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Abstract

Modeling investigations on gas permeameters:
spatial weighting functions and layered systems
by:

Eric C. Aronson

Two very different investigations are brought together in this work. These share the
common approach of numerical investigation through the finite element method, and
both involve gas minipermeameters. Minipermeameters are instruments which
measure permeability by injecting gas into a sample, and monitoring the applied
pressure and flow rate. The first investigation, Determination of Spatial Weighting
Functions Using Adjoint State Sensitivity Analysis, stresses both the introduction of a
new theoretical technique and the illustration of the technique on the
minipermeameter. The second investigation, Determination of Geometric Factors for
a Layered Permeability System, lays a foundation for the expansion of practical uses of
the permeameter by introducing new geometric factors for layered permeability
systems.

When an instrument makes a measurement, an effective property is inverted that may
be viewed as a spatial average of the properties of the materials which compose the
total volume sampled. Therefore it is important to understand the extent of that
volume, and the relative importance of different regions within the volume. Linear
filter theory suggests that we may view effective permeability as the convolution of
point scale permeability and a spatial weighting function over the volume of the
sampled rock. The weighting functions, which are isolated by employing adjoint state
sensitivity analysis, describe the importance of the local permeability at the point scale
to the effective permeability yielded by the minipermeameter.

After developing the theoretical technique, the finite element method was employed to
determine the linear spatial weighting functions for the minipermeameter. Since an
extremely fine discretization level was used, the field of point scale weighting functions
were also estimated. The weighting functions indicate that the region directly beneath
the tipseal no-flow boundary makes the greatest contribution to the measurement.
Integrating the weights over a volume indicated that 95% and 99% of the weighting
function is contained in a right cylinder with dimensionless radius and length of 2.3,
and 3.71, repectively. These values are in good agreement with the numerical and
experimental observations of several previous investigators. Additionally, it was found
that the spatial weighting functions are in near perfect correlation with an equation
relating the potential gradient and the geometric factor.

Chapter 3 presents the investigation to determine new geometric factors for a layered
permeability system. This should prove useful for investigating the permeability across
narrow faults. Currently, measuring permeability in narrow deformation bands
typically results in a permeability measurement that is an average of the deformation



zone and host rock permeability. This work develops the basis for expanding field
permeametry so that the permeability of one of two layers may be measured when
independent measurement of the other layer permeability and the thickness of the
upper layer is available.

The geometric factors were determined for the semi-infinite flow geometry and a
tipseal with ratio () of 2. Used in the traditional form of the minipermeameter
equation, 133 values of the two layer geometric factors were found to also be a
function of the dimensionless thickness of the upper layer (D), and the ratio of the
layer permeabilities (Kz). As a function of K for a particular D, the geometric factor
curve is characterized by two asymptotes and a smooth transition zone. Regressions
were performed to determine equations which accurately (within 6.5%) characterize
the curve for all values. Using either the data sets, or the regression curves and the
two layer permeameter equation, a unique value of permeability may be quickly
determined either graphically or using a non-linear search
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Nomenclature

units: M - mass, L - length, t - time, T - temperature, mol - moles, [-] - dimensionless
General

a inner tipseal radius, [L]

b outer tipseal radius, [L]
: : . b
b, ratio of tipseal radii, equal to; [-]

k,  effective intrinsic permeability, L7

G,(b,;) Goggin’s geometric factor for the semi-infinite medium, [-]

G,(b,,R,,Z,) Goggin’s geometric factor for the finite medium, bounded by
dimensionless core radius, R, and dimensionless core
length, Z,, [-]

M  molecular mass of gas [M mol ']

m  mass flow rate into the sample, Mt

P gas pressure, [ML't?]

P, pressure inside the tipseal chamber, [ML't?]

P ambient pressure outside the tipseal, [ML't?]

O  volumetric flow rate into the sample, L7

r radial coordinate, [L]
. . . . b
r, dimensionless radial coordinate, equal to P [-]

R gas constant [ML>T"tmol ']



; . . r
R, dimensionless core radius, equal to — [-]
a

4 gas viscosity, [Mt'L"]

2

) do-potential 1t M P [Mt'L?]
pseudo-potential, equal to RTu 2

®. applied pseudo-potential beneath the tipseal,

2

alto 4L Mt'L
equal to Rz 2

® the “ambient” pseudo-potential outside of tipseal,

2

1t M 5 Mt'L™]
equal to — Th 2

z coordinate along axis of symmetry, [L]

. ) ) z
z, dimensionless coordinate along axis of symmetry, equal to . [-]

Z, dimensionless core length, equal to 2 [-]

Chapter 2 - Adjoint state sensitivity analyses for spatial weighting functions

A coefficient matrix

L)

general load vector which includes sources/sinks and boundary

conditions
k  permeability of material in a homogeneous system, L]

k; permeability of the ™ material in a heterogeneous system, LY

X717



vector of nodal mass flows, [Mt"]

B3

N number of volumes comprising V', [-]

J  general performance measure
V  total volume of sample, [L°]
a  general vector of parameter values

B(r,z,0) spatial weighting functions in cylindrical coordinates L]
Fj volumetric weighting function for the 7™ volume [-]
<)

vector of pseudo-potentials at node points

vector of partial derivatives of state variables with respect to the o

I

arameter, equal to —
p q o,

w"  vector of adjoint states

Chapter 3 - Two layer permeability geometric factors

Aiwer  fitting parameter that describes th¢ lower asymptote of two-layer
geometric factor curves, [-]

Ay fitting parameter that describes the upper asymptote of two-layer
geometric factor curves, [-]

B, fitting parameter for two-layer geometric curves, [-]

B, fitting parameter for two-layer geometric curves, [-]

d  depth to top of lower permeability material, [L]

x reYT



d
D dimensionless depth to top of lower permeability layer, equal to - [-]

G, (b,) Geometric factor for the semi-infinite, layered permeability system, [-]
k, permeability of top layer in a layered permeability system, L4
k, permeability of lower layer in a layered permeability system, L%

K, ratio of upper layer permeability to lower layer permeability,

lto 22
equal to k) -1

LA vd



1. Introduction

Two very different investigations are brought together in this work. These share the
common approach of numerical investigation through the finite element method, and both
involve gas minipermeameters. Minipermeameters are instruments which measure
permeability by injecting gas into a sample, and monitoring the applied pressure and flow
rate (Eijpe and Weber, 1971; Goggin et al., 1988; Davis et al., 1994; Suboor and Heller,
1995; Tidwell and Wilson, 1997). The first investigation, Determination of Spatial
Weighting Functions Using Adjoint State Sensitivity Analysis, stresses both the
introduction of a new theoretical technique and the illustration of the technique on the
minipermeameter. The second investigation, Determination of Geometric Factors fora
Layered Permeability System, lays a foundation for the expansion of practical uses of the

permeameter by introducing new geometric factors for layered permeability systems.

Since it is recognized that the reader may not be interested in both investigations, this
work has been divided to allow the reader to locate the material that they may be
interested in, while avoiding the redundancy of having two stand alone investigations. The
reader interested in the newly proposed technique to determine spatial weighting
functions, would probably be interested in the balance of this chapter and all of Chapter 2.
The reader wishing to use a minipermeameter to measure permeability in layered systems
could look here and in Chapter 3. The reader with a general interest in permeametry may

find all chapters to be of interest.



This introductory chapter gives a brief overview of the background common to both
investigations: permeameters and the finite element code. Chapter 2 discusses a newly
proposed technique of using adjoint state sensitivity analyses to determine linear spatial
weighting functions and the application of this technique to the minipermeameter. Linear
filter theory (Matheron, 1965; Marle, 1967; Baveye and Sposito, 1984; Cushman, 1984;
Desbarats, 1992) suggests that we may view effective permeability as the convolution of
point scale permeability and a spatial weighting function over the volume of the sampled
rock. The weighting functions, which are isolated by employing adjoint state sensitivity
analysis, describe the importance of the local permeability at the point scale to the
effective permeability yielded by the minipermeameter. This chapter also compares this
new theory with the results of previous minipermeameter investigations. Chapter 3
presents the investigation to determine new geometric factors for a layered permeability
system. This work develops the basis for expanding field permeametry to measure the
permeability of one of two layers when independent measurement of the other layer
permeability and the thickness of the upper layer is available. A summary of conclusions

from both investigations and recommendations for future work are given in Chapter 4.

The balance of this chapter begins with an overview of the development and operation of
the gas minipermeameter, and introduces several permeameter studies which relate to the
work contained within this paper. It also discusses how boundary conditions were
addressed in these investigations. This is followed by a section that outlines the
development of the finite element code that was utilized to solve the flow equations for

the permeameter. This section is restricted to the equations pertaining to the flow



problem; the extension of the code to solve the adjoint state problem is discussed in

Chapter 2.

1.1 Permeameters

1.1.1 General

Gas permeameters are instruments which measure permeability through steady injection of
a gas into a sample (Eijpe and Weber, 1971; Goggin et al., 1988; Davis et al., 1994;
Suboor and Heller, 1995; Tidwell and Wilson, 1997). The pressure drop through the
material and the flow rate into the sample are used to invert a permeability value. Figure
1.1 is a schematic cross-section through a permeameter tipseal. The tipseal is applied to
the sample face, and an elevated pressure within the internal chamber induces flow into the
sample. The gas flows into the sample and then exits through the free surface beyond the
outer edge of the tipseal. A conformable material, such as silicone rubber, forms a seal
along the sample surface. Tidwell and Wilson (1997) introduced tipseal guides to limit the
deformation of the conformable tipseal, so that the inner and outer radius (a and b,

respectively) remain unchanged.

Development of gas permeametry has advanced slowly over the last half-century. Suboor
and Heller (1995) suggest that the first recorded use of the permeameter was in 1950, by
Dykstra and Parsons (1950). Early permeameters relied on calibration curves to
determine permeability values, which required instrument calibration be performed for the

entire range of possible permeabilities. In 1988, Goggin et al. (1988) presented a formula



Figure 1.1 - Schematic of minipermeameter tipseal

relating pressures flow rate, tipseal geometry, and sample permeability. Presented as a
modified form of Darcy’s law, the formula (1.1) includes a geometric factor that isa
function of the ratio of the outer tipseal radius to inner tipseal radius, and sample
geometry. Although the formula presented by Goggin et al. (1988) is widely used, some
investigators still use calibration curves. For a thorough history of gas permeameter

development, the reader is directed to Suboor and Heller (1995).
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where Kk, = effective intrinsic permeability L]
0 = volumetric flow rate into the sample [LSt'l]
P = pressure inside the tipseal chamber [ML™'t”]
P = ambient pressure outside the tipseal [ML't7]
7 = gas dynamic viscosity [Mt'IL'I]
a = inner tipseal radius [L]
b = outer tipseal radius [L]

il

G,(b,,R,,Zy) Goggin’s geometric factor

b

b, = permeameter tipseal ratio, = —
: . i sample radius
R, = dimensionless sample radius, = —
sample length
Z, = dimensionless sample length, = __B;_E_

Assuming a homogeneous isotropic material, Goggin et al. (1988) determined geometric
factors (henceforth called Goggin factors) for two geometries: flow into cylinders with
adjacent sides and bottom at finite distances, G,(b,, Ry, Z;) and flow into a semi-infinite
halfspace, G, (b,,,%) or G, (b,). A finite difference model was used to determine
Goggin factors when sample boundaries (assumed to be constant pressure surfaces) were

located at finite distances, and an analytical solution for a ring source was used to estimate



Goggin factors for the semi-infinite geometry. Recently new exact analytical solutions
have been derived (B. Kerr and J. Wilson, personal communication, 1998), but they have

not yet been published.

1.1.2 Equation development

In the absence of gas slippage effects, the mass conservation equation for radially

symmetric, laminar, steady flow of a compressible fluid in cylindrical coordinates (7,z) is:

18 pé’P] a( po”Pj
12 =2k, B2+ 2 B 25 <0
(1.2) r&[hﬂ&ﬁL& L

where p = gas density [ML'3]

(1.2) is a non-linear equation since the fluid density is a function of pressure. Using the
same approach as Goggin et al. (1988), we may produce an identity (1.3) by combining
the ideal gas law with a Kirchoff transform. Since viscosity varies little with pressure (but
significantly with temperature), the resulting equation (1.4) is essentially linear for

isothermal conditions.

i P M P
(13) P& ~oRT &,

for x, =7,z
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where R = gas constant [M L2 T t2 mol']
7 = absolute temperature T
M = molecular mass of gas [M mol 1

To further simplify the approach, a pseudo-potential, @, is introduced. This results in the
form of the differential equation (1.5) that is solved numerically. It is important to note
that ideal gas compressibility has been assumed, and that gas slippage effects have not
been taken explicitly into account. These effects were not accounted for in the original
derivation of Goggin factors, but corrections for these effects are proposed by Goggin et
al. (1988). It is readily observed that (1.5) now resembles the standard form of the

governing equation for axisymmetric incompressible (eg, liquid) flow.

lf_( __0@) ;5_( __5@) _

(15) " rk, +—\k, =0

(1.6) here @ = M P Mt'L?
' where == Ry o 2 ]

In this system, the expression for the Darcy velocity, u, is given by (1.7), where k isa

tensor with diagonal components k,, k.



1 k, 3, k, &,
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where u = Darcy velocity [L ™

The mass flux, ¢, is given by

L = RVD = pu =k, F —k, %
(1.8) q=—kVO=pu=-k —F-k, -z
where q = mass flux [M T—1 L-z]

In terms of our transformed variables, the effective property formula (1.1) becomes

3 m
T aGo(bd )[(DI - ®o]

(1.9) k

where m = mass flow rate into the sample [M 7]
®, = applied pseudo-potential beneath
the tipseal [M t'L"]
®, = “ambient” pseudo-potential [M 117

Tt is also useful to discuss the minipermeameter potential field and other results in terms of

dimensionless units, with the inner tipseal as the characteristic length.

v
(1.10) r,=—
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In these dimensionless units, the transformed governing equation, (1.5) becomes:

1.1.3 Relevant Permeameter Investigations

Several investigators report studies whic}llﬂ attempt to describe the regions that the
permeameter interrogates. An understanding of the result.s of these studies provides both
a good starting point for addressing the numerical studies at hand, and also provides a
source of comparison for the results of Chapter 2. Goggin et al. (1988) and Chen (1992)
drew conclusions regarding permeametry sampling based on results from studies
employing finite difference methods. Suboor and Heller (1995) utilized the scanning
minipermeameter of the New Mexico Petroleum Recovery Research Center (PRRC) for
empirical investigations regarding permeameter sampling traits. Also of interest
(predominately to the investigation in Chapter 2), is the work of Tidwell and Wilson
(1997) and Tidwell et al. (1999), who have employed an automated scanning

minipermeameter in upscaling studies.



Some insight into permeameter sampling regions is found in the original investigation by
Goggin et al. (1988) that resulted in the permeameter equation and values for the
geometric factors. By examining differences in geometric factors between the semi-
infinite and finite geometries, Goggin et al. concluded that, for samples with dimensionless
radius and depth of 4, less than 5% difference in permeability results for a significant range

of tipseal ratios.

Using a finite difference model, Chen (1992) proposed a methodology for measuring
porosity by monitoring the transient pressure decay after steady-state injection for the
semi-infinite sample. To eliminate the dependence on sample boundaries, Chen studied
the changes in the Goggin factor for various sample sizes and different "infinite" boundary
conditions. Chen also examined the distribution of flow entering and leaving the sample to

draw conclusions regarding the importance of the regions sampled.

To determine the value of the semi-infinite geometric factor, Chen (1992) compared
simulations where the "infinite" boundaries were either both constant potential or no-flow.
He proposed that the correct semi-infinite geometric factor must lie between the
geometric factors calculated from these two cases. By increasing the sample size, the

range of calculated geometric factors converged to a single value. When R, =Z, =9,
Chen's geometric factor varied by less than 0.2%. Averaging the values for these two sets
of boundary conditions, Chen's semi-infinite geometric factor, G, (b, =2)was 5.22. Itis
important to note that, for the utilized discretization level, almost 40% of the mass flux

entered the sample in the grid block just inside the conformable tipseal, and greater than



35% exited the sample through the first block outside the conformable tipseal. Chen
noted this region of concentrated flux and suggested that the portion of the sample

contributing to the measurement is predominately in this region.

To address the influence of boundary locations for the permeameter geometry, Chen
(1992) held a particular (lateral or depth) boundary location constant at a large distance
and then, varying the other boundary location, he compared geometric factors for different

"infinite" boundary conditions. Chen observed that for R, =4.0(Z, =70~ ), the

error in the geometric factor from the constant potential simulations was only 0.8% and
the error for the no-flow simulation was 3.0 %. Further illustrating the effect of the
boundary condition type on the geometric factor, Chen showed that samples characterized

by dimensionless lengths R, = Z, = 2.5, deviated from the "exact" geometric factor by

5.8% for the constant potential "infinite" boundaries, and 17.8 % for the no flow

boundaries.

An important influence on Chen's (1992) results are the discretization levels that were
utilized. He decided on the appropriate finite difference block size by comparing the
impacts of round-off and truncation error for the transient solution (in preparation for the
porosity problem). Using a one-dimensional flow field and corresponding analytical
solution, he found that considerable round-off error was introduced when the grid blocks
were smaller than 0.10 (dimensionless with respect to inner radius). This discretization
level was then utilized for the axis-symmetric simulations. The effect of Chen's choice of

grid block size resulted in calibration to a geometric factor, 5.22, that differs from the

11



recent analytical semi-infinite value of 5.10 derived by Kerr and Wilson (personal
communication, 1998). In the absence of round-off error (steady-state solution with
multiple passes to an iterative solver) and with very fine discretization, a similar analysis
using the finite element model of this investigation converges to 5.099+0.005, the

analytical value.

Sﬁboor and Heller (1995) performed laboratory experiments similar to Chen's numerical
investigation, using the scanning minipermeameter of the New Mexico Petroleum
Recovery Research Center (PRRC), Berea sandstone, and glass beads. Separate
experiments were designed to independently determine the dimensionless radius and depth
of investigation. They defined this limiting dimension as the location which would result

in a 1% change in measured permeability.

Using a block of Berea sandstone, two sets of measurements were performed to
investigate the lateral extent of the region investigated. One set of measurements was
made with the adjacent side (at Rp) open to ambient room pressure, and a second set with
an impermeable barrier to flow (modeling clay) along the side. They compared the
measurement sets to determine the location where measured permeability was impacted by
the boundary condition. To determine the depth of investigation, they used a layered
system composed of Berea sandstone and glass beads. Repeated measurements were
made for different thicknesses of the upper layer Berea sandstone, for which independent
permeability measurements were available prior to the reduction in thickness. It is unclear

what the lateral and lower boundary conditions were in this part of the investigation.



Using this approach for different tipseal ratios, they determined the depth at which the
ratio of the layered-system permeability to the Berea permeability varied by 1%. Suboor
and Heller reported their results in terms of dimensionless lengths, determined as the ratio
of the location at which a 1% permeability change was observed divided by the outer
tipseal radius. Restated in terms of the inner radius (as is the convention throughout this

paper), they determined a dimensionless radius of 2.88 and depth of 3.50 for 6~2.

The approach utilized to determine the horizontal radius of influence is almost the
empirical equivalent to the analysis of Goggin et al (1999) and Chen (1992), since it
measures the point at which the boundary conditions begin to influence the effective
permeability. Since altering the boundary conditions results in a different flow field, it is
unclear the extent to which the determined lengths apply to the flow conditions for which
the Goggin parameter was developed. In the case of the depth of investigation, our
numerical investigations using a two permeability layered system (Chapter 3) show that
the depth at which a 1% change results depends on the ratio of the layer permeabilities. In
Suboor and Heller's experiment this is the ratio of the Berea sandstone permeability to the

glass bead permeability.

Tidwell et al. (1999) employed an automated Multi-Support Permeameter (Tidwell and
Wilson, 1997) to obtain large permeability data sets on a relatively homogeneous sample
of Berea sandstone. Using four tipseals (all 5,=2), with inner tipseal radius ranging from
0.15 cm to 1.27 cm, they obtained permeability measurements along 0.85 cm grids on

each face of the sample. Using the 2304 measurements from a single face of the rock,



they calculated linear spatial weighting functions which relate the permeability
measurements obtained at the different scales. Since the divergent flow geometry of the
permeameter is three dimensional relative to the plane of sampling, these weighting

functions are essentially two-dimensional estimates.

Using the data sets for two tipseals, Tidwell et al. (1999) used a Fourier analyses to
determine linear weighting functions (dependant on each tipseal pair) for both arithmetic
and power averages. The Fourier weighting function may be separated into two real
components, one describing the amplitude change and the other describing the phase shift.
They found that the phase shift was essentially zero, and therefore, the gain function alone
describes the Fourier weighting function. For the power average weighting functions,
they found that employing an ad hoc approach of scaling thé gain by the magnitude at zero

frequency, resulted in the same function, regardless of the power average exponent used.

Fitting a model to cross sections of the inverse transformed weighting functions, Tidwell
et al. (1999) found that the weighting function was centered over the measurement (of the
larger tipseal) and decayed as a non-linear function of radial distance. If we assume that
the models fit to the cross-sections (in their Figure 10) represent the average cross-
sections for each tipseal set, then integrating the models over the surface can be used to
estimate the cumulative weight as a function of radius. For the tipseal pair that relates the
permeability measurements at the most disparate scales (1.27-0.15 cm filter),
dimensionless radii of 1.73 and 1.87 contain 90% and 95% of the weighting function,

respectively. It should be noted that the weighting functions arising from their study



represent two-dimensional weighting functions for a specific tipseal pair. Although it was
beyond the scope of their paper, the authors recognized that these large data sets could be
used to estimate a two-dimensional, point scale spatial weighting function (similar to the

three-dimensional spatial weighting function, B(r,z,6), estimated in Chapter 2).

1.1.4 Flow Geometry for the current investigations

Goggin determined geometric factors for both a semi-infinite geometry (where the sample

has no far field boundaries), and for finite samples that are bounded (at some R, and Z,)

by constant potential boundaries. As Chen illustrated, three more groups of geometric
factors also exist: for a finite sample with far-field boundaries that are barriers to flow
(possibly requiréd for cores of poorly consolidated rocks, which would be contained in an
impervious sleeve), and two groups which have mixed (one no-flow and one constant
potential) boundary conditions. As the radius and thickness of the finite sarﬁple increase,

the geometric factors approach those for the semi-infinite case.

For all of the work presented here, only the semi-infinite geometry was investigated.
This decision was based on the need to limit the number of influences on the geometric
factor and flow field for both studies. The semi-infinite geometry was judged to be the
more general case, since 1) it is often possible to control either the tipseal or sample size
so that the semi-infinite geometry is approximated, and 2) field studies where

measurements are made in situ are represented by the semi-infinite geometry. To achieve



this numerically, it is necessary to use a domain in which these "infinite boundaries" are

located at distances such that simulation results are not significantly impacted.

Figure 1.2 - Geomoetry and boundary conditions for the minipermeameter problem.

Figure 1.2 shows a schematic of the geometry and boundary conditions for which the
minipermeameter problem was solved. After the governing equation is linearized (1.5 and

1.6), the constant pressure applied within the tipseal chamber, F,, and the constant

ambient pressure outside of the sample, P,, are represented by constant pseudo-potentials
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(®, and @, respectively). The conformable seal is represented by a zero mass flux

boundary. Due to the symmetry in the homogeneous flow field, the axis of symmetry is
also modeled as a zero mass flux boundary. To determine appropriate distances so that
the "semi-infinite" boundaries did not effect results, simulations with different domain sizes
were performed where both distant boundaries had either constant potential or no-flow
conditions. Appropriate minimum distances were chosen when the Goggin factor

resulting from both simulations varied less than 0.1 % from G, (b,) = 5.10, the analytical

solution of Kerr and Wilson (personal communication, 1998).

1.2 Development of the finite element code

Both the state and adjoint problems were solved using the finite element method (Celia
and Gray, 1992; Heubner and Thornton, 1982; Wang and Anderson, 1982). For this
problem, that of a semi-infinite domain with the predominance of flow concentrated
beneath the tipseal, an important advantage of the chosen method is the ease with which
finite elements accommodate non-uniform grid spacing. Based on the Galerkin
formulation of the method of weighted residuals, equations for triangular elements with
linear weighting functions were derived and implemented in a Fortran program. An
overview of these processes, as they relate to the state problem, is given in the following

section.



1.2.1 Derivation of equations

In the finite element method, the numerically approximated potential (® )" within the

domain is defined in terms of a linear combination of the nn (the number of nodes) nodal
potentials(&D , ), and the nodal basis functions (N,). The basis functions are used to
interpolate the nodal potentials throughout the domain. The nodal potentials are then

sought so that this proposed form of the solution (1.14) will satisfy the governing

equation.

(1.14) o= N

In the method of weighted residuals, the governing solution is first multiplied by weighting
functions, and integrated over the volume, 7, of the domain. In the Galerkin formulation,
these weighting functions are the same as the basis functions. This yields nn equations

which are used to solve for the nn potentials.

16 ap) 4. &b
1.15 ~ ke — | +— N . dV =0
(1.15) Hrér(rk, 0})+&(kz Ozﬂ ,dV

| —

the weighted residual

The system of equations (1.16), which are ultimately derived from (1.15), are then solved

to determine the vector of nodal potentials, @, which minimizes the sum of the weighted

! Only used in this section to distinguish the numerically derived potentials from the "true" potentials.



residuals. Each of the nodal potentials, @ ,(7,,2,), 1s the numerical approximation to the

"true" potential ® at (r=7,,z=z2,).

(1.16) AD=f
where A = coefficient or conductivity matrix
f = load vector
® = vector of nodal potentials

Using the chain rule and expanding, we may rewrite (1.15) as (1.17). Here, the left most
integral pertains to the quantity of substance within the domain, and the other integral is a

measure of the substance entering or leaving the domain.

(1.17)

Applying Green's theorem to the integral on the right side allows us to rewrite the

equation (1.18) in terms of the mass flux, ¢, entering or leaving the domain through the

surface bounding the domain, I". This represents the specified flux boundary conditions,

and the values are stored in the load vector, £ .

10
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(1.18) I‘:;g[erkr ‘;jﬁ-?&—[Npkz?iz—]}dV: ijdeF
14

D A,
where q= —kr ;I’ —kr —52—2
# = unit normal outward vector on I'

For the first integral in (1.17), two important aspects of the basis functions allow us to
quickly assemble the system of nn equations by evaluating element by elefnent, instead of
node by node. First, each nodal basis function is defined as zero outside of the patch of
elements shared by the node. Secondly, within the area or volume bounded by each
element, the nodal basis function is described in terms of the coordinates of the nodes
composing that element. Dividing the nodal basis functions into the components that

apply to each element, the potential within an element is described in terms of only the

element basis functions (N ) and node potentials composing that element. For triangular

elements (comprised of nodes i, j and m) with linear basis functions, the potential for the

area within an element e is defined as:

(1.19) & (r,2) = N* (r,2)®, + N (r,2)®, + N, (r,2)®,
. 1
where Ni(r,z)= -Z—Aj[(rjzm -1,2,)+(z; =2, )+ (1, 1, )z]

1
(1.20) N (,2) = 5Oz = 1i2,) + =2 + 0= 1,)7]




1
Ni(r,z)=

1
and e RN ACEER BTN ERED)

el - nz) ez -]

Differentiating (1.19) and (1.20), substituting into the element form of the differential

equation, integrating with respect to the volume of the element (/°), and rearranging

yields (1.21). The rearranged form of (1.21) can be seen to readily resemble the left hand

side of (1.16).

where R =

& &
(r + 7 +7,)
3

By cycling through the elements, the nine contributions (1.22) from each element -

denoted by the superscript e, are then added into the appropriate locations in the global

conductivity matrix, A, according to the global node numbers of i, j, and m.



(1.22) A%, =27RA° (k : +k, —2 Lj for L=i,j,m

1.2.2 Implementation

After derivation of the fundamental equations, a general Fortran program was developed
and verified for standard axisymmetric flow problems. Due to the domain size and desired
resolution, compact storage was utilized to store the large sparse matrices and an iterative
solver was utilized to solve the large system of equations. This significantly reduces the
memory required for large simulations (which allows for liberal use of double precision)

and greatly decreases the time required for simulation.

The preconditioned conjugate gradient method (Reid, 1971; Young, 1971), as
implemented in the subroutine ILUCG (Yeh et al., 1993; Yeh and Srivastava, 1992), was
utilized to solve the system of equations (1.16). ILUCG uses an incomplete lower upper
preconditioner, and provides relatively quick convergence for large, sparse matrices in
compact storage. To guard against round-off error and premature convergence, final

convergence was determined by monitoring the Euclidean norm of the residuals. Failure



of the norm to meet a specified tolerance results in an additional pass through the solver

using the result from the previous pass as the initial guess.

As is the geometry for which Goggin's geometric factors are derived, the media for all
"samples" was assumed isotropic k, = k,. It is noted that the results of Chapter 2 and
Chapter 3 could be easily extended for anisotropy aligned with the coordinate axis by a

simple geometric transform.



2. Determination of Weighting Functions Using Adjoint

State Sensitivity Analysis

In hydrology, models are used to assist with issues such as the allocation of
groundwater, assessing contaminant fate and transport, and evaluating remediation
schemes. Models include conceptualizations involving the relationships between and
values of spatially distributed properties, which in turn mandate the use (and design) of
instruments that measure these properties. In this chapter, a novel approach, which
combines adjoint state sensitivity analysis and linear weighting functions, is proposed

as a valuable tool to assist in both instrument design and data acquisition.

When an instrument makes a measurement, an effective property is inverted that may
be viewed as a spatial average of the properties of the materials which compose the
total volume sampled. Therefore it is important to understand the extent of that
volume, and the relative importance of different regions within the volume. This
knowledge is crucial to assessing the quality of the resulting effective measurement,
constraining appropriate application of the acquired data, and design of successful

sampling strategies.

The permeameter is an instrument that is utilized to make measurements of intrinsic
permeability - the ability of a sample to conduct fluid. Permeameters have been used

in a wide variety of investigations, which include examining spatial variability in both



field and laboratory studies (ég., Davis et al., 1990; Dreyer et al., 1990; Suboor and
Heller, 1995; Antonellini and Aydin, 1994; Sigda et al., 1999), and permeability
upscaling studies (Tidwell and Wilson, 1997; Tidwell et al., 1999). The effective
permeability that results from a permeameter measurement is inverted using a formula
which includes numerically derived geometric factors (1.1). Since the geometric
factors are derived for specific boundary conditions, understanding the region
contributing to each measurement is important for appropriate application of the
inversion formula. For example, permeability measurements of a porous matrix should
be avoided when the region contributing to the effective permeability includes root
tubules, fractures, or large sediment grains (relative to the tipseal radius) in high
contribution regions. In both spatial variability and upscaling studies, the importance
of understanding the regions sampled is particularly amplified since this is fundamental

to developing and utilizing the spatially distributed data sets.

The primary purposes of this chapter are 1) introduce the use of adjoint state
sensitivity analysis for determining linear spatial filter functions, and 2) demonstrate its
application on the minipermeameter. Applying this approach to the minipermeameter
yields the relative importance of regions which contribute to the effective permeability.
An introduction to and review of the minipermeameter is given in Chapter 1. This
chapter continues with reviews of linear filter theory and adjoint state sensitivity
analysis which provide the basis for the new approach. This is followed by an

overview of the procedure used in the investigation, a discussion of the results, and



finally, conclusions. Included in the final section is a comparison with other

approaches used to determine permeameter sampling traits.

2.1 Technique Developement

2.1.1 Weighting functions

Linear filter theory (Matheron, 1965; Marle, 1967; Baveye and Sposito, 1984;
Cushman, 1984; Desbarats, 1992) suggests that we may view effective permeability as

the integration of the product of point scale permeabilities, &, and a spatial weighting
function, 4, over the volume of the sampled rock (2.1). The weighting function is

assumed to integrate to 1. In cylindrical coordinates, this is given by

(2.1a) kg = | B(r,z,0)k,dV

(2.1b) 1= [ B(r,z,0)dV

and where Kk effective intrinsic permeability L]

k; = point-scale permeability at (7;,2;,6,) [L*]
B(r,z,0) = spatial weighting function [L*]
V = volume of sample [L°]

where it has been assumed that the point scale value is isotropic. The weighting

functions account for the influence of the measurement process on the effective



measurement (Tidwell et al., 1999). Dividing the rock volume into N smaller volumes,

each of which has an essentially homogeneous permeability, we may then define N
new weighting functions (F]) which are derived from integrating the weighting
function, B(r,z,6), over each of the N volumes. For the ;™ volume, this integrated

weighting function is:

(22) B, = |B(rz,0)d7,
where E = weighting function for the ™ volume [-]
V. = the ™ volume L]

Then (2.1) may be rewritten as the summation of the product of different weighting
functions and the permeability for the smaller volumes (2.3), which in the case of 2.1

is an arithmetic average.

N
(2.3a) k,=Xpk,

)
1l
—

(2.3b) 1= %’ﬁj



A general equation including other non-additive averaging processes can be written
(2.4), where @ =1 gives an arithmetic average, @ = -1 gives a harmonic average, and

w =0 gives a geometric average.

N —
(2.4a) ko = ;ﬂjk;’ for w#0

(2.4b) In(k,, ) = 5, In(k,) for  @=0
=1

By taking the derivative of both sides of (2.4) with respect to the /™ local permeability
and rearranging, we may isolate the ;™ weighting function (2.5). For the arithmetic
average, (2.5) reduces to the derivative of the effective permeability with respect to

the local permeability (2.6).

_ dky (k)T
eff eff
5 =
(2.52) . dkj(k]) for w#0
— dk [k
2.5b =—L|-L f -0
( ) )=, ( kjj or @

To make determinations of the volume of rock sampled and relative importance of
regions in the flow field, we assumed a homogeneous material, which is consistent
with the development of the Goggin factors for the minipermeameter. Under these

conditions, all averaging methods presented reduce to the derivative of the effective



permeability with respect to the local permeability (2.6). Adjoint state sensitivity

analysis is used to determine the derivative.

(2.6 B=—

2.1.2 Adjoint state sensitivity analysis

Adjoint sensitivity analysis has been used in many fields including electrical
engineering, nuclear reactor assessments, and nonlinear parameter estimation. In
hydrology it has been used for parameter estimation in inverse problems, and to
investigate sensitivities of estimated parameters in numerical models (Sykes et al.,
1985; Sun, 1994). Only a brief overview of equation development is given here, and
the reader is referred to Sykes et al. (1985) or Wilson and Metcalf (1985) for a more
in depth discussion. Here I will follow the general approach presented in Sykes et

al.(1985) which uses Lagrange multipliers.

Applying numerical methods (such as finite difference or finite elements) to the
governing equation (1.5) results in a system of linear equations (1.16 - repeated

below) where A is the coefficient matrix, @ is the vector of state values (in our case
the pseudo-potentials) at node points, and £ is the load vector which includes
sources/sinks and boundary conditions. After A and f are assembled, the system of

equations is solved for the unknown pseudo-potentials.



(1.16) AQ=f

Employment of adjoint state sensitivity analysis yields a vector of first derivatives of a
scalar performance measure with respect to a vector of parameter values. For
example, one may wish to determine the sensitivity of the discharge along a stretch of
river to the distributed recharge values used in model calibration. In this case the
performance measure, J , is the discharge to the river and the parameter list is the

vector of recharge values, . Whereas traditional sensitivity analysis would involve

running multiple simulations in which each recharge value was varied, using adjoint

state sensitivity analysis, a single simulation can yield both the state solution and a

vector of sensitivity coefficients, T
a

7oa [ a
27 _ |
(27) da,  oa, {@T }Z/L

D . . o : :
where = ;‘; is a vector of partial derivatives of state variables with respect to the
- .

J
™ parameter. The first term on the right hand side of (2.7) represents the direct

contribution, and the second term represents the indirect contribution.

Taking the derivative of (1.14) with respect to a particular parameter, «;, and

multiplying the result by a vector of arbitrary constants, Z*_ , yields (2.8).



OA f
(2.8) W_*TAW.+W*T(—EQ—L):O

(2.9 7 /

Since " is a vector of arbitrary constants, we eliminate the need to determine the

vector y, for every parameter, by defining y~ such that

(2.10)

(2.10) can be rearranged into the form which is recognized as the adjoint problem

(2.11), and if A is a symmetric matrix, then the only additional work required for

al
solution of the adjoint problem is assembling the adjoint load vector, 0 and solving

the equations.



(2.11) ATy" =

The adjoint state, ", can be thought of as the change in the performance measure due
to a unit injection of mass at that location (Sykes et al., 1985). After solution of
(2.11) for the adjoint state vector, equation (2.12), which results from the combination

of (2.9) and (2.10), is used to determine the sensitivity coefficients.

For the air permeameter investigation, the performance measure is the flow rate of the
gas from the instrument into the sample (1h). Using this approach, we can determine
the sensitivity of the flow rate (and therefore sensitivity of the effective permeability)

to the local permeability associated with a particular location in the flow field:

(2.13) Aly' =



2.1.3 The merger

Taking the derivative of both sides of the linearized minipermeameter equation (1.5)
with respect to the /* element conductivity, and combining with (2.6) yields the
expression for the ;™ weighting function (2.15), which is then subject to the condition

that the weighting functions must sum to one (2.3b).

7 dky 1 din
I dk, T aG,(b,)[®, - @,] dk,

(2.15)

Since the fraction on the far right hand side of (2.15) is a constant, the weighting
functions are readily determined by simply norfnalizing the sensitivity coefficients to

sum to one without multiplying by the constant.

From examination of (2.2), in the limit as the element volumes approach zero, the
spatial weighting functions are approximated by (2. 16) where element j has centroid

located at (7;,z;). In order to accurately approximate the point location values of the

spatial weighting function, an extremely fine level of element discretization is desired.

B
V].

(2.16) aslllig}) B(r;,z,)~

where element j has centroid located at (7;,z;



2.2 Methods

Both the state and adjoint problems were solved by the finite element method. For this
minipermeameter problem, that of a semi-infinite domain with the predominance of
flow concentrated beneath the tipseal, an important advantage of the chosen method is
the ease with which finite elements accommodate non-uniform grid spacing. The
equations were derived using the Galerkin formulation of the method of weighted
residuals for triangular elements and linear basis functions (Celia and Gray, 1992;
Huebner and Thornton, 1982; Wang and Anderson, 1982), as outlined in section 1.2.

Since the conductivity matrix, A, is symmetric, only a few additions are needed to

extend the program to determine sensitivity coefficients using (2.13) and (2.14). An
overview of the extensions are given in the next section, followed by a discussion of

numerical considerations.

din
After the sensitivity coefficients, e are determined, the condition (2.3b) is applied
i

to determine the weighting functions. Note that since the values are normalized to
one, it is not necessary to multiply the derivatives by the constant value proceeding the

derivative in (2.15).

2.2.1 Modifications for sensitivity coefficients
For linear problems, it is relatively simple to extend a typical finite element code to
handle the adjoint problem and subsequent determination of sensitivity coefficients.

Since A is a symmetric matrix and already available from the state problem, only the



dhn
adjoint load vector, 0 needs to be assembled before the additional solution of the

adjoint problem (2.13). Also, the boundary conditions are not a function of the

of
permeability, so gk: in (2.14) is zero for every element. After the pseudo-potentials
i

and adjoint states are determined, the only additional work required is assembling the

direct contributions, 2 in (2.14) and using the terms of the matrix of partial

J

oA
derivatives of the conductivity matrix (each 2;_:) and linear algebra operations to
i

attain the indirect contributions in (2.14).

In the following sub-sections, the schemes for determining the adjoint load vector,
direct contributions, and indirect contributions are outlined. To illustrate the ideas, a
simple example is utilized where the surface beneath the tipseal that receives inflow is
discretized such that flow enters through oniy four nodes, say nodes 1, 10, 11, and 14.
In this case, the mass flow in, 1, is the sum of the inflow through each of these nodes
(2.17). The equations for the node fluxes (2.18) can be quickly determined from back-

substitution and rearrangement of the state matrix equation (1. 16).

(2.17) th = rin, + 11, +HL, AL,

(2.18) i=A®-f



2.2.1.1 Direct Contribution

The direct contributions will be non-zero for only those elements which directly impact
the flow through the upper constant head surface inside the tipseal - the elements
which share the constant potential nodes along the inflow surface. Using the previous

example, the direct contribution for the ¢® element, is then:

2.19 oA T, i
GO Ta A A
For triangular elements, a2 maximum of two nodes from a single element may be
located on the inflow surface, so a maximum of two contributions on the right hand
side of (2.19) will be non-zero. Employing (2.18), a vector of the partial derivatives of
all nodal fluxes with respect to the ™ element permeability can be written as (2.20),

where we are only interested in the entries that apply to the inflow surface. For the

example problem, these entries correspond to the right hand side of (2.19).

om OA of
20 == =
(220) &, X2 A

Two important facts simplify finding the terms in (2.20). The first observation is that

the load vector, which consists of entries for constant flux (equal to zero) nodes, is

of .
independent of the element permeability and therefor ;’k; is always zero. The second

observation involves recalling that the conductivity matrix was assembled on an

element by element basis (1.20), and only the ¢™ element contributions to the



conductivity matrix are dependant on the ¢™ element permeability. Applying these
rules, the fastest way to determine the direct contribution for all elements is to iterate
through the nodes on the inflow surface. For each element, e, containing a surface

node, i, the i™ nodes portion of the ¢™ element’s direct contribution is then:

2.21 an 5A"e”'q> A ® aAf””cb
(2.21) & @& A, &

e e

where the element values, A{, for L =i, j, m, can be found by simple differentiation of

(1.20).

2.2.1.2 Adjoint Load Vector

The adjoint load vector is the partial derivative of the mass influx with respect to the

dh
change in potential (55 ). Since the total flow may be examined as the inflow

through each of the nodes beneath the tipseal chamber, we may determine our
contributions to the load vector by taking the derivative of the total flow with respect
to each pseudo-potential value. Applied to our example, the ™ entry in the load

vector is given by:

i
1 10
)

j

ﬁi”ll a1'114
" o

j

an  om
(2.22) -
&, A ) )



For our problem, this is further simplified by recognizing that 1) the adjoint state load
vector entries are non-zero only for nodes comprising and directly connected to the

upper surface, and 2) the flow equation load vector has no dependence on the pseudo-

J

potentials so is zero for all nodes, and 3) the back substitution associated with

j

the coefficient matrix is linearly multiplied by the pseudo-potentials. This results in a
rapid assembling of the adjoint state load vector by looping through the nodes located
on the inﬂow‘surface and simply adding the appropriate coefficient matrix entries. For

our example, the ™ entry is:

an
(2.23) _—0‘@. :Al,j+A10)j+Au,].+Al4,j

J

where A, | is the entry in the i row and j"™ column of the coefficient matrix A .

2.2.1.3 Assembling Indirect Contribution
After the adjoint load vector is assembled, and the adjoint state vector ( v

determined, the indirect contribution for each element needs to be determined. For the

¢™ element, this scalar is derived from solving z//*T EkE @ . As discussed for the direct
i

contributions, the partial of the conductivity matrix with respect to the e™ element is
only non-zero for the portion of the entries derived from element e. By iterating

through each of the elements, the indirect contribution for element e, comprised of



nodes 7, j, and m, is then quickly assembled from (2.24), where the element values,

OA;
ék,L for L =1, j, m, can be found by simple differentiation of (1.20).
, OA ® OA;, OA;, oA, © i}
—_ g + >
Yz 2\a, @ a0 A )Y
2.24 Pl g, + Pt g Pin e, |y
) + + i .
(229 & T e, )Y
Ay AL )
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2.3 Results
A tipseal with ratio b, = % = 2 inner tipseal radius a = 1, applied potential @, =1,

and ambient potential ®, = 0 was simulated. A homogeneous, isotropic permeability
of 1 (k, = k, = 1) was also used. For the homogenous case, the weighting functions
are indepeﬁdent of the magnitude of the permeability. To insure that truncation error
and boundary conditions did not effect the weighting functions, multiple simulations
were performed for various domain sizes and discretization levels. Since flow is
concentrated near the tipseal boundary, it is necessary to finely discretize this area to

the level that a more fine discretization does not significantly increase the inflow rate.

Although our finite element simulation estimated the Goggin factor accurately at

rougher discretization levels, in the end an extremely fine discretization was employed



for reasons relating to the smoothness of the sensitivity coefficient field (discussed
later). The grid utilized in the simulations had dimensionless radius ( Rp, ) of 10.7, and
dimensionless thickness (Zp) of 14.3, with discretization in the near tipseal region as
fine as 0.00036 dimensionless units. As a result, no greater than 2.8 % of mass flux
entered through any node, and the resulting Goggin factors were nearly exact at

5099 +0.005 (compared to the unpublished analytical solution of Kerr and Wilson
(personal communication, 1998)) with a mass balance error less than 0.0022 %. To
further insure the semi-infinite geometry is represented, the weighting functions
calculated for different sets of "infinite" boundary conditidns were compared and

showed essentially no difference in the near field region.

A contour of the pseudo-potentials appears in Figure 2.1a. The spacing of pseudo-
potential lines increases with distance from the tipseal, and does not extend nearly as
far in the radial direction as along the z—axis. For the simulation contoured in Figure
2.1, the far boundary conditions were constant pseudo-potentials. Use of no-flow
boundary conditions resulted in pseudo-potential contour lines that differed only

slightly in the far field portion of the figure.
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Figure 2.1 - Contours of the (a) pseudo-potential and (b) adjoint state fields. The no-
flow region of the tipseal is represented by the shaded rectangle.



Due to the unit values used in the simulations, the adjoint state field (Figure 2.1b)
looks identical to the pseudo-potential field, except in the very near field. Ifthe

- applied pseudo-potential beneath the tipseal doubled, the contour labels in Figure 2.1a
a would double, but the adjoint state result would remain the same. This is consistent
with the definition of adjoint state, since we would expect the total inflow to change
the same (although percentage wise have a different impact) due to a unit injection.
Note the solid dark area directly beneath the tipseal chamber in Figure 2.1b. The
adjoint state boundary condition along this length is a constant adjoint state of zero.
Since flow is induced across the constant head boundary, a unit injection of air at this

boundary would have no effect on the nodal flow values.

2.3.1 Weighting functions

Since each permeability is associated with an element, applying adjoint state analysis

results in a volumetric weighting function which is related to the size of the element.
Results are presented here in terms of both the volumetric weighting functions E] and

the point value spatial weighting functions estimated at the element centroid

B (7,2,0). The volumetric weighting functions lend themselves to a discussion of the

volume of rock interrogated by the minipermeameter, while the spatial weighting

function relates to the importance of small heterogeneities within the flow field.

For both weighting functions, the locations directly beneath the inside and outside

edges of the tipseal are of greatest importance, with the largest values beneath the



inner edge (Figures 2.2 and 2.5). This follows intuitively since directly beneath the
conformable tipseal represents the shortest flow lengths. A change in conductivity
here has the significant effect on either driving flow deeper or shortening of the flow
field. At larger distances, the nature of the field becomes increasingly hemispherical.
Representing the shortest flow path, we would expect that the bulk of the mass flow
would be in this near tipseal region, which is confirmed by the stream potentials

(Figure 2.3).

2.3.2 Volumetric Weighting Functions,E

Since each of the elements in the axisymmetric simulation represent a volume of rock
with a uniform permeability, k;, the resulting weighting function for each element, E,
includes the effect of the different rock volumes. In fact, due to the linear basis

functions, the volume of the element (Zﬂ_RAe) appears explicitly within both the direct
and indirect contributions to the sensitivity coefficients. Including the volumetric
effect, Figure 2.2 is a grayscale plot illustrating the cumulative contribution of different

regions to the effective permeability measurement. To account for the variation in

element areas (not volumes), the volumetric values (Zi;) were cumulatively summed in

7

Ae

order of their area normalized value (—5 ). This accounts for the influence of the

different element areas (introduced by irregular discretization). Added in this manner,
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the smallest volume for a particular percent of the weighting function is determined.
For example, 10% of the total contribution to the effective permeability is contained in
the tiny regions directly beneath the inner and outer edges of the tipseal. Figure 2.2
also shows that the volumes along the z-axis appear as offering a relatively negligible

contribution to the effective permeability.

Figure 2.3 is a contour of the stream potentials, where the area between consecutive
contours contains 10% of the total inflow. As can be seen, a large percentage of the
flow is contained in the relatively small volume directly beneath the tipseal. For
comparison with the results of other investigations, Figure 2.4 shows the percentage of
the weighting functions contained within different sample volumes. We used a right

cylinder centered around the origin and described by a single dimensionless length
(RD = LD) . and a hemisphere beneath the tipseal centered at (RD =0,L, = 0) . Since
the largest weights are located along the surface near the tipseal, a similar pattern is
observed as the dimensionless confining coordinate increases. 95% and 99% of the
weighting function are contained within a cylinder with R, = L, =23 and 3.71,
respectively, or a hemisphere with dimensionless radius (equal to (R:+ L)) of2.5

or 4.16, respectively.
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Figure 2.3 - Normalized stream functions. The volume between consecutive contours
contains 10 % of the inflow from the minipermeameter, and the contour labels
indicate the cumulative inflow beginning from the tipseal no-flow boundary (shaded
rectangle). ‘
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2.3.3 Spatial Weighting Functions

As the volumes of the elements become sufficiently small such that the spatial

weighting function, 8(r,z,0), is essentially constant throughout the volume, the spatial

weighting function may be estimated from the volumetric weighting function (2.16).
Therefor, as the discretization becomes finer, the surface becomes increasingly
smooth. Figure 2.5 shows a contour‘ of these planar weighting functions expressed as
log base 10 values, using a constant contour interval of 0.25. Prior to the log
transformation, integration of the plane of spatial weighting functions (over the entire
simulated domain) about the axis of symmetry equals one. The effect of the larger
elements with distance from the tipseal appear as wavy contours. The locations
directly under the tipseal edges represent the most important locations to the effective
permeability measurement, and the contours of the spatial weighting function become

increasingly hemispherical with distance from the origin.

Since the fine discretization leads to a good approximation of spatial weighting
function point values, correlation with the results of the state solution were attempted.
Treating the numerical solution in dimensionless form (1.10-1.13), dimensionless
spatial weighting functions /3, (x,,7,,0) are derived after dividing through by the
dimensionless volume (analogous to ( 2.16)). Figure 2.6 is a graph of point values of
the dimensionless spatial weighting function estimated at the centroid of each element

versus the resulting correlation equation (2.25).
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where: VO, = —é—yifd Y
d d

A near perfect correlation is attained, with a standard deviation from the 1:1
relationship of 0.00084. Additionally, the proposed correlation equation is also
dimensionless. Transforming into dimensional terms, the correlation equation

becomes:

(2.26) B(x,r,0) ~ é ‘ Ve,

o

&, A
where: V® = ;f +-5z_2

Both sides of (2.26) have the familiar [L?] of the spatial weighting function. Since
unit values were used, some additional simulations with different geometry (but b~2)
and pressure values were used to confirm the correlation equation. The equation
strongly suggests that the square of the potential gradient is equal to the spatial
weighting function. A very interesting aspect of this correlation is the appearance of
the Goggin factor (G,), which never explicitly enters the calculations to determine the

spatial weighting functions.



Weighting Function Correlation
4 T T T T T T T

& ﬁ

10

log B, atelement centroid

-8+ B

A0} ]

log,, (—Gl—-|VCDd lz)

Figure 2.6 - Spatial weighting functions versus the correlation equation. The 39,150
data points appear as dots along the 1:1 solid line.

2.4 Conclusions

In this investigation, the methodology for utilizing adjoint state sensitivity analysis to
determine linear weighting functions is developed, and implemented for the
minipermeameter. It was shown that extension of a flow code to handle the adjoint
state problem is relatively straightforward, and the finite element equations can be

readily manipulated for determination of the sensitivity coefficients. This procedure



offers a straightforward way to assess the relative importance of regions which

contribute to the effective property that an instrument yields.

For a homogeneous field, these spatial weighting function values (obtained at element
centroids) represent the correct weights for any power law averaging process
(arithmetic, geometric, harmonic, etc.). As the sample becomes increasingly
heterogeneous, the choice of averaging process would then be expected to yield
increasingly variant weights. It is important to note that, while this particular
investigation does not lend itself to determining the correct averaging procedure for
the divergent flow geometry of the air permeameter, it does allow us to determine the
relative importance of different regions under the assumptions for which the

minipermeameter equation was developed.

For the minipermeameter, both volume averaged and point value weighting functions
were determined, and examined to give insight into the extent and relative importance
of the regions sampled by the minipermeameter. Both types of weighting functions
show that the region beneath the no-flow boundary of the tipseal has the largest
influence on the effective permeability yielded by the instrument. In particular, the

inner and outer edges of the region have the greatest impact.

The extent of the region interrogated by the minipermeameter was estimated by
summing the volumetric weighting functions as a function of volume. These suggest

that 95% of the region contributing to the effective permeability is contained within a



right cylinder characterized by a dimensionless radius and length of 2.3 or a
hemisphere characterized by a dimensionless radius of 2.5. Approximately 99% of the
weighting function is contained in a cylinder with dimensionless lengths 3.71 or a
hemisphere of 4.16. Comparison between the dimensions containing 95 and 99% of
the weighting functions suggests that the effective permeability is already becoming
very insensitive to the region beyond the coordinate bounding the 95% contribution.
With this in mind, the values obtained are in agreement with those obtained by Suboor
and Heller (1995): Ry=2.88 and Zp=3.50 for a 1% change, and numerical results of

Chen: Ry=4.0 for a 0.8% - 3% change and Rp=Zp=2.5 for a 5.8-17.8 % change.

Additionally, the point value weighting functions were accurately estimated to give
insight into the importance of local heterogeneities throughout the flow field. A very
interesting correlation relating the spatial weighting functions and mass flux
relationships is observed. Confidence in the proposed equations is strengthened by the
agreement of the units with that of the spatial weighting functions. Also interesting to
note is the appearance of the geometric factor, despite the fact it never enters explicitly
into the calculations that lead to the weighting functions. Since the adjoint state must
be calculated by solving a large system of equations, it is not possible to determine if
the correlation equation arises directly from the finite element equations. In fact,
inspection of the balance of the manipulated finite element equations (other than the
adjoint term), and the fact that the geometric factor and inner radius appear in the

correlation equation, suggest that it will not.



Further work needs to be done to establish whether the derived correlation holds up
for other tipseal ratios, and whether the geometric factor for these ratios explicitly
appears. Additionally, applying this technique to the problem of saturated flow to a
well would offer a chance for further insight and the opportunity to contrast the

obtained weighting functions with the numerical studies of other investigators.



3. Determination of Geometric Factors for a Layered

Permeability System

Currently, minipermeameters are utilized to determine the sample permeability under
the classical assumptions for a single homogenous material, or when the near field is
felt to approximate these conditions. In this chapter, new geometric factors are
presented for the two layer permeability system. Utilized in the standard permeameter
equation (1.9), these new geometric factors (Gp) can be used to determine the
permeability of one layer when independent measurements of the upper layer thickness
(d) and permeability of second layer are available. This both expands the possible
range of minipermeameter applications, and yields further insight into the appropriate
application of the minipermeameter under classical assumptions. In particular, the
geometric factors derived in this investigation should prove useful for investigating the

permeability across narrow faults (Sigda et al., 1999).

The layered permeability system is shown schematically in Figure 3.1. This system has
two parallel layers, which have (or appear to have) different permeability values. The
upper layer is characterized by a thickness, d, and permeability k7, and the lower layer
has permeability k3. This geometry has been encountered in both field and laboratory
investigations of permeability alterations due to faulting. To use the new geometric
factor, the upper layer thickness and an independent measurement of the permeability

of one of the two layers is needed. For determining the permeability of a narrow fault



deformation band (k7), this is accomplished by 1) measuring the deformation band
thickness, and 2) obtaining a minipermeameter measurement on the host rock by either
removing the upper layer to give surface exposure or by making a measurement on the
adjacent host rock. Other scenarios for the layer system also exist, such as
investigating the permeability alterations associated with surface weathering or sample

preparation, that could be crudely modeled assuming the layered geometry.

Figure 3.1 - Two-layer permeability system. The upper layer has thickness, d, and
permeability k7. The lower layer has "infinite" thickness and permeability k5.



Tn addition to the new geometry, this study yields insight into the appropriate use of
the minipermeater for field situations. An important consideration in performing field
measurements is that boundary conditions or physical anomalies (such as root tubules)
do not significantly effect the flow regime. Even in the absence of a known
permeability value for the deeper "layer", the curves generated by this study can be
used to quantify appropriate distances at which the impact of a second layer do not
substantially violate the assumption of a single homogenous layer. An example of this
is the presence of a drying front (representing the beginning of a second permeability
layer) introduced when an "outcrop" face is opened by excavation. In this case, the
face is typically allowed to dry for an extended period before permeametry begins.
Assuming. that the drying front is self-stabilizing (implying a fairly abrupt ’t‘fansition
between moisture contents), then an appropriate distance for the front to recede from

the open face may be estimated based on the tipseal radius and required accuracy.

The primary motivation for this work - the use of the minipermeameters in
investigations of fault zone permeability, is discussed in the next section. This is
followed by sections discussing the methodology utilized, results and discussion, and
conclusions. In the discussion section, two methods are proposed that provide for

easy inversion of the raw data.



3.1 Investigating fault permeability

An area of developing interest are the hydrologic impacts of faulting in sedimentary
rocks. Although major faults that extend into sedimentary rocks are sometimes
addressed, the effects of associated deformation bands, are not often recognized.
These deformation bands, whose minor displacements probably have only very
localized impacts on flow, could significantly alter flow due to reduction in
permeability associated with the change in petrophysical properties (Aydin and

Antonellini, 1994; Fowles and Burley, 1994; Sigda et. al, 1999).

Fowles and Burley (1994) examined permeability variations associated with cataclastic
slip bands (deformation bands) in high porosity, well indurated, sandstones in north-
west England and south-west Scotland. Using 75 one inch diameter cores taken both
parallel and perpendicular to the bands, they found decreases in permeability up to 4
orders of magnitude. Since the band thickness was smaller than the cores, the
resulting permeability values are actually an average of deformation band and host

rock permeability.

In attempting to isolate fault permeability, several researchers have utilized
minipermeameters in their investigations of faults. Sigda et. al (1999), used a syringe
based air minipermeameter to investigate alterations in permeability associated with
faulting in poorly consolidated sandstones in central New Mexico. For two faulted
areas (one with and one without a clay-rich core), permeability was measured both

parallel and normal to the fault structure. They describe permeability decreases in the



deformed material between two and three orders of magnitude, with the larger
decreases for measurements normal to the band of deformation. Their study also
notes that some fault permeability values may be biased high, due to the influence of

the higher permeability host rock within the zone of permeameter investigation.

Aydin and Antonellini (1994) utilized a minipermeameter to investigate fault
permeability in well indurated sandstones in Arches National Park, Utah. Based on
Goggin's geometric factors, they estimated a depth of investigation of 1 cm
(dimensionless depth of 2). For deformation bands thinner than 1 cm, the
measurements were corrected using a harmonic mean average based on approximating
the geometry to be two-dimensional radial flow in a plane parallel to the
minipermeameter axis (see Figure 5c, Antonellini and Aydin, 1994). This geometry
was chosen since it yielded corrected permeability values closest (within a factor of
five) to the permeability values in uncorrected (thicker than 1 cm) samples. They
observed changes in permeability up to 4 orders of magnitude, with an average

decrease in permeability of three orders of magnitude.

Demonstrating the impact of narrow faults on the flow regime, Aydin and Antonellini
(1994) also calculated average permeability values for "grid blocks" of different scales
by considering the number, distribution, and thickness of deformation bands (which
they define as 0.5-2 mm thick) across the Moab sandstone. The resulting average
permeability values decreased (relative to the host rock) 1 to 2 orders of magnitude for

1 m grid blocks, and about an order magnitude for grid blocks of scale 20 m.



These investigations demonstrate that decreases in permeability associated with
narrow faults may have significant controls on hydrologic processes. They also
illustrate the difficulty in obtaining accurate permeability measurements of narrow
deformation bands. Since the scale of characterization is much smaller, and the
controls on hydrologic impact such as the areal density, geometry, and permeability
are not well understood (Sigda et al., 1999), further study is needed to assess these

| hydrologic impacts.

In other studies regarding the spatial variation of permeability, the portable
minipermeameter has proven to be an ideal instrument for quickly obtaining a large
number of accurate measurements. Using the newly determined geometric factors will
now provide for the quick, accurate determination of deformation band permeability

for both field and laboratory studies.

3.2 Methods

The transformed governing equation (1.5) which describes ideal-gas flow was solved
numerically using the previously described finite element code. For simplicity, the
number of variables effecting the geometric factor were reduced, and then
relationships between the remaining variables and the geometric factor were
determined. To insure accurate solution, several modeling issues concerning mesh

discretization and domain size were addressed. The resulting relationships were then



explored, and methods for practical application of the two layer geometric factor were

determined.

3.2.1 Approach

The general form of the standard permeameter equation (1.1) was assumed to be
appropriate (and checked) for the two-layered system, where Gp is the new geometric
factor for the two layered permeability system (3.1). Goggin et al. (1988) found the
single layer geometric factor to be dependant on the dimensionless sample size and the
tipseal radius ratio. For this investigation, the focus was establishing the relationships
effecting the geometric factor, and determine whether or not a simple method of
inverting permeameter data for the layered system was possible. Therefore, for
simplicity, the dependence on the sample size was eliminated by assuming that all flow
was into a semi-infinite halfspace. This assumption should not effect practical
minipermeameter use, as long as tipseal or sample size are chosen appropriately.
Additionally, a single tipseal ratio, bs= 2, was utilized in all simulations. In the future,
this approach will be applied to determine the geometric factors for other tipseal

ratios, as well as investigating relationships between different tipseal values.

m
T aGD(bdaDaKR)[(Di —Qo]

(3.1) k

where /] = mass flow rate into the sample [M 7]



D, = applied pseudo-potential beneath
the tipseal [M L]
@, _ “ambient” pseudo-potential [Mt L]

G,(b,,D,K;) = two layer geometric factor

D = dimensionless depth to top of lower

d
permeability layer, = P

K, = ratio of upper layer permeability to
lower layer permeability, = 7:—
B

The two-layer geometric factor is also a function of the two dimensionless ratios:
upper layer thickness to the inner tipseal radius (D), and upper material permeability to
lower layer permeability (Kr). After validating the accuracy of the numerical solution
(discussed in the following section) for each mesh, the relationships were determined.
A method was then developed so that permeability values for layered systems can be

quickly inverted.

3.2.2 Numerical Issues

All geometric factors presented here were determined for the case of flow into a semi-

infinite half-space. To achieve this numerically, it is necessary to use a domain in

which these "infinite boundaries" are located at distances such that simulation results
are not significantly impacted. To determine acceptable locations, simulations were

performed where both distant boundaries had constant potential conditions or both



had no-flow conditions. Like Chen (1992), it was assumed that the true semi-infinite
geometric function would lie between the geometric functions produced by these end-

case simulations.

A second important consideration was the element discretization level required to
minimize errors in the geometric factor. To minimize truncation error, small elements
were necessary near the tipseal edges where inflow and outflow are concentrated, and
along the interface between the distinct permeability layers. These discretization levels
were determined by solving the classical one permeability minipermeameter problem.
By using increasingly finer discretizations, an acceptable discretization level was
determined when the geometric factor yielded by the simulation was within roundoff
error of the analytical solution, G, = 5.10 (Kerr and Wilson, pers. com., 1998). This
discretization served as an upper bound, and the meshes that were ultimately utilized

| had discretization levels at least an order of magnitude more detailed in regions near
the tipseal. It was assumed that the ultra-fine discretization levels ultimately used near

the tipseal was also acceptable for the material interface.

Tt is also important to note that the above issues - boundary locations and mesh
discretization, should not be addressed independent of each other. If the mesh
discretization is examined while the "infinite" boundary conditions are effecting flow,
the resulting geometric functions will converge to a value other than the true
geometric factor. Alternatively, if a particular discretization level is acceptable, and

then boundary locations are determined, the simulation converges to a different



geometric function. For most investigations, the differences in these values is not
important. Since we are attempting to identify and characterize relationships for the
two layer geometric factor, mesh calibration to a unique value was important.
Evidence that the most accurate geometric factor for 5/=2.0 reported is, in fact, 5.10
(the proposed analytical solution), was found in the fact that as meshes became larger

and more finely discretized, the values converged and settled on that value.

3.3 Results & Discussion

Assuming the same form of the traditional permeameter equation (3.1), the dual layer
geometric factor (Gp) was found to be independent of the applied potentials and mass
inflow values. For our restricted geometry (semi-infinite sample and tipseal ratio, bq,

of 2), it was observed to be dependant on only two dimensionless values: the ratio of
depth to the inner tipseal radius (D), and the ratio of the two permeability values (Kz).
Ultimately Gp was determined for 133 different combinations of Kz and D. Table 3.1
shows these values, and a detailed listing of all simulations is given in Appendix A.

For all simulations, the mass balance error was less than 0.015 %.



dimensionless thickness increasing ——p»

D

0.1250 0.2143 0.3571 0.4286 0.5000 1.0000 1.4286 2.0000
0.0001] 27.872 | 17466 | 11.701 | 10.277| 9.271 | 6.454 | 5.754 | 5.401

0.00075 17.423 | 11.684
0.001} 27.710 9.258 | 6.450
0.002] 27.533 | 17.342 | 11.652 | 10.242 | 5.244 | 6.446 | 5.751 | 5.400
LOWER 0.01] 26.224 | 16.849 | 11453 | 10.098 | 9.135 | 6.416 | 5.737
layer 0.02] 24.800 | 16.285| 11.219| 9.928 | 9.006 | 6.379 | 5.720
more 0.05] 21.455 | 14.857 | 10.600 | 9471 | 8.654 | 6278 | 5.678
permeable R 0.1] 17.703 | 13.086 | ©.788 | 8.869 | 8.191 | 6.137 | 5.609 | 5.335
0.167] 144751 11.361 § 8.917 7.661 | 5.997 | 5.532

0.25]11.894 | 9.843 | 8.094 | 7.556 | 7.143 | 5.813 | 5.454 | 5.265

0.5] 7.978 | 7.258 | 6.550 | 6312 | 6.123 | 5473 | 5.287
1] 5.099 | 5.099 | 5.099 | 5.098 | 5098 | 5102 | 5.102 | 5.103
2] 3270 | 3.602 | 3.995 | 4.146 | 4275 | 4775 | 4.936
4] 2209 | 2.683 | 3.273 | 3.509 | 3.712 | 4537 | 4813 | 4.967

UPPER 6] 1.828 | 2.344 | 2.998 | 3.263 | 3.493 | 4.440 | 4.763
layer K 10[ 1.510 | 2.059 | 2.764 | 3.052 | 3.303 | 4355 | 4.718 | 4922
more 50| 1.113 | 1.699 | 2.464 | 2.780 | 3.058 | 4.242 | 4.659 | 4.893
permeable R 100} 1.062 2.424 4.890
500 1615 | 2.393 | 2.715 | 2.999 | 4215
1000 4.643
10000] 1.012 | 1.607 | 2.385 | 2.708 | 2.993 | 4.212 4.886

Table 3.1 - Two layer geometric factors, Gp, for "semi-infinite" sample and tipseal
ratio (bg) of 2.0. Gp is a function of the dimensionless thickness of the upper layer, D,
and the ratio of the upper layer permeability to the lower layer permeability, Kx.

Ultimately nine production meshes were required to identify relationships and give
adequate coverage of the range of expected two layer geometries. A description of
these meshes is given in Table 3.2. Values for the geometric factor for D > 2.0 were
not investigated since there is little deviation (less than 6%) from the single layer
geometric factor, G,, regardless of the permeability ratio. Values for geometric
factors for D < 0125 were also not determined, since the geometric factor is
becoming very sensitive to the permeability ratio. For this case, it is recommended that
a smaller tipseal be utilized. Also note that the upper layer in meshes CCdual and

FFdual have the same dimensionless thickness (D).
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dimensionless number of
mesh D Rp Zp del 7, | Nodes |Elements

JJdual 0.125 12.50 16.67 | 4.17B-04| 29202 | 57381
EEdual 0214 10.71 14.29 |3.578-04 | 15496 [ 30190
CCdual 0.357 10.71 14.29 |3.578-04| 19969 [ 39150
FFdual 0357 | 2143 28.57 | 7.14E-04] 20741 | 40739
GGdual 0.429 10.71 1429 |3.578-04| 21263 | 41735
DDdual 0.500 10.71 14.29 |3.578-04 ] 22418 | 44043
1Idual 1.000 | 21.43 28.57 | 7.14B-04 ] 27788 | 54820
MMdual 1.429 | 21.43 28.57 | 7.14E-04 | 25984 | 51214
NNdual 2.000 | 2857 | 3429 |7.14B-04] 21116 | 41479

Table 3.2 - Description of production meshes. D represents the dimensionless
thickness of the upper layer, del , indicates the nodal spacing at the edges of the
tipseal, and Rp and Zp describe the (dimensionless) radius and thickness, respectively,
of the domain.

For all production simulations, the "infinite" boundary conditions had very little effect
on the geometric factors. For the case when the upper material is more permeable
than the lower material (K, > 1), flow is focused in the upper layer. In this case, the
boundary conditions cause little variation in the flow field and the geometric factor
was not effected. Figure 3.2 presents the pseudo-potential and streamlines for |

K, =50 and D= 0357, for constant potential (Figure 3.2a) and zero flux (Figure
3.2b) boundary conditions. Essenfially no difference is observed in the distribution of

pseudo-potentials (dashed lines) or streamlines (solid lines).
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Figure 3.2 - Contours of dimensionless pseudo-potentials (dashed lines) and normalized
stream functions (solid lines) for Kz=50, and D=0.357 (location indicated by dotted line).
Both contour intervals are 0.10.



When the upper material is less permeable than the lower material (K, <1), the upper

material appears as a leaky seal that results in flow through a larger volume of rock.
In this case, it was important to insure that the boundary conditions did not
significantly effect simulation results. As Ky becomes increasingly smailer, the percent
difference in the geometric factors for simulations with the different boundary

conditions increases. For K, <1, the geometric factors in Table 3.1 are averages

from the geometric factors determined for the two different sets of boundary
conditions. These average values are less than 0.65 % different than the values
determined for either set of boundary conditions. Figure 3.3 presents the pseudo-

potential and streamlines for K, = 0.02 and D = 0.357, for constant potential (Figure

3.3a) and zero flux (Figure 3.3b) boundary conditions. In the region near the tipseal,
no significant difference in the distribution of pseudo-potentials (dashed lines) or

streamlines (solid lines) is apparent.

Figure 3.4 presents the two-layer geometric factor values as a function of permeability
ratio for various dimensionless depths. For each dimensionless depth, the relationship
with permeability ratio is characterized by two asymptotes and a transition range. As
expected, as dimensionless depth increases, the two-layer geometric factor values
approach the single layer value, G,, across the spectrum of permeability ratio values.
As the dimensionless depth decreases, the geometric factor within the transition region
is increasingly sensitive to the permeability ratio, and the asymptotic values

increasingly deviate from Go.
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In log-log space, the transition zone is centered at (or very near) the inflection point,
K, =1,G, = G, (determined from estimates of first derivatives), and does not appear
to change as a function of dimensionless depth. Although the curves presented in

Figure 3.4 appear to have symmetry about K, = 1,Gp, = G,, at closer inspection, they

become increasingly asymmetrical as dimensionless depth decreases.

Regressioh curves for the data in Figure 3;4 were obtained by identifying general
equations that mimic the relationships observed, and then performing non-linear
optimization to determine the fitting parameters. The optimization program utilized
Newton-Raphson to drive the non-linear iteration and the method of least squares to
solve the linear system of equations. For a particular dimensionless depth, (3.2) was

- found to best represent the behavior of the geometric factors. In this equation, Aupper
and Aywe describe the upper and lower asymptotes, respectively, and are used to scale
the equation. B; and B;are parameters that relate to the width and location of the

transition zone.

( 3 2) GD (KR) = %—(Aupper - Alower )e’:fc(Bl logKR + BZ) + Alower

To insure that error was minimized for the entire range of permeability ratios, the
optimization equation was formulated to find the least squares approximation that

minimizes the percent error in Gp (3.3). This was found to provide a much better fit



for all data compared to minimizing the residual based on the numerator of (3.3) which

resulted in considerable error for Kz greater than 1.

G, (from data) — G, (from equation 3.2)
G, (from data) ’

(3.3)

The percent based optimization was performed in two ways: 1) by treating Aupper, Atower,
"B, and B, as independent paraméters, and 2) holding Aypper and Ajower constant (at the
values generated from numerical data) and determining B, and B,. Ultimately, fitting
with all four parameters was utilized. It gave a slightly better overall fit to the
numerically generated data, and the parameters yielded (Table 3.3) result in smooth
curves when graphed versus the dimensionless depth (see Figure 3.5). This allows
geometric factors to be graphically estimated for dimensionless depths for which
numerical data was not directly obtained. To illustrate the accuracy of the regressions,
Figure 3.5 was used to obtain the appropriate parameters for the dimensionless depth
of interest, and the geometric factors were estimated. The estimates for all 133 data
points were within 6.3%, and for dimensionless depths greater than or equal to 0.429,
estimates of the geometric factors deviated less than 2% from the numerically

generated values.
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Figure 3.5 - Regression parameters Bi, B2, Ajower, and Aypper as a function of dimensionless upper layer thickness, D.



Dimensionless Depth, D
0.1250 0.2143 0.3571 0.4286 0.5000 1.0000 1.4286 2.0000

Aypper 28.34 17.53 11.68 10.25 9.25 6.44 5.75 5.40

Ayywer 1.06 1.65 2.42 2.74 3.02 422 4.65 4.89

B, 08576 0.9049 0.9372 0.9419 0.9491 0.9614 0.9648 0.9662

B, 0.7092 0.5286 0.3755 0.3287 0.28%4 0.1783 0.1496 0.1408

Table 3.3 - Parameters describing two-layer geometric factor regression curves ( 3.2).

The two-layer geometric factor depends on the permeability ratio between layers,
making the two-layer form of the minipermeameter equation (3.1) non-linear. To
address this, it was important to determine simple procedures that yield unique,
accurate solutions and are easy to utilize. Two methods are proposed: a graphical
procedure relying on either the data sets (Table 3.1) or regression curves (Figure 3.5),
or a method that solves the regression equation and two-layer permeameter equation

simultaneously through a non-linear optimization routine.

Important to both methods, is the manipulation of the governing equation to be
written in terms of the unknown permeability ratio, K, and known second
permeability value. For example, when the unknown permeability is the upper layer,

the transformed minipermeameter equation can be re-written:

L m
ks aG, (b, D,Kp)| @, - @,]

(3.4) K, =



To invert the unknown permeability value, the user now has two equations, (3.2) and
(3.4) and two unknowns, Gp and Kz. As illustrated in Figure 3.6, both equations are
satisfied by only a single solution set. As the figure suggests, after determining the
fitting parameters from Figure 3.5 or Table 3.3, the unknowns can be identified
graphically. This may require graphing over increasingly smaller areas to precisely

locate the intersection.

graphical estimate for measurement with mass flow of 148.9,
difference in pseudo-potential of 1, and k=20

30

25 t
= = = equation (3.2} -

equation (3.1)
20 +

e 15 + intersection at K ;=0.05,

Gp =106

0 + + t t t t +
0.0001 0.001 0.01 C.1 1 10 100 1000 10000

permeability ratio, Kz

Figure 3.6 - Illustration of graphical technique used to determine the point (Kr,Gp)
that satisfies both equations (3.1) and (3.2).

A slightly more complicated approach is to perform a non-linear search. Combining
(3.2) and (3.4) yields a single non-linear equation (3.5), where Gp is the only
unknown. To determine the value of Gp which satisfies ( 3.5), we implementéd a

simple non-linear search using Newton iteration to find the correct intersection point.



Using the single-layer geometric factor value, 5.10, as the initial guess, the search
quickly and precisely determines the two-layer geometric factor for our 133
"measurements”, where the only error (other than experimental) is introduced by

determining the regression parameters (see previous paragraph).

C
( 35) GD = -;(Aupper - Alowcr )e’:fc(Bl 10g10 —(;_— + BZ) + Alower
D
where C = —r
kya|®, -, ]

3.4 Conclusions

Geometric factors were determined for a two layer permeability system. These
geometric factors depend on the dimensionless thickness of the upper layer, D, and the
ratio of the upper layer permeability to the lower layer permeability, Kz. The two-
layer geometric factor, Gp,(D,KR) is utilized in place of the traditional single-layer
geometric factor, G, in the standard minipermeameter equation. These new
geometric factors can be used to determine the permeability of one layer when
iﬁdependent measurements of the upper layer thickness of permeability of second layer

are available.

133 values of Gp,(bs=2 ,D,Kg) were determined for flow into a semi-infinite sample.

Values for the geometric factor for D > 2.0 were not investigated since there is little



deviation (less than 6%) from the single layer geometric factor, G, regardless of the
permeability ratio. Values for geometric factors for D < 0.125 were also not
determined, since the geometric factor is becoming very sensitive to the permeability

ratio. For this case, it is recommended that a smaller tipseal be utilized.

For each value of D, a function describing Gp as a function of Kz was fit by
regression. This allows for approximating geometric factors for D and Kz
combinations not explicitly determined in the investigation. The regression curves
accurately reproduce all of the numerically generated geometric factors with less than
6.3 % error. Additionally, the regression curve equation may be utilized with the two-
Jayer minipermeameter equation (3.1) to determine the unknown layer permeability

either graphically or through a simple non-linear search.

Attempts were made to utilize the data from the laboratory experiments of Suboor
(1994) and Suboor and Heller (1995), to demonstrate practical implementation of the
two-layer geometric equation. They created a two-layer system composed of Berea
sandstone slices on top of high permeability glass beads. Based on the depth and ratio
of the material permeabilities, we used their data to estimate values for the two-layer

geometric factor, which all had Kz<'1.

Although the trends in the empirically estimated two-layer geometric factors matched
our numerically derived values, the empirical estimates were all considerably greater.

Based on the numerical investigation, 1 think the differences are easily explained: For



Kz < 1, the mass flow passed through the upper layer into the high permeability layer
beneath. The lower permeability upper layer then acts as a barrier to flow which
would normally escape through the adjacent sample surface, which in turn makes the
magnitude of mass inflow very susceptible to the locations of the boundary conditions.
This was observed and provided considerable issues in the numerical investigation
(requiring domains as large as R;=28.6,7,=34.3). If the side and bottom boundaries
(of both the sandstone disc and beads) were not sealed, then the resulting mass flow
would be increased causing the empirically estimated two layer geometric factors to be
accordingly increased. Unfortunately, a description of the experimental boundary

locations and boundary conditions were not available to verify this hypothesis.

In fault permeability studies, the upper layer is typically less permeable than the lower
layer by several orders of magnitude. For D> 0125, and K, <0.01, the two-layer
geometric factor is approximated accurately by the upper asymptotic value (less than
6% error). For K, <0001, the error is less than 0.58%. When the upper layer is
more permeable than the lower 1.ayer, the asymptotic range is not approached as
quickly. For K, > 10, the percent difference from the asymptotic value is as much as
50% at D = 0.125. When the difference is at least three orders of magnitude

(K, >0.001), the percent difference from the lower asymptotic value is less than 5%.



4. Conclusions and Recommendations

In the first investigation, Determination of Spatial Weighting Functions Using Adjoint
State Sensitivity Analysis, the methodology for utilizing adjoint state sensitivity
analysis to determine linear weighting functions is developed and implemented for the

minipermeameter. It was shown that:

- Extension of a flow code to handle the adjoint state problem is relatively

straightforward.

- The procedure offers a straightforward method to assess the relative
importance of regions which contribute to the effective property that an

instrument yields.

- For a homogeneous field, these spatial weighting function values represent
the correct weights for any power law averaging process (arithmetic,

geometric, harmonic, etc.).

Both volume averaged and point value weighting functions were determined and
examined to give insight into the extent and relative importance of the regions sampled

by the minipermeameter. These show:

- The region beneath the no-flow boundary of the tipseal has the largest
influence on the effective permeability yielded by the instrument. In particular,

the inner and outer edges of the region have the greatest impact.



- 95% of the region contributing to the effective permeability is contained
within a right cylinder characterized by a dimensionless radius and length of
2.3, or a hemisphere characterized by a dimensionless radius of 2.5. 99% of
the weighting function is contained in a cylinder with dimensionless lengths

3.71 or a hemisphere of 4.16.

- The region of interrogation determined from integrating the weighting

functions are consistent with other investigations (experimental and numerical).

- The small scale detail provided agrees with what we would expect from

intuitive observations of the stream potentials.

A very interesting correlation relating the spatial weighting functions to the geometric
factor and pseudo-potential gradient was also discovered. Confidence in the proposed
correlation is strengthened by the agreement of the units. Also, the appearance of the
geometric factor is interesting, since it does not explicitly enter the calculations at any

point.

As applied to the minipermeameter, the work should be expanded to determine the
weighting functions for other tipseal ratios. Comparison of the weights for different
ratios may lead to suggestions as to the appropriate tipseal ratio for particular
investigations and optimal use recommendations. Additionally, further work needs to
be done to establish whether the derived correlation holds up for other tipseal ratios,
and whether the geometric factor for these ratios explicitly appears. Another possible
option is examining the overall changes in the weighting functions when mildly

heterogeneous fields are generated by stochastic methods.



Additionally, this technique should be applied to other instruments and tests, such as
saturated flow toward a pumping well. These applications should offer further insight
into the performance of these instruments/tests, and could be quickly addressed for
1D, 2D, and axisymmetric steady flow situations since the current finite element code

could be used.

The second investigation, Determination of Geometric Factors for a Layered
Permeability System, lays a foundation for the expansion of practical uses of the
permeameter by introducing new geometric factors for layered permeability systems.
The two-layer geometric factor, Gp,(D,Kx) is utilized in place of the traditional single- -
layer geometric factor, G,, in the standard minipermeameter equation. For flow into a

semi-infinite domain with a tipseal ratio (b4) of 2, these new geometric factors:

- Can be used to determine the permeability of one layer when independent
measurements are available for the upper layer thickness and the permeability

of the second layer.

- Are functions of the dimensionless thickness of the upper layer, D, and the

ratio of the upper layer permeability to the lower layer permeability, Kr.

- Are well described by the range of practical scenarios covered by the 133

values determined.



Values for the geometric factor for D > 2.0 were not investigated since there is little
deviation (less than 6%) from the single layer geometric factor, G., regardless of the
permeability ratio. Values for geometric factors for D <0125 were also not
determined, since the geometric factor is becoming very sensitive to the permeability
ratio. For this case, it is recommended that a smaller tipseal be utilized. Regression
curves were determined to aid in inversion of field measurements, and so that
intermediate values not numerically determined could be easily estimated. These

CUrves:

- Allow for approximating geometric factors for D and K combinations not

. explicitly determined in the investigation.

- Accurately reproduce all of the numerically generated geometric factors with

less than 6.3 % error.

- May be utilized with the two-layer minipermeameter equation to determine
the unknown layer permeability either graphically or through a simple non-

linear search.

- Are characterized by 4 fitting parameters that can be easily interpolated from

a graph as a function of D.

In fault permeability studies, the upper layer is typically less permeable than the lower

layer by several orders of magnitude. For D 20125 and K, <001, the two-layer

geometric factor is approximated accurately by the upper asymptotic value (less than



6% error). For K, <0.001, the error is less than 0.58%. When the upper layer is
more permeable ,than the lower layer, the asymptotic range is not approached as
quickly. For K, >10, the percent difference from the asymptotic value is as much as
50% at D = 0125. When the difference is at least three orders of magnitude

(K, =0.001), the percent difference from the lower asymptotic value is less than 5%.

In field use, care should be taken to insure that the "infinite" boundaries are not
approached. Simulation results showed that when the surface layer has lower
permeability than the bottom layer, flow becomes trapped beneath the upper layer. In
this case, the boundaries need be located at significantly larger distances so that they
do not impact the rate of flow into the sample. Since the two layer permeameter
equation is non-linear (due to the geometric factor's dependence on the permeability
ratio), adjoint state sensitivity was not employed to determine the spatial weighting

functions.
Current plans are to expand the geometric factors to address other tipseal sizes,

beginning with a ratio of b, =4, and implement the two-layer geometric factors for

investigating permeability alterations associated with faulting.

an
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APPENDIX A - Two-layer Simulations

D 0.125
"infinite” mass
BC d a D kg kt Kgr AD flux in Gp (D, Kg) % MBE
head 1.5 12 0125 200 0.02 0.0001 0.2 1.34269 27.973 1.43E-02
flux 1.5 12 0125 200 0.02 0.0001 0.2 1.33289 27.771 1.90E-03
head 1.5 12 0125 200 0.2 0.001 0.2 13.34692 27.806 9.42E-03
flux 1.5 12 0.125 200 0.20 0.001 1 66.27181 27.613 2.84E-03
flux 1.5 12 0.125 40 0.08 0.002 1 26.34344 27.441 1.33E-03
head 1.5 12 0125 40 0.08 0.002 1 26.51963 27.625 5.01E-03
head 1.5 12 0.125 10 0.1 0.01 1 31.54823 26.290 3.45E-03
flux 1.5 12 0125 10 0.1 0.01 1 31.389092 26.158 2.58E-03
head 1.5 12 0.125 100 1 0.01 1 315.48229 26.290 8.44E-03
head 1.5 12 0125 100 1 001 0.2 63.09643 26.290 3.96E-03
flux 1.5 12 0.125 100 1 0.01 1 313.89914 26.158 5.48E-03
head 1.5 12 0.125 50 1 0.02 1 298.18130 24.848 8.75E-03
flux 1.5 12 0125 40 0.8 0.020 - 1 237.60525 24.751 3.49E-03
head 1.5 12 0.125 20 1 0.05 1 257.80260 21.484 1.05E-02
flux 1.5 12 0125 20 1 0.05 1 257.11786 21.426 1.27E-02
head 1.5 12  0.125 10 1 0.1 1 212.43435 17.703 4.88E-03
head 1.5 12 0.125 6 1 0.1667 1 173.70056 14.475 6.62E-03
head 1.5 12 0125 4 1 0.25 1 142.73332 11.894 8.31E-03
head 1.5 12 0125 2 1 0.5 1 95.73487 7.978 4.77E-03
head 1.5 12 0.125 1 1 1 1 61.22468 5.102 2.28E-03
flux 1.5 12 0.125 1 1 1 1 61.15375 5.096 2.74E-03
head 1.5 12 0.125 1 2 2 1 78.48309 3.270 4 94E-03
head 1.5 12 0125 1 4 4 1 106.04027 2.209 1.86E-03
head 1.5 12 0.125 1 6 6 1 131.58815 1.828 4.01E-03
head 1.5 12 0125 1 10 10 1 181.24099 1.510 1.70E-03
head 1.5 12 0125 0.1 5 50 0.2 13.36157 1.113 3.43E-04
head 1.5 12 0.125 1 50 50 1 668.07967 1.113 6.67E-04
head 1.5 12 0125 0.1 10 100 1 127.49921 1.062 2.03E-04
flux 1.5 12 0125 0.1 10 100 1 127.48331 1.062 1.92E-04
head 1.5 12 0.125 0.01 100 10000 0.2 242.79656 1.012 1.32E-04
flux 1.5 12 0125 0.01 100 10000 0.2 242.79321 1.012 1.95E-04
D 0.214
"infinite" mass

BC d a D kg ki Kg AD flux in Gp (D,Kr) % MBE
head 3 14 0.214 200 0.02 0.0001 2 9.833 17.559 7.5E-03
flux 3 14  0.214 200 0.02 0.0001 1 4,864 17.372 1.7E-03
head 3 14 0.214 200 0.15 0.00075 1 36.781 17.515 4.3E-03
flux 3 14  0.214 200 0.15 0.00075 1 36.395 17.331 1.4E-03
head 3 14 0.214 500 1 0.002 1 244,032 17.431 2.6E-03
flux 3 14 0.214 500 1 0.002 1 241.538 17.253 1.2E-03
head 3 14 0.214 50 0.5 0.01 1 118.458 16.923 2.4E-03
flux 3 14 0.214 50 0.5 0.01 1 117.420 16.774 1.4E-03
head 3 14 0.214 50 1 0.02 1 228.841 16.346 2.6E-03
flux 3 14 0.214 50 1 0.02 1 227126 16.223 1.5E-03
head 3 14 0214 20 1 0.05 1 208.552 14.897 2.7E-03
flux 3 14  0.214 20 1 0.05 1 207.418 14.816 1.9E-03
head 3 14 0.214 10 1 0.1 1 183.197 13.086 3.1E-03
head 3 14 0.214 6 1 0.1667 1 159.054 11.361 3.2E-03




"infinite"

mass
BC d a D kg kr Krgr AD flux in Gp (D,Kr) % MBE
head 3 14 0.214 4 1 025 1 137.802 9.843 3.3E-03
head 3 14 0214 2 1 05 1 101.606 7.258 2 1E-03
head 3 14 0214 1 1 1 1 71.450 5.104 2.0E-03
flux 3 14 0214 1 1 T 1 71.317 5.094 1.9E-03
head 3 14 0214 1 2 2 1 100.847 3.602 15E-03
head 3 14 0214 1 4 2 1 150.254 2683 1.4E-03
head 3 14 0214 1 6 6 1 196.916 2344 1 2E-03
head 3 14 0214 1 10 10 1 288.306 2.059 9.5E-04
head 3 14 0214 1 50 50+ 1189.608 1.699 4.1E-04
Fiead 3 140214 T 500 500 1 T1308.330 TB515 7 BE-04
head 3 14 0214 005 500 10000 1 11246.048 1.607 2.1E-04
fiux 3 14 0214 005 500 10000 1 11245.830 1.607 2.3E-04
D 0.357
"infinite” mass
BC d a D kg k; Kg A® fuxin  Gp(D,Kr) %MBE
head 5 14 0.357 200 002 0.0001 3 0.8867 11.770 1.0E-02
flux 5 14 0.357 200 002 00001 1 3.2569 11.632 3.0E-03
head 5 14 0357 200 015 0.00075 1 24.6799 11.752 4.2E-03
flux 5 14 0357 200 0.15 0.00075 1 24.3931 11.616 1 8E-03
head 5 14 0357 500 i 0.002 1 164.0637 11.719 5.2E-03
flux 5 14 0.357 500 1 0.002 1 162.1885 11.585 2 4E-03
head 5 14 0357 500 1 0002 03 49.2191 11.719 4.2E-03
head 25 7 0357 500 1 0.002 1 82.04092 11.720 4 5E-03
head 5 14 0357 100 1 001 1 1611737 11512 5.2E-03
fiux 5 14 0357 100 1 0.01 1 1595093 11.394 3.0E-03
head 5 14 0357 100 1 001 03 48.3520 11512 41E-03
head 5 14 0357 50 1 002 1 157.7994 11.271 4.3E-03
flux 5 14 0357 50 1 002 1 156.3424 11.167 2.8E-03
head 5 14 0357 50 1 002 03 47.3398 11.271 4.4E-03
head 25 7 0357 50 1 002 1 78.85787 11.265 3.8E-03
head 5 14 0357 20 1 005 1 148.9201 10.637 4.7E-03
flux 5 14 0357 20 1 005 1 147.8629 10.562 3.1E-03
head 5 14 0357 10 1 041 1 137.0358 9.788 45E-03
head 5 14 0357 10 1 01 03 41.1109 9.788 4.3E-03
head 25 7 0.357 10 1 041 1 68.47346 0.782 3.0E-03
head 5 14 0357 6 1 01667 1 124 8448 8.917 2.8E-03
head 5 14 0357 6 1 01667 0.3 37.4534 8.917 4.0E-03
head 25 7 0.357 8 1 01667 1 62.3893 8.913 2.4E-03
head 5 14 0.357 4 1 025 1 113.3191 8.094 3.0E-03
head 5 14 0357 4 1 025 03 33.0958 8.094 35E-03
head 25 7 0357 4 1 025 1 56.63518 8.001 2.4E-03
head 5 14 0357 2 1 05 1 91.7004 6.550 3.0E-03
head 5 14 0357 2 1 05 03 275103 6.550 3.7E-03
head 25 7 0.357 2 1 05 1 4583714 6.548 2.3E-03
head 5 14 0.357 1 1 1T 1 71.4429 5.103 2.1E-03
flux 5 14 0357 1 1 T 1 71.3104 5.094 1 5E-03
head 5 14 0.357 1 1 T 03 21.4329 5103 3.0E-03
head 25 7 0357 1 1 11 35.71557 5102 1 4E-03
flux 25 .7 0357 1 1 T 1 357074 5.101 1.3E-03
head 5 14 0357 1 2 2 1 111.8485 3.995 1.4E-03
head 5 14 0357 2 4 2 1 223.6984 3.995 14E-03
head 5 14 0.357 4 8 2 1 447.3904 3.995 1.4E-03
head 5 14 0357 1 2 2 03 33,5541 3.995 1 5E-03
"Infinite" mass
BC d a D kg kr Kg A® fuxin  Gp(D,Kr) % MBE




head 25 7 0357 1 2 2 1 55.92099 3.994 1.1E-03
head 5 14 0.357 1 4 4 1 183.2936 3.273 1.1E-03
head 5 14 0.357 20 80 4 1 3665.8994 3.273 9.4E-04
head 5 14 0.357 2 8 4 1 366.5852 3.273 1.0E-03
head 5 14 0.357 2 8 4 03 109.9767 3.273 1.1E-03
head 5 i4  0.357 1 4 4 03 54.9881 3.273 8.8E-04
head 25 7 0357 1 4 4 1 91.65074 3.273 9.1E-04
head 5 14 0.357 1 6 T 251.8739 2.998 7.6E-04
head 5 14 0.357 1 6 6 03 75.5607 2.998 8.2E-04
head 2.5 7 0357 1 6 K 125.9476 2.999 6.3E-04
head 25 7 0.357 1 5 6 05 62.97357 2.999 6.1E-04
head 5 14 0.357 1 10 10 1 386.9757 2.764 6.5E-04
head 5 14  0.357 1 10 10 03 116.0917 2.764 7.0E-04
head 5 14 0.357 1 10 10 0.2 77.3946 2.764
head 5 14 0.357 1 10 10 05 193.4879 2.764 7.4E-04
head 5 14 0357 1 10 0 07 270.8799 2.764 8.6E-04
head 5 14 0.357 1 10 10 15 580.4562 2.764 7.8E-04
head 5 14 0.357 1 10 10 5 1934.8723 2.764 6.3E-04
head 25 7 0357 1 10 10 1 193.51377 2.764 4.7E-04
head 5 14 0.357 1 50 50 1 17245123 2.464 5.0E-04
flux 5 14 0357 1 50 50 1 1724.3758 2.463 4.0E-04
head 5 14 0.357 1 50 50 0.3 517.3537 2.464 8.1E-04
head 25 7 0.357 1 50 50 1 862.43569 2.464 2.1E-04
head 5 14 0.357 1 100 100 1 3394.2101 2.424 4.2E-04
flux 5 14 0.357 1 100 100 1 3394.0395 2.424 5.0E-04
head 5 14 0.357 1 100 100 2 6788.5196 2.424 47E-04
head 5 14 0.357 1 100 100 3 10182.4847 2.424 4.7E-04
head 5 14 0.357 1 100 100 5 16970.9204 2.424 4.3E-04
head 5 14 0.357 1 100 100 0.3 1018.2588 2.424 4.6E-04
head 5 14 0.357 1 500 500 1 16749.7596 2.393 47E-04
flux 5 14 0.357 1 500 500 1 16749.7582 2.393 5.4E-04
head 5 14 0357 1 500 500 0.3 5024.9343 2.393 5.4E-04
flux 5 14 0.357 1 500 500 3 50249.2628 2.393 4.4E-04
flux 5 14 0.357 1 500 500 5 83749.2864 2.393 5.9E-04
head 2.5 7 0357 1 500 500 1 8376.94347 2.393 1.5E-04
head 5 14 0357 005 500 = 10000 1 16697.1880 2.385 4.9E-04
D 0.429
"infinite" mass
BC d a D kg kr Kr A® flux in Gp (D,Kr} % MBE
head 6 14 0.429 200 002 0.0001 1 2.89514  10.340 9.67E-03
flux 8 14 0.429 200 002 00001 1 2.85892 10.214 3.19E-03
head 6 14 0.429 500 1 0.002 1 144.24075 10.303 6.11E-03
flux 8 14 0.429 500 1 0.002 1 142.52656 10.180 3.00E-03
head 6 14 0.428 100 1 001 1 142.14458 10.153 5.30E-03
flux 6 14 0.429 100 1 001 1 140.59776 10.043 3.41E-03
head 6 14 0.429 50 1 002 1 139.67941 9.977 5.22E-03
flux 5 14 0.429 50 1 002 1 138.30194 9.879 3.61E-03
head 6 14 0.429 20 1 005 1 133.11223 9.508 5 17E-03
flux 8 14 0.429 20 1 0.05 1 132.07962 9.434 3.69E-03
head 6 14 0.429 10 1 01 1 124.16301 8.869 2.97E-03
head 8 14 0.429 4 1 025 1 105.77717 7.556 3.53E-03
head 6 14 0.429 2 1 05 1 88.36849 6.312 3.05E-03
head 8 14 0.429 1 1 11 71.44161 5.103 2.13E-03
"infinite" mass
BC d a D kg kry Kgr AD flux in Gp (D,Kr) % MBE
flux 3 14 0.429 1 1 11 71.30872 5.093 1.92E-03
head 6 14 0.429 1 2 2 1 116.09080 4.146 1.52E-03
head 6 14 0.429 1 4 4 1 196.48330 3,509 1.21E-03

an



head 6 14 0.429 1 6 6 1 274.08735 3.263 1.05E-03
head 6 14 0.429 1 10 10 1 427.26769 3.052 6.43E-04
head 6 14  0.429 1 50 50 1 1945.68664 2.780 4.45E-04
head 6 14 0.429 1 500 500 1 19005.90748 2.715 5.14E-04
head 6 14 0.429 0.02 200 10000 1 7583.07842 2.708 5.80E-04
flux 6 14 0.429 0.02 200 10000 1 7582.95942 2.708 5.15E-04
D 0.500
"infinite” mass
BC d a D kg kr Kgr A® flux in Gp (D,Kr) % MBE
head ~7 14 0.50 200 0.02 0.0001 1 2.6120 9.329 1.1E-02
flux 7 14 050 200 0.02 0.0001 1 2.5794 9.212 2.9E-03
head 7 14 0.50 100 0.1 0.001 1 13.0414 9.315 9.2E-03
flux 7 14  0.50 100 0.1 0.001 1 12.8803 9.200 2.5E-03
head 7 14  0.50 500 1 0.002 1 130.2094 9.301 5.0E-03
head 7 14 0.50 50 0.1 0.002 0.2 2.6042 9.301 1.1E-02
flux 7 14  0.50 50 0.1 0.002 1 12.8618 9.187 2.3E-03
head 7 14 050 100 1 0.01 1 128.6156 9.187 4 5E-03
flux 7 14 0.50 100 1 0.01 1 127.1608 9.083 2.1E-03
head 7 14 050 50 1 0.02 1 126.7305 9.052 3.8E-03
head 7 14 050 50 1 0.02 02 25.3461 9.052 9 5E-03
flux 7 14 0.50 50 1 0.02 1 125.4190 8.959 2.1E-03
head 7 14 0.50 20 1 0.05 1 121.6652 8.690 3.8E-03
flux 7 14  0.50 20 1 0.05 1 120.6566 8.618 2.2E-03
head 7 14 0.50 10 1 0.1 1 114.6715 8.191 3.5E-03
head 7 14 0.50 6 1 0.1667 1 107.2521 7.661 3.8E-03
head 7 14  0.50 4 1 0.25 1 100.0008 7.143 3.9E-03
head 7 14 0.50 2 1 0.5 1 85.7202 6.123 3.5E-03
head 7 14  0.50 1 1 i 1 71.4393 5.103 2.3E-03
flux 7 14 0.50 1 1 1 1 71.3074 5.093 1.9E-03
head 7 14  0.50 1 2 2 1 119.6864 4.275 1.5E-03
head 7 14  0.50 1 4 4 1 207.8697 3.712 1.2E-03
head 7 14 050 1 8 S 1 293.3907 3.493 1.1E-03
head 7 14  0.50 1 10 10 1 462.4855 3.303 9.0E-04
head 7 14 0.50 1 50 50 1 2140.3649 3.058 8.6E-04
head 7 14 0.50 1 500 500 1 20995.2037 2.999 7.3E-04
head 7 14  0.50 0.02 200 10000 1 8380.6726 2.993 7.3E-04
flux 7 14 0.50 0.02 200 10000 1 8380.6451 2.993 7.2E-04
D 1.000
"infinite" mass
BC d a D kg kr Kr AD® flux in Gp (D,Kg) % MBE
head 7 7 1.0 200 0.02 0.0001 1 0.90485 6.463 1.01E-02
flux 7 7 1.0 200 0.02 0.0001 4 0.90211 6.444 4.76E-03
head 7 7 1.0 200 0.2 0.001 1 9.04332 6.460 9.69E-03
flux 7 7 1.0 200 0.2 0.001 1 9.01634 6.440 3.46E-03
head 7 7 1.0 500 1 0.002 1 45.18831 6.455 4.60E-03
flux 7 7 1.0 500 1 0.002 1 45.05509 6.436 3.75E-03
head 7 7 1.0 100 1 0.01 1 4496756 6.424 6.10E-03
flux 7 7 1.0 100 1 0.01 1 44.84697 6.407 4 53E-03
"infinite" mass
BC d a D kg kr Kg AD flux in Gp (D,Kr) % MBE
head 7 7 1.0 50 1 0.02 1 4470435 6.386 591E-03
flux 7 7 1.0 50 1 0.02 1 4459716 6.371 4.74E-03
head 7 7 1.0 20 1 0.05 1 43.98486 6.284. 5.89E-03
flux 7 7 1.0 20 1 0.05 1 43.90546 8.272 4.96E-03
head 7 7 1.0 10 1 0.1 1 4296173 6.137 5.73E-03




head 7 7 10 6 1 01667 1 41.83653 5.977 5.39E-03
head 7 7 10 4 1 025 1 40.69446 5813 5.01E-03
head 7 7 10 2 1 05 1 38.30008 5.473 4.02E-03
head 7 7 1.0 1 1 T 1 35.72000 5.103 2.95E-03
flux 7 7 10 1 1 T 1 35.70550 5.101 2 87E-03
head 7 7 1.0 1 2 Z 1 66.84515 4.775 2 26E-03
head 7 7 10 1 4 4 1 127.03040 4537 1.67E-03
head 7 7 10 1 6 6 1 186.49636 4.440 1.67E-03
head 7 7 10 1 10 10 1 304.86768 4.355 1.66E-03
head 7 7 1.0 1 50 50 1 1484.78851 4.242 1 13E-03
head 7 7 10 1 500 500 1 14752.22969 4215 1.23E-03
flux 7 7 10 1 500 500 1 14752.25402 4215 1.05E-03
head 7 7 10 002 200 10000 1 5896.78348 4212 1.05E-03
D 1.429
"infinite" mass
BC d a D kB k T KR AD flux in GD (D,KR) % MBE
head 10 7 1.4286 700 001 0.0001 1 0.40329 5.761 8.22E-03
flux 10 7 14286 100 001 00001 1 0.40223 5.746 3.19E-03
head 10 7 14286 40 008 0002 05 161219 5.758 8.56E-03
flux 10 7 1.4286 40 008 0002 1 3.21604 5.743 2.25E-03
head 10 7 1.4286 25 025 0.01 1 10.05089 5.743 110E-02
flux 10 7 1.4286 25 025 0.01 1 10.02668 5.730 3.79E-03
head 10 7  1.4286 25 05 002 1 20.04107 5726 1.08E-02
flux 10 7 1.4286 25 05 002 1 19.99667 5.713 4.45E-03
head 10 7 14286 10 05 0.05 1 19.87346 5.678 8.08E-03
head 10 7 1.4286 10 1 01 01 3.92639 5.609 4.72E-03
head 10 7 14286 6 1 01667 1 38.72654 5532 5.75E-03
head 10 7  1.4286 4 1 025 1 38.17588 5.454 5 41E-03
head 10 7 1.4286 2 1 05 1 37.00979 5287 5.13E-03
head 10 7 1.4286 1 1 (K 35.71685 5.102 4.08E-03
flux 10 7 1.4286 1 1 T 1 3570872 5101 4.01E-03
head 10 7 1.4286 1 2 2 1 69.10665 4.936 3.52E-03
head 10 7 1.4286 1 4 4 1 134.77481 4813 3.42E-03
head 10 7 14286 1 6 6 1 200.04811 4.763 1.63E-03
head 10 7  1.4286 1 10 10 1 330.29066 4718 2.30E-03
head 10 7 14288 0.2 10 50 0.2 65.22005 4.659 3.53E-03
head 10 7 1.4286  0.02 20 17000 0.4 260.03403 4.643 3.61E-03
flux 10 7 14286 002 20 1000 0.4 260.03291 4.643 3.05E-03
D 2.000
"infinite" mass
BC d a D kg kr Kg A® fuxin Gp(D,Kr) %MBE
head 14 7 20 700 0.01 00001 1 0.37830 5.404 5.10E-03
flux 14 7 20 100 001 _ 0.0001 1 0.37785 5.398 3.65E-03
head 14 7 20 40 008 0002 1 3.02553 5.403 5.30E-03
flux 14 7 20 20 008 0002 1 3.02197 5.396 1 63E-03
head 14 7 20 10 1 04 1 37.35133 5336 4.29E-03
"infinite" mass
BC d a D kg kr Kg A® fuxin Gp(D,Kr) %MBE
fiux 14 7 20 10 1 0.1 1 37.32884 5.333 6.46E-03
head 14 7 20 4 1 025 1 36.85603 5.265 3.00E-03
head 14 7 20 1 1 11 35.71938 5.103 2.27E-03
flux 14 7 20 1 1 T 1 35.71573 5102 231E-03
head 14 7 20 1 4 4 1 139.0723 4.967 2 51E-03
head 14 7 20 1 10 10 1 344 52071 4.922 1 68E-03
head 14 7 20 1 50 50 1 1712.66141 4.893 1.06E-03




head 14 7 2.0 1 100 100 1 3422.66956 4.890 1.03E-03

head 14 7 20 0.01 100 10000 1 3418.97611 4.886 1.12E-03

flux 14 7 20 0.01 100 10000 1 3418.97611 4.886 1.12E-03



