errors in # and é, . The magnitude of error decreases
under wetter conditions (lower tension) and iﬁcreases significantly for drier conditions
(higher tension). Although the magnitude of bias in the spatial statistics of In(#) appears
small in Figures 3-3 to 3-6, this bias has the potential to generate large errors in transport
calculations. In our case, a parameter, ér , that is simply an artifact of measurement

errors exerts a strong influence on the calculation of transport times. These results

suggest that accurate flow and transport models should not be based only on laboratory

estimates of hydraulic properties.

3.6 UNCERTAINTY IN ESTIMATED SPATIAL STATISTICS

We have used every point in our random fields to estimate spatial statistics, and
our results reveal the bias caused by measurement errors. In most spatial variability

studies, however, it is not possible to sample everywhere, and estimates of spatial

statistics are uncertain because of incomplete sampling and non-ideal saniple locations,
so-called structural errors (e.g., Journel and Huijbregts, 1978). We show that structural
errors increase the effects of bias significantly and can preclude reliable estimation of
spatial statistics when measurement bias is present.

Consider the fields of true In(n) and estimated In(n) from the boundary-error

scenario, when the geometric mean » is 5.0. We define a subset consisting of 100 sample
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) points randomly selected from the 16,384 points in the field and then determine the
model variance and correlation length for In(n) and In(n) from these data. We repeat
this 500 times with different points, yielding 500 sets of variogram-model parameters for
In(n) and In(n) each estimated from 100 measurements. We then increase the subset
sarﬁple size to 200 points and repeat the entire procedure, generating another 500 sets of
spatial statistics. The procedure is repeated with 300, 400,..., and 1000 point subsets,
giviﬁg a distribution of 500’7 estimates of spatial statistics for In(n) and In(7z) which we
then plot as a function of the number of samples in a subset. We normalize estimates of
the model variance and correlation length with the values from the complete In(n) field
and show the median and 5 and 95 percentiles in Figure 3-11. Journel and Huijbregts
(1978) suggest that the number of pairs at each variogram point exceed between 30 and
50 points. Even with only 100 samples, we satisfy this criterion within our sampled
fields.

Uncertainty due to structural errors is revealed by the results for the true In(n)
field (Figure 3-11a). The normalized medians for the correlation length and the model
variance approach one as the subset sample size increases. The uncertainty (illustrated
by the normalized 5 and 95 percentiles) decreases significantly as the number of samples
ina éubset increases. When a limited number of true In(rn) data are used to estimate the
variogram, the uncertainty due to structural errors may be within the acceptable range for
many applications.

When we include measurement errors and use estimated In(n) data, however,

estimates of spatial statistics are very uncertain and biased (Figure 3-11b). Until the
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Figure 3-11. Median and 95% confidence limits of the correlation length (solid lines) and
model variance (dashed lines) determined from 500 variograms for In(7), as a function of
the number of samples. Results for true values are shown in a) and estimated values are
shown in b). For the sampled field, the geometric mean n = 5.0.

subset sample size increases beyond 200 points, over 50% of the variograms are nugget
variograms showing no spatial structure. Even with a subset sample size of 1,000
locations over 10% of the variograms are nugget variograms. Because of the large
number of nugget variograms, the spatial statistics of In(n) camiot be reliably estimated
with a limited number of estimated In(#) data. These results suggest that methods for

optimizing variogram sample locations may need to include the effects of measurement

error bias.

99




3.7 NEGLECTED ERRORS

In this study, we have not attempted to fully characterize the effects of all types of
measurement errors on estimates of spatial statistics for unsgturated hydraulic properties.
Instead, we have focused on examining the impact of only a limited number of errors. In
this context, we believe that the results presented here are overly favorable, because we
have neglected a variety of errors that are likely to affect estimated spatial statistics.
These errors can be subdivided into to several classes, including model errors,
methodological errors, errors due to sample damage, and errors due to non-equilibrium
conditions.

In our study, we have eliminated several sources of model error. We have
assumed that (y) is monotonic and completely described by the van Genuchten -
constitutive model. While convenient and popular, this model is not appropriate for all
materials and flow conditions. With its use, it is implicitly assumed that pore sizes are
distributed unimodally and the materials are non-hysteretic. In addition, we assume that
the correct variogram model is known, thereby eliminating uncertainty due to choice of a
variogram model.

Methodological errors can result from inadequate sample assemblies and flaws
within measurement procedures. In the following, we provide some examples based on
our experience. It is common to find that measurement uncertainty results from
idiosyncrasies associated with holding the sample in a measurement apparatus. For

example, an annulus or region of larger pores exists between the sample and sample ring.

This annulus drains rapidly, and affects estimates of the porosity, gz;, and saturated
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hydraulic conductivity, Ii's . These errors mask the air-entry pressure, cause difficulties in

fitting é(y/) data and, if uncorrected, cause ¢ and 7 to be underestimated. Parts of the

sample assembly required for holding the sample in the ring also affect estimates of
é(l//) . For example, filter paper is often used to hold poorly consolidated samples in a

ring during measurement of é(t//) . Under typical conditions, the filter paper may hold up

to 1 gm of water and will wet and drain differently than the sample. This produces a bias

in é(l//) that becomes most important at low moisture contents. The impact of this bias
on estimates of & and 7 depends on the drainage characteristics of both the sample and
the filter paper. In addition, contact material, such as diatomaceous earth, is typically
used to provide contact between the sample and porous plates. For estimating 8(y) , the
sample weight is determined by removing the sample from the porous plate, and some of

the contact material usually adheres to the sample apparatus causing additional errors in

o).

We assume that intact samples are removed undamaged from the field and that
sample hydraulic properties remain unchanged throughout measurement procedures. In
our experience, it is virtually impossible to remove samples from the field without some
alteration of hydraulic properties. Poorly consolidated samples suffer the most alteration.
During sampling, the pore structure along sample edges is disturbed, and vibration during
transport can loosen weak grain cements and cause settling. Also, sample properties are
often altered by the measurements themselves. In poorly consolidated materials, grains

can be displaced during sample saturation. Drainage may cause compaction, and fine
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materials may be transported from the sample. It is not unusual to find that the final
sample weight is less than the initial sample weight. Transported fines can clog pores
and contact materials reducing effectively reducing hydraulic conductivity of the sample
or boundary materials. In addition, sample properties are also altered by vibrations
during sample removal or handling, as sample cohesion changes with moisture content.

We neglected a number of errors that can affect equilibrium time, such as sub-
sample-scale heterogeneity. The simple heterogeneity used in the boundary error
scenario caused significant equilibrium time errors, and other horizontally oriented
heterogeneities will increase equilibrium times significantly. Evaporation from the
experimental apparatus will also affect equilibrium time. In addition, differences
between equilibrium-time scales of the sampled medium and equipment components can
cause equilibrium errors.

The number of errors that may affect any one estimate of a hydraulic property is
very large, and the ﬁmagnitude of these errors is likely to vary significantly between
measurements. It is, therefore, not possible to determine a priori all of the errors
affecting a single measurement or a group of measurements, and for the standard
laboratory methods considered here, it is not possible to remove the bias introduced by

measurement errors.

3.8 SUMMARY

We investigate the influence of measurement errors on the spatial statistics of

laboratory-estimated saturated and unsaturated hydraulic properties with a Monte Carlo
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~approach. Using an exponential-variogram model, we construct a series of artificial
realifies consisting of independent, random fields of In(X ), In(¢), In(ex), In(n), and S.
Between realities, the geometric mean of the van Genuchten parameter n was
systematically varied. Each point in the reality is sampled, and we estimate the porosity,
(;3, saturated hydraulic conductivity, K . » and the moisture-characteristic curve, é(t//) ,

using numerical simulations of standard‘laboratory procedures subject to error. The van
Genuchten model is fit to é(t//) data yielding estimates of its parameters & and 7. The

spatial statistics of ln(qg) , ln(I%s) , In(@), and In(#) are determined, and their bias is

assessed.

We incorporate only simple errors into simulated laboratory measurements. Only

observation errors are considered when determining ¢ and K. Four different error

scenarios are considered when determining &(y) , each with an increasing number of

different types of errors. In the observation error scenario, only errors in weight, length,

volume, and time are considered, and é(l//) observations are truly at equilibrium. In the
equilibrium error scenario, transient drainage of the sample is considered along with
observation errors. The boundary error scenario adds to this a small, random
heterogeneity at the base of the sample. In the repacking error scenario, the sample
hydraulic properties are also modified using a simple model based on the Haverkamp and
Parlange (1986) mapping of cumulative grain-size distributions to pressure-saturation
curves using bulk density data. Moisture characteristic curves, subject to observation,

equilibrium, and boundary errors, are then measured on the repacked samples.
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We found that measurement errors cause no significant bias in spatial statistics of

K, and ¢, because inversion-models are simple and observation errors are small. In
general, 8(y) is overestimated, and the amount of overestimation increases with tension

(drier soils) and geometric mean » (sorting). Equilibrium error causes é(n//) curves to

~ abruptly flatten at high tensions, leading to errors of up to several orders of magnitude.

Errors are increased when a simple heterégeneity is included at the lower sample
boundary, and the é(y/) curve assumes a sigmoidal shape. When repacking errors are
also included, é(l//) shows the greatest overestimation.

The parameters, @ and 7, are estimated by fitting the ;/an Genuchten model to

experimental é(l//) curves. The spatial statistics of In(&) and In(n) are least biased in
the observation scenario and are best estimated for small geometric mean n. When
equilibrium errors are added, the spatial statistics of In(&) change little from the
observation error scenario, but the spatial statistics of In(#i) change significantly,
especially when the geometric mean » is small. When boundary errors are also present,
In(&@) shows much more spatial bias, especially at high geometric mean », and the spatial
statistics of In(7) show significant bias regardless of geometric mean 7. Finally, when
repacking errors are added, bias in spatial statistics increases further.

vAlthough the “true” residual moisture content is zero for all of our simulated
realities, we estimate a non-zero residual moisture content in order to achieve the best
estimates of @ and 7 when equilibrium errors are present (equilibrium, boundary, and

repacking error scenarios). Despite the fact that it is an artifact of the measurement
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" method, the residual moisture content shows realistic spatial statistics, including
Varibgrams that are readily fit with an exponential variogram model. |

Parameters In(&) and In(#) show strong apparent cross-correlation, which
increases with added error and the non-linearity of the true moisture-characteristic curve.
The apparent cross-correlation is a byproduct of using biased data in a non-linear
inversion model to estiméte multiple parameters. This problem might be eliminated
through the use of single-parameter inversion models with independent data sets.

We examine the potential impact of measurement errors on flow and transport
calculations by comparing the geometric mean unsaturated hydraulic conductivity, the
mean moisture content, and their ratio (a surrogate for\mean‘velocity) determined using
our estimated parameters and the true parameters. At a tension of 500 cm, we find that the
ratio may be either underestimated by up to two orders of magnitude or 6verestimated by
over three orders of magnitude, depending on the error scenario and geometric mean 7
(material sorting). This suggests that robust modeling of flow and transport may not be
possible using only laboratory-estimated data to parameterize the model.

Because most spatial variability studies rely on a limited number of samples, we
examined the uncertainty in variogram-model parameters for In(#), as a function of the
number of variogram samples. We considered the case where the geometric mean 7 is
5.0. We found that errors due to a limited number of samples preclude reliable estimation
of the model variance and correlation length, even when variograms are based on 1,000

samples.
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In the absence of significant inversion-model errors, spatial statistics can be 1!
accurétely estimated for parameters that are directly measured or have simple inversion
models (e.g., porosity or hydraulic conductivity estimated from a Darcy column). When
inversion models are highly non-linear, like the van Genuchten (1980) model, spatial bias
caused by property-measurement error can become significant. Spatial bias in properties
increases significantly in the presence of inversion-model errors, because their effect is
unconstrained. Systematic inversion-model errors (e.g., equilibrium error) are insidious,
because they cause spatial distortion without introducing significant noise. Random
inversion-model errors (e.g., sample repacking) add noise to the property field and
obscure spatial correlation. Alor}e, either of these types of error can cause significant bias
in estimated spatial statistics. When combined, their effects can multiply. Because the
number and nature of inversion-model errors is highly variable and often unknown, it

may be impossible to remove their effects from the data using data processing tools.
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CHAPTER 4 - ERROR IN UNSATURATED STOCHASTIC-MODELS |
PARAMETERIZED WITH FIELD DATA }

4.1 ABSTRACT

We use Monte Carlo error analysis to evaluate the impact of measurement errors
in field-estimated hydraulic properties on 1D and 3D unconditional unsaturated stochastic
model results. Hydraulic properties are determined by simulating tension-infiltrometer
measurements across a parameter space representative of poorly- to well-sorted, sandy
silt to coarse sand. Two types of observation error are éonsidered, along with one
inversion-model error resulting from poor contact between the instrument and the
medium. Errors in the spatial sr:[atistics of hydraulic properties cause critical stochastic
model assumptions to be violated, limiting the parameter space usable in the model.
Even where critical assumptions are valid, stochastic-model results show significant
error, and the magnitude and pattern of error changes with mean tension and the type of
measurement error considered. Mean velocities may show errors up to an order of
magnitude. The velocity variance is overestimated by up to three orders of magnitude
during 3D flow and eight orders of magnitude during 1D flow. The 1D velocity integral
scale is underestimated by as much as five orders of magnitude. The estimates for 1D
longitudinal macrodispersivity are surprisingly robust and show relatively small error

across most of the parameter space.
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4.2 INTRODUCTION

Since the landmark work of Freeze (1975), stochastic theory for flow and
transport in permeable media has advanced and matured, but the application of stochastic
models in risk-based decision processes has been disappointing, especially for
unsaturated media. The under-use of unsaturated stochastic models can be partly
attributed to difficulties in collecting the required unsaturated hydraulic property data.
For example, samples are difficult to remove intact and many field instruments employ
observations of capillary pressure that rely on direct hydraulic contact with the medium.
Furthermore, unsaturated hydraulic properties are not directly observed, but are estimated
indirectly. Typically, a hydrologic system is perturbed, the system response to the
perturbation is observed, and the observed response is then used in a non-linear inversion
model to infer property values. “Measurement errors” in hydraulic properties arise from
errors in both the observations and the inversion model and are correlated with the “true”
hydraulic properties (Chapters 2 and 3). As a result, the spatial statistics of estimated
hydraulic properties are biased, even when very small observation or inversion-model
errors affect measurements (Chapters 2 and 3), and it is likely that this bias will affect
stochastic-model results. Wheﬁ used in risk-based decision processes, for example at
contaminated sites, errors in stochastic models can have serious consequences, in the
form of ineffective monitoring, poor remedial designs, and increased cost and risk to the
public.

We believe that measurement errors in field-estimated hydraulic properties can

cause significant bias, or systematic distortion, of stochastic model results. Our objective

112




~ is to quantify the effects of measurement errors on unconditional stochastic flow and
tranSpOrt models. We use Monte Carlo error analysis to evaluate error in unsaturated
stochastic model.results, specifically stochastic estimates of the mean, variance, and
integral scale of the fluid velocity and the longitudinal macrodispersivity. We focus on
the ensemble statistics for the velocity, because velocity fields or moments are required
input for contaminant transport calculations. The mean velocity is inversely proportional
to mean travel time. The ensemble velocity variance measures the point variability in
velocity over all possible realizations and is, therefore, a metric for the uncertainty in
travel time over short travel distances. The integral scale of the velocity is a measure of
the continuity of the ensemble flow field. The longitudinal macrodispersivity can be
related to the uncertainty in mean travel times, especially over large travel distances.

We chose two different stochastic models for our analysis, each representing end-
members in the style of heterogeneity. The first is based on the seminal work of Yeh et
al. (1985a, b), where it is assumed that hydraulic parameters are statistically isotropic.
The second model is that of Zhang et al. (1998), where the hydraulic parameters are
perfectly layered. Geologic materials lie between these two extremes, with most
materials showing distinct layering.

We use the tension-infiltrometer (Reynolds and Elrick, 1991), which can provide
the hydraulic property data required by the stochastic models. Required properties
include the saturated hydraulic conductivity and the pore-size distribution parameter for
the exponential unsaturated hydraulic conductivity model. Two types of observation

error are used in the analysis, along with one inversion-model error resulting from poor

contact between the instrument and the medium. We follow the approach of Chapter 2 to
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estimate spatial statistics of unsaturated hydraulic properties from the tension
infiltrometer, which are then used to estimate the mean, variance, and integral scale of
velocity and the longitudinal macrodispersivity. We then assess the errors in these

stochastic model resuits.

4.3 BACKGROUND

For calculating the mean, variance, and integral scale of velocity and the
longitudinal macrodispersivity, we modify steady flow stochastic models presented by
Yeh et al. (1985a, b) and Zhang et al. (1998). We extend the work of Yeh et al. (1985a,
b) and derive a mean and variance of the velocity for three-dimensional unsaturated flow
through statistically isotropic media under mean unit-gradient conditions with spatially
Vafying effective moisture content. Zhang et al. (1998) developed models for unit-
gradient flow through perfectly stratified media (one-dimensional flow), including
expressions for the mean and variance of velocity. For the model of Zhang et al., we
derive additional expressions for the velocity integral scale and the longitudinal
macrodispersivity. We feview critical components of these m(;dels and their extensions
below.

These steady flow models satisfy continuity

V-q(x)=0 (4-1)

and Darcy’s law
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q&x)=-K(x){—%—6ﬂ} 42)

where q is the specific discharge vector, A(x) is the absolute value of the tension head,
K(x) is the unsaturated hydraulic conductivity scalar which is a random space function,
and &, =1 when i equals 1, representing the vertical direction, and 6, =0 otherwise.

We assume that K(x) is log-normally distributed and that Y (x) = ln[K (x)] , which may

be decomposed into a mean and perturbation, Y (x) = (Y (x)> + Y'(x). Similarly, we have

g,(x)=(g,(x)) +¢'; (x) and A(x) = (h(x)) + k' (x), and (4-2) can be re-written as

sy g © o Y2 AR®) ek ()
(q,(x))+q,; (x)=K (x){1+Y(x)+ > +}{ ox s +6, (4-3)

where K (x) = exp[<Y (x)>] is the geometric mean of K(x). Taking the expected value
of (4-3) and retaining terms up to first order gives

(¢:0)=K°(x)J,(x) (4-4)
where J,(X) = (6 <h(x)> / ox; )+ 0, is the mean hydraulic gradient in the direction x;.
Following most stochastic models (e.g., Yeh et al., 1985a, b; Russo, 1993, 1995; Harter
and Yeh, 1996; Yang et al., 1996; Zhang et al., 1998), we assume that flow is dominated

by gravity and that J,(x) =0, . Subtracting (4-4) from (4-3) and retaining terms up to

first order yields
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¢, =K°[j;(x)+5,Y'(x)] (4-5)
where j,(Xx) =—0H (x)/0x, is the perturbation in the gradient. The single point

covariance of the specific discharge J;,- = <q,f (x)q;; (x)> is

2 _ G2 _2 2 2 2

O4 = K [O'jﬁ + 0, oy, + é'ﬂ Tyj, + 5i15jlay.] (4-6)

where 0'; is the single point covariance of the gradient in the i and j directions, o, ;18
i i

the single point covariance between Y'(x) and j,(x), and o is the variance of ¥'(x).

The seepage velocity, u; is related to the specific discharge, q;,by

u;(x)= 0.0 4-7)

where 8, =6 -6, is the effective volumetric moisture content, £is the volumetric
moisture content, and 6, is the immobile moisture content. We follow Zhang et al.
(1998) and assume that immobile moisture does not affect advective transport. With

6, =(8,)+0, , the velocity (4-7) can be written as

(a)+4, (x){ 0. 0. x }
u,(x)= 1-—= + — (4-8)
@.) ) (0.
To the first order, the meaﬁ velocity is
<u,-> = Q_’> , (4-9)

The perturbation in velocity is
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g, (4,6

(X = 4-10
u,; (X) <ge> <9e>2 > ( )
~ and the variance of the velocity is
1
o, = ot~ ot = o + )i ). @1

@.)
where 0';02 is the single point covariance between the specific discharge, ¢,, and the

effective moisture content, 6,, and 0'29 is the variance of the effective moisture content.

In deriving (4-9), it is assumed that 0'32 / <He >2 is small (<< 1).

In order to derive the statistical moments required for parameterizing (4-9) and (4-
11), we must specify constitutive models for K and 6, as functions of tension 4. Because
of its mathematical simplicity, the Gardner-Russo (Gardner, 1958; Russo, 1988) model is
commonly used for analytical modeling of stochastic unsaturated flow and transport (¢.g.,
Yeh et al., 1985a, b; Russo, 1993, 1995; Indelman et al., 1993; Yang et al., 1996; Zhang
et al., 1998). The Gardner (1958) model for unsaturated hydraulic conductivity is

K(x) =K, (x)expl- a(x) A(x)] (4-12)

where a(x) is the slope of In[K(x)]/A(x), and K (x) is the saturated hydraglic

conductivity. The Russo (1988) moisture content function is

6, = (8, - 8, ){[1 + 0.5a(x)h(x)]exp[- 0.5a(x)h(x)]J/"? (4-13)
where m is a parameter related to media tortuosity and 6, is the saturated moisture
content. We assume that a(x) and the log transform of the saturated hydraulic

conductivity f(x)= ln[K s (x)] are normally distributed, second-order stationary random
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* space functions, each consisting of a constant mean and a spatially varying perturbation:

f(x) = (NH+f® énd a(x) ={a)+a'(x). Our previous studies (Chapter 2.0 and
Chapter 3.0) suggest that measurement errors can induce an apparent correlation between
estimates of a(x) and f(x). even when there is none. Nevertheless, we assume that the
spatial covariance between a(x) and f(X) is zero, because it is difficult to define a

physically meaningful positive semi-definite cross-covariance function. The log

transform of (4-12) is

Y(x)={f)+ ') -[(@)+a @]{(r)+ 7 @) (4-14)

with, to the first order
(1) ={f) - (e)(h) @15
7'(x) = £'(x) - (h)a' (x) = (@)h' (x) (4-16)
ol=cl+(h) ol +(a) ol -2a)e +2(h)a)o, (4-17)
where o is the variance of In[K, ()], o is the variance of a(x), o? is the tension
head variance, o, is the point covariance between f(x) and h(x), and o, is the point

covariance between a(x) and (x). In deriving (4-15), we assumed that o2, is small
(<<1). Because we assume that the hydraulic head is a stationary random process,

therefore the point covariance between the head perturbation and its gradiento ,fj is

identically equal to zero, and the point covariance between Y (x) and j,(x) is then
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oy, =05 ~{hoy, (4-18)
where 0'127'_ is the point covariance between f(x) and j,(x) and o ; is the point

covariance between a(x) and j,(x). The first-order mean, perturbation, and variance of

the effective water content are (Zhang et al., 1998)

(0.)=00.-06,)exp |- (@)n)/om + DL+ 0.5 (@)™ (4-19)

g', (x) = o <a><<0}:>>)(m " 2)(<a><h>2a'(x) - <a>2<h>h'(x)) (4-20)

) CAS

Oy =

) (2 + (a)(h )2 (m+2)

The point covariance between ¢, and 6, is

(@) o2 +2(a) (1 02, +(a) (W202)  @-21)

2 (©. >KG Sy {a) (hyoy +(a)h) of ~26, (a) (h) .
(2+< Xm+2) _5, <a <h>30'j 5, <a>< > Z

We assume that the spatial structure of f(x) and a(x) is completely described

] 4-22)

by an exponential covariance function

C,(r)=o, exp( ] i ] (4-23)

P

where C,(r) is the covariance function as a function of separation distance r, o 12, is the
variance, and A, is the correlation length of parameter p. With this covariance function

we are able to derive relationships for O'Z s ajzh, 0'3,,, " 0’; s and 0' (Table 1 with

ql s
equation numbers 4-24 to 4-37) and determine the ensemble mean and variance of the

velocity, which can be related to contaminant transport times.
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<CZ>2 F;(llf )+ <a>2 F;(/la) (4 24) (1 n <a>/1f Xa> + (1 4 <a>/,{a a> (4'25)
0,2 2 2/1
p % F(2,) @26) | f(%)fz (4-27)
f
2 o no? A
CR 5 F (1) @29) | - (—)f+><";> . 429)
2 h 2 2
o N { <L‘f> = F,(2,) (4-30) 1+ZZ>/% 4-31)
f
ol ~{hyolF,(4,) 432) | (ho, 433)
1+ (a))ta
o | R, )+ () a2 (1,) (4-34) N/A
F4,)" | 2m(i+(a)2,) 1 435
R -
F1)? '
( ,,) 22 |:1_ 21n(1+<a>/1p)+ 1 :l_ 1 4-36)
(@) 2 ()4, 1+{a)d, | 1+(a)4,
F,) 1 2 5
A0)2, (@2 (@2 (a)'2
@5 @5 (@ .

(@)’ 2 (1+{a)2

P

- [<a>’1” —6ln]1+<a>/1p|J

Table 4-1. Required stochastic functions for the Gardner-Russo model, ! From Yeh et al.

(1985) and ? from Zhang et al. (1998).
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The integral scale of the vertical velocity in the vertical direction is

L
0,2

uy

ch . (r)dr . (4-38)

C, (r)
where C, (r) is the vertical velocity covariance. Using the Zhang et al.’s (1998)

expression for C, (r) (their Equation 61) for (4-11), the integral scale for the velocity

during 1D vertical flow can be shown to be

] = () (@) (h) o34, (4-39)

“ 2+ {aXB) (m+2)o?

The longitudinal macrodispersivity can be defined as

. (r)dr (4-40)

where z = <u1 >t is the mean travel distance of a solute plume. For very large mean travel

distances (z — o), 4, approaches a constant value given by

A =—"01 (4-41)

4.4 METHODS

The tension infiltrometer is commonly used for determining the spatial statistics

of the log saturated conductivity fand the slope parameter  (e.g., DOE, 1993; Mohanty,
et al., 1994; Jarvis and Messing, 1995; Shouse and Mohanty, 1998), which are needed to

estimate the ensemble statistics of the velocity and the macrodispersivity. Itis a simple
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- device for applying a constant (negative) pressure boundary condition to unsaturated soil

(Figﬁre 4-1). The design and operation of the tension infiltrometer is described by

Ankeny et al. (1988). With knowledge of two applied pressures and corresponding

observed steady-state flux rates, parameters fand « can be estimated using the analytical

approximation of Wooding (1968).

)
0

~ A o
i
—Top Transducer
—Mariotte Botlle
Bubbling :
Tube T |
Base-Plate
Base-Plate
Transducer
Bottom Transducer
p : i
i H iL—-——-—-—-‘-——jl

|
Base-Plate Membrane

Figure 4-1. Schematic of the tension infiltrometer. Observation errors are due to
unbiased noise in the three transducers used to measure the flow rate and applied tension.

The base plate membrane is in contact with the soil “sample”.
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We employ a Monte Carlo approach to conduct our analysis, following the

approach in Chapter 2. We generate 221 pairs of statistically homogeneous Gaussian

random fields of the log saturated hydraulic conductivity f(x) and the exponential
parameter a(x) , with cov[ f (x),a(x)] = (. Each combined field of f(x) and a(x)
constitﬁtes an artificial reality. At every spatial location in a Monte Carlo simulation, we
estimate the true flux and applied tension, add observation error to these values, and re-
estimate f(x) and a(x). We assume that (4-12) describes the unsaturated hydraulic
conductivity, (4-13) describes,the moisture-characteristic function, and the parameter m
in (4-13) is known and equal to 0. We also assume that Wooding’s (1968) approximation
is exact, and that sub-sample-scale heterogeneity does not exist. As in Chapter 2, we
consider only two error scenarios. In the first, transducer errors yield errors in
observations of flux-rates and applied pressures. The second includes the observation
errors but adds an error in the contact between the disk and the mediurﬁ. As in practice,
physically implausible results are rejected during the re-estimation. We calculate the
spatial statistics (mean, variance, and correlation length) for the estimated fields of f(x)
and a(x). These spatial statistics along with the true spatial statistics of the fields are
used to determine error in the ensemble statistics of velocity and the macrodispersion
coefficient. Relevant details are discussed below.

For each-Monte Carlo simulation, we generate over 26,000 pairs (a 512 by 512
random field) of f(x) and a(x), with a fixed mean and variance. The means of f(x)
and a(x) are varied between simulations, while the variance of f(x) remains fixed at

1.0 and the coefficient of variation (CV) for a(x) is fixed at 0.1. Mean values vary across
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‘a parameter space representative of poorly to well-sorted silty sand to very coarse sand .

We vary the mean of o from 10 cm™ (poorly sorted) to 0.1 cm™ (well sorted), and we
vary the geometric mean of the unsaturated hydraulic conductivity K¢ = exp(( f (x)))

from 10° cm/s (sandy silt) to 0.1 cm/s (coarse sand). Our treatment of a(x) differs from

that of Chapter 2 where a(x) was log-normally distributed with a variance of In() equal
to 1.0.
Random fields are generated using the FFT method (e.g., Robin et al., 1993). We

employ a 2D, isotropic, exponential variogram model
2 r
y(r)y=o lil - exp(— zﬂ (4-42)

where ¢ is the variance of the random process and A is the correlation length. In
stochastic models, it is often assumed that the correlation lengths of unsaturated ¥
parameters are the same (e.g., Yeh et al., 198§a, b, ¢; Mantoglou and Gelhar, 1987a, b),
and for convenience, we set all correlation lengths equal to 10 length units (grid
increments). Across our entire parameter space, we conduct 13 x 17 =221 Monte Carlo 1%;
simulations, in which the mean of f(x) is incremented by steps of size 0.576 and the
mean of a(x) is multiplied by 1.78 between simulations.

We follow the procedures described in Chapter 2 for determining the spatial
statistics of hydraulic properties estimated with the tension infiltrometer. The procedures

are summarized below, but the reader is referred to Chapter 2 for details. Using the

tension infiltrometer, f(x) and a(x) can be estimated from two observed steady-state
flux rates, Ql and Q2 , at the applied tensions };, and ﬁz . We assume that the tension

124




values employed for each observation are estimated to be ﬁl =2.0cm and ﬁz =7.0cm
and that A=h+ £, where £is a random error. The true tensions (4, ) are calculated by |
subtracting £ from l;,, , for n=1,2. For each observation, the value of &is determined by
randomly sampling a mean-zero normal distribution with 0'§ = 0.4 cm? (see Chapter 2).

Given h,, o, and K, = exp( f ), we calculate the true flux from the tension infiltrometer

using (Wooding, 1968)

K
Q,=— o~ (a + _4._]7[ r; (4-43)

a zr,
where r, is the radius of the\disk and is equal to 10 cm. Once the true flux rate is
determined, we calculate the estimated flux Qn by adding mean-zero, normally
distributed error with 0'2, =0.00165 cm*/s* (see Chapter 2). Sampling locations where
Ql < Q2 are discarded, as they would be in practice.

When contact errors are considered, we follow Chapter 2.0 and assume that all

contact error occurs at the outside of the disk, effectively reducing the disk radius. We

also assume that contact errors only occur when measurements are made at the higher
tension (A, ). QA1 is estimated using the procedure outlined above, while Q2 is estimated
using the same variance for crf2 but is estimated using an altered disk radius

r; =r,/1-g , where g is randomly sampled from a uniform distribution over 0.0 to 0.1.

This means that the disk radius may be reduced from 10 cm to a minimum of ~ 9.5 cm.
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Once the estimated tensions ( ﬁl and ilz ) and steady-state flux rates (Q1 and Qz)

are determined, the relative permeability parameter, ¢, is then estimated with (Reynolds

and Elrick, 1991)

5= 1@/ | (4-44)
hz - hl
and fis estimated with
\ - a Q %
f=n ——— (4-45)
arnr; +4r,

This procedure is repeated for all points in a reality.
The mean, variance, correlation length are determined for each of our 221 sets of
true fields [ f(x) and a(x)] and estimated fields [ f‘ (x) and a(x)]. Local variograms

are calculated using the GSLIB subroutine gam?2 (Deutsch and Journel, 1998)

1S Ux,)J 4-46
7(’)“%,»:1 [U(x, +r)-U(x,) (4-46)

where N(r) is the number of samples in lag interval r and U(x) is the random field. The
variograms are fit, using a Levenberg-Marquardt algorithm, with the exponential

variogram model
y(r)=o’ [l - exp[— %ﬂ +0o’ (4-47)

where A is the estimated correlation length, o is the variance (referred to as the model

variance in Chapters 2 and 3), and o is the nugget variance. When a variogram is

constant for all lag distances we refer to it as a “nugget variogram” in which ¢* = 0.0
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and 4 =0.0. Once the spatial statistics are determined, the mean and variance of the 3D

and 1D velocity is calculated for all 221 sets of true fields and estimated fields using (4-9)

~¢

and (4-11) and the appropriate subsidiary equations. Similarly, the 1D velocity integral
scale and longitudinal macrodispersivity are determined from (4-39) and (4-41),
respectively. Errors are quantified in contour maps of parameter space, using the ratio of

the “estimated”/“true” value.

4.5  ERRORS IN SPATIAL STATISTICS
The stochastic models used in this study are parameterized with the spatial

statistics for estimated saturated conductivity f and the exponential parameter & .
' Because errors in these spatial statistics directly contribute to errors in the stochastic
model results, we first present and discuss errors in our input spatial statistics, which

differ from those presented in Chapter 2 because we have assumed a normal distribution
for awith a CV fixed at 0.1. In Chapter 2 we assumed that & was log-normally
distributed, with a variance of 1.0. That translates to a var|a(x)] =5 x 10® cm?, ata
geometric mean ¢ of 10 cn;'l, and a var[a(x)] =5 x 102 cm?, at a geometric mean & of
0.1 cm™. In contrast, the variance of used here is much smaller, ranging from 10°
em?at {a)=10* cm™ to 10 em™ at (&)= 0.1 cm™.

In Chapter 2 we saw that both observation and contact errors lead to biased

estimates of the exponential parameter (&) , especially at small values of saturated

conductivity < f > and high <a> . Our results here are similar, as shown in the parameter
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space plots of error (Figure 4-2a and 4-2b). Errors in the log-flux ratio, ln(Q1 / Qz) from
(4—44), are large at high <a> (see Chapter 2) and Ql tend to be overestimated, while Q2
is underestimated at small ( f > (see Chapter 2). It is obvious from (4-44) that both of

these conditions cause overestimation of @ . When contact errors are present (Figure 4-

2b), (&) is significantly overestimated at low (). Contact errors cause underestimation

L8 _, b)
107" 1074 e
E T
2 = g -2
510 :10 5
B ]
8102 %10-3_L S
= = 10
L 20
10+ N , 104 \\I I l
10-° 104 10° 102 107 10°% 10 107 102 1077
Geometric Mean K, (cm/s) Geometric Mean K_ (cm/s)
107 © — 10—1.?}
3102 Biox
5 3
= =
§107° 31074 .
= " e = K 10
20
107 i i; N . 104 \_%" ] : I —
1% 10* 107* 102 107! 10°° 10% 107 102 107!
Geometric Mean K (cm/s) Geometric Mean K (cm/s)

Figure 4-2. Ratio of the “estimated” to “true” geometric mean o. for a) observation
scenario, b) contact-error scenario. Ratio “estimated” to “true” geometric mean K for c)
observation scenario, d) contact-error scenario. Accurate regions (“estimated”/“true”

between 0.95 and 1.05) are shaded.

128




of Q2 , leading to an increase in the flux ratio and erroneously high & (see Chapter 2).
These effects are most pronounced at low (a) , where the true flux ratio tends to be very

small.

Errors in the < J} > are similar to those shown in Chapter 2 and increase at

small ( f > , on the left side of Figure 4-2¢ and 4-2d. From (4-45) we can see that /} is
proportional to Ql and & . Both Ql or & tend to be overestimated at small ( f >, causing

overestimation of < f > When the contact error is present (Figure 4-2d), & tends to be

greatly overestimated at low (a) , leading to significant overestimation of < f >

Errors in o, the variance of & , follow a similar pattern to those shown in

Chapter 2 and increase with decreasing < f > and <a> , as shown in the lower left corner of
Figure 4-3a. However, the magnitude of the error in this case is much greater across most
of the parameter space, because the variance of & is much smaller here. In contrast to the
results of Chapter 2 1, , the correlation length of & , tends to underestimate the
correlation length of « (Figure 4-3b), because variability due to errors in Ql and Q2

tends to mask the true spatial structure of ¢ due to small o2. As < f > decreases these

effects are more pronounced. When contact errors are present error in O, becomes

independent of the sampled hydraulic properties, especially at low <a> . This effectively

eliminates spatial correlation in & , and estimated 0'2 and A, are greatly underestimated,

especially in the lower right corner of parameter space (Figure 4-3¢ and 4-3d).
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Figure 4-3. Ratio of the “estimated” to “true” variogram parameters for o.. Observation
error scenario: errors in a)-variance and b) correlation length. Contact-error scenario:
errors in ¢) variance and d) correlation length. Accurate regions (“estimated”/“true”
between 0.95 and 1.05) are shaded, and regions where “estimated”/“true” = 0.0 are
patterned. Note that ¢) shows no shading of the accurate region for clarity, because the

accurate region is small.

When only observation errors are present, errors in a'; , the variance of f , and
the correlation length, 4 ; (Figure 4-4), are very similar to those of Chapter 2. When

. 2
contact errors are present, however, errors in o ; are much less at low (a) , because the
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variograms and cross-covariogram terms containing « contribute little to the estimated

variance. In Chapter 2, these terms are much larger and cause significant overestimation

2
ofaj.
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Figure 4-4. Ratio of the “estimated” to “true” variogram parameters for K. Observation
error scenario: errors in a) variance and b) correlation length. Contact-error scenario:

errors in ¢) variance and d) correlation length. Accurate regions (“estimated”/“true”

between 0.95 and 1.05) are shaded.
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4.6 STOCHASTIC MODEL ERRORS

In this section we present the results of stochastic-model error analysis for both

the observation and contact error scenarios. We first consider errors affecting the mean
velocity (ﬁl > Because <ﬁ1> is a first-order approximation it is the same for the 3D
isotropic and 1D perfectly stratified cases. We then present the errors in the velocity

variance 0'31 that occur for each of these two cases. Finally, we present errors in the
integral scale of the velocity 1 ., and large-scale, longitudinal macrodispersivity for the

1D case, which has the greatest error in 0'31 .

The biased spatial statistics of 7 (x) and &(x) cause stochastic-model errors in
two ways. First, statistical-parameter errors also produce bias, or systematic distortion, in
the model results. These errors are depicted in contour maps of our parameter space
below. Second, erroneous spatial statistics may cause some of the model assumptions to

be violated. For the first-order models considered here the critical assumptions are that

0'32 / <Be )2 << 1, required for (4-9), and that o, <<1, required for deriving (4-15). The
0'32 / <6{Z )2 condition is more restrictive, and regions of the parameter space where

A\2
0'; / <6’e> >1 are excluded from the plots. The excluded area increases with mean

tension <h> and, in the contact-error scenario, occupies the entire parameter space when

(h)=1000 cm. Consequently, the following error plots are for mean tensions (%) of 10

cm, 100 cm, and 900 cm, representing wet to dry soils.
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Figure 4-5. Ratio of the “estimated” to “true” mean velocity predicted using data from
the observation-error scenario. Results are shown for three different mean tensions <h>

(values shown on graphs). Accurate regions (“estimated”/“true” between 0.95 and 1.05)

A2
are shaded, and regions where 0'; / <¢9€> >1 are patterned.

Errors in the mean velocity are shown for the three different (#) in Figure 4-5.

Under very wet conditions, <121> is most sensitive to the geometric mean of saturated
conductivity K . » and errors in the mean velocity (Figure 4-5a) mimic errors in < f >

(Figure 4-2c). Asaresult, (i},) is accurately estimated at large (f) (right side of
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parameter space) and is overestimated by more than a factor of 5.0 at small () (left side
of parameter space). Slight deviations occur at high (&) (upper portion of parameter
space), because overestimation of <0?) leads to a reduction in (&1 > At moderate tensions

<h> (Figure 4-4b)>, errors in <ﬁ1> change significantly, and the excluded region,

A2
0'32 / <98> >1, occupies roughly a third of the parameter space, concentrated in the upper

left corner of parameter space (e.g., well sorted, sandy silt). Along the boundary with

excluded region, overestimation of (&) leads to under-prediction of (#;). In the lower
left corner, small < f > and <a> , the mean velocity (121) remains dominated by errors in

the geometric mean K, and is overestimated. At very high tension (k) (Figure 4-5c), the

excluded region occupies much of the parameter space. Even without measurement error,
aje / <He >2 is greater than 1 for <a> exceeding 0.02 cm™. Regardless of the value of <h> ,
<ﬁ1> is accurately estimated at large < f > , because <d) an < f > are accurately estimated.
When contact errors are present (z}1> errors show similar behavior (Figure 4-6).
At low tension (Figure 4-6a) (&1> reﬂ}ects‘errors in < f > (Figure 4-2c) and is
overestimated by up to a factor 20. At progressively higher tension <h> (Figures 4-7b
and 4-7c), the magnitude of error in the mean velocity <&1> decreases, and the accurate
region for <121 > , defined by <121 ) / <u1> =1, sweeps across the parameter space. At very

high tension <h> (Figure 4-6¢), ﬁ<ﬁ> is always underestimated, because the accurate region

has passed out of the parameter space.
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Figure 4-6. Ratio of the “estimated” to “true” mean velocity predicted using data from

the contact-error scenario Results are shown for three different mean tensions <h> (values

shown on graphs). Accurate regions (“estimated”/“true” between 0.95 and 1.05) are

shaded, and regions where 0'; / <ée>2 >1 are patterned.

Errors in the velocity variance, 0'31 , are shown for the observation-error scenario

in Figure 4-7 and the contact-error scenario in Figure 4-8. At low tensions, errors in the

variance 0'31 mimic errors in the mean velocity <ﬁ1 > At higher tensions, the error

pattern changes and becomes more complex, reflecting errors in the correlation lengths
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and variances of @ and f. As (a) increases and (f ) decreases, errors ino, increase,

because the cross-covariance 0'; ; from (4-22) is overestimated due errors in & 2 and in

the products of (&) and (k). In the observation-error scenario, o, is accurately

estimated in a irregular region in the lower right corner, low <a> and large < f > (poorly-
sorted coarse sands), regardless of mean tension. In the contact-error scenario, the

accurate region for 0'51 sweeps across the parameter space as the mean tension increases.

While the 0'31 error patterns are the same for both the 3D and 1D cases, the
magnitude of the errors are strikingly different (Figures 4-7 and 4-8). During 1D flow,
0'31 error may be over 4 orders of magnitude larger than during 3D flow. This result is

not surprising, because measurement errors increase the apparent heterogeneity of & and
1D flow samples all of the heterogeneity, while flow diverts around low permeability

zones during 3D flow.

Errors in the integral scale of the 1D velocity, [, , are presented in Figure 4-9 and
tend to be inversely proportional to errors in the velocity variance 0'31 . Inthe
observation-error scenario, I, is accurately estimated in a small region in the lower right

corner of parameter space, low (a) and large (), regardless of mean tension. In the

contact-error scenario, the velocity integral scale is never accurately estimated. The
integral scale of velocity tends to be underestimated as mean tension increases, because

the velocity is increasingly sensitive to errors in & .
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Figure 4-9. Ratio of the “estimated” to “true” 1D integral scale of the velocity predicted

using data from the observation-error scenario [a), b), and ¢)] and the contact-error
scenario [d), €), and f)]. Results are shown for three different mean tensions (h) (values

shown on graphs). Accurate regions (“estimated”/“true” between 0.95 and 1.05) are

A\2
shaded, and regions where 0'; / <¢9€> >1 are patterned.
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Errors in the 1D longitudinal macrodispersivity, 4,, are small (Figure 4-10),
because of compensating errors in <121>, 0'31 ;and I, (4-41). In the observation-error
scenario, 4, 1is accurately estimated across nearly the entire parameter space. In the

contact-error scenario, however, 4, less accurately estimated. These results suggest that
the 1D macrodispersivity is a fairly robust ensemble statistic at large travel distances.

When only observation errors are present, a “sweet spot” occurs in the lower right
corner of the parameter space, large < f > and moderate to low (a) , Where estimates of
ensemble velocity parameters remain accurate regardless of tension. In this region, the

spatial statistics for both ¢ and f are accurate. When contact errors are present,

however, the accurate regions for the spatial statistics of @ and f do not overlie one
another in parameter space. As a result, no sweet spot occurs, and the accurate region for

ensemble velocity parameters shifts through the parameter space. In general, the sweet

spot is largest for macrodispersivity 4,, because of compensating errors, followed by
mean velocity (ﬁl > , which depends only on <d> and < f > , and smallest for the velocity
variance 0'31 and the velocity integral scale /, , which depend on the variance and

correlation lengths of @ and /} .

4.7 NEGLECTED ERRORS

Because we include only very small and simple forms of error and neglect many

other types of error, we believe that our results are optimistic. In Chapter 2 we explained
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Figure 4-10. Ratio of the “estimated” to “true” longitudinal macrodispersivity (1D flow)

predicted using data from the observation-error scenario [a), b), and c)] and the contact-
error scenario [d), €), and f)]. Results are shown for three different mean tensions <h>
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that actual tension infiltrometer flux-rate errors are likely to be higher than those

considered our work, citing as one example 0'2 = 0.06 cm®s’, or more than an order of

magnitude larger than the value oy =0.00165 cm®/s® used here. In addition, errors in

applied tension at the disk source may be much larger than considered'here, because
many tension infiltrometers do not use transducers in the base plate. We have also
assumed that tension infiltrometer flux rates have truly reached steady state. In the field,
however, it is nearly impossible to reach 'Frue steady state.

We also considered a simple inversion-model error caused by poor contact
between the tension infiltrometer and the sampled medium. Other types of inversion-
model error, however, may be difficult to quantify or treat. These errors may include
sub-sample heterogeneity, viscosity changes during infiltration, non-uniform wetting
phase structure introduced by sub-sample scale heterogeneity or air entrapment, and
incorrect parametric models for relative permeability.

Given the wide range of types of error that may affect field measurements of
unsaturated hydraulic properties, it may be impossible tb model all errors that affect field
measurements of unsaturated hydraulic properties. Consequently it may not be possible
to use error analysis to determiné suitable parameter spaces for a particular field device or
to remove bias from estimated spatial statistics. This suggests that uﬁder some conditions
stochastic models based on these kinds of measurements may be too uncertain for use in
decision-making processes.

In this study we use every point in a reality to estimate spatial statistics.

However, it is not possible to sample everywhere, and estimates of spatial statistics are
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uncertain because of incomplete sampling and non-ideal sample locations (structural
errors). When measurement errors are present, structural errors increase significantly and

the additional uncertainty can preclude reliable estimation of spatial statistics (Chapter 3).

4.8 SUMMARY AND IMPLICATIONS

We investigate impact of hydraulic property measurement errors on estimates of
the ensemble mean, variance, and integral scale of velocity using a Monte Carlo error
analysis. We use extensions of the unconditional stochastic flow and transport models of
Yeh et al. (1985a, b) (3D statistically isotropic) and Zhang et al. (1998) (1D perfectly
layered), which require input spatial statistics for the saturated hydraulic conductivity,
K, and the exponential relative permeability parameter, a. These properties can be
estimated in situ using the tension infiltrometer (Reynolds and Elrick, 1991).

We generate spatially correlated random fields of a(x) and f(x)=In[K (x)],
sample each point in the field, and simulate tension infiltrometer measurements subject to
error. We consider two error scenarios: 1) an observation-error scenario with errors in
estimates of tension infiltrometer flux-rates and applied pressures and 2) a contact-error
scenario which includes the effects of poor contact between the tension-infiltrometer disk
and the sampled medium. We estimate d(x) and f (x) using the method of Reynolds
and Elrick (1991). The spatial statistics (mean, correlation length, and variance) for both
the true and estimated fields are determined and used in the stochastic models of Yeh et
al. (1985a, b) and Zhang et al. (1998) to determine the ensemble mean, variance, and

integral scale of velocity and the longitudinal macrodispersivity. This procedure is
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repeated for 221 sets of fields distributed across a parameter space representative of
poorly- to well-sorted, sandy silt to coarse sand. Errors are quantified using the ratio of

the “estimate” to the “true” value.

Although the general trends are similar, errors in spatial statistics differ from the
results presented in Chapter 2. Major differences reflect the smaller variance of « due to
our assumption here of a normal distribution for ¢, with fixed CV = 0.1. Because the

spatial structure of & is less varied, it is easily obscured by measurement errors, resulting

in larger errors in the variance and smaller estimates of correlation length. In addition,

variogram and cross-variogram terms containing « are smaller, leading to less error in

2

g;

when contact errors are present.

The errors in the spatial statistics of 7 (x) and &(x) cause errors in stochastic
flow and transport models in two ways: 1) critical model assumptions may be violated,
limiting the parametér space usable in the model and 2) model results become biased or

systematic distorted. In our study, an assumption required for the first order
A\2
approximations, 0'; / <¢9€> << 1, is violated across roughly a third of the parameter

space in moderately dry conditions (<h> = 100 cm), and across more than one half of the
parameter space under very dry conditions((#) =900 cm). When the mean tension is

sufficiently high, e.g., (k) = 1000 cm, and contact errors are present, the assumption is
violated across the entire parameter space.

Where critical assumptions are valid stochastic-model results show significant
error. The magnitude and pattern of error changes with mean tension. Mean velocities
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may be overestimated (wet conditions) or underestimated (dry conditions) by roughly an
ordef of magnitude. Errors in velocity variances change with the dimensionality of flow,
and the magnitude of the error decreases with mean tension. Errors are generally much
worse for 1D stochastic flow, because all heterogeneity is sampled. The velocity variance
is overestimated by up to three orders of magnitude during 3D flow and eight orders of
magnitude dming 1D flow. The 1D velocity integral scale varies as the inverse of the
velocity variance. Consequently, it is generally underestimated by as much as five orders
of magnitude. The estimate of the 1D longitudinal macrodispersivity is surprisingly
robust. It generally shows relatively small error across most of the parameter space.

When only observation errors occur a sweet spot develops in parameter space

coincident with poorly sorted, coarse sand (low «and large K ;). In the sweet spot, all

stochastic model results are accurate, because the spatial statistics of f (x) and &(x) are

accurate. When contact errors are present, no sweet spot develops, because the accurate

regions for the spatial statistics of f (x) and @(x) do not overlap.

Our results suggest that property-measurement errors can significantly impact
stochastic-model results and, by implication, the decisions based on these results. If
property-measurement errors are known and can be quantified, as in our case, it is
possible to remove the effects of these errors. Unfortunately, it is impossible to explicitly
know all errors a priori, and the number and potential effect of measurement errors is
great. The consequences of unkﬁown property errors are potentially severe. For the types

of error considered here, one could unknowingly underpredict mean travel times by over
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" an order of magnitude under wet conditions and overestimate travei times by nearly an
order of magnitude under drier conditions.

Our results also illustrate an important limitation of stochastic models. If input
spatial statistics are not acc?rate, the magnitude of stochastic-model errors changes with
flow conditions. A sweet spot only occurs in that part of parameter space where all input
spatial statistics are accufately estimated. When measurements are affected by only
observation errors, it is more likely that a sweet spot will develop in some part of a
parameter space. When inversion-model errors affect measurements, it is less likely that
the spatial statistics will be accurately estimated in an Overlapping portion of parameter
space, and there will be no sweet spot. Similar behavior is likely when multiple
properties are estimated from different methods, with varying measurement support, or at
dissimilar time scales.

Most practical applications of stochastic models involve conditioning on site-
specific data and the use of boundary conditions and parameter fields that produce non-
stationary flow conditions. When used in a decision-making process these models offer
an advantage, because solutions are constrained by site-specific data and estimated
second and higher moments are smaller, implying lower uncertainty and increased
confidence in'the results. When the hydraulic property data have been estimated in the
presence of observation or inversion-model errors, however, the increased confidence
may not be warranted, as bias in the results may erode the advantages of conditional

approaches. This issue should be the subject of future research.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

In this dissertation, we show for the first time that bias in property measurements
adversely affects our ability to characterize spatial variability and model flow and
transport in heterogeneous systems. Measured hydraulic properties become biased when
random observation errors are propagated through non-linear inversion models that may
also incorrectly describe experimental physics. In engineering and physics, measurement
bias can be experimentally evaluated and removed through the use of calibration
standards. The entire instrument, including the inversion model, must be calibrated to
overcome the inversion non-linearity. This is often infeasible in hydrology because
physical standards do not exist and inversion-model errors vary unpredictably between
individual samples. In spatial variability studies, it is also impossible to fully calibrate
estimatés of the spatial statistics. Therefore, the effect of bias on spatial statistics cannot
be directly quantified, and instead must be examined indirectly.

We develop a new Monte Carlo approach to indirectly determine spatial bias in
estimates of hydraulic properties subject to simple observation and inversion-model
errors and to quantify its potential effect on stochastic model results. In Chapter 2, we
evaluate measurement-error-induced bias in the spatial statistics of tension infiltrometer
estimates of the saturated hydraulic conductivity and the exponential relative permeability
parameter. We include only small simple observation errors of infiltrometer flux and the
applied tension at the disk source, and a boundary condition or inversion model error

concerning disk contact with the soil surface. In Chapter 3 we consider laboratory
estimates of the saturated hydraulic, porosity, and the van Genuchten parameters (« and
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n). We simulate laboratory measurements in the presence of simple observation errors
and inversion model errors, including equilibrium errors, heterogeneity at the base of the
sample, and sample repacking. Because most applied spatial variability studies rely on a
limited number of samples, we also examined the uncertainty in spatial statistics as a
function of the number of samples. In Chapter 4 we determine the impact of
measurement errors on 1D and 3D unconditional unsaturated stochastic models of
unsaturated flow and transport. The major conclusions of this dissertation and some

recommendations for future research are presented below.

5.1 CONCLUSIONS

In this dissertation, we found that small errors in observations and simple
inversion-model errors can cause significant spatial bias in hydraulic property estimates
when hydraulic properties are estimated with a non-linear inversion mbdel. The bias
originates because most hydraulic properties are not estimated directly. Instead, they are
estimated using instruments that observe the response of a hydrologic system to
perturbation and a non-linear mathematical-inversion model that infers property values
from the observed responses. Bias results when observation errors are propagated
through the inversion model or from errors in the inversion model itself. The extent of
bias depends on the degree of non-linearity in the inversion model, the true values of the
sampled hydraulic properties, and the nature of the observation and inversion-model

€ITors.
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Bias is manifested as a systematic distortion in space that affects quantitative
measures of spatial variability including the mean, variance, variogram, and variogram
model parameters and can lead to order-of-magnitude errors in these statistics (Chapters
2,3, and 4). Artificial cross-correlation between estimated parameters results when
multiple parameters are estimated from a single non-linear inversion model (Chapters 2
and 3). Measurement errors may lead to the inclusion of parameters in the inversion
model that are simply artifacts of the errors (Chapter 3), yet show realistic spatial
statistics. Measurement errors amplify uncertainty in experimental variograms due to |
limited sampling and can preclude identification of variogram-model parameters. The
effects of observation and inversion model errors can be insidious, as hydraulic property
estimates may appear reasonable and generate realistic looking spatial statistics which
are, howeVer, inaccurate and misleading.

The parameters that describe the slope of the moisture-characteristic or
unsaturated hydraulic conductivity curves are particularly sensitive to measurement errors
and show the greatest bias (Chapters 2, 3, and 4). It may be possible to accurately
estimate spatial statistics of unsaturated scaling variables (saturated hydraulic
conductivity, porosity, and parameters related to the air-entry pressure), especially if
direct measurements with nearly-linear or linear inversion models are used (e.g., Chapter
3).

Robust estimation of unsaturated hydraulic properties for spatial variability
studies is not possible with most current instruments and inversion models because
multiple parameters are estimated using a single, nonlinear model. In addition, bias in

spatial statistics of estimated hydraulic properties is extremely sensitive to different
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inversion-model errors, and it is not possible to identify a priori all types of inversion-
model error that can affect a particular property estimation method. - Therefore, error
analyses cannot be used to uniquely identify all material types or conditions under which
a particular instrument or inversion model will perform best or to remove bias caused by
measurement errors.

Our results suggest that property-measurement errors can significantly impact
stochastic-model results and, by implication, the decisions based on these results. We
observe order-of-magnitude scale errors in the results of analytical stochastic models for
unsaturated flow and transport (Chapter 4). These errors originate in two ways: 1) critical
model assumptions may be violated, limiting the parameter space usable in the model and
2) model results become biased or systematic distorted. Model assumptions are violated
most when flow occurs under dry conditions. We also found that errors were greatest
(several orders of magnitude) for estimates of the velocity variance and integral scale,
which depend on variogram-model parameters, modest for estimates of the ensemble
mean velocity (an order of magnitude), and least for estimates of the macrodispersivity
(under a factor of 2), due to compensating errors.

If input spatial statistics are not accurate the magnitude of stochastic-model errors
change with flow conditions. A sweet spot, where estimates of ensemble velocity
parameters remain accurate regardless of tension, only occurs in that part of parameter
space where all input spatial statistics are accurately estimated. When measurements are -
affected by only observation errors, it is likely that a sweet spot will develop in some part
of a parameter space. When inversion-model errors affect measurements, it is less likely

that the spatial statistics will be accurately estimated in an overlapping portion of -
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parameter space, and there will be no sweet spot. Similar behavior is likely when
mulﬁple properties are estimated from different methods, with varying measurement
support, or at dissimilar time scales.

Bias in pererty measurements is a critical problem in groundwater hydrology
with wide reaching implications. It potentially impairs our ability to directly characterize
property heterogeneity and accurately model flow and transport at contaminated sites. It
may adversely affect the design, final cost, and effectiveness of remedial actions at
contaminated sites. Given the scope of the environmental problem in the United States,
additional research related to property measurement bias and related si)atial bias is

imperative.

5.2 RECOMMENDATIONS

The primary purpose for characterization activities is to provide data for
conceptual and predictive subsurface models, including probabilistic models of
contaminant transport for decision making. Although many techniques exist for
incorporating site-specific observations of hydraulic parameter heterogeneity into a
probabilistic risk framework for decision analysis, they cannot be reliably applied without
first quantifying the uncertainty in hydraulic parameter data. If the character and extent
of spatial bias is unknown, parameter estimates may be overvalued, resulting in costly
site-characterization and poor remedial decisions. Until now, the effects of spatial bias
due to measurement errors were ignored. While this dissertation represents an important

first step, we must take a step back and evaluate the impact of spatial bias on nearly all of
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our property-estimation methods and the models that require these hydraulic properties..
Some the work that should be done is described below. While this listing is by no means

comprehensive, it does provide initial direction for future research activities.

Evaluate Other Property-Estimation Methods. Although we have considered
several of the standard methods for estimating unsaturated hydraulic properties, a
number of current techniques remain unevaluated, including centrifugal methods
for estimating moisture characteristic curves, numerical inversion of tension
infiltrometer data, and pedotransfer functions. The impact of measurement errors
on the spatial statistics of properties estimated with current methods should be

determined.

Consider Spatial Bias in the Design of New and Emerging Technologies.

New techniques for estimating properties, including geophysically based methods,
should be developed with consideration of measurement-error-induced spatial
bias. A systematic design approach could be employed, where design decisions,
component selection, and implementation methods are chosen to minimize spatial

bias, ensuring maximum data value.

Consider the Impact of Measurement Error on Data Worth. Although a large
body of research has focused on evaluations of data worth, with the goal of
optimizing data sampling locations, the impact of realistic measurement errors

have been neglected. Most treatments of data worth assume that hydraulic
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parameter measurement errors are unbiased and that parameter uncertainty only
-arises from incomplete sampling and non-ideal sample locations. However, these
assumptions are generally invalid because measurement errors can be spatially
biased, and this bias amplifies sampling uncertainty. The impact of measurement-
error-induced spatial bias should be considered when evaluating site-specific data

worth.

Evaluate Non-Parameteric Geostatistics. Indicator geostatistics are a very
powerful non-parameteric tool for characterizing spatial variability. Indicator
functions transform property value into a binary random variable, either 0 or 1, |
depending upon whether or not the property exceeds a threshold value. For non-
categorical random space functions, threshold values are typically selected to
represent quantiles (e.g., the median). Variograms of indicator functions are
extremely robust, because their estimation does not depend on property values.
Because indicator-variogram models contain only two unknowns (correlation
length and nugget variance), they can be more reliably fit to indicator variograms.
Indicator variograms may reveal the pattern of spatial variation for unsaturated
hydraulic properties that cannot be evaluated using classical geostatistical
techniques. The impact of measurement-error-induced spatial bias on indicator

statistics should be evaluated.

Evaluate the Impact of Spatial Bias on Conditional Stochastic Models. Most

practical applications of stochastic models involve conditioning on site-specific
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data and the use of boundary conditions and parameter fields that produce non-
stationary flow conditions. When used in a decision-making process these models
offer an advantage, because solutions are constrained by site-specific data and
estimated second and higher moments are smaller, implying lower uncertainty and
increased confidence in the results. When the hydraulic property data have been
estimated in the presence of observation or inversion-model errors, however, the
increased confidence may not be warranted, as bias in the results erodes the
advantages of conditional approaches. The impact of measurement-error-induced

spatial bias on conditional stochastic models needs to be evaluated.
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APPENDIX A - REPACKING ERRORS FOR VAN GENUCHTEN PARAMETERS

Haverkamp and Parlange (1986) developed an approach for pressure-saturation
curves from cumulative grain size distributions and bulk density values. We modify their
approach to allow us to adjust the values of aand » due to changes in bulk density when
a sample is repacked. Haverkamp and Parlange (1986) assume that the particle diameter
d (cm) can be related to the equivalent pore radius 7 (cm) by

d=yr (A-1)
where yis a packing parameter that is assumed constant. Using the Young-Laplace
relationship, the matric potential (in cm) for water at 20°C is related to the particle
diameter by

0.149

The parameter yis only constant for stable packing arrangements of uniform-size

particles. In real materials, particle sizes are not uniform, and y varies as a function of
pore radius (r). In addition, the Young-Laplace relationship (A-1) only applies to
equilibrium conditions, when the pressure-saturation relationship is independent of pore-
structure.

Haverkamp and Parlange (1986) fit a van Genuchten (1980) equation to the

cumulative grain-size distribution [F(d)]

F(d)=

(A-3)
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where d, is a critical grain size and n, is a parameter that is related to the standard

deviation of the pore-size distribution. They assume that
n=a,p,"(n, - )+1 (A4
where a,is a constant equal to 0.0723 and a, is a constant equal to 3.8408. For a known

~ value of n, drawn from our random field, we determine n, using

-1
g =———+1 (A-5)
a,p,”
Using n, and p,,, we can derive (3-17)
n, = (p—"'] (n-1)+1 | (A-6)
Ps
We relate the parameter o to d, by
d
a=—2 (A-7)
0.149y

The pélcking coefficient (p) is determineci from (Haverkamp and Parlange, 1986)
y =b +b,(n—1)+b,(n-1) (A-8)
where b, = 17.1736, b, = -4.7043, and b, = 0.1589. We arbitrarily modify the value of b,
io be equal to 0.4, because the value used by Haverkamp and Parlange (1986) yields
negative values of yat large n values (n >5.27). The parameter d, can be derived from
d, =0.149ay (A-9)
A modified packing coefficient is determined from
v, =b +b,(n, —1)+b,(n, —1) (A-10)

Using d, and ,, we can calculate a o parameter that is modified due to repacking
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dg
a, =—7%i— (A-11)
0.149, |

Upon substitution, (A-11) can be rearranged to yield (3-18).
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