THE EVOLUTION OF HYDROTHERMAL FLUIDS AT THE PIPELINE GOLD MINE, LANDER COUNTY, NEVADA

By Nigel John Frederick Blamey

Submitted in partial fulfillment of the requirements of the degree of Ph.D.

September 2000

Department of Earth and Environmental Science

New Mexico Institute of Mining and Technology

Socorro, New Mexico

ABSTRACT

Pipeline is a sediment-hosted, disseminated gold deposit located 120 km southwest of Elko, Nevada. Gold mineralization is argillization-hematite-silicification-gold in decalcified Roberts Mountains Formation. Pipeline and its extensions comprise a global resource of 13.13 million oz. gold and total mineralization reserves of 8.2 million oz.. Such large reserves and high tonnage make Pipeline an important deposit to study. In addition, samples could be collected at the commencement of mining activities before valuable information was lost by mining activities.

Until now, the genesis of Carlin-type deposits was considered enigmatic.

Proposed sources of gold include magmatic, amagmatic, metamorphic and meteoric sources. Features of Carlin-type deposits remaining unanswered include the timing of gold mineralization, fluid sources, high-salinity fluid inclusions, the significance of carbonic fluid inclusions, a depositional mechanism, water-rock ratios for mineralizing fluids, and P-T conditions during gold mineralization. By applying a combination of analytical methods and field studies that are not widely used in Nevada, for the first time a coherent picture of mineralization processes and fluid sources of gold-bearing fluids was obtained that explain much of the contradictory evidence accumulated by previous studies. The objectives were to explore the genesis and timing of the Pipeline mineralization and to test the hypothesis that gold mineralization is coeval with decalcification in a Carlin-type deposit.

The study comprised field observations in addition to logging and sampling drillcore during 3 field seasons. Analytical methods applied include fluid inclusion

microthermometry, fluid inclusion gas analysis, fluid inclusion bulk crush leach, ⁴⁰Ar/³⁹Ar dating, clay analysis, petrographic microscopy, reflected-light microscopy and electron microprobe analysis.

Pipeline mineralization occurs in sheared, brecciated and decalcified Roberts Mountain Formation below the Roberts Mountains thrust. Mineralization is quartz, minor sericite, hematite, goethite, minor calcite, and finely disseminated gold.

A paragenetic sequence for the Pipeline deposit is established. Stage 1 comprises dark petroliferous calcite. Stage 2 is represented by white calcite and is thought to be coeval with the Antler orogeny. Stage 3 is quartz-sericite-calcite-pyrite-gold with veins occurring beneath the deposit and that are considered the hydrothermal feeders to the deposit. The stage 3 veins are linked to gold mineralization within the deposit by age dating and only stage 3 veins have gold selvages associated with them. Oxidation characterizes stage 4 with pseudomorph replacement of sulfides by Fe-oxides. Vuggy calcite, which occurs in veins and open space fillings in the ore deposit, represents stage 5 that locally predates the Basin- and-Range faulting.

Pipeline fluid inclusion studies identify 3 inclusion types. Type 1a are aqueous dominated with a minor vapor bubble. Type 1b are aqueous dominated with a minor carbonic phase and bubble. Type 2 inclusions have CO₂ and other gaseous species equal to or greater than the aqueous phase. Stage 1 calcite contains Type 1a inclusions, one population has methane-bearing clathrates with melting temperatures (Tm) up to 23.3°C whereas the second population are low salinity fluids. Stage 2 white calcite inclusions are Type 2 and the salinity ranges up to 0.8 eq. wt. % NaCl. Stage 3 vein and ore quartz contain aqueous Type 1 inclusions and Type 2 inclusions. Stage 3 quartz Type 1 inclusion

salinities range from 5 to 25 eq. wt. % NaCl and homogenization temperatures (T_h) range from 179° to 265°C. Hypersaline Type 1 inclusions have anomalous calcium-rich fluid with Ca/Na ratios of 0.8 to 1.4. Quartz-hosted stage 3, Type 2 inclusions are about 1:8 H₂O-CO₂, have salinities about 0.5 eq. wt. % NaCl and T_h ranges from 285° to 323°C. Calcite-hosted stage 3 inclusions are Type 1a, as are stage 5 calcite inclusions. Stage 3 calcite Th values range from 219° to 235°C and calculated salinities are 3.0 to 3.3 eq. wt. % NaCl. Stage 5 calcite Th values are ~125°C with low salinity values.

Gas analysis indicates stage 1 calcite inclusion fluids have 93.6 to 97.7 mol. % water and variable CO₂/CH₄ ratios between 0.5 and 40. The N₂/Ar ratios indicate meteoric and magmatic fluid components. Stage 2 calcite has high amounts of CO₂ that exceeds 50 mol. % for individual analyses, N₂/Ar ratios are around 100 and CO₂/CH₄ are about 100 indicating a meteoric source. Stage 3 quartz fluid inclusion gas analyses show that CO₂ varies from 0.5 to 8 mol. %. Carbon dioxide strongly correlates with H₂S, which varies from 0.03 to 0.00001 mol. %, and CO₂ inversely correlates with salinity. Fluid inclusion N₂/Ar ratios are >500 indicating a strong magmatic volatile component. Stage 5 calcite is dominated by fluids that have N₂/Ar ratios less than 100 and CO₂/CH₄ ratios ~1, indicating evolved fluids; total volatile contents are less than 1 mol. %.

Quartz bulk fluid inclusion crush leach followed by flame AA for cations and ion chromotography for anions show variable Ca/(Na+K) ratios. High ratios are paired with a high "missing" anion component, interpreted to be bicarbonate.

The only clay mineral present in ore zones is illite of $2M_1$ polytype. FWHM values of the first order illite peak are positively correlated with decalcification intensity $(R^2 = 0.41)$.

Three thermal epochs are identified in the area. Mill Canyon stock biotite gives an 40 Ar/ 39 Ar plateau age of 152.2±0.3 Ma. Stage 3 hydrothermal sericite from quartz-sericite-calcite veins at Pipeline are dated at 92.0±0.3 Ma that coincides with age dates of alteration minerals by others ranging from 92 to 105 Ma. Age spectra of illite from ore zones have a strong Early Cretaceous component. Inherited argon results in discordant age spectra for some illite samples whereas in other samples, 8% recoil loss accounts for ages slightly older than 92 Ma. Tertiary dikes in the Cortez area give biotite and K-feldspar ages of 35 ~ 36 Ma.

Trapping pressures of inclusions (Pt) are estimated by isochores, MACFLINCOR and from estimates of the geothermal gradient. Estimates of the geothermal gradient, pressure and inclusion Th's, for stage 1 give a depth of ~5 km. Stage 2 calcite pressure estimates calculated by MACFLINCOR are ~1.5 kbar, corresponding to a minimum lithostatic load of ~5km. Stage 3 quartz was deposited at a pressure ~2000 bars. Stage 3 calcite isochores confirm lower pressures for calcite than quartz at any given temperature, suggesting calcite was deposited under lower pressure conditions.

The range in CO₂ contents of fluid inclusions, the range in fluid salinities that inversely correlate with CO₂, and correlation of CO₂ with H₂S is consistent with decalcification driven by carbonic acid:

$$H_2CO_3 + CaCO_3 = Ca^{++} + 2HCO_3^{-}$$

As CO₂ is consumed, spent fluids should increase in ionic strength and Ca⁺⁺; which is seen in both fluid inclusion and crush-leach analyses. The <1 % Fe in calcite released by calcite solution is available to form FeS₂, which explains the paired decrease in fluid inclusion CO₂ and H₂S. Calculations of ore fluid pH is 4.66 whereas in spent fluid the calculated

average pH is 5.9. Theoretical gold solubility based on fluid inclusion salinity and gas analysis, is calculated to be \sim 200 ppb in ore fluid and <2 ppb in spent fluid. Gold deposition is attributed to wall rock attack and sulfidization reactions that lowered fluid H_2S and thus destabilizing Au bisulfide complexes.

Calculated mass-balances of ore fluid to rock give relatively low ratios that are consistent with mineralization by magmatic fluids. Consumption of CO₂ during decalcification, Ca-production and change of gold solubility, are consistent with a water-rock ratio of about 6:1 by weight and explains the very localized alteration commonly observed in Carlin-type deposits.

Conclusions are that prior to gold mineralization were two periods of calcite veining in response to regional magmatic and tectonic events that did not produce gold mineralization. Gold mineralization was coeval with alteration and deposition of quartz during stage 3, around 92 Ma. Fluids derived from an intrusive body and charged with CO₂ penetrated the country rock through fractures and these fluids entered the permeable shear zones within the Roberts Mountains Formation. Decalcification occurred, liberating Fe⁺⁺ which reacted with H₂S causing sulfidation. Spent ore fluids were Ca-rich brine that had salinities up to 25 eq. wt. % NaCl. The depletion of H₂S in ore solutions destabilized the gold bisulfide complexes and initiated gold deposition. Oxidization of the ore body was most likely by subsurface oxygenated waters and not a result of weathering. Following ore-body oxidation was calcite mineralization by evolved waters, and then Basin-and-Range faulting.

This work presents a internally self consistent body of data that yields an understanding of how Pipeline formed, and a genetic model that satisfies mass balance

calculations. Many Pipeline geochemical and physical characteristics are reported in other Carlin-type deposits. The implication is that most Carlin-type deposits have a similar genesis. That is, the driving force and major fluid source is magmatic. The CO₂ and H₂S charged fluids associated with an intrusive body provide a fluid that serves both to introduce gold and cause decalcification in one event. Gold mineralization is in response to sulfidization reactions. Fluid quantities are limited, hence there are low water-rock ratios and a localized alteration halo. Gold is associated with quartz and sericite mineralization. Depths can be as deep as 8 km, with mineralization under lithostatic pressure, hence, fluid inclusion Th measurements can yield far lower temperatures than mineralizing fluids. Carbonic fluid inclusions are the product of mild varying CO₂ composition that boiled when occasionally highly charged with CO₂. The oxidation event that replaced pyrite by Fe-oxides may not necessarily be supergene. Multiple intrusive and hydrothermal events occurred at or near the gold deposit, but principally one event introduced to gold.

ACKNOWLEDGMENTS:

I would like to express my deepest gratitude to my committee namely Drs. David Norman, Andrew Campbell, George Austin and Matt Heizler. I learned a great deal from the exceptional knowledge of Dave Norman, particularly on fluid inclusions and the handling of analytical data from the quadrupole mass spectrometer; he also helped by providing me with a research assistantship. Andrew Campbell always made me think very astutely about what I was doing and I invariably left his office with a more balanced objective. George and Matt always made time to discuss aspects of my research with me and I appreciated their constructive criticism. They all kept me focused and allowed me to reach my goal. I would also like to acknowledge the department of Geochemistry at New Mexico Institute of Mining and Technology and the New Mexico Bureau of Mines and Mineral Resources for the use of facilities for analyzing my samples; in the Bureau thanks go to Nelia Dunbar, Christopher McKee, Terry Thomas and Ibrahim Gundiler. Argon dating was conducted at the New Mexico Geochronological Research Laboratory; thanks also go to Lisa Peters and Richard Esser for their help. The department of Earth and Environmental Sciences nominated me for the Charles Park Fellowship and I acknowledge the assistance from the trust. Thanks to members of staff and fellow students who helped and encouraged me, particularly William Xavier Chavez, Beverley Chomiak, Patci Mills, and Felix Barreras. Financial support was received from the Graduate Students Association on campus for presenting at the 1999 GSA conference in Denver. On international affairs, Karen Schlue needs a big thanks for all her help. Thanks go to Kate Weatherall for helping me edit this document.

Placer Dome Inc. and Cortez Gold Mines are thanked for providing me with my research project, for funding the analyses and providing me with summer employment. Richard Duncan was instrumental in initiating the project. A special thanks goes to Robert Hays (Jnr.), the Chief Geologist at the Pipeline Mine as well as the geological staff with whom I worked. Dr John Muntean provided fruitful comments during the latter stages of my writing. Thanks also goes to the friends I made in Nevada including Michael Steenhoek, Bruce Cox, Robert Wilcox, George and Barbara Montgomery, James Sefton, and Paul Meyer.

Thanks to the good friends that I have made in Socorro and with whom I shared many a meal and chat; these include Samuel and Viola Lewis, Harry Epstein, Connie Sayre, as well as Kalman and Barbara Oravecz. During the last year when I needed a musical interlude, some great blues were provided by Gary, Kathy, Tami and Steve of the KGB Blues Band as well as the Kat Crosby Band; thanks for jamming guys.

This dissertation is written in the memory of family passed on.

The biggest risk that one could take in life is not taking one at all

TABLE OF CONTENTS

CHAPTER 1	1
Introduction	1
Objective	6
CHAPTER 2 BACKGROUND	7
History and discovery	7
Geologic Setting	9
North Central Nevada Geologic History	9
Geology	10
Lower plate rocks:	11
Upper plate rocks:	12
Structural setting	13
Pipeline Deposit	15
Igneous rocks	15
Geology	17
Alteration	20
Gold Mineralization	20
Previous Geochemical Studies	21
Fluid inclusion studies	21
Microthermometry:	21
Gases:	22
Radiometric dating within the CJV	22
CHAPTER 3 ANALYTICAL METHODS	24
Field studies	24
Fluid Inclusions	24
Argon Geochronology	27
Clay Mineralogy	28
CHAPTER 4 OBSERVATIONS AND RESULTS	31
Mine Geology	31
Alteration	31
Decalcification:	31
Silicification:	33
Sulfidation:	33
Oxidation:	33
Argillization:	
Veins	37
Gold Mineralization	
Paragenetic Relationships	40
Crosscutting veins	40
Ore deposit	43
Fluid Inclusions	46
Microthermometry	46
Stage 1 inclusions:	51
Stage 2 inclusions:	52

Stage 3 inclusions:	52
Stage 4 quartz:	54
Gas Chemistry	59
Stage 1 and stage 2 calcite:	59
Stage 3 sericite-quartz-calcite:	59
Stage 5 vuggy calcite:	62
Bulk cation and anion analysis	68
Argon Geochronology	71
Clay Mineralogy	79
CHAPTER 5 DISCUSSION	85
Pressure Estimation	85
Stage 1	85
Stage 2 white calcite	86
Stage 3 sericite-quartz-calcite	86
Stage 5 calcite	90
Fluid Inclusions	90
Stage 1 dark calcite	90
Stage 2 white calcite	94
Stage 3 quartz-sericite-calcite	95
Stage 5 calcite	100
Clay Minerals	100
Argon Geochronology	101
Igneous rocks	101
Clay and sericite	106
Summary	108
Timing of Gold Mineralization	109
Geochemical Constraints	110
Water-rock Ratios	116
Consumption of CO ₂ :	116
Production of Ca ⁺⁺ from acid attack on limestone:	116
Gold deposition:	117
Source of Fluids	117
Implications for this study on genetic models for Carlin-type deposits	118
Genetic Model	120
CHAPTER 6 CONCLUSION	124
REFERENCES	127
APPENDIX A	134
APPENDIX B	140
APPENDIX C	144
APPENDIX D	158
APPENDIX E	159
APPENDIX F	160
APPENDIX G	167
APPENDIX H	180

LIST OF FIGURES

Figure 1.1 Location of the Pipeline deposit and several other gold deposits in Nevada (with permission from Foo et al., 1996). Shaded are the Battle Mountain-Eureka and Carlin trends.	2
Figure 2.1. Simplified geology of the CJV area of interest. The Pipeline deposit is located along the eastern flank of the Shoshone range within a buried erosional window (Foo et al., 1996).	8
Figure 2.2 Foo et al. (1996) model for reconstruction of the Crescent Valley. The . figures show the present (right) and reconstructed (left) positions of faults and intrustodies.	16 sive
Figure 2.3 Simplified geologic map of the Pipeline and South Pipeline deposit areas showing faulting and outline of gold mineralization (Foo et al., 1996).	19
Figure 4.1 Photograph of fresh SRM crosscut by a stage 1 dark calcite vein. The scale is in cm.	32
Figure 4.2 Photograph of totally decalcified, argillized and oxidized SRM. The mm-scale lamination is emphasized by hematite. The scale is in cm.	32
Figure 4.3 Photograph of silicification of wallrock adjacent to a quartz vein. Note the decalcified halo (light brown) extends beyond the silicified halo as well as the halo of Fe-oxide that forms as pseudomorph replacement after pyrite. The scale is in cm.	34
Figure 4.4 Photograph of a stage 3 quartz-calcite vein in fresh SRM. Note the sulfidized halo that extends beyond the vein for several mm's. The scale is in cm.	34
Figure 4.5 Strongly argillized, totally decalcified ore. This sample assayed 21 ppm gold. The scale is in cm.	36
Figure 4.6 Electron microprobe image in SEM mode of a gold grain showing a hopper-like crystal growth pattern. The field of view is $200~\mu m$.	39
Figure 4.7 Electron microprobe image in SEM mode of a gold grain showing a close association with Fe-oxides (granular material). The field of view is about 120 μm .	39
Figure 4.8 Photograph of a stage 2 white calcite stockwork, crosscut by a stage 6 calcite vein. The scale is in cm.	42

Figure 4.9 Photograph of a stage 4 vein showing the laminated calcareous sediment. The scale is in cm.	44
Figure 4.10 Stage 3 quartz grain showing primary, zoned fluid inclusions which mimic the crystal shape. The field of view is about 1200 μm .	47
Figure 4.11 Type 1a fluid inclusions (stage 3 quartz: sample NB-33) comprising a dominant aqueous phase and a minor vapor phase. No carbonic phase is present The field of view is about 120 μm .	
Figure 4.12 Type 1b fluid inclusion hosted in stage 3 quartz. The inclusion comprises a major aqueous phase and a minor bubble. The bubble shows a vapor phase in the center, rimmed by liquid-CO ₂ . The field of view is about 120 μ m.	48
Figure 4.13 Type 2 fluid inclusion hosted in stage 3 quartz (sample NB-104). The inclusion comprises a dominant carbonic phase and a minor aqueous phase. The carbonic phase homogenizes to a liquid. The field of view is about $100~\mu m$.	49
Figure 4.14 Histogram of Th's measured for all inclusions hosted in stage 3 quartz. Note that Type 2 inclusions have higher Th measurements than Type 1.	54
Figure 4.15 Histogram of Tm values measured for all inclusions hosted in stage 3 quartz.	55
Figure 4.16 Histogram of salinity determined for all inclusions hosted in stage 3 quartz.	55
Figure 4.17 Distribution of Tm values for sample NB-99 (stage 3 quartz) showing ice melting behavior within the crystal core and clathrate melting at the rims.	56
Figure 4.18 Primary, zoned fluid inclusions hosted in stage 3 calcite. The field of view is about 1200 μm .	58
Figure 4.19 Primary, submicron, Type 1 fluid inclusions hosted in stage 3 calcite. The field of view is about 100 $\mu m.$	58
Figure 4.20 Discrimination CO ₂ /CH ₄ vs N ₂ /Ar diagram for the stage 1 (solid squares) and stage 2 (open circles) calcite veins.	61
Figure 4.21 Discrimination CO ₂ /CH ₄ vs N ₂ /Ar diagram for the stage 3 veins. Quartz (open circles) has a clear magmatic component occurs as well as a component which shows evolution of the gas signature. Calcite (open squares) shows a meteoric component and similar CO ₂ /CH ₄ ratios.	63

Figure 4.22 Plot of CO ₂ /CH ₄ vs H ₂ S for non-hypersaline (a) and hypersaline stage 3 quartz. Corresponding stability fields for the magnetite-pyrite-pyrrhotite system are shown at varying temperature, calculated for 8 eq. wt. % NaCl (a) and 25 eq. wt. % NaCl (b). Note that the data points have a H ₂ S content that ranges from 0.001 to 0.03 mol.% for non-hypersaline samples whereas the H ₂ S content of hypersaline samples varies from 0.00003 to 0.0004 mol. %. This H ₂ S content corresponds to pyrite stability >300°C.	64
Figure 4.23 Comparison between CO ₂ and CH ₄ concentration as a function of total gas (excluding water) for the stage 3 quartz. Note that as the CO ₂ content decreases, so does the total gas whereas CH ₄ is unaffected.	65
Figure 4.24 Comparison between the calcite (open squares) and quartz (solid circles) from the stage 3 vein set (sample NB-33 only) using the CH ₄ -N ₂ -Ar discrimination diagram. The calcite data plots in a line that has end member compositions corresponding to the quartz gas signature and air saturated water. Mixing is inferred.	66
Figure 4.25 Discrimination CO ₂ /CH ₄ vs N ₂ /Ar diagram for the stage 5 vuggy calcite.	67
Figure 4.26 Ternary diagram for Ca-Na-K from the bulk cation leach. The high-Ca data corresponds to the hypersaline sample.	69
Figure 4.27 Plot of bicarbonate component in % vs. Ca/Na ratio. Highest bicarbonate correlates with highest Ca/Na whereas lowest bicarbonate correlates with lowest Ca/Na.	70
Figure 4.28 Age spectra for all K-feldspar - biotite pairs collected from Eocene dikes.	72
Figure 4.29 Isochron diagrams for biotites and K-feldspars from samples which yield Eocene apparent ages.	74
Figure 4.30 Mill Canyon stock (JM-coarse), biotite and K-feldspar age spectra. This sample was collected from the Mill Canyon stock near Cortez Gold Mines.	76
Figure 4.31 Photograph of stage 3 coarse-grained, hydrothermal sericite. The field of view is 1200 μm .	77

Figure 4.32 Electron microprobe image in backscatter mode of stage 3 sericite and quartz. The image shows a mosaic of fine-grained sericite and closely associated quartz. The uniform grey areas are quartz. Point analyses are indicated.	77 i
Figure 4.33 Illite age spectra from mineralized zones, argillized zones and faults	78
Figure 4.34 Basal section x-ray diffraction pattern for the clay fraction separated from the fault gouge of the Fence Fault. The d-spacing and intensity of the peaks correspond to illite and kaolinite in 6:4 ratio.	80
Figure 4.35 Basal section x-ray diffraction pattern for the clay fraction separated from a gold-rich ore zone (Sample NB-20). The d-spacing of these peaks correspond to illite.	82
Figure 4.36 Random mount x-ray diffraction pattern for the clay fraction separated from a gold-rich ore zone (Sample NB-20). The d-spacing of these peaks correspond to the illite 2M ₁ polytype.	83
Figure 5.1 Isochore plot for stage 2 white calcite.	87
Figure 5.2 Homogenization conditions for all Type 2 inclusions hosted in quartz Note that there is a general clustering of points in the temperature range 290° to 323°C and pressure range 1900 to 2200 bars.	89
Figure 5.3 Comparison between stage 3 Type 1 isochores from sample NB-47 and all Type 2 inclusions showing the Type 1 isochores intersect the zone in which Type 2 inclusions trapped.	91
Figure 5.4 Isochore plot comparison between stage 3 quartz and calcite for the same sample, both have been corrected for the partial pressure of dissolved gases. For any given temperature, the pressure within the calcite inclusions is considerably lower.	92
Figure 5.5 Immiscibility curve for brine (8 eq. wt. % NaCl) and CO ₂ at 2000 bar. Type 1a inclusion CO ₂ content is low and this group plots on the left of the diagram. Type 1b has more CO ₂ and plots close to the solvus curve. Type 2 inclusion CO ₂ content is high and this group plot on the right.	
Figure 5.6 Plot of Th and CO ₂ mole fraction determined from microthermometry for Type 1 (solid diamonds) and Type 2 (showing error bars). For bulk samples the Th range and gas analysis data is used to constrain a solid box to show the range for individual samples. Superimposed is the CO ₂ -H ₂ O-NaCl solvus curve calculated for 8 eq. wt. % NaCl (Bowers and Helgeson, 1985) and part of the solvus curve for 20 eq. wt. % NaCl (Takenouchi and Kennedy, 1965).	

Figure 5.7 (a) Model and measured age spectra for JM-coarse K-feldspar, (b) thermal history. The poor fit between the measured and modeled spectra suggests a more complex history is required to explain the age data.	105
Figure 5.8 (a) Modeled and measured age spectra for JM-coarse K-feldspar, (b) thermal history. Using both Cretaceous and Eocene reheating events produces a calculated age spectrum which closely matches the measured spectrum.	105
Figure 5.9 Histogram of calculated gold solubility for hypersaline (>14 eq. wt. % NaCl) and non-hypersaline (<14 eq. wt. % NaCl) stage 3 quartz inclusions. Solubility is calculated using the gas analysis of individual crushes and correcting for salinity.	113
Figure 5.10 Theoretical gold solubility for the $Au(HS)^0$ complex at varying temperature based on constant salinity, H_2 , H_2S and pH. The chemistry is taken from sample NB-33; $I = 1.37$, $H_2 = 0.0468$ mol. %, $H_2S = 0.0133$ mol. %. Note that the solubility maxima occurs around 250°C.	115
Figure 5.11 Theoretical gold solubility for the $Au(HS)^0$ and $Au(HS)_2$ complexes at varying temperature but constant salinity, H_2 and pH (chemistry is based on sample NB-33; $I = 1.37$, $H_2 = 0.0468$ mol. %, $H_2S = 0.0133$ mol. %). The H_2S content for varying temperatures is based on buffering by the magnetite-pyrite-pyrrhotite and keeping H2 constant. Note that maximum gold solubility is around $350^{\circ}C$.	115
Figure 5.12 Schematic model for Pipeline gold mineralization during stage 3 showing the chemical differences between the ore fluid and the spent fluid.	122

LIST OF TABLES

Table 2.1 Tectonic and intrusive dates for the CJV area.	14
Table 3.1 Diagnostic XRD lines for $1M$, $2M_1$, $2M_2$ and $3T$ polytypes of illite (Bailey, 1980).	30
Table 4.1 Paragenetic sequence as recognized by veining, alteration and shearing at the Pipeline mine.	41
Table 4.2 Fluid inclusion classification as recognized at Pipeline.	46
Table 4.3 Typical gas analysis for the sampled vein sets. The upper group are the traditional geothermal species that are analyzed. The lower group represent the carbon-bearing species, normalized to 100%.	60 ne
Table 4.4 Results of bulk leach converted into percentage of total ion budget (Appendix D). Cations comprise 50% of the total budget.	68
Table 4.5 Electron microprobe analysis of NB-102 sericite. Note the consistent K_2O/Al_2O_3 ratios whereas the $SiO_2/(Al_2O_3+K_2O)$ ratios are variable.	75
Table 4.6 Kubler index of first order illite peaks from x-ray diffraction patterns of all samples. The various alteration intensities are given. Note that the lowest FWHM value occurs in the undecalcified samples where alteration is absent.	84

CHAPTER 1

Introduction

The United States of America is currently the world's second biggest gold producer. The greatest domestic gold production occurs in Nevada from Carlin-type gold deposits. Exploration for these deposits commenced in the 1960's following the discovery of gold in the Carlin area (Teal and Jackson, 1997). Subsequent discoveries were made along a linear trend passing through the Carlin mine and elsewhere in north central Nevada. Discovered during the past ten years, Pipeline is one of the largest gold deposits in Nevada. The Pipeline Gold Mine is located in Lander County, approximately 120 km southwest of Elko, Nevada (Fig. 1.1) along a mineralized belt named the Battle Mountain/Eureka trend. Pipeline and its extensions comprise a global resource of 13.13 million oz. gold and total mineralization reserves of 8.2 million oz. (R.C. Hays, pers. comm.).

Carlin-type deposits are hydrothermal gold mineralization hosted in carbonate rocks. These deposits feature finely disseminated gold with low silver to gold ratios, exhibit a similar alteration style, and have a strong structural control. Occurring along regional mineralization trends, these deposits have northwest and northeast-trending faults, and are associated with elevated concentrations of As, Sb, Hg and Te. Pipeline exhibits features typical of Carlin-type deposits including decalcification (calcite removal), argillization, sub-micron gold, carbonate host rocks and mineralization control by shear zones.

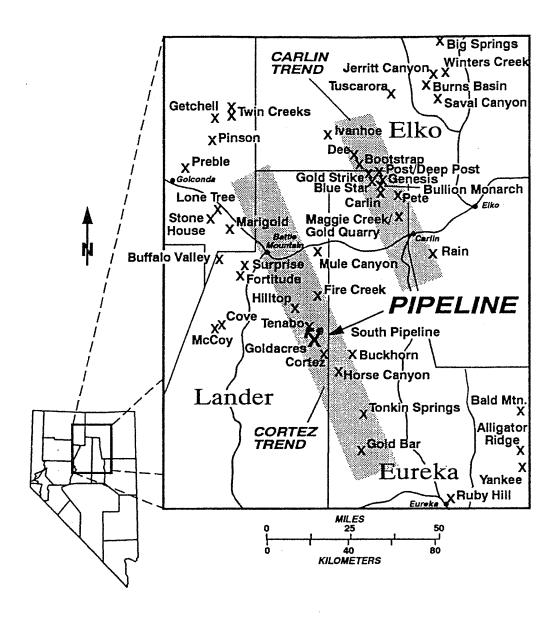


Figure 1.1 Location of the Pipeline deposit and several other gold deposits in Nevada (with permission from Foo et al., 1996). Shaded are the Battle Mountain-Eureka and Carlin trends.

Exploration of Carlin deposits has been driven by economic factors that dictate large, high-tonnage deposits that can be mined in an open pit. An understanding of Carlin-type deposit genesis is necessary for the successful exploration of new deposits, and the formation of predictive strategies to locate hidden reserves nearby known mineralization.

Important milestones influencing our understanding of Carlin-type deposits were made in the past 15 years. The concept of decalcification (also referred to as decarbonation) is recognized as the most prominent alteration style in Carlin-type deposits (Teal and Jackson, 1997). Decalcification refers to the dissolution of calcite to create a suitably porous and permeable host rock by decalcifying fluids. It was first documented at Carlin (Kuehn, 1989; Bakken 1990). These two studies describe hydrothermal fluid being focused along structural conduits and favorable stratigraphic units resulting in pre-ore decalcification, loss of density, coupled with increase of porosity and permeability. Decalcification of the silty limestone protolith at Carlin is more widespread and intense, this being attributed to the original porosity and permeability of the host rock (Teal and Jackson, 1997). In contrast, at Meikle, hydrothermal fluids did not react readily with the biosparitic protolith and therefore decalcification tends to be restricted to near high-angle conduits (Teal and Jackson, 1997). Decalcification is generally regarded as a ground-preparation event that is economically unimportant and separate in time from gold mineralization. However, calcite destruction and mineralization are commonly considered coeval in skarn and base metal replacements deposits. This leads to the question whether separate alteration and mineralization events are required in Carlin-type deposits.

Sulfidation is common in all Carlin-type deposits and is well documented at Twin Creeks by Stenger et al., 1998. Sulfur is introduced by hydrothermal fluid but Fe is locally sourced from ferroan-dolomites. Sulfide minerals are regarded as an important factor in Carlin-type deposits due to their strong association with gold, particularly arsenopyrite (Arehart et al., 1993a).

A variety of characteristics specific to individual deposits has prevented the development of one genetic model that would explain all Carlin-type deposits. In some deposits the mineralization controls are stratigraphic (Carlin and Pete) and in others faults control the mineralization (Gold Quarry and Griffin). Shear as opposed to breccia-style mineralization is also used by Teal and Jackson (1997) to contrast the differences within the greater group of Carlin-type deposits.

Dating of gold mineralization in Carlin-type deposits is restricted by the lack of datable minerals that are paragenetically linked with gold mineralization. In addition, Carlin-type deposits may be complicated by the potential for repeated hydrothermal activity driven by igneous events that span the Jurassic, Cretaceous, and Tertiary. Five gold-bearing events are reported (Groff et al., 1997) at Getchell and Twin Creeks, with the major gold mineralizing events occurring at 83 Ma and 42 Ma. Sub-micron gold is commonly associated with altered, decalcified sedimentary rocks as well as silicification and fine-grained pyrite (Kuehn, 1989; Bakken et al., 1989; and J. Cline, pers. comm.). In these alteration and mineralization conditions, the growth of potassium-rich minerals is not favored. As a result, age dating of Carlin-type deposits is restricted to alteration products, such as illite and sericite (Arehart et al., 1993), and potassium-bearing minerals from igneous rocks that pre or postdate gold mineralization (Groff, 1996.).

The timing of gold mineralization in Carlin-type deposits is strongly debated.

Argon isotope dating of adularia has provided conclusive ages for Eocene hydrothermal events, particularly at Jerritt Canyon (Hofstra et al., 1999). Conclusive evidence for five gold mineralizing events is found at Getchell (Groff et al., 1997). Dating of clays from Carlin-type deposits (Arehart et al., 1993b) are generally problematic and inconclusive. It is unclear if gold mineralization and alteration require multiple events to form a Carlin-type deposit or if mineralization and alteration occur in a single event. Another issue that remains unresolved is whether the Eocene events documented in northeastern Nevada apply to their western counterparts along the Battle Mountain/Eureka trend. If the Eocene is such an important event, then why is the 83 Ma event at Getchell an important gold contributor?

The sources of gold-bearing fluids in Carlin-type deposits remain enigmatic (Arehart et al., 1993b; Kuehn and Rose, 1995; Cline et al., 1996; and Stenger et al., 1998). Meteoric fluids are regarded as important at Jerritt Canyon (Hofstra et al., 1999). Fluid inclusion microthermometry and O-H stable isotope analyses for the Carlin (Kuehn, 1989) and Cortez (Rye et al., 1974) mines led to the hypothesis that Tertiary volcanism causes circulating meteoric water which then leaches gold from crustal rocks. However, the spatial relationship of Carlin-type gold deposits with porphyry systems near the Bingham Canyon mine, Utah and the Bau district, Malaysia, led Sillitoe and Bonham (1990) to propose a magmatic component in the mineralizing fluids. In a similar theme to the magmatic hypothesis, Seedorf (1991) proposes a metamorphic model where the heat is provided by magmatic bodies. Ilchik and Barton (1996) propose an amagmatic model whereby gold is leached by basinal fluids which then are focused along faults. Since

multiple events are recognized at Getchell (Groff, 1996), it is reasonable to hypothesize multiple fluid sources and that their composition changed in time.

The Pipeline deposit provides an opportunity to examine an economically significant, large tonnage Carlin-type deposit prior to commencement of mining activities. Study of Pipeline is important because the genesis and timing of gold mineralization has not been documented, the deposit is economically significant, is a major gold producer in Nevada, mining was just starting and so the deposit could be observed in a pristine state before mining destroyed key evidence, and considerable drillcore was generated by an aggressive exploration program.

Objective

My objective is to determine the genesis of the Pipeline mineralization. Specifically, my objectives are to understand the gold depositional process, the chemistry of gold-ore solutions, the chemical signatures of dissolved gases that enable fluid source recognition, and to determine the age of mineralization. In so doing, I test the hypothesis that gold mineralization is coeval with decalcification in a Carlin-type deposit.

CHAPTER 2

BACKGROUND

History and Discovery

Mining activities in the Pipeline district (Fig. 2.1) began in 1862 with the discovery of silver in the Cortez and Mill Canyon areas (Foo et al., 1996). The production from these mining activities is uncertain, however, a flourishing community at the time suggests a lucrative operation. The Hilltop deposit was discovered in 1907 with gold hosted in quartz veins and breccia. Mining occurred between 1910 and 1934 (Lisle and Desrochers, 1988). The first mining activities at the Gold Acres deposit (Fig. 2.1) in 1935 produced >500,000 troy oz. of gold (Foo et al., 1996).

Placer Dome U.S., formerly known as American Exploration and Mining Co. (AMEX), began exploration within the district in 1959 and joined forces with Kennecott to form the Cortez Joint Venture (hereafter referred to as the CJV). Placer Dome U.S. controls 60% of the CJV stock and are the operators of the Pipeline mine whereas Kennecott hold the remaining 40%. During the 1960's, the United States Geological Survey (USGS) conducted mapping and sampling programs throughout the area. They reported anomalous gold hosted by oxidized and weathered silty carbonate outcroppings adjacent to the range front (Wells et al., 1969). Drilling by AMEX at the site led to the discovery of the Cortez Gold deposit which has produced 872,870 troy oz. of gold from 1969 to 1973 (Foo et al., 1996). The present unmined gold reserves at Cortez are estimated at 250,000 troy oz..

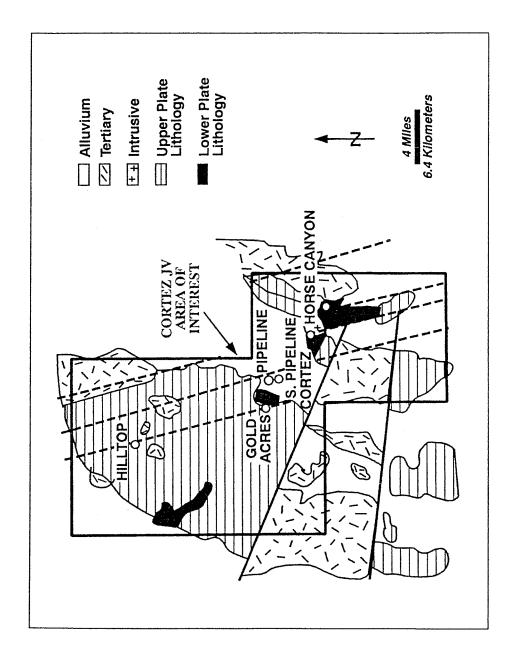


Figure 2.1. Simplified geology of the CJV area of interest. The Pipeline deposit is located along the eastern flank of the Shoshone range within a buried erosional window (Foo et al., 1996).

The Horse Canyon deposit, 6 km southeast of the Cortez Gold Mines mill site, was discovered in 1976. Approximately 385,000 troy oz. of gold were produced from 1983 to 1987 (Foo and Hebert, 1995).

The 1991 discovery of the Pipeline deposit resulted from condemnation drilling for Gold Acres heap leach pads (Foo et al., 1996). Two reverse-circulation drillholes were planned. Both intersected alteration and drillhole 91907 had a 35 m intersection averaging 10.5 g/ton gold (Foo et al., 1996). Pipeline's name refers to a water pipeline that traversed the area supplying water to the Gold Acres operations (R.C. Hays, pers. comm.).

Geological Setting

North Central Nevada Geologic History

During the Mississippian, northeastern Nevada was situated along a stable paleocontinental margin as indicated by regional stratigraphy and isotopic data (Stewart, 1980). A prism shaped, westward-thickening package of sediment was deposited from the outer margins of the paleocontinental shelf into an oceanic basin and facies changes led to a gradation from eastern shelf sediments into western deep basin equivalents (Teal and Jackson, 1997). Subsequent eastward-directed compressional tectonism associated with the Antler orogeny during the Late Devonian through Middle Mississippian resulted in region-scale north-south folding and imbricate thrusting of the western assemblage over the eastern assemblage (Roberts et al., 1958). The region continued to experience three less important, yet similar, compressional tectonic events during the Late Pennsylvanian

through Permian with the Humbolt orogeny, the Early Triassic Sonoma orogeny, and finally the Early Cretaceous Sevier orogeny (Teal and Jackson, 1997). It is unclear whether NNW-trending antiforms are a result of one specific compressional event or formed during more than one of the above mentioned events. Mid-Tertiary extension between 40 and 30 Ma is regarded by Hofstra et al. (1999) as the most important event in terms of gold mineralization in Nevada. "Dilation of faults and fractures during mid-Tertiary northwest-southeast extension may have controlled emplacement of igneous dikes and underlying intrusions, provided connections between deep fluid reservoirs and the meteoric-dominated regime in the upper crust, and served to focus flow of convecting meteoric water" (Hofstra et al., 1999).

Episodic intrusive activity that spans Late Triassic to Late Tertiary time indicates the gold belts of the Great Basin were subjected to high heat flow. There is a close spatial association between many of the Great Basin gold deposits and intrusive rocks of multiple ages. However, the role of igneous rocks in the possible formation of Great Basin gold deposits has remained enigmatic (Cline et al., 1996). In the Ely district evidence suggests that intrusive bodies are the source for gold in Carlin-type deposits (Seedorf, 1991). In other areas of Nevada the relationship is unclear and the timing of gold mineralization relative to intrusive bodies is poorly constrained.

Geology

The stratigraphy of central Nevada is comprised of shelf and deeper marine sediments. Terminology most commonly used in Nevada refers to miogeosynclinal and eugiosynclinal sediments. Thrusting has brought these time equivalent sediments, that

were once spatially separated on the continental shelf, into close proximity. Stratigraphy is therefore described in order of the Lower Plate rocks, also referred to as Eastern Assemblage, followed by the Upper Plate rocks or Western assemblage rocks. The stratigraphy of the region is complicated by facies changes within some units. The lower and upper plate assemblages are discussed separately.

Lower plate rocks: The oldest lower plate unit in Central Nevada is Middle

Cambrian Hamburg Dolomite (Gilluly and Masursky, 1965). Gilluly and Gates (1965)

describe this unit as being "composed almost wholly of highly broken and irregularly

bedded dolomite." Hamburg dolomite is coarsely granular and largely recrystallized.

Approximately 150 m thickness is exposed along the Northern Shoshone Range (Gilluly

and Gates, 1965). Exposures of the Hamburg at Cortez are metamorphosed to a marble

where it is in contact with the Mill Canyon stock (Gilluly and Masursky, 1965).

The Ordovician Eureka Quartzite overlies the Hamburg Dolomite and is a well sorted medium grained quartzite of high purity with accessory silt-sized grains, heavy minerals and pyrite. Corals and cross bedding within the Eureka quartzite suggest a shallow sea depositional environment.

The Hanson Creek Formation conformably overlies the Eureka Quartzite and comprises alternating beds of dark gray and very light gray dolomite with occasional thin limestone beds. The top of the formation contains interbedded chert with a prominent chert capping (for Type section, see Nolan et al., 1956).

Silurian Roberts Mountains Formation (SRM) conformably overlies the Hanson Creek Formation. It comprises thinly bedded to laminated carbonaceous silty limestones

and calcareous siltstones. Microscopically, the formation is about 80% calcite and 20% silt, comprised of 15% quartz, about 5% K-feldspar and minor muscovite flakes. Organic carbon and authigenic pyrite crystals are present. Graded bedding is observed in the thickest beds and fossil hash may be present. Formation thickness is estimated at 200 to 300 m. The Roberts Mountains Formation depositional environment is interpreted to be the transition between the siliceous rocks of the basin facies and the carbonate shelf facies (Gilluly and Masursky, 1965).

Devonian Wenban limestone postdates, and has a gradational boundary with the Roberts Mountains Limestone (Gilluly and Masursky, 1965) and the base of the Wenban is the first bioclastic bed above the thinly bedded SRM. The formation comprises thickly bedded bioclastic limestone with thinly bedded argillaceous limestone. Devonian Wenban differs from the Roberts Mountains Formation in age; bed thickness, which is generally 10 cm to 1 m; and siliceous content (Gilluly and Gates, 1965). Deposition is interpreted to have been within the moderately deep outer shelf environment (Stewart, 1980).

Upper plate rocks: Cambrian age rocks of upper plate are not exposed in the district. The first upper plate rocks are the Ordovician Valmy Formation which comprises a wide variety of rock types including quartzite, chert, greenstone, sandstone, siltstone, shale and very minor limestone.

Overlying the Valmy formation is the Silurian Elder Sandstone, comprised of predominantly fine-grained sandstone and interbedded siltstones. Most of the beds are laminated although some are crossbedded or ripple marked and do not part along the bedding as readily as the Roberts Mountains Formation (Gilluly and Gates, 1965).

The Devonian System overlying the Elder Sandstone comprises the Slaven Chert. Slaven Chert consists predominantly of black chert that has partings of dark carbonaceous shale and thinly bedded sandstone (Gilluly and Masursky, 1965).

Structural setting

Gold mining districts in north-central Nevada are aligned along the Carlin, Battle Mountain, and Getchell trends (Fig. 1.1). The Battle Mountain/Eureka, and Carlin trends were originally recognized by Roberts (1960) to be related to alignment of tectonic windows although the origin of these gold belts is not clear. Roberts proposed that the belts were related to "third order structures of Precambrian age" but that additional work is required to clarify the origin of the belts (Roberts, 1960). The trend also corresponds to a basement gravity gradient, consistent with either a terrane boundary, a strike-slip fault, or a major structure that is Jurassic or older in age (Grauch et al., 1995).

The Pipeline deposit is located along the Battle Mountain/Eureka trend in north-central Nevada, near the eastern flank of the Shoshone Range (Fig. 2.1). The deposit occurs within an erosional window of the Roberts Mountains thrust on the west side of Crescent Valley. Upper plate rocks above the Roberts Mountains thrust comprise allochthonous deep water siliceous sediments and volcanic rocks that have been thrust approximately 80 km during the Late Devonian Antler Orogeny over its time-equivalent, the Silurian Roberts Mountains Formation (Foo et al., 1996). The timing of structural and igneous events within the CJV area of interest is summarized in Table 2.1.

The major structural events that impacted the CJV from Jurassic times to the present are the NNW-trending Cortez fault and the Basin-and-Range extension. A model

Structure or intrusive	Date	Reference
Roberts Mountains Thrust	Late Devonian to Early	Roberts et al., 1958
	Mississippian	
Mill Canyon Stock	151 K-Ar biotite	Guilluly and Masursky, 1965
Gold Acres Stock	149.6±6.9Ma U/Pb zircon	J.K.Mortensen, 2000, unpublished
Gold Acres Stock	104.8±0.02Ma U/Pb zircon	J.K.Mortensen, 2000, unpublished
Gold Acres Stock	98.8±2.0 Ma biotite	Silberman and McKee, 1971
Gold Acres Stock	92.8±1.0 K-Ar altered	Silberman and McKee,
	stock	1971
Quartz porphyry dike	94.3±1.9 K-Ar sericite	Silberman and McKee,
		1971
Cortez dikes	34.5 Ma sericite + biotite	Wells et al., 1971
Caetano volcanics	34.4±1.1 Ma K-Ar biotite	J.D.Obradovich,
		unpublished
Caetano volcanics	32.6±1.1 Ma K-Ar sanidine	J.D.Obradovich,
		unpublished
Basin and range extension	11 Ma	McCormack and Hays,
		1996

Table 2.1 Tectonic and intrusive dates for the CJV area.

to reconstruct the area is described by McCormack and Hays (1996) and is based on gravity, geologic, magnetic and topographic data. This model incorporates reversal of movement along low-angle detachment faults related to Basin and Range extension around 11 Ma, as well as strike-slip movement along the Cortez and Pipeline faults, connecting the Mill Canyon and Gold Acres stocks (Fig. 2.2).

Pipeline Deposit

Igneous rocks

The Mill Canyon stock has a 1000 m vertical exposure at Mount Tenabo. The stock is dominantly biotite-quartz monzonite but is variable in composition from a quartz diorite to an alaskite (Gilluly and Masursky, 1965). It may evolve through time from the former to the latter. In general the rock is porphyritic with feldspar phenocrysts containing An ranging from 25 to 55%. Biotite commonly has a reddish-brown hue and quartz commonly forms polycrystalline aggregates. Accessory minerals include magnetite, zircon and minor apatite. All are set in a mosaic of perthitic microcline. Sometimes hornblende is present but does not appear to be altered. Biotite is commonly poikilitic, enclosing plagioclase and quartz (Gilluly and Masursky, 1965).

Three dike types are reported within the area and have compositions of quartz porphyry, alaskite (like the stock), and augite syenite (Gilluly and Masursky, 1965).

Quartz porphyry dikes are considered to be magmatically allied to the Caetano Tuff

(Gilluly and Masursky, 1965). Dikes are mostly N to NNW trending and are controlled by

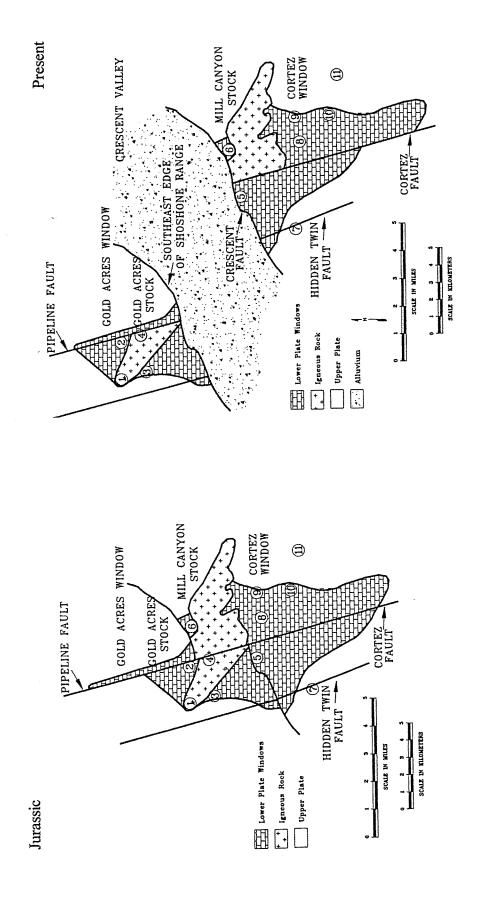


Figure 2.2 Foo et al. (1996) model for reconstruction of the Crescent Valley. The figures show the present (right) and reconstructed (left) positions of faults and intrusive bodies.

parallel faults. In the Cortez pits these dikes also turn parallel to bedding to form sills that were subsequently altered to smectite.

The Caetano Tuff is a body of welded and water-laid tuff with associated conglomerate and sandstone with outcrops starting a few km's south of the Pipeline Mine and continuing south into the Toiyabe Range. The thickness of the Caetano is estimated at 2500 m (Gilluly and Masursky, 1965).

Geology

Pipeline is located near the eastern flank of the Shoshone Range within Lander County, Nevada. The main ore zone, is 150 to 180 m below the surface, varying in thickness from 15 to 105 m, is tabular in shape, and dips at a low angle to the east. This zone extends about 760 m in the northerly direction and about 460 m in the easterly direction (Foo et al., 1996).

Pipeline was a "blind" deposit covered by alluvium and hosted within the Silurian Roberts Mountains Formation (SRM). Unaltered SRM is gray to black silty carbonate, thin to medium-bedded, thinly laminated with normal graded beds of 5 to 12 mm thickness. Carbonaceous content is estimated at 0.03% and the pyrite content is estimated at 0.003 to 0.01%; both are variable. Unaltered rock comprises silt-size particles of calcite (±80%), quartz (±15%), K-feldspar (±5%) and muscovite flakes (<1%) (Gilluly and Masursky, 1965). Roberts Mountains formation within the deposit is invariably altered to some degree. Altered SRM typically comprises 50 to 80% fine-grained to clay-sized quartz, 0 to 40% calcite, 5 to 50% illite, as well as accessory iron-oxides (Foo et al., 1996; and personal observations). Carbon has been removed by oxidation that

extends below the water table and to as much as 300 m below the surface, giving a gray-buff color to the SRM.

The Devonian Wenban limestone (DW) is exposed across the NNW-trending fault on the west side of the pit. It is not economically important because DW has not reacted to hydrothermal fluids like the SRM.

Bedding in the SRM generally dips 15-20° to the east, a product of Basin-and-Range tectonism (Foo et al., 1996). Within the deposit bedding is variable due to shearing, thrusting, and duplex formation. The primary ore controlling structure is a low-angle shear zone that varies from 3 m in thickness on the edge of the deposit to 105 m within the deposit (R.C. Hays, pers. comm.). Within the shear zone the rocks are sheared, deformed and brecciated; individual shear planes commonly exhibit fault drag of the immediately overlying strata. Shear zones are regarded as zones of imbricate thrusting subparallel to and beneath the Roberts Mountains Thrust (Foo et al., 1996).

High-angle faults are well documented by pit mapping and include a NNW-fault that strikes N15W to N20W. The Pipeline fault is the most prominent of these faults and dips 75-85° to the east, is sympathetic to the Cortez trend, and is interpreted to be an offset extension of the Cortez fault (McCormack and Hays, 1996). A N35W subvertical fault is recognized to truncate deep mineralization, but this in turn is truncated by a younger NE-striking, high-angle fault set of which the Fence fault is the most important (Fig. 2.3). Normally conjugate shear planes of the same age develop at about 30° or 60° to each other, however, although the faults are about 60° to each other, the lineations measured for these faults suggest that they are co-active rather than conjugate pairs (C. Tarnocai, pers. comm.). Movement along the NNW faults are reported as normal oblique

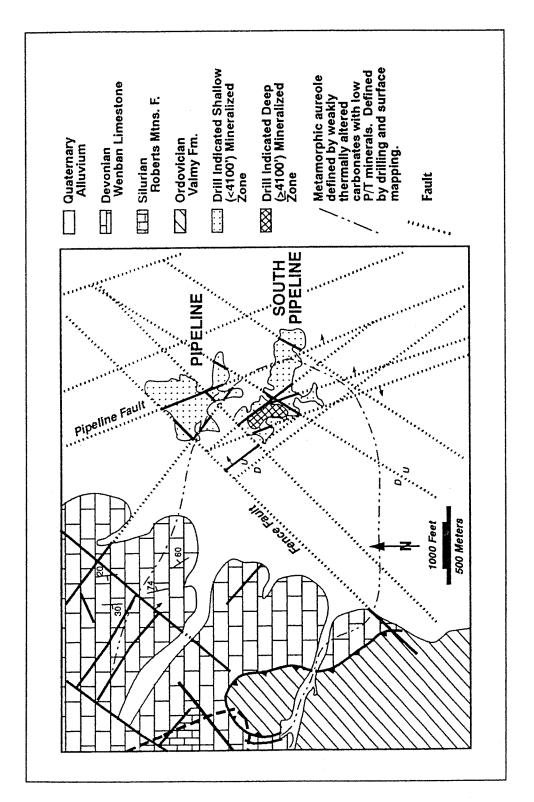


Figure 2.3. Simplified geologic map of the Pipeline and South Pipeline deposit areas showing faulting and outline of gold mineralization (Foo et al., 1996).

right slip whereas the NE faults have some normal movement with significant left slip (Foo et al., 1996). Both the NNW- and NE-trending faults are important ore controls.

Alteration

Alteration types include decalcification, silicification and argillization.

Decalcification intensity is measured at the Pipeline mine by the reaction of the rock to 6:1

HCl acid. The amount of decalcification is visually estimated by the intensity of effervescence and by comparing this intensity to descriptions made on SRM of known decalcification intensity. Silicification is also documented within the Pipeline deposit. The silicification intensity is measured by comparing analytically determined intensities of silicification to a rock's response to a steel dental tool. Steel left behind on a drillcore after a steel dental tool has been scraped across the surface has a starting limit of 20% silicification. Argillization refers to the increase in argillic content. Most commonly this is a result of decalcification whereby the removal of calcite increases the bulk concentration of the insoluble components, including clay. The term sericitization refers to the growth of sericite such that new material is added without other components being removed.

Gold Mineralization

According to Foo et al. (1996) gold is not confined to a single alteration type, nor confined to shear zones. However, the most favorable host to gold mineralization occurs within shear zones that are decalcified, sericitized, and oxidized. Microscopically visible gold was reported by Foo et al. (1996) who concluded that "much of the gold occurs as submicroscopic, disseminated grains." Also, gold "was observed in and on silica, in and

on hematite, on pyrite, and in illitic or sericitic matrix material as well as discrete grains in open spaces and on fracture surfaces" (Foo et al., 1996). A link between gold and pyrite is inferred "from limonite and hematite pseudomorphs."

Previous Geochemical Studies

Fluid inclusion studies

Microthermometry: Studies of Carlin-type gold deposits incorporating fluid inclusion microthermometry include Radtke et al. (1980), Rye (1985), Kuehn and Rose (1995), Lamb (1995), Groff (1996), Kamali (1996), Cline et al. (1996), Simon (1999) and Cline et al. (2000). A common observation from many of the studies are homogenization temperatures ranging from 180° to 220°C. Most studies also report salinities of 1 to 7 eq. wt. % NaCl, however, some higher salinities near 20 eq. wt. % NaCl are reported at Purple Vein and Post/Betze (Lamb, 1995), at Lone Tree (Kamali, 1996), Getchell and Twin Creeks for main ore stage (Groff, 1996), and Turquoise Ridge (Cline et al., 2000). Hypersaline inclusions with daughter halite crystals are reported from Lone Tree (Kamali, 1996), Getchell and Twin Creeks (Groff, 1996).

Fluid inclusion microthermometry and interpretations at the Carlin mine by Radtke et al. (1980) suggest that gold mineralization and boiling during late-stage mineralization occurred at depths of <1 km. Recognition of CO₂-bearing inclusions at Jerritt Canyon (Hofstra et al., 1988) and Carlin (Kuehn, 1989) has led to the conclusion that gold mineralization occurred at depths of 1-5 km. Depth estimates at Getchell are a minimum of 1.2 km (Cline at al., 2000).

Gases: Known studies of Carlin-type deposits that involve fluid inclusion gas analysis are restricted to Bendrick (1989), Graney et al. (1991), Groff (1996), Kamali (1996) and Cline et al. (2000). Work by Bendrick (1989) added to the microthermometry of Kuehn (1989) and shows that volatile contents decrease in time whereas H₂S increases. The focus of both Groff (1996) and Kamali (1996) was to recognize fluid sources. In addition, Groff (1996) is able to show that gold mineralization is associated with fluids that have a high methane content and labeled the fluid as "organic-rich". Fluid source categorization based on He-N₂-Ar ternary discrimination diagrams identified magmatic, crustal, and meteoric components to fluids trapped within different minerals as fluid inclusions. In contrast, J. Cline (pers. comm.) uses gas analysis to test for differences between fluid inclusion populations rather than applying source recognition.

Radiometric dating within the CJV

Within the CJV, multiple dates are reported that span the Jurassic, Cretaceous and Tertiary (Table 2.1). A K/Ar age of 151 Ma is reported for fresh biotite for the Mill Canyon stock (Guilluly and Masursky, 1965). Despite the Crescent Valley reconstruction model of McCormack and Hays (1996) placing the Mill Canyon stock and Gold Acres stock in juxtaposition, only one date for the Gold Acres stock is within error of the 151 Ma date. Dating of zircon by U/Pb gives two ages, i.e., 149.6±6.9 Ma and 104.8±0.02 Ma (J.K. Mortensen, unpublished data). The sample submitted for dating was a composite from drillcuttings (R.C. Hays, pers. comm.) and therefore the existence of two discrete intrusive bodies should be considered. Biotite from the Gold Acres stock yields an age of 98.8±2.0 Ma and altered stock gives a K-Ar age of 92.8±1.0 Ma (Silberman and

McKee, 1971). Sericite from a quartz porphyry dike in the area gives a K-Ar date of 94.3±1.9 Ma (Silberman and McKee, 1971). The variance of ages for the Gold Acres stock presumably reflects thermal events and/or alteration that impacted the stock.

A hiatus separates Cretaceous igneous activity from Tertiary volcanism. Dikes at Cortez are dated as 34.5 Ma (sericite + biotite; Wells et al., 1971) and biotite from the Caetano volcanics to the south gives a K-Ar age of 34.4±1.1 Ma and sanidine gives 32.6±1.1 Ma (J.D. Obradovich, unpublished).

CHAPTER 3

ANALYTICAL METHODS

Field studies

More than 110 samples were collected and described during 3 field seasons (Appendix A). During this time, I logged several thousand feet of drillcore and had access to the open pit. Most vein material sampled originated from drillcore and was intact, whereas the material from the open pit was broken and displaced by blasting. Access to previously drilled core was granted, however, key drillcore intersecting ore zones in the original drilling program had been removed for metallurgical testing. Additional core was removed during skeletonization and only limited core remains.

Fluid Inclusions

I studied fluid inclusions by geothermometry, gas geochemistry, and bulk analysis of major ions. The basic assumptions are (1) the chemistry of fluid inclusions have not been modified since trapping occurred, and (2) the P-T-V conditions measured reflect the conditions at the time of trapping.

A Linkham TH600 heating-freezing stage and temperature controller is used to accomplish microthermometry. Doubly polished, 100-300 μm thick, rock sections for analysis were prepared by Spectrum Petrographics. Sections are removed from the microscope-slide backing by soaking in acetone prior to analysis. The instrument calibration is checked daily by use of a H₂O standard, and each week the calibration is checked using at least three standards. Data obtained between shifts in the calibration are

discarded. The analytical error in melting point determinations near 0°C is 0.1°C, whereas error in Th measurements in the temperature range of 200°C is 0.5°C.

The analysis of volatile species is done in vacuum using by the CFS (crush-fast scan) method (Norman et al., 1996). Samples are cleaned with potassium hydroxide, then distilled water, and then oven dried at about 60°C (at 100°C He is rapidly lost). Samples are then placed in crushers and evacuated while heating to about 60°C until a pressure <10⁻⁷ Torr (10⁻⁸ mPascals) is attained. The analysis is performed by means of a Balzers QME125 quadrupole mass spectrometer operating in a fast-scan, peak-hopping mode. The CFS method involves opening inclusions by a swift crush in the vacuum chamber housing the mass spectrometer. Volatiles released are quickly removed by the vacuum pumping system within two seconds. Meanwhile, the pulse of inclusion volatiles is recorded by operating the quadruple in a fast scan mode with measurements every 150 to 200 msec. The mass peak areas are used to determine the concentration of each species using predetermined sensitivity factors and a peak-stripping algorithm designed by D.I. Norman. Opening a 10 to 20 μm inclusion, or group of smaller inclusions of equivalent volume, provides the ideal amount of volatiles for CFS analysis. Opening a 40 µm inclusion swamps the vacuum system and the system crashes. Five to twenty sequential crushes are made on about a 200 mg sample with the expectation that some crushes will be failures by opening too many or too few inclusions. Species routinely recorded are H₂, He, CH₄, H₂O, N₂, O₂, H₂S, Ar, C₃H₈, CO₂ and SO₂. In addition several crushes are done on a sample while monitoring CH₄, CO₂, C2-4 alkenes and alkanes, benzene and toluene. Ammonia is rarely detected because of the interference of secondary water peaks at m/e = 17 and 16; He at concentrations below 10 ppm is interfered with by the tail on the

H₂ peak; and CO peaks fall on those of CO₂, N₂, CH₄ and C2-7 organic species. Small amounts of admixed air is commonly detected during CFS measurements, which is estimated from the amount of O₂ measured. The source of air contamination is most likely air trapped on grain boundaries and micro-cracks. The concentrations of inclusion N₂, Ar and CO₂ can be corrected for air contamination assuming all O₂ measured represents admixed air. In general, analyses indicating admixed air are discarded because of the uncertainties in making an air correction. Air contamination is eliminated by prolonged baking. However, in the interest of expediency, and to minimize H₂ and He diffusion from inclusions, prolonged baking of samples is not done.

The instrument is calibrated with commercial gas mixtures, artificial inclusions filled with gas mixtures, and an in-house fluid inclusion standard. The gas water ratio of the standard inclusions (HF1) is known to about 0.1% by Penfield-tube analysis, thus allowing water calibration with an error less than 0.2%. Measurement precision is <5% for major gaseous species, and ~10% for the minor species.

Crush-leach analysis is done in order to measure ratios of fluid inclusion anions and cations. Methods used are described in detail in Norman et al. (1987) and Shepherd and Rankin (1998). In excess of 10 gm of quartz is placed in nitric acid to destroy any calcite. Samples are boiled in nitric acid to clean the surfaces. The nitric acid is decanted and the samples washed several times in deionized water. Samples then are boiled several times in ultra-pure, reverse osmosis, deionized water prior to placing them in electrolytic cells. The water in the electrolytic cells is changed daily until the current does not increase in a days operation from freed ions. Dried samples are placed in clean stainless steel tubes and crushed in a hydraulic press to open fluid inclusions. The powder produced is placed on a

sieve and a reverse osmosis leach bath removes the fluid inclusion salts. The leachate is reduced by evaporation in Teflon containers, then analyzed at the New Mexico Bureau of Mines and Mineral Resources by atomic absorption and ion chromatographic methods.

Argon Geochronology

The ⁴⁰Ar/³⁹Ar technique is an extension of the K-Ar technique. The sample must be irradiated with fast neutrons in a reactor thus converting some ³⁹K into ³⁹Ar. Unlike the K-Ar technique which requires the K concentration to be known precisely, ratios between Ar isotopes are analyzed. Also, the sample is incrementally heated *in vacuo* and the argon released during each heating step is analyzed separately to produce an apparent age spectrum. Another common form of display is the isochron plot. The ⁴⁰Ar/³⁹Ar technique is a relative method and requires the use of monitors of known age to determine a sample age. These monitors are used to determine the neutron flux parameter referred to as J. The ⁴⁰Ar/³⁹Ar technique also requires the measurement of ³⁷Ar and ³⁶Ar to determine interfering argon isotopes produced from K and Ca.

The K-bearing minerals found in the Pipeline deposit are very fine-grained illite and hydrothermal sericite. Some geologists regard illite and sericite to be the same mineral, however, sericite has slightly more potassium. Dating such fine-grained clay minerals may be problematic in that the recoil distance for ³⁹Ar radiation is comparable to the grain-size of illite. A brief explanation of recoil is given below to enable a better understanding of this potential problem in dating fine-grained materials.

Samples analyzed by the ⁴⁰Ar/³⁹Ar technique require irradiation in nuclear reactors. By absorbing a neutron, ³⁹K emits a proton and transmutes to ³⁹Ar_K and this reaction is expressed as ³⁹K (*n*,*p*) ³⁹Ar. The produced ³⁹Ar_K, recoils with an energy of 177 keV (Onstott et al., 1995) displacing the ³⁹Ar_K from its original site by about 800 Å (McDougall and Harrison, 1988). Recoil may invalidate the assumption "that the ³⁹Ar_K produced during irradiation is distributed in a manner similar to the ⁴⁰K in a sample" (McDougall and Harrison, 1988). It is possible for ³⁹Ar_K to recoil out of the clay grain from where it was produced and embed itself in an adjacent grain. The effect of recoil can produce discordant age spectra in clay minerals, exsolved minerals, and altered minerals.

Clay Mineralogy

I selected seventeen samples for XRD analysis; i.e. two fault gouges and other samples which were primarily collected along section line 59200 where drillcore exists and different alteration types occur. This allows a comparison between alteration type relative to clay data.

Clay samples for XRD analysis are individually ground with deionized water in a mortar and pestle, and the resulting fluid is poured into a beaker. Deionized water is added to dilute the clay-water mixture and the sample is allowed to settle under gravity. After about 4 hours, a pipette is used to extract about 4 ml of solution from near the surface in order to capture a $<4~\mu m$ fraction. The solution is allowed to coat one side of a glass slide and then left to evaporate. The clays in suspension are concentrated on the surface of the slide producing a basal section of the clay for XRD analysis. Clay-coated slides are placed in a Rigaku XRD spectrometer using monochromatic X-rays (using

curved crystals) from a Cu tube set to 40 kV and 25 mA. The goniometer is set to 0.03 °20 per second. After the spectra are collected, X-ray patterns are produced using the WINJADE computer program.

Randomly orientated slides for polytype identification are produced by collecting about 1-2 gm of <4 μ m clay material. Clay is allowed to dry and is then broken up and sprinkled onto a glass slide that is coated with petroleum jelly to act as an adhesive. The slide is immediately analyzed using the XRD spectrometer by the same method as previously described except that the dwell is increased about 5 to 10 times. Random mounts are used to examine the polytypes of illite where distinctive spectral lines enable the identification of each polytype (Table 3.1).

	1M			2M ₁	
	d (Å)	Intensity		d (Å)	Intensity
1	4.35	11/2	1	4.29	1
2	4.12	1	2	4.09	1
3	3.66	5	3	3.88	3
4	3.07	5	4	3.72	3
5	2.93	1	5	3.49	3
6	2.69	2	6	3.20	3
			7	2.98	31/2
			8	2.86	3
			9	2.79	2½

	2M ₂			3T	
	d (Å)	Intensity		d (Å)	Intensity
1	4.34	2	1	3.87	31/2
2	3.90	3	2	3.60	3
3	3.68	4	3	3.11	3
4	3.52	4	4	2.88	4
5	3.21	4	5	2.68	1
6	3.07	4			
7	2.87	2			
8	2.81	2			

Table 3.1. Diagnostic XRD lines for 1M, $2M_1$, $2M_2$ and 3T polytypes of illite (Bailey, 1980).

CHAPTER 4

OBSERVATIONS AND RESULTS

Mine Geology

Alteration

Observations of the alteration styles confirmed those reported by Foo et al. (1996) and described by mine geologists. Several additional observations were made, particularly a paragenetic sequence of vein types.

Decalcification: Removal of calcite is commonly documented in drillcore at Pipeline. Total decalcification occurs in shear zones, however, a progressive decrease in the intensity of decalcification is documented perpendicular to the shear zones. Fresh, undecalcified SRM (Fig. 4.1) has a well-developed lamination that is emphasized by dusty pyrite. In the shear zones where decalcification is total, the lamination spacing decreases and laminations are enhanced by hematite (Fig. 4.2).

Decalcification has affected most of the deposit with shear zones exhibiting the strongest intensity. Locally, there is no reaction of the SRM to acid. Totally decalcified SRM is confined to the shear zones. Totally decalcified rock exhibits high porosity such that water dripped onto the rock surface is immediately absorbed and hand samples are discernibly less dense.

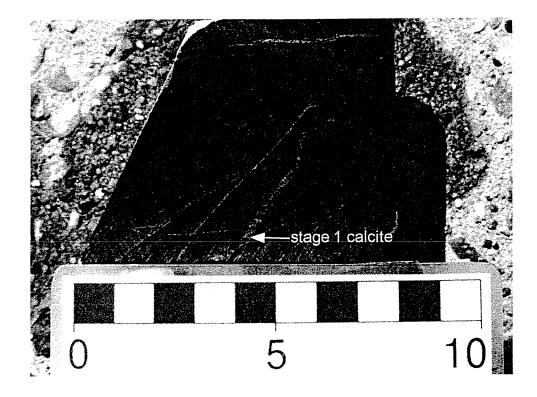


Figure 4.1 Photograph of fresh, carbonaceous SRM crosscut by a stage 1 dark calcite vein. The scale is in cm.

Figure 4.2 Photograph of totally decalcified, argillized and oxidized SRM. The mmscale lamination is emphasized by hematite. The scale is in cm.

Silicification: Silicification occurs pervasively and as halos to quartz veins.

Observations of thin sections and polished surfaces show that the filling of open space by quartz is the most common occurrence, whereas replacement by silica is less common. An example of silicification controlled by a fracture is shown in Figure 4.3 and emphasizes how silica penetrates the host rock to a depth of a few mm. Although the term "silicification" is commonly used by Nevada. At Pipeline, petrographic analysis indicated that silica was deposited as quartz rather than chalcedony; therefore, the term "ore quartz" is used to represent silicification.

Sulfidation: Pyrite-bearing haloes of up to 10 mm wide occur next to quartz carbonate veins below the deposit (Fig. 4.4). Sulfidation is not as extensive as decalcification and in Figure 4.3 the light brown decalcified halo extends beyond the dark specks that represent pseudomorph replacement of pyrite by Fe-oxides. Evidence for sulfidation within the ore zones is obscured by subsequent pseudomorph replacement to Fe-oxides.

Oxidation: Oxidation is divided into two types, iron-oxide development and carbon removal from dark carbonaceous SRM to produce a light yellow-brown colored rock. The entire ore zone is oxidized and the oxidation halo can extend to >300 m.

Observations of drillcore confirm that Fe-oxide replacement of sulfides occurs slightly ahead of carbon removal.

Two iron-oxides are present, hematite and goethite. Red-colored hematite is spatially associated with shear zones and immediately above the shear zones where

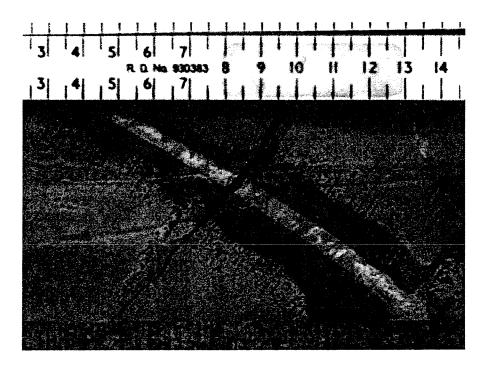


Figure 4.3 Photograph showing silicification of wallrock adjacent to a quartz vein. Note the decalcified halo (light brown) extends beyond the silicified halo as well as the halo of Fe-oxide that forms as pseudomorph replacement after pyrite. The scale is in cm.

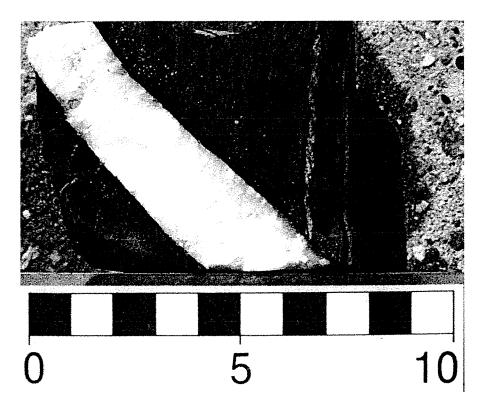


Figure 4.4 Photograph of a stage 3 quartz-calcite vein in fresh SRM. Note the sulfidized halo that extends beyond the vein for several mm's. The scale is in cm.

decalcification is prominent. Hematite concentration is based on color intensity comparisons to known standards. Red laminations bearing fine-grained hematite are most common (Fig. 4.2), however, it also occurs in argillized zones where moderate to total decalcification has occurred. Goethite, is orange-brown and occurs as laminations and replacements. An interesting observation is that laminated goethite forms a zone above hematite. Interlaminated goethite and hematite is common. Goethite also occurs as pseudomorph replacements after pyrite.

Argillization: In most of the deposit the intensity of argillization is low but locally in shear zones argillization is so intense that rock has the consistency of putty.

Argillization commonly is a residual accumulation of clay released by decarbonization of SRM and the rock has a light brown color. A second argillization type is the growth of illite to produce a distinctive off-white clay that occurs locally within the pit (Fig. 4.5).

This off-white clay is commonly associated with good gold values and is thought to be the same material as the hydrothermal sericite that occupies quartz-calcite veins.

Several differences are recognizable between unaltered SRM several meters above the shear zones and the strongly altered ore horizon. Unaltered SRM is gray, calcareous, and has bedding planes of 3 to 15 mm separation containing syngenetic pyrite (Fig. 4.1). In contrast, altered SRM is off-white, totally decalcified, and has a ~1 mm bedding lamination separation emphasized by brick-red colored fine-grained hematite laminae (Fig. 4.2).

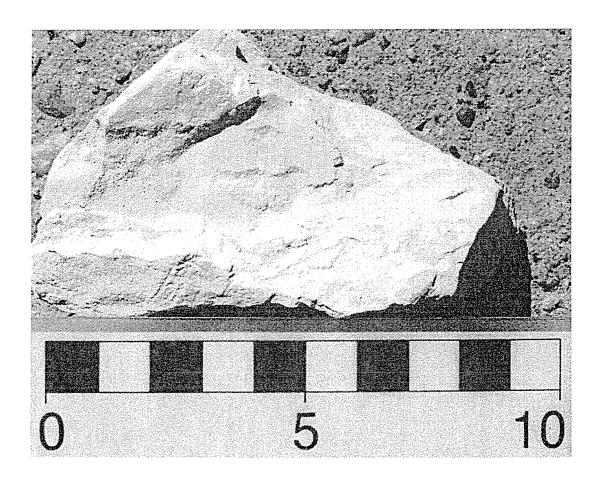


Figure 4.5 Strongly argillized, totally decalcified ore. This sample assayed 21 ppm gold. The scale is in cm.

Veins

Four vein types are recognized. Dark petroliferous calcite veins (VC-1) can be found above and below ore and shear zones. The distribution of these veins is unaffected by shear zones. Fluid inclusion sections show the dark coloration to be micron-sized carbonaceous matter.

A second vein set forms a stockwork of white undeformed-calcite veins (VC-2) and comprises up to 30% of the SRM that spatially underlies the shear zones but do not occur within the shear zones. The veins are anastamosing with a subvertical preferred orientation and crosscut styolites.

Quartz-sericite-calcite veins (VQ-3) occur beneath the deposit, whereas none are observed above the ore. A similarity is drawn between these veins and the vein systems that develop beneath massive sulfide deposits because they appear to be feeders to the tabular ore body. These quartz-sericite-calcite veins have a paragenetic sequence of sericite and quartz followed by the growth of euhedral quartz into open space, followed by calcite. The wallrock immediately adjacent to the vein has a silicified and sulfidized halo that is commonly 5 mm wide but does not exceed 10 mm. In two fresh SRM samples, scattered pyrite grains up to 1 mm occur (Fig. 4.4). Silicification is more difficult to observe in hand specimens than in thin section. In oxidized samples, the pyrite is replaced by Fe-oxides whereas the silicification is emphasized by a color contrast (Fig. 4.3). In oxidized samples, a decalcified halo that manifests itself as a paler shade between the grey-colored silicification and the slightly darker undecalcified rock (Fig. 4.3) is observed. The decalcified halo is larger than the silicified halo.

Vuggy calcite veins (VC-5) crosscut gold mineralization and are more abundant preipheral to the deposit than within it. Calcite crystals are commonly light brown in color and the habits observed include dogtooth spar, cockscomb and stubby drusey crystals.

Most crystals are clear to translucent.

Gold Mineralization

Access to gold values obtained from logged core was limited. Section lines compiled by the author and mine geologists show a correlation between shear zones and gold values. All samples collected were examined with a binocular microscope for gold. Visible gold is rare, and polished ore thin sections fail to reveal gold, despite assays confirming good gold values. Two polished resin-impregnated samples of ore zones did not exhibit visible gold using a reflected-light microscope despite neutron activation confirming ppm levels of gold. The highest gold values of 21 ppm assayed by neutron activation came from a sample (NB-87) that is off white in color, totally decalcified, strongly sericitized, unsilicified, porous and hosted within a shear zone (Fig. 4.5).

One blasthole drilled in the Pipeline pit during 1998, yielded >2 oz per ton gold. Visible gold grains as large as 1 mm were recovered from the panned concentrate. These grains are the only case of visible gold observed by the author. In this concentrate, gold is intimately associated with Fe-oxide. Using the electron microprobe in SEM mode, crystalline gold with hopper-like surface textures is revealed (Fig. 4.6); this is inconsistent with the sub-micron sized gold generally associated with Carlin mineralization. The gold purity of these grains is high with microprobe analyses giving only up to 0.5% Ag, the remainder being gold. Some visible gold grains are associated with Fe-oxide (Fig. 4.7)

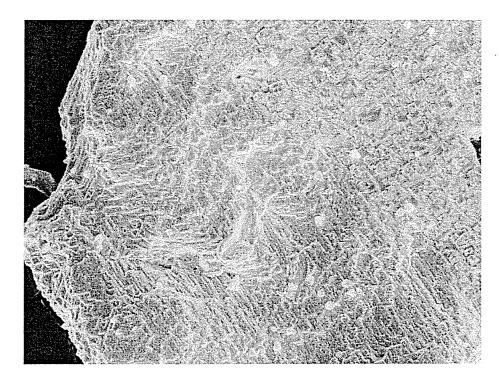


Figure 4.6 Electron microprobe image in SEM mode of a gold grain showing a hopper-like crystal growth pattern. The field of view is about $200 \, \mu m$.

Figure 4.7 Electron microprobe image in SEM mode of a gold grain showing a close association with Fe-oxides (granular material). The field of view is about 100 μm .

although there is no information suggesting the relative timing of either phase. The images do, however, confirm the intimate association of gold and a Fe-oxide.

Fire assays from drillcore that hosted stage 1, 2 or 5 veins showed no gold values. In contrast, the sulfidized selvages of four stage 3 veins assayed by fire assay all confirmed gold values that varied from 0.3 to 1.0 ppm. The gold content of the wall rocks beyond the pyrite selvages is below detection.

Paragenetic Relationships

The paragenetic relationships at the Pipeline mine were determined from observations made in core, observations within the pit, regional crosscutting relationships and dating of K-bearing minerals. The mineral paragenesis is summarized in Table 4.1.

Crosscutting veins

The earliest mineralization (stage 1) are dark petroliferous calcite veins (Fig. 4.1). Stage 1 veins are, crosscut by all other veins, and are commonly deformed and crosscut by shear planes.

The dark-colored stage 1 veins are cut by VC-2 stage 2 veins (Fig. 4.8). These veins are not observed as fragments within the ore zones and their absence is attributed either to decalcification in the ore zones or the locations of drillholes.

Stage 3 quartz-sericite-calcite veins crosscut stage 1 and 2 veins. In one locality a stage 3 vein is truncated by a shear plane but this plane could be related to Basin-and-Range extension.

Time	Pre-Antler	Antler	Cretaceous		Pre Basin	Basin and
	Orogeny	Orogeny			and Range	Range
Event	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	
Dark calcite						
White calcite				AND CONTRACTOR OF THE PROPERTY OF THE PROPERTY AND CONTRACTOR AND		AND THE RESERVE AND AND THE RESERVE AND THE RE
Sericite				a vide reprint de desta de verte des para esta esta des la constanta de la con		The second contract of
Quartz						
Pyrite						
Gold						
Orpiment			ċ			
Vuggy calcite						
Alteration						
Silicification			Apparent management of the state of the stat			
Decalcification				the example for the color way the first water by a color or the first water and the color of the		-
Argillization						
Oxidation						
Shearing						
Brecciation						۰

Table 4.1 Paragenetic sequence as recognized by veining, alteration and shearing at the Pipeline mine.

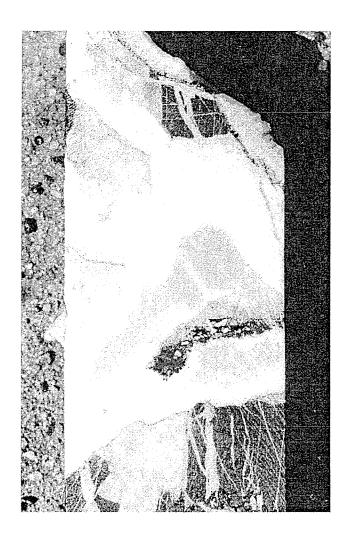


Figure 4.8 Photograph of stage 2 white calcite stockwork, crosscut by stage 6 calcite vein. The width of the drillcore is approximately 6 cm.

Oxidation postdates stage 3. Fresh pyrite is associated with stage 3 veins at depths >300 m whereas in the oxidized zone, pyrite is replaced by Fe-oxides.

Crosscutting both stage 3 veins and the oxidized ore body are vuggy, calcite veins (stage 5). Dipping layers of calcareous sediment (Fig. 4.9) have the same inclination as surrounding sediments. Since the local 10 to 20° dip is indicated to be the result of Basin-and-Range faulting, the sediment must predate this event. These veins must also postdate stage 4 oxidation. It is expected that acid fluids produced by the oxidation of pyrite would destroy calcite in stage 5 veins.

Ore deposit

Paragenetic relationships within the Pipeline deposit are poorly constrained.

Unlike several other Carlin-type deposits (Cortez, Meikle), no intrusive bodies occur within Pipeline and so dating crosscutting igneous rocks is precluded. The Crescent Valley reconstruction model (McCormack and Hays, 1996) indicates that NNW-trending faulting postdates the Mill Canyon stock. The location of Pipeline on these NNW-trending lineaments suggests that the deposit must have formed after 152 Ma, the age of the Mill Canyon stock. NE-trending faults are observed and economic gold mineralization is abruptly terminated on the Fence fault. Poor gold values occur on the NW side of the Fence fault. This may indicate that major gold mineralization predated the NE-trending fabric but that minor remobilization could postdate the Fence fault.

No examples of early calcite veins are seen crosscutting the deposit. The only vein identified that crosscuts the deposit is stage 5 calcite. Ore zones within the deposit are

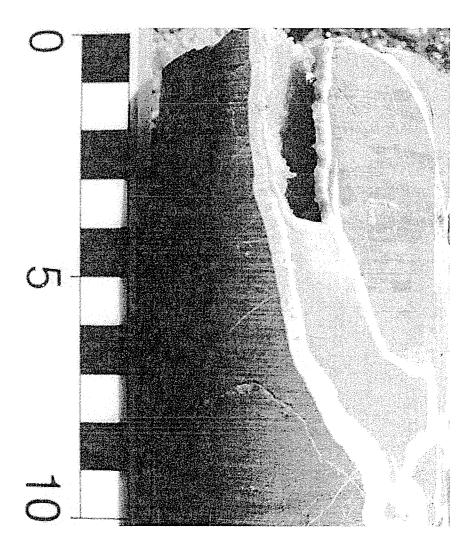


Figure 4.9 Photograph of a stage 4 vein showing the laminated calcareous sediment. The scale is in cm.

generally located along shear zones sympathetic to and underlying the Roberts Mountains thrust and must therefore postdate the Roberts Mountains thrust.

Ore zones are decalcified, gold-bearing, and exhibit local sericitization and silicification (ore quartz). A halo of oxidation extends beyond the ore zones and within this halo, Fe-oxides replace all sulfide minerals.

The link between gold mineralization in the deposit and the stage 3 veins below the deposit is made as follows. Only stage 3 veins have gold-bearing selvages. Sericite associated with stage 3 and in the ore zone illite give similar dates; this will be discussed later in the argon geochronology section.

Ore zones are currently represented by residual material after decalcification, that have up to 1 % hematite and gold is closely associated with the Fe-oxide. Oxidation of pyrite to form hematite is a potential decalcification mechanism in that acid is produced by the oxidation of pyrite. However, the ≤1 % hematite content of decalcified rock implies that insufficient acid could be produced during oxidation to account for removing >80 % of the rock volume by pyrite oxidation alone. Two decalcification events must have occurred at Pipeline. Oxidation of pyrite provides a sulfur source and therefore the oxidation event is coeval with the sporadic occurrence of barite peripheral to the deposit.

Fluid Inclusions

Microthermometry

Twenty-five fluid inclusion sections were studied. Microthermometry results are reported in Appendix B. The convention used to classify Pipeline fluid inclusions is based on the number of phases and the composition of these phases (Table 4.2).

Primary inclusions hosted in quartz are abundant, 5 to 20 μ m in size, invariably elongated, and irregular in shape. Clusters of inclusions form zones that mimic the crystal habit of quartz (Fig. 4.10). Secondary inclusions occur either individually or as trails of

Inclusion Type	Description:
Type 1a (Fig. 4.11)	Two phase liquid and vapor inclusion that is liquid-dominated (aqueous) with a vapor bubble that is smaller than the aqueous phase. The inclusion may or may not exhibit clathrate melting behavior.
Type 1b (Fig. 4.12)	Three phase, liquid-dominated inclusion that has a vapor bubble that is smaller than the aqueous phase and minor liquid CO ₂ at 10°C. The inclusion exhibits clathrate melting.
Type 2 (Fig. 4.13)	Three phase aqueous, CO ₂ -dominated inclusions that at 10°C have a small rim of aqueous fluid and >50% by wt. of liquid and gaseous mixture of CO ₂ and other gaseous species.

Table 4.2 Fluid inclusion classification as recognized at Pipeline.

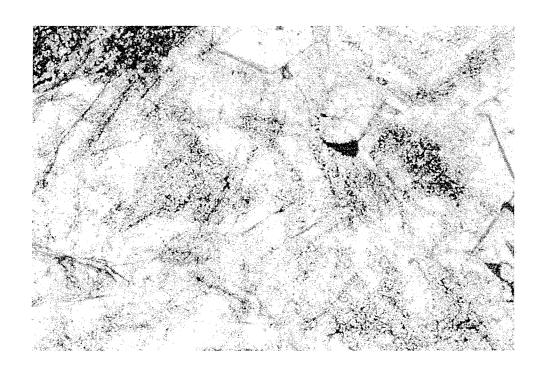


Figure 4.10 Stage 3 quartz grain (sample NB-99) showing primary, zoned fluid inclusions which mimic the crystal shape. The field of view is about 1200 μm .

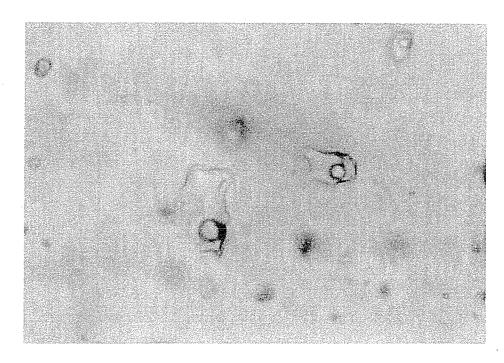


Figure 4.11 Type 1a fluid inclusions (stage 3 quartz; sample NB-33) comprising a dominant aqueous phase and a minor vapor phase. No carbonic phase is visible. The field of view is about $120~\mu m$.

Figure 4.12 Type 1b fluid inclusion hosted in stage 3 quartz (sample NB-107). The inclusion comprises a major aqueous phase and a minor bubble. The bubble shows a vapor phase in the center, rimmed by liquid CO_2 . The field of view is about 120 μ m.

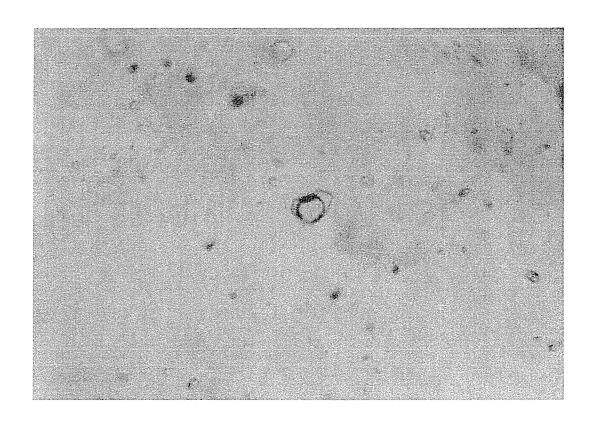


Figure 4.13 Type 2 fluid inclusion hosted in stage 3 quartz (sample NB-104). The inclusion comprises a dominant carbonic phase and a minor aqueous phase. The carbonic phase homogenizes to a liquid. The field of view is about $100~\mu m$.

weakly orientated inclusions of 8 to 15 μ m.

Inclusions hosted in calcite are commonly submicron in size, however, sparse visible inclusions of up to 8 μm occur. These visible inclusions are invariably rectangular.

Type 1a inclusions are aqueous-dominated with a vapor bubble generally exceeding 10% by volume (Fig. 4.11). On heating, the aqueous phase expands at the expense of the vapor phase until the inclusion homogenizes to a liquid at which point the bubble disappears. Upon freezing, ice forms at the expense of liquid and during subsequent thawing, the salinity of the inclusion in eq. wt. % NaCl is determined from the melting depression of ice below 0°C. Unlike the gentle melting of ice in contact with brine, clathrate melting occurs very rapidly and the disintegration of the solid phase occurs almost instantaneously. Final melting occurs above 0°C for inclusions that exhibit clathrate melting behavior. Inclusions are heated at a ramp rate of 2°C/min between -20° and 0°C to help stabilize the clathrate.

Type 1b inclusions are aqueous dominated, but at 10 °C annular rings of liquid CO₂ are visible (Fig. 4.12). The liquid CO₂ and vapor bubble may homogenize to a liquid or a vapor. All Type 1b inclusions exhibit clathrate melting behavior. Total homogenization is always to an aqueous phase.

Type 1 inclusions appear to have a broad range of CO₂. Those inclusions with very little CO₂ exhibit ice melting behavior. As the CO₂ content increases the melting behavior changes to clathrate melting and with more CO₂, visible rings of liquid CO₂ occur. The characteristics defining Type 1 inclusions reflect end member compositions of which an entire spectrum of compositions are present.

Type 2 inclusions are sparse and have a small aqueous phase (generally 10% by volume, perhaps none visible) and the remainder comprises a CO₂-rich phase that homogenizes to a liquid between 10° and 31°C (Fig. 4.13). Type 2 inclusions homogenize around 300°C from a major supercritical CO₂ phase and a minor aqueous phase, to a carbonic phase. On freezing, the CO₂ phase forms solid CO₂ between -90° and -100°C. This solid phase melts between -57° and -60°C. All Type 2 inclusions show clathrate melting behavior of the aqueous phase. Often it is impossible to discern if Type 2 inclusions are primary or secondary, however, in one case four Type 2 inclusions occurred in a line suggesting that they are secondary.

Stage 1 inclusions: Only one inclusion section out of four has visible aqueous inclusions. Black calcite has primary and secondary, 5 to 10 μm, Type 1a inclusions with about 98% fill. Submicron carbonaceous material is observed under the microscope and possibly represent polymerized hydrocarbons that were once hosted within fluid inclusions. Homogenization temperature (Th) measurements vary from 142° to 152°C. Melting temperature measurements (Tm) are bimodal. Ice melting temperatures (Tm_{ice}) are -0.8 ±0.4°C; inclusions exhibiting clathrate melting have Tm_{cl} from +1° to +23.2°C. The salinities of inclusions with Tm between -0.4° and -1.2°C calculated range from 0.7 to 2.2 eq. wt. % NaCl. Owing to clathrate melting behavoir in hydrocarbon-rich inclusions, the salinity cannot be accurately determined. Fluid-inclusion salinity can be estimated from clathrate melting, provided the gaseous species are known. Black calcite gas analyses presented below shows considerable analysis to analysis variation of the clathrate

forming species CO₂, CH₄, and C₃H₈, therefore estimating inclusion salinity from the clathrate melting temperatures is not possible. However, clathrate melting temperatures above 10.7°C indicate the presence of methane, and clathrate melting temperatures above 16°C suggest inclusions contain mixtures of CH₄ with heavier hydrocarbon species (Katz et al., 1959).

Stage 2 inclusions: The one fluid inclusion section examined was host to abundant fluid inclusions. All VC-2 fluid inclusions are primary, Type 2, 8 to 15 μm in size, and comprise about equal proportions by volume of water and a CO₂-rich phase.

Homogenization of CO₂-liquid and vapor (Th_{CO2}) to liquid occurs between +23.2° and +25.5°C. These measurements correspond to a CO₂ density range of 0.72 to 0.75.

Decrepitation of inclusions start at 200°C; all the inclusions decrepitated by 276°C before Th_{TOTAL} was reached. Measurement of Tm_{el} varies from +9.6° to +11.5°C. The Tm_{el} measured could result from additions of methane, which is confirmed by gas analysis, or attributed to either clathrate metastability or high pressure (Katz et al., 1959). The stability of CO₂ clathrate is extended to higher temperatures as the partial pressure of CO₂ increases (R. Bakker, pers. comm.). Fluid inclusion salinity of about 0.8 eq. wt. % NaCl is estimated assuming CO₂-clathrate melting.

Stage 3 inclusions: From ten stage 3 inclusion sections, a subset of six sections which were not contaminated by secondary inclusion trails were selected. Thermometric analyses of vein quartz and ore quartz analyses show similar results, therefore are discussed together. Quartz is host to primary Type 1a, 1b, and sparse Type 2 inclusions

of 2 to 20 mm in size (Fig. 4.10). Type 1 inclusion Th measurements range from 179° to 265°C (Fig. 4.14) and Tm measurements range from -26.0° to +10.1°C (Fig. 4.15). A general observation is that Th values of Type 1b are higher than Type 1a inclusions. Calculated inclusion salinities cluster in a large group with 5 to 10 eq. wt. % NaCl with some extraneous values as high as 25 eq. wt. % NaCl (Fig. 4.16). Samples that have salinities near 25 eq. wt. % NaCl exhibit eutectic melting of salt-hydrate to brine at temperatures of -21.1° to - 26.0°C. Assuming that the potassium contribution can be added to the Na budget, then the Ca/Na ratio of the inclusion is determined by the transition temperature of hydrohalite to ice (see Shepherd et al., 1985, p. 103). The range of calculated Ca/Na ratios for these very saline inclusions is 0.8:1 to 1.4:1.

Some Type 1a inclusions exhibit clathrate melting behavior. Liquid CO₂ is not observed in these inclusions (Fig. 4.11), however, this does not preclude that small annular rings of liquid CO₂ are present which could not be seen in the small-size inclusions. Measurements of sample NB99 zoned quartz crystals show a change in fluid chemistry with time. Fluid inclusions in the core have Tm_{ice} (ice melting temperature) values in the region of -5°C. Toward the outside of the same crystal, fluid inclusions exhibit clathrate melting behavior and Tm_{cl} (clathrate melting temperature) about +7°C (Fig. 4.17). The calculated salinities from Tm_{ice} and Tm_{cl} measurements are about 7 eq. wt. % NaCl.

In Type 1b inclusions liquid-CO₂ and vapor homogenize to liquid (Fig. 4.12), and Tm_{CO2} ranges from +13° to +23°C. A general increase in Th values are observed for Type 1b inclusions in comparison to Type 1a. The highest Type1 inclusion Th of 265°C was measured on a Type 1b inclusion.

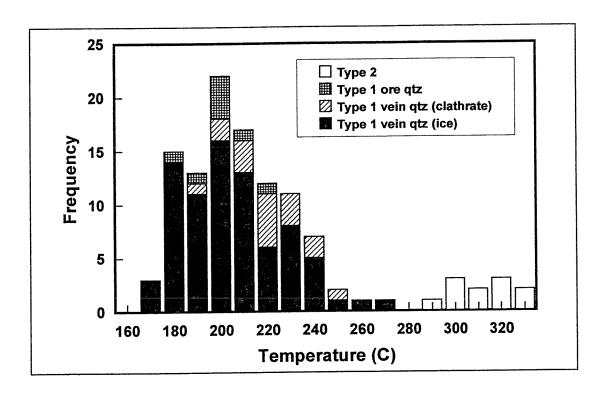


Figure 4.14 Histogram of Th's measured for all inclusions hosted in stage 3 quartz. Note that Type 2 inclusions have higher Th measurements than Type 1.

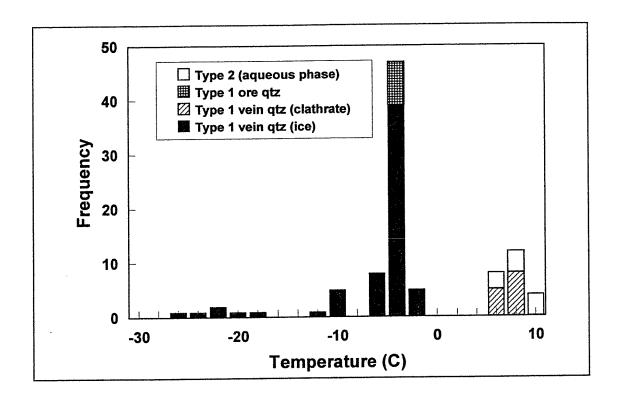


Figure 4.15 Histogram of Tm values measured for all inclusions hosted in stage 3 quartz.

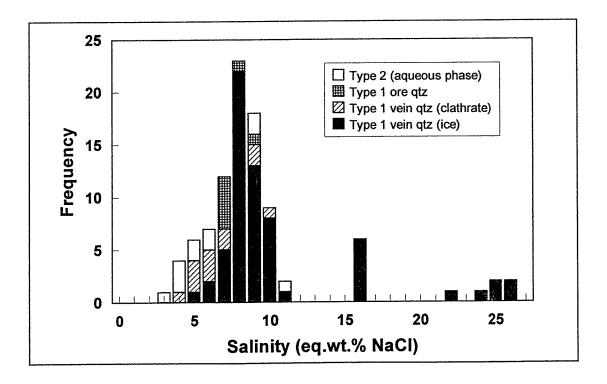


Figure 4.16 Histogram of salinity determined for all inclusions hosted in stage 3 quartz.

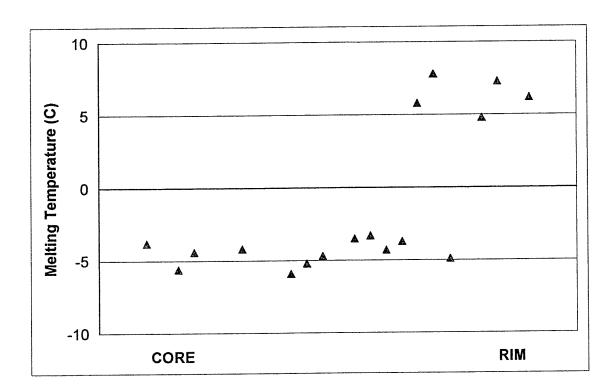


Figure 4.17 Distribution of Tm values for sample NB-99 (stage 3 quartz) showing ice melting behavior within the crystal core and clathrate melting at the rims.

Type 2 inclusions are sparsely distributed, are secondary and vary from 3 to 20 μm in size (Fig. 4.13). The aqueous phase of Type 2 inclusions exhibits clathrate melting (Fig. 4.15). Type 2 inclusion Th values vary from 295° to 323°C (Fig. 4.14). However, measurements are few because Type 2 inclusions readily decrepitate at temperatures >250°C. The inner non-aqueous liquid in Type 2 inclusions melts at about -59° to -58°C and corresponds to 9-12 mol. % CH₄ in the carbonic phase (Shepherd and Rankin, 1985). The inner liquid and vapor homogenize to liquid at +13° to +23°C. These measurements correspond to a CO₂ density range of 0.76 to 0.85. Calculated brine salinity ranges from 5 to 6 eq. wt. % NaCl, and the calculated salinity of the inclusion fluid as a whole is about 0.5 eq.wt. % NaCl.

Calcite exhibits primary fluid inclusions that commonly occur in zones (Fig. 4.18). Calcite-hosted fluid inclusions are generally submicron (Fig. 4.19) but some as large as 8 µm provide practical geothermometry measurements. Secondary inclusions are not observed. Calcite Tm_{ice} measurements range from -1.8° to -2.0°C and Th values range from 219° to 235°C. Calculated salinities are 3.0 to 3.3 eq. wt. % NaCl.

A single quartz-orpiment vein was recovered from a NNW-trending fracture within the Pipeline pit that shows some differences from the stage 3 quartz below the ore zones. This is possibly a stage 3 vein and it is therefore mentioned together with stage 3. The quartz is host to primary and pseudosecondary Type 1a and 1b fluid inclusions. These inclusions exhibit clathrate melting behavior; Tm_{cl} measurements range from +6.8° to +7.9°C. The Tm_{CO2} values for Type 1b inclusions range from -60.2° to -60.7°C and Th_{CO2} was measured from 21° to 27°C as homogenization proceeds to a liquid. Type 1a inclusion Th varies from 192.9° to 233.1°C. Type 1b Th values range from 303.3° to

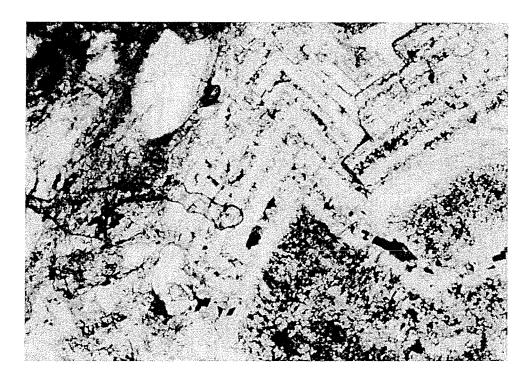


Figure 4.18 Primary, zoned fluid inclusions hosted in stage 3 calcite. The field of view is about 1200 $\mu m.\,$

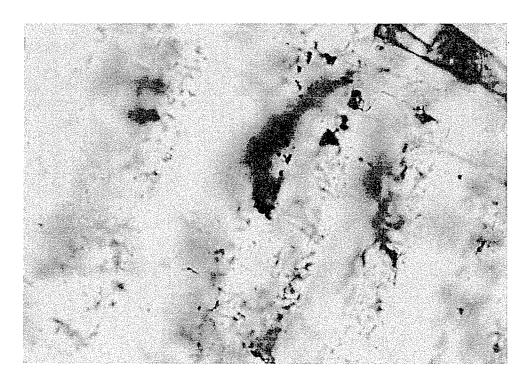


Figure 4.19 Primary, submicron, Type 1 fluid inclusions hosted in stage 3 calcite. The field of view is about 100 $\mu m.\,$

312.8°C. Estimated inclusion salinities, assuming CO₂ clathrate is observed, range from 5.15 to 6.88 eq. wt. % NaCl. Estimated inclusion CH₄/CO₂ ratios from the CO₂ melting point (Shephard et al., 1985) range from 0.31 to 0.34.

Gas Chemistry

The individual gas analyses from the quadrupole mass spectrometer are given in Appendix C. Forty-four samples (calcite = 21, quartz = 21, pyrite = 1, barite = 1) were analyzed yielding 531 analyses of the major volatile species and 118 analyses of the organic species. Table 4.3 gives representative analyses of each mineral analyzed.

Stage 1 and stage 2 calcite: Gaseous species comprise 2.27 to 6.43 mol.% of volatiles in VC-1 calcite and 50.88 to 70.05 % in VC-2 calcite. These ratios are in line with observations made on inclusion liquid to vapor relationships. On a CO₂/CH₄-N₂/Ar diagram (Fig 4.20; template from Norman et al., 1998), VC-1 inclusions show a range in composition from those with N₂/Ar <100 and CO₂ >CH₄ to inclusions that have N₂/Ar >100 and CH₄ >CO₂. In contrast all VC-2 analyses indicate similar CO₂/CH₄ ratios and a small range in N₂/Ar ratios (Fig. 4.20).

Stage 3 sericite-quartz-calcite: Quartz inclusion analyses show gaseous species ranging from 0.54 to 13.21 mol. %. The H₂S content is highly variable ranging from 0.00001 to 0.03 mol. % and CO₂ ranges from 0.22 to 11.3 mol. %.

Vein	VC-1	VC-2	VQ3	VC3	VC-4
Mineral	calcite	calcite	quartz	calcite	calcite
H2	0.718	0.095	0.085	0	0
He	0.0019	0.0065	0.00059	0.00019	0.0016
CH4	2.05	0.48	1.04	0.11	0.063
H2O	95.24	35.6	93.1	99.3	99.7
N2	0.197	0.36	0.19	0.031	0.14
O2	0.0106	0	0	0	0.025
H2S	0.00012	0.0027	0.013	0.0003	0.00022
Ar	0.00047	0.0028	0.00036	0.00033	0.0021
C3H8	0.01707	0.19	0.012	0.00104	0.00041
CO2	1.76	63.3	5.55	0.58	0.041
SO2	0.00014	0.0002	0.00004	0.00001	0.00004
			1		,
CO2	95.8		84.4	91.2	
CH4	3.78		15.0	8.3	
C2H4	0.076		0.024	0.020	
C2H6	0.096		0.26	0.126	
C3H6	0.089		0.084	0.093	
C3H8	0.13		0.18	0.187	
C4H8	0.00007		0.011	0.0024	
C4H10	0.0015		0.004	0.0070	
C5H10	0		0	0	
C6H6	0.00001		0.00054	0.0021	
C7H8	0		0.00021	0.00046	

Table 4.3 Typical gas analysis for the sampled vein sets. The upper group are the traditional geothermal species that are analyzed. The lower group represent the carbon-bearing species, normalized to 100%.

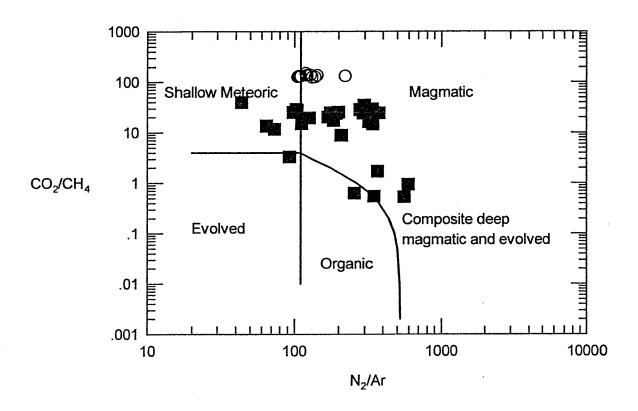


Figure 4.20 Discrimination CO_2/CH_4 vs N_2/Ar diagram for the stage 1 (solid squares) and stage 2 (open circles) calcite veins.

Plotting the quartz data on a CO₂/CH₄-N₂/Ar diagram shows a broad spread of CO₂/CH₄ ratios (Fig. 4.21). Most N₂/Ar ratios are well above 500 indicating a significant magmatic component.

A linear relationship exists between CO₂/CH₄ and H₂S (Fig. 4.22a and b).

Analyses made on quartz samples bearing inclusions with 5 to 10 eq. wt. % NaCl salinities have higher H₂S levels than analyses of quartz that contain inclusions with 15 to 25 eq. wt. % NaCl (Fig. 4.22). A CO₂ versus total gas content shows a highly linear relationship between CO₂ and gas content of fluid inclusions, and that CO₂ and CH₄ concentrations are not coupled (Fig. 4.23). There is also no discernible relationship between N₂/Ar and total gas content.

Calcite inclusions generally have lower concentration of gaseous species and a different gas chemistry than inclusions hosted in quartz. Calcite gaseous species mostly range from 0.24 to 1.5 mol. %, although a few analyses indicate up to 5 mol. %. Calcite CO₂/CH₄ ratios are similar to those measured in quartz, but the N₂/Ar ratios are much lower (Fig. 4.21). There is appreciably less H₂S in calcite-hosted inclusions; analyses range from 0.001 to 0.00001 mol. % H₂S. Calcite analyses show a mixing relationship between a shallow meteoric and a composite magmatic-sedimentary sources (Fig. 4.21). A linear trend between between two end member compositions is shown in Figure 4.24 for calcite analyses.

Stage 5 vuggy calcite: The five samples of vuggy calcite analyzed had similar results for thirty-nine analyses. On a CO₂/CH₄-N₂/Ar diagram the data plots in the evolved field (Fig. 4.25).

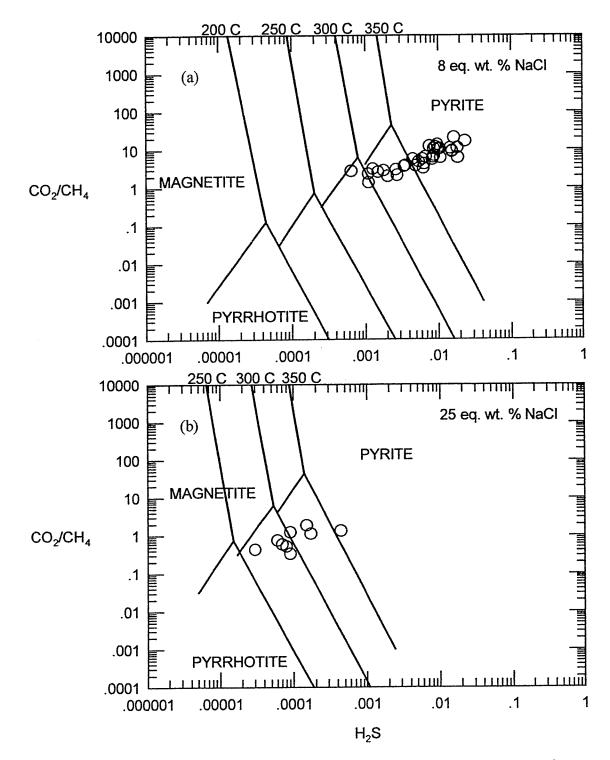


Figure 4.22 Plot of CO_2/CH_4 vs H_2S for non-hypersaline (a) and hypersaline stage 3 quartz. Corresponding stability fields for the magnetite-pyrite-pyrrhotite system are shown at varying temperature, calculated for 8 eq. wt. % NaCl (a) and 25 eq. wt. % NaCl (b). Note that the data points have a H_2S content that ranges from 0.001 to 0.03 mol.% for non-hypersaline samples whereas the H_2S content of hypersaline samples varies from 0.00003 to 0.0004 mol. %. This H_2S content corresponds to pyrite stability >300°C.

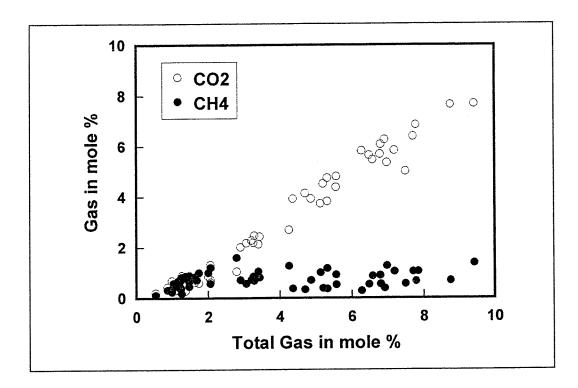


Figure 4.23 Comparison between CO_2 and CH_4 concentration as a function of total gas (excluding water) for the stage 3 quartz. Note that as the CO_2 content decreases, so does the total gas whereas CH_4 is constant.

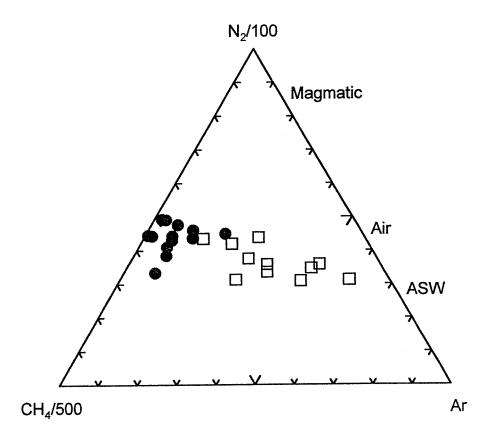


Figure 4.24 Comparison between the calcite (open squares) and quartz (solid circles) from the stage 3 vein set (sample NB-33 only) using the CH_4 - N_2 -Ar discrimination diagram. The calcite data plots in a line that has end member compositions corresponding to the quartz gas signature and air saturated water. Mixing is inferred.

Figure 4.25 Discrimination CO₂/CH₄ vs N₂/Ar diagram for the stage 5 vuggy calcite.

Bulk cation and anion analysis

Five samples were analyzed for their anion and cation components. Results are shown in Table 4.4 and are graphically presented in Figure 4.26. The diagram shows a broader range in Ca than for Na and K, and two analyses show Ca > Na. One of these high Ca samples, NB-100, is host to the hypersaline fluid inclusions from which individual microthermometry measurements gave Ca/Na ratios as high as 1.4. The bulk cation analysis confirms microthermometry observations. The Na/K ratio varies from about 4 to 1. Applying the Fournier geothermometer (Fournier, 1981) yields values from 307° to 515°C. The geothermometer was calibrated to give acceptable values over the temperature range of 150° to 300°C and fluids with lower salinity.

Sample	NB-99	NB-100	NB-102	NB-103	NB-107
Na	5	12	13	21	22
K	4	3	13	5	11
Ca	41	35	24	24	17
Cl	7	30	11	37	40
F	1	1	3	2	2
Br	0	0	0	0	0
SO ₄ ²⁻	19	10	18	0	0
HCO ₃	23	9	18	11	8

Table 4.4 Results of bulk ion leach converted into percentage of total ion budget (Appendix D). Cations comprise 50% of the total budget and the "missing" anion component is attributed to bicarbonate.

Major anions were analyzed and the results are shown in Table 4.4. Comparing the total cation charge against the total anion charge, the cations always exceed the anions (Appendix D). This "missing" anion component is attributed to bicarbonate. The bicarbonate component in % vs. the Ca/Na ratio is plotted in Figure 4.27. Samples with

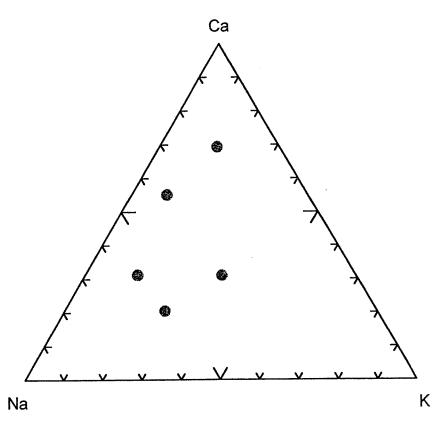


Figure 4.26 Ternary diagram for Ca-Na-K from the bulk cation leach. The high-Ca data corresponds to the hypersaline sample.

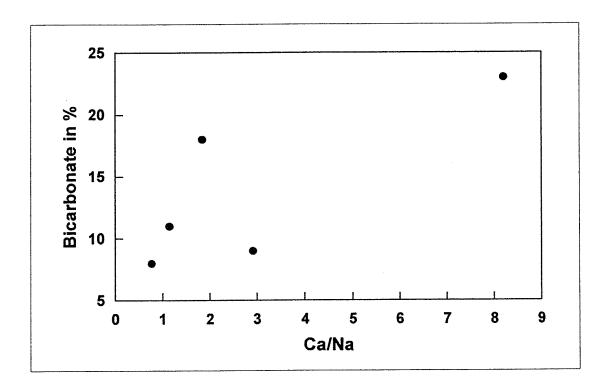


Figure 4.27 Plot of bicarbonate component in % vs. Ca/Na ratio. Highest bicarbonate correlates with highest Ca/Na whereas lowest bicarbonate correlates with lowest Ca/Na.

highest bicarbonate are those with high Ca/Na ratios, whereas samples with a low bicarbonate have low Ca/Na ratios.

Argon Geochronology

The furnace incremental heating age spectrum method was used to analyze all samples. Abbreviated analytical methods for the dated samples are given in Appendix E. The argon isotopic results are listed in Appendix F; all errors are 2σ unless otherwise stated.

Both the K-feldspar and biotite from sample 93271 collected at South Trench exhibit simple age spectra with a plateau for greater than 90% of the gas release (Fig. 4.28b). The biotite has a weighted mean age for steps C through I of 35.88±0.14 Ma with an MSWD for these steps of 4.93. Slightly elevated MSWD indicate scatter which can not be accounted for by analytical uncertainties. The radiogenic yield for the plateau steps is about 95%, and the K/Ca ratio decreases towards the final heating steps. The K-feldspar has a weighted mean age for all the steps of 35.72±0.06 Ma and an MSWD of 1.04.

The biotite and K-feldspar pair from Cortez have slightly younger apparent ages than the South Trench sample. Biotite has a plateau for ~89% of the ³⁹Ar released giving a weighted mean age of 35.80±0.24 Ma and is analytically indistinguishable from the biotite in sample 93271 (Fig. 4.28a). In contrast, the Cortez K-feldspar heating spectrum

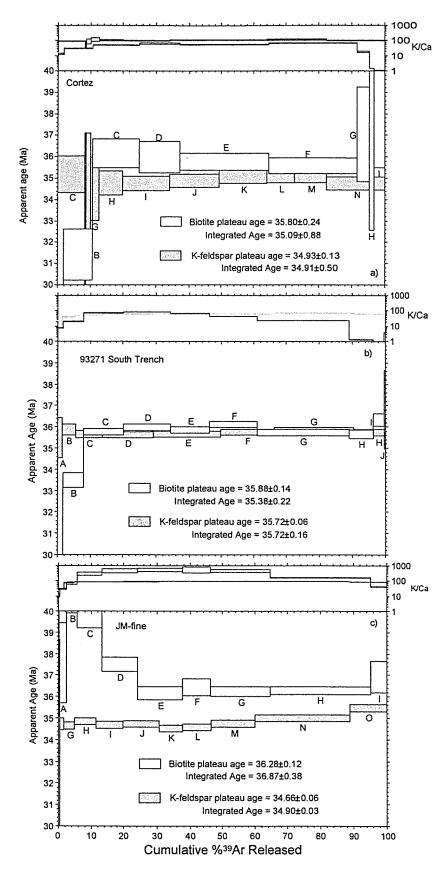


Figure 4.28 Age spectra for all K-feldspar - biotite pairs collected from Eocene dikes.

is flat for 100% of the gas released with a weighted mean age of 34.93±0.13 Ma (MSWD is 0.93).

The biotite and K-feldspar pair from the dike that crosscuts the Mill Canyon stock in a drillhole is referred to as JM-fine. The age spectra for the biotite and K-feldspar are more complex than the Cortez and 93271 biotites (Fig. 4.28c). The biotite age spectrum is disturbed and exhibits ages that are older than the biotite in the Cortez and 93271 samples. Initial heating steps yield old ages and are followed by a plateau segment with an age of 36.28±0.12 Ma (Fig. 4.28c). In contrast, the K-feldspar has an age spectrum that is flat for the first ~50% of the gas released with a plateau age of 34.66±.06 Ma. The final three steps rise to ~35.5 Ma.

Isochron analyses are reported for several samples. The isochron plots are shown in Figure 4.29 for the samples yielding Eocene apparent ages and the results are reported in Appendix F. The isochron ages are analytically indistinguishable from the plateau ages, however, there are greater uncertainties associated with the isochron ages in comparison to the plateau ages. The final three heating steps from the JM-fine K-feldspar lie on a relatively poor isochron with a MSWD of 11.1. The isochron has a trapped initial 40 Ar/ 36 Ar value of 603±100 and an apparent age of 34.78±0.47 Ma. This age is within error of the plateau age determined for the initial heating steps and may indicate that the apparent age gradient is related to excess argon in large diffusion domains (Foster et al., 1990).

The Mill Canyon stock is intersected by a reverse-circulation drillhole on the east side of the valley. The sample of Mill Canyon stock is referred to as JM-coarse and is host

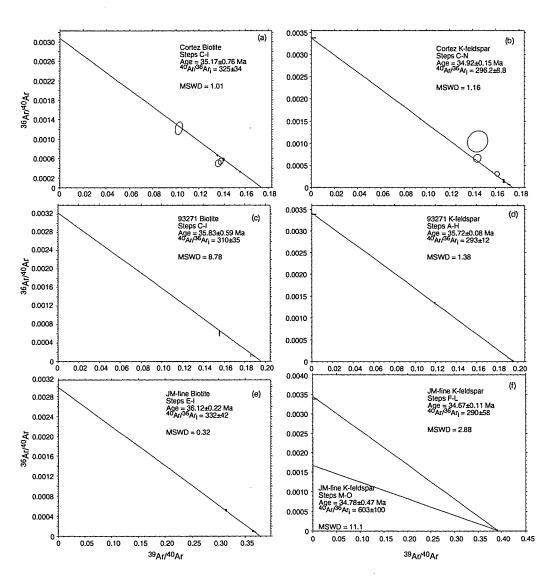


Figure 4.29 Isochron diagrams for biotite and K-feldspars from samples that yield Eocene apparent ages.

to coarse, fresh biotite and K-feldspar. The biotite has a flat age spectrum with a plateau age of 152.24±0.33 Ma, whereas the K-feldspar yields an age gradient ranging from about 50 to 150 Ma (Fig. 4.30).

Sample NB-102 is the only stage 3 vein that is host to hydrothermal sericite. Thin section shows the sericite has variable grain size with a maximum grain size of \sim 20 μ m (Fig. 4.31). In contrast, electron microprobe backscatter images show that the material used for dating comprises a mosaic of fine-grained white mica (Fig.4.32), closely associated with quartz. Using the electron microprobe in point quantitative analysis mode, the sericite was analyzed and the K_2O , Al_2O_3 and SiO_2 are reported in Table 4.5.

#	Al ₂ O ₃	P ₂ O ₅	TiO ₂	MgO	CaO	MnO	Na ₂ O	K₂O	Al ₂ O ₃	SiO ₂	Total	K ₂ O/ Al ₂ O ₃	SiO ₂ /(Al ₂ O ₃ + K ₂ O)
	4.00	0.02	0.00	0.09	0.05	0.01	0.01	1.12	4.00	70.69	76.00	0.28	13.8
2	3.08	0.02	0.03	0.08	0.04	0.02	0.02	0.76	3.08	83.81	87.85	0.25	21.8
3	1.62	0.01	0.00	0.05	0.03	0.03	0.04	0.41	1.62	94.27	96.45	0.24	46.4
4	1.81	0.01	0.01	0.04	0.04	0.01	0.00	0.44	1.81	75.39	77.78	0.25	33.5
5	2.57	0.06	0.00	0.11	0.05	0.00	0.03	0.65	2.57	94.11	97.58	0.27	29.2
6	2.82	0.00	0.01	0.07	0.05	0.00	0.02	0.75	2.82	92.35	96.07	0.29	25.9
7	3.45	0.03	0.00	0.08	0.02	0.00	0.02	1.00	3.45	82.39	87.01	0.29	18.5
9	2.18	0.00	0.03	0.08	0.05	0.00	0.03	0.49	2.18	81.06	83.94	0.27	30.3
10	2.75	0.00	0.00	0.10	0.05	0.00	0.03	0.74	2.75	82.27	85.94	0.27	23.6

Table 4.5 Electron microprobe analysis of NB-102 sericite. Note the consistent K_2O/Al_2O_3 ratios whereas the $SiO_2/(Al_2O_3+K_2O)$ ratios are variable.

The sericite displays a complex age spectrum (Fig. 4.33a). Overall there is a decrease in the apparent ages from heating steps A to J, followed by a dramatic drop in apparent age for the ensuing steps. The drop in apparent age observed for steps K through P coincides with a decrease in radiogenic yield and the lowest K/Ca ratios.

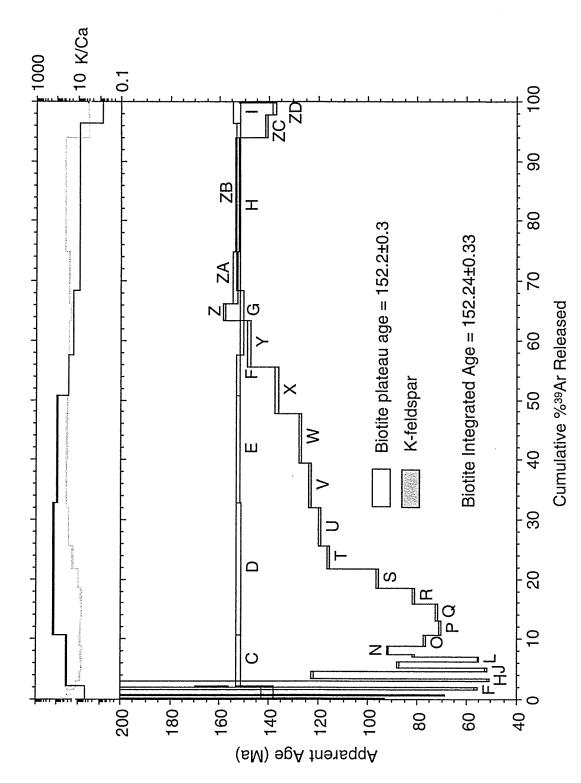


Figure 4.30 Mill Canyon stock (JM-coarse), biotite and K-feldspar age spectra. This sample was collected from the Mill Canyon stock near Cortez Gold Mines.

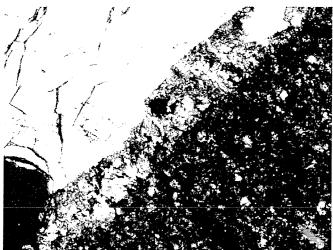


Figure 4.31 Photograph of stage 3 coarse-grained, hydrothermal sericite. The field of view is $1200 \mu m$.

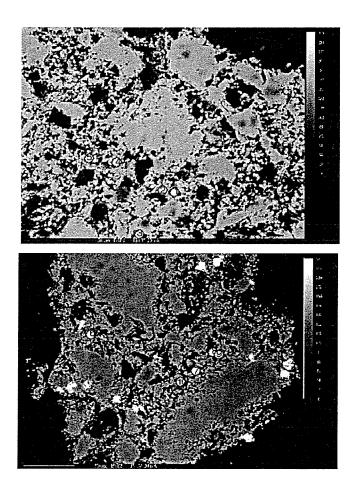


Figure 4.32 Electron microprobe image in backscatter mode of stage 3 sericite and quartz. The image shows a mosaic of fine-grained sericite and closely associated quartz. The uniform grey areas are quartz. Point analyses are indicated.

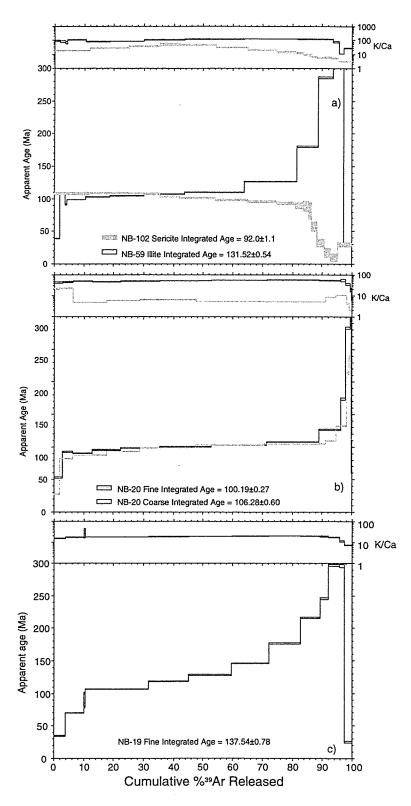


Figure 4.33 Illite age spectra from mineralized zones, argillized zones and faults.

A sample of illite from a mineralized zone (sample NB-20) was separated into a coarse and fine clay fraction. Both coarse and fine-grained fractions show discordant age spectra that steadily climb from about 90 to greater than 250 Ma (Fig. 4.33b). Both size fractions yield nearly identical results, however, the K/Ca values for the fine fraction is almost an order of magnitude lower than the coarse fraction. The radiogenic yield is 100% for nearly all the heating steps.

Illite from a very strongly argillized zone (sample NB-59), also shows a discordant age spectrum (Fig. 4.33a). The spectrum is dominated by steps with apparent ages between 100 and 110 Ma followed by a sharp rise to ages as old as 400 Ma, accompanied by a large drop at the fusion step. The radiogenic yield is almost 100% for heating steps E through N.

An argillized sample from which the clay minerals have been separated is represented by sample NB-19. The age spectrum is discordant with the first heating step being about 35 Ma followed by an age increase for ensuing steps (Fig. 4.33c). There is no plateau evident although there are several heating steps giving ages older than Cretaceous. As with the other illite spectra, the ages climb to very old values near the end of the heating steps followed by a drop for the fusion steps.

Clay Mineralogy

Clay minerals in the Fence Fault gouge and a NNW-trending fault in the Crescent Pit are illite and kaolinite in a 6:4 ratio (see Fig. 4.34). The first order illite peaks are

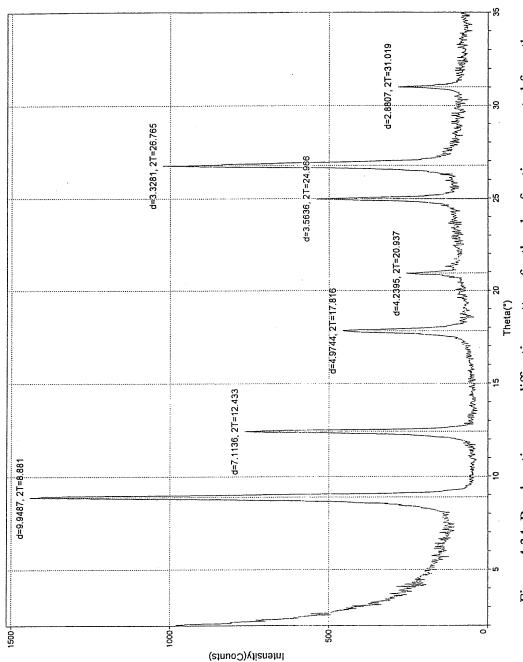


Figure 4.34 Basal section x-ray diffraction pattern for the clay fraction separated from the fault gouge of the Fence Fault. The d-spacing and intensity of the peaks correspond to illite and kaolinite in 6:4 ratio.

sharp. The clay mineralogy of the other fault gouges comprise illite with less than 5% kaolinite or smectite.

Illite is the only clay present in samples collected from mineralized zones (Fig. 4.35). Kaolinite is absent in all samples tested from mineralized zones but was detected in some unaltered samples outside the ore zones. Random mount spectral analysis shows that illite 2M₁ polytype dominates, but the presence of 1M polytype is not ruled out (see Fig. 4.36; the diagnostic spectral lines for each polytype are reported in Table 3.1). Spectral lines corresponding to 1M polytype are barely discernible, but identification of the 2M₁ polytype is conclusive.

Sixteen analyses show that the clay minerals analyzed from mineralized and/or altered SRM collected along section line 59200, and in drillhole DP104, are exclusively illite. However, in drillhole DP104, accessory kaolinite is present.

The FWHM refers to the full width of the XRD peak at half maximum intensity (Drits, et al., 1997) and is also known as the Kubler Index (Kubler, 1964). Smaller FWHM values correspond to a high degree of sample crystallinity. Samples with broader peaks and higher FWHM values are indicative of more poorly crystalline materials. The crystallinity index of illite is calculated using the FWHM of the 001 illite XRD reflection and the data is reported in Table 4.6. The FWHM of all illite analyzed ranges from 0.198 to 0.418. Comparing FWHM to alteration type (Table 4.6), the FWHM correlates with decalcification intensity ($R^2 = 0.2$) and to argillization intensity ($R^2 = 0.41$).

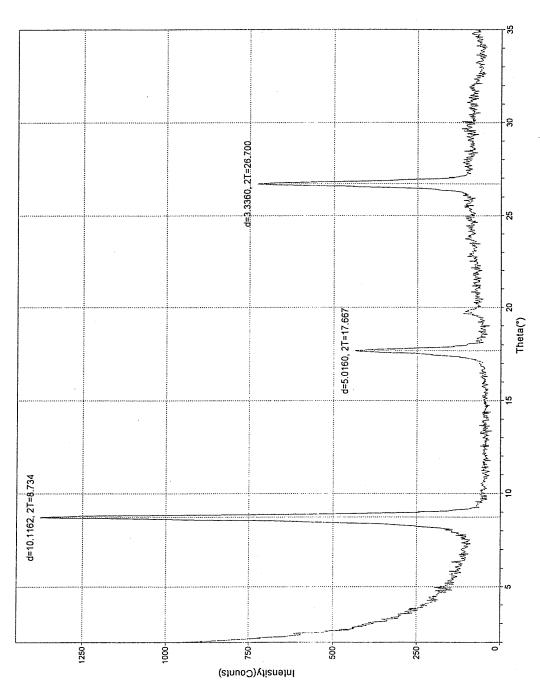


Figure 4.35 Basal section x-ray diffraction pattern for the clay fraction separated from a gold-rich ore zone (Sample NB-20). The d-spacing of these peaks correspond to illite.

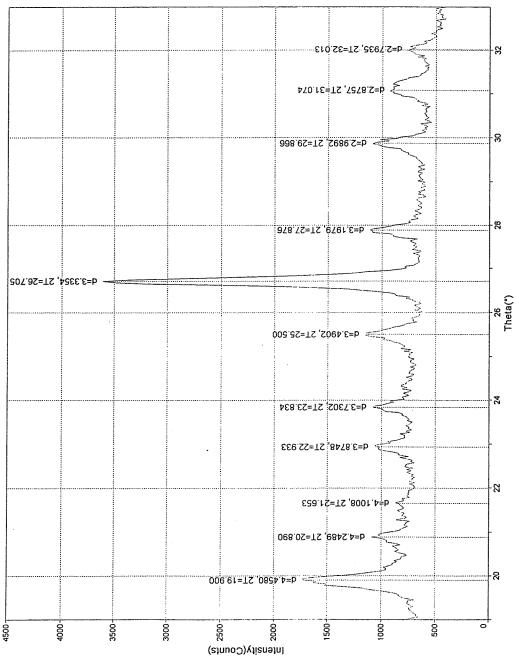


Figure 4.36 Random mount x-ray diffraction pattern for the clay fraction separated from a gold-rich ore zone (Sample NB-20). The d-spacing of these peaks correspond to the illite 2M₁ polytype.

Sample	FWHM	Decalcification	Argillization	Silicification	Fe-oxide
		intensity in %	intensity in %	intensity in %	content in %
NB-19	0.326	100	30	20	
NB-20	0.341	100	30	0	0.3
NB-57	0.355	40	30	0	0
NB-58	0.334	20	30	0	0
NB-59	0.357	100	30	0	0.05
NB-60	0.345	100	30	0	0.3
NB-62	0.289	100	20	10	0
NB-63	0.370	50	20	0	0.1
NB-65	0.305	100	30	0	1
NB-66	0.262	08	30	0	1
NB-67	0.380	100	20	0	0.3
NB-68	0.241	100	20	0	0.1
NB-69	0.298	09	25	0	0.3
NB-70	0.198	0	5	0	0
NB-73	0.248	50	20	0	0.05
NB-74	0.418	80	30	0	0
NB-75	0.210	0	15	0	0

Table 4.6 Kubler index of first order illite peaks from x-ray diffraction patterns of all samples. The various alteration in absent.

CHAPTER 5

DISCUSSION

Pressure Estimation

The trapping pressures of inclusions (Pt) are estimated several ways. Pressure can be estimated from geologic information about the burial depths assuming hydrostatic or lithostatic pressure. Pressure is estimated from isochores when Tt is known. Isochores are calculated using MACFLINCOR, inputting Tm and Th data, and gas analyses (Brown et al., 1995). However, MACFLINCOR does not allow input of all gaseous species measured by the quadrupole mass spectrometer, hence pressure estimates made with MACFLINCOR are low. The minimum Pt is most correctly estimated from the gas analyses, Th, and salinity data. The assumption is that Pt is the sum of all the volatile inclusion species partial pressures calculated at Tt (calculated pressures are in Appendix G; the formulae for Henry's Law constants is in Appendix H):

$$Pt = P_{H2O} + P_{CO2} + P_{CH4} + P_{N2} + \dots$$

Stage 1

This calcite is unusual in that it hosts clathrate that melts as high as 23.3°C. This is used to estimate a minimum Pt. Clathrate is stable above 0°C provided a confining pressure exists because methane enters the ice "cage" and holds the ice structure together above normal melting temperatures of ice. Graphs from Katz et al. (1959) show that a

pure methane clathrate can exist at 23.3°C provided the pressure exceeds 5000 psi or 360 bar (equivalent to a lithostatic load of 1.3 km).

Using the sum of the partial pressures at Th gives a total pressure of 1550 bars, equivalent to ~6 km depth if lithostatic conditions are assumed. Since boiling did not occur, 1550 bars is taken as a minimum pressure.

An alternative approach to estimating pressure is by geothermal gradient difference. Stage 1 Th's are approximately 125°C above ambient conditions. If a geothermal gradient of 25°C/km is assumed, then rock temperatures of 150°C is reached at 5 km depth.

Stage 2 white calcite

Constraints on the pressure-temperature conditions for stage 2 calcite veins are complicated by fluid inclusion decrepitation. However, a measured maximum decrepitation temperature of 276°C places a lower bound on Th. Isochores calculated using MACFLINCOR suggests a minimum Pt between 1200 and 1450 bars assuming Pt ≥276°C (see Fig. 5.1). This pressure corresponds to a lithostatic load of about 5 km.

Stage 3 sericite-quartz-calcite

The presence of Type 2 inclusions indicates fluid boiling, however there are no Type 1 inclusions with similar Th values. Rather, a 100° C difference in the homogenization temperatures is measured between Type 1 and Type 2 fluid inclusions. Fluid inclusion observations and gas analysis indicate there is a range in CO_2/H_2O ratios in stage 3 Type 1 inclusions hosted in quartz. Fluid boiling occurs when $P_{H2O} + P_{CO2} + P_{CH4} + ...$ exceed the

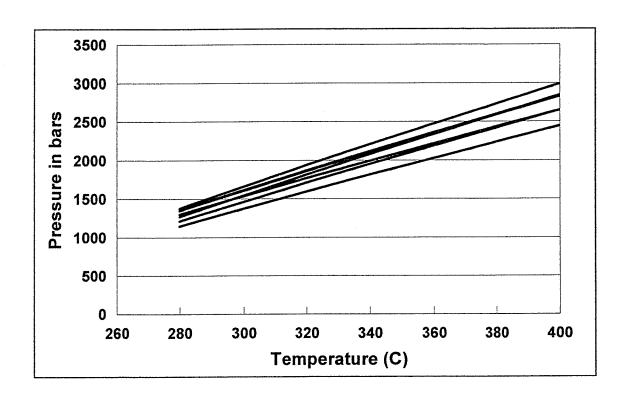


Figure 5.1 Isochore plot for stage 2 white calcite.

confining pressure (Pc). Assuming a near constant Pt and Tt, boiling would occur when fluids were most charged with gaseous species. During times of low gas contents, fluid pressures would be <Pc, and Th measurements will yield a temperature <Tt. Another possibility is that Type 2 inclusions reflect injection of a CO₂-dominated vapor into ore fluid. Some but not all of the CO₂ dissolved in the ore fluids as the low density vapor phase moved quickly upward through the ore solution. To test the idea that Type 1 and Type 2 inclusions were trapped under similar P-T conditions, assume that Type 2 inclusions were trapped under boiling conditions when 2 phases, liquid and vapor were present, hence Th = Tt. Hence, Pt and Tt can be estimated by the crossing isochore method when fluids of differing composition were trapped under similar P-T conditions. The similarity of Type 2 inclusion Th values, and their occurrence together along fractures indicates Type 2 fluids existed during Pipeline mineralization, and are not a product of postmineralization changes in fluid inclusions. Type 2 inclusions are not the product of pinching off. They show similar Th values and all homogenize to vapor that does not agree with pinching off. Type 2 inclusions occur in all sections examined, and occur in clusters. Type 2 inclusion presence therefore suggests that for a short time during Pipeline mineralization, CO₂ increased sufficiently to induce phase separation of a carbonic phase.

Gas-corrected isochores are calculated for stage 3 vein and ore quartz geothermometry data and the results are presented in Appendix G. Type 2 fluid inclusions have calculated homogenization pressures of 1910 to 2423 bar; most data points occur around 305°C and about 2000 bar pressure (Fig. 5.2). Assuming Type 2 inclusions were trapped during phase-separation conditions, Th = Tt, and Pt can be calculated from either isochore calculation, or by the partial pressure method. MACFLINCOR calculations show Type 2

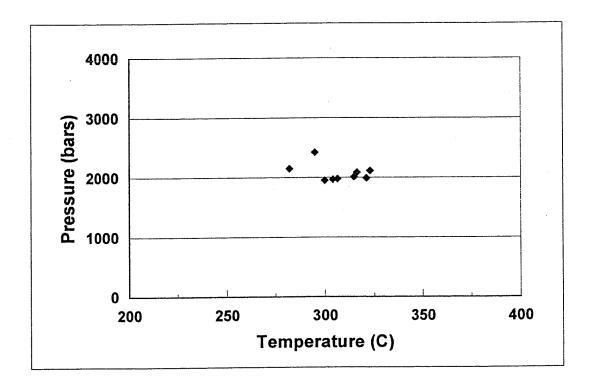


Figure 5.2 Homogenization conditions for all Type 2 inclusions hosted in quartz. Note that there is a general clustering of points in the temperature range 290° to 323°C and pressure range 1900 to 2200 bars.

inclusions comprise of about 0.71 to 0.75 mole fraction CO₂. Gas-corrected isochores of Type 1 inclusions intersect the zone defined by the Type 2 inclusions (Fig. 5.3). Hence, it shows that the assumption that Type 1 and Type 2 inclusions were trapped under similar P-T conditions is permissible. It follows then that Th measured for most Type 1 inclusions are considerably less that Tt.

Stage 3 calcite gas-corrected isochores were calculated in order to show if calcite was formed under similar P-T conditions as quartz. Stage 3 calcite isochores do not intersect stage 3 vein and ore quartz gas-corrected isochores. For any given temperature, $Pt_{calcite}$ is less than Pt_{qtz} (Fig. 5.4). The diagram shows a calcite $Pt = \sim 1200$ bars if stage 3 calcite Tt was 300°C, the stage 3 quartz Type 2 Th values.

Stage 5 calcite

Stage 5 calcite pressure estimates are poorly constrained. The open-space filling and presence of calcareous sediment suggest that calcite was deposited under hydrostatic conditions. A depth of a few 100 m is possible for stage 5 calcite.

Fluid Inclusions

Stage 1 dark calcite

Two fluid inclusion populations are hosted within the dark calcite veins.

Microthermometry shows one population whose Tm is slightly below 0°C whereas a second population exhibits clathrate melting behavior above 0°C, indicating hydrocarbon species. The highest reported fluid inclusion clathrate melting temperature for a methane-

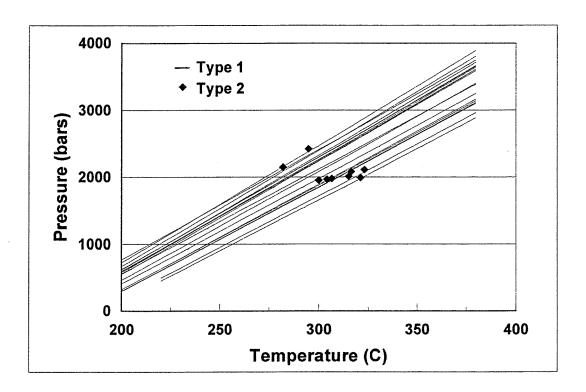


Figure 5.3 Comparison between stage 3 Type 1 isochores from sample NB-47 and all Type 2 inclusions showing that the Type 1 isochores intersect the zone in which Type 2 inclusions trapped.

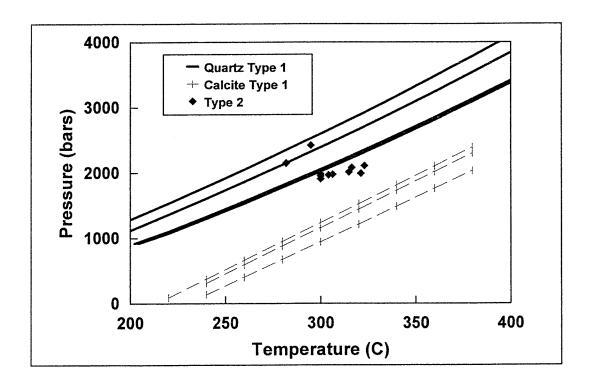


Figure 5.4 Isochore plot comparison between stage 3 quartz and calcite for the same sample, both have been corrected for the partial pressure of dissolved gases. For any given temperature, the pressure within the calcite inclusions is considerably lower.

bearing gas hydrate is 17°C (Yonaka, 1996) whereas my measurements are as high as 23.3°C. Gas analysis shows two populations of inclusions, one is methane-poor with CO₂/CH₄ >2 whereas the other population is methane-rich with CO₂/CH₄ <2 (Appendix C). It makes sense to correlate the methane-bearing clathrate inclusions identified by microthermometry with the methane-rich population recognized in the gas analysis data. Non-clathrate inclusions are correlated with the low CH₄ gas population. The N₂/Ar vs. CO₂/CH₄ plot (Fig. 4.20) shows a meteoric component. Inclusion volatiles with high N₂/Ar ratios and low CO₂/CH₄ ratios explained by the breakdown of proteins to produce both CH₄ and N₂ (Norman et al., 1999) but these generally plot in the organic field. It is possible that N₂/Ar were higher in Early Mesozoic times when these inclusions were trapped. The N₂/Ar ratio of most inclusions based on present day N₂/Ar suggest a magmatic component to the fluids. But, the data could equally well represent a hyperbolic mixing curve between a CH₄-N₂ rich pore fluid and a shallow meteoric water.

Calcite has reverse solubility, but is also deposited from hydrothermal solutions by boiling and loss of dissolved CO₂ (Heinrich et al., 1989; Simmons, 1999). There is no evidence of boiling, therefore the best explanation is that calcite deposition is a consequence of heating. The most plausible explanation is that deposition of calcite resulted from downward penetrating cool groundwaters, however, saturation of vein fluids with calcite by addition of magmatic CO₂ cannot be ruled out.

The lower N₂/Ar ratios in some inclusions agree with this interpretation. The hydrocarbon-rich aqueous and dark hydrocarbon-bearing inclusions are best explained as admixed pore hydrocarbon-rich fluids from the SRM. The Th of 145°C is above the maturation temperature of petroleum and well into the natural gas temperature window.

The suggestion of protein breakdown from gas data agrees with rising temperature.

A fracturing event allows downward flow of shallow ground water through the limestones and siltstones of the SRM. Cross cutting relationships and deformation of dark calcite veins indicate fracturing occurred before the Antler orogeny. From the estimated Tt, a minimum depth of this event is estimated at ~5 km assuming a geothermal gradient of 25°C/km and 25°C surface temperature.

Stage 2 white calcite

Similar Th_{CO2}, salinity and phase volume ratios for stage 2 inclusions indicate calcite deposition by a fluid with a chemistry remaining constant over time. Homogenization temperatures were not obtained for stage 2 calcite, but the highest measured decrepitation temperature of 276°C is a possible lower constraint on Th. However, calcite deforms easily, hence there is a possibility that stretching occurred in these high-pressured inclusions during measurement thus increasing Th values. Above 300°C, equal volumes of CO₂ and H₂O are completely miscible in low salinity fluids (Bowers and Helgeson, 1983). The homogeneous nature of inclusions suggests that the chemistry is a miscible mixture of CO2 and H2O controlled by equilibrium between fluids and wall rock, which suggests a temperature >300°C. The high density of the CO₂ phase in these inclusions confirms that the stage 3 calcite developed under relatively high pressures. If calcite decrepitated before significant stretching occurs, isochores for the white calcite give a pressure of about 1.3 kbar at 276°C. Since Th is higher than the decrepitation temperature and most likely above 300°C, 1.5 kbar is taken to be a realistic minimum pressure. Therefore, a minimum lithostatic pressure corresponding to about

6 km depth existed during precipitation of the calcite. Data from the stage 3 mineralization gives a pressure of about 1.9 to 2.2 kbar, therefore, if this pressure is the load of upper plate rocks, then the isochore can be used to constrain temperature. By applying 1.9 to 2.2 kbar pressure to the isochore of white calcite, a corresponding trapping temperature of 320° to 340°C is determined.

The CO₂/CH₄ vs. N₂/Ar discrimination diagram (Fig. 4.20) shows the white calcite has a meteoric gas signature of a separated gas phase (Norman and Moore, 1997). It could well be that ground water N₂/Ar ratios differed from the 32-54 ratio recorded today. This is consistent with the average fluid salinity of <1 eq. wt. % NaCl, of which a portion is dissolved CO₂. There is no evidence to support fluid boiling, hence deposition of calcite is considered in response to an increase in fluid temperatures.

Stage 3 quartz-sericite-calcite

The data and isochore calculations indicate that Type 1 and Type 2 inclusions were derived from a fluid of variable CO₂ content and salinity at approximately 300°C and 2 kb. The range in observed Th values can be explained with the aid of Figure 5.6 that shows phase relationships in the CO₂-NaCl-H₂O system calculated for a salinity of 8 eq. wt. % NaCl. Figure 5.5 shows that phase separation (boiling) occurs at 300°C in fluids that have CO₂ > 12 mol. %. Further it shows that inclusions trapped with less than 12 mol. % CO₂ will show a range in Th that will be proportional to amount of CO₂. The gas analyses show aqueous inclusion CO₂ ranging up to 11.5 mol. % and Type 2 inclusions with about 89 mol. % CO₂. Clathrate melting observations agree with a variable CO₂ content of inclusions. Hence, the data are consistent with a mineralizing fluid with

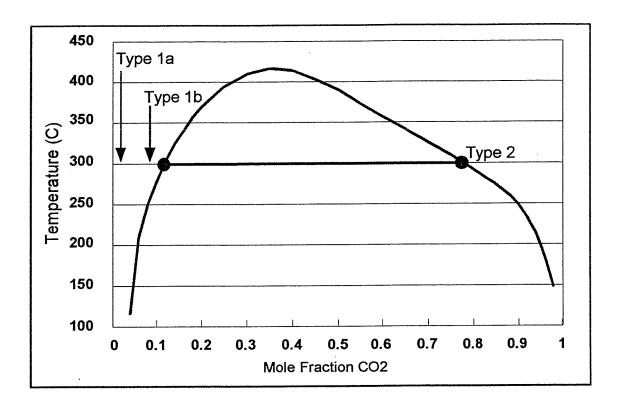


Figure 5.5 Immiscibility curve for brine (8 eq. wt. % NaCl) and CO_2 at 2000 bar. Type 1a inclusion CO_2 content is low and this group plots on the left of the diagram. Type 1b has more CO_2 and plots close to the solvus curve. Type 2 inclusion CO_2 content is high and this group plot on the right.

variable CO₂ content that boiled on rare occasions that resulted in trapping Type 2 inclusion fluids. As mentioned before, this may be the result of fluids with >12 mol. % CO₂ or admixing a CO₂-rich vapor. The reason no Type 1 inclusions with Th ~300°C were measured could be due to chance, preferential trapping of Type 2 inclusion fluids, or that Type 1 inclusions trapped during boiling events were smaller in size, and hence overlooked.

Kuehn and Rose (1995) report CO₂-vapor-filled inclusions in Carlin mineralization, similar to the Type 2, and they postulate that these CO₂-rich inclusions are the result of a throttle-controlled change from lithostatic to hydrostatic pressures. I observed Type 2 inclusions in quartz veins several tens of meters below the ore zone and observed no increase in abundance of Type 2 inclusions in mineralized gold-bearing ore quartz, which follows from Kuehn and Rose's model. The data suggests that Pt does not change during quartz deposition. A pressure of about 2 kb can only be lithostatic for a hydrostatic pressure of 2 kb would require an unreasonable depth of mineralization. Hence, lithostatic or near lithostatic conditions prevailed during quartz deposition and silicification, which implies lithostatic conditions exist during gold mineralization.

The distribution of Th values can be explained by examination of a CO₂-NaCl-H₂O phase diagram (Fig. 5.6). The behavior of a Type 1 inclusions below Tt depends on the CO₂ content and is predictable. At Tt the inclusion pressure is Pt but as the inclusion cools, an inclusion with little CO₂ will follow P-T conditions corresponding to an isochore until the aqueous phase contracts sufficiently to develop a vapor bubble. Inclusions with more than about 3 mol. % CO₂, which gas analysis indicates is most Type 1 inclusions and trapped at 300°C, will initially cool along a line defined by the isochore until the solvus is

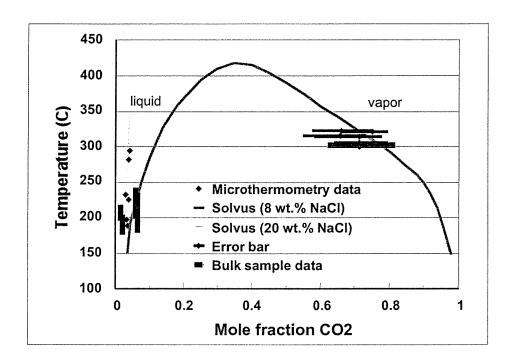


Figure 5.6 Plot of Th and CO₂ mole fraction determined from microthermometry for Type 1 (solid diamonds) and Type 2 (showing error bars). For bulk samples the Th range and gas analysis data is used to constrain a solid box to show the range for individual samples. Superimposed is the CO₂-H₂O-NaCl solvus curve calculated for 8 eq. wt. % NaCl (Bowers and Helgeson, 1985) and part of the solvus curve for 20 eq. wt. % NaCl (Takenouchi and Kennedy, 1965).

intersected. Thus, a spread of Th will reflect the CO2 content and not necessarily Tt.

Plotting stage 3 data on a CO₂-NaCl-H₂O P-T solvus diagram shows that the distribution of Th measurements obtained is consistent with trapping temperatures of ~300°C and trapping pressures of ~2 kbar. Curves are plotted for the CO₂-H₂O-NaCl system at 8 eq. wt. % NaCl (Bowers and Helgeson, 1985) and 20 eq. wt. % NaCl (Takenouchi and Kennedy, 1965). Other gaseous species are ignored due to the lack of equations of state. Type 2 fluid inclusions cluster on the vapor side of the solvus curve indicating they represent a trapped vapor phase, as might be expected by boiling a fluid. Corresponding Type 1 inclusions with ~10 mol. % CO₂ were not observed on the left side of the solvus curve but are predicted. A plausible explanation is the "wetting" effect of non-aqueous phases causing more Type 2 inclusions to be trapped than Type 1. It follows that more observations might increase the chances of observing Type 1 inclusion whose composition plots to the solvus curve at 300°C. Alternatively, the solvus curve is affected by change of salinity, presence of other gases and change of pressure.

Quartz gas analysis data give N₂/Ar ratios >500, indicating magmatic fluids (Fig. 4.21). The data supports a magmatic fluid source for Carlin-type deposits, orginally proposed by Sillitoe and Bonham (1990).

Calcite isochores and calcite inclusion gas analyses are compatible with calcite mineralization occurring under different pressures than quartz. The calcite isochores do not intersect the P-T conditions measured for the stage 3 Type 2 inclusions, nor do they intersect stage 3 quartz Type 1 inclusion isochores. Therefore, deposition under lower pressures than prevalent during quartz mineralization is indicated, assuming Tt was the same or less. Gas analysis shows stage 3 calcite depositing fluids contain a shallow

meteoric component mixed with a magmatic fluid (Fig. 4.21). Entering stage 3 veins during lithostatic conditions is impossible for meteoric fluids because lithostatic pressures imply there are no fluid conduits to the water table. However, it is possible for meteoric fluids to migrate downwards into the deposit under less than lithostatic pressure.

Meteoric fluids are expected to be saturated with calcite from contact with carbonate sediments. Deposition of calcite is explained by heating, as meteoric fluids descended, due to its reverse solubility. Veins with similar mineralogy are known to occur in other Carlin-type deposits (J. Cline, pers. comm.; Kuehn and Rose, 1995).

Stage 5 calcite

Stage 5 calcite has N₂/Ar ratios that are consistent with air saturated water ratios.

Approximately equal CO₂/CH₄ ratios are lower than meteoric waters and plots on a N₂/Ar

-CO₂/CH₄ discrimination diagram in the evolved field. The increase in abundance of stage 5 calcite peripheral to the deposit suggests that a thermal source is responsible for circulating ground water during stage 5.

Clay Minerals

The dominance of illite in rocks that display ore mineralization is attributed to hydrothermal alteration. This is supported by the correlation between illite peak FWHM and degree of alteration in comparison to unmineralized SRM. The dominance of the 2M₁ illite polytype also confirm mineralizing temperatures of 200° to 370°C (Lonker and Fitz Gerald, 1990; Weaver and Boekstra, 1984; and Yoder and Eugster, 1955).

Disappearance of kaolinite suggests that some illite formed at the expense of kaolinite.

The indicated intergrown sericite and quartz suggests that illite in the most intensely mineralized area is of hydrothermal origin. Presence of illite inherited from SRM cannot be ruled out, however, the relationship between FWHM and alteration suggests that illite crystals grew during ore mineralization.

The presence of both illite and kaolinite in the fault gouges is attributable to incorporation of clay minerals from lithologies flanking the faults. Reaction of clay minerals to a hydrothermal fluid is ruled out because this would require an acid pH that is hard to explain in carbonate-rich terrain. Downward percolating waters along the fault that could alter illite to kaolinite is possible.

Based on electron microprobe images of stage 3 sericite, the material analyzed shows varying SiO₂ content whereas the K/Al ratio remains relatively constant. The electron microprobe has the ability to resolve crystals greater than 3 µm. However, the variability of SiO₂ in the microprobe data (Table 4.5) is consistent with sericite and quartz intergrown on a micron or sub-micron scale. If the sericite comprised a mixed-layer clay or if a second discrete clay occurred, differences in the K/Al ratio would be expected. This is not true as only SiO₂ varies. A plausible explanation is that fine- grained quartz occurs intergrown with the sericite.

Argon Geochronology

Igneous rocks

Argon ages obtained from minerals derived from intrusive rocks generally record

the time that the mineral closes to radiogenic argon loss. For biotites from relatively rapidly cooled rocks, the closure temperature is ~350°C (Harrison et al., 1985). K-feldspars commonly contain variable diffusion length scales (domains) due to their complex microstructures and thus have variable argon closure temperatures. The diffusion domains generally have closure temperatures that range from ~175° to 300°C (Lovera et al., 1989). Sample 93271 biotite and K-feldspar yield analytically indistinguishable plateau ages, whereas there is a measurable discordance of ~0.8 to 1.5 Ma for mineral pairs from Cortez dikes and JM-fine (Appendix F). Also, the JM-fine biotite plateau of 36.28±0.12 Ma is older than the essentially identical biotite ages from the other two Eocene dike samples. All three Eocene dike K-feldspars yield statistically different plateau ages, and the youngest K-feldspar comes from the Mill Canyon Eocene dike (JM-fine) and gives the oldest biotite age (Appendix F). The age discordance between mineral pairs and between similar minerals from different Eocene dike samples are linked to variations in closure temperatures and/or actual age differences of the samples. However, there is no simple cooling or intrusive history that explains all the age results from these samples. For instance, if the 1.5 Ma age discordance between biotite and K-feldspar from JM-fine is related to overall cooling from ~350° to 200°C between 36.2 and 34.7 Ma, why does 93271 (South trench dike) yield concordant mineral ages? Additionally, if these rocks are emplaced at depths between ~1 to 2 km, how can protracted cooling be explained? Answers could lie in the accuracy of the mineral ages or within the geological/thermal history. It is often observed that biotites yield ages older than coexisting sanidines from ash-flow tuffs and that the sanidines provide the most accurate age estimate. Perhaps the apparent discordance between the biotite and K-feldspar pairs for these samples is

attributed to inaccuracies in the biotite ages, thus making the K-feldspars the most reliable mineral for estimating the dike ages. Using the K-feldspar plateau ages indicates that the dikes were emplaced between 35.7 to 34.7 Ma. Alternatively, if the biotite ages are correct, the dike emplacement ages may be ~36.3 Ma and the K-feldspar ages represent cooling and/or partial resetting associated with post emplacement reheating associated with multiple heating events. The age of these Eocene rocks cannot be more precise, however, all results indicate that these rocks were intruded between 34.5 to 36.2 Ma.

The Mill Canyon stock (JM-coarse) sample has a biotite apparent age of 152.24±0.33 Ma. This age is interpreted to be the time of cooling through ~350°C and suggests that it is derived from a Jurassic pluton. The K-feldspar has a much more complex age spectrum, but can be understood in terms of post-emplacement argon loss. The initial excess argon observed in the first few percent of argon released obscures the age of final argon loss, however, ages get as young as ~50 Ma. Because this sample is spatially associated with JM-fine, an Eocene dike, it is suggested that the last time for argon loss from JM-coarse K-feldspar was ~35 Ma.

During step-heating of K-feldspars for the generation of the age spectrum, diffusion coefficients are calculated based on the duration of the heating steps and the amount of released ³⁹Ar (e.g., McDougall and Harrison, 1988). The diffusion coefficients are plotted on an Arrhenius diagram from which the argon kinetic parameters (activation energy, frequency factor) are obtained. These kinetic parameters are then used to model the argon retentivity of each diffusion domain and combined with the age spectrum to obtain a quantitative thermal history for the sample (Lovera et al., 1989). The thermal history is obtained by forward modeling the age spectrum, that is, by trial and error,

thermal histories are imposed upon the kinetic parameters until a calculated age spectrum matches that of the measured age spectrum. Results of multiple diffusion domain modeling conducted on JM-coarse K-feldspar are shown in Figure 5.7. The first models assume the pluton cooled quickly in the Jurassic and the K-feldspar only lost argon at ca. 35 Ma (Fig. 5.7). The calculated age spectra show that reconciling the measured age gradient between ca. 100 to 150 Ma is not possible without too much argon loss during the initial part of the spectrum. This suggests that the thermal history that produced the measured age gradient is more complex than this model.

Considering that many gold deposits in Nevada are associated with Cretaceous magmatic systems (e.g., Groff et al., 1997) thermal models incorporating reheating at ca. 100 Ma were tried. After numerous iterations, a good fit between the measured and modeled age spectra was obtained by using two short duration thermal events, one at ca. 110 and ca. 35 Ma (Fig. 5.8). The 110-Ma event serves to produce the age gradient from about 110 to 150 Ma, while the younger event causes the argon loss measured over the initial 10% of the spectrum. It is emphasized that other thermal models can also produce the measured spectrum. For instance, slow cooling throughout the Early Cretaceous could cause argon loss similar to a discrete event at 110 Ma. Also, the late Cretaceous ages may be related to argon loss associated with cooling during this time rather than an Eocene thermal event. Thus, the calculated models require some geological insight toward presenting a geologically relevant thermal history.

An Eocene event causing argon loss from the Mill Canyon stock K-feldspar is entirely plausible due to the spatial association with the Eocene JM-fine sample. The

Figure 5.7 (a) Model and measured age spectra for JM-coarse K-feldspar, (b) thermal history. The poor fit between the measured and modeled spectra suggests a more complex thermal history is required to explain the age data.

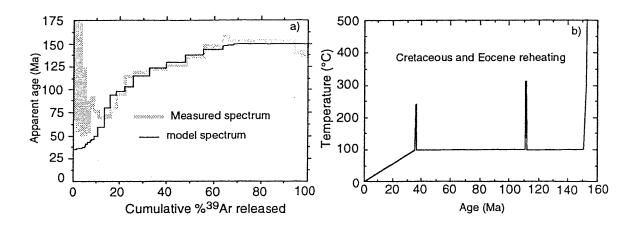


Figure 5.8 (a) Model and measured age spectra for JM-coarse K-feldspar, (b) thermal history. Using both Cretaceous and Eocene reheating events produces a calculated age spectrum which closely matches the measured spectrum.

Cretaceous event is more speculative which leads onto the discussion of the illite/sericite data.

Clay and sericite

Despite the overall complexity of the illite and sericite spectra, recorded ages for large segments of the spectra are typically 90 to 110 Ma (Fig. 4.33). The old apparent ages observed in the high-temperature heating steps are interpreted to be related to incomplete degassing of inherited clay grains. Based on the age spectra alone, it is not possible to ascertain if the ca. 100 Ma ages are associated with new clay growth or if the detrital clays are heated sufficiently to cause nearly complete argon loss. However, mineral stability fields of illite and kaolinite, based on the K+/H+ ratio, show that the fluids associated with the stage 3 veins and ore mineralization are more than capable of reacting with kaolinite to create fresh illite.

Dating of clay minerals from Carlin-type deposits have been largely unsuccessful (Arehart et al., 1993a; Folger et al., 1996). The Eocene hydrothermal event is regarded as an important gold epoch in Nevada (Teal and Jackson, 1997), and dating of adularia has provided convincing evidence for Eocene mineralization. However, in some deposits clay minerals are the only K-bearing minerals that can be used for dating by the ⁴⁰Ar/³⁹Ar method. Two factors can lead to anomalously old ⁴⁰Ar/³⁹Ar when analyzing clay. Inherited argon from nondegassed clay is observed in some age spectra. Second, clay minerals are very fine-grained, and variably crystalline, making recoil during irradiation a serious consideration. Retention of ³⁹Ar in clay minerals is dependent upon the degree of crystallinity (Dong et al., 1995) with progressive ³⁹Ar loss occurring in poorly crystalline

materials.

At Jerritt Canyon, ⁴⁰Ar/³⁹Ar dating of diagenetic mica from altered and unaltered samples was unsuccessful in recording younger hydrothermal resetting events (Folger et al., 1996). The authors argue that the failure to measure younger apparent ages is because the hydrothermal temperatures were too low (120°-260°C) or the duration of the heating interval too short to reset the isotopic system.

For stage 3 sericite (NB-102), inherited argon is not a problem due to its known hydrothermal origin at ~300°C. Similarly, the hydrothermal origin of the sericite suggests that the material dated is well-crystallized and coarse-grained enough for recoil loss not to be a concern. Electron microprobe spot analyses show that the sericite has consistent K/Al ratios but that silicon varies (Table 4.5), implying that quartz is intergrown with the sericite. Microprobe data show a fine-grained sericite closely associated with quartz (Fig. 4.32). This being the case, ³⁹Ar recoil from sericite into quartz explains the age spectrum (Fig. 4.33a). The last 20% ³⁹Ar released coincides with a decrease in radiogenic yield and the lowest K/Ca ratio. The apparent drop in K/Ca is interpreted to result in differential recoil implantation of ³⁷Ar and ³⁹Ar into the intergrown quartz. Since the recoil distance for ³⁹Ar_K is about 65% less than for ³⁷Ar_{Ca}, it follows that the K/Ca ratio decreases if recoil occurred into quartz from sericite. Assuming the recoil of ³⁹Ar out of the sample is negligible, the integrated age for sample NB-102 is the accepted age. In addition, the 92.0±0.3 Ma integrated age is within error of a 92.8±1.0 Ma K-Ar date reported for an alteration event in Gold Acres (Silberman and McKee, 1971). Therefore, the 92.0 Ma age is regarded as geologically meaningful.

The Pipeline illite samples dated give ages suggestive of Cretaceous mineralization.

The age spectra from the coarse- and fine- grained illite from sample NB-20 at Pipeline, are both discordant but have similar ages with many heating steps at ~100 Ma (Fig. 4.33). Sample NB-20 gives a Kubler Index of 0.341 and is regarded as well-crystalline, but according to the results of Dong et al. (1995), loss of ³⁹Ar by recoil is still a consideration. Dong et al. (1995) provide a formula to calculate the amount of ³⁹Ar loss due to recoil based on the illite crystallinity (Kubler Index), that being:

$$43.8 * (\Delta 2\theta) - 6.74$$

Applying a Kubler Index (measured as FWHM) of 0.341, the ³⁹Ar loss is calculated at 8%. This would indicate that the age spectrum could not correspond to an Eocene clay which recoiled ³⁹Ar to give an Early Cretaceous age. The integrated age of 100.19±0.27 Ma for fine-grained illite from NB-20 when corrected for 8% ³⁹Ar recoil loss, yields an integrated age of ~92 Ma. This recalculated age is very similar to the integrated age from stage 3 hydrothermal vein sericite. Sample NB-19 has a FWHM of 0.362 which corresponds to 9% ³⁹Ar recoil loss. The integrated age of this sample is 137.54 Ma which suggests that inherited argon could be a factor. Older ages (~300 Ma) at Jerritt Canyon are attributed to temperatures of 120°-260°C (Arehart et al., 1995) under which resetting failed to occur. However, hydrothermal temperatures at Pipeline were 300°-320°C. I attribute the ~50°C higher temperatures at Pipeline to be the reason for partial resetting of argon systematics in illite.

Summary

The thermal history of the area is summarized as follows. Intrusion of the Mill Canyon stock occurred during the Jurassic and cooled to 350°C by 152.2±0.3 Ma. The

Gold Acres stock is probably part of the same intrusive body, but has been spatially separated by faulting that predates the Early Cretaceous vein set. Hydrothermal activity during the Early Cretaceous caused alteration in the Gold Acres deposit and the same fluids developed sericite-quartz-calcite veins in the Pipeline feeder zones along with alteration and mineralization in the Pipeline deposit. During the Eocene, extension allowed dikes to intrude the crust, provide heat and partially reset the K-feldspars within the Mill Canyon stock. Fluids penetrating existing faults caused partial resetting or growth of illite hosted in fault gouges. The Eocene event is significant elsewhere in Nevada (Groff et al., 1997; C. Henry, pers. comm.; J. Cline, pers. comm.; J. Muntean, pers. comm.; Hofstra et al., 1999), however, there is no evidence linking gold mineralization to a thermal event during the Eocene at Pipeline.

Timing of Gold Mineralization

Despite the lack of adularia for ⁴⁰Ar/³⁹Ar dating purposes, constraints can be put on the timing of gold mineralization. First, hydrothermal sericite dated at 92.0 Ma is paragenetically part of the quartz calcite veins that have pyrite-bearing and gold-bearing sidewalls. Fluid inclusion data from this vein set strongly supports more than two orders of magnitude reduction in H₂S, the key compound for gold transportation as a bisulfide complex. Second, ⁴⁰Ar/³⁹Ar dating of illite collected from gold-bearing ore zones indicate either a resetting or new growth event during the Early Cretaceous (Fig. 4.33a and 4.33b). The intergrowth of Early Cretaceous illite and gold is recognized at Getchell (Cline et al., 2000) and although illite and gold intergrowth is reported at Pipeline (Foo et al., 1996), no

date is reported. Unlike northeastern Nevada where Eocene ages dominate reported gold mineralization (Hofstra et al., 1999), no evidence can be found at Pipeline to support mineral or gold deposition during the Eocene. Third, samples containing ore quartz (silicification) from the ore zones are gold-bearing.

Geochemical Constraints

Calculations of pH were performed for the two stage 3 fluid inclusion end member salinities. The pH for the moderate salinity (±8 eq. wt. % NaCl) fluid is calculated from the dissociation of carbonic acid in brine of 8 wt. % NaCl. Carbon-dioxide amount is an average value taken from gas analysis. Activity coefficients are calculated from ionic strength (I) using the Debye-Hückel equation (Helgeson and Kirkham, 1974). The pH for the moderate salinity fluid is 4.66 and is calculated as follows:

```
Given: CO<sub>2</sub> = 5.5 mole % or 2.91 Molar
NaCl = 8 eq. wt. % or 1.37 Molar
T = 300°C
P = 2000 bar
log K = -9.98338
gamma <sub>HCO3</sub> = 0.3045
```

Reaction:

on:
$$H_2CO_3 = H^+ + HCO_3^-$$

$$m_{CO2} = m_{H2CO3} + m_{HCO3}^-$$

$$m_{CO2} \cong m_{H2CO3} + m_{H2CO3}$$
 since $m_{H2CO3} >> m_{HCO3}^-$
$$\log K = -pH + \log \gamma_{HCO3}^- + \log HCO_3^- - \log m_{CO2}$$

$$pH = -\log K + \log \gamma_{HCO3}^- + \log HCO_3^- - \log m_{CO2}$$

$$= 9.98338 - 0.516 + \log HCO_3^- - \log 2.91$$

Since
$$H^+ = HCO_3^-$$

Then $\log HCO_3^- = -pH - \log \gamma_{H^+}$
 $2 pH = 9.98338 - 0.516 - (-0.325) - 0.464$
 $pH = 4.66$

A different approach is taken for the hypersaline fluid and is based on the equilibrium between carbonic acid, calcium ions, calcite and pH. The CO_2 value was obtained by averaging gas analyses, Ca^{++} is from fluid inclusion Tm data. Ionic strength is assumed to be = 4 based on salinity measurements and γ activity coefficients were determined using the Debye-Hückel equation.

Given:
$$CO_2$$
 = 0.767 mol. % or 0.422 Molar Ca = 1.01 Molar T = 300°C P = 2000 bar $Ca = -9.538$ $Ca = -9.538$

Reaction:

$$H_2CO_3 + Ca^{2+} = CaCO_3 + 2H^+$$

 $\log K = -2 \text{ pH} - \log a_{Ca2+} - \log m_{CO2}$
 $2 \text{ pH} = -\log K - \log \gamma_{Ca2+} - \log m_{Ca2+} - \log m_{Co2}$
 $= 9.538 - \log 0.0132 - \log 1.01 - \log 0.422$
 $= 11.788$
 $pH = 5.89$

The hypothesis that acidic hydrothermal fluids react with the limestones in Carlin deposits to cause decalcification is proposed by Kuehn (1989) and Bakken (1990). I, therefore, propose that the moderate salinity, high-CO₂ fluid is the source fluid that entered the deposit and caused decarbonation. Calculations show that this fluid would dissolve about

1.35 moles of CaCO₃ per kg of solution. This would increase fluid "salinity" to about 20 eq. wt. % NaCl, increasing Ca⁺⁺ to about that of Na⁺, increasing HCO₃⁻ in solution. This remarkably agrees with my data indicating the 15 to 25% salinity fluid that has Ca>Na and elevated HCO₃⁻.

Gold solubility calculations were performed using thermodynamic data drawn from SUPCRT92 (Johnson et al., 1992) and Benning and Seward (1996). The logK value used to determine the ionization of metal gold to the Au^+ state ($Au^0 + H^+ = Au^+ + \frac{1}{2}H_2$) is taken from SUPCRT92. The solubility of the bisulfide species ($AuHS^0$ and $Au(HS)_2$) is calculated using the formulae of Benning and Seward (1996). Gaseous species that participate in the reactions include H_2 and H_2S . The fugacities of these gases are calculated knowing their concentration from the quadrupole analyses and calculating gas fugacities using Henry's Law gas constants (Appendix H). The activity coefficients are calculated as indicated above. I developed a spreadsheet to calculate gold solubility that considers all the above mentioned factors and gives the Au solubility for both $AuHS^0$ and $Au(HS)_2$ species. The spreadsheet allows parameters such as pH, salinity, gas concentration, and temperature to be varied.

Taking the pH and salinity conditions established for stage 3 quartz samples, gold solubility was calculated for individual gas analyses because H₂ and H₂S are the principle variables in calculating gold. Gold solubility for stage 3 quartz has two populations (Fig. 5.9). Samples with hypersaline inclusions (eg. NB-100) give <2 ppb solubility whereas the samples with about 8 eq. wt. % NaCl, give a range of 20 to >500 ppb gold solubility. The gold solubility in ~8 eq. wt. % fluid is consistent with an ore fluid whereas the gold solubility in the more saline fluids is consistent with a spent fluid.

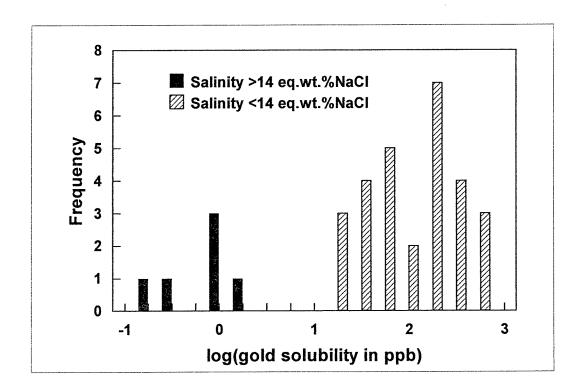


Figure 5.9 Histogram of calculated gold solubility for hypersaline (>14 eq. wt. % NaCl) and non-hypersaline (<14 eq. wt. % NaCl) stage 3 quartz inclusions. Solubility is calculated using the gas analysis of individual crushes and correcting for salinity.

Laboratory experiments (Seward, 1973) show that if all other factors, including $a_{\rm H2S}$ is maintained constant and only temperature is varied, then a maximum gold solubility around 250°C occurs (Fig. 5.10). Trapping temperature is indicated to be about 300°C, therefore a decrease in fluid temperature cannot account for Pipeline gold mineralization. Loss of H_2S by sulfidation reactions will result in gold deposition. Accepting that carbonic acid is responsible for decarbonation reactions, the strong linear relationship between fluid inclusion H_2S and CO_2 indicates that gold at Pipeline was deposited during decarbonization, presumably by sulfidation occurring concurrently with wall-rock alteration. Analysis of SRM show a ready supply of available Fe.

I question the concept that $a_{\rm H2S}$ is constant and that gold saturation occurs at 250°C. It is shown by Norman et al. (1997) that in hydrothermal systems the H₂S content of a fluid is buffered by the assemblage pyrite-magnetite-pyrrhotite. The fugacity of H₂S increases at higher temperatures. Unlike laboratory generated conditions, the $a_{\rm H2S}$ of hydrothermal systems extends the gold solubility to higher temperatures. I calculated the $a_{\rm H2S}$ at various temperatures along with the gold solubility buffered by pyrite-magnetite-pyrrhotite and take into account fugacities of gases and activities of ionic species. Figure 5.11 gives the gold solubility maxima around 350°C, maintaining constant pH = 4.66, H₂ = 0.0468 mol. %, ionic strength = 1.37. Assuming equilibrium of magnetite-pyrite-pyrrhotite or at least magnetite-pyrite, implies gold saturation can occur at temperatures below 350°C (in contrast to Fig. 5.10). However, since gold saturation occurs at 350°C then it follows that saturation at 300°C is more likely.

The H_2S content of stage 3 quartz indicates a source at T > 300 °C, and at mineralization temperature fluids had excess H_2S . Data plot as expected from a

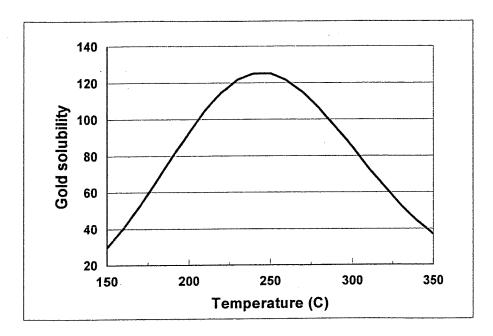


Figure 5.10 Theoretical gold solubility for the $Au(HS)^0$ complex at varying temperature based on constant salinity, H_2 , H_2S and pH. The chemistry is taken from sample NB-33; I = 1.37, $H_2 = 0.0468$ mol. %, $H_2S = 0.0133$ mol. %. Note that the solubility maxima occurs around 250°C.

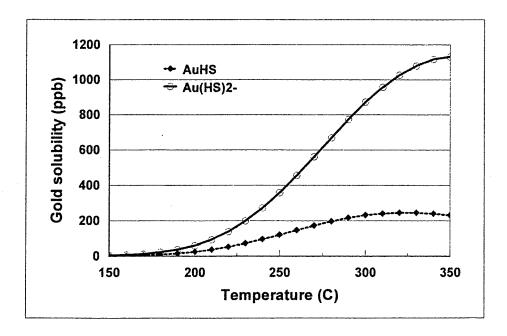


Figure 5.11 Theoretical gold solubility for the $Au(HS)^0$ and $Au(HS)_2$ complexes at varying temperature but constant salinity, H_2 and pH (chemistry is based on sample NB-33; I = 1.37, $H_2 = 0.0468$ mol. %). The H_2S content is calculated as temperature varies by assuming that fluid H_2S is buffered by magnetite-pyrite-pyrrhotite and keeping H_2 constant at 0.0468 mol. %. Note that maximum gold solubility is around 350°C.

sulfidation reaction between a hotter source that was in equilibrium with pyrite-magnetite coming into contact with cooler rocks.

Water-rock Ratios

The term water-rock ratio is used to give the ratio between the mass of hydrothermal fluid that reacted with a unit mass of rock is calculated by two methods for Pipeline ore fluids.

Consumption of CO_2 : The calculations for the consumption of CO_2 is based on following reactions:

$$H_2O + CO_2 = H_2CO_3$$
 $CaCO_3 + H_2CO_3 = Ca^{2+} + 2HCO_3^{-}$

Applying these reactions, one mole of CO_2 is required to react with one mole of calcite. Gas data shows that the average CO_2 content before reaction is about 5.5 mole % and the CO_2 in >14 eq. wt. % NaCl inclusions is about 0.7 mole %. Assuming the higher salinity fluids represent spent solutions then this translates into consumption of 4.8 mole % CO_2 (ie., 2.67 moles CO_2 per kg of fluid). The SRM contains 80 % $CaCO_3$ (Gilluly and Masursky, 1965) or about 8 moles of calcite per kg of rock. The required minimum water-rock ratio for the decarbonization reaction is therefore 8 / 2.67 \cong 3.

Production of Ca⁺⁺ from acid attack on limestone: Water-rock ratio is calculated a second way by assuming the spent fluids have about 25 eq. wt. % NaCl and a Ca/Na ratio of 1. Since fluid prior to decalcification had 8 eq. wt. % NaCl or 1.4M NaCl, and

assuming minimal Ca⁺⁺, then the spent fluid acquires about 1.4M Ca⁺⁺. The water to rock ratio is calculated by dividing the 8 moles of calculate in average SRM by the 1.4M Ca⁺⁺ in solution giving a water to rock ratio of ~6. Both methods of calculation suggest water-rock ratios of Pipeline were low.

Gold deposition: Given a water-rock ratio of about 5, and assuming ore fluids were saturated in gold, the amounts of gold deposited by Pipeline fluids is calculated. Assuming an average gold concentration of 100 ppb based on calculations illustrated in Figure 5.9, each 1 kg of ore solution would deposit about 200 μg gold. The amount of gold in 1 kg of rock would be 200 μg * 5 (W/R ratio) * 10 (factor from decarbonization) = 10 mg/kg. The published grade for Pipeline is about 7 mg/kg. This calculation further enforces the general accuracy of the W/R calculation and the calculation of gold solubility.

Source of Fluids

The fluid sources at Pipeline are meteoric fluids, evolved fluids and magmatic fluids. The N_2/Ar ratio of fluid inclusions indicate meteoric, evolved and minor magmatic fluids in all stages of calcite mineralization. Calcite depositing fluids typically have low amounts of dissolved solids and low H_2S contents. During both stage 1 and stage 2, higher N_2/Ar suggest the mineralizing event was intrusive driven. Gold mineralization at Pipeline is associated with a fluid that has $N_2/Ar > 500$ indicating a strong magmatic component. These fluids have elevated salinity and H_2S and variable amounts of CO_2 , high enough at times to boil. Only magmatic fluids reacted with wall rocks which parallels

Asise V

our understanding of magmatic fluids that are expected to be out of equilibrium with cooler country rocks.

Stage 1 calcite shows crustal sources (Fig. 4.20), one with a meteoric component, an evolved fluid and possibly a magmatic component. Stage 2 calcite has a strong meteoric signature, but the N₂/Ar ratio is slightly elevated. Quartz from the stage 3 veins has a gas signature consistent with a magmatic fluid that has evolved by interaction with crustal rocks (Fig. 4.21). The reason for the scatter in Figure 4.21 is attributed to consumption of CO₂ during decalcification that decreases the CO₂/CH₄ ratio. Gas analyses from stage 3 quartz are consistent with the magmatic source model of Sillitoe and Bonham (1990) and Berger and Bagby (1991). Stage 3 calcite analyses indicate mixing between the fluid from which the quartz was deposited and air saturated water (Fig. 4.24). The stage 5 vuggy calcite has a strong evolved gas signature with no indication of a magmatic component.

Implications for this study on genetic models for Carlin-type deposits

This study provides a consistent data set whereby field observations agree with fluid inclusion data and the chemical mass balance works. Several enigmatic aspects about Carlin-type deposits could be answered at Pipeline and include (1) the significance of carbonic fluid inclusions, (2) the hypersaline fluid inclusion chemistry and why they develop, (3) the source of gold mineralizing fluids, (4) P-T conditions during gold mineralization, (5) coeval gold mineralization and alteration, (6) an ore genesis mechanism that satisfies mass balance constraints, (7) low water-rock ratios, (8) localized alteration

haloes, and (9) the spatial relationship of Carlin-type deposits to Cretaceous or Jurassic plutons.

Magmatic activity is seen as the driving force at Pipeline and supplier of ore fluids. This is indicated by (1) N₂/Ar ratios of source fluids, (2) dating that links gold mineralization to intrusive activity and alteration, (3) a special fluid that was out of equilibrium with country rock and had a special chemistry (elevated H₂S and CO₂) not represented during other hydrothermal events, and (4) coincident with a zone of contact metamorphism around an intrusive body.

Fluid inclusion Th values ~ 200 °C for Type 1 inclusions are similar to other Carlin-type deposits. However, these inclusions require a large pressure correction as Tt is ~ 300 °C.

Carbonic fluid inclusions were reported at Carlin (Kuehn and Rose, 1995) but the presence of carbonic inclusions at Pipeline, both below and within ore zones, suggest that a pressure throttle did not exist. Changing CO₂ content adequately explains the development of carbonic inclusions even though sporadic phase separation occurred. High CO₂ is important for decalcification, the principle alteration style in Carlin-type deposits.

Low water-rock ratios are confirmed, implying limited alteration; this is compatible with limited fluids from a magmatic body. Limited fluid shows why significant amounts of gold are deposited despite no large scale meteoric water involvement. Mass balance calculations for gold deposition and decalcification are accounted for in a coeval event.

The oxidation event that replaced pyrite by Fe-oxides may not necessarily be supergene. Oxidation in Pipeline and other deposits could be magmatically driven during

the Eocene with oxidizing fluids migrating laterally rather than vertically.

Evidence to support Eocene gold mineralization is lacking at Pipeline, unlike deposits in Northeastern Nevada. Early Cretaceous gold mineralization at Pipeline is possibly an end-member example of Carlin-type deposits in the broader perspective. Cretaceous gold mineralization serves both to introduce gold and cause decalcification in one event. Eocene igneous activity was the driving mechanism behind circulating groundwater that caused oxidation of sulfide minerals, releasing gold. Gold was mobilized over short distances within Pipeline whereas in other deposits, circulating ground water leached gold from suitable host rocks and deposited gold in suitably prepared ground.

Genetic Model

The stage 1 dark petroliferous calcite veins are precursors to gold mineralization. Stage 1 calcite was deposited in fractures within the Roberts Mountains Formation prior to the Antler Orogeny. Depth of formation is estimated at 5 km and about 150°C. Hydrocarbons present within the fluid inclusions were locally derived. Fluid movement could be related to a magmatic event.

West- over east-directed movement along the Roberts Mountains thrust during the Antler orogeny resulted in emplacement of Upper Plate rocks on top of Lower Plate rocks. Sympathetic shears developed in the SRM, close to and subparallel to the Roberts Mountains thrust. One of the shears broadened at what is now the Pipeline deposit. Immediately underlying the shear planes, stage 2 calcite stockwork deposited from

meteoric fluid that descended downward in newly-formed fractures, under P-T conditions exceeding 300°C at ~6 km depth.

Emplacement of the Mill Canyon and Gold Acres stocks as one intrusive body occurred during the Jurassic, ca. 152 Ma. Subsequent NNW-trending faulting, which is either Jurassic or Cretaceous in age, displaced the pluton along the Cortez - Pipeline fault to form two separate bodies.

At 92.0±0.3 Ma a second intrusive body was emplaced in the Gold Acres stock area. Hydrothermal fluids caused sericitic alteration in parts of the Gold Acres stock and fluids also reacted with calcareous country rock to form a skarn. The emplacement of the intrusive body caused tension in the country rock and opening of fractures up which hydrothermal fluids flowed. Stage 3 sericite and quartz were deposited on the sidewalls of the veins and limited sulfidation and gold mineralization occurred. The hydrothermal fluids entered the shear zones where permeability was highest following ground preparation during the Antler orogeny. Pressure-temperature conditions that existed were 300°C and 2000 bar lithostatic. Fluctuations of CO₂ content in the ore fluids caused minor fluid immiscibility. Decalcification reactions liberated Ca++, HCO3- and minor Fe++ ions increasing the ionic strength of the fluid and is reflected as an increase of salinity reported in eq. wt. % NaCl. The Fe⁺⁺ scavenged H₂S in solution to form pyrite and in so doing dropped the solubility of gold as a bisulfide complex by two orders of magnitude. The mineralization model is summarized in Figure 5.12. Silicification occurred locally as a response to drop in temperature. Calculations give the mass of ore fluid to rock in the deposit at a maximum of 6:1. Toward the end of the event, fracturing extended outwards from the deposit. As the hydrothermal system collapsed, meteoric fluids under hydrostatic

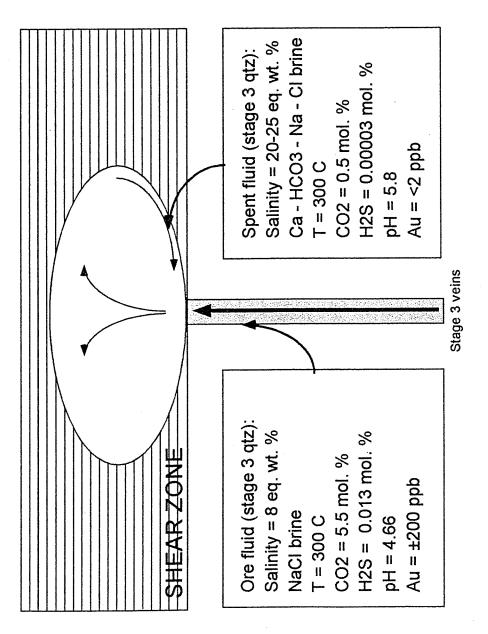


Figure 5.12 Schematic model for Pipeline gold mineralization during stage 3 showing the chemical differences between the ore fluid and the spent fluid.

conditions penetrated the country rock. Minor calcite was deposited from the fluids as they warmed up.

Stage 4 oxidation of the deposit occurred between 92 and 11 Ma, prior to development of stage 5 veins. Circulating meteoric water caused replacement of pyrite by Fe-oxides; acidic fluids were produced by the oxidation process and possibly induced further decalcification. Stage 3 calcite that may have been deposited in the deposit was destroyed. Oxidizing fluids did not penetrate above the shear zones to any extent and migration of oxidizing fluids appears to have been lateral rather than vertical. It is not known if this event was coeval with ~34-35 Ma dike emplacement in the region; the magmatic activity was potentially a heat source to drive circulating meteoric water.

Post-oxidiation, stage 5 vuggy calcite was precipitated in open fractures that occur above, within, and below the deposit. During one precipitation cycle, a calcareous sediment was deposited. Drusey calcite subsequently covered this sediment.

Basin-and-Range extension at around 11 Ma tilted the deposit by about 15°. Pipeline was nearly exposed by erosion prior to 11 Ma but was buried by basin fill sediments as Crescent Valley formed.

CHAPTER 6

CONCLUSION

My conclusions are summarized as follows:

- (1) The Pipeline deposit is the result of a single, Early Cretaceous, hydrothermal event, in which ore solutions dissolved calcite and deposited gold and pyrite. Field evidence does not exist which supports any other significant gold-bearing event. Calcite veining occurred during 2 events before stage 3 mineralization but were not gold-mineralizing events.
- (2) Gold mineralization occurs at ~300°C at 2 kbar pressure under lithostatic conditions (an equivalent of ~8 km depth).
- (3) Ore solutions with magmatic components, salinity about 8 eq. wt. % NaCl, and up to 8 mol. % CO₂ migrated up subvertical fractures into the Pipeline structural zone.

 The slightly acidic ore fluids (pH ~4.66) reacted with calcite in the Roberts

 Mountain Formation resulting in decalcification as the fluid mineralized and altered the Formation.
- (4) Gold deposition is the result of sulfidation. Iron released by decalcification reacted with H₂S to form pyrite, resulting in a breakdown of bisulfide-gold complexes, and gold deposition.
- (5) Mineralization occurs with no measurable change in fluid P or T, and mineralization resulted in spent ore solutions with up to 25 eq. wt. % NaCl salinity and >1.0 Ca/Na ratios. Calcite removal resulted in volume loss, increasing insoluble components such as silt, pyrite and clay particles. Later, under non-lithostatic

- pressures, near surface fluids enter fractures and deposit calcite.
- (6) The source fluids associated with gold mineralization have a distinctive gas signature i.e., a magmatic component and most likely originating from a skarn where the magmatic fluids reacted with carbonaceous calcareous rocks at ~400°C. The ore fluids have greater than 3 mol.% CO₂, H₂S in the order of 0.01 mol.%, 0.5 to ~1 mol.% CH₄, and N₂/Ar >500.
- (7) The N₂/Ar ratio of the ore fluid gas exceeds 500 that is consistent with a magmatic fluid component. Meteoric and evolved fluids are recognized by gas analysis and are associated with both calcite mineralization.
- (8) Timing, gas ratios, and fluid chemistry indicate gold mineralization was the product of magmatic activity which agrees with the Sillitoe and Bonham (1990) model that magmatic fluids are responsible for Carlin-type gold mineralization.
- (9) The process in which Type 2 (CO₂-dominated) inclusions form differs from the model proposed by Kuehn and Rose (1996). I see the process as a result of intermittent boiling in response to varying fluid CO₂ contents. Type 2 inclusions form once the CO₂-brine solvus is reached. P-T conditions are unchanged.
- (10) Three thermal epochs occur. The first occurs at 152 Ma and is related to the intrusion of the Mill Canyon and Gold Acres stock. The second thermal epoch occurred about 92 Ma; stage 3 gold mineralization, and alteration of Gold Acres stock are within this time frame. The third thermal epoch is represented by dikes ~34 to 35 Ma.
- (11) Dating of stage 3 vein sericite gives an integrated age of 92.0±0.3 Ma. Illite from ore zones give integrated ages that can be interpreted to be consistent with stage 3.

(12) Oxidation of the deposit occurs prior to Basin-and-Range extension and possibly during the Eocene.

REFERENCES

Arehart, G.B., Chryssoulis, S.L., and Kesler, S.E., 1993a, Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: Implications for depositional processes: ECONOMIC GEOLOGY, v. 88, p. 171-185.

Arehart, G.B., Foland, K.A., Naeser, C.W., and Kesler, S.E., 1993b, ⁴⁰Ar/³⁹Ar, K/Ar, and fission track geochronology of sediment-hosted disseminated gold deposits at the Post-Betze, Carlin Trend, northeastern Nevada: ECONOMIC GEOLOGY, v. 88, p. 622-646.

Bailey, S.W., 1980, Structures of layer silicates: *in* Brindley, G.W., and Brown, G., eds., Crystal structures of clay minerals and their X-ray identification: Mineralogical Society, United Kingdom, 123 p.

Bakken, B.M., 1990, Gold mineralization, wall rock alteration, and the geochemical evolution of the hydrothermal system in the main orebody, Carlin Mine, Nevada: Ph.D. dissertation, Stanford University, 200 p.

Bakken, B.M., and Einaudi, M.T., 1989, Volume-loss and mass transportation during hydrothermal alteration and weathering, Carlin Gold Mine, Nevada: Geological Society of America Abstracts with Programs, v. 21, no. 6, p. 295.

Benning, L.G., and Seward, T.M., 1996, Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150-400°C and 500-1500 bar: Geochimica Cosmochimica Acta, v. 60, p. 1849-1971.

Bendrick, M.B., 1989, Mass spectrometric analysis of gases in fluid inclusions from the Carlin gold deposit, Eureka County, Nevada: Masters thesis, University of Tulsa, 134 p.

Berger, B.R., and Bagby, W.C., 1991, The geology and origin of carlin-type gold deposits, *in* Foster, R.P., Gold metallogeny and exploration: Blackie and son, Glasgow, p. 210-248.

Bowers, T.S., and Helgeson, H.C., 1983, Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H₂O-CO₂-NaCl on phase relations in geologic systems: Equation of state for H₂O-CO₂-NaCl fluids at high pressures and temperatures: Geochimica Cosmochimica Acta, v. 47, p. 1247-1275.

Brown, P.E., Hageman, S.G., and Vanko, D.A., 1995, Macflincor and its application to fluids in Archean lodegold deposits: Geochimica et Cosmochimica Acta, v. 59, p. 3943-3952.

- Cline, J.S., Hofstra, A.H., Rye, R.O., and Landis, G.P., 1996, Stable isotope and fluid inclusion evidence for a deep sourced ore fluid at the Getchell, Carlin-type, gold deposit, Nevada: PACROFI VI, Abstract Volume, p. 33-35.
- Cline, J.S., Cail, T., Weaver, K., and Shigehiro, M., 2000, The Geochemistry of the Getchell Carlin-type gold deposit; Geology and ore deposits 2000: The Great Basin and Beyond, Geological Society of Nevada, Program with Abstracts, p. 42.
- Dong, H., Hall, C.M., Peacor, D.R., and Halliday, A.N., 1995, Mechanisms of Argon Retention in Clays revealed by laser ⁴⁰Ar-³⁹Ar dating, Science, v. 267, p. 355-359.
- Drits, V., Srodon, J., and Eberl, D.D., 1997, XRD measurement of mean crystalline thickness of illite and illite/smecite: Reappraisal of the Kubler Index and the Scherrer Equation, Clay and Clay Minerals, v. 45, p. 461-475.
- Drummond, S.E., 1981, Boiling and mixing of hydrothermal fluids: Chemical effects on mineral precipitation: Ph.D. Dissertation, Pennsylvania State University, 380 p.
- Folger, H.W., Snee, L.W., Mehnert, H.H., and Hofstra, A.H., 1996, Significance of K-Ar and ⁴⁰Ar/³⁹Ar dates from mica in Carlin-type gold deposits: Evidence from the Jerritt Canyon District, Nevada, *in* Coyner, A.R., and Fahey, P.L., eds., Geology and Ore Deposits of the American Cordillera: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, April 1995, p. 41-60.
- Foo, S.T., Hays, Jr., R.C., and McCormack, J.K., 1996, Geology and mineralization of the Pipeline Gold Deposit, Lander County, Nevada, *in* Coyner, A.R., and Fahey, P.L., eds., Geology and Ore Deposits of the American Cordillera: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, April 1995, p. 95-109.
- Foo, S.T., and Hebert, J.P., 1987, Geology of the Horse Canyon deposit, Eureka County, Nevada, *in* Bulk Mineable Precious Metals Deposits of the Western U.S., Reno, Nevada: 1987, Geological Society of Nevada Guidebook for Field Trips, p. 326-332.
- Foster, D.A., Harrison, T.M., Copeland, P., and Heizler, M.T., 1990. Effects of excess argon within large diffusion domains on K-feldspar age: Geochim. et Cosmochim. Acta., v. 54, p. 1699-1708.
- Fournier, R.M., 1986, Carbonate transport and deposition in the epithermal environment: Reviews in Economic Geology, v. 2, p. 63-72.
- Fournier, R.O., 1981, Application of water chemistry to geothermal exploration and reservoir engineering; *in* Ryback, L., and Muffler, L.J.P., Eds., Geothermal Systems: Principles and case histories, Wiley New York, p.109-143.

Giggenbach, W.F., 1981, Geothermal mineral equilibria: Geochim. et Cosmochim. Acta., v. 45, 393-410.

Gilluly, J., and Masursky, H., 1965, Geology of the Cortez Quadrangle Nevada: Geological Survey Bulletin 1175, 117 p.

Graney, J.R., Kesler, S.E., and Jones, H.D., 1991, Application of gas analysis of jasperoid inclusion fluid to exploration for micron gold deposits, Journal of Geochemical Exploration, v. 42, p. 91-106.

Grauch, V.J.S., Jachens, R.C., and Blakely, R.J., 1995, Evidence for a basement feature related to the Cortez disseminated gold trend and implications for regional exploration in Nevada: ECONOMIC GEOLOGY, v. 90, p. 203-207.

Groff, J.A., 1996, Geochronology and origin of auriferous fluids for the Getchell and Twin Creeks mines, Humbolt County, Nevada, Unpublished Ph.D. dissertation: Socorro, New Mexico Institute of Mining and Technology, 291 p.

Groff, J.A., Heizler, M.T., McIntosh, W.C., and Norman, D.I., 1997, ⁴⁰Ar/³⁹Ar dating and mineral paragenesis for Carlin-type gold deposits along the Getchell trend, Nevada: Evidence for Cretaceous and Tertiary gold mineralization: ECONOMIC GEOLOGY, v. 92, p. 601-622.

Harrison, T.M., Duncan, I., and McDougall, I., 1985, Diffusion of ⁴⁰Ar in biotite: temperature, pressure and compositional effects: Geochim. et Cosmochim. Acta., v. 49, p. 2461-2468.

Heinrich, C.A., Henley, R.W., and Seward, T.M., 1989, Hydrothermal Systems: Adelaide, South Australia, Australian Mineral Foundation, 74 p.

Helgeson, H.C., and Kirkham, D.H., 1974, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Hückel parameters for activity coefficients and relative partial molal properties: American Journal of Science, v. 274, p. 1199-1261.

Henley, R.W., Truesdell, A.H., and Barton, P.B., 1984, Metals in hydrothermal fluids, *in* Fluid-mineral equilibria in hydrothermal systems: Society of Economic Geology Reviews in Economic Geology, v. 1, p. 115-127.

Hofstra, A.H., Northrop, H.R., Rye, R.O., Landis, G.P., and Birak, D.J., 1988, Origin of sediment-hosted gold deposits by fluid mixing; evidence from jasperoids in the Jerritt Canyon gold district, Nevada, U.S.A.: Bicentennial gold, Geological Society of Australia Abstracts, v. 22, p. 284-289.

Hofstra, A.H., Snee, L.W., Rye, R.O., Folger, H.W., Phinisey, J.D., Loranger, R.J., Dahl, A.R., Naeser, C.W., Stein, H.J., and Lewchuk, M., 1999, Age constraints on Jerrit Canyon and other Carlin-Type deposits in the Western United States - Relationship to Mid-Tertiary extension and magmatism: Economic Geology, v. 94, p. 769-802.

Ilchik, R.P., and Barton, M.D., 1996, Physical and chemical contraints for an amagmatic origin of Carlin-type gold deposits, a source-sink approach, *in* Coyner, A.R., and Fahey, P.L., eds., Geology and ore deposits of the American Cordillera: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, April 1995, p. 687-708.

Johnson, J.W., Oelkers, E.H., and Helgeson, H.C., 1992, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0°C to 1000°C: Computers and Geosciences, v. 18, p. 899-947.

Kamali, C., (1996), Mineralogy and geochemistry of the Lone Tree mine, Humboldt County, Nevada: Unpub. M.S. thesis, New Mexico Institute of Mining and Technology.

Katz, D.L., Cornell, D., Kobayashi, R., Poetmann, F.H., Vary, J.A., Elenbaas, J.R., and Weinaug, C.F., 1959, Handbook of natural gas engineering: McGraw-Hill Book Company, New York, 802 p.

Kubler, B., 1964, Clays as indicators of metamorphism: Revue de l'Institut Français du Petrole, v. 19, p. 1093-1112.

Kuehn, C.A., 1989, Studies of disseminated gold deposits near Carlin, Nevada: evidence for a deep geologic setting of ore formation: Ph.D. dissertation, Pennsylvania State University, University Park, 418 p.

Kuehn, C.A., and Rose, A.W., 1995, Carlin gold deposits, Nevada: Origin in a deep zone of mixing between normally pressured and overpressured fluids: ECONOMIC GEOLOGY, v. 90, p. 17-36.

Lamb, J.B., 1995, A petrographic fluid inclusion study of the Purple Vein and Post/Betze orebodies, Carlin, Nevada: Masters thesis, University of Nevada, Las Vegas, 111 p.

Lisle, R.E., and Desrochers, G.J., 1988, Geology of the Hilltop Gold Deposit, Lander County, Nevada: *in* Schafer, R.W., Cooper, J.J., and Vikre, P.G., eds., Bulk mineable precious metal deposits of the Western United States, p. 101-116.

Lonker, S.W., and Fitz Gerald, J.D., 1990, Formation of coexisting 1M and 2M polytypes of illite from an active hydrothermal system: American Mineralogist, v. 75, p. 1282-1289.

Lovera, O.M., Richter, F.M., and Harrison, T.M., 1989, ⁴⁰Ar/³⁹Ar thermochronometry for slowly cooled samples having a distribution of domain sizes: J. Geophy. Res., v. 94, n. 17, p. 971-935.

McCormack, J.K., and Hays, Jr., R.C., 1996, Crescent Valley: A model for reconstruction of district mineralization in the Basin and Range, *in* Coyner, A.R., and Fahey, P.L., eds., Geology and ore deposits of the American cordillera: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, April 1995, p. 635-646.

McDougall, I., and Harrison, T.M., 1988, Geochronology and Thermochronology by the ⁴⁰Ar/³⁹Ar method. Oxford University Press, New York, 212 p.

Nolan, T.B., Merriam, C.W., Williams, J.S., 1956, The stratigraphic section in the vicinity of Eureka, Nevada: U.S.Geol. Professional Paper 276, 77 p.

Norman, D.I., and Sawkins, F.J., 1987, Analysis of gases in fluid inclusions by mass spectrometer: Chemical Geology, v. 61, p. 110-121.

Norman, D.I., and Moore, J.N., 1997, Gaseous species in fluid inclusions: a fluid tracer and indicator of fluid processes [abs.]:European current research on fluid inclusions, No. XIV, Nancy, France, Abstracts, p. 243-244.

Norman, D.I., Chomiak, B.A., and Moore, J.N., 1998, Approaching equilibrium from the hot and cold sides in the FeS₂-FeS-Fe₃O₄-H₂S-CO₂-CH₄ system in the light of fluid inclusion gas analysis, *in* Arehart, G.B., and Hulston, J.R., eds., Proceedings of the 9th International Symposium on Water-Rock Interaction: Rotterdam, A.A. Balkema, p. 565-568.

Norman, D.I., and Moore, J.N., 1999, Methane and excess N₂ and Ar in geothermal fluid inclusions: 24th Workshop on Geothermal Reservoir Engineering, California, Stanford University, Proceedings, p. 196-202.

Onstott, T.C., Miller, M.L., Ewing, R.C., Arnold, G.W., and Walsh, D.S., 1995, Recoil refinements: Implications for the ⁴⁰Ar/³⁹Ar dating technique: Geochim. et Cosmochim. Acta., v. 59, p. 1821-1834.

Prini, R.F., and Crovetto, R., 1989, Evaluation of data on solubility of simple apolar gases in light and heavy water at high temperature, J. Phys. Chem. Ref. Data, v. 18, p. 1231-1243.

Radtke, A.S., Rye, R.O., and Dickson, F.W., 1980, Geology and stable isotope studies of the Carlin gold deposit, Nevada: ECONOMIC GEOLOGY, v. 75, p. 641-672.

Roberts, R.J., 1960, Alinement of mining district in north-central Nevada, *in* Geological Survey research 1960: U.S.Geological Survey Professional Paper 400-B, p. B17-B19.

Roberts, R.J., Hotz, P.E., Gilluly, J., and Ferguson, H.G., 1958, Paleozoic rocks of north-central Nevada: American Association of Petroleum Geologists Bulletin, v. 42, p. 2813-2857.

Rye, R.O., Doe, B.R., and Wells, J.D., 1974, Stable isotope and lead isotope study of the Cortez, Nevada, gold deposit and surrounding area: Journal of Research of the U.S. Geological Survey, v. 2, n. 1, p. 13-23.

Rye, R.O., 1985, A model for the formation of carbonate-hosted disseminated gold deposits based on the geologic, fluid-inclusion, geochemical, and stable-isotope studies of the Carlin and Cortez deposits, Nevada: U.S. Geological Survey Bulletin 1646, p. 35-42.

Seedorf, E., 1991, Magmatic, extension, and ore deposits of Eocene to Holocene age in the Great Basin; mutual effects and preliminary proposed genetic relationships, *in* Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., Geology and Ore Deposits of the Great Basin: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, 1990, p. 133-178.

Seward, T.E., 1973, Thio complexes of gold and the transport of gold in hydrothermal ore solutions: Geochimica et Cosmochimica Acta, v. 37, p. 379-399.

Shepherd, T.J., and Rankin, A.H., 1998, Fluid inclusion techniques of analysis: Reviews in Economic Geology, v. 10, p. 125-149.

Shepherd, T.J., Rankin, A.H., and Alderron, D.H.M., 1985, A practical guide to fluid inclusion studies: Glasgow and London, Blackie & Son Ltd., 239 p.

Silberman, M.L., and McKee, E.H., 1971, K-Ar ages of granitic plutons in north-central Nevada: Isochron/West, no. 71-1, p. 15-32.

Sillitoe, R.H., and Bonham, H.F., 1990, Sediment-hosted gold deposits: distal products of magmatic- hydrothermal systems: Geology, v. 18, p. 157-161.

Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L., 1999, Origin of massive calcite veins in the Golden Cross low-sulphidation, epithermal Au-Ag deposit, New Zealand: ECONOMIC GEOLOGY, v. 95, p. 99-112.

Steiger, R.H., and Jager, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Letters, v. 36, p. 359-362.

Stenger, D.P., Kesler, S.E., Peltonen, D.R., and Tapper, C.J., 1998, Deposition of gold in Carlin-type deposits: The role of sulfidation and decarbonation at Twin Creeks, Nevada: ECONOMIC GEOLOGY, v. 93, p. 201-215.

Stewart, J.H., 1980, Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4, 132 p.

Takenouchi, S., and Kennedy, G.C., 1965, The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures: American Journal of Science, v. 263, p. 445-454.

Teal, L., and Jackson, M., 1997, Geologic overview of the Carlin Trend Gold Deposits and descriptions of recent deep discoveries, SEG Newsletter, October 1997, no. 31, p. 12-25.

Truesdell, A.H., 1976, GEOTHERM, a geothermometric computer program for hot spring systems: Proc. 2nd U.N. Symp. on the development of Geothermal Resources, San Francisco, 1975, v. 1, p. 831-836.

Weaver, C.E., and Boekstra, B.R., 1984, Illite-mica, *in*, Weaver, C.E., ed., Shale slate metamorphism in Southerna Appalachians: Elsevier, Amsterdam, p. 67-199.

Wells, J.D., Stoiser, L.P., and Elliot, J.E., 1969, Geology and geochemistry of the Cortez gold deposit, Nevada: ECONOMIC GEOLOGY, v. 64, p. 526-537.

Wells, J.D., Elliot, J.E., and Obradovich, J.D., 1971, Age of the igneous rocks associated with ore deposits, Cortez-Buckhorn area, Nevada: United States Geological Survey Prof. Paper 750-C, p. C127-C135.

Yoder, H.S., and Eugster, H.P., 1955, Synthetic and natural muscovites: Geochimica et Cosmochimica Acta, v. 8, p. 225-280.

Yonaka, B.E., 1994, Gold-bearing granitoids of southern Ghana, West Africa: Unpublished masters thesis: Socorro, New Mexico Institute of Mining and Technology, 181 p.

APPENDIX A

SAMPLE LIST

Sample #	Drillhole	Depth((ft) Remarks
NB-1	DP-412	604.9	Dark calcite vein with banding.
NB-2	DP-413		Last crystallizing phase of stubby coxcomb clear
			calcite on top of rhombohedral calcite.
NB-3	DP-412	305	Botriodal calcite with earlier crystallized phase
			removed.
NB-4	DP-412	393.5	Clear and white calcite with small core of light
			brown colored calcite.
NB-5	DP-413	895.5	Quartz from qtz-carbonate vein.
NB-6	DP-412	929	Calcite (pale brown) ontop of botrioidal Mn oxide
			which itself coats orange fine-grained calcite.
NB-7	DP-432		Buff carbonate sediment infilling vugs.
NB-8	DP-471	515.7	Euhedral barite occurring as thin tabular laths as
			late-stage vuggy infillings (thought to be supergene).
NB-9	DP-452	296.7	Quartz vein.
NB-10	DP-471		Barite. Vuggy infillings.
NB-11	DP-422	644.6	Calcite dogtooth spar (light brown color) from vug.
NB-12	Crescent pit		Calcite vein striking 155 degrees.
NB-13	DP-424	448	Calcite which postdates the tannish calcareous sediment.
NB-14	DP-472	450	Barite from vug.
NB-15			Southwest fault gouge zone collected 27' south of G14 on 4900 level. It trends N40E.
NB-16			N40E fault gouge zone (Fence Fault) collected at G20, 4900 level Stage 1.
NB-17			N40E fault gouge collected at G21, 4900 level
ND-17			Stage 1.
NB-18			N5W (fault gouge of Pipeline orientation collected
145-10			at G8, 4860 level, CP.
NB-19	DP-476	880	Argillization which is superimposed upon
1115 17	21 .70	000	silicification producing light fish-belley gray color.
NB-20	DP-98	486	30 percent argillization with laminae of hematite
112 20	22 70		(0.3%).
NB-21	DP-76	584.3	
NB-22	DP-471	520	Tannish strongly argillized material.
NB-23	DP-468	343.5	
NB-30	DP-504	819	Porphyroblastic scapolite in fresh to slightly
•			bleached host rock.
NB-31	DP-507	630.5	Breccia-filling which resembles concrete.

NB-32	DP-511	1200	Dark calcite vein (first calcite event).
NB-33	DP-511	1200	Younger qtz carbonate vein with initial euhedral qtz
			followed by pyrite, followed by infill of white
			calcite. Vein dips 75 degrees below horizontal.
NB-34	DP-98		White calcite vein with galena.
NB-35	DP-504	1105	Quartz carbonate vein in slightly sheared,
			moderately carbonaceous to fresh host rock. Quartz
		4440	rim with calcite core.
NB-36	DP-504	1140	Quartz vein in slightly sheared moderately
NID 27	DD 504	1402.4	carbonaceous host rock.
NB-37	DP-504		Quartz carbonate filled shear in fresh host rock.
NB-38	DP-507	746.1	Quartz carbonate vein whereby quartz appears to
			postdate the calcite; hosted within light tan moderately argillized SRM.
NB-39	DP-507	724	Calcite veins with tannish sediment filling coated by
ND-39	DP-307	124	clear drusey calcite.
NB-40	DP-520	785.8	Gray mottled calcite vein hosted in tan weakly
110-10	D1 -320	705.0	argillized SRM.
NB-41	DP-520	994.2	2" thick white quartz vein. Qtz appears to replace
1,12,11	21 020		calcite.
NB-42	DP-520	784	Two white calcite veins.
NB-43	DP-521	912	Abundant dark calcite veins.
NB-44	DP-521	1002.8	Quartz carbonate vein with euhedral qtz grown from
			the sidewall and infilled by calcite.
NB-45	DP-521	1152	Quartz filled shear hosted by carbonaceous SRM.
NB-46	DP-525		Dark calcite vein.
NB-47	DP-536	923.2	Quartz carbonate vein with euhedral qtz and core of
> T 40	DD 500	002.0	white calcite.
NB-48	DP-532	903.8	Quartz carbonate vein with euhedral qtz and infill of
NTD 40	DD 526	1007	calcite.
NB-49	DP-536	1097	Moderate silicification in strongly carbonaceous, microbrecciated, welded zone.
NB-50	DP-511	1286.2	Quartz filled shear hosted in strongly carbonaceous
ND-30	DF-311	1200.2	SRM.
NB-51	DP-532	1081	Framboidal pyrite in weakly carbonaceous SRM.
NB-52	DP-536		Brecciation and microbrecciation in strongly
112 02	21 000		carbonaceous SRM with breccia fill of sulphides
			almost totally replaced by goethite.
NB-53	DP-523	900	Goethitic fracture filling within microbrecciated host
			rock.
NB-54	DP-511	1354	Microbrecciation in strongly carbonaceous SRM
			within sheared interval.
NB-55	DP-532	1222.5	Microbrecciated shear zone with calcite
			microveining within carbonaceous SRM.

NB-56	DP-511	1313.7	Folded tiger stripe with replacement pyrite, hosted by moderately carbonaceous SRM.
NB-57	DP-104	599	Grayish tan, moderately to strongly argillized SRM.
NB-58	DP-113	476	Whiteish tan strongly argillized SRM with goethite
112 00	21 112		fracture surfaces.
NB-59	DP-113	486	Off-white strongly sericitised, totally decalcified
110-37	DI 113	100	SRM.
NB-60	DP-435	585	Moderately hematitic, strongly argillized, sheared
110-00	D1 133	303	SRM.
NB-61	DP-507	736.3	Tannish vuggy sediment.
NB-62	DP-104	494.5	Grayish brownish tan moderately argillized SRM.
NB-63	DP-104	510-520	Moderately argillized SRM with goethite fracture
MD-03	D1-10 4	J10-J20	coatings and Mn oxides.
NB-64	DP-104	520-530	Moderately argillized SRM with high Mn oxides.
NB-65	DP-104	520-530 577	Tan moderately argillized SRM.
		681	Red moderately hematitic, moderately to strongly
NB-66	DP-104	081	argillized SRM.
NB-67	DP-105	440	Weakly oxidised, moderately argillised SRM.
NB-68	DP-105	577	Weakly oxidised, moderately argillized SRM with
			high Mn oxide content.
NB-69	DP-111	680	Weakly hematitic, moderately to strongly argillized
			SRM.
NB-70	DP-111	825	Weakly argillized, limey calcareous siltstone below a
			shear zone.
NB-71	DP-111	849	Weakly hematitic, moderately argillized interbed
			within limey calcareous siltstone.
NB-72	DP-111	882	Weakly oxidized, moderately argillized SRM.
NB-73	DP-113	260	Moderately argillized SRM.
NB-74	DP-113	540	Brownish tan, moderately argillized SRM.
NB-75	DP-113	680	Brownish tan, moderately argillized SRM.
NB-76	DP-105	562	Quartz vein hosted in oxidised SRM (Qtz appears to
			postdate the oxidation).
NB-77	DP-495	710,4	7mm dark calcite vein hosted in grayish tan SRM.
NB-78	N25W		White calcite vein in Crescent pit.
NB-79	DP-428	424,5	White calcite from vug with Mn-oxide predating
			calcite and calcareous sediment postdating.
NB-80	DP-460	382	Quartz filling in vug.
NB-81	DP-412	1253	Quartz filled shear zone with styolites.
NB-82	DP-511	1171,3	Fresh 1mm-sized pentagonal-dodecahedral pyrite in
		,	gray moderate to strongly argillised SRM.
NB-84	DP-532	1508.5	Light gray flame-like calcite veining which postdate
1.201			styolites hosted in SRM.
NB-85	DP-532	1508 5	5 Creamish white calcite vein which dips 60 from
110 00	21 00 2	1000,0	horizontal and crosscuts NB-84. Core of vein
			becomes more clearer.
			opposition ittora atourar.

NB-86	DP-532	1508,5 Slightly creamish white calcite vein which postdates NB-84 and NB-85 and is weakly vuggy. Mn-oxide coating formed on sidewall prior to calcite deposition.
NB-87	Pit	Off-white, totally decalcified, very strongly argillized SRM.
NB-88	DP-633	753,5' Tannish, totally decalcified, porous, bleached SRM.
NB-89	DP-633	981,5' Fresh, weakly carbonaceous, unaltered SRM.
NB-90	DP-633	955' Recrystallized pyrite aggregate hosted in fresh SRM.
NB-91	DP-618	558,5' Very strong limonite in very strongly argillized sheared zone.
NB-92	DP-618	551' Very strong hematite with goethite and minor Mn in very strongly argillized shear zone.
NB-93	DP-618	555' Very strong Mn oxides in very strongly argillized shear zone.
NB-94	DP-633	1054' Microbreccia of silicified, weakly carbonaceous SRM filled in with darkish gray quartz. Quartz matrix is estimated at 70 percent.
NB-95	DP-602	360,5' Quartz vein with oxidised pyrite. One crystal of stibnite occurs in a vug and paragenetically postdates the quartz.
NB-96	DP-603	437' 50 percent silicification of SRM.
NB-97	DP-616	688' Very strong silicification in sheared zone.
		Silicification appears to postdate shearing.
NB-98	DP-602	365,5' 1" quartz vein parallel to bedding which has secondary calcite microveins. The sample infills a shear.
NB-99	DP-630	1385' 1" quartz vein dipping about 10 degrees to core axis and is probably related to the weak to moderate silicification in the hosting moderately carbonaceous SRM. Vein has 1mm quartz followed by 0,2mm chalcedony and then infilling by quartz.
NB-100	DP-632	855' 1" quartz carbonate vein dipping 45 degrees to core axis. Quartz is euhedral and primary.
NB-101	DP-633	1054' Microbreccia with quartz matrix within weakly carbonaceous, silicified SRM.
NB-102	DP-641	915,5' 12 mm quartz chalcedony vein dipping 160 degrees and striking subparallel to bedding (dips opposite to bedding).
NB-103	DP-641	718,5' 4cm quartz vein dipping 150 degrees which has secondary calcite (look out for secondary FI).
NB-104	DP-641	778,5' 1" quartz carbonate vein dipping 150 degrees and comprises euhedral quartz and infilling of white calcite.

NB-105	DP-617	699,5°	15mm quartz carbonate vein dipping 130 degrees.
			The calcite has a slight orange stain.
NB-106	DP-640	865'	1" quartz carbonate vein (maybe same as NB-104)
NB-107	Pit 4440 level		Quartz vein with bladed quartz collected by TGT.
			Orientation of vein is N10W dip 81NE. Later
			infilling of openspace by orpiment and rare stibnite.
NB-108	DP-451	381'	Quartz vein with boxworks after sulphide minerals.
			Euhedral quartz occurs.
NB-109	Gold Acres		Mineralized quartz vein collected by Charles
			Tarnocai.
NB-110	Gold Acres		Mineralized quartz vein collected by Charles
			Tarnocai.
NB-111	DP-640	821,2	A 4cm wide quartz-pyrite-carbonate vein dipping
		ŕ	30 degrees to core axis. Pyrite is zoned, occuring
			predominantly on one sidewall. Quartz
			paragenetically postdates pyrite whereas calcite
			postdates quartz.
NB-112	DP-640	803'	Almost black, moderately carbonaceous, laminated
1112	D1 010	005	SRM with very sparse dust pyrite and about 5
			percent fine crackle white calcite veins.
			percent into orackie winto outsite venis.

Collar positions of the drillholes from which samples were collected

Drillhole	Easting	Northing	Elevation
DP-76	102436.65	59169.39	5058.08
DP-98	102450.19	59401.40	5059.38
DP-104	102641.23	59200.41	5050.53
DP-105	102839.40	59200.41	5044.43
DP-111	103041.18	59201.73	5048.57
DP-113	102241.59	59200.17	5064.03
DP-412	102910.33	57748.36	5024.11
DP-413	103151.26	57638.23	5019.45
DP-422	104631.59	56963.63	4991.09
DP-424	104427.01	56759.90	4989.37
DP-428	104422.42	56379.58	4982.26
DP-432	103656.88	56396.23	4990.21
DP-435	104046.73	59192.16	5043.23
DP-451	103004.44	54512.01	4970.81
DP-452	103105.20	54412.42	4967.25
DP-460	103488.94	54822.62	4964.92
DP-468	103558.91	55849.50	4985.87
DP-471	103347.12	55989.31	4992.23
DP-472	103157.33	55844.15	4995.50
DP-476	104300.29	59076.04	5039.64
DP-495	104735.33	56275.19	4976.61
DP-504	101838.83	58513.54	5077.18
DP-507	103735.74	58099.83	5026.23
DP-511	102529.98	58380.88	5047.24
DP-520	103020.63	57798.63	5020.61
DP-521	103125.16	57894.38	5018.18
DP-523	103313.88	57922.78	5012.57
DP-525	103517.53	57899.45	5014.06
DP-532	103920.39	57478.13	5008.06
DP-536	103415.82	57609.83	5011.13
DP-602	103996.40	55333.13	4965.02
DP-603	104078.70	55444.07	4966.58
DP-616	104036.50	56220.16	4982.40
DP-617	103777.90	56311.69	4993.43
DP-618	103563.40	56310.61	4989.62
DP-630	103315.60	57018.26	5006.60
DP-632	102445.30	56908.01	4798.04
DP-633	102316.60	57117.33	4797.95
DP-640	102285.42	58424.38	4740.00
DP-641	101971.06	58580.52	4780.00

APPENDIX B

			L+V=L			L+V=L		CO2 Vol.
Sample	Mineral	Туре	Th	Tm(ice)	Salinity	ThCO2	TmCO2	Fraction
NB-33	Quartz	primary	188.4	-5.4	8.41			
NB-33	Quartz	primary	179.4	-5.2	8.14			
NB-33	Quartz	primary	218.7	·-				
NB-33	Quartz	primary	187.5					
NB-33	Quartz	primary	192.8					
NB-33	Quartz	primary	210.8					
NB-33	Quartz	primary	199.3					
NB-33	Quartz	primary	198.4					
NB-33	Quartz	secondary	>250			+17.8	-57.6	0.07
NB-33	Quartz	secondary	282.1	+4.7	9.44	+20.8		0.07
NB-33	Quartz	secondary	>295	+4.0	10.49	+27.5		0.07
NB-33	Quartz	primary	202.5	-4.9	7.73			
NB-33	Quartz	primary	204.5	-5.1	8			
NB-33	Calcite	primary	222.8	-1.8	3.06			
NB-33	Calcite	primary	218.7	-2	3.39			
NB-33	Calcite	primary	240	-2	3.39			
NB-33	Calcite	primary	235.3	- See	0.00			
ND-00	Calcile	primary	200.0					
Sample	Mineral	Туре	Th	Tm	Salinity			
NB-47	Quartz	primary	172.8	-6.4	9.71			
NB-47	Quartz	primary	181.7	-6.3	9.58			
NB-47	Quartz	primary	175.6	-6.4	9.71			
NB-47	Quartz	primary	174.9	-6.4	9.71			
NB-47	Quartz	primary	178.2	-6.3	9.58			
NB-47	Quartz	primary	180.6	-6.3	9.58			
NB-47	Quartz	primary	202.1	-5.1	7.96			
NB-47	Quartz	primary	203.9	-4.6	7.25			
NB-47	Quartz	primary	179.2	-5	7.82			
NB-47	Quartz	primary	177.2	-5.2	8.1			
NB-47	Quartz	primary	178.8	-5.1	7.96			
NB-47	Quartz	primary	179.6	-5.1	7.96			
NB-47	Quartz	primary	186.2	-5.2	8.1			
NB-47	Quartz	primary	173.5	-5.1	7.96			
NB-47	Quartz	primary	175.5	-5.1	7.96			
NB-47	Quartz	?	194.1	-4.9	7.68			
NB-47	Quartz	?	195.6	-4.5	7.105			
NB-47	Quartz	secondary	168.6	-3	4.86			
NB-47	Quartz	?	188.9	-4	6.37			
NB-47	Quartz	?	194	-4.4	6.96			
NB-47	Quartz	?	195.3	-4.6	7.25			
NB-47	Calcite	primary	176.8	-3.8	6.08			
NB-47	Calcite	primary	168.4	-3	4.86			
NB-47	Calcite	primary	168.7	-3.3	5.32			
NB-47	Calcite	primary	169.2	-3	4.86			
NB-47	Calcite	primary	167.4	-3.4	5.47			
NB-47	Calcite	primary	155.2	-3	4.86			
NB-47	Quartz	?	194	-4.4	6.96			
NB-47	Quartz	· ?	195.3	-4.6	7.25			
NB-47	Calcite	: primary	176.8	-3.8	6.08			
NB-47	Calcite	primary	168.4	-3.0	4.86			
NB-47	Calcite	primary	168.7	-3.3	5.32			
IND-41	vaivile	primary	100.7	-0.0	U.UZ			

Sampl	le Mineral	Туре	Th	Tm	Salinity			
NB-47	Calcite	primary	169.2	-3	4.86			
NB-47	Calcite	primary	167.4	-3.4	5.47			
NB-47	Calcite	primary	155.2	-3	4.86			
			•	s) Tm(Celcius)	Salinity			
NB-99		primary	235.4					
N B-99	Quartz	primary	220.3					
NB-99	Quartz	primary	242.3	-3.8	6.16			
NB-99	Quartz	primary	238.7					
NB-99	Quartz	primary	237.2	-5.6	8.68			
NB-99	Quartz	primary	217.1	-4.4	7.02			
NB-99	Quartz	primary	231.6					
NB-99	Quartz	primary	239.5					
NB-99	Quartz	primary	224.1	-4.2	6.74			
NB-99	Quartz	primary	228.2					
NB-99	Quartz	primary	220.6					
NB-99	Quartz	primary	199.3	<i>-</i> 5.9	9.08			
NB-99	Quartz	primary	198	-5.2	8.14			
NB-99	Quartz	primary	206.3	-4.7	7.45			
NB-99	Quartz	primary	228.3					
NB-99		primary	222.8	-3.5	5.71	Near edge		
NB-99	Quartz	primary	203.5	-3.3	5.41	Near edge		
NB-99	Quartz	primary	205.2	-4.3	6.88	Near edge		
NB-99	Quartz	primary	216.9	-3.7	6.01	Near edge		
NB-99		primary	240.6	+5.8	6.88	Near edge		
NB-99		primary	218.5	+7.8	3.87	Near edge		
NB-99		primary	226	-4.9	7.73	Near edge		
NB-99		primary	204.1			At edge		
NB-99		primary	229.8	+4.8	8.28	At edge		
NB-99		primary	208.8	+7.3	4.65	At edge		
NB-99		primary	199.2			At edge		
NB-99		primary	193.5	+6.2	6.3	At edge		
NB-99		primary	142.2	+1.2		Ū		
NB-99		primary	141.5	+0.8				
		,						
		Туре	Th(Celcius	s) Tm(Celcius)	Eq.wt.%NaC	Lco2	Tm co2	Ca/Na
NB-10	0 Quartz	Secondary	162	-11.4	15.37			
NB-10	0 Quartz	Secondary	165.1	-11.3	15.27			
NB-10	0 Quartz	Secondary	194.4	-11.9	15.86			
NB-10	0 Quartz	Secondary	171.9	-11.4	15.37			
NB-10	0 Quartz	Secondary	189.3	-12	15.96			
NB-10		Secondary	181.4	-11.9	15.86	+16 to +1	8	
NB-10		Primary	211.5	-21.1	23.11			
NB-10		Primary	196.6	-19.4	21.96			
NB-10		Primary	192.7	-26	25.66			1.4
NB-10		Primary	218.5	-23.4				0.55
NB-10		Primary	197.8	-23.7	24.5			0.65
NB-10		Primary	207.4	-25.1	25.26			1.2
		•						

				Th	Tm(ice)	Salinity			
1	NB-102	Quartz	Primary	265.5	-4.9 [`]	7.73			
	NB-102	Quartz	Primary	224.4	-4.9	7.73			
	NB-102	Quartz	Primary	253.2	-4.6	7.31			
	NB-102	Quartz	Primary	234.5	+5.4				
	NB-102	Quartz	Primary	237.8	+7.5	ice metasta	ability?		
	NB-102	Quartz	Primary	215.4	>10	ice metasta	-		
	NB-102	Quartz	Primary	217.1	>10	ice metasta	•		
	NB-102	Quartz	Primary	213.8	+7.1	ice metasta	-		
•	10 102	a dana							
				L+V=L			L+V=L		
				Th	Tm(ice)	Salinity	ThCO2	TmCO2	CO2 Vol.
1	NB-104	Quartz		229.3	(,				Fraction
	NB-104	Quartz		>180	+7.9				
	NB-104	Quartz		211.6	+7.1				
	NB-104	Quartz		>200	+4.6				
	NB-104	Quartz		196.5	-5.3	8.28			
	NB-104	Quartz		204.6	-5.2	8.14			
	NB-104	Quartz		198.1	-5.2	8.14			
	NB-104	Quartz		223.6	+7.0	5.68			
	NB-104	Quartz		>250			+23.4	-58.8	0.9
	NB-104	Quartz		>300	+7.3	5.15	+19.6	-59.7	0.88
	NB-104	Quartz		>300	+7.2	5.33	+20.4	-59.7	0.88
	NB-104	Quartz		304.2	+7.6	4.62	+15.8	-57.7	0.88
	NB-104	Quartz		306.4	+8.5	2.96	+17.8	-57.6	0.88
	NB-104	Quartz		321.1	+8.2	3.52	+26.7	-58.2	0.9
	NB-104	Quartz		323	+7.8	4.26	+23.2	-58.3	0.85
	NB-104	Quartz		316.3	+8.2	3.52	+23.0	-58.2	0.85
	NB-104	Quartz		314.9	+8.3	3.33	+23.4	-58.2	0.88
•	10 101	Qual az		011.0	0.0	0.00			5.55
					/: \	0 " "	T 000 !		
_				Th	Tm(ice)	Salinity	ThCO2 to	Liq	
	VB-106	Quartz		206.9	-6.2	9.47			
	VB-106	Quartz		211.8					
	NB-106	Quartz		211.3					
	NB-106	Quartz		187.9	-6.2	9.47			
	NB-106	Quartz		191.3	-6.1	9.34			
	NB -106	Quartz		>300	+7.6		+12.9		
	VB-106	Quartz		197.8	-6	9.21			
	NB-106	Quartz		190.7	-8.1	11.81			
	VB-106	Quartz		179.5	-7.4	10.98			
	VB-106	Quartz		181.3	-6.5	9.86			
	NB-106	Quartz		195.9	-6.6	9.98			
	NB-106	Quartz		204.2	-6.8	10.24			
	NB-106	Calcite		204.7	0	ice metasta	-		
	NB-106	Calcite		172.8	-0.1	ice metasta	•		
1	NB-106	Calcite		184.2	0	ice metasta	ability?		

NB-107 NB-107 NB-107 NB-107 NB-107 NB-107 NB-107 NB-107 NB-107 NB-107 NB-107 NB-107	Quartz		L+V=L Th 192.9 233.1 225.2 224 310 310 221.6 310 227.8 220.1 214.7 210.5 203.7	Tm(ice) +7.3 +7.1 +7.2 +7.3 +7.2 +6.8 +7.1 +7.2 +7.4 +7.9 +7.8 +6.3 +7.9	Salinity 5.154 5.507 5.331 5.154 5.331 6.028 5.507 5.331 4.976 4.074 4.256 6.878 4.074	L+V=L ThCO2 23 23 23 23 24.1 23.8 23 25.8 26.8 23 23 23 23	TmCO2	CO2 Vol. Fraction 0.05 0.05 0.05 0.04 0.4 0.05 0.35 0.07 0.08 0.07 0.06
NB-107	Quartz		227.9	+7.8	4.256	23		0.06
NB-107	Quartz		308.7	+7.3	5.154	24.9		0.45
NB-107 NB-107	Quartz Quartz		312.8 310.3	+7.3 +7.3	5.154 5.154	25.2 23.8		0.45 0.5
14D-107	Qualtz		310.3	₹7.5	J. 154	23.0		0.0
			L+V=L Th	Tm(ice)	Salinity	L+V=L ThCO2	TmCO2	CO2 Vol. Fraction
NB-84	Calcite		>267	+9.6	0.825	+24		0.45
NB-84	Calcite		>267	+9.6	0.825	+23.2		0.5
NB-84	Calcite		>267			+23.4		0.5
NB-84	Calcite		>267			+23.2		0.55
NB-84	Calcite		>267			+25.5		0.55
NB-84	Calcite		>267			+25.4		0.45
NB-84	Calcite		>267			+25.3		0.5
NB-84	Calcite		>267	+10.1		+24.0	-61.6	0.45
NB-84	Calcite		>267	+11.5	0.005	+23.2		0.5
NB-84	Calcite		>267 >267	+9.6	0.825	+23.4 +23.2		0.5 0.55
NB-84	Calcite		>267			TZ3.Z		0.55
			Th	Tm	Salinity			
NB-44	Quartz	primary	177.2	-7.2	10.73			
NB-44	Quartz	primary	185	<i>-</i> 5.8	8.95			
NB-44	Quartz	primary	198	-5.7	8.81			
NB-44	Quartz	primary	178.5	-5.5 5.5	8.55			
NB-44	Quartz	primary	187.1	-5.5 6.1	8.55 9.34			
NB-44	Quartz	primary	188.7 Th	-6.1 Tm	9.34 Salinity			
NB-1	Calcite		14C E	-0.4				
NB-1	Calcite		146.5	-1.2 -1.1				
NB-1 NB-1	Calcite Calcite		142.3 150.3	-0.6				
NB-1	Calcite		150.5	-0.8 -0.8				
NB-1	Calcite		149.1	+1.8				
NB-1	Calcite		152	-0.4				
NB-1	Calcite		124.2	+2.9				
NB-1	Calcite		145.1	+12.9				
NB-1	Calcite		145.5	+21.1				
NB-1	Calcite		149	+23.3				

APPENDIX C

805	0.00018	0.00066	0.00077	0.00843	0.00083	0.000087	0.00027	0.00015	0.000015	0.00011	0.00017	802	0.00002	0.00009	0.00002	0.00006	0.00002	0.00003	0.00000	802	0.000015	0.000012	0.00002	0.000029	0.000097	0.000026	0.000039
005	0.80111	0.80574	2.77804	3.94778	5.07990	2.39477	1.21875	1.10570	1.86724	1.24579	3.38072	005	0.12347	0.08138	0.12400	0.13069	0.10300	0.09567	0.08439	005	0.277	0.205	0.404	0.495	0.477	0.531	0.454
CnHm	0.00442	0.0074	0.00663	0.01461	0.01092	0.00202	0.01888	0.0189	0.0164	0.01703	0.01414	CnHm	0.00072	0.00022	0.00039	0.00129	0.00116	0.00091	0.00108	CnHm	0.000188	0.000294	0.000468	0.000455	0.00116	0.000535	0.000561
Ar	0.00593	0.0108	0.00728	0.01584	0.00413	0.00224	0.00045	0.00045	0.00034	0.00055	0.00056	Ą	0.00596	0.00548	0.00691	0.00909	0.00692	0.00620	0.00905	Ar	0.00017	0.000149	0.000011	0.000011	0.000251	0.000028	0.000028
H2S	0.00068	0.00078	0.00054	0.00602	0.00496	0.00039	0.000078	0.0000094	0.00011	0.00015	0.00024	H2S	0.00044	0.00024	0.00021	0.00048	0.00041	0.00033	0.00048	H2S	0.000167	0.000199	0.000178	0.000126	0.000592	0.000169	0.000203
05	0.02961	0.03573	0.03568	0.04441	0.02958	0.01686	0.00879	0.00795	0.01218	0.01156	0.01241	05	0.08691	0.06481	0.08055	0.12999	0.08646	0.07835	0.13154	05	0.0142	0.0109	0.0104	0.005573	0.0199	0.0137	0.016
NZ	1,23136	1.00020	0.46982	0.69156	0.30190	0.22068	0.15589	0.11472	0.20251	0.30637	0.20537	NZ	0.49755	0.37563	0.51746	0.45362	0.38641	0.38659	0.63696	N2	0.00636	0.0104	0.00366	0	0.0266	0.00601	0.008
H20	97.4952	97.6763	96.2122	95.0161	93.7667	97.1353	95.4432	96,4221	95.3099	95,4298	93.5757	H20	99.28357	99.44859	99.18751	99.04573	99.23124	99.29899	99.03522	H20	99.693	99.736	99.546	99.461	99.368	99.411	99.473
CH4	0.08936	0.24266	0.20335	0.09922	0.43028	0.09415	2.21812	1.73944	1.98626	2.32866	1.96818	CH4	0.00000	0.02210	0.08037	0.22775	0.18327	0.13182	0.10093	CH4	0.00898	0.0353	0.0342	0.0349	0.102	0.0368	0.0469
완	0	0	0.03744	0.03093	0	0.00665	0.00062	0.00034	0	0.00369	0.00499	£	0.00136	0.00146	0.00258	0.00130	0.00111	0.00111	0.00035	Ŧ	0	0.00148	0.000553	0.00247	0.0041	0.000787	0.00138
오	0.32372	0.19850	0.23582	0.10213	0.36280	0.12228	0.92900	0.58566	0.59875	0.64801	0.83096	H2	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.00000	7	0	0	0	0	0	0	0
Ar Max.												Ar Max.	0.00596	0.00548	0.00691	60600.0	0.00692	0.00620	0.00905	Ar Max.							
Counts												Counts	3914970	2179129	2059691	4159612	7386391	8903441	6536523	Counts							
Crush	5390A	5390B	5390C	5390D	5390E	5390G	5390K	5390L	5390M	5390N	53900	Crush	5745A	5745B	5745C	5745D	5745E	5745F	5745J	Crush	5748A	5748B	5748C	5748D	5748E	5748F	5748G
Mineral	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite		Calc Sed	Barite	Barite	Barite	Barite	Barite	Barite	Barite	Barite						
Sample	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1	NB-1		NB-7	NB-10	NB-10	NB-10	NB-10	NB-10	NB-10	NB-10	NB-10						

				,																									
802	0.000000	0.00000.0	0.000000	0.000000	0.000000	0.000017	0.000000	0.000014	0.000020	0.000001	0.000000	0.00000	0.000000	0.000000	802	0.000026	0.000037	0.000000	0.000043	0.000041	0.000049	0.000000	0.000000	0.000043	0.000041	0.000000	0.000025	0.000022	0.000022
005	5.299741	3.081042	5.502327	3.199183	4.178830	8,902298	4.700921	6.512652	7.313306	3.660598	4.709964	4.339557	4.364590	5,106990	005	1.602262	5.119340	4.186436	4.293973	4.552555	4.507300	4.440290	3.287914	3.065904	2.796031	2.607905	2.875999	2.991056	2.756904
CnHm	0.008014	0.004875	0.008470	0.004816	0.006513	0.014108	0.007142	0.010518	0.011527	0,005856	0.007414	0.006816	0.007353	0.008930	CnHm	0.003206	0.009394	0.007256	0.006945	0.007582	0.008131	0.011735	0.008731	0.007083	0.005719	0.005325	0.006040	0.005648	0.005558
Ą	0.002979	0.002013	0.002927	0.002829	0.002802	0.004804	0.003236	0.003906	0.005161	0.003299	0.003546	0.003215	0.003486	0.003955	Ar	0.000211	0.000225	0.000174	0.000053	0.000182	0.000195	0.000282	0.000210	0.000170	0.000137	0.000128	0.000145	0.000136	0.000133
H2S	0.001702	0.001185	0.001540	0.001741	0.001963	0.004001	0.001934	0.002541	0.002624	0.001255	0.001685	0.001337	0.001032	0.001582	H2S	0.003361	0.008294	0.007858	0.009302	0.009158	0.008045	0.008257	0.006534	0,005605	0.005108	0.004980	0.004475	0.005177	0.004344
05	0.001002	0.000686	0.000651	0.002591	0.001820	0.002263	0.004813	0.000736	0.008786	0.004875	0.001798	0.002625	0.003095	0.004845	05	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000.0	0.00000.0	0.000000	0.00000
N2	0.960733	0.682456	0.989446	0.933269	0.935484	1.429271	1.216143	1.146448	1.434950	1.040955	1.192998	1.119840	1.187687	1.269948	N2	0.199747	0.056265	0.112557	0.141715	0.164915	0.175260	0.183968	0.080600	0.146570	0.145759	0.112259	0.117387	0.103302	0.106405
H20	93.484450	96.006340	93.306340	95.658920	94.718470	89.385830	93.872180	92.055160	90.965880	95.135150	93.905750	94.351360	94.134900	93.284680	H20	98.019370	94,485210	95,443850	95,346900	95.004620	95.078510	94.545080	96.174320	96.525000	96.828950	97.010150	96.781370	96.689320	96.896220
CH4	0.225401	0.195842	0.185764	0.112740	0.153047	0.254422	0.192169	0.266619	0.255714	0.147167	0.175553	0.173974	0.297020	0.317668	CH4	0.171363	0.281784	0.216828	0.200303	0.261061	0.222561	0.582108	0.387792	0.248982	0.216917	0.258923	0.213268	0.205482	0,230537
升	0.000227	0.000887	0.002543	0.000907	0.001081	0.002990	0.001454	0.001413	0.002037	0.000842	0.001295	0.001283	0.000830	0.001422	Ŧ	0.000448	0.001069	0.00000	0.000771	0.000062	0.000143	0.00000	0.00000	0.000811	0.001476	0.00000.0	0.001430	0.000000	0.000000
H2	0.015753	0.024688	0.000000	0.083008	0.00000	0.00000	0.000000	0.00000.0	0.000000	0.00000	0.00000	0.00000	0.00000.0	0.00000	皇	0.00000	0.038605	0.025215	0.00000	0.00000	0.00000	0.228558	0.054117	0.00000	0.00000	0.000452	0.000000	0.00000.0	0.000000
Ar max.	0.002979	0.002013	0.002927	0.002829	0.002802	0.004804	0.003236	0.003906	0.005161	0.003299	0.003546	0.003215	0.003486	0.003955	Ar Max.	0.000211	0.000225	0.000174	0.000053	0.000182	0.000195	0.000282	0.000210	0.000170	0.000137	0.000128	0.000145	0.000136	0.000133
Counts	3860696	2966724	4879834	1566848	4204847	4976033	5248198	9106990	5466009	6568289	7915872	9851422	4866642	5659156	Counts	13368400	4769098	3855259	6310762	9487064	10030760	3650279	6676615	15497420	15090220	9693801	12888560	9260945	9795414
Crush	5848A	5848B	5848C	5848D	5848	5848F	5848J	5848K	5848L	5848M	5848N	58480	5848P	5848Q	Crush	5831A	5831B	5831C	5831D	5831E	5831F	5831J	5831K	5831L	5831M	5831N	58310	5831P	5831Q
															Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-32	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36	NB-36

202	029	022	0	025	016	018	00	012	910	900	900	021	600	970	9036	910	022	025		S02	183	2003	5,000014	020	0021	0.000039	0.000032	0.000040	0.000093	0.00000
Ø	0.000029	0.000022		0.000025	0.000016	0.000018	0.000001	0.000012	0.000018	0.000006	0.000005	0.000021	0.00000	0.000028	0.000036	0.000018	0.000022	0,000025			0.000183	0.000003	_	0.000020	0.000021		_			
C02	1.7	1.94	2.455	3.02	1.943	2,226	2.696	3.28	2.41	2.23	2.6	2.207	2.31	2.246	2.35	1.957	2.81	3.43		005	5.854364	4.805873	4.560764	2.003143	3.907521	4.160423	7.153229	6.029544	7.970525	26.306210
CnHm	0.0015	0.00221	0.00204	0.00385	0.00215	0.00308	0.00268	0.00322	0.00254	0.00246	0.00295	0.00254	0.00197	0.00287	0.00298	0.00222	0.00354	0.00443	:	ChHm	0.010518	0.006128	0.005770	0.002586	0.004895	0.006173	0.009985	0.009016	0.014511	0.034082
Ar	0.001632	0.000544	0.0012	0.000656	0.000241	0.000938	0.000765	0.00062	0.000986	0.00172	0.00174	0.00078	0.00235	0.00123	0.00103	0.000909	0.00199	0.00202		¥	0.000960	0.001596	0.001527	0.001096	0.001023	0.000873	0.000898	0.000855	0.000917	0.001729
H2S	0.000134	0.00011	0.000088	0.000151	0.0000055	0.000162	0.000084	0.000058	0.000088	0.0001	0.000118	0.000091	0.000115	0.000185	0.000155	0.000114	0.000227	0.000264		HZS	0.010776	0.006277	0.007199	0.003452	0.006782	0.007499	0.012351	0.008462	0.012375	0.012718
05	0	0	0	0.00332	0	0	0	0	0	0	0	0	0	0	0	0	0	0	:	05	0.034814	0.008587	0.008977	0.007539	0.003678	0.001607	0.000000	0.000000	0.000000	0.002107
NS	0.0541	0.051	0.0612	0.0619	0.0342	0.0717	0.0569	0.0474	0.0715	0.1	0.111	0.0629	0.108	0.0838	0.077	0.0648	0.1335	0.118		Z N	0.190877	0.166154	0.157135	0.122523	0.128890	0.160228	0.157767	0.163965	0.154869	0.447177
H20	98.124	97.921	97.378	96.781	97.941	97.594	97,146	96.559	97.426	97.58	97.186	97.645	97.495	97.564	97.462	97.89	96.918	96.294		H20	91.98646	94.80742	95.10228	97.72803	95.73127	95.42583	92.37776	93.53643	91.45277	68.79783
CH4	0.105	0.0796	0.0796	0.125	0.078	0.0976	0.0936	0,107	0.0851	0.0774	0.0883	0.0778	0.0685	0.0933	0.0973	0.0783	0.112	0.132		CH4	0,228761	0.171387	0.156337	0.131608	0.198311	0.236966	0.287976	0.251595	0.392088	2.649343
Ę	0.000729	0.00141	0.00108	0.000493	0.00107	0.00128	0.000423	0	0.000367	0.000433	0.0002	0.000453	0.000286	0.000383	0.000021	0.000642	0.0011	0.000908		운	0.000043	0.000000	0.000000	0.000000	0.000000	0.000370	0.00000	0.000093	0.001865	0.000000
모	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		7	1.682224	0.026583	0.00000	0.00000	0.017609	0.00000.0	0.000000	0.00000	0.00000	1.748810
Ar Max.																				Ar max	0.000960	0.001596	0.001527	0.001096	0.001023	0.000873	0.000898	0.000855	0.000917	0.001729
Counts																				Counts	13353060	5961918	9718400	12199240	8292313	14221260	9866821	13690290	15707320	522755
Crush	5746A	5746B	5746C	5746D	5746E	5746F	5746J	5746K	5746L	5746M	5746N	5746P	5746Q	5746R	5746S	5746T	5746U	5746V		Sample	5861A	5861B	5861C	5861D	5861E	5861F	5861J	5861K	5861L	5861M
	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite			Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite
	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34	NB-34			NB-43	NB-43	NB-43	NB-43	NB-43	NB-43	NB-43	NB-43	NB-43	NB-43

802	0.0000332	0	0.0000451	0	0.0001435	0.0000838	0.0001761	0.0000701	0.000103	802	0.0001432	0.00000307	0.0000285	0.0000285	0,000151	0.0001477	0.0001	0.0000503	0.0000633	0.0000371	802	0.00004	0.00002	0.00001	0.00002	0.00004	0.00006	0.00006	0.00002
C02	2.197497	2.015054	1.627715	2.970887	2.092149	1.731254	2.530559	1.646809	1.689163	005	1.380039	1.285745	1.844469	1.169096	2.703899	2.75413	2.51983	2.9368	2.711232	2.790181	005	0.01157	0.00617	0.00389	0.00155	0.00212	0.00381	0.00412	0.00226
CnHm	0.0029949	0.0026549	0.0025863	0.0046796	0.0034689	0.0025181	0.0034269	0.0025612	0.0028753	CuHm	0.0033735	0.0021825	0.0030315	0.0018227	0.0075656	0.0063587	0.0054658	0.0054754	0.0049689	0.004985	CnHm	0.0000	0.00000	0.00001	0.0000	0.00005	0.00021	0.00029	0.00001
Ar	0.0000719	0.0000637	0.0000621	0.0001123	0.0000833	0.00000604	0.0000822	0.0000615	0.000069	Ā	0.000081	0.00000524	0.0000728	0.0000437	0.0002412	0.0001526	0.0001312	0,0001314	0.0001193	0,0001196	Ą	0.00149	0.00668	0.00373	0.00143	0.00073	0.00211	0.00091	0.00121
H2S	0.0024923	0.0024467	0.0019482	0.0037005	0.0016636	0.0020904	0.0019777	0.0020156	0.002165	H2S	0.0008853	0.0004126	0.0007336	0.0003116	0.0011686	0.0008536	0.0007045	0.0005186	0.0004517	0.0004822	H2S	0.00015	0.00055	0.00031	0.00010	0.00010	0.00026	0.00022	0.00013
05	0	0	0	0	0	0	0	0	0	05	0	0	0	0	0	0	0	0	0	0	05	0.01411	0.10132	0.05781	0.01455	0.00635	0.02486	0.01287	0.01362
N N	0.0442663	0.061164	0.0687116	0.0200555	0.0908486	0.085047	0.085643	0.0947686	0.0770375	Z N	0.0547837	0.0366589	0.0183292	0.0092736	0.067039	0.0904313	0.0547749	0.0593591	0,0546061	0.0506221	NZ	0.10805	0.40264	0.23604	0.08728	0.06884	0.15135	0.09513	0.09277
H20	97.63969	97.76558	98.14724	96,68582	97.58023	98,0655	97,20409	98,15904	98.13785	H20	98.45542	98.60174	98.04115	98.74147	97.05801	96.99197	97.26543	96.87359	97.121	97.04345	H20	99.81807	99,44621	99.66788	99.86224	99.87890	99,75428	99.81428	99.85226
CH4	0.1124231	0.1527035	0.1508304	0.3119783	0.2299575	0.1122563	0.1721286	0.093094	0.0890884	CH4	0.1008174	0.0721521	0.0911884	0.0766649	0.1542457	0.1517741	0.1503735	0.122768	0.1063492	0.1089512	CH4	0.04539	0.03504	0.02994	0.03203	0.04208	0.06137	0.07004	0.03672
완	0.0006045	0.0004052	0.0009174	0.0028748	0.0015459	0.0012491	0.0020006	0.0016276	0.0017289	Ť	0.0045446	0.0010801	0.0010631	0.0013314	0.0076716	0.0043493	0.0033394	0.0014305	0.001329	0.0012988	ž	0.00112	0.00138	0.00038	0.00078	0.00080	0.00168	0.00208	0.00099
7	0	0	0	0	0	0	0	0	0	H2	0	0	0	0	0	0	0	0	0	0	Ŧ	0.00000	0.0000	0.0000	0.00000	0.0000	0.00000	0.00000	0.0000
Ar Max.	0.0000719	0.0000637	0.0000621	0.0001123	0.0000833	0.0000604	0.0000822	0.0000615	0.000069	Ar Max.	0.000081	0.0000524	0.0000728	0.0000437	0.0002412	0.0001526	0.0001312	0.0001314	0.0001193	0.0001196	Ar Min	0.00149	0.00668	0.00373	0.00143	0.00073	0.00211	0.00091	0.00121
Counts	2096815	1508904	2543105	1021501	2170470	4165967	1583162	4480185	5569970	Counts	10027390	8337252	7143973	7865752	11710710	10131690	9834060	9187300	9188462	8605552	Counts	7365414	4742081	6877001	7679501	8066802	9207132	9636624	8292410
Crush	6061A	6061B	6061C	6061D	6061F	60613	6061K	6061N	60610	Crush	6056B	90560	6056D	6056E	6056F	6056J	6056K	6056L	6056M	9056N	Crush	6057A	6057B	6057C	G057D	6057E	60571	6057	6057K
	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz		Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite	Calcite		Calcite							
	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47		NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47	NB-47		NB-78							

		Sample	Counts	Ar max.	42	웃	CH4	H20	N2	05	H2S	Ar	CnHm	C02	802	
NB-79		5838B	24007580	0.000797	0.051146	0.000733	0.147929	99.65356	0.135307	0.008137	0.000448	0.000797	0.000778	0.001070	0.000086	
NB-79		5838C	27556970	0.002892	0.331062	0.015277	0.426138	98.71806	0.403896	0.032921	0.002504	0.002892	0.005085	0.061741	0.000415	
62-8N		5838D	17151890	0.000429	0.00000.0	0.00000	0.040012	99.88842	0.064635	0.006435	0.000063	0.000429	0.00000	0.000000	0.000013	
NB-79		5838E	22545540	0.001710	0.028444	0.00000	0.106354	99.62551	0.201776	0.030562	0.000369	0.001710	0.000265	0.004958	0.000052	
NB-79		5838F	21486360	0.001285	0.017840	0.000067	0.102834	99.67937	0.150007	0.019984	0.000393	0.001285	0.000304	0.027877	0.000049	
NB-79		5838J	23949310	0.001496	0.126572	0.000438	0.197899	99.41885	0.195949	0.020174	0.000661	0.001496	0.001167	0.036678	0.000112	
NB-79		5838K	28327980	0.002602	0.304462	0.005571	0.404680	98.81334	0.381932	0.035786	0.002070	0.002602	0.003931	0.045277	0.000356	
NB-79		5838L	27682080	0.001926	0.139242	0.000928	0.262123	99,28806	0.255940	0.026294	0.001215	0.001926	0.002178	0.021884	0.000207	
8-79		5838M	26994870	0.002489	0.214651	0.004850	0.306419	99.09988	0.302242	0.035283	0.001549	0.002489	0.002707	0.029671	0.000256	
NB-79		58380	22988530	0.001222	0.002113	0.00000	0.095569	99.71963	0.136953	0.020459	0.000306	0.001222	0.000267	0.023438	0.000045	
		Crush			H2	완	CH4	H20	N2	05	H2S	Ą	CnHm	005	802	
NB-80	Quartz	5830A			1.85	0	0.564	92.51	0.0357	0	0.0156	0.000613	0.00504	5.014	0.000299	
NB-80	Quartz	5830B			0.031	0	99'0	92.213	0.241	0	0.00994	0.000497	0.00764	6.84	0.0002	
NB-80	Quartz	5830C			0.276	0	0.694	91.232	0.128	0	0.0184	0.000329	0.0083	7.643	0.000251	
NB-80	Quartz	5830D			0.037	0	0.534	93.526	0.24	0	0.0106	0.000271	0.00725	5.644	0.000166	
NB-80	Quartz	5830E			0.011	0.000934	0.523	94.426	0.209	0	0.0155	0.000248	0.00635	4.807	0.000148	
NB-80	Quartz	5830F			0.0597	0.00157	0.556	93.204	0.0813	0	0.0146	0.000049	0.0072	920'9	0.000162	
NB-80	Quartz	58307			0	0	0.388	94.792	0.288	0	0.00913	0.00022	0.0075	4.514	0.000127	
NB-80	Quartz	5830K			0	0.000905	0.376	95.625	0.0532	0	0.00872	0.000121	0.00698	3,928	0.00007	
NB-80	Quartz	5830L			0.0335	0.00116	0.283	93,727	0.104	0	0.0165	0.000061	0.0086	5.825	0.000116	
NB-80	Quartz	5830M			0.0469	0.00276	0.38	93.093	0.177	0	0.0232	0.000051	0.01	6.266	0.000114	
NB-80	Quartz	5830N			0	0.000164	0.339	95.291	0.219	0	0.00764	0.000045	0.00815	4.135	0.000063	
NB-80	Quartz	58300			0.0202	0.00195	0.354	94.677	0.177	0	0.00969	0.000003	0.00872	4.75	96000000	

Problem	H20	Problem	C02	005								Problem				Ą		Ar										
802	0	0.000136	0.000101	0.000185	0.000185	0.000212	0.000206	0.000235	0.000372	0.00016	0.000418	802	0.000147	0.000050	0.000054	0.000178	0.000130	0.000106	0.000085	0.000071	0.000158	802	0.00000	0.0000	0.00002	0.00002	0.00000	0.00000
C02	69.8735	65.7284	66.1425	50.04222	54.27676	56.24643	63.07455	71.55214	60.87968	75.32231	62.99816	005	0.016616	0.007683	0.007961	0.020470	0.015365	0.011300	0.010007	0.009273	0.016999	005	0.04155	0,06042	0.03048	0.03591	0.03767	0.01598
CnHm	0.178623	0.165075	0.175187	0.149394	0.190073	0.18192	0.210096	0.216677	0.198903	0.205654	0.229241	CnHm	0.000465	0.000000	0.000000	0.001418	0.000782	0.000546	0.000311	0.000233	0.001076	ChHm	0.0000	0.00026	0.00008	0.00005	0.0000	0.00044
Ar	0.001099	0.001957	0.002464	0.002175	0.003349	0.00307	0.003624	0.003311	0.003279	0.003143	0.003557	Ar	0.001144	0.000086	0.000160	0.000776	0.000460	0.000643	0.000120	0.000612	0.000863	Ar	0.00106	0.00074	0,00027	0.00000	0.00076	0.00000
H2S	0.003397	0.002849	0.002511	0.002443	0.002718	0.002629	0.00283	0.003142	0.002646	0.001749	0.002482	H2S	0.000541	0.000121	0.000120	0.000738	0.000469	0.000301	0.000218	0.000166	0.000527	H2S	0.00003	0.00000	0.00001	0.00006	0.00006	0.0000
05	0	0	0	0	0	0	0	0	0	0	0.005099	05	0.008172	0.000000	0.000000	0.00000.0	0.000000	0.000000	0.000000	0.000000	0.00000	02	0.00842	0,00506	0.00000	0.00000	0.00968	0.0000
Z Z	0.242463	0.205817	0.350715	0.25939	0.368368	0.37018	0.38912	0.424925	0.398844	0.433216	0.469197	N Z	0.054835	0.003769	0.013300	0.079896	0.053867	0.056582	0.037301	0.039779	0.069877	Ž	0.04297	0.03325	0.02859	0.01335	0.04388	0.00243
H20	29.05445	33.25959	32.73355	49.12681	44.65445	42.68807	35.73901	27.17211	37.97552	23,33063	35.69197	H20	99.834540	99.936460	99.920160	99.764000	99.834420	99,847900	99.877600	99.880420	99.796240	H20	99.88970	99,83289	99,89896	99.91090	99.88219	99,93385
CH4	0.529836	0.518926	0.485662	0.333934	0.41442	0.414445	0.48223	0.513276	0.446935	0.598017	0.505493	CH4	0.079509	0.049602	0.056395	0.128243	0.090609	0.080630	0.072288	0.067477	0.110244	CH H	0.01623	0.06705	0.04013	0.03849	0.02392	0.04711
윤	0.006173	0.008272	0.006429	0.003378	0.006913	0.005645	0.006877	0.008275	0.005396	0.006956	0.006688	£	0.004035	0.002217	0.001835	0.004292	0.004006	0.002205	0.002061	0.001975	0.004032	<u> </u>	0,00003	0.00034	0.00145	0.00121	0.00182	0.00019
H	0.110461	0.108977	0.10088	0.08007	0.082774	0.087398	0.091461	0.105916	0.088424	0.09816	0.087692	H2	0.000000	0.00000.0	0.00000.0	0.00000.0	0.00000.0	0.00000.0	0.00000.0	0.00000	0.00000	£	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000
Ar Max.												Ar Max	0.001144	0.000086	0.000160	0.000776	0.000460	0.000643	0.000120	0.000612	0.000863	Ar Min	0.00106	0.00074	0.00027	0,00000	0.00076	0.00001
Counts												Counts	15365470	11439740	10918630	13160050	13332010	11338890	11019190	10526690	11908440	Counte	2426384	2230480	4125322	6561870	6162266	5980367
Crush	6492C	6492F	6492H	64921	6492J	6492K	6492L	6492M	6492N	64920	6492P	Crush	6059A	6059B	90590	G6509	6059E	6059	9059K	16909	6059M	ģ	6058A	6058B	6058C	6058D	6058E	60581
	Calcite		Calcite		Calcite	Calcite	Calcite	Calcite	Calcite	Calcite																		
	NB-84		NB-85		NB-86	NB-86	NB-86	NB-86	NB-86	NB-86																		

										Problem						H20	Problem				Z N	SZ Z	Z N	low,N2		N N	
802	0.00002	0.00000	0.00016	0.00011	0.00013	0.00013	0.00010	600000	0.00015	802	0.00011	0.00002	0.00008	0.00002	0.00003	0.0000	802	0.00007	0.00005	0.00008	900000	60000'0	60000.0	0.00005	0.00005	0.00007	0.00007
005	2.77568	3.35882	2.86778	2.33510	3.14350	3.48010	2.85702	2.43236	3.47847	C02	2.43213	0.84116	1.50728	2.11997	0.47939	37.53245	C02	2.03667	1.57846	2.07516	2.14833	2,76819	2.56313	2.43214	2.08465	2.48696	2.14344
CnHm	0.00366	0.00495	0.00454	0.00375	0.00403	0.00376	0.00324	0.00281	0.00403	CnHm	0.00476	0.00157	0.00296	0.00370	0.00127	0.90633	CnHm	0.00309	0.00280	0.00328	0.00256	0.00345	0.00339	0.00288	0.00318	0.00315	0.00270
Ar	0.00147	0.00012	0.00011	0.00044	0.00037	600000	0.00008	0.00007	0.00010	Ar	0.00302	0.00006	0.00016	600000	0.00089	0.02175	Ar	0.00045	0.00126	0.00095	0.00039	0.00006	0.00008	0.00033	0.00008	0.00008	0.00006
H2S	0.00034	0.00034	0,00018	0.00031	0.00031	0.00000	0.00019	0.00001	0.00019	H2S	0.00071	0.00003	0.00000	0.00021	0.00013	0.0000	H2S	0.00016	60000'0	0.00014	0.00008	0.00017	0.00008	0.00018	0.0000	0.00022	0.00002
05	0.01192	0.00000	0.00000	0.01282	0.00371	0.00000	0.00989	0.00000	0,00000	05	0.03016	0.00015	0.00044	0.0000	0.00545	0.05295	05	0.00809	0,01952	0.01832	0.00732	0.00000	0.00000	0,00779	0.00498	0.03543	0.00595
N2	0.03321	0.00000	0.00000	0.00000	0.00000	0.0000	0.0000	0.00000	0.00000	N2	0.08843	0.01172	0.05241	0.0000	0.03496	2.37820	N2	0.00139	0.07107	0.04411	0.00000	0.00000	0.00000	0.00000	0.00722	0.00000	0.01437
H20	97.10921	96.55620	96.95767	97.46474	96.77299	96.42011	97.02309	97.49698	96.43775	H20	97.06500	98.89598	97.85554	97.43814	99.32164	0.0000	H20	97.71711	98.06175	97,56363	97.71397	97.03239	97,15855	97,30639	97.57936	97.28046	97.66319
CH4	0.06433	0.07859	0.16914	0.18181	0.07426	0.09568	0.10631	0.06712	0.07895	CH4	0.37486	0.24926	0.58114	0.43796	0.15626	49.20501	CH4	0.23269	0.26498	0.29310	0.12715	0.19549	0.27454	0,25016	0.32032	0.19352	0.16995
£	0.00016	0.00110	0.00052	0.00092	0.00068	0.00022	0.00016	0.00063	0.00046	Ŧ	0.00081	0.00005	0.00000	0.0000	0,0000	0.02472	Ĩ	0.00026	0.00003	0.00121	0.00012	0.00018	0.00023	0,0000	0.00024	0.00020	0.00031
7	0.0000	0.0000	0.0000	0.00000	0.00000	0.0000	0.0000	0.0000	0.0000	72	0.0000	0.00000	0.0000	0.00000	0.00000	9.90034	H2	0.0000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000	0.00000	0.00000
Max.Ar	0.00147	0.00012	0.00011	0.00044	0.00037	600000	0,00008	0.00007	0.00010	Max.Ar	0.00302	0.00006	0.00016	0.00009	0.00089	0.02175	Max.Ar	0.00045	0.00126	0.00095	0.00039	0.00006	0.00008	0.00033	0.00008	0.00008	0.00006
Counts	1054143	2609008	1519068	3560079	2143727	1058250	1361330	2194647	1003762	Counts	1675087	1339959	482840.8	681837.5	6012581	3123.061	Counts	1540362	907633.4	3373780	1580188	1361364	958220.1	515159	917414.9	1604874	1535295
Crush	6213A	6213B	6213F	6213G	6213K	6213L	6213M	6213N	62130	Crush	6250C	6250D	6250F	6250G	6250K	6250L	Crush	6214A	6214B	6214C	6214D	6214	6214F	6214G	6214K	6214L	6214M
	Quartz		Silica	Silica	Silica	Silica	Silica	Silica		Quartz	Quartz	Quartz	Quartz	Quartz	Quartz				Quartz								
	NB-95		96-8N	96-8N	NB-96	NB-96	96-8N	96-8N		NB-97	NB-97	78-8N	NB-97														

Problem					N2														Problem	H2O, H2							
802	0.00019	0.00027	0.00028	0.00013	0.00020	0.00023	802	0.00004	0.00007	0.00004	0.00002	0.00002	0.00004	0.00001	0.00002	0,00000	0.00002	0.00002	802	0.00007	0.00005	0.00002	0.00001	0.00003	0.00003	0.00003	0.00004
CO2	6.70622	7.01521	5.47880	4.42188	4.53778	5.80154	C02	0.89280	0.72264	1.05896	0.86167	0.77958	0.59664	0.71632	0.63517	0.63191	0.90023	0.64561	C02	1.16894	1.00380	0.56434	0.55020	0.94185	0.73015	0.62510	0.77691
CoHm	0.01058	0.01134	0.01031	0.00934	0.00739	0.00903	CuHm	0.00059	0.00163	0.00199	0.00121	0.00136	0.00091	0.00139	0.00090	0.00102	0.00128	0.00134	CnHm	0.00214	0.00139	0.00067	0.00069	0.00120	0.00000	0.00097	0.00119
Ar	0.00045	0.00001	0.00025	0.00124	0.00218	0.00042	¥	0.00001	0.00004	0.00005	0.00003	0.00002	0.00002	0.00003	0.00026	0.00019	0.00016	0.00010	Αſ	0.00041	0,00008	0.00031	0.00029	0.00035	0.00027	0.00011	0.00003
H2S	0.00085	0.00135	0.00092	0.00062	0.00055	0.00127	H2S	600000	0.0000	0.00000	0.00000	0.00000	0.00007	0.00000	0.00006	0.00008	0.00002	0.00001	H2S	0.00004	0.00001	0.00000	0.0000	0.0000	0.0000	0.0000	0.00002
02	0.00000	0.00000	0.00000	0.00000	0.00150	0.00000	05	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	05	0.00000	0.00000	0.00000	0.00030	0.00000	0.00035	0.0000	0.00000
22	0.03106	0.00000	0.09080	0.07623	0.03232	0.01815	N N S	0.06205	0.11504	0.13474	0.13190	0.22188	0.13625	0.15531	0.16132	0.23794	0.11550	0.13344	N2	0.05804	0.0000	0.01321	0.01348	0.01862	0.00970	0.01321	0.00571
H20	92.92352	92.65728	93.77675	95.11384	95.17368	94.00031	H20	98.32487	97.93796	97.20547	98.00095	98.52834	98.25744	98.37671	98,36558	97.92727	98.09772	98.53203	H20	98.62723	98,91894	99.37001	99.30807	98,75375	99.12617	99.28859	99.14677
CH4	0.32595	0.31282	0.64047	0.37563	0.24192	0.16769	CH4	0.71843	1.20117	1.59640	1.00283	0.46714	1.00805	0.74929	0.83594	1.20135	0.88410	0.68674	CH4	0.14190	0.07543	0.05144	0.12696	0.28420	0.13216	0.07165	0.06933
I G	0.00115	0.00172	0.00167	0.00109	0.00248	0.00138	Ð	0.00111	0.00084	0.00241	0.00141	0.00166	0.00061	0.00098	0.00076	0.00024	0.00095	0.00071	Ē	0.00125	0.00031	0.00000	0.00000	0.00000	0.00025	0.00034	0.00003
H 1	0.00000	0.00000	0.00000	0.00000	0.0000	0.0000	H2	0.00000	0.02064	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	H2	0.00000	0.00000	0.0000	0.00000	0.00000	0.0000	0.0000	0.00000
Ar Max.	0.00045	0.00001	0.00025	0.00124	0.00218	0.00042	Max. Ar	0.00001	0.00004	0.00005	0,0003	0.00002	0.00002	0,00003	0.00026	0.00019	0.00016	0.00010	Max. Ar	0.00041	0.00008	0.00031	0.00029	0.00035	0.00027	0.00011	0.00003
Counts	651796	545883	518277	668262	2851073	1382007	Counts	2065210	665488.2	1032062	1286822	3174728	1120701	1545827	3317613	1530231	3738335	3467158	Counts	5686678	6137726	2451721	7698231	4810260	8475448	10898840	10423720
Crush	6324A	6324B	6324D	6324E	6324F	6324G	Crush	6216A	62168	6216C	6216D	6216E	6216F	6216G	6216K	6216L	6216M	6216N	Crush	6217A	62178	6217C	6217D	6217E	6217F	6217J	6217K
	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz		Quartz		Calcite																	
:	66-8N	66-8N	08-8N	08-8N	NB-99	98-8N		NB-100		NB-100																	

		Crush	Counts	Max. Ar	H2	Ē	CH4	H20	NS	05	H2S	Ą	CnHm	C02	802	Problem
NB-101	Quartz	6211A	1104967	0.00509	0.00000	0.00000	0.20680	99.03116	0.29207	0.00000	0.00010	0.00509	0.00171	0.46301	0.00005	v.low
NB-101	Quartz	6211B	371256.7	0.01130	0.14487	0.00000	0.19525	98.59070	0.54073	90600'0	0.00011	0.01130	0.00225	0.50566	0.00006	v.low
NB-101	Quartz	6211C	1506552	0.00385	0.0000.0	0.00000	0.18470	99.02052	0.24958	0.00000	0.00006	0.00385	0.00190	0.53938	0.00003	v.low
NB-101	Quartz	6211D	688940.9	0.00734	0.01137	0.00000	0.31858	98.42022	0.43682	0.00497	0.0000.0	0.00734	0.00275	0.79789	0.00006	v.low
NB-101	Quartz	6211E	1170819	0.00253	0.00000	0.00012	0.18255	98.98097	0.13656	0.00000	0.00010	0.00253	0.00233	0.69474	0.00010	
NB-101	Quartz	6211F	1362152	0.00355	0.0000.0	0.00000	0.10280	99,32558	0.18846	0.00020	0.00008	0.00355	0.00139	0.37792	0.00002	
NB-101	Quartz	6211J	1123529	0.00155	0.00000	0.00000	0.15401	99.44701	0.11233	0.00000	0.00000	0.00155	0.00222	0.28286	0.00002	
NB-101	Quartz	6211K	904615.5	0.00535	0.00000	0.0000.0	0.26443	99.08123	0.29564	0.00000	0.0000.0	0.00535	0.00276	0.35060	0.00000	
NB-101	Quartz	6211L	699766.3	0.00230	0.00000	0.00000	0.26876	99,15573	0.13719	0.00000	0.00000	0.00230	0.00269	0.43332	0.00002	
NB-101	Quartz	6211M	729406.5	0.00341	0.01199	0.00000	0.24802	98.99156	0.21237	0.00000	0.00000	0.00341	0.00191	0.53073	0.00000	
NB-101	Quartz	6211N	813691.9	0.00219	0.0000	0.00000	0.23616	99.06855	0.14213	0.00000	0.00000	0.00219	0.00238	0.54858	0.00000	
NB-101	Quartz	62110	840129.7	0.00282	0.00000	0,00000	0.22596	98.99679	0.15942	0.00000	0.0000.0	0.00282	0.00289	0.61210	0.00004	
		Crush	Counts	Max. Ar	H	Ë	CH4	H20	N2	05	H2S	Ą	CnHm	005	802	Problem
NB-103	Quartz	6249A	200127.4	0.00005	0.00000	0.00000	0.57486	97.94026	0.15538	0.00000	0.00110	0.00005	0.00194	1.32646	0.00000	wol
NB-103	Quartz	6249B	4941354	0.00002	0.00000	0.00152	0.41415	98.80122	0.21377	0.00000	0.00111	0.00002	0.00287	0.56521	0.00015	CH4, CO2
NB-103	Quartz	6249C	1173384	0.00010	0.00000	0.00070	0.68735	96.71080	0.11750	0.00000	0.00340	0.00010	0.00427	2.47593	0.00006	
NB-103	Quartz	6249D	4170253	0.00005	0.00000	0.00142	0.81569	96.55255	0.18889	0.00000	0.00264	0.00005	0.00532	2.43330	0.00013	
NB-103	Quartz	6249E	489206.4	0.00011	0.00000	0.00000	1,05883	96,58871	0.22052	0.00000	0.00203	0.00011	0.00440	2.12540	0.00011	wol.v
NB-103	Quartz	6249F	1521147	0.00004	0.00000	0.00000	0.24724	99.01335	0.05447	0.00000	0.00064	0.00004	0.00152	0.68275	0.00005	
NB-103	Quartz	6249G	2112697	0.00018	0.0000	0.00156	1.27478	95.73946	0.27579	0.00000	0.00274	0.00018	0.00742	2.69789	0.00018	
NB-103	Quartz	6249)	879303.9	0.00011	0.00000	0.0000	0.73303	96.78619	0.19011	0.00000	0.00127	0.00011	0.00450	2.28478	0.00013	v.low
NB-103	Quartz	6249K	905473.7	0.00010	0.00000	0.00023	0.71103	97.08931	0.17855	0.00000	0.00178	0.00010	0.00418	2.01484	0.00008	v.low
NB-103	Quartz	6249L	940702.6	0.00011	0.0000	0.00035	0.85467	96.73643	0.20789	0.00000	0.00150	0.00011	0.00462	2.19441	0.00012	

													Problem		CH4	005								
802	0.00134	0.00022	0.00021	0.00004	0.00006	0.00006	6000000	0.00003	0.00003	0.00004	0.00004	0.00003	802	0.0000.0	0.00004	0.00005	0.00010	0.00003	0.00005	0.00001	0.00007	0.00003	0.00005	0.00004
005	4.02532	4.22581	3.00641	5.62233	5.46861	5.19656	6.15314	6.33710	5.48027	6,25981	7.40410	5.54050	005	0.21309	0.88573	0.44208	0.76052	0.67536	0,36557	0.31354	0.22390	0.28487	0.25294	0.44477
CnHm	0.01195	0.00822	0.01436	0.00783	0.00985	0.01062	0.00860	0.00860	0.00719	0.00855	0.00880	0.00873	CuHm	0.00022	0.00229	0.00211	0,00441	0.00224	0.00357	0.00391	0.01186	0.01418	0.00228	0.00159
Ąŗ	0.00029	0.00020	0.00034	0.00019	0.00024	0.00007	0.00021	0.00021	0.00017	0.00021	0.00021	0.00021	ĄĽ	0.00001	0.00005	0,00005	0.00011	0.00005	0.00009	0.00009	0.00028	0.00034	0.00005	0.00004
H2S	0.00138	0.00079	0.00152	0.00083	0.00064	0.00137	0.00062	0.00071	0.00047	0.00094	0.00065	0.00059	H2S	0.00000	0.00020	0.00044	0.00015	0.00000	0.00001	0.0000	0.0000	0.0000	0.00003	0.00017
05	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	05	0.00000	0.0000	0,00000	0.00000	0.00000	0.0000	0.0000	0.0000	0.00000	0.0000	0.00000
N2	0.21131	0.20247	0.48191	0.03460	0.05452	0.05568	0.05601	0.05861	0.02784	0.02175	0.03046	0.06170	N2	0.21236	0.19226	0.09599	0.07206	0.10075	0.16884	0.15530	0.16650	0.17281	0.18035	0.16798
H20	95.52840	95.41310	96.33165	94.21039	94.33173	94.59941	93.64553	93.39180	94.38718	93.57909	92.40850	94.25304	H20	99.45970	98,73631	99.12994	98.76000	98.78320	98.75185	98,84555	98.75181	98.64111	98.97416	98.99125
CH4	0.21868	0.14868	0.16175	0.12389	0.13284	0.13459	0.13518	0.20268	0.09653	0.12948	0.14680	0.13405	CH4	0.11389	0.18243	0.32752	0.40216	0.43840	0.71008	0.68164	0.81436	0.86609	0.58967	0.39361
He	0.00163	0.00071	0.00220	6,0000	0.00175	0.00164	0.00084	0.00047	0.00049	0.00035	0,00066	0.00135	Ŧ	0,00075	0.00072	0.00188	0.00059	0.00002	0.00003	0.00005	0.00000	0.00007	0.00053	0.00060
H2	0.00000	0.0000	0.00000	0.00000	0.0000	0.00000	0.0000	0.00000	0.0000	0,0000	0.0000	0.0000	H2	0.00000	0.00000	0.0000	0.0000	0.00000	0.0000	0.00000	0.03151	0.02076	0.00000	0.00000
Max. Ar	0.00029	0.00020	0.00034	0.00019	0.00024	0.00007	0.00021	0.00021	0.00017	0.00021	0.00021	0.00021	Max. Ar	0.00001	0,00005	0.00005	0.00011	0.00005	0.0000	0.0000	0.00028	0.00034	0.00005	0.00004
Counts	735832.6	5549299	7571808	4702521	8867061	9679538	3837124	2682901	3787845	3798337	2820668	7099338	Counts	1765782	1042204	3607321	1378197	1090154	854680.8	1025691	516465.4	731511.4	2067356	5015312
Crush	6209A	6209C	6209D	6209E	6209F	6209G	6209K	6209L	6209M	6209N	62090	6209P	Crush	6208A	6208B	6208C	6208D	6208E	62081	6208	6208K	6208L	6208M	62080
	Quartz		Quartz																					
	NB-107		NB-108																					

78 20 20 20 20 20 20 20 20 20 20 20 20 20	90			114 v.low	303 H2,CH4,H2C	115	600	307 CH4	326 N2	202	000	000 Low	SO2 Problem	000	002	029 N2,CO2	015	920	013	027	0.00058 N2	040 N2	60	200	6,00009	0.00000	0.00004	0.00004
				2 0.00014	0.00003	11 0.00015	6000000 9,	0.00007	94 0.00026	10 0.00002	000000 69	0.00000		51 0.00000	36 0.00002	32 0.00029	51 0.00015	24 0.00036	79 0.00013	11 0.00027		11 0.00040	Š					
8.11786	1,43891	8.42464	5.82998	5.79982	0.56602	4.29281	2.91476	1,20504	5.83384	9.47940	12.69959	28.51164	005	2.27251	2.34896	1.55332	4.27851	9.44924	3.99879	6.38611	14.31844	9.80711			1.04425	0.66988	1.98555	1.62786
0.00693	0.00278	0.01551	0.00974	0.01601	0.00180	0.00760	0.00962	0.00367	0.01309	0.01531	0.01927	0.04592	CuHm	0.00824	0.00652	0.01178	0.00771	0.02058	0.00906	0.01182	0.02555	0.01829	1	5	0.00117	0.00006	0.00345	0.00302
0.00017	0.00015	0.00037	0.00023	0.00325	0.00004	0.00018	0.00023	0.00009	0.00018	0.00037	0.00046	0.00110	Ar	0.00020	0.00016	0.00028	0.00019	0.00180	0.00022	0.00028	0.00061	0.00044	į	2	0.00024	0.00052	0.00049	0.00032
0.00208	0.00013	0.00022	0.0000	0.00000	0.00000	0.0000	0.00000	0.0000	0.00070	0.00048	0.00062	0.00033	H2S	0.00033	0.0000	0.00089	0.00055	0.00108	0.00026	0.0000	0.00069	0.00031	-	07E	0.00009	0.00008	0.00011	0.0000
0.00000	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.0000	0.00000	05	0.00000	0.00000	0.0000	0.0000	0.0000	0.0000	0.00000	0.00000	0.00000	ć	Š	0.00000	0.00000	0.00000	0.00000
0.08163	0.03440	0.00000	0.18747	0.19224	0.17116	0.16997	0.13892	0.19972	0.08541	0.02765	0.00793	0.00000	N2	0.01678	0.00000	0.56592	0.00554	0.10286	0.16521	0.08308	0.0000	0.00000	9	Z Z	0.08934	0.02824	0.14092	0.24168
89.27659	98,19670	90.88541	92.32441	92.04359	98.86997	94.49899	95.79124	98.02115	93.90902	90.22281	86.84009	69.79996	H20	96,41021	97.14555	97.57693	95.43567	88.15727	94.99339	92.58345	84.41102	89.53461		22	98.83224	99.26064	97.81666	98.06673
0.92499	0.32666	0.67149	0.88000	1.49042	0.38822	1.02873	1.08189	0.56799	0.15550	0.25222	0.42974	1.39441	CH4	0.90896	0.36784	0.28732	0.27086	1.51561	0.78718	0.91271	1.24041	0.63690	į	CH2	0.03260	0.04056	0.05278	0.06025
0.00114	0.00021	0.00241	0.00134	0.00000	0.00278	0.00175	0.00122	0.00236	0.00201	0.00209	0.00276	0.00413	Ŧ	0.0000	0.00000	0,00354	0.00101	0.00000	0.0000	0,00128	0.00331	0,00236		ድ	0.00000	0.0000	0'00000	0.0000
H2 1.58862	0.0000	0.00000	0.76706	0.45454	0.00000	0.00000	0.06225	0.0000	0.00000	0.00000	0.00000	0.24360	¥	0.38296	0.13112	0.00000	0.0000	0.75119	0.04600	0.02127	0.0000	0.00000		7	0.0000	0.0000	0.00000	0.00000
Max. Ar 0.00017	0.00015	0.00037	0.00023	0.00325	0.00004	0.00018	0.00023	0.0000	0.00018	0.00037	0.00046	0.00110	Max.Ar	0.00020	0.00016	0.00028	0.00019	0.00180	0.00022	0.00028	0.00061	0.00044		Max. Ar	0.00024	0.00052	0.00049	0.00032
Counts 105467.9	1087376	1078297	73510.05	105662.2	5540874	1110376	418749.2	3027328	3206894	1780039	829630.9	94230.18	Counts	194658.1	345681.1	1693117	1322954	70441.4	392827.8	350918	422850.6	615208.7		Counts	849680.3	609390.8	3506683	3750622
Crush 6212A	6212C	6212D	6212E	6212F	62126	6212H	62121	6212M	6212N	62120	6212P	62120	Crush	6240A	6240B	6240C	6240D	6240E	6240F	6240G	6240H	62401		Crush	6248A	6248B	6248C	6248D
Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz		Quartz			Pyrite	Pyrite		Pyrite								
NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109	NB-109		NB-110			NB-111	NB-111	NB-111	NB-111								

DP-624 549'	4 9'	Crush	Counts	Max. Ar	H2	Ŧ	OH4	H20	N N	05	HZS	Ą	CnHm	C02	S02
624 5	DP-624 5 Calcite	6218A	2637950	0.00061	0.00000	0.00000	0.00500	99.95068	0.02809	0.00733	0.00005	0.00061	0.00002	0.00821	0.0000
-624 5	DP-624 & Calcite	6218B	4265408	0.00051	0.00000	0.00000	0.00727	99.95833	0.02101	0.00449	0.00001	0.00051	0.0000	0.00838	0.00000
-624 5	DP-624 5 Calcite	6218C	7598424	0.00038	0.0000	0.00124	0.00836	99.96114	0.01767	0.00222	0.00000	0.00038	0.00000	0.00900	0.0000
-624 5	DP-624 5 Calcite	6218E	9382840	0.00034	0.00000	0.00071	0.01046	99.96053	0.01571	0.00361	0.00002	0.00034	0.00001	0.00861	0.0000
-624 €	DP-624 5 Calcite	6218F	12715780	0.00025	0.0000	0.00133	0.00720	99.97270	0.01147	0.00326	0.00003	0.00025	0.00002	0.00374	0.0000
-624 €	DP-624 & Calcite	62181	3909535	0.00011	0.0000	0.0000	0.01485	99.95980	0.00517	0.00073	0.00002	0.00011	0.00003	0.01927	0.0000
		Crush	Counts	Ar Max.	H2	÷	CH4	H20	NZ	05	H2S	Ar	CUHM	C02	802
NB-4	Calcite	"5391A			0.02481	0.08885	0.26179	97,2355	1.36029	0,25232	0.00109	0.11459	0.19215	0.19328	0.14664
A 84	Calcite	"5391B			0.52223	0	0.47595	98,5801	0.20244	0.01415	0.02045	0.00709	0.01754	0.14353	0.0065
NB-4	Calcite	"5391C			0.43474	0	0.32661	98.6625	0.27085	0.04656	0.00714	0.00543	0.00667	0.22927	0.00144
NB-4	Calcite	"5391D			0.15035	0	0.14122	99.2272	0.28005	0.04808	0.0051	0.00474	0.0034	0.1308	0.00122
NB-4	Calcite	"5391E			0.4324	0.04474	0.22082	98.9573	0.13132	0.05598	0.00243	0.0015	0.00414	0.14564	0.00047
NB-4	Calcite	"5391F			0.72365	0.14958	0.58104	98.0155	0.2714	0.03465	0.02551	0.00951	0.02319	0.14304	0.00949
NB-4	Calcite	"5391J			0.27618	0	0.15471	99.3008	0.10502	0.04065	0.00157	0.0013	0.0025	0.1143	0.00029
NB-4	Calcite	"5391K			0.17459	0.02134	0.13185	99.5424	0.04508	0.01313	0.00127	0.00067	0.00194	0.06607	0.00024
NB-4	Calcite	"5391L			0.43654	0	0.36641	98.8877	0.13817	0.01962	0.00861	0.00279	0.00771	0.12536	0.00215
NB-4	Calcite	"5391M			0.30485	0.04017	0.24297	99.1664	0.09421	0.0225	0.00296	0.00134	0.00383	0.11745	0.00059
NB-4	Calcite	"5391N			0.32102	0,04063	0.21264	99.1684	0.08937	0.0237	0.00267	0.00131	0.00365	0.13344	0.00052
		Crush	Counts	Ar Max.	H2	웃	CH4	H20	N N	05	H2S	Ar	CnHm	005	802
NB-45	Quartz	5873B			0.879	0,000433	1.886	91.928	0.306	0	0.00756	0.000709	0.0296	4.963	0.000139
NB-45	Quartz	5873C			0.302	0.00457	1.018	91.819	0.0583	0	0.00347	0.00014	0.0287	6.765	0.000098
NB-45	Quartz	5873D			0.327	0.00377	1.17	93,385	0.208	0	0.00426	0.00534	0.0388	4.84	0.00004
NB-45	Quartz	5873E			0.93	0.00341	1.989	91.752	0.528	0	0.00529	0.00568	0.0267	4.76	0.000041
NB-45	Quartz	5873F			0.772	0.00403	1.805	93.281	0.1815	0	0.00377	0.0067	0.0377	3.904	0.000049
NB-45	Quartz	5873G			0.282	0.00333	0.828	93.628	0.308	0	0.0027	0.00358	0.0213	4.92	0.000062
NB-45	Quartz	5873K			0.097	0.00132	0.872	94.157	0.288	0	0.0022	0.00508	0.0328	4.543	0.000022

		Sample	H2	Ŧ	CH2	H20	N ₂	05	H2S	Αſ	CuHm	005	802
NB-33	Quartz	5846B	0.04007	0	1.0585	92.1513	0.273	0	0.01078	0.001224	0.0126	6.4406	0.000064
NB-33	Quartz	5846C	0.11	0	0.69849	95.1225	0.127227	0	0.004524	0.000202	0.007926	3,9288	0
VB-33	Quartz	5846D	0.1963	0	0.5756	96.9341	0.1003	0	0.003572	0.000177	0.005756	2.1813	0.000021
NB-33	Quartz	5846E	0.03756	0.001353	0.8897	93.2174	0.1467	0	0.006761	0.000064	0.011978	5.687	0.000056
NB-33	Quartz	5846F	0.26294	0	0.9989	94.8633	0.11388	0	0.004963	0.000279	0.0116	3.7385	0.000023
60	Quartz	5846G	0.03701	0.000334	1.038	92.2921	0.20973	0	0.01858	0.000085	0.012587	6.3879	0.000057
NB-33	Quartz	5846H	0.060166	0	0.918156	94.4357	0.18867	0	0.005465	0.000118	0.0107	4.3759	0.000041
NB-33	Quartz	5846	0.08587	0.001095	1.0492	92.8296	0.1703	0	0.006119	0.00003	0.013167	5.84	0.000054
NB-33	Quartz	5846J	0.031713	0	0.8714	93.4297	0.17365	0	0,00857	0.000501	0.010287	5.466	0.000043
NB-33	Quartz	5846M	0.03757	0.003073	1.6103	86.7862	0.23298	0	0.008747	0.000513	0.021395	11.298	0.000072
NB-33	Quartz	5846N	0.042226	0.001011	1.385	90.5725	0.28916	0	0.008318	0.000414	0.016812	7.6767	0.000036
NB-33	Quartz	58460	0.124645	0	1.16731	94.6775	0.1851	0	0.006306	0.000332	0.007854	3.82423	0.000011
NB-33	Quartz	5846P	0.040523	0.000746	1.26937	93.0304	0.2745	0	0.006485	0.000684	0.01002	5.3568	0.000032
NB-33	Calcite	5847A	0	0.000099	0.0689	99.443	0.0422	0	0.000183	0.000791	0.000814	0.44	0
63	Calcite	5847C	0	0	0.112	99.442	0.0271	0	0.00041	0.00015	0.000942	0.417	0.000032
NB-33	Calcite	5847D	0	0	0.133	99.38	0.033	0	0.000499		0.000994	0.452	0.000039
NB-33	Calcite	5847E	0	0	0.11	99.243	0.0247	0	0.000351	0.000268	0.00113	0.62	0.000007
NB-33	Calcite	5847F	0	0.000304	0.133	98.998	0.0213	0	0.000508	0.000201	0.00148	0.844	0
NB-33	Calcite	5847G	0	0	0.118	99.24	0.0249	0	0.000298	0.000087	0.00112	0.615	0.000007
NB-33	Calcite	5847K	0	0	0.0898	99.212	0.0245	0	0,000226	0.000366	0.00102	0.669	0.000003
NB-33	Calcite	5847L	0	0.000109	0.099	99.217	0.0247	0	0.00023	0.000243	0.00108	0.657	0.000004
NB-33	Calcite	5847M	0	0.00131	0.111	99.29	0.0361	0	0.0003	0.00024	0.00117	0.559	0.000014
NB-33	Calcite	5847N	0	0.000024	0.114	99.148	0.0262	0	0.000229	0.000207	0.001317	0.71	0.000007
NB-33	Calcite	58470	0	0.000019	0.0827	99.518	0.0386	0	0.000123	0.000523	0.000558	0.356	0.000003
NB-33	Calcite	5847P	0	0.000368	0.122	99.26	0.0468	0	0.000206	0.000635	0.000893	0.566	0.000004

APPENDIX D

Sample	NB-99	NB-100	NB-102	NB-103	NB-107
Na	0.96	3.38	0.87	1.24	1.05
K	0.9	0.85	0.9	0.3	0.5
Ca	4.2	5.2	0.8	0.7	0.4
Cl	1.44	8.76	0.77	2.16	1.87
F	0.16	0.14	0.18	0.14	0.12
Br	0.01	0.04	< 0.01	0.02	0.01
SO ₄ ²⁻	1.92	1.53	0.62	0	0

Results of bulk ion leach with results reported in ppm. Cations are analyzed by AA whereas anions are analyzed by ion chromotography.

APPENDIX E

Sample preparation and irradiation:

Mineral separate obtained with standard heavy liquid and magnetic techniques. Clays obtained via floation methods. Samples were irradiated in machined Al discs at the Univ. of Michigan Ford Reactor along with neutron flux monitor Fish Canyon Tuff sanidine, (FC-1) with an assigned age of 27.84 Ma (Deino and Potts, 1990), relative to Mmhb-1 at 520.4 Ma (Samson and Alexander, 1987).

Instrumentation:

Mass Analyzer Products 215-50 mass spectrometer on line with automated all-metal extraction system.

Mo double-vacuum resistance furnace:

All samples step-heated.

Reactive gases removed by reaction with 3 SAES GP-50 getters, 2 operated at ~450°C and

1 at 20°C. Gas also exposed to a W filament operated at ~2000°C.

Analytical parameters:

NM-64 data: Irradiation duration 24 hours

Electron multiplier sensitivity averaged 1.0x10⁻¹⁶ moles/pA.

Total furnace system blanks plus backgrounds were about:

1500, 10, 3, 11, 11 x 10⁻¹⁸ moles at masses 40, 39, 38, 37, and 36, respectively for temperatures <1300°C.

 $(^{40}Ar/^{19}Ar)_{K} = 0.025\pm0.005$; $(^{36}Ar/^{19}Ar)_{C_{4}} = 0.00026\pm0.00002$; and $(^{39}Ar/^{19}Ar)_{C_{4}} = 0.00065\pm0.00005$.

NM-80 data: Irradiation duration 24 hours

Electron multiplier sensitivity averaged 1.0x10⁻¹⁶ moles/pA.

Total furnace system blanks plus backgrounds were about:

1450, 20, 2, 1, 5 x 10⁻¹⁸ moles at masses 40, 39, 38, 37, and 36, respectively for temperatures <1300°C.

 $(^{40}Ar/^{59}Ar)_{K} = 0.021\pm0.002; (^{36}Ar/^{57}Ar)_{Ca} = 0.00026\pm0.00002; and (^{39}Ar/^{57}Ar)_{Ca} = 0.00065\pm0.00005.$

NM-95 data: Irradiation duration 24 hours

Electron multiplier sensitivity averaged 1.0x10⁻¹⁶ moles/pA.

Total furnace system blanks plus backgrounds were about:

700, 8, 0.5, 4, 5 x 10⁻¹² moles at masses 40, 39, 38, 37, and 36, respectively for temperatures <1300°C.

 $(^{40}Ar/^{99}Ar)_{K} = 0.024 \pm 0.002; \ (^{36}Ar/^{97}Ar)_{Ca} = 0.00028 \pm 0.000005; \ and \ (^{39}Ar/^{97}Ar)_{Ca} = 0.00078 \pm 0.00003.$

NM-100 data: Irradiation duration 50 hours

Electron multiplier sensitivity averaged 1.0x10-16 moles/pA.

Total furnace system blanks plus backgrounds were about:

1000, 10, 1, 0.5, 3 x 10⁻¹⁸ moles at masses 40, 39, 38, 37, and 36, respectively for temperatures <1300°C. (" 6 Ar/ 9 Ar)_k = 0.0275±0.0001; (8 Ar/ 7 Ar)_c = 0.00028±0.00003; and (9 Ar/ 9 Ar)_c = 0.00076±0.00002.

J-factors determined to a precision of $\pm 0.1\%$ by CO₂ laser-fusion of 4 single crystals from each of 4 or 6 radial positions around the irradiation tray.

Correction factors for interfering nuclear reactions were determined using K-glass and CaF2 and are as follows:

Age calculations:

Total gas ages and errors calculated by weighting individual steps by the fraction of "Ar released.

Plateau ages calculated for the indicated steps by weighting each step by the inverse of the variance.

Plateau age errors calculated using the method of (Taylor, 1982).

MSWD values are calculated for n-1 degrees of freedom for plateau ages.

If the MSWD is outside the 95% confidence window (cf. Mahon, 1996; Table 1), the error is multiplied by the square root of the MSWD.

Isochron data regressed using York (1969) method.

Decay constants and isotopic abundances after Steiger and Jäger (1977).

All final errors reported at ±20, unless otherwise noted.

APPENDIX F

ID	Temp	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	39Ar _K	K/Ca	⁴⁰ Ar*	39Ar	Age	±1σ
	(°C)			(x 10 ⁻³)	(x 10 ⁻¹⁶ mol)	**************************************	(%)	(%)	(Ma)	(Ma)
^-	tor Diatit	e, wt. = 0.93	ma 1-0 0034	222 NM-64 I	ah#_7700_01					
A	600	25.89	0.0387	82.27	15.8	13.2	6.0	1.9	9.6	3.0
В	750	9.400	0.0170	14.41	74.7	29.9	54.4	10.6	31.42	0.60
c	850	7.385	0.0100	4.956	123	51.0	79.8	25.0	36.16	0.34
D	920	7.090	0.0083	4.065	104	61.6	82.7	37.1	35.96	0.34
E	1000	7.134	0.0093	4.324	235	54.9	81.7	64.6	35.96 35.76	
F	1075	6.454	0.0095	2.126	230					0.20
r G	1110	7.238	0.0075			68.1	89.9	91.5	35.58	0.19
				3.968	33.0	17.8	83.5	95.4	37.0	1.1
H I	1180	9.782	0.3364	11.99	12.5	1.5	63.8	96.8	38.3	2.8
	1210	7.338	0.4471	3.830	27.2	1.1	84.7	100.0	38.1	1.3
	l gas age		n=9		. 855	51.8			35.09	0.88*
plat	eau	MSWD=1.31	n=7	steps C-I	764	54.7		89.4	35.80	0.24*
NB-	20 Fine I	llite, wt. = 3.9	5 mg, J≕0.003	4782, NM-64,	Lab#=7672-01					
В	500	5.426	0.0228	3.388	59.8	22.4	81.1	1.8	27.41	0.61
С	550	13.93	0.0220	1.964	139	23.2	95.7	6.1	81.73	0.30
E	625	14.49	0.1031	0.6720	377	4.9	98.5	17.8	87.41	0.21
F	650	15.32	0.0855	0.3578	356	6.0	99.2	28.8	92.90	0.22
G	675	16.15	0.0779	0.2538	606	6.6	99.4	47.4	98.03	0.23
Н	700	16.95	0.0919	0.2286	749	5.6	99.5	70.5	102.87	0.22
ı	730	17.33	0.0976	0.2807	669	5.2	99.4	91.2	105.00	0.23
j	760	18.12	0.0589	0.4635	111	8.7	99.1	94.6	109.36	0.39
K	800	22.15	0.0473	0.9291	117	10.8	98.7	98.2	132.16	0.40
L	850	37.14	0.1254	3.260	28.2	4.1	97.4	99.1	213.8	1.3
M	950	42.56	0.2413	7.092	16.3	2.1	95.1	99.6	237.6	2.1
N	1250	23.39	0.4009	14.46	14.1	1.3	81.8	100.0	116.2	2.4
	l gas age		n=12		3243	7.0	01.0	100.0	100.19	0.27
					Lab#=7674-01					
В	500	9.379	0.0120	3.018	85.7	42.5	90.2	2.8	52.66	0.43
С	550	15.46	0.0109	1.554	108	46.7	96.9	6.3	92.15	0.36
D	600	14.75	0.0104	0.4704	203	49.1	98.9	12.9	89.84	0.27
Ε	625	15.62	0.0107	0.4446	288	47.5	99.0	22.3	95.10	0.25
F	650	16.04	0.0104	0.2153	406	49.1	99.5	35.4	98.01	0.22
G	675	16.36	0.0099	0.1624	532	51.3	99.6	52.7	100.05	0.24
Н	700	16.84	0.0093	0.2020	576	54.9	99.5	71.4	102.83	0.23
	730	17.59	0.0090	0.1848	542	56.8	99.6	89.0	107.31	0.24
J	760	20.85	0.0094	0.4129	220	54.5	99.3	96.1	126.21	0.32
K	800	29.05	0.0093	0.5130	49.4	54.7	99.4	97.8	173.66	0.75
_	850	49.10	0.0138	2.013	51.0	37.1	98.7	99.4	282.75	0.95
VI	950	86.03	0.0271	8.198	12.0	18.9	97.2	99.8	463.0	3.1
V	1250	24.53	0.0735	43.72	6.25	6.9	47.3	100.0	71.8	5.7
otal	gas age		n=13		3079	51.6		· · -	106.28	0.60*

ID	Temp	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	· ³9Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
<u> </u>	(°C)			(x 10 ⁻³)	(x 10 ⁻¹⁶ mol)		(%)	(%)	(Ma)	(Ma)
VB-	19 Illite,	wt.= 4.07 mg,	J=0.0034297,	NM-64, Lab#	=7676-01					
3	500	8.202	0.0326	8.626	83.7	15.6	68.6	3.8	34.50	0.48
0	550	12.70	0.0291	3.831	140	17.5	90.9	10.1	70.04	0.31
D	600	13.59	0.0194	-4.4523	5.44	26.4	109.5	10.4	89.8	5.8
Ē	625	17.95	0.0276	0.8412	468	18.5	98.5	31.6	106.21	0.23
=	650	19.99	0.0272	0.4759	298	18.7	99.2	45.0	118.71	0.28
G	675	21.61	0.0267	0.4778	322	19.1	99.2	59.6	128.05	0.29
H	700	24.71	0.0258	0.5383	279	19.8	99.3	72.3	145.73	0.35
ı	730	30.20	0.0250	0.6925	232	20.4	99.2	82.8	176.54	0.49
J	760	37.36	0.0251	0.9964	143	20.3	99.2	89.2	215.75	0.49
K	800	42.99	0.0261	1.366	60.2	19.5	99.0	92.0	245.84	0.77
L	850	52.59	0.0292	1.424	82.8	17.5	99.2	95.7	296.84	0.76
М	950	53.42	0.0448	5.091	37.2	11.4	97.1	97.4	295.5	1.2
V	1250	5.126	0.0700	3.327	57.5	7.3	80.4	100.0	25.34	0.61
total	gas age		n=13		2209	18.5			137.54	0.78*
			_		l, Lab#=7705-01					
C	800	10.63	0.0058	16.45	164	88.4	54.0	8.2	35.19	0.43
E	900	6.960	0.0103	7.218	10.0	49.8	69.0	8.7	29.5	3.8
=	900	6.975	0.0059	4.619	26.3	85.8	80.1	10.0	34.2	1.4
G	1000	6.217	0.0045	1.896	52.3	113.1	90.6	12.6	34.50	0.74
4	1100	6.008	0.0050	1.031	145	101.4	94.5	19.9	34.78	0.28
	1200	6.028	0.0050	1.113	288	101.8	94.1	34.2	34.75	0.17
J	1250	5.827	0.0047	0.3657	304	109.2	97.7	49.4	34.87	0.15
K	1300	5.869	0.0048	0.4003	292	107.2	97.6	63.9	35.06	0.16
-	1350	6.011	0.0046	0.7785	175	111.9	95.8	72.7	35.25	0.23
М	1400	6.000	0.0046	0.7441	195	111.2	95.9	82.4	35.24	0.22
1	1750	6.391	0.0050	2.338	352	101.4	88.8	100.0	34.76	0.16
	gas age		n=11		2003	104.1			34.91	0.50*
olate	au	MSWD=0.93	n=11	steps C-N	2003	104.1		100.0	34.93	0.13*
1B-5	9 Illite,	wt. = 10.64 m	g, J=0.003706	3, NM-80, Lai	b#=8602-01					
В	500	6.986	0.0055	3.780	89.6	92.7	83.7	1.8	38.69	0.17
0	550	17.14	0.0062	2.269	87.5	81.7	96.0		106.77	0.20
D	600	14.43	0.0074	1.240	34.7	68.9	97.3	4.3	91.51	0.28
Ξ	625	15.41	0.0049	0.7376	308	103.8	98.5	10.5	98.71	0.19
=	650	16.01	0.0063	0.6135	409	80.7	98.7	18.7	102.74	0.18
3	675	16.36	0.0061	0.5560	558	84.3	98.9	30.0	105.05	0.18
-	700	16.71	0.0047	0.5889	681	108.8	98.8	43.7	107.20	0.27
	740	17.21	0.0042	0.6749	993	120.1	98.7	63.7	110.20	0.21
ı	780	19.88	0.0040	0.8429	882	127.8	98.6	81.4	126.56	0.29
•	800	28.88	0.0042	1.836	361	121.6	98.0	88.7	180.03	0.33
	850	47.04	0.0043	2.302	242	118.6	98.5	93.6	285.94	0.58
Л	900	72.48	0.0065	3.489	101	78.1	98.5	95.6	423.72	0.79
• •	1000	64.71	0.0486	4.012	80.6	10.5	98.1	97.3	381.35	0.73
J				7.012	00.0	10.0	30.1	31.0		V.12
<i>V</i>	1650	5.729	0.0191	4.769	136	26.7	75.1	100.0	28.53	0.16

ID	Temp	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	39Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
-	(°C)			(x 10 ⁻³)	(x 10 ⁻¹⁶ mol)		(%)	(%)	-	
	(*0)			(X 10)	(X 10 1101)		(%)	(%)	(Ma)	(Ma)
932	71 K-feld	spar, wt. = 6.9	7 ma. J=0.0	039260. NM-95	5. Lab#≔9577-01					
Α	700	8.384	0.0222	11.18	104	23.0	60.3	1.3	35.48	0.47
В	800	5.263	0.0125	0.4233	317	40.9	97.2	5.4	35.87	0.13
С	900	5.170	0.0097	0.2097	651	52.4	98.4	13.7	35.658	0.090
D	1000	5.149	0.0085	0.1580	1217	59.7	98.6	29.3	35.623	0.074
Ε	1100	5.138	0.0081	0.1011	1590	63.0	99.0	49.6	35.658	0.073
F	1200	5.155	0.0078	0.1150	1303	65.4	98.9	66.3	35.752	0.069
G	1250	5.146	0.0069	0.0412	1876	73.9	99.3	90.3	35.836	0.073
н	1300	5.137	0.0082	0.0648	758	61.9	99.2	100.0	35.729	0.078
	l gas age		n=8		7815	63.1	*****	, , , , ,	35.72	0.16*
plat	-		n=8	steps A-H	7815	63.1		100.0	35.72	0.06*
				·						
932	71 Biotite	e, wt. = 8.35 m	ng, J=0.00391	11, NM-95, La	b#=9576-01					
Α	650	32.68	0.0674	103.6	126	7.6	6.3	1.6	14.5	1.1
В	750	7.611	0.0254	9.468	483	20.1	62.9	7.8	33.49	0.17
С	830	5.493	0.0070	1.182	972	72.4	93.2	20.1	35.767	0.079
D	900	5.352	0.0060	0.6091	1122	85.2	96.2	34.4	35.966	0.075
Ε	970	5.403	0.0078	0.8376	935	65.4	95.0	46.3	35.848	0.080
F	1050	5.408	0.0124	0.7288	1149	41.0	95.6	61.0	36.111	0.071
G	1120	5.305	0.0214	0.5701	2200	23.9	96.4	89.0	35.724	0.073
Н	1180	5.305	0.3993	0.7169	571	1.3	96.2	96.3	35.656	0.093
ı	1240	5.406	0.6488	0.8043	257	0.79	96.2	99.6	36.32	0.15
J	1350	6.463	0.1303	3.989	35.2	3.9	81.6	100.0	36.81	0.92
tota	l gas age		n=10		7849	43.1			35.38	0.22*
plat	eau	MSWD=4.93**	n=8	steps C-J	7240	45.3		92.2	35.88	0.14*
NB-	102 Seric	ite, wt. 5.71 m	ıg, J=0.00392	23, NM-95, L	ab#=9574-01					
Α	600	25.59	0.0288	33.45	62.6	17.7	61.3	11.9	107.71	0.84
В	630	16.64	0.0190	2.594	68.8	26.9	95.3	25.0	108.79	0.53
С	660	15.96	0.0131	0.8573	54.3	39.0	98.3	35.4	107.68	0.63
D	690	15.47	0.0095	0.8151	35.0	53.5	98.3	42.0	104.50	0.94
Ε	720	15.05	0.0108	0.8740	63.5	47.4	98.1	54.1	101.56	0.55
F	750	14.64	0.0170	1.100	56.9	30.1	97.6	65.0	98.38	0.62
G	780	14.15	0.0256	0.8151	51.3	20.0	98.1	74.7	95.70	0.68
Н	810	13.77	0.0349	0.8174	33.5	14.6	98.1	81.1	93.1	1.0
i	840	13.28	0.0415	0.9153	13.7	12.3	97.8	83.7	89.7	2.5
J	870	12.92	0.0547	0.0123	9.17	9.3	99.8	85.5	89.0	3.7
K	900	11.90	0.0578	0.4717	5.23	8.8	98.7	86.5	81.2	6.5
L	1000	9.373	0.0765	3.602	9.60	6.7	88.5	88.3	57.7	3.6
М	1100	6.075	0.0932	5.187	12.8	5.5	74.5	90.7	31.7	2.8
N	1200	4.227	0.0856	6.170	10.7	6.0	56.5	92.8	16.8	3.4
0	1300	4.426	0.0954	10.26	12.5	5.4	31.1	95.2	9.7	3.0
Р	1650	11.76	0.1630	25.52	25.4	3.1	35.8	100.0	29.5	1.6
tota	gas age		n=16		525	26.3			92.0	1.1

ID	Temp	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	39Ar	Age	±1σ
	(°C)			(x 10 ⁻³)	(x 10 ⁻¹⁶ mol)		(%)	(%)	(Ma)	(Ma)
JM-	coarse E	Biotite, wt. 2.77	mg, J=0.007	8027, NM-100	, Lab#=9912-01					
В	680	13.54	0.1147	10.63	117	4.4	76.7	2.2	140.5	1.3
С	750	11.86	0.0146	1.862	441	35.0	95.1	10.6	152.17	0.48
D	820	11.43	0.0035	0.3904	1168	147.6	98.8	32.7	152.30	0.47
Ε	900	11.40	0.0050	0.2238	946	103.0	99.2	50.6	152.59	0.39
F	950	11.43	0.0176	0.3452	363	28.9	98.9	57.5	152.44	0.43
G	1025	11.34	0.0298	0.3961	576	17.1	98.7	68.4	151.19	0.38
Н	1200	11.43	0.0581	0.3363	1475	8.8	98.9	96.4	152.56	0.39
Į	1300	12.89	0.7204	5.296	192	0.71	88.1	100.0	153.30	0.73
tota	l gas age	•	n=8		5278	60.5			152.08	0.95*
plat	eau	MSWD=1.91	n=7	steps C-I	5161	61.8		97.8	152.24	0.33*
JM-	ine Biot	ite, wt. = 3.41	mg, J=0.0076	919, NM-100,	Lab#=9914-01					
Α	600	9.180	0.0178	21.72	182	28.7	29.8	2.5	37.57	0.94
В	680	4.965	0.0074	6.569	221	69.3	60.4	5.6	41.12	0.61
С	750	3.351	0.0018	1.463	563	281.7	86.3	13.3	39.69	0.24
D	820	2.872	0.0011	0.3869	777	463.4	95.1	24.1	37.50	0.17
Ε	900	2.724	0.0010	0.2206	979	528.8	96.6	37.6	36.15	0.16
F	950	2.766	0.0010	0.2928	632	530.9	95.9	46.3	36.44	0.20
G	1025	2.749	0.0011	0.2833	1319	474.7	96.0	64.5	36.24	0.12
Н	1200	2.753	0.0032	0.2893	2226	161.2	95.9	95.3	36.272	0.094
ı	1300	3.207	0.0124	1.668	343	41.1	83.8	100.0	36.91	0.36
total	gas age	•	n=9		7242	330.2			36.87	0.38*
plate	eau	MSWD=1.12	n=5	steps E-I	5500	336.8		75.9	36.28	0.12*

ID	Temp	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	39Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
	(°C)			(x 10 ⁻³)	(x 10 ⁻¹⁶ mol)		(%)	(%)	(Ma)	(Ma)
							· · · ·			
JM-	coarse K	-feldspar, wt.	= 14.24 mg, J	=0.0077880, ħ	IM-100, Lab#=9!	913-01				
Α	450	312.0	0.0345	28.99	51.8	14.8	97.2	0.2	2188.1	3.8
В	450	7.912	0.0093	2.521	13.6	55.1	90.2	0.3	97.6	2.2
С	500	18.30	0.0155	1.543	61.8	33.0	97.4	0.6	234.49	0.74
D	500	5.459	0.0149	1.099	41.2	34.2	93.6	0.7	70.38	0.82
Ε	550	34.39	0.0161	1.996	190	31.8	98.2	1.6	421.30	0.85
F	550	4.466	0.0350	1.236	85.8	14.6	91.3	1.9	56.37	0.28
G	600	16.01	0.0416	1.356	238	12.3	97.3	3.0	206.66	0.42
Н	600	4.046	0.0615	1.058	121	8.3	91.7	3.5	51.41	0.26
1	650	9.282	0.0631	0.8432	246	8.1	97.1	4.5	122.36	0.27
J	650	4.076	0.0739	0.9930	151	6.9	92.3	5.2	52.09	0.22
K	700	6.622	0.0724	0.6828	257	7.0	96.6	6.3	87.73	0.21
L	700	4.281	0.0707	0.8728	172	7.2	93.5	7.0	55.36	0.19
M	750	6.240	0.0671	0.9878	- 110	7.6	95.0	7.5	81.40	0.29
N	800	6.905	0.0705	0.5824	299	7.2	97.2	8.8	91.91	0.22
0	850	5.730	0.0615	0.3675	443	8.3	97.7	10.7	77.00	0.18
Ρ	900	5.242	0.0677	0.3073	561	7.5	97.8	13.2	70.67	0.16
Q	950	6.134	0.0769	2.920	612	6.6	85.6	15.8	72.30	0.23
R	1000	6.161	0.0702	0.7217	640	7.3	96.2	18.6	81.40	0.19
S	1050	7.148	0.0494	0.3319	721	10.3	98.3	21.7	96.11	0.23
Т	1100	8.676	0.0282	0.3747	908	18.1	98.4	25.6	116.17	0.27
U	1100	8.951	0.0172	0.4027	1483	29.7	98.4	32.0	119.66	0.26
٧	1100	9.257	0.0144	0.4799	1721	35.4	98.2	39.5	123.39	0.26
W	1100	9.638	0.0147	0.7734	1886	34.8	97.4	47.7	127.24	0.27
X	1100	10.40	0.0158	0.9366	1833	32.3	97.1	55.6	136.61	0.37
Y	1100	11.44	0.0175	1.469	1816	29.1	96.0	63.5	148.01	0.29
Z	1230	11.90	0.0247	0.4127	649	20.7	98.8	66.3	158.00	0.32
ZA	1280	11.49	0.0191	0.2172	1969	26.7	99.2	74.8	153.50	0.51
ZΒ	1330	11.42	0.0116	0.1393	4440	44.0	99.4	94.0	152.86	0.37
ZC	1430	10.58	0.1661	0.4387	871	3.1	98.6	97.8	140.98	0.31
ZD	1530	10.43	0.1460	0.7142	449	3.5	97.8	99.7	137.93	0.33
Œ	1650	14.11	0.1750	9.826	63.6	2.9	79.3	100.0	150.84	0.72
tota	l gas age		n=31		23101	26.6			136.37	0.65*

ID	Temp	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	39Ar _K	K/Ca	⁴⁰ Ar*	39Ar	Age	±1σ
	(°C)			(x 10 ⁻³)	(x 10 ⁻¹⁶ mol)		(%)	(%)	(Ma)	(Ma)
		ldspar, wt. =	•	•	100, Lab#=9915	-01				
Α	550	10.91	0.0584	24.38	32.5	8.7	33.8	0.1	50.1	1.7
В	550	4.009	0.0446	3.615	13.3	11.4	72.8	0.2	39.7	1.9
C	600	3.187	0.0493	0.6886	17.5	10.3	92.9	0.3	40.3	1.4
D	600	3.195	0.0489	1.581	30.1	10.4	84.6	0.4	36.88	0.89
E	650	3.352	0.0496	3.578	14.7	10.3	67.8	0.5	31.0	1.7
F	750	2.672	0.0170	0.3439	245.8	30.0	95.2	1.6	34.72	0.13
G	850	2.611	0.0070	0.1484	722.0	72.7	97.3	4.8	34.654	0.087
Н	950	2.597	0.0061	0.0558	1493	84.2	98.3	11.6	34.839	0.074
1	1025	2.584	0.0059	0.0497	1800	86.6	98.4	19.7	34.685	0.088
J	1100	2.586	0.0057	0.0454	2434	90.3	98.4	30.6	34.726	0.082
K	1150	2.586	0.0056	0.0981	1569	91.1	97.8	37.7	34.519	0.074
L	1200	2.578	0.0056	0.0587	1952	91.2	98.3	46.4	34.571	0.071
М	1250	2.584	0.0055	0.0381	3010	93.3	98.5	60.0	34.738	0.078
Ν	1350	2.600	0.0054	0.0218	6412	94.8	98.7	88.8	35.011	0.076
0	1600	2.676	0.0058	0.1642	2485	87.7	97.2	100.0	35.471	0.081
tota	l gas age		n=15		22232	89.5			34.90	0.17*
plat	-	MSWD=1.12	n=7	steps F-L	10216	86.3		46.7	34.66	0.12*

Notes:

Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interferring reactions. Individual analyses show analytical error only; total gas age error includes error in J and irradiation parameters. n= number of heating steps K/Ca = molar ratio calculated from reactor produced $^{39}{\rm Ar_K}$ and $^{37}{\rm Ar_{Ca}}$.

^{* 2}ơ error

Sample	Mineral	Lab #	Plateau age	Plateau	Plateau	Steps	Isochron age	Isochron	40Ar/36Ari	40Ar/36Ari	Steps	Isochron
			(Ma)	Error (Ma)	MSWD	(Plateau)	(Ma)	Error (Ma)		Error	(Isochron)	MSWD
Cortez	Biotite	7709	35.8	0.24	1.31	ਠ	35.17	0.76	325	34	ਠ	1.01
Cortez	K-feldspar	7705	34.93	0.13	0.93	Ö	34.92	0.15	296.2	8.8	Ċ	1.16
93271	Biotite	9226	35.88	0.14	4.93*	ফ	35.83	0.59	310	35	ਨ	8.78*
93271	K-feldspar	9577	35.72	90.0	1.04	A-H	35.72	0.08	293	12	A-H	1.38
JM-fine	Biotite	9914	36.28	0.12	1.12	並	36.12	0.22	332	42	ш	0.32
JM-fine	K-feldspar	9915	34.66	90.0	1.98	귶	34.67	0.11	290	58	ď	2.88
JM-fine	K-feldspar	9915	•	•	•	QΨ	34.78	0.47	603	100	οw	11.1*
JM-coarse		9912	152.2	0.33	1.91	ਹ	152.1	0.46	310	22	ত	2.19
JM-coarse	K-feldspar	9913	1			ı		•	,		,	

All errors 2σ $^{\circ}$ MSWD ouside 95% confidence level, error multiplied by square root MSWD

APPENDIX G

ISOCHORES CALCULATIONS THAT TAKE GAS CONTENT INTO ACCOUNT

H2O-CO2-Na	aCl					
Stack	Sample	Inclusion	Length	Width		
NB107	NB107		1			
T P (Bowe	ers & Helgeson)					
192.9	609		Tm clath	7.3	CO2 Den	0.22
200	642		Th CO2 L-V	23	CO2 MV	199.67
220	1190		Th to	vapor	Aqueous Den	1.031
240	1726		CO2 VolFrac	0.05	Molal NaCl	0.93
260	2250		T of Estim	23	Wt% NaCl	5.154
280	2763		Th Total	192.9	X(NaCI)	0.016
300	3268		L-V	L	Bulk XH2O	0.979
320	3765				Bulk XCO2	0.005
340	4255				Bulk XNaCl	0.016
360	4738		Th	P @ Th	Bulk Den	0.991
380	5215		192.9	_	Bulk MV	18.98
400	5687		(02.0	•		
400	3007					
NB107	NB107		2			
	ers & Helgeson)					
(2011)	ord a riorgoddin,		Tm clath	7.1	CO2 Den	0.22
233	1544		Th CO2 L-V	23	CO2 MV	199.67
240	1730		Th to	vapor	Aqueous Den	1.034
260	2251		CO2 VolFrac	0.05	Molal NaCl	0.997
280	2763		T of Estim	23	Wt% NaCl	5.507
300	3266		Th Total	233.1	X(NaCl)	0.018
320	3761		L-V	L	Bulk XH2O	0.978
340	4250		L-V	_	Bulk XCO2	0.005
360	4732				Bulk XNaCl	0.018
380	5209		Th	P@Th	Bulk Den	0.993
400	5680		233.1	_	Bulk MV	18.977
400	5660		200.1	1044	Built IVIV	10.077
NB107	NB107		3			
	ers & Helgeson)					
(,		Tm clath	7.2	CO2 Den	0.22
225.2	1323		Th CO2 L-V	23	CO2 MV	199.67
240	1720		Th to	vapor	Aqueous Den	1.034
260	2242		CO2 VolFrac	0.05	Molal NaCl	0.997
280	2754		T of Estim	23	Wt% NaCl	5.507
300	3257		Th Total	225.2	X(NaCI)	0.018
320	3752		L-V	L	Bulk XH2O	0.978
340	4241		- •	~	Bulk XCO2	0.005
360	4723				Bulk XNaCl	0.018
380	5199		Th	P @ Th	Bulk Den	0.993
400	5671		225.2	_	Bulk MV	18.977
400	3071		220.2	1020	Daile III	
NB107	NB107		4			
	ers & Helgeson)		•			
(20	510 a 110.g000,		Tm clath	7.3	CO2 Den	0.22
224	1293		Th CO2 L-V	23	CO2 MV	199.67
240	1726		Th to	vapor	Aqueous Den	1.031
260	2250		CO2 VolFrac	0.05	Molai NaCl	0.93
280	2763		T of Estim	23	Wt% NaCl	5.154
300	3268		Th Total	224	X(NaCl)	0.016
500			i i i Ottali	for fin T	, ,	
320			I-V	1	Bulk XH2O	0.979
320	3765		L-V	L	Bulk XH2O Bulk XCO2	0.979 0.005
340	3765 4255		L-V	L	Bulk XCO2	0.005
340 360	3765 4255 4738				Bulk XCO2 Bulk XNaCi	0.005 0.016
340	3765 4255		L-V Th 224	P @ Th	Bulk XCO2	0.005

NB107	NB107	10			
T P(Bo	owers & Helgeson)				
		Tm clath	7.9	CO2 Den	0.22
220.1	649	Th CO2 L-V	23	CO2 MV	199.67
240	1154	Th to	vapor	Aqueous Den	1.023
260	1646	CO2 VolFrac	0.08	Molal NaCl	0.727
280	2126	T of Estim	23	Wt% NaCl	4.074
300	2597	Th Total	220.1	X(NaCI)	0.013
320	3058	L-V	L	Bulk XH2O	0.979
340	3512			Bulk XCO2	0.008
360	3958			Bulk XNaCl	0.013
380	4399	Th	P@Th	Bulk Den	0.958
400	4833	220.1	649	Bulk MV	19.55
NB107	NB107	11			
	owers & Helgeson)				
214.7	677	Tm clath	7.8	CO2 Den	0.22
220	819	Th CO2 L-V	23	CO2 MV	199.67
240	1337	Th to	vapor	Aqueous Den	1.024
260	1841	CO2 VolFrac	0.07	Molal NaCl	0.761
280	2334	T of Estim	23	Wt% NaCl	4.256
300	2817	Th Total	214.7	X(NaCl)	0.014
320	3291	L-V	L	Bulk XH2O	0.98
	3757	2-4	-	Bulk XCO2	0.007
340	4217			Bulk XNaCl	0.013
360	4217 4670	Th	P@Th	Bulk Den	0.968
380		214.7	677	Bulk MV	19.358
400	5117	214.7	077	Daik Isrv	10.000
NB107	NB107	12			
-	owers & Helgeson)				
210.5	721	Tm clath	6.3	CO2 Den	0.22
220	962	Th CO2 L-V	23	CO2 MV	199.67
240	1456	Th to	vapor	Aqueous Den	1.045
260	1943	CO2 VolFrac	0.06	Molal NaCl	1.264
280	2424	T of Estim	23	Wt% NaCl	6.878
300	2899	Th Total	210.5	X(NaCI)	0.022
320	3368	L-V	L	Bulk XH2O	0.972
340	3831			Bulk XCO2	0.006
360	4290			Bulk XNaCl	0.022
380	4744	Th	P @ Th	Bulk Den	0.995
400	5193	210.5	721	Bulk MV	19.149
NB107	NB107	13			
T P(Bo	owers & Helgeson)				
203.7	561	Tm clath	7.9	CO2 Den	0.22
220	1009	Th CO2 L-V	. 23	CO2 MV	199.67
240	1544	Th to	vapor	Aqueous Den	1.023
260	2066	CO2 VolFrac	0.06	Molai NaCi	0.727
280	2575	T of Estim	23	Wt% NaCl	4.074
300	3074	Th Total	203.7	X(NaCl)	0.013
320	3564	L-V	L	Bulk XH2O	0.981
340	4046			Bulk XCO2	0.006
360	4521			Bulk XNaCl	0.013
380	4989	Th	P @ Th	Bulk Den	0.974
400	5451	203.7	561	Bulk MV	19.174
	~·~·				

NB107	NB107	5			
T P (Bov	vers & Helgeson)				
		Tm clath	7.2	CO2 Den	0.725
		Th CO2 L-V	24.1	CO2 MV	60.733
300	1746	Th to	liquid	Aqueous Den	1.032
310	1892	CO2 VolFrac	0.4	Molal NaCl	0.964
320	2038	T of Estim	24.1	Wt% NaCl	5.331
340	2326	Th Total	310	X(NaCI)	0.017
360	2612	L-V	L	Bulk XH2O	0.82
380	2894			Bulk XCO2	0.166
400	3173			Bulk XNaCl	0.014
420	3448	Th	P @ Th	Bulk Den	0.909
440	3719	310	1892	Bulk MV	25.191
•					
NB107	NB107	6			
T P (Bov	vers & Helgeson)				0.700
		Tm clath	6.8	CO2 Den	0.729
		Th CO2 L-V	23.8	CO2 MV	60.387
300	1766	Th to	liquid	Aqueous Den	1.038
310	1911.5	CO2 VolFrac	0.4	Moial NaCl	1.098
320	2057	T of Estim	23.8	Wt% NaCl	6.028
340	2346	Th Total	310	X(NaCl)	0.019
360	2632	L-V	L	Bulk XH2O	0.817
380	2915			Bulk XCO2	0.167
400	3195			Bulk XNaCl	0.016
420	3471	Th	P @ Th	Bulk Den	0.914
440	3743	310	1911.5	Bulk MV	25.159
NB107	NB107	7			
T P (Bov	vers & Helgeson)				
		Tm clath	7.1	CO2 Den	0.22
221.6	1241	Th CO2 L-V	23	CO2 MV	199.67
240	1730	Th to	vapor	Aqueous Den	1.034
260	2251	CO2 VolFrac	0.05	Molal NaCl	0.997
280	2763	T of Estim	23	Wt% NaCl	5.507
300	3266	Th Total	221.6	X(NaCI)	0.018
320	3761	L-V	L	Bulk XH2O	0.978
340	4250			Bulk XCO2	0.005
360	4732			Bulk XNaCl	0.018
380	5209	Th	P @ Th	Bulk Den	0.993
400	5680	221.6	1241	Bulk MV	18.977
NB107	NB107	9			
T P (Bov	vers & Helgeson)				
		Tm clath	7.4	CO2 Den	0.268
227.8	1047	Th CO2 L-V	26.8	CO2 MV	164.472
240	1361	Th to	vapor	Aqueous Den	1.029
260	1859	CO2 VolFrac	0.07	Molal NaCl	0.896
280	2346	T of Estim	26.8	Wt% NaCl	4.976
300	2825	Th Total	227.8	X(NaCI)	0.016
320	3296	L-V	L	Bulk XH2O	0.976
340	3759			Bulk XCO2	0.008
360	4217			Bulk XNaCl	0.016
380	4668	Th	P @ Th	Bulk Den	0.975
400	5114	227.8	1047	Bulk MV	19.343

NB107 T P (Bov	NB107 vers & Helgeson)	14			
(25.	.c.c c	Tm clath	7.8	CO2 Den	0,22
227.9	1226	Th CO2 L-V	23	CO2 MV	199.67
	1539	Th to		Aqueous Den	1.024
240		CO2 VolFrac	vapor 0.06	Molal NaCl	0.761
260	2058				4.256
280	2566	T of Estim	23	Wt% NaCl	
300	3063	Th Total	227.9	X(NaCl)	0.014
320	3552	L-V	L	Bulk XH2O	0.981
340	4032			Bulk XCO2	0.006
360	4506			Bulk XNaCl	0.013
380	4973	Th	P @ Th	Bulk Den	0.976
400	5434	227.9	1226	Bulk MV	19.172
NB107	NB107	15			
T P (Bov	vers & Helgeson)				
		Tm clath	7.3	CO2 Den	0.713
		Th CO2 L-V	24.9	CO2 MV	61.72
		Th to	liquid	Aqueous Den	1.031
300	1571	CO2 VolFrac	0.45	Molal NaCl	0.93
308.7	1676	T of Estim	24.9	Wt% NaCl	5.154
320	1836	Th Total	308.7	X(NaCl)	0.016
340	2098	L-V	L	Bulk XH2O	0.793
	2357	r-A	_	Bulk XCO2	0.194
360					0.013
380	2614	Th	n a Th	Bulk XNaCl	0.888
400	2866	Th	P@Th	Bulk Den	
420	3116	308.7	1676	Bulk MV	26.573
440	3361				
NB107	NB107	16			
	NB107 vers & Heigeson)				
		Tm clath	7.3	CO2 Den	0.708
			7.3 25.2	CO2 Den CO2 MV	62.118
		Tm clath			
		Tm clath Th CO2 L-V	25.2	CO2 MV	62.118
T P (Bov	vers & Helgeson)	Tm clath Th CO2 L-V Th to	25.2 liquid	CO2 MV Aqueous Den	62.118 1.03
T P (Bow	vers & Helgeson) 1548	Tm clath Th CO2 L-V Th to CO2 VolFrac	25.2 liquid 0.45	CO2 MV Aqueous Den Molal NaCl	62.118 1.03 0.93
T P (Bow 300 312.8	vers & Helgeson) 1548 1718	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim	25.2 liquid 0.45 25.2	CO2 MV Aqueous Den Molal NaCl Wt% NaCl	62.118 1.03 0.93 5.154
T P (Bow 300 312.8 320	vers & Helgeson) 1548 1718 1812	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total	25.2 liquid 0.45 25.2 312.8	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl)	62.118 1.03 0.93 5.154 0.016
300 312.8 320 340 360	1548 1718 1812 2072 2330	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total	25.2 liquid 0.45 25.2 312.8	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O	62.118 1.03 0.93 5.154 0.016 0.794
300 312.8 320 340 360 380	1548 1718 1812 2072 2330 2585	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V	25.2 liquid 0.45 25.2 312.8 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013
300 312.8 320 340 360 380 400	1548 1718 1812 2072 2330 2585 2837	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V	25.2 liquid 0.45 25.2 312.8 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den	62.118 1.03 0.93 5.154 0.016 0.794 0.193
300 312.8 320 340 360 380	1548 1718 1812 2072 2330 2585	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V	25.2 liquid 0.45 25.2 312.8 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886
300 312.8 320 340 360 380 400 420 440	1548 1718 1812 2072 2330 2585 2837 3085 3330	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8	25.2 liquid 0.45 25.2 312.8 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886
300 312.8 320 340 360 380 400 420 440	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V	25.2 liquid 0.45 25.2 312.8 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886
300 312.8 320 340 360 380 400 420 440	1548 1718 1812 2072 2330 2585 2837 3085 3330	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8	25.2 liquid 0.45 25.2 312.8 L P @ Th 1718	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608
300 312.8 320 340 360 380 400 420 440	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8	25.2 liquid 0.45 25.2 312.8 L P@Th 1718	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608
300 312.8 320 340 360 380 400 420 440	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8	25.2 liquid 0.45 25.2 312.8 L P@Th 1718	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8	25.2 liquid 0.45 25.2 312.8 L P@ Th 1718	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8	25.2 liquid 0.45 25.2 312.8 L P@ Th 1718	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim	25.2 liquid 0.45 25.2 312.8 L P@Th 1718 7.3 23.8 liquid 0.5 23.8	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total	25.2 liquid 0.45 25.2 312.8 L P@Th 1718 7.3 23.8 liquid 0.5 23.8 310.3	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl)	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154 0.016
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow 300 310.3 320 340	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim	25.2 liquid 0.45 25.2 312.8 L P@Th 1718 7.3 23.8 liquid 0.5 23.8	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154 0.016 0.757
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow 300 310.3 320 340 360	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total	25.2 liquid 0.45 25.2 312.8 L P@Th 1718 7.3 23.8 liquid 0.5 23.8 310.3	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XH2O Bulk XH2O Bulk XH2O Bulk XCO2	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154 0.016 0.757 0.231
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow 300 310.3 320 340 360 380	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V	25.2 liquid 0.45 25.2 312.8 L P@ Th 1718 7.3 23.8 liquid 0.5 23.8 310.3 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XH2O Bulk XH2O Bulk XH2O Bulk XCO2 Bulk XNACl	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154 0.016 0.757 0.231
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow 300 310.3 320 340 360 380 400	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th to	25.2 liquid 0.45 25.2 312.8 L P@Th 1718 7.3 23.8 liquid 0.5 23.8 310.3 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XH2O Bulk XH2O Bulk XH2O Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154 0.016 0.757 0.231 0.013 0.88
300 312.8 320 340 360 380 400 420 440 NB107 T P (Bow 300 310.3 320 340 360 380	1548 1718 1812 2072 2330 2585 2837 3085 3330 NB107 vers & Helgeson)	Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V Th 312.8 17 Tm clath Th CO2 L-V Th to CO2 VolFrac T of Estim Th Total L-V	25.2 liquid 0.45 25.2 312.8 L P@ Th 1718 7.3 23.8 liquid 0.5 23.8 310.3 L	CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XCO2 Bulk XNaCl Bulk Den Bulk MV CO2 Den CO2 MV Aqueous Den Molal NaCl Wt% NaCl X(NaCl) Bulk XH2O Bulk XH2O Bulk XH2O Bulk XH2O Bulk XCO2 Bulk XNACl	62.118 1.03 0.93 5.154 0.016 0.794 0.193 0.013 0.886 26.608 0.729 60.387 1.031 0.93 5.154 0.016 0.757 0.231

H2O-NaCl-[KCl]						
Stack Samp	ole	Inclusion				
NB-33 NB-3	3	1				
T P (Bodnar & Vity	•	P(gases)	P(Total)			
188.4	8			Tm ice		-5.4
200	206	911	1117			188.4
220	549	811	1360		L	4.50
240	891	714				1.56
260	1233	625				8.38 0.03
280	1575	546	2121 2388			451
300	1917	471 405		•		426
320 340	2259 2601	348				0.942
360	2943	297				20.4
380	3285	253				20
400	3627	215				
400	0027	2.10	55.2			
NB-33 NB-3	3	2				
T P (Bodnar & Vity		P(gases)	P(Total)			
179.4	7	,	` .	Tm ice		-5.2
180	18			Th L-V		179.4
200	369	911	1280	Th to		L
220	720	811	1531	Molal NaCl		1.51
240	1071	714	1785	Wt% NaCl		8.1
260	1423	625	2048	X(NaCl)		0.03
280	1774	546	2320	Crit.Temp.		449
300	2125	471	2596	Crit.Press.		419
320	2476	405	2881	Bulk Den		0.948
340	2828	348	3176	Bulk MV		20.27
360	3179	297	3476			
380	3530	253				
400	3882	215	4097			
NB-33 NB-3	3	-4.9				
T P (Bodnar & Vity		P(gases)	P(Total)			
202.5	9	911		Tm ice		-4.9
220	291	811				202.5
240	614	714	1328	Th to	L	
260	937	625	1562	Molal NaCl		1.42
280	1259	546	1805	Wt% NaCl		7.68
300	1582	471	2053	X(NaCl)		0.02
320	1905	405	2310	Crit.Temp.		445
340	2227	348	2575	Crit.Press.		408
360	2550	297				0.925
380	2873	253	3126	Bulk MV		20.36
400	3196	215	3411			
ND 22 ND 2		8				
NB-33 NB-3 T P (Bodnar & Vity		P(gases)	P(Total)			
•	ייע) 10	911		Tm ice		-5.1
204.5 220	259	811				204.5
240	581	714			L	_55
260	902	625			-	1.48
280	1224	546				7.96
300	1546	471				0.03
320	1867	405		•		448
340	2189	348		·		415
360	2510	297	2807	7 Bulk Den		0.925
360 380	2510 2832	297 253				0.925 20.79

NB-33 NB	33 CALCITE	9			
T P (Bodnar & V	fityk) P(gase	s)	P(Total)		
222.8	14			Tm ice	-1.8
240	263	51	314	Th L-V	222.8
260	552	44	596	Th to	L
280	841	37	878	Molal NaCl	0.52
300	1130	31	1161	Wt% NaCl	2.96
320	1419	26	1445	X(NaCl)	0.01
340	1709	22	1731	Crit.Temp.	401 288
360	1998	18	2016	Crit.Press.	
380 400	2287 2576	15	2302	Bulk Den Bulk MV	0.862 21.37
400	2570			Daik MV	21.07
NB-33 NB	33 CALCITE	10			
T P (Bodnar & V	ityk) P(gase	s)	P(Total)		
218.7	13			Tm ice	-2
220	32	59	91	Th L-V	218.7
240	326	51	377	Th to	L
260	619	44	663	Molal NaCl	0.58
280	913	37	950	Wt% NaCl	3.28
300	1207	31	1238	X(NaCl)	0.01
320	1500	26	1526	Crit.Temp.	404
340	1794	22	1816	Crit.Press.	296
360	2087	18	2105	Bulk Den	0.871
380	2381	15	2396	Bulk MV	21.16
ND 00 ND	22 CAL OTT				
NB-33 NB T P (Bodnar & V	33 CALCITE 'ityk) P(gase	11	P(Total)		
235.3	18	:5)	r(Total)	Tm ice	-2
240	83	51	134	Th L-V	235.3
260	359	44	403	Th to	L
280	636	37	673	Molal NaCl	0.58
300	912	31	943	Wt% NaCl	3.28
320	1189	26	1215	X(NaCl)	0.01
340	1465	22	1487	Crit.Temp.	404
360	1742	18	1760	Crit.Press.	296
380	2018	15	2033	Bulk Den	0.848
400	2295			Bulk MV	21.72
H2O-NaCl-[KCl]					
	mple Inclusio				
	-47	. 1			
T P (Bodnar & V		es)	P(Total)	Tm inc	4.5
195.6	9	04.4	205	Tm ice Th L-V	-4.5 195.6
200 220	81 409	214 195	295 604	Th to	193.0 L
		176	913	Molal NaCl	1.31
240 260	737 1065	158	1223	Wt% NaCl	7.11
280	1393	141	1534	X(NaCI)	0.02
300	1722	124	1846	Crit.Temp.	440
320	2050	109	2159	Crit. Press.	393
340	2378	95	2473	Bulk Den	0.927
360	2706	83	2789	Bulk MV	20.3
380	3034	71	3105		
400	3362	•			

NB47 NB-47					
T P (Bodnar & Vityk)		P(gases)	P(Total)		
168.6	6			Tm ice	-3 168.6
180	204	214	765	Th L-V Th to	100.0 L
200 220	551 898	195	1093	Molal NaCl	0.87
240	1246	176	1422	Wt% NaCl	4.86
260	1593	158	1751	X(NaCl)	0.02
280	1940	141	2081	Crit.Temp.	419
300	2287	124	2411	Crit.Press.	336
320	2634	109	2743	Bulk Den	0.936
340	2982	95	3077	Bulk MV	20.11
360 380	3329 3676	83 71	3412 3747		
400	4023	, ,	0741		
400	1020				
NB47 NB-47		3			
T P (Bodnar & Vityk)	_	P(gases)	P(Total)	Tun inn	-4
188.9	8	24.4	406	Tm ice Th L-V	188.9
200 220	192 525	214 195	720	Th to	100.9 L
240	857	176	1033	Molal NaCl	1.16
260	1190	158	1348	Wt% NaCl	6.37
280	1522	141	1663	X(NaCl)	0.02
300	1854	124	1978	Crit.Temp.	433
320	2187	109	2296	Crit.Press.	375
340	2519	95	2614	Bulk Den	0.928
360	2851	83	2934	Bulk MV	20.28
380 400	3184 3516	71	3255		
400	3310				
NB47 NB-47		4			
NB47 NB-47 T P (Bodnar & Vityk)		4 P(gases)	P(Total)		
T P (Bodnar & Vityk) 194	8	P(gases)		Tm ice	-4.4
T P (Bodnar & Vityk) 194 200	107	P(gases)	321	Th L-V	194
T P (Bodnar & Vityk) 194 200 220	107 436	P(gases) 214 195	321 631	Th L-V Th to	194 L
T P (Bodnar & Vityk) 194 200 220 240	107 436 765	P(gases) 214 195 176	321 631 941	Th L-V Th to Molal NaCl	194 L 1.28
T P (Bodnar & Vityk) 194 200 220 240 260	107 436 765 1094	P(gases) 214 195 176 158	321 631 941 1252	Th L-V Th to Molal NaCl Wt% NaCl	194 L
T P (Bodnar & Vityk) 194 200 220 240	107 436 765	P(gases) 214 195 176	321 631 941	Th L-V Th to Molal NaCl	194 L 1.28 6.96
T P (Bodnar & Vityk) 194 200 220 240 260 280	107 436 765 1094 1424	P(gases) 214 195 176 158 141	321 631 941 1252 1565	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	194 L 1.28 6.96 0.02 439 390
T P (Bodnar & Vityk) 194 200 220 240 260 280 300	107 436 765 1094 1424 1753	P(gases) 214 195 176 158 141 124 109 95	321 631 941 1252 1565 1877 2191 2506	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360	107 436 765 1094 1424 1753 2082 2411 2740	P(gases) 214 195 176 158 141 124 109 95 83	321 631 941 1252 1565 1877 2191 2506 2823	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	194 L 1.28 6.96 0.02 439 390
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380	107 436 765 1094 1424 1753 2082 2411 2740 3070	P(gases) 214 195 176 158 141 124 109 95	321 631 941 1252 1565 1877 2191 2506	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360	107 436 765 1094 1424 1753 2082 2411 2740	P(gases) 214 195 176 158 141 124 109 95 83	321 631 941 1252 1565 1877 2191 2506 2823	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380	107 436 765 1094 1424 1753 2082 2411 2740 3070	P(gases) 214 195 176 158 141 124 109 95 83 71	321 631 941 1252 1565 1877 2191 2506 2823 3141	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47	107 436 765 1094 1424 1753 2082 2411 2740 3070	P(gases) 214 195 176 158 141 124 109 95 83 71	321 631 941 1252 1565 1877 2191 2506 2823 3141	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk)	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399	P(gases) 214 195 176 158 141 124 109 95 83 71	321 631 941 1252 1565 1877 2191 2506 2823 3141	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	194 L 1.28 6.96 0.02 439 390 0.928 20.29
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases)	321 631 941 1252 1565 1877 2191 2506 2823 3141	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	194 L 1.28 6.96 0.02 439 390 0.928 20.29
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases)	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V	194 L 1.28 6.96 0.02 439 390 0.928 20.29
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to	194 L 1.28 6.96 0.02 439 390 0.928 20.29
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 5	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V	194 L 1.28 6.96 0.02 439 390 0.928 20.29
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220 240	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399 9 86 415 744	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195 176 158	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl	194 L 1.28 6.96 0.02 439 390 0.928 20.29
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220 240 260	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399 9 86 415 744 1073	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195 176 158	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	194 L 1.28 6.96 0.02 439 390 0.928 20.29 -4.6 195.3 L 1.34 7.25 0.02 441
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220 240 260 280 300 320	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399 9 86 415 744 1073 1402 1731 2060	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195 176 158 141 124 109	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	194 L 1.28 6.96 0.02 439 390 0.928 20.29 -4.6 195.3 L 1.34 7.25 0.02 441 397
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220 240 260 280 300 320 340	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399 9 86 415 744 1073 1402 1731 2060 2389	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195 176 158 141 124 109 95	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928 20.29 -4.6 195.3 L 1.34 7.25 0.02 441 397 0.929
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220 240 260 280 300 320 340 360	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399 9 86 415 744 1073 1402 1731 2060 2389 2718	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195 176 158 141 124 109 95 83	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	194 L 1.28 6.96 0.02 439 390 0.928 20.29 -4.6 195.3 L 1.34 7.25 0.02 441 397
T P (Bodnar & Vityk) 194 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 195.3 200 220 240 260 280 300 320 340	107 436 765 1094 1424 1753 2082 2411 2740 3070 3399 9 86 415 744 1073 1402 1731 2060 2389	P(gases) 214 195 176 158 141 124 109 95 83 71 5 P(gases) 214 195 176 158 141 124 109 95 83 71	321 631 941 1252 1565 1877 2191 2506 2823 3141 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	194 L 1.28 6.96 0.02 439 390 0.928 20.29 -4.6 195.3 L 1.34 7.25 0.02 441 397 0.929

NB47 NB-47		6			
T P (Bodnar & Vityk)		P(gases)	P(Total)		
178.8	7		, .	Tm ice	-5.1
180	28			Th L-V	178.8
200	379	214	593	Th to	L
220	731	195	926	Molal NaCl	1.48
240	1082	176	1258	Wt% NaCl	7.96
260	1433	158	1591	X(NaCl) Crit.Temp.	0.03 448
280 300	1784 2136	141 124	1925 2260	Crit. Press.	415
320	2487	109	2596	Bulk Den	0.948
340	2838	95	2933	Bulk MV	20.28
360	3189	83	3272		
380	3541	71	3612		
400	3892				
NB47 NB-47		7			
T P (Bodnar & Vityk)		P(gases)	P(Total)	- . •	F.4
177.2	7			Tm ice	-5.1 177.2
180	56	214	624	Th L-V Th to	177.2 L
200 220	410 763	214 195	958	Molai NaCl	1.48
240	1116	176	1292	Wt% NaCl	7.96
260	1469	158	1627	X(NaCl)	0.03
280	1822	141	1963	Crit.Temp.	448
300	2175	124	2299	Crit.Press.	415
320	2528	109	2637	Bulk Den	0.949
340	2881	95	2976	Bulk MV	20.26
360	3234	83	3317		
380	3588	71	3659		
400	3941				
ND 47 ND 47		٥			
NB47 NB-47		8 P(nases)	P(Total)		
T P (Bodnar & Vityk)		8 P(gases)	P(Total)	Tm ice	
T P (Bodnar & Vityk) 179.6	7		P(Total)	Tm ice Th L-V	179.6
T P (Bodnar & Vityk)			P(Total)		179,6 L
T P (Bodnar & Vityk) 179.6 180	7 14	P(gases)	, .	Th L-V	
T P (Bodnar & Vityk) 179.6 180 200	7 14 344	P(gases)	558	Th L-V Th to Molal NaCl Wt% NaCl	L 0 0
T P (Bodnar & Vityk) 179.6 180 200 220 240 260	7 14 344 675	P(gases) 214 195 176 158	558 870 1182 1495	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	L 0 0
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280	7 14 344 675 1006 1337 1668	P(gases) 214 195 176 158 141	558 870 1182 1495 1809	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	L 0 0 0 374
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300	7 14 344 675 1006 1337 1668 1999	P(gases) 214 195 176 158 141 124	558 870 1182 1495 1809 2123	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	L 0 0 0 374 218
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320	7 14 344 675 1006 1337 1668 1999 2330	P(gases) 214 195 176 158 141 124 109	558 870 1182 1495 1809 2123 2439	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340	7 14 344 675 1006 1337 1668 1999 2330 2660	P(gases) 214 195 176 158 141 124 109 95	558 870 1182 1495 1809 2123 2439 2755	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	L 0 0 0 374 218
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360	7 14 344 675 1006 1337 1668 1999 2330 2660 2991	P(gases) 214 195 176 158 141 124 109 95 83	558 870 1182 1495 1809 2123 2439 2755 3074	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322	P(gases) 214 195 176 158 141 124 109 95	558 870 1182 1495 1809 2123 2439 2755	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360	7 14 344 675 1006 1337 1668 1999 2330 2660 2991	P(gases) 214 195 176 158 141 124 109 95 83	558 870 1182 1495 1809 2123 2439 2755 3074	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322	P(gases) 214 195 176 158 141 124 109 95 83	558 870 1182 1495 1809 2123 2439 2755 3074	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322	P(gases) 214 195 176 158 141 124 109 95 83	558 870 1182 1495 1809 2123 2439 2755 3074	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322	P(gases) 214 195 176 158 141 124 109 95 83	558 870 1182 1495 1809 2123 2439 2755 3074 3393	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 0 374 218 0.891
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653	P(gases) 214 195 176 158 141 124 109 95 83 71	558 870 1182 1495 1809 2123 2439 2755 3074	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	L 0 0 374 218 0.891 20.22
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653	P(gases) 214 195 176 158 141 124 109 95 83 71 9 P(gases)	558 870 1182 1495 1809 2123 2439 2755 3074 3393	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	L 0 0 0 374 218 0.891 20.22
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653	P(gases) 214 195 176 158 141 124 109 95 83 71 9 P(gases) 214	558 870 1182 1495 1809 2123 2439 2755 3074 3393	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V	L 0 0 374 218 0.891 20.22
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653	P(gases) 214 195 176 158 141 124 109 95 83 71 9 P(gases) 214 195	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to	-5.2 186.2 L
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931	P(gases) 214 195 176 158 141 124 109 95 83 71 9 P(gases) 9 214 195 176	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl	L 0 0 374 218 0.891 20.22
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240 260	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931 1275	P(gases) 214 195 176 158 141 124 109 95 83 71 P(gases) 9 P(gases) 214 195 176 158	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl	L 0 0 374 218 0.891 20.22 -5.2 186.2 L 1.51 8.1
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240 260 280	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931 1275 1618	P(gases) 214 195 176 158 141 124 109 95 83 71 P(gases) 9 P(gases) 214 195 176 158 141	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total) 459 783 1107 1433 1759	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	L 0 0 374 218 0.891 20.22
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240 260 280 300	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931 1275 1618 1961	P(gases) 214 195 176 158 141 124 109 95 83 71 9 P(gases) 214 195 176 158 141 124	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total) 459 783 1107 1433 1759 2085	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl	L 0 0 374 218 0.891 20.22 -5.2 186.2 L 1.51 8.1 0.03
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240 260 280 300 320	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931 1275 1618 1961 2305	P(gases) 214 195 176 158 141 124 109 95 83 71 P(gases) 9 P(gases) 214 195 176 158 141	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total) 459 783 1107 1433 1759	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	L 0 0 374 218 0.891 20.22 -5.2 186.2 L 1.51 8.1 0.03 449
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240 260 280 300	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931 1275 1618 1961	P(gases) 214 195 176 158 141 124 109 95 83 71 P(gases) 9 P(gases) 214 195 176 158 141 124 109	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total) 459 783 1107 1433 1759 2085 2414	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	L 0 0 374 218 0.891 20.22 -5.2 186.2 L 1.51 8.1 0.03 449 419
T P (Bodnar & Vityk) 179.6 180 200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 186.2 200 220 240 260 280 300 320 340	7 14 344 675 1006 1337 1668 1999 2330 2660 2991 3322 3653 8 245 588 931 1275 1618 1961 2305 2648	P(gases) 214 195 176 158 141 124 109 95 83 71 P(gases) 9 P(gases) 214 195 176 158 141 124 109 95	558 870 1182 1495 1809 2123 2439 2755 3074 3393 P(Total) 459 783 1107 1433 1759 2085 2414 2743	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	L 0 0 374 218 0.891 20.22 -5.2 186.2 L 1.51 8.1 0.03 449 419 0.943

NB47 NB-47		14			
T P (Bodnar & Vityk)		P(gases)	P(Total)		
194.1	8			Tm ice	-4.9
200	106	214	320	Th L-V	194.1
220	438	195	633	Th to	L
240	770	176	946	Molal NaCl	1.42
260	1103	158	1261	Wt% NaCl	7.68
280 300	1435 1767	141 124	1576 1891	X(NaCl) Crit.Temp.	0.02 445
320	2099	109	2208	Crit.Press.	408
340	2432	95	2527	Bulk Den	0.933
360	2764	83	2847	Bulk MV	20.18
380	3096	71	3167		
400	3428				
NB47 NB-47		15 P(genera)	P(Total)		
T P (Bodnar & Vityk) 172.8	6	P(gases)	r(Total)	Tm ice	-6.4
180	139			Th L-V	172.8
200	507	214	721	Th to	L
220	875	195	1070	Molal NaCl	1.84
240	1244	176	1420	Wt% NaCl	9.71
260	1612	158	1770	X(NaCl)	0.03
280	1980	141	2121	Crit.Temp.	463
300	2348	124	2472	Crit.Press.	459
320	2717	109	2826	Bulk Den	0.964
340	3085	95	3180	Bulk MV	19.94
360	3453	83	3536		
380	3822	71	3893		
400	4190				
NB47 NB-47		16			
T P (Bodnar & Vityk)		P(gases)	P(Total)		
181.7	7			Tm ice	-6.3
200	333	214	547	Th L-V	181.7
200 220	333 690	195	885	Th L-V Th to	181.7 L
200 220 240	333 690 1046	195 176	885 1222	Th L-V Th to Molal NaCl	181.7 L 1.81
200 220 240 260	333 690 1046 1402	195 176 158	885 1222 1560	Th L-V Th to Molal NaCl Wt% NaCl	181.7 L 1.81 9.58
200 220 240 260 280	333 690 1046 1402 1759	195 176 158 141	885 1222 1560 1900	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	181.7 L 1.81 9.58 0.03
200 220 240 260 280 300	333 690 1046 1402 1759 2115	195 176 158 141 124	885 1222 1560 1900 2239	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	181.7 L 1.81 9.58 0.03 462
200 220 240 260 280 300 320	333 690 1046 1402 1759 2115 2472	195 176 158 141 124 109	885 1222 1560 1900 2239 2581	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	181.7 L 1.81 9.58 0.03 462 456
200 220 240 260 280 300 320 340	333 690 1046 1402 1759 2115 2472 2828	195 176 158 141 124	885 1222 1560 1900 2239	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462
200 220 240 260 280 300 320	333 690 1046 1402 1759 2115 2472	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360	333 690 1046 1402 1759 2115 2472 2828 3185	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380	333 690 1046 1402 1759 2115 2472 2828 3185 3541	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380	333 690 1046 1402 1759 2115 2472 2828 3185 3541	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380	333 690 1046 1402 1759 2115 2472 2828 3185 3541	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380	333 690 1046 1402 1759 2115 2472 2828 3185 3541	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380	333 690 1046 1402 1759 2115 2472 2828 3185 3541	195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268 3612	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380 400	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897	195 176 158 141 124 109 95 83 71	885 1222 1560 1900 2239 2581 2923 3268	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956
200 220 240 260 280 300 320 340 360 380 400	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897	195 176 158 141 124 109 95 83 71	885 1222 1560 1900 2239 2581 2923 3268 3612	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897	195 176 158 141 124 109 95 83 71	885 1222 1560 1900 2239 2581 2923 3268 3612	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897	195 176 158 141 124 109 95 83 71 17 P(gases)	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817	195 176 158 141 124 109 95 83 71 17 P(gases)	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182	195 176 158 141 124 109 95 83 71 17 P(gases)	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546	195 176 158 141 124 109 95 83 71 17 P(gases)	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260 280	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546 1911	195 176 158 141 124 109 95 83 71 17 P(gases)	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260 280 300	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546 1911 2276	195 176 158 141 124 109 95 83 71 17 P(gases)	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260 280 300 320	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546 1911 2276 2641	195 176 158 141 124 109 95 83 71 17 P(gases) 214 195 176 158 141 124 109	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total) 666 1012 1358 1704 2052 2400 2750	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260 280 300 320 340	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546 1911 2276 2641 3005	195 176 158 141 124 109 95 83 71 17 P(gases) 214 195 176 158 141 124 109 95	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260 280 300 320	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546 1911 2276 2641	195 176 158 141 124 109 95 83 71 17 P(gases) 214 195 176 158 141 124 109	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total) 666 1012 1358 1704 2052 2400 2750 3100	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11
200 220 240 260 280 300 320 340 360 380 400 NB47 NB-47 T P (Bodnar & Vityk) 175.6 180 200 220 240 260 280 300 320 340 360	333 690 1046 1402 1759 2115 2472 2828 3185 3541 3897 7 87 452 817 1182 1546 1911 2276 2641 3005 3370	195 176 158 141 124 109 95 83 71 P(gases) 17 P(gases) 214 195 176 158 141 124 109 95 83	885 1222 1560 1900 2239 2581 2923 3268 3612 P(Total) P(Total) 666 1012 1358 1704 2052 2400 2750 3100 3453	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	181.7 L 1.81 9.58 0.03 462 456 0.956 20.11

NB47 NB	-47	18			
T P (Bodnar & V	ityk)	P(gases)	P(Total)		
178.2	7			Tm ice	-6.3
180	39		044	Th L-V	178.2
200	400	214	614	Th to Molal NaCl	L 1.81
220	761	195 176	956 1298	Wt% NaCl	9.58
240 260	1122 1483	178	1641	X(NaCl)	0.03
280	1843	141	1984	Crit.Temp.	462
300	2204	124	2328	Crit.Press.	456
320	2565	109	2674	Bulk Den	0.959
340	2926	95	3021	Bulk MV	20.05
360	3287	83	3370		
380	3647	71	3718		
400	4008				
	-47	19			
T P (Bodnar & V		P(gases)	P(Total)	Tmina	-6.3
180.6	7	044	500	Tm ice Th L-V	180.6
200	354	214	568 907	Th to	100.0 L
220	712 1070	195 176	1246	Molal NaCl	1.81
240 260	1427	158	1585	Wt% NaCl	9.58
280	1785	141	1926	X(NaCl)	0.03
300	2143	124	2267	Crit.Temp.	462
320	2501	109	2610	Crit.Press.	456
340	2859	95	2954	Bulk Den	0.957
360	3216	83	3299	Bulk MV	20.09
380	3574	71	3645		
400	3932				
	-47	20	D/T-4-1)		
T P (Bodnar & V	/ityk)	20 P(gases)	P(Total)	Tm ico	-5.1
T P (Bodnar & V 202.1	/ityk) 9	P(gases)		Tm ice Th L-V	-5.1 202 1
T P (Bodnar & V 202.1 220	/ityk) 9 299	P(gases)	494	Th L-V	202.1
T P (Bodnar & V 202.1 220 240	/ityk) 9 299 624	P(gases) 195 176	494 800	Th L-V Th to	
T P (Bodnar & V 202.1 220 240 260	fityk) 9 299 624 948	P(gases) 195 176 158	494 800 1106	Th L-V	202.1 L
T P (Bodnar & V 202.1 220 240 260 280	fityk) 9 299 624 948 1272	P(gases) 195 176	494 800	Th L-V Th to Molal NaCl	202.1 L 1.48
T P (Bodnar & V 202.1 220 240 260	fityk) 9 299 624 948	P(gases) 195 176 158 141	494 800 1106 1413	Th L-V Th to Molal NaCl Wt% NaCl	202.1 L 1.48 7.96
T P (Bodnar & V 202.1 220 240 260 280 300	fityk) 9 299 624 948 1272 1596	P(gases) 195 176 158 141 124	494 800 1106 1413 1720	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	202.1 L 1.48 7.96 0.03
T P (Bodnar & V 202.1 220 240 260 280 300 320	fityk) 9 299 624 948 1272 1596 1921	P(gases) 195 176 158 141 124 109	494 800 1106 1413 1720 2030	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340	7ityk) 9 299 624 948 1272 1596 1921 2245	P(gases) 195 176 158 141 124 109 95	494 800 1106 1413 1720 2030 2340	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	202.1 L 1.48 7.96 0.03 448 415
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360	7ityk) 9 299 624 948 1272 1596 1921 2245 2569	P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894	P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894	P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894	P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894	P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894	P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218	P(gases) 195 176 158 141 124 109 95 83 71	494 800 1106 1413 1720 2030 2340 2652	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218	P(gases) 195 176 158 141 124 109 95 83 71	494 800 1106 1413 1720 2030 2340 2652 2965	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NB T P (Bodnar & V	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218	P(gases) 195 176 158 141 124 109 95 83 71	494 800 1106 1413 1720 2030 2340 2652 2965	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NB T P (Bodnar & V 204.8	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260 280	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158 141	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260 280 300	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895 1216 1536	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158 141 124	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total)	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74 -5 204.8 L 1.45 7.82 0.03
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260 280 300 320	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895 1216 1536 1857	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158 141 124 109	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total) 449 750 1053 1357 1660 1966	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74 -5 204.8 L 1.45 7.82 0.03 446
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260 280 300 320 340	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895 1216 1536 1857 2178	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158 141 124 109 95	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total) P(Total) 449 750 1053 1357 1660 1966 2273	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74 -5 204.8 L 1.45 7.82 0.03 446 411
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260 280 300 320 340 360	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895 1216 1536 1857 2178 2498	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158 141 124 109 95 83	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total) P(Total) 449 750 1053 1357 1660 1966 2273 2581	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74 -5 204.8 L 1.45 7.82 0.03 446 411
T P (Bodnar & V 202.1 220 240 260 280 300 320 340 360 380 400 NB47 NE T P (Bodnar & V 204.8 220 240 260 280 300 320 340	7ityk) 9 299 624 948 1272 1596 1921 2245 2569 2894 3218 3-47 7ityk) 10 254 574 895 1216 1536 1857 2178	P(gases) 195 176 158 141 124 109 95 83 71 22 P(gases) 195 176 158 141 124 109 95	494 800 1106 1413 1720 2030 2340 2652 2965 P(Total) P(Total) 449 750 1053 1357 1660 1966 2273	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	202.1 L 1.48 7.96 0.03 448 415 0.927 20.74 -5 204.8 L 1.45 7.82 0.03 446 411

NB47	NB-47	23			
T P (Bodna	• •	P(gases)	P(Total)	·	-
179.2				Tm ice Th L-V	-5 179.2
180 200		214	585	Th to	173.2 L
220		195	916	Molal NaCl	1.45
240		176	1247	Wt% NaCl	7.82
260	1421	158	1579	X(NaCl)	0.03
280	1771	141	1912	Crit.Temp.	446
300	2121	124	2245	Crit.Press.	411
320		109	2580	Bulk Den	0.947
340		95 83	2916 3254	Bulk MV	20.31
360 380		71	3592		
400		, ,	0002		
400	007.1				
NB47	NB-47	24			
T P (Bodna	r & Vityk)	P(gases)	P(Total)		
177.2				Tm ice	-5.2
180				Th L-V	177.2
200		214	624	Th to	L 4 54
220		195	959	Molal NaCl Wt% NaCl	1.51 8.1
240 260		176 158	1294 1630	X(NaCl)	0.03
280		141	1967	Crit.Temp.	449
300		124	2304	Crit.Press.	419
320		109	2643	Bulk Den	0.95
340		95	2982	Bulk MV	20.23
360	3241	83	3324		
380	3595	71	3666		
400	3949				
H2O-NaCI-[KC	-				
Stack	Sample	Inclusion			
Stack 104w	Sample NB-104	Inclusion 6			
Stack 104w T P (Bodna	Sample NB-104 r & Vityk)			Tm ice	-5.3
Stack 104w T P (Bodna 196.5	Sample NB-104 r & Vityk)	6	1191	Tm ice Th L-V	-5.3 196.5
Stack 104w T P (Bodna	Sample NB-104 r & Vityk) 9 67		1191 1399	Tm ice Th L-V Th to	
Stack 104w T P (Bodna 196.5 200	Sample NB-104 r & Vityk) 9 67 399	1124		Th L-V	196.5
Stack 104w T P (Bodna 196.5 200 220	Sample NB-104 r & Vityk) 9 67 399 731	1124 1000	1399	Th L-V Th to	196.5 L
Stack 104w T P (Bodna 196.5 200 220 240 260 280	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395	1124 1000 883 776 679	1399 1614 1839 2074	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	196.5 L 1.54 8.24 0.03
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727	1124 1000 883 776 679 592	1399 1614 1839 2074 2319	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	196.5 L 1.54 8.24 0.03 450
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059	1124 1000 883 776 679 592 513	1399 1614 1839 2074 2319 2572	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	196.5 L 1.54 8.24 0.03 450
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391	1124 1000 883 776 679 592 513	1399 1614 1839 2074 2319 2572 2834	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	196.5 L 1.54 8.24 0.03 450 422 0.935
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723	1124 1000 883 776 679 592 513 443	1399 1614 1839 2074 2319 2572 2834 3104	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	196.5 L 1.54 8.24 0.03 450
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055	1124 1000 883 776 679 592 513	1399 1614 1839 2074 2319 2572 2834	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	196.5 L 1.54 8.24 0.03 450 422 0.935
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055	1124 1000 883 776 679 592 513 443	1399 1614 1839 2074 2319 2572 2834 3104	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	196.5 L 1.54 8.24 0.03 450 422 0.935
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387	1124 1000 883 776 679 592 513 443 381	1399 1614 1839 2074 2319 2572 2834 3104	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	196.5 L 1.54 8.24 0.03 450 422 0.935
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387	1124 1000 883 776 679 592 513 443	1399 1614 1839 2074 2319 2572 2834 3104	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	196.5 L 1.54 8.24 0.03 450 422 0.935
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk)	1124 1000 883 776 679 592 513 443 381	1399 1614 1839 2074 2319 2572 2834 3104	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den	196.5 L 1.54 8.24 0.03 450 422 0.935
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10	1124 1000 883 776 679 592 513 443 381	1399 1614 1839 2074 2319 2572 2834 3104	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 3200 340 360 380 400 104w T P (Bodna 204.6	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258	1124 1000 883 776 679 592 513 443 381 326	1399 1614 1839 2074 2319 2572 2834 3104 3381	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400 104w T P (Bodna 204.6 220	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258 580	1124 1000 883 776 679 592 513 443 381 326 7	1399 1614 1839 2074 2319 2572 2834 3104 3381	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400 104w T P (Bodna 204.6 220 240 260 280	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258 580 902 1224	1124 1000 883 776 679 592 513 443 381 326 7	1399 1614 1839 2074 2319 2572 2834 3104 3381 1258 1463 1678 1903	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400 104w T P (Bodna 204.6 220 240 260 280 300	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258 580 902 1224 1546	1124 1000 883 776 679 592 513 443 381 326 7 1000 883 776 679 592	1399 1614 1839 2074 2319 2572 2834 3104 3381	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400 104w T P (Bodna 204.6 220 240 260 280 300 320	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258 580 902 1224 1546 1868	1124 1000 883 776 679 592 513 443 381 326 7 1000 883 776 679 592 513	1399 1614 1839 2074 2319 2572 2834 3104 3381 1258 1463 1678 1903 2138 2381	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400 104w T P (Bodna 204.6 220 240 260 280 300 320 340	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258 580 902 1224 1546 1868 2190	1124 1000 883 776 679 592 513 443 381 326 7 1000 883 776 679 592 513 443	1399 1614 1839 2074 2319 2572 2834 3104 3381 1258 1463 1678 1903 2138 2381 2633	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57
Stack 104w T P (Bodna 196.5 200 220 240 260 280 300 320 340 360 380 400 104w T P (Bodna 204.6 220 240 260 280 300 320	Sample NB-104 r & Vityk) 9 67 399 731 1063 1395 1727 2059 2391 2723 3055 3387 NB-104 r & Vityk) 10 258 580 902 1224 1546 1868 2190 2512	1124 1000 883 776 679 592 513 443 381 326 7 1000 883 776 679 592 513	1399 1614 1839 2074 2319 2572 2834 3104 3381 1258 1463 1678 1903 2138 2381	Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press. Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	196.5 L 1.54 8.24 0.03 450 422 0.935 20.57

104w N	B-104	8			
T P (Bodnar &	Vityk)				
198.1	9			Tm ice	-5.2
200	40	1124	1164	Th L-V	198.1
220	370	1000	1370	Th to	L
240	699	883	1582	Molal NaCl	1.51
260	1029	776	1805	Wt% NaCl	8.1
280	1358	679	2037	X(NaCl)	0.03
300	1688	592	2280	Crit.Temp.	449 419
320	2017	513	2530	Crit.Press.	
340	2347	443	2790	Bulk Den Bulk MV	0.932 20.63
360	2676	381	3057 3332	Bulk MV	20.03
380	3006	326	JJJ2		
NB99 N	B99	1			
T P (Bodnar &					
242.3	21			Tm ice	-3.8
260	264			Th L-V	242.3
280	538			Th to	L
300	812			Molal NaCi	1.11
320	1086			Wt% NaCl	6.08
340	1360			X(NaCl)	0.02
360	1634			Crit.Temp.	430
380	1908			Crit.Press.	367
400	2182			Bulk Den	0.867
420	2456			Bulk MV	21.72
	B99	2			
T P (Bodnar &					
237.2	19			Tm ice	-5.6
240	59			Th L-V	237.2
260	346			Th to	L 4.60
280	634			Molal NaCl	1.62
300	921			Wt% NaCl	8.65
320	1208			X(NaCl)	0.03 454
340	1495			Crit.Temp.	432
360	1783			Crit.Press. Bulk Den	0.897
380	2070			Bulk MV	21.45
400	2357			DOIN INIV	21.40
NB99 N	B99	3			
T P (Bodnar &					
217.1	12			Tm ice	-4.4
220	56			Th L-V	217.1
240	360			Th to	L
260	664			Molai NaCi	1.28
280	967			Wt% NaCl	6.96
300	1271			X(NaCl)	0.02
320	1575			Crit.Temp.	439
340	1879			Crit.Press.	390
360	2182			Bulk Den	0.904
380	2486			Bulk MV	20.82
	IB99	4			
T P (Bodnar &				Tm ico	-4.2
224.1	14			Tm ice Th L-V	224.1
240	249			Th to	224.1 L
260	544 830			Molal NaCl	1.22
280	839			Wt% NaCl	6.67
300	1134			X(NaCl)	0.02
320 340	1430 1725			Crit.Temp.	436
340 360				Crit. Press.	382
360 380	2020 2315			Bulk Den	0.894
400	2610			Bulk MV	21.06
400	2010			~~	

NB99 NB	99	5		
T P (Bodnar & V	'ityk)			
199.3	9		Tm ice	-5.9
200	21		Th L-V	199.3
220	353		Th to	L
240	685		Molal NaCl	1.7
260	1018		Wt% NaCl	9.05
280	1350		X(NaCl)	0.03
300	1683		Crit.Temp.	458
320	2015		Crit.Press.	442
340	2347		Bulk Den	0.938
360	2680		Bulk MV	20.51
380	3012			
400	3345			
420	3677			
NB99 NB	00	6		
		0		
T P (Bodnar & V	9 9		Tm ice	-5.2
198			Th L-V	198
200	42		Th to	L
220	372 701		Molal NaCl	1.51
240			Wt% NaCl	8.1
260	1031		X(NaCl)	0.03
280	1360		Crit.Temp.	449
300	1690		Crit. Press.	419
320	2020		Bulk Den	0.932
340	2349		Bulk MV	20.63
360	2679		DUIK IAIV	20.05
380	3009			
400	3338			
420	3668			
NB99 NB	99	7		
T P (Bodnar & V				
206.3	10		Tm ice	-4.7
220	227		Th L-V	206.3
240	545		Th to	L
260	862		Molal NaCl	1.37
280	1179		Wt% NaCl	7.39
300	1496		X(NaCl)	0.02
320	1814		Crit.Temp.	442
340	2131		Crit.Press.	401
360	2448		Bulk Den	0.919
380	2765		Bulk MV	20.48
400	3083			
420	3400			
NB99 NB	199	8		
T P (Bodnar & V				
222.8	14		Tm ice	-3.5
240	267		Th L-V	222.8
260	560		Th to	L
280	854		Molal NaCl	1.02
300	1148		Wt% NaCl	5.62
320	1441		X(NaCl)	0.02
340	1735		Crit.Temp.	426
360	2029		Crit.Press.	355
380	2322		Bulk Den	0.887
	2616		Bulk MV	21.23
400	2010			

	NB99	NB99	9		
	T P (Bodnar	& Vityk)			
	203.5	10		Tm ice	-3.3
	220	268		Th L-V	203.5
	240	581		Th to	L
	260	895		Molal NaCl	0.96
	280	1208		Wt% NaCl	5.32
	300	1521		X(NaCl)	0.02
	320	1834		Crit.Temp.	423
	340	2147		Crit.Press.	348
	360	2460		Bulk Den	0.906
	380	2774		Bulk MV	20.79
	NB99	NB99	10		
	T P (Bodnar				
*	205.2	10		Tm ice	-4.3
	220	244		Th L-V	205.2
	240	560		Th to	L
	260	877		Molal NaCl	1.25
	280	1193		Wt% NaCl	6.81
	300	1509		X(NaCl)	0.02
	320	1825		Crit.Temp.	437
	340	2142		Crit.Press.	386
	360	2458		Bulk Den	0.916
	380	2774		Bulk MV	20.56
	NB99	NB99	11		
	T P (Bodnar				
	216.9	12		Tm ice	-3.7
	220	59		Th L-V	216.9
	240	359		Th to	L
	260	660		Molal NaCl	1.08
	280	961		Wt% NaCl	5.93
	300	1262		X(NaCl)	0.02
	320	1562		Crit.Temp.	429
	340	1863		•	363
				Crit.Press.	300
				Crit.Press. Bulk Den	
	360 380	2164 2465		Crit.Press. Bulk Den Bulk MV	0.896 21.01
	360	2164 2465		Bulk Den	0.896
	360	2164	12	Bulk Den	0.896
	360 380	2164 2465 NB99 & Vityk)	12	Bulk Den Bulk MV	0.896 21.01
	360 380 NB99	2164 2465 NB99	12	Bulk Den Bulk MV Tm ice	0.896 21.01 -4.9
	360 380 NB99 T P (Bodnar	2164 2465 NB99 & Vityk) 15 222	12	Bulk Den Bulk MV Tm ice Th L-V	0.896 21.01 -4.9 226
	360 380 NB99 T P (Bodnar 226	2164 2465 NB99 & Vityk)	12	Bulk Den Bulk MV Tm ice Th L-V Th to	0.896 21.01 -4.9 226 L
	360 380 NB99 T P (Bodnar 226 240	2164 2465 NB99 & Vityk) 15 222	12	Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl	0.896 21.01 -4.9 226 L 1.42
	360 380 NB99 T P (Bodnar 226 240 260	2164 2465 NB99 & Vityk) 15 222 519	12	Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl	0.896 21.01 -4.9 226 L 1.42 7.68
	360 380 NB99 T P (Bodnar 226 240 260 280	2164 2465 NB99 & Vityk) 15 222 519 815 1112 1408	12	Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl)	0.896 21.01 -4.9 226 L 1.42 7.68 0.02
	360 380 NB99 T P (Bodnar 226 240 260 280 300	2164 2465 NB99 & Vityk) 15 222 519 815 1112	12	Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	0.896 21.01 -4.9 226 L 1.42 7.68 0.02 445
	360 380 NB99 T P (Bodnar 226 240 260 280 300 320	2164 2465 NB99 & Vityk) 15 222 519 815 1112 1408	12	Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp. Crit.Press.	0.896 21.01 -4.9 226 L 1.42 7.68 0.02 445 408
	360 380 NB99 T P (Bodnar 226 240 260 280 300 320 340	2164 2465 NB99 & Vityk) 15 222 519 815 1112 1408 1704	12	Bulk Den Bulk MV Tm ice Th L-V Th to Molal NaCl Wt% NaCl X(NaCl) Crit.Temp.	0.896 21.01 -4.9 226 L 1.42 7.68 0.02 445

APPENDIX H

Formulae for the salinity and temperature correction of Henry's Law Constants as supplied by Drummond (1981). These formulae are valid for 0 - 6 molal solutions in the temperature range of 25 - 400°C, pressures up to 500 bar and 3 mole percent of gas.

All determinations of fugacity is in the following form:

fugacity =
$$K_H * X$$

where K_H is the value for Henry's Law constants and X is the molar concentration of the gas.

$$lnK_{H} = A + BT + C/T + DT^{2} + Em$$

$$T = Temperature in Kelvin$$

$$m = NaCl molality$$

$$A = 5.91$$

$$B = 0.01632$$

$$C = -340.0$$

$$D = -2.769 \times 10^{-5}$$

$$E = 0.2021$$

H = -0.001606

$$lnK_{H} = A + BT + CX + D/T + E/X + FXT + GX/T + HT/X$$
 $T = Temperature in Kelvin$
 $X = NaCl molality + 1.0$
 $A = 20.244$
 $B = -0.016323$
 $C = -1.0312$
 $D = -3629.7$
 $E = 0.4445$
 $F = 0.0012806$
 $G = 255.9$

$$CH_4$$

$$lnK_{H} = A + BP + CT + DX + E/T + F/X + G/P + HP/X + IP/T + JTX$$

 $P = CH_4$ pressure in atm.

T = Temperature in Kelvin

X = NaCl molality + 1.0

A = 26.187

B = 0.0013647

C = -0.026991

D = 0.1169

E = -3380.7

F = -0.2409

G = -0.2779

H = 0.0001919

I = -0.1428

J = 0.0002778

H_2S

$$lnK_{H} = A + BT + CX + D/T + E/X + FXT + GX/T + HT/X$$

T = Temperature in Kelvin

X = NaCl molality + 1.0

A = 11.416

B = -0.007013

C = 0.2905

D = -2067.7

E = 0.5705

F = -0.0001574

G = -46.2

H = -0.001777

The following calculations for Henry's Law constants, applied to simple apolar gases, is taken from Prini and Crovetto (1989) and are valid from ambient temperatures to the Tmax show.

Formulae take the form of:

$$ln \ K_H = \ A_1 + \ A_2*10^3/T \ + \ A_3*10^6/T^2 \ + \ A_4*10^9/T^3 \ + \ A_5*10^{12}/T^4$$

System	A_1	A ₂	A ₃	A ₄	A_5	σ	Tmax(K)
He-H ₂ O	-7.1725	5.9734	-0.9038			5.9	588.7
Ne-H ₂ O	-5.9825	5.5176	-0.8886			3.2	543.4
Ar-H ₂ O	-7.8972	7.0178	-1.2649			2.7	568.4
Kr-H ₂ O	-7.5642	6.8773	-1.3047			2.9	525.6
Xe-H ₂ O	-9.3604	7.9654	-1.5167			12.9	574.8
O ₂ -H ₂ O	-15.9766	15.7951	-4.3331	0.3502		5.0	616.0
CH ₄ -H ₂ O	-18.5223	17.7956	-4.8318	0.3856		3.3	633.0
H ₂ -H ₂ O	-46.0050	64.8729	32.9118	7.6094	-0.6673	10.8	636.0
N ₂ -H ₂ O	-55.5386	77.9340	-13.9781	9.2813	-0.8226	8.9	636.0

Above 573 K and up to the crtitical temperature, T_{cl} , the following formulae are better suited:

$$ln K_{H} = (B_0/T)^*(T_{cl}-T). \ln((T_{cl}-T)/T_{cl}) + \sum_{i=0}^{n} (B_{i+1})/T^{i} (1000)^{i}$$

where B_0 has a value between 0 and -4, usually -1.

System	B_1	B_2	B_3	B ₄	B ₅	σ
He-H ₂ O	-6.4859	5.2327	-0.8086			6.5
Ne-H ₂ O	-5.3238	4.7936	-0.7959			2.1
Ar-H ₂ O	-7.1874	6.2632	-1.1676			1.5
Kr-H ₂ O	-7.0173	6.2204	-1.2220			4.0
Xe-H ₂ O	-8.7307	7.2588	-1.4265			11.8
O ₂ -H ₂ O	-13.3190	12.8557	-3.4516	0.2592		4.7
CH ₄ -H ₂ O	-15.5767	14.5624	-3.8519	0.2838		2.5
C ₂ H ₆ -H ₂ O	-20.6180	19.3949	-5.2453	0.3956		2.7
H ₂ -H ₂ O	-38.4512	53.4846	-27.4317	6.3522	-0.5590	10.6
N ₂ -H ₂ O	-47.7453	66.7623	-34.2820	7.9705	-0.7094	8.4