. Reactive Transport In

}
éhemically And Physically Heterogeneous Porous Media:

Effect Of Non-equilibrium Linear Sorption

by

Anil Kumar Mishra

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

New Mexico Institute of Mining and Technology
Socorro, New Mexico

June, 1997



To my parents
Prabha and Vishwanath Mishra
for their sacrifices

to nurture my desire of learning



ABSTRACT

Reactive transport of a linearly sorbing solute under kinetically limited con-
ditions is studied. The first-order rates are lumped parameters that combine the
effects of both physical and chemical non-equilibrium processes. A probabilistic in-
terpretation of the sorption-desorption phenomena within a Markovian framework is

used to develop a recursion-based algorithm in one dimension.

The Markov model is extended to describe sorption site heterogeneity, sites
accessed in parallel by the sorbing solute (hyperexponential model) or for sites which
are in series (gamma model). The sensitivity of the breakthrough curves is investi-

gated.

A two-dimensional streamline based transport simulator is developed for
transport of a linearly sorbing solute in a porous medium exhibiting physical and
chemical heterogeneity. The one-dimensional formulation is applied to a two-dimen-
sional steady-state flow field to study plume-scale migration. It is shown that the
use of the semi-analytical recursion formulation along the streamlines accurately cap-
tures the variability of the concentration in a heterogeneous media. The complex
interactions of the spatially varying rates of sorption and desorption with the spa-
tially varying velocity field produces a very irregular pattern of aqueous concentration
in the plume. The resulting plume shows areas of high concentration which are dis-
continuous very much similar to observations made in fields. The spatial moments of
the plumes are used to describe the temporal behavior during its advection through
the aquifer and are compared with analytical results based on constant K,4. Spatial

variability of the rates contributes to an additional spreading of the plume. An ap-



plication to model PCE migration at Borden site is presented. Good agreement of
the spatial moments with the field results is obtained when the sorption-desorption

rates are modeled as spatially varying random fields.

The Lagrangian framework that has been used throughout this study is
further focussed to study transverse spreading of a linearly sorbing solute. For a
highly idealized system of stratified aquifer, a new recursion formulation to evaluate
transverse dispersion both for a non-sorbing and a sorbing solute is developed. It is
shown that inclusion of local dispersion within a Lagrangian framework will lead to

transverse spreading of the plume which continues to grow with time.
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Chapter 1

Introduction

1.1 Overview

Reactions between solutes and mineral surfaces are important in the study of
groundwater flow. In the context of contaminant transport in aquifers, much effort has
gone 1nto characterizing the movement of plumes under natural and forced-gradient
conditions. The studies done have included both theoretical analyses and field-tests
conducted to monitor plume-spreading at the field scale. A major focus has been on
evaluating the effect of heterogeneities in the physical and chemical parameters of the

aquifer.

In this chapter a brief review of the developments in transport modeling of
solute advected by groundwater is presented, first for non-reacting or ideal tracers
and then for sorbing solutes. The concept of kinetically limited sorption behavior is
introduced to differentiate it from the equilibrium assumptions inherent in most of
the transport studies. The central theme of this research work, the eff(;ct of spatial

variability of the sorption and desorption rates on contaminant transport, is then

proposed and outlined.



1.2 Transport Model for Ideal Solutes

For ideal tracers (solutes which do not interact with the rock matrix in
any manner) the advection-dispersion equation has been the standard approach for
analyzing the movement and spread of solutes as they are transported by groundwater.
The advection-dispersion equation is obtained from the continuity equation of mass
balance over a representative elementary volume accounting for the advective and
dispersive fluxes and relating the flux through Darcy’s law. This then allows the
equation to be written in terms of the parameters of the permeable medium. The
equation in vector notation for a three-dimensional flow domain assuming constant

porosity and incompressible fluid and non-deformable matrix is given as

%—(_;: +V.(vC) = V.(D.VC) (1.1)

where C [M/L?] is the agueous concentration at a given point x=(x,y,z) at time t, v is
the seepage velocity in [L/T], and D is the local hydrodynamic dispersion coefficient,
[L*/T).

The advection-dispersion equation given above has been solved for a wide va-
riety of boundary conditions, when the velocity and the dispersion coefficient are con-
sidered to bé constant. Similarly, an analogous advection-dispersion-reaction equation
can be written for many solutes assumed to be in equilibrium with their sorbed frac-
tion. The various equilibrium sorption models will be discussed after reviewing some

aspects of non-ideal transport behavior of ideal solutes.

The transport equation in equation 1.1 assumes a homogeneous medium
with a constant value of material properties like hydraulic conductivity (K) and

porosity. The actual aquifer materials or soils exhibit a large variability in grain-sizes



and the structure of the solid matrix. Often the porous medium may show distinct
features such as aggregation, lenses of low conductivity material embedded in the
higher conductivity zones or vice-versa. Transport in such medium is termed non-
ideal. Non-ideal transport is characterized by early breakthrough and tailing [Ander-
son, 1979]. The various causes of the non-ideal behavior have been postulated to be
physical and chemical factors, which include heterogeneity of hydraulic conductivity
and the chemical properties of the aquifer, and non-equilibrium sorption [Brusseau
and Rao, 1989a]. For the case of non-sorbing solute transport, physical factors such
as soil aggregates have been shown to result in non-ideal transport. A bicontinuum
approéch has been used to describe the transport process in an aquifer where the
heterogeneous structure of the porous medium is simplified to a two-region model. In
this model, a mobile region is postulated where the water and dissolved solute can
flow and an immobile region where water and solute are stagnant. Mass transfer of
the solute between the mobile and immobile region is obtained by a diffusive transfer
mechanism. One of the earliest models based on this conceptualization was that of
Coats and Smith [1964]. The diffusive mass transfer mechanism was modeled using
a first-order equation where the rate of mass transfer is proportional to the concen-
tration difference between the two regions. A number of studies have attempted to
find the proportionality constant, known as the mass transfer coefficient, by assum-
ing a given geometry of the aggregate and modeling the diffusive mass transfer as
a physical diffusion model [van Genuchten et al., 1984; Rao et al., 1980a, b]. van
Genuchten et al. [1984] showed that the mass transfer coefficient, « is related to the
lateral diffusion time, a &x Dr/a® where a is the characteristic aggregate size, while
the studies of Rao et al. [1980a, b] showed that « is related to the solute residence

time and is affected by the flow velocity.



The transport of many nonpolar (or weakly polar) organic solutes such as
tetrachloroethylene (PCE), polynuclear aromatic hydrocarbons (PAHs) and other hy-
drocarbons associated with petroleum products are not ideal. These contaminants
undergo not only advection and diffusion but also sorption as well as other chem-
ical and biological transformations. The transport of these solutes in groundwater
involves a complicated interaction of all the mechanisms above. Often one or more of
the mechanisms will be the dominant influence depending on the type of solute, the
physical and chemical properties of the porous medium, and (especially for heteroge-

neous media) the scale of investigation.

For contaminant transport, three scales have been identified to be important,
the pore scale, field scale and regional scale [Dagan, 1986]. In this work we do not
explicitly address methods of obtaining the sorption and desorption rates at different
scales. We assume that for the transport problem at the various scales studied, these
rates are known. The problem of relating one scale to another is a very challenging

task in itself requiring additional study.

1.3 Reactive Transport in Groundwater

Conceptual models for predicting long-term solute fate and transport need
to consider three elements: geological features of the aquifer through which the flow
is occurring, events which specify the amount and time of contaminants=released and
the various processes that occur during the movement of the contaminant through
the pore spaces [Tsang et al., 1994] . Transport of solute in groundwater is a complex
phenomenon, particularly if the various interactions that are possible between the

solid matrix and the dissolved chemical species in aqueous and non-aqueous phases



are taken into account. These reactions could range from precipitation/dissolution
reactions, formation of various complex species or sorption onto the solid phase. A
detailed description of the reactions, which can be classified as either homogeneous

or heterogeneous, is presented in Rubin [1983].

Sorption is a particularly important process occurring at the rock-water
interface because it causes significant attenuation of the concentration of the solute
during its transport by the advecting groundwater. Sorption phenomenon has been
the focus in various fields such as: in soil science, to study the movement of pesticide
through the root zone; in chemical engineering to study chromatographic processes
and catalysis; and in hydrology and water resources engineering to study contaminant
fate and transport. Including the sorption process allows us to predict the arrival of
solute at a given location down-gradient of a point from where it was injected and
to determine the peak concentration of the solute. Both of these parameters — the
arrival time of the solute and the maximum concentration — have implications for
regulatory decisions regarding clean-up efforts at various contaminated groundwater

sites.

The sorption process reflects the affinity of the solute present in the carrier
fluid for selective partitioning onto the solid phase when the carrier fluid is advected
through the permeable medium. This process occurs with both the liquid and gaseous
phases. In this work, we only consider groundwater flow through aquifersmaterial and
thus restrict our attention to saturated conditions. We also use the term ‘partition’
in a very general sense to mean the transfer from the aqueous to the solid phase,
which could be the mineral surface of the rock, an organic coating, or any other solid

surface. Sorption is a very complex phenomenon and many different physical and



chemical processes could be the driving forces causing mass to be transferred from
the aqueous to the solid phase. For the purposes of our discussion and the realm of
this work, we assume sorption to be the main mechanism for interaction of a reactive
solute. This interaction then differentiates a reactive solute from ideal tracers - solutes

which do not interact with the surrounding rock matrix.

1.4 Equilibrium Sorption Models

The transport of reactive solutes in groundwater is often studied under the
assumption of equilibrium conditions for partitioning of the solute between the aque-
ous and the sorbed phases. The equilibrium conditions that are postulated to exist are
then described by a number of phenomenological models which have been developed

on the basis of experimental observations.

The general method of equilibrium sorption description uses isotherms such
as the Linear, Freundlich and Langmuir isotherms. The linear sorption isotherm is

described by [Fetter, 1993]
S = K;C Linear (1.2)

where S = mass of solute sorbed per dry unit weight of solid (mg/g)
K4 = Distribution coefficient (L/g).

The linear sorption isotherm implies that the amount of solute that can be
sorbed onto the solid is unlimited. The Freundlich sorption isotherm also implies this

and is defined by the nonlinear relationship

S = KpC¥ Freundlich (1.3)



where K and g are constants.

The Langmuir sorption isotherm limits the amount of solute that can be
sorbed onto the solid surface and is expressed as

ar, Sma:t: C

S
1+a,C

Langmuir (1.4)

where oy, = an absorption constant related to the binding energy (L/mg)

Simaz = the maximum amount of solute that can be absorbed by the solid (mg/g).

These isotherms relate the aqueous concentration to the sorbed concentra-
tion for a given type of mineral surface or a soil type. For sorption described by a
linear isotherm, which is defined by a constant value of the slope of the line between
the sorbed concentration and the aqueous concentration, the advection-dispersion-

reaction equation can be written as

(R C)
ot

+V.(vC) = V.(D.VC) (1.5)

where R = 1 4+ p Ky/n is the retardation factor, and n is the porosity. For a non-
reactive solute, R equals 1 and we recover equation 1.1. Analytical solutions for the
linear sorption conditions are available for various initial and boundary conditions for

the case of constant velocity and local dispersion coefficient.

The linear isotherm equation is, however, a very simplified model of the
complex sorption process. Two different types of sorption processes can be distin-
guished: physical sorption and chemisorption. Physical sorption involves the transfer
of solute from the aqueous to the sorbed phase either by the process of partitioning

or weak van-der Waals interactions and has a typical heat of reaction on the order



of 1 to 10 kcal/mol. Chemisorption may involve transfer of electrons or radicals or
rearrangement of the bonds and usually has a higher heat of reaction-on the order
of 10 to 100 kcal/mol. Numerous sorption studies on different surfaces have been
performed in the fields of material science and chemical engineering where the focus
is on the understanding of the mechanisms in greater detail in order to obtain bet-
ter performance from engineered catalysts. Particularly for heterogeneous catalytic

reactions, it is crucial to obtain the rate laws for the various reactions.

From the perspective of groundwater flow and the movement of contami-
nants that are sorbing on the solid phase, it is imperative that we focus our attention
on the equilibrium conditions usually assumed. For the large-scale transport of solute
in groundwater which may be of the order of tens to hundreds of meters, the complex-
ity of the porous medium has a larger effect than in column experiments on the overall
transport and distribution of the aqueous concentration. If we look at the transport
of non-polar organics, which constitute a significant portion of contaminant sources
in many areas of the world, sorption behavior has been generally described by linear
isotherms assuming equilibrinm conditions. Recent field and laboratory studies have,
however, indicated that for many pollutants, especially pesticides and other organics,

the sorption-desorption reactions are kinetically limited [Pignatello, 1993].

Several studies have shown that the assumption of equilibrium conditions
may not always be accurate. Field and laboratory scale experiments often show that
sorption rates are quite low and that kinetic effects need to be considered [Nkedi-
Kizza et al., 1983; Miller and Weber, 1986; Goltz and Roberts, 1986; Ptacek and
Gilham, 1992]. The sorption phenomenon shows two distinct time scales — a short

period of very rapid sorption followed by a slower rate which may last for periods



of hours to days. For example, Pignatello and Huang [1991] showed that the distri-
bution coefficient obtained for atrazine and metachlor from field samples collected a
few months after the application was about 42 times greater than the value obtained
from sorption experiments that lasted 24 hours. Similar non-equilibrium phenomena
have been reported for simazine [Scribner, et al., 1992] , tetracholorethylene (PCE),
trichloroethylene (T'CE), toluene and xylene [Pavlostathis and Mathavan, 1992]. In-
ference of kinetically limited transport in the field is based on the studies conducted

on transport of lithium [Garabedian et al., 1988] and molybdate [Stollenwork, 1995].

1.5 Rate Limited Sorption and Desorption

Transport of a wide variety of chemicals dissolved in groundwater has been
studied in several fields, where the main reaction was sorption-desorption of the chem-
ical species under consideration. These studies have been conducted on a wide range
of spatial and temporal scales, including both column experiments carried out in the

laboratory as well as large-scale field experiments.

The study of the transport problem has proceeded along both Eulerian and
Lagrangian lines. In the Eulerian approach it is assumed that on the local scale the
following equation for the aqueous concentration holds

o0 , o5

a5t = VAD.VO) = V.(vC) - (1.6)

In equation 1.6 " is the sorbed concentration (defined as sorbed solute mass
per formation solid volume). For the case of non-equilibrium linear sorption conditions

investigated in this study, the aqueous and sorbed concentrations are related by
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o
ot

where ky and £, are the sorption and desorption rate coefficients such that K; = k; /k;

= kC—k S (1.7)

and K is the distribution coefficient of the solute for the assumed linear isotherm

conditions.

For reactive solutes, the above two-site concept was extended and non-
equilibrium conditions which were identified in solute transport were variously mod-
eled using the multi-process non-equilibrium (MPNE) model [Brusseau et al., 1989
which is based on earlier developments of the two-region models. These models as-
sume an instantaneously sorbing fraction of the solid matrix and another fraction
where the sorption occurs over a longer period of time [van Genuchten and Wagnet,
1989; Cameron and Klute, 1977] and consists of two types of sites; the first site is
in equilibrium with the aqueous concentration while the second site exchanges solute

with the first site and/or the aqueous phase at a rate described by first-order kinetics.

All the formulations discussed above were based on constant values of the
different parameters. During the last two decades, a number of studies have focused on
the spatial variability of the aquifer parameters and their importance to the transport
of solute in groundwater flow. It has been repeatedly shown that there are small-
scale and large-scale features of the geologic media which are inherently variable, the
probable causes being the deposition mechanisms and post-depositional diagenesis
which create a very heterogeneous pattern for various parameters like permeability,

organic carbon content, and mineral composition.

The deterministic advection-dispersion-reaction equations which assume known

and fixed values of parameters such as velocity, local dispersion and K, have been
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shown to be of limited use in describing field-scale transport. We are now very aware
of the heterogeneity of the natural aquifer materials. Various new tools and techniques
have been developed to account for the variability and the associated uncertainty in
the model predictions. A detailed review of the stochastic theory of transport is pre-
sented in the next chapter which also highlights the area of non-equilibrium sorption

to be addressed.

Several recent theoretical and computational studies have focused on re-
active transport in heterogeneous media. Valocchi [1989] presented an analytical
solution for reversible linear kinetic sorption in a stratified aquifer. Cvetkovic and
Shapiro [1990], Selroos and Cvetkovic {1992] and Dagan and Cvetkovic [1993] con-
sider the same problem in three-dimensionally heterogeneous media. In none of the
above studies was the effect of spatial variability in the individual reaction rates (the
sorption rate &y and desorption rate k) considered. Garabedian et al. [1988], Dagan
[1989], Chrysikopoulos et al. [1990] and Bellin et al. [1993] did examine the influence
of spatial variability in distribution coefficient K4(ks/k.) on sorptive solute trans-
port, demonstrating that a negative correlation between the logarithm of hydraulic
conductivity, In K and In K} results in increased macrodispersion. This feature is
also evident in field data from the Cape Cod site [Garabedian et al., 1988] and the
numerical simulations of Burr et al. [1994] . While these studies incorporate het-
erogeneity in sorption characteristics of soils, sorption kinetics were not considered.
A recent study by Hu et al. [1995], that did incorporate heterogeneity in In K and
in sorption kinetics, revealed a complex interaction between kinetic sorption and the

velocity variations.

Evaluation of stochastic theories of solute transport in heterogeneous media
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has been facilitated by large-scale numerical simulations (e.g. Tompson and Gelhar
[1990], Tompson [1993] and Burr et al. [1994]). These simulation studies identified
some limitations of theoretical results, and motivated studies to further refine the
theoretical results. In the context of sorptive transport, the relative importance of
spatially variable sorption kinetics in explaining features observed from field data has
yet to be investigated. A related issue is that of the influence of spatially variable ki-
netics on clean-up times for sorptive contaminants. To date, no large-scale simulation
studies which incorporate spatially variable sorption kinetics have been reported. In
this context, there is a need for efficient simulation algorithms for transport involving

kinetic sorption.

Pafticle-tracking algorithms (e.g. Tompson and Gelhar [1990]) are an attrac-
tive option for large-scale simulation, primarily due to thveir computational efficiency.
Recently Tompson [1993] extended the particle-tracking approach to model equilib-
rium sorption by mapping the particle distributions onto a grid for defining local
concentrations. Andricevic and Foufoula-Georgiou [1991] and Quinodoz and Valoc-
chi [1993] proposed particle-tracking algorithms that did include kinetic sorption. In
their approaches, a particle was allowed to move back and forth between a “sorbed”
and “aqueous” state, and the probability density of the times spent in each phase
was related to the sorption kinetics. However, spatial variability in sorption kinetics

was not considered in those works. .

In this dissertation, we focus our attention on non-equilibrium linear sorp-
tion characterized by the sorption and desorption rates and their associated variability
in the spatial domain. We develop a very general model for contaminant transport

of a linearly sorbing solute in a physically and chemically heterogeneous media. The
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model is then used to study field-scale transport of a solute. We restrict our inves-
tigation to evaluation of the first three spatial moments of the solute concentration

distribution.

1.6 Objectives

Processes such as adsorption, precipitation and ion-exchange are key areas
of water-rock interactions which affect ground-water quality. Of particular concern is
the issue of the slow process of sorption-desorption. This has been variously termed

as kinetic sorption, resistant sorption or non-equilibrium sorption.

The overall objective of the study is to evaluate the importance of spatial
variability of the kinetically limited sorption-desorption process at different length
scales. Most of the results based on stochastic theories of transport assume equilib-
rium conditions for the sorption process. It has been postulated that the complex
interplay of the spatially varying rates of sorption and desorption with the spatially
varying velocity field would lead to more realistic descriptions of contaminant plume
migration as well as insights regarding spreading. This research focuses on the kinetic
aspects of sorption-desorption processes. The implications of slow rates of sorption-
desorption on plume evolution are highlighted. In particular we use the standard
statistical descriptions of centroid and the second spatial moment which have been

<

thought to provide a complete description.

Specifically the following issues are addressed:

1. We develop a new formulation of the reactive transport with kinetically limited

sorption, in which linear sorption is modeled as a Markov process. We first
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develop the recursion formulation for the case of constant rates and then con-
sider spatial heterogeneity of the rates and extend the recursion formulation to

a spatially varying field.

2. We develop a two-dimensional simulator for modeling transport of a linearly
sorbing solute in a heterogeneous medium. The sorption and desorption pro-
cesses are specified in terms of rates which could be high (denoting equilibrium
conditions) or low (signifying kinetically limited conditions). These rates are
specified as spatially varying random fields, either independent of the hydraulic

conductivity field or correlated with it.

3. We use the algorithm described above to model transport of tetrachloroethy-
lene (PCE), a non-polar organic at the Borden site. We examine transport of
non-polar organics at the field-scale referring to distances on the order of tens
to hundreds of meters. We evaluate higher moments for the non-equilibrium

sorption conditions in order to better describe the plume shape and location.
4. We model the sorption site heterogeneity using a semi-Markov approach.

5. Finally we study the transverse dispersion behavior of a linearly sorbing solute
in a stratified aquifer in a Lagrangian framework where we include the local

dispersion.

1.7 Outline

This dissertation is divided into the following chapters:

Chapter 1 is the introduction and gives a brief overview of the field of reactive
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transport applied to groundwater flow. It also formulates the research questions

addressed in this research.

Chapter 2 gives a detailed literature review of the various algorithms and
models used for solving the reactive transport equation. Results from stochastic
theory of transport are outlined in Chapter 2 along with the assumptions used to
obtain the results. We note the need to study non-equilibrium sorptive transport

where the rates are spatially varying.

In Chapter 3, a recursion formulation is developed for a one-dimensional flow
system. Breakthrough curves for the case of constant and spatially varying sorption
and desorption rates are obtained. We also study the effect of the combined processes

of sorption and decay in the aqueous or the sorbed phases.

Chapter 4 discusses the application of the Markov model to sorption sites

which exhibit heterogeneities and we then develop semi-Markov models of transport.

In Chapter 5, the one-dimensional algorithm is extended to a two-dimensional
flow system by applying the recursion formulation along streamtubes. The simulation
procedure is described and applied to a field site. In particular we study the transport

of PCE in a field setting similar to the Borden site study [Roberts et al., 1986].

Chapter 6 examines the problem of transverse dispersion of a sorbing solute
in a stratified aquifer and we present a formulation for dispersion of the: plume where
the solute undergoes linear kinetic sorption. The transverse spreading of a non-
reacting solute is contrasted with that of a sorbing solute where the rates are either

constant or spatially varying.

Chapter 7 gives a summary of the main results of this work and outlines

some new research areas and questions.



Chapter 2

Literature Review

2.1 Overview

There are a number of solutes that undergo interactions with the rock ma-
trix. These interactions may be of different forms: sorption-desorption, precipitation-
solubilization, ion-exchange, etc. The type of interaction depends on the ionic na-
ture of the solute (non-ionic vs cation or anion), the chemical condition of the fluid

(presence of other solutes and cosolvents), the pH, and the temperature conditions.

Modeling the coupled processes of reaction and flow in geological media, is of
interest in subsurface contaminant hydrology, reservoir engineering and geochemistry.
Reactive transport involves the hydrodynamic processes of advection, dispersion and
diffusion along with a set of equilibrium or kinetic reactions that describe the chemical
interactions between the different components present in the fluid phase with the

surrounding rock matrix.

The type of reactions that occur in porous media include dissolution, pre-
cipitation, oxidation, reduction, hydrolysis, complexation, sorption, desorption, decay
and degradation. These reactions are termed homogeneous if there is no phase change
involved and heterogeneous if the chemical species is transferred from the aqueous to

the solid phase or vice-versa (see James and Rubin [1979)).

16



17

In developing these theories a number of important issues have been iden-
tified. The foremost is the identification of the most dominant process: hydrological,
chemical or biological. The problem is complicated by the variation in the degree of
interaction between these three processes at different spatial and temporal scales. The
second most important aspect is the considerable spatial variability of the subsurface

environment.

Heterogeneity in groundwater flow is observed at many different scales.
These range from the pore scale to Darcy scale (which is on the order of c¢m) to
the regional scale (few tens to hundreds of kilometers). One challenging problem in
subsurface contaminant hydrology is to examine transport at scales smaller than the
regional scale but larger than the Darcy scale. The range of this problem varies from
a few meters to a few kilometers. This scale for purposes of discussion will be referred

to as the inter-well scale.

This chapter provides some background information about the theory devel-
oped in the general area of solute transport in groundwater, particularly emphasizing
the models of stochastic theory developed along two broad avenues, Eulerian methods
of analysis and Lagrangian approaches. Stochastic theory provides a framework of
analysis where the natural variability of the formation is explicitly taken into account
to predict ensemble average behavior of contaminant plumes. In the next section a

brief overview of some of the terminology is given. y

The porous medium through which the groundwater flow occurs is consid-
ered to have spatially varying parameters such as permeability and porosity. Het-
erogeneity of these parameters has been well documented and has been been the

starting point of many studies [Freeze, 1975; Bakr et al., 1978] . Two very com-
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monly employed assumptions in modeling these spatial random functions (SRF) are
stationarity and ergodicity. Stationarity assumes that the various moments of the
parameter (say hydraulic conductivity, K) are independent of the spatial locations.
In particular, a weaker form of stationarity is “second order stationarity”, which re-
quires that the second moment depend only on the separation distance and not on
actual locations. The issue of ergodicity is a more complex matter which allows us to
treat the data available from a field site to be equivalent to the ensemble mean and

thus representative of the SRF.

Allowing for heterogeneity of K field, water moving under a prescribed gra-
dient has a velocity v which is a SRF. In the very general case, a mixture of dissolved
species with composition different from that of groundwater enters the aquifer either
as a pulse input or a continuous injection. The variable velocity of the ground-
water leads to the development of a plume with an erratic front. Having satisfied
ourselves that the variability of the permeable medium is indeed a common natural
phenomenon, we can now look at the effect of variability of hydraulic conductivity on
predicting flow and transport. The two most common models for studying flow and
transport, Darcy’s law and the convection-dispersion equation, relate hydraulic head
(h), hydraulic conductivity (K), pore-water velocity (v) and concentration (C). It is

then obvious that variability of K would lead to variability of h and C.

The primary dispersive mechanism for a non-reactive solute is likely as-
sociated with the spatial fluctnation of the velocity field caused by the local-scale
variations in the K field. For a reactive solute, additional processes of intra-particle
diffusion and/or kinetic sorption have also been hypothesized to influence solute dis-

persion. Stochastic continuum theory has been used to describe the transport of
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solute in a heterogeneous media. Gelhar and Axness [1983] used a Fourier-Stieltjes
formulation of the perturbed head linearized steady flow and transport equations to
study the asymptotic behavior of nonreactive solutes. Dagan [1982, 1984, 1988], using
a Lagrangian approach based on the Taylor’s theory of diffusion [1921], formulated a
relation between the time rate of growth of the second moment of the mean concen-
tration field with the variance and correlation length of a statistically anisotropic K
field. In Dagan’s work, local dispersion is neglected and it is shown that for longitu-
dinal second moment analysis the effect of the local dispersion is negligible [Cushman
et al., 1996]. Naff [1990] presents an analysis of the dispersion of the solute plume by
incorporating local-scale mixing. Garabedian [1987], Dagan [1989] and Kabala and
Sposito [1991] have studied reactive solute migration and provided analytical results
describing the asymptotic dispersive behavior of a sorbing solute. All the results

however assume K to be either constant or fully correlated with the K field.

We now present some of the results of the Eulerian and Lagrangian analyses
for non-reactive solute for flow in a heterogeneous medium to describe the spreading of
a plume as it migrates down-gradient under a spatially varying velocity field. Both of
the methods relate hydraulic conductivity variability to macrodispersion by obtaining
expressions for fluid velocity correlation with that of hydraulic conductivity and head.
Expressions for the spatial moments and that of macrodispersion coefficient are the

final results. .

2.2 Eulerian Approach

Assuming the different variables, C, h, K and v to be stochastic processes,

a stochastic partial differential equation for the concentration field C, can be written
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as follows:

n%-l—q.vc = ~V.(D.VO) (2.1)

where q is the specific discharge and for constant porosity n is related to the velocity
field by q = v/n. The random velocity field v=U + u, U is the mean velocity, u
is the local fluctuation in velocity. Similarly, the concentration field C(x,t)= E(C) +
c(x,t), where E(C) is the mean concentration and ¢(x,t) is the Auctuation. D is the

pore scale dispersion tensor.

In the Eulerian approach, the spectral representation theorem is used to
find the different moments of C. First and second-order perturbation techniques are
used to characterize the ensemble average of C. Some of the earliest work in stochastic
theory related to quantifying variability of K [Bakr et al., 1978], studying the variance
of h [Mizell et al., 1982 , and studying mean concentration and variance of ¢ [Gelhar
et al., 1979; Vomvoris, 1986 |. In deriving the variance of ¢, we have to evaluate an
added macrodispersive flux term (uc) which is often approximated using a Fickian

relationship

Ti=—A.Ve . (2.2)

where A is the macrodispersion tensor. Great effort in Eulerian analysis has been
expended in obtaining expressions for A in terms of the statistics of K, h and v.
Details of the analysis can be obtained from the work of Gelhar et al. [1979], and
Gelhar and Axness [1983] .
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For example in the simplified case of stratified aquifer, the asymptotic value
of the macrodispersivity, A is given by Gelhar et. al. [1979)
oL l®

Aoo = 3.!_(—2(1.1: (23)

where K=K+k is the physically isotropic hydraulic conductivity with a constant
mean, K and perturbation, k such that E[k]=0; I=length scale of k, oi = the vari-
ance of k; and ar=local transverse dispersivity. The results obtained in the above-
mentioned studies were applicable for small variances of In K and were viewed as an

asymptotic large time limit valid for plumes with large spatial extent.

For the early times, A has been postulated to be time dependent and expres-
sions for time-dependent A have been developed by Koch and Brady [1988], Graham
and McLaughlin [1989a, b} and Naff [1990] . Their approach was based on some
simplifying assumptions where dropping some cross-terms leads to simplification of
the solution. However, Dagan and Neuman [1991} showed that such an analysis may

lead to an underestimation of the higher-order spatial moments.

2.3 Lagrangian Approach

In the Lagrangian approach, the movement of individual particles is ana-
lyzed by assigning a particle position X (t; To, to) at time t, given it was at zp at to.
Each particle is associated with a mass, m given by

C(z,t) = -’;35 (z — X (t 20, t0)) (2.4)

where n denotes the porosity of the medium and 6 is the Dirac delta. X (¢; zo, to) is

related to the velocity field by

X (t520,10) = | DX (¥ 30, )] (2.5)

to
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Using a stochastic model for the random velocity field, X (¢; zo, to) and C(x,t)
can be calculated. The above equation allows computation of the various moments
of X and for the calculation of a time-dependent, preasymptotic macrodispersion
coefficient (see Dagan [1987] for a review). The expected values of the first two
spatial moments of a non-reacting solute advected in a three-dimensional isotropic
heterogeneous flow domain assuming an exponential covariance structure for the log

K field, are given by [Dagan 1982, 1984]

Ko J
X, = Ut==F

t; X2 = X3 =0 (26)
X = 202 2okt —8/3+4/t —8/t° + 8V (14+1/1)1/t7] (2.7)
X22 == X33 = 2 l]2 I2 0'3/[1/3— 1/t'+4/t,3 — € —

1/ + 4/t + 4/t3)) (2.8)

where X is the mean displacement in the flow direction, and Xj; are the variances in
the x, y, and z directions, with X;; = 0 for i#j. The dimensionless time ¢' is defined
as t/tp where ty, the characteristic time of the formation heterogeneity, is I/U; I is

the integral scale of the formation and U is the mean velocity.

In both approaches the effective dispersion coefficients related to the rate of
growth of the solute plumes increase initially with the travel distance from the source,
showing non-Fickian behavior, and are much larger than the pore-scale dispersion

coefficients.

2.4 Reactive Transport

The stochastic methodology above was developed for ideal tracers —~ namely,

solutes which do not interact with the surrounding rock matrix. At the same time, a
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parallel development has occurred in simulating deterministic multi-component sys-
tems where reactions influence transport and vice-versa. These models were devel-
oped for idealized equilibrium conditions and varying degrees of complexity [Yeh and
Tripathi, 1991; McNab and Narshimhan, 1994] . The reactive transport model gener-
ally considers a two-phase heterogeneous porous formation. Groundwater forms the
mobile continuous phase. The immobile phase is the solid rock matrix consisting of

minerals, organic matter, etc.

Considering V. mobile species and N; immobile species with M components,
a total of IV. + N, species are present in the system. The stoichiometric equations for

the system are [Friedly and Rubin, 1992

N, N,
ZM,C,, = Z Vrj Sj, T = 1, M (29)
=1 j=1

where the mobile species C; (i=1, V,) undergo homogeneous and heterogeneous reac-
tions with the immobile species S; (j=1, N;), and p, v are stoichiometric coefficient
matrices. In the above formulation all of the reactions are linearly independent and

each of the reactions has a forward and a backward reaction rate.

The above formulation is very general for a multi-component system under-
going many different types of reactions. We will however study just one reaction, the
linear sorption process. Often reactions are considered to occur at equilibrium con-
ditions although there is evidence that non-equilibrium reactions may exist for many
solutes at different sites. In particular, our research focuses on the relevance of slow
sorption-desorption which has been variously termed as kinetic sorption, resistant

sorption or non-equilibrium sorption in the context of long-term predictions.
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2.5 Results for Equilibrium Linear Sorption

As discussed in Chapter 1, sorption of solutes is an important attenuating
mechanism in groundwater flow. The simplest representation of sorption uses linear
kinetics and assumes constant rates for the sorption and desorption. Equilibrium
conditions are often assumed in which case the time scale of the transport process
is much larger than the time of sorption/desorption. Analytical results for linear
sorption models in heterogeneous media have been presented in Garabedian [1988];
Cvetkovic and Shapiro [1990]; Kabala and Sposito [1991]; Chyrsikopoulos et al. [1992];
Quinodoz and Valocchi [1993]; and Cvetkovic and Dagan [1994]. In all cases above

K was considered to be constant or spatially varying.

The analytical results obtained by various methods have been tested for
their accuracy and limitations by applying them to results obtained from field-scale
observations. The Borden site tracer test [Roberts et. al., 1986}, the Cape Cod site
test [LeBlanc et. al., 1991], and the MADE site test [Adams and Gelhar, 1992] are
three examples of large-scale experiments carried out in the fields to validate the
stochastic theory results both for ideal and reactive tracers. We will discuss the
comparison of stochastic theory results with field data of the Borden site test in

greater detail in Chapter 5.

2.6 Large-scale Numerical Simulation

Evaluation of stochastic theories of solute transport in heterogeneous porous
media has also been done by large-scale numerical simulations [Tompson and Gelhar,
1990; Tompson, 1993; Burr et al., 1994]. A common approach is to study the effect

of the heterogeneity using Monte-Carlo methods. Monte-Carlo methods are used to
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solve the above equation for different realizations of K and v to obtain the entire
probability distribution function of C and then to calculate the mean and variances
of C. Two of the most popular techniques used are the Laplace Transform Galerkin

approach [Sudicky, 1989; 1990] and the particle tracking method [Tompson, 1993).

The particle-tracking algorithms discussed below are generally used in nu-
merical simulations. We focus our attention on the particle tracking algorithms in
particular because we will develop an algorithm which is conceptually similar to par-

ticle tracking but computationally more efficient.

2.7 Particle Tracking Algorithm

Particle tracking algorithms constitute an important class of methods for
solving transport problems. Their applications have been used in wide variety of
fields including plasma physics, astrophysics, estuary flow and heat flow. The basic
idea is to discretize the total mass that is being transported into a large number of
particles subjected to advection by the flow, sorption-desorption or other reactions
and an additional Brownian motion process to account for dispersion. The random
walk particle method has been used in many studies to simulate both conservative
and reactive transport [Prickett et-al., 1981; Uflink, 1985; Tompson, 1987; Tompson
and Gelhar, 1990; Tompson, 1993] .

The random walk method from statistical physics has been used in the
analysis of diffusion and dispersion in porous media [Scheidegger, 1954]. Early work
on the formulation of the particle tracking code was by Pricket et al. [1981]. The
advection-dispersion equation was solved by simulating the movement of a large num-

ber of particles advected with the constant flow velocity U and subject to a Brownian
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motion with a given dispersion, D.

6C _dC 82C
7 tUas = Do (2.10)
z(t+At) = z(t) + UAt+ (2DADYE (2.11)

The second equation gives the position of a particle for one-dimensional flow where
x(t) is the location at time t, U is the constant advective velocity, D is the dispersion
coefficient, and ( is an independent normally distributed variable with zero mean and

unit variance.

The frequency distribution f of the particles obtained from the random walk
(equation 2.11) satisfies in the limit of large particle numbers the Ito-Fokker-Planck

equation [Uffink, 1985]
af 0f  0*Df
ot "Var T o

If the dispersion coefficient is space independent, the Fokker-Planck equation is

(2.12)

identical to the transport equation. It is this identity that allows us to interpret
the advection-dispersion equation as a Fokker-Planck equation with a corresponding
equivalent random walk of the form given in equation (2.11) [Uffink, 1985; Kinzelbach,
1988] .

However, the formulation is changed for spatially varying D case. Consider
the advection-dispersion equation where the velocity and dispersion coefficient vary

in space. .

9C (vC) 8 (.0C
8t+ 0z q@x(Dax) (2.13)

The particle tracking formulation in this case includes the addition of the “drift” term

to the advective velocity:

1dD

T(t + At) = z(t) + [u(z) + 5%]zzm(t)+(%)m + [2D(z(t)) At]H2¢ (2.14)
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The “drift” term involves the derivative of the dispersion coeflicient in space and was
introduced by Kinzelbach and Uffink [1991] who found that a simple extension of the
earlier approach to the spatially varying velocity field led to accumulation of mass in

low-dispersion areas. The presence of the drift term results in the low-dispersion areas |
repelling particles while high dispersion areas tend to attract them. The above can be
theoretically justified in terms of the theory of stochastic differential equations. There
are two slightly different approaches known as the Ito and Stratonovich formulations.
Stratonovich defined his stochastic integrals in a different way than Ito — further
details about the “Ito-Stratonovich dilemma” are contained in Van Kampen [1981]
and Gardiner {1990] . Kitanidis [1994] has produced a method of moments analysis

to explain the significance of the “drift” term.

In the next section we outline some of the advantages of the particle tracking
code which has made it a very popular modeling tool and then discuss its limitations

for reactive transport with non-equilibrium sorption.

2.8 Advantages and Limitations of Particle Tracking Codes

A major advantage of the particle tracking method is that it performs well
for large Peclet numbers, unlike most classical numerical methods of solute transport.
The grid Peclet number is the ratio of the advective velocity times the grid dimension
divided by the dispersion coefficient. When this number is large, the transport equa-
tion behaves as a hyperbolic partial differential equation for which solutions obtained
from the classical finite difference or finite element formulations are prone to numeri-
cal dispersion or oscillations [Huyakorn and Pinder, 1983]. In problems dominated by

advection, numerical dispersion may cause errors unless the grid is highly resolved.
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The particle tracking method is computationally appealing because it is grid indepen-
“dent and therefore requires little computer storage relative to the finite element, finite
difference, and method of characteristics procedures. The particle tracking method
conserves mass at both the local and global scale. Discontinuities in the velocity yield
a dispersion tensor that is discontinuous in space, which if neglected will result in local
mass conservation error. The particle-tracking code does not require the solution of
a large system of equations. Techniques for applying the particle tracking code in the
case of spatially varying velocity field are given in LaBolle et al., [1996]. The method
is well suited for evaluating the bulk-averaged characteristics, such as the location of

the centroid of the plume.

A disadvantage of the particle tracking algorithm is that the concentration
is not smooth and usually requires the application of a smoothing function which
varies with the dimension of the flow field. For a large-scale simulation, we would
need a very large number of particles to be able to accurately resolve concentration
fluctuations. Thus the particle tracking algorithm is still a computationally intensive
approach. The time discretization would need to be exceedingly small for small
rates of sorption-desorption. We propose a recursion algorithm for a linearly sorbing
solute which will provide a fast and accurate resolution of the breakthrough curve,
especially at the tail portion where particle tracking algorithm is prone to erratic

numerical behavior. : .

2.9 Ideas Generated for Research

Non-equilibrium sorption is an important process affecting field-scale trans-

port of reactive solutes. For linearly sorbing solutes, there are some studies which
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have explicitly modeled the variability of K. Spatial variability of rates, however,

are important aspects that remain to be addressed.

This research looks into some aspects of modeling transport of linearly sorb-
ing solutes at a number of different scales. We will first look at the transport on a
column scale and develop an algorithm for transport of a sorbing solute subject to
kinetically-limited conditions. The algorithm is very general and can accommodate
a whole spectrum of rates ranging from very high rates which denote equilibrium

conditions to very low rates signifying rate-limited behavior.

The issue of heterogeneity of the chemical parameters of the aquifer is ad-
dressed next. We will extend the formulation developed for the constant rate case to
spatially varying rates with a prescribed covariance structure. We will study the ef-
fect of the variability of the rate parameters on the breakthrough curves and correlate
the variability to physical processes. We will also study the effect of the combined
processes of sorption and decay of a solute. This is an important process because
many solutes show natural degradation during transport. We will look at methods
to model sorption site heterogeneity where we can specifically identify various types

of sorbing sites.

We will develop a multi-dimensional transport simulator based on the re-
cursion formulation which is in essence a semi-analytical formulation of the solute
transport of a linearly sorbing solute. This approach provides a ver); fast method
for generating the plume-scale migration of contaminants. Accurate resolution of the
aqueous and the sorbed concentration distribution is of critical importance in the

design and implementation of remedial projects.

We will show that our formulation of the transport of a sorbing solute in
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terms of the probabilistic framework is very general and conceptually simple. Using
the basis of transitions from the aqueous to the sorbed phase and back again, an
analytical expression for the breakthrough curve at a given time can be obtained
which is then used to compute the spatial moments. Our approach gives results
similar to Dagan and Cvetkovic [1993] for the case of constant K, and rates. We will
then outline a procedure to obtain the moments for the case of spatially varying rates

as an extension of the constant rates case.

The recursion formulation will also be used to study transverse dispersion
of a solute plume, in particular the effect of local dispersion on the spreading of
the plume in a direction transverse to the mean flow direction. There have been
some interesting observations about the asymptotic behavior of transverse dispersion
[Hu and Cushman, 1997] where the Eulerian and the Lagrangian moments differ
substantially,. We will address this problem of inclusion of local dispersion in the
Lagrangian framework and study the second transverse moment variation with time

for the simplified problem of a stratified aquifer.



Chapter 3

A Recursion Formulation For Non-equilibrium Transport

3.1 Overview

In the previous chapters we showed transport of a linearly sorbing solute un-
der non-equilibrium conditions is an important problem in issues related to contami-
nant migration. Non-equilibrium conditions have been postulated to exist both in the
laboratory and in the field. In particular, the effect of heterogeneity in the chemical
parameters on solute transport has been the subject of much debate and conjecture.
In this chapter, we develop an efficient recursion formulation approach for simulating
transport with spatially variable kinetic sorption. The recursion formulation is de-
rived by assuming a Markov process model for unimolecular reactions. This approach
provides a way for computing concentration breakthrough curves semi-analytically,
without resorting explicitly to particle-tracking. Effectively, the transport of an in-
finite number of particles is simulated. The recursion formulation does not include
any local dispersion. We illustrate the approach with simulations of on:e-dimensional
transport, which clarifies the influence of spatially variable kinetic sorption on the
concentration breakthrough curves. The approach presented in this chapter can be
extended to multi-dimensional transport simulations by applying the recursion for-

mulation along pathlines or streamtubes, which is the topic of Chapter 5.

31
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This chapter is organized as follows : in the next section (3.2), the Markov
process model of sorption-desorption is described, followed by the development of
the recursion formulation. In section 3.3, comparisons to analytical solutions for
transport with constant kinetic parameters are presented. In section 3.4, the influence
of spatially variable sorption kinetics on concentration breakthrough is examined
through parametric studies, and comparisons to analytical results are presented for
the case of fast sorption reactions. In section 3.5, the combined processes of sorption
and degradation of the solute, either in the aqueous or the sorbed phase, is formulated.

The chapter concludes with a discussion of the results.

3.2 Markov Process Model of Sorption-Desorption

Markov process formulations for studying adsorbing solutes with constant
rate parameters have been presented previously in the literature. Andricevic and
Foufoula-Georgiou [1991] modeled the sorption process as a birth-death process with
constant rate parameters. In the birth-death model, the number of transitions be-
tween the aqueous and sorbed phases during a fixed time period will be a Poisson

process.

We examine this case below first for constant rate coefficients and then for
spatially varying coefficients. For the constant rate case, the breakthrou‘gh curves are
discrete analogs of results presented by Giddings and Eyring [1955] . We model the
one-dimensional column as a collection of small discrete segments and consider the
fate of the sorbing mass advected through the column allowing for sorption-desorption
processes. The rate at which the solute is sorbed onto the solids is defined as k 5 while

the rate of desorption is defined as k.. In the case of a linear sorption isotherm, the
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distribution coefficient is K4 = ks /k;.

The probability that a particle is sorbed during a time interval At is related
to ks and the time step size, At. Specifically, the probability that a particle is sorbed
during a time-step At is given by [Andricevic and Foufoula-Georgiou, 1991]

Pr(sorption) = k_]-cifk— [1 — e~ (rtkn)An)] (3.1)
T f

which can be simplified using a first-order approximation, as follows
Pr(sorption) = ky At + O(At) (3.2)

where the term O(At) is used to indicate a negligible component as At approaches

0; namely

Limai—o =0. (3.3)

If solute is sorbed, the time spent in the sorbed phase will be assumed to

have an exponential distribution with mean 1/k,. This again implies

Pr(desorption) = k. At + O(At) (3.4)

‘The exponential assumption implicit above and in equation 3.1 implies that
the resulting process that describes the number of particles in each state (sorbed or

-

mobile) is a Markov process [Ross, 1989).

3.3 Development of A Recursion Formulation

For linear kinetic models where the sorption-desorption process only depends

on the forward and backward rate coefficients, we develop recursive equations for the
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probability distribution of the number of time steps taken to reach the effluent end.
The probability distribution of the travel time is then related to the concentration

breakthrough curve.

In the discrete formulation used here, time is discretized into steps of length
At and space into steps of length Az. For simplicity, the velocity v is assigned a
value of 1 in the arguments presented below, while in the general case, Az = v At.
Later the recursion formulation is extended to incorporate velocity variations along

a flowpath, as would be encountered in a heterogeneous medium.

We denote the state of a solute particle as either mobile (j=1) or sorbed
(j=2). Let P,E’,g denote the probability that it takes k time-steps for a solute particle
to move n space steps, starting from state j. The probability that the solute remains
in the aqueous phase during a time-step is denoted by 7y, and r;5 = 1 — 715 is the
probability that the solute moves from the aqueous to the sorbed phase. Similarly,
the probability that solute initially in the sorbed phase remains in the sorbed phase
after a time step At is denoted by 795 , and 73; = 1 — 745 is the transition probability
for moving from the sorbed to the aqueous phase.
The transition probabilities for fixed At are given by
ri2 = L—ry =k At + O(At) 2 k; At (3.5)
rn = 1—rp =k At+ O(At) 2k, At (3.6)

«

in the discrete approximation adopted here. In equations 3.2 and 3.4 we have assumed

At is small and O(At) denotes terms of order At? and higher, which are negligible.

We can then derive the probability P,?,Z that a solute particle has traveled
n space steps in k time steps and is in state j. For j=1 (namely starting in state 1,

the mobile state) the following cases arise:
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(a) the solute particle stays mobile during the next time step: This occurs
with probability ry;, in which case we now need to move n-1 space steps in the next

k-1 time steps;

(b) the solute particle becomes sorbed during the next time step. This
occurs with probability 1-r;; in which case we need to move n space steps in the next

k-1 time steps.

In addition we assume that the “decision” about sorption/desorption occurs
at the beginning of the time step. We thus arrive at the following recursion relation,

for k > n,

Prs,llg = T Prsl—)l,k—l +(1—rn) Pr(L,le—l (3.7)

By a similar argument,

Pvglg = Ty PTE?:2~1+(1—T22) P& (3.8)

Before these recursion equations can be solved, we need appropriate bound-

ary conditions. These can be derived directly as follows:

P = g ) (3.9)
PR = i (1—ry) (3.10)
Pl = (l-m) 2 (1—r), k22 (3.11)
PR = ' (l-r), k>2 (3.12)
PY =0, k<nj=1,2 (3.13)
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For example, equation 3.10 refers to the case where n time steps are needed
to travel n space steps when the solute starts from the sorbed state. This can only

occur if
(a) the solute enters the mobile state in step 1 and
(b) never leaves the mobile state in the next (n-1) steps.

The other boundary conditions can be derived in a similar manner. While
the equations are derived for transitions occurring at the beginning of a time step,

they can also be derived with minor changes for transitions at the end of a period.

The procedure for obtaining the breakthrough curve at a given location is
now described. Given the distance of the efluent point from the inlet, say 1 m, a
velocity of 0.1 m/day and a At of 0.1 day, the distance moved in one time unit is 0.01
m. The total number of steps required to cover a distance of 1 m is 100 space steps
and the earliest time at which a particle can reach the effluent end is 10 days or 100
time steps if it was never sorbed. For the results reported in pore volumes, 1 pore
volume (PV) equals 10 days in this example. Thus we need to calculate P,EI,Z for n=100
and values of & > 100 up to a suitably large number (kmax) where the concentration
reaches a negligible value. Starting from the boundary conditions, we can obtain Pl(,lk)
and P1(2k) for k=2 to kmax and then go through the recursion formulation for n=2 to
100, i.e. till we have reached the end of the flowpath. We have then obtained P,El,g for
n=100 and for k=100 to kmax, which describes the breakthrough curve i‘n normalized

concentration units. In the examples below we take kmax=1000.

The breakthrough curves for various different values of k; and k, are shown
in Figure 3.1. It is evident that the equilibrium condition is just an end-member

of the whole spectrum of possible breakthrough curves. As can be seen from the
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graphs, small values of k; and k,, corresponding to slow sorption/desorption rates
lead to breakthrough curves with a sharp peak followed by a long tail. As the rates
are increased and equilibrium conditions are approached, the curves have a Gaussian
shape (Note that in the seminal work of Giddings and Eyring [1955], the approach to

Gaussian shape is discussed further).
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Figure 3.1: Breakthrough curves for ky, k. varying from 0.1 and 0.02/day to 100 and
20/day obtained by recursion formulation. Note that K; =5 in all the cases, 1 Pore

volume is equivalent to 10 days.
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A novel feature of the recursion formulation is that it effectively simulates
the transport of an infinite number of particles through the ﬂowpat'h. In the tradi-
tional particle-tracking algorithm, a finite number of particles are tracked through
the flowpath in discrete steps. The resolution and smoothness of the breakthrough
curve obtained using the particle-tracking approach depends on the number of par-
ticles used. This is especially true in the case of nonequilibrium sorption, in which
case the breakthrough curves exhibit a long tail. Accurate resolution of the tail will
require a very large number of particles, and even if a large number of particles were
used, oscillations would be observed. On the other hand, the recursion formulation
is capable of resolving the tail very accurately, since it effectively simulates an infi-
nite number of particles. This feature is further illustrated in Figure 3.2, where the
breakthrough curve obtained using the recursion formulation is compared to those
obtained with particle-tracking simulations using 1000, 2000 and 5000 particles. The
k; and k. values in this case are 0.5 and 0.1/day. The other parameters are the same

as discussed above.

As expected, the breakthrough curve obtained using the recursion formu-
lation is very smooth, in contrast to the noisy behavior of the breakthrough curves
obtained with particle-tracking. In addition, the recursion formulation is computa-
tionally more efficient than direct particle-tracking. This is illustrated in Table 3.1
where a comparison of the number of operations required to obtain the breakthrough
curves in IYigure 3.2 is given. The number of operations required to obtain the break-
through curve by the recursion formulation depends on the time step chosen and the
maximum time to which we want to compute the breakthrough curve. The time
step, At will determine the number of times the recursion formulation is evaluated to

arrive at the efluent end (in our example it is 1 m). The choice of At also dictates
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the resolution of the breakthrough curve. The values of P,Ef',z, which denote the con-
centration, are obtained at a given spatial location at time intervals At units apart.
For the results presented in Table 3.1, a time step of 0.5 day and a maximum time of
250 days (25 PV) was chosen for the recursion formulation. For the particle tracking
algorithm a time step of 0.1 day was used to obtain the breakthrough curve. It is evi-
dent that there is an order of a magnitude difference in computational effort between
the recursion formulation and the particle tracking method. The superior resolution
and computational efficiency achieved with the recursion formulation are especially
important in the context of transport with spatially variable sorption kinetics, when

multiple-realization simulations are necessary for quantifying the ensemble average

behavior.

Description Number of flops
Recursion Formulation 28,406
Particle Tracking (1000 particles) 774,624

Particle Tracking (2000 particles) 1,541,241

Particle Tracking (5000 particles) 3,899,537

Table 3.1: Comparison of flops for obtaining the breakthrough curve bétween recur-

sion formulation and particle tracking. (1flop = 1 computational operation)
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3.3.1 Constant Rate Parameters: Comparison to Analytical Solution

For the constant k; and k, case, the recursion formulation presented here is
a discrete analog of the results of Giddings and Eyring [1955]. The results are shown
for the case of sorption and desorption rates of 1.0 and 0.2/day, respectively for
breakthrough obtained at a distance of 1 m from inlet, with a velocity of 0.1 m/day.
The results from the model were compared with the analytical solution obtained by
Giddings and Eyring [1955] and agreed very closely (Figure 3.3). In the recursion
formulation, a time-step of 0.1 day was used, which is about (0.1/kf). It is our
experience that with a choice of At of 0.1/k¢ to 0.5/k;, the simulated breakthrough
curves are practically identical to the analytical breakthrough curves of Giddings and

Eyring [1955].

We have developed the recursion formulation for transport of a linearly
sorbing solute where the rates of sorption and desorption, ks and k., are constant. We
have demonstrated the computational efficiency of the algorithm in comparison to
the particle tracking approach and shown that the long tail observed for kinetically
limited conditions is accurately obtained by this formulation. However, we need to
account for spatial variability of k; and k. which has been hypothesized in some other
studies [Hu et al., 1995]. Our main aim in this work is to go beyond the constant
rate coefficient case and the recursion formulation is extended below to incorporate

spatial variability in sorption rates in the next section. .

3.4 Influence of Spatially Variable Kinetics

‘The sorption phenomenon, in simplified terms, is a mass transfer mechanism

from the aqueous to the solid phase of the porous medium and is generally modeled
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as a first-order process for the linear sorption case. The actual sorption-desorption
process is much more complicated, with the rates of mass transfer between the aqueous
and the sorbed phase related to the small-scale variations in aquifer properties. The
aquifer materials may contain a wide range of particle sizes and aggregates. It was
this explicit recognition of the heterogeneity that led to extension of the one-site
model to a two-site model [Coats and Smith, 1964; Cameron and Klute, 1977] and
its variants. While these models had some success in explaining the laboratory scale
behavior [Wu and Gschwend, 1986; Ball and Roberts, 1991], they are not accurate in

predicting the breakthrough curves in a heterogeneous aquifer [Harmon et al., 1992].

In the chemical engineering literature, the effects of variability in the parti-
cle size and sorption properties on solute transport have long been known [Dougharty,
1972] and have been modeled using a transfer function approach [Villermaux, 1981,
1987, 1990]. The first-order transfer function approach has been applied in ground-
water studies of solute transport by Valocchi [1990] and Sardin et al. [1991]. This
was followed by the development of a MPNE [Brusseau et al., 1989] which consists of
three first-order mass transfer reactions operating simultaneously, two in parallel and
one in series with one of the first two. A more recent study along these lines is the
multirate model [Haggerty and Gorelick, 1995] where a series of first-order equations

are used to represent each of the mass transfer process.

We can see the increasing complexity of the models to account for the mul-
titude of the processes and scales that contribute to rate-limited mass transfer. The

variations in the rate limited behavior can be attributed to some of the following:

1. The type of minerals and their spatial distribution including the coatings on

the surfaces of the aquifer particles [Barber et al., 1992; Pignatello, 1990];
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2. The quantity and distribution of organic material [Grathwohl, 1990; Barber et
~al., 1992];

3. The chemistry of the water and contaminant [Curtis et al., 1986; Weber et al.,
1991];

4. Variations in hydraulic conductivity within the aquifer including the external
and internal geometry of low permeability materials [Quinodoz and Valocchi,

1993; Cvetkovic and Shapiro, 1990];

5. The volume, size and geometry of macro- and micro-porosity in individual grains

and aggregates of particles [Ball and Roberts, 1991; Harmon and Roberts, 1994].

The various factors which could affect mass transfer rates exhibit significant
spatial variations and it would be an extremely difficult task to be able to account for
each of the processes individually. However, all these multiple rates of mass transfer
present at the small scale significantly affect larger-scale transport [Weber et al.,

1992].

We approach this problem by assuming the rates to be a spatial random
function. This simplification allows us to retain the ease of modeling the rates as a
random variable while at the same time accounting for our imprecise knowledge of
all the small-scale processes controlling the rate limited mass transfer. We can now

develop a recursion formulation where the rates are spatially varying. -

3.4.1 Recursion Formulation with Spatially Variable Rates

The derivation of the recursion equations in the case of spatially variable

k; and k. is a simple extension of the equations 3.5 to 3.8 above. The boundary
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conditions are a little more complicated, though still similar to the conditions in
equations 3.9 through 3.13. The probabﬂities r1; and 722 now need to be replaced
by r11(n) and re(n) where n indicates spatial location. Basically, we index the

parameters starting from the influent end. Thus for £ > n,

PO = ) PY L+ Q=) PE, (3.14)
P2 = ryp(n) PO+ (1 raa(n)) PP, (3.15)

where r11(n) = 1 — kf(n) At,ro2(n) = 1 — k,(n) At. Here, ks(n) = kf(nAz) is the
sorption rate (nAz) units from the influent end, with similar indexing for the other

variables.

The boundary conditions now become

P = rp(D)ra(2).ra(n) = T2 ra(3) (3.16)
PO = 1S (6) (1 —raa(n)) (3.17)
P{Y = (1-=rn() (1) (1 - (1)), Kk >2 (3.18)
PR = ()N (1 —rm(l), k>2 (3.19)
PO = 0, k<nj=1,2 (3.20)

Breakthrough curves in a single realization of spatially variable ks and &,
can be obtained directly by using the recursion formulation. The ensemble average
breakthrough curve is readily obtained by repeating the same procedure in a number
of realizations. The direct particle tracking method would be more computationally

intensive and unless many particles were used, would exhibit more variability in the
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breakthrough curves. Illustrative computations of breakthrough curves are presented

below, for the case of spatially variable k; and k.

In the examples presented below, a Fast Fourier Transform random field
generator [Gutjahr et al., 1994] was used to generate independent realizations of k;
and k. It is also possible to generate cross-correlated random fields of k; and k. [see
Gutjahr et al., 1996] with an adaptation of this algorithm. However for simplicity,

the cross-correlated case is not included here.

For the results presented here, the recursion formulation is used to obtain
the breakthrough curves in 30 realizations . The parameters used are the length of
the column, L=1 m, velocity of the fluid, v=0.1 m/day, At=0.1 day. The covariance

function for In £; and In £, is an exponential function of the form
C(&) = o* en (3.21)

The correlation length A used for the simulations is 0.2 m. The mean values of k;
and &, are 1.0/day and 0.2/day, identical to the values of the constant rates used in

Figure 3.1(b), to facilitate comparison.

The In k7 and In k, processes are generated so as to ensure that the mean
values of kf and k, are as desired, by using the following relationships between the

statistics of lognormal and normal distributions:

eFtatf2 _ ik, (3.22)

where F and o? are respectively the mean and variance of In ks. Similar conversions

are made for k..
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In Figure 3.4 the breakthrough curve for the case of constant rates is com-
pared to the ensemble mean breakthrough curve obtained for the spatially variable
rates for a variance of 0.5 of In ks and In k.. The ensemble mean curve for the
spatially variable rates shows a small shift in the position of the peak concentration
compared to the constant rate case signifying a slight reduction in the effective re-
tardation factor. The mean curve also shows a larger spread, i.e. extensive tailing of
the breakthrough curve caused by the spatial variability of the rates. This illustrates
the importance of understanding the heterogeneity of the rates and its impact on
the breakthrough curve. Also shown in the figure are the one standard deviation
bounds on the mean breakthrough curve showing ther extent of variability among the

realizations. This point is further illustrated in the next figure.

Breakthrough curves from 5 different realizations out of 30 that were used
to calculate the ensemble mean curve in Figure 3.4 are presented in Figure 3.5. Note
that individual realizations vary significantly from the mean ensemble curve as well
as from each other. The peak concentrations (presented as normalized units relative
to the input concentration) show a wide variation from 0.044 to 0.005 and the time

of complete breakthrough ranges from 90 days to over 250 days (9 PV to 25 PV).

Going back to Figure 3.4 , we see a peak concentration in the ensemble mean
breakthrough curve of about 0.01 compared to about 0.02 for the constant rates case.
In addition, the breakthrough curve ends at about 15 PV for the constant rate case
while for the spatially variable rates it continues up to 25 PV. Also to be noted is
the greater variability in the arrival times and the peak concentration shown by the
one standard deviation bounds. At later times, the bounds are narrower. The most

important consequence of spatially variable rates, evident from Figures 3.4 and 3.5,
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is that the breakthrough curves show longer tails than in the constant rate case.

3.4.2 Comparison with an Analytical Solution for Spatially Variable K,

In the previous section, the recursion formulation was applied to situations
where the sorption and deso.rption rates were spatially variable. The sorption and
desorption rates were treated distinctly. In most applications however, it is typically
the distribution coefficient K or the retardation factor which is modeled as a random
process. An analytical solution for the mean concentration of a sorbing solute has
been developed by Chyrisokopoulos et al. [1990], using a perturbation approach. In
their analysis, equilibrium conditions were assumed for the sorbing solute and the
retardation factor was assumed to be spatially variable. An expression for the mean
concentration was developed based on a first-order perturbation analysis, in the form

of an integral which had to be evaluated numerically.

We extend their results to include the effect of sorption kinetics. Modeling
the sorption and desorption rates independently, leads to a covariance function for
K4 which is not of the exponential form. The form of the covariance function which
results from modeling the variations of ks and &, distinctly is presented in Appendix
B. This revised covariance (eqn. B8) is used in the mean concentration expression of
Chyrisokopoulos et al. [1990] and the resulting mean breakthrough curve is shown in
Figure 3.6 as CKFKR. The analytical expression for mean concentration as presented
by Chyrisokopoulos et al. [1990] for a Pe=72 is also shown in Figure 3.6 as CKD. As
a consequence of the modified covariance function, the peak concentration is shifted,
showing a slight increase in the effective retardation factor. Note however this is still

a one-parameter model consistent with essentially a single K; but one that takes into
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account a different covariance structure.
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Figure 3.6: Mean breakthrough curve for spatially varying k¢, k, (CKFKR) are com-

pared to results obtained from spatially varying K, (CKD).

We next present a comparison between the ensemble average breakthrough
curves obtained using the recursion formulation with different cases of spatially vari-
able rates. Consequently our formulation does not incorporate the influence of local
dispersion. To do the comparison, we chose a Peclet number of 72, so that the ef-
fect of local dispersion is minimized. In addition, a dimensionless parameter, the

Damkohler number is used to represent the rates. This nondimensionalization is in
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terms of a characteristic advection time. We will use Dal and Dall, Damkohler num-
ber I and Damkohler number II [Bahr and Rubin, 1987] to quantify the effect of the

sorption and desorption rates with respect to the advection time, using the following

relationship
Dal = kva (3.23)
Dall = b L (3.24)
v

Dal and Dall, the dimensionless Damkohler number I and 11, have the following phys-
ical interpretation: they are ratios of the time-scale of advection to a characteristic
reaction time-scale and small numbers represent a situation where the reaction rate is
slower than advection time whereas large Dal and Dall represent fast reaction rates

where the assumption of equilibrium sorption is applicable.

For the spatially variable rates, the mean values of k; and k., are used to
calculate Dal and Dall. Two different sets of mean ks and k, values corresponding
to mean Dal values of 170 and 1.7 and Dall values of 45 and 0.45 respectively are
chosen. The two parameters ky and &, are assumed to have an exponential covariance
structure with a variance of 0.1 and an correlation scale of 6 m. With these parameter
values, K; has a mean value of 3.8 and a variance of 0.1, identical to the values
used by Chyrisokopoulos et al. [1990]. Ensemble average breakthrough curves are
obtained based on 30 realizations for each of the two values of Dal, and are shown
in Figure 3.7. The two different breakthrough curves obtained using the recursion
formulation illustrate the effect of kinetics on transport of a sorbing solute. Note that
in the two cases presented in Figure 3.7 the mean value of K, is 3.8. For Dal=1.7, i.e.
for slow rates (ky=0.38 [1/day] and k,=0.1 [1/day]), the ensemble mean breakthrough

curve with the recursion formulation shows a smaller peak and longer tail. As Dalis
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increased to 170 (equivalent to equilibrium conditions), the mean breakthrough curve
approaches the analytical solution depicted in Figure 3.6 by CKFKR. These results
emphasize the importance of explicitly modeling the sorption and desorption rates

under kinetically limited conditions.
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Figure 3.7: Mean breakthrough curve for spatially varying k¢, k- obtained by using
the recursion formulation. Non-equilibrium conditions (small Dal) lead to a longer

tail on the breakthrough curve.
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3.4.3 Sensitivity of Breakthrough Curves to Spatially Variable Sorption
Kinetics

In this section, we examine the sensitivity of the breakthrough curves to
the mean and variance of the non-dimensional sorption rates. In the first sensitivity
study, the effect of increasing variances of both of the rates is examined. The flow
column considered in this case is 2 m long, with a flow velocity of 0.1 m/day. Two
different mean rates of 0.1/day and 50/day for &y and 0.02/day and 10/day for the
corresponding k, values were evaluated. We assume that the sorption and desorption
processes are two independent processes with the prescribed mean and variances and
an exponential correlation structure with a correlation scale of 0.2 m. The rates
chosen were such that the first set represented slow rates compared to the advection
time, and the second set fast rates (equilibrium conditions). Note that in all these
cases, the values of the distribution coefficient Ky are the same. Approaches which
assume equilibrium adsorption will predict the same behavior in all the above cases.
‘The variances of In k¢ and In k. were assumed to be the same, and we have considered

two different variance values: 0.05 and 0.5.

The ensemble average breakthrough curves corresponding to each of the two
cases are shown in Figure 3.8. The top panel presents the results for a case where the
characteristic time-scale for sorption is moderately faster than the advection time-
scale, while that for desorption is moderately slower (Dal=2, DalI=0.4)." The bottom
panel corresponds to a case where sorption-desorption rates are much faster than the
rate of advection (Dal=1000, Dall=200). For the small Dal and II represented in the
top panel, the rates of sorption are very small and most of the solute is advected out

of the column at the velocity corresponding to the non-sorbed solute, represented by
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the spike of large concentration seen in the initial section of the breakthrough curve.
There is still a small amount of solute sorbed and once sorbed it is desorbed slowly,
resulting in a very long tail extending to about 25 PV. As the variance is increased
to 0.5, the magnitude of the spike decreases and the tail extends beyond 40 PV. As
the rates are increased (Dal increases to 1000), the familiar Gaussian breakthrough

curves corresponding to equilibrium sorption are seen.

The kinetically limited sorption case leads to breakthrough curves with much
longer tails than those obtained under equilibrium conditions. This feature is of spe-
cial significance in designing remediation schemes and the duration of remedial action.
For very slow rates, the variances of the rates affects the peak concentration signifi-
cantly (the magnitude of the peak concentration decreases as the variance increases).
For the large rates equivalent to equilibrium conditions, an ihcrease in the variance
of k; and k, also leads to changes in both the peak concentration and the length of
the tail of the breakthrough curve. The time taken for complete removal of a sorbing
contaminant is about 40 PV, when the means of kf and £, are 0.1 and 0.02/day and
the variances are 0.5, compared to about 6 PV if constant rates and equilibrium con-
ditions are used. The spatial variability of sorption-desorption rates have a significant

influence even when the rates are fast.

It is also of interest to examine the relative importance of variability in sorp-
tion and desorption rates. To examine this issue we study the effect of partitioning
the variance of K, unequally between k; and k,. Note that in all the previous simu-
lations, the variances of k; and k. were equal. A number of studies have shown that
the desorption rate has a major influence on the breakthrough behavior [Pignatello

and Huang, 1991; Pignatello, 1993; Pavlostathis and Mathavan, 1992]. The sorbed
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Figure 3.8: Sensitivity study to variance of sorption and desorption rates. Dal and
Dall for the top panel is 2 and 0.4 respectively and for the bottom panél is 1000 and

200 respectively.
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mass stored in the solid phase acts like a source of contaminant which is then released
at varying rates depending on the interactions between the sorbed mass and the solid
matrix. We next study the sensitivity of the breakthrough curves to the means and

variances of the desorption rates.

For the same flow conditions as in Figure 3.9, the total variance of 1.0 of In

Ky is partitioned in three different ways:
(a‘) Ulzn kg = Ulzn Er = 0'5)
(b) ok, = 0.9 and of,,, = 0.1, and
(c) ofx, =0.1and of,, =0.9.

A total of 30 realizations were used to compute the ensemble average break-
through curves for each case (Figure 3.9). For Dal=2 (kinetically limited sorption
conditions), the variability of desorption rate has a small effect on the breakthrough
curve, both in the peak concentration which decreases and in the longer tail which
extends to about 50 PV. However, for a higher Dal value of 1000 (corresponding to
equilibrium conditions), increasing the variance of &, significantly changes the break-
through curve leading to both a reduction in the peak concentration and a longer

tail.

It is evident from Figure 3.9, that the variance of &, is the controlling factor
in the increased tailing seen in the breakthrough curve. Other sensitivity studies have
also indicated that variability in desorption rates is an important parameter to be

considered in the design of remediation studies [Haggerty and Gorelick, 1994].
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3.5 Combined Processes of Decay and Sorption

In this section we develop a semi-analytical solution for calculating the
breakthrough curve of a reactive solute undergoing decay along with sorption-desorption.
The recursion formulation previously developed to account for the kinetically limited
sorption rate parameters is extended to include decay of the solute either in the

aqueous or sorbed phase.

With this formulation we can model the biodegradation of contaminants
where the solute particles are first sorbed on a thin biofilm layer followed by trans-
formation of the solute. Once again spatial variability of the rate parameters is

incorporated as an extension of the basic model.

3.5.1 Decay of Solute in Aqueous Phase

For a number of solutes, especially radionuclides, the solute can undergo
natural decay specified by a first order rate coefficient. The decay rate, d, is easily
incorporated in our recursion formulation to obtain the breakthrough curve. Once
again we define P,S’l,)l as the probability that the solute particle starting from the
aqueous phase stays in the aqueous phase for n time st'eps and moves a distance of n
space steps. The probability for a particle to remain in aqueous phase is represented
by 711 and in the sorbed phase by 799. We similarly define 1 — ry; and 1 — 79 to
represent the transition probabilities to move to the sorbed phase and the aqueous
phase respectively: these are related to the sorption rate ky and the desorption rate

k, via
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(L—ru) = kp At (3.25)
(]. - 7'22) = k,- At (326)

As before the general notation is P,E’,ﬂ which denotes the probability that a particle
moves 0 space steps in k time steps starting from phase j, where j=1 is the aqueous
phase and j=2 is the sorbed phase. If the solute undergoes decay at a rate given by
d, then

P = rjemn st (3.27)
PE = it (=) enin® (3.28)

The agueous concentration is decaying at a rate d and the total amount of decay is
proportional to n At where At is the time interval for each step. The probabilities
P i that a particle moves one space step in k time steps starting in state j (j=1, the

aqueous state and j=2, the sorbed state are

Pl(lk) = (I-rn) 757 (L—ryp) e, k>2 (3.29)
PR = it (L—ra) e, k22 (3.30)
PY) = 0 for k<n, j=1,2 (3.31)

€

The following recursion formulations are then used to calculate P,(;J,l for any given n

ork, k>»n

P,El,g = ™ Pygl—)l,kq e 42 (1 —riy) Pnk L (3.32)

PP = 1y P 4+ (1—ry) PY D gy e7d o (3.33)
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Figure 3.10 shows the breakthrough curve obtained by the recursion formu-
lation for a solute undergoing decay at two different rates of 0.1/d and 0.05/d for a
columﬁ of length 1.0 m, constant velocity 0.1m/d and the sorption (k;) and desorp-
tion (k,) rates being 1.0/d and 0.2/d to give a K of 5. The breakthrough curve for
a solute which does not decay is also given for comparison. The figure shows that

increasing values of the decay rates cause a sharp reduction in the maximum (peak)

concentration.
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Figure 3.10: Breakthrough curves for decay rates of 0.05 and 0.1 obtained by recursion

formulation and comparison with solute undergoing no decay.
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3.5.2 Biodegradation

Biodegradation of contaminant is currently a major area of research. It is
of special significance as it provides a natural attenuation mechanism for the break-
down of toxic contaminants into less toxic or harmless byproducts by in-situ living
organisms. In addition, engineered bioremediation techniques are being used to intro-
duce specific microbes to enhance the concentration of the existing ones for efficient

cleanup processes.

A possible mechanism by which these organisms use the contaminants is the
sorption of the solute molecules into the thin biofilm surrounding the rock surfaces
[Dykaar and Kitanidis, 1996] where the solute is then broken up through enzyme
action or metabolized by the organism. We are not interested in studying the specific
mechanism of biodegradation but only present a model which allows for the removal
of the solute phase to a stationary phase (biofilm) where the degradation can occur.
We use the recursion formulation developed in the earlier section to model the effect
of biodegradation which occurs in the sorbed phase. The biodegradation process is
described both for constant and spatially varying rates. The following three scenarios

are studied.

Constant ky, k, and constant biodegradation rate, d

L3

The recursion formulation in this case of decay occurring only in the sorbed
phase which is specified in terms of a rate parameter, d leads to the following set of

recursion formulations:

PL - — e (3.34)

n,mn
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PE = it (1-rx) (3.35)
PY = (1—r)rf? (1= ryp)e 8080 > 9 (3.36)
P& = il (1—rp)et®DA f > (3.37)
PO = 0 for k<mn, j=1,2 (3.38)

The following recursion formulations are then used to calculate P, ; for any given n

ork, k>n

n, n

P“@ = Tu P(l—)l,k—l +(L—7m11) Pr(z,le):—l e~ A (3-39)

PR = rp PO e 1 (1—mp) PO, (3.40)

Figure 3.11 shows the breakthrough curve obtained for the two different
biodegradation rates of 0.1/d and 0.05/d obtained by using the above formulation.
Comparing it to Figure 3.10, the peak concentrations are substantially lower in Fig-
ure 3.11 where the decay occurs in the sorbed phase than the case where decay is
occurring in the aqueous phase. Note that the breakthrough curves for the non-zero
decay rates in the sorbed phase show an earlier peak. This can be explained by the
fact that a rapid decay in the sorbed phase will imply that a large fraction of the
breakthrough curve is due to material that is never sorbed. Considering a particle
tracking interpretation, the conditional travel time for a particle given it is not sorbed

will be substantially shorter than the one that is adsorbed. .

Spatially variable k¢, k, and constant biodegradation rate, d

The rate parameters ky and k, can be modeled as random processes; ky(z)

and k.(z), that vary in space. An alternative interpretation is that spatially variable
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Figure 3.11: Breakthrough curves for the biodegradation process for two different

€

rates of 0.05 and 0.1. The flow parameters are the same as those in Figure 3.10.
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k¢ and k, could represent variations in the thickness or areal extent of the biofilm
[Rittmann, 1993]. The issue of the continuity of the biofilm is still a matter of debate.
Some researchers are of the opinion that the microbial population forms a continuous
film [Taylor and Jaffe, 1990; Cunningham et al., 1991] while others believe that it
forms isolated patches or colonies [Vandervivere and Baveye, 92]. The recursion
formulation described in the earlier section is easily extended to account for spatial
variation of the rate parameters and to include the biodegradation process occurring

in the sorbed phase.

The mean breakthrough curve for the case of spatially variable k; and %,
is shown in Figure 3.12. A variance of 0.05 for both In kf and In &, and a constant
biodegradation rate of 0.05 are used. The two processes ky and k, are assumed to have
a exponential correlation structure with a correlation scale of 0.1 and are generated
at spatial discretization of 0.01 m to obtain 100 points over 1.0 m length. A total
of 50 individual realizations of the breakthrough curve were generated. The mean
values of k; and k, are the same as that used earlier, i.e. 1.0 and 0.2, respectively.
Spatial variability of the rates leads to a larger spread of the breakthrough curve and
the peak concentration is also reduced. Also shown are the one standard deviation

values from the mean.

Comparison of Figure 3.11 and 3.12 reveals some interesting features. The
peak concentration exits the column at about 4 pore volume showing-a small shift
from the case of constant rates. The long tail observed in Figure 3.12 shows that

solute concentration is significant even for time beyond 10 pore volumes.

Another series of simulation were run where the k; and k, were kept constant

and the decay rate was modeled as a spatially variable process with a exponential
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Figure 3.12: Mean breakthrough curve for spatially variable sorption and desorption
rates. A constant value of 0.05 is used for the biodegradation rate. Also shown as

dotted lines are the one standard deviation results from the mean breakthrough curve.
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correlation structure. Two different variances of 0.01 and 0.05 with the mean value
fixed at 0.05 did not show a large difference in the breakthrough curves. This indicated
very little sensitivity to the decay rate variations for the parameter values studied for

the given flow system.

Spatially varying ks, k- and d

In the final case all the variables (ks and &, and d) are assumed to be random
functions with a exponential covariance and correlation scale of 0.1. The breakthrough
curves are calculated for two different variances of 0.1 and 0.5 for the three processes,
ks and k, and d (Figure 3.13). The breakthrough curves are very similar to the ones
obtained in Figure 3.11 with regard to the arrival of the peak concentration. The only
difference is in the spread of the breakthrough curve, especially at the larger variance
of 0.5 which signifies that the combined effect of sorption and degradation where all

the three rates are spatially varying leads to a longer tail of the breakthrough curve.

3.6 Discussion and Conclusions

In this chapter we developed a recursion formulation for modeling transport
with linear kinetic sorption. The recursion formulation is derived from a Markov pro-
cess model of sorptive transport, previously presented by Giddings and Eyring [1955],
Andricevic and Foufoula-Georgiou [1991], and Quinodoz and Valocchi, [1993]. The
recursion formulation is relatively easy to implement and effectively mimics particle-
tracking involving an infinite number of particles. For this reason, it is very efficient

and holds promise in connection with large-scale simulations of transport involving
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kinetic sorption. Spatial variability of sorption kinetics is incorporated easily within

the recursion formulation.

Application of the recursion formulation along numerically computed stream-
tubes or pathlines enables an extension of this formulation to multidimensional trans-
port simulation. Unlike some previous streamtubes analyses [e.g. Simmons et. al.,
1995], the computational advantages and analytical simplicity of the recursion for-
mulation are not lost when the reaction rates and velocity are variable along the
streamtubes. The extension to a two-dimensional flow field is developed in Chapter
5. One limitation of the recursion formulation is that it was derived ignoring the
influence of local dispersion. This assumption is not likely to be very limiting in
the context of transport in heterogeneous media, if the small-scale variations in the

velocity field are resolved adequately.

The results of this study show that in the non-equilibrium case, the indi-
vidual rate coefficients can have an important effect on the breakthrough curve. In
particular, the slower rates of the sorption-desorption process for the case of a linear

isotherm do control the behavior of the breakthrough curve, leading to a long tail.

We have also seen that spatial variability of the rates could have a signif-
icant effect on the breakthrough curve. Recent studies based on field observations
also show that sorptive parameters are spatially variable [Robin et al., 1991]. The
spatial variability of sorption rates has a potentially important influence on field-scale

behavior.

The sensitivity studies presented here suggest that the desorption rate is the
important parameter controlling the long tail seen in the breakthrough curve. There

is a need for more field studies to assess the degree of variability of k.
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A one-dimensional model of reactive transport was developed to model the
sorption-desorption and decay of the solute, either in the aqueous phase or in the
sorbed phase. The decay in sorbed phase is used to describe the biodegradation
mechanism. Spatial variations of k; and k. are used to mimic the variability of the
biofilm as regards the lateral extent and the thickness of the biofilm. We see that
heterogeneity of k; and k, causes larger spread in the breakthrough curve. This
study suggests that characterizing the shape and aggregation of the biofilm could be

important in understanding transport of biodegradable solutes.

The one-dimensional recursion model, while appealing, is restricted to linear
sorption-desorption reactions. The recursion formulation can also be extended to
modeling multi-component transport involving linear reactions, by beginning from a

multi-state Markov process model.

Another avenue of research is for the case where sorption and desorption
rates are correlated. To handle these situations, cross- correlated k¢ and &, processes

can be jointly generated using a Fast Fourier Transform algorithm developed by

Bullard [1994] and Gutjahr et al. [1996] .



Chapter 4

Semi-Markov Models For Multple Sorption Sites

4.1 Overview

The important role of sorption processes in the transport of organic con-
taminants in subsurface systems is widely accepted. However, a consensus regarding
mechanistic characterization of these processes is lacking. In this chapter we hypoth-
esize that sorption processes are intrinsically heterogeneous in the sense that multiple
sorption sites are available to a solute. Different regions of the rock matrix may con-
tain different types, amounts and distributions of surfaces and of soil organic matter,
even at the particle scale. The physical and chemical properties of an aquifer material
can vary at scales ranging from microscopic (grains/pore scale) to macroscopic (field
scale). The impact of variations in the sorbent microscopic properties (in particular
the sorbent structure and composition) on the rate-limiting process can be signifi-
cant [Weber et al.,, 1992]. We present two formulations, a hyperexponential model
for sites which are accessed in parallel by the sorbing solute, and a gamma model
for sites which are accessed in series. Alternatively the models presented here can
be viewed as ways to study non-exponential residence times without the mechanistic

interpretation given above.

71
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4.2 Introduction

We developed a model for transport of a linearly sorbing solute in a porous
medium subject to rate-limited reactions in the last chapter. Conventional approaches
to model the kinetically limited behavior often assume an equivalent homogeneous
medium with a deterministic description of the rates for one type of sorption sites.
However, it is evident that this assumption is not valid, both at the column scale and
at the field scale. Heterogeneity at the sorbent grain scale is a major research focus,
motivated by the fact that single rate processes often fail to give a complete descrip-
tion of the sorption-desorption phenomenon in batch studies and the breakthrough
curves in column experiments. We describe such a model as a single-site model. The

recursion formulation developed in Chapter 3 is a single-site model.

A number of different models have been proposed to overcome the limita-
tions imposed by the constraints of a model which assumes a single uniform equilib-
rium or rate process. A two-site model was found to be in better agreement with
the experimental observations than a single site model by Gamerdinger et al. [1990]
and Brusseau et al. [1989]. However, recent studies [Pignatello et al., 1993] have
shown that a two-site approach often fails to predict concentration changes at long
time scales. An extension of that two-site model has been proposed which includes
a population of sorption sites to describe longer time-scale sorption behavior [Chen

and Wagenet, 1995]. .

Different mechanisms have been proposed for slow desorption. One possible
explanation is the molecular diffusion within the matrix. Wu and Gschwend [1986]
developed a diffusion model for halogenated benzenes, and Steinberg et al. [1987]

argued for a diffusion kinetics-based mechanism for desorption of 1,2-dibromomethane
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(EDB) from fumigated soils. However the effect of the structural characteristics of
the sorbent involved in slowly reversible desorption are yet to be fully understood.
While there is a thermodynamic basis for proposing an entropy-driven hydrophobic
partitioning of the sorbate into the organic phase [Chiou, 1989], others have put forth
the importance of the sorbate-surface interactions [Mingelgrin and Gerstl, 1982]. Still
another hypothesis is that sorbate molecules must diffuse through the interstitial pores
of the aggregates and that migration is retarded by rapid, “micro-scale partitioning”

between pore fluids and the pore walls [Wu and Gschwend, 1986].

Pignatello [1990] showed that residual concentrations of EDB and TCE are
higher in the samples with larger organic carbon content. Furthermore the humic ma-
terials are heterogeneous at the microscopic level, the humic polymer being denser and
more hydrophobic with distance from the aqueous-humic interface [Hayes and Himes,
1986]. Assuming that the sorbate molecule primarily interacts with the soil organic
matter and that the penetration of the organic matter is diffusion limited [Bouchard

et al, 1988] the kinetics can then be described by first-order rate coefficients.

Alternatively we can extend the recursion formulation for the single-site
case to accommodate multiple sites of sorption and desorption, and to look at the
heterogeneity in sorption sites. The term “site” does not refer to a distinct physical
point but a portion of the sorbent surface having uniform local sorption properties.
Once again, we do not distinguish among the different sorbing mechanisms, diffusion-
controlled processes and sorption kinetics. Heterogeneity in soil physical and chemical
properties that are related to rate limiting processes are variable at almost every
microscopic scale [Weber et al., 1992]. In the proposed first-order approach, these

variations are lumped into a characteristic rate for each site. In particular we use a
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Markov-process-based recursion to account for multiple sites based on the accessibility
of sites. 'The aim of this chapter is to focus on the processes occurring on a small
scale, say at the level of grain surfaces and to be able to predict the lumped behavior
that is observed for an entire column when transport experiments are conducted.
We develop a modeling framework (the hyperexponential) to study multiple sites
which are accessed in parallel by the solute present in the aqueous phase. The case of
sorption sites which are accessed in series (the gamma model) is also briefly discussed.
Finally we study the sensitivity of the breakthrough curves to the mean and variances

of the hyperexponential model.

4.3 Hyperexponential Model

A conceptual model of the multiple sorption sites with different solid phases
1s shown in Figure 4.1. We visualize a surface with patches of different mineral
compositions and other solid phase (organic carbon coating in our example) and with
desorption rates (y;) different for each of the surfaces. We consider the formulation
for a three-site process where we hypothesize that three different sorbing surfaces are
present on which the solute can be sorbed. The choice of a three-site model is for
illustrative purposes only. These sites are available in parallel and the solute can
move from one sorbed surface to another only by going back into the aqueous phase.
The time spent in each of the sorbed stages is still exponentially distributed while
the desorption rate, y; varies from site to site and the solute can be sorbed on any of
the three surfaces with a given probability, o;. The resulting sorbed time will have a
hyperexponential distribution and we term our model of sorption site heterogeneity

as the hyperexponential model.
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Figure 4.1: A conceptual model for a three-site hyperexponential model showing three
sorption sites with desorption rates of py, p2, and ps and probabilities of sorption to

each of the three sites given by o, i =1, 2, 3.
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The hyperexponential probability density function (pdf) is given by

fEmop) = Y o peth (4.1)
i=1
Yoap =1 (4.2)
i=1
The mean and variance of a m-parameter hyperexponential pdf are given
by
Mean = & (4.3)
=1 I“L?;
. 2o ™ o\
Variance = Y~ — (z —’) (4.4)
i=1 M i=1 Hi

This represents a model for sorption-desorption onto site 1 with probability
a; where the time spent in the sorbed state at each site is an exponential with a

site-dependent mean, 1/y;.

Consider again the case of linear sorption and desorption rates where the
distribution coefficient K is defined by Ky = k;/k, and where k¢ and &, are sorption
and desorption rates for the one-site model. For the multi-sorption sites, we still have
the same sorption rate, k; but the desorption rates are now designated by u;, i=1
to m. To make valid comparisons with the constant rate case, we chose the different
values of p; to be such that the mean of hyperexponential distribution (i.e. the mean
time spent in the sorbed phase) is same as 1/k, and these values are given in Table
4.1 for several cases. For linear kinetic models where the sorption-desorption process
only depends on the forward and backward rate coefficients, recursive equations can

be developed for the probability distribution of the number of time steps taken to
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Distribution Parameters Mean | Variance
Exponential k=1, k.=0.2 5] 25
Gamma 6=0.4 5 12.5
Hyperexponential | «;=0.3, 43=0.5 5 35
(Two-site) a=0.7, p1=0.159
Hyperexponential | «;=0.3, 4;=0.5 5 255
(Three-site) ap=0.6, 115=0.8
a3=0.1, p3=0.0274

Table 4.1: Parameters used for hyperexponential and gamma distribution. Means

and variances are for the desorption time.

reach the effluent end. The probability distribution of the residence time can then be

related to the concentration breakthrough curve.

We denote the status of solute as either mobile (j=1) or sorbed (j=2, 3,
4) and let P,(LJ% denote the probability that it takes k time-steps for a solute particle
to move n space steps, starting in state j. If the transition probability for solute to
remain in the aqueous phase is denoted by 711, then ry5 is the transition probability
for moving from the aqueous to sorbed phase 2. Similarly, if 79y is the transition
probability that solute initially in the sorbed phase 2 remains the sorbed phase 2,
then rg; = 1 — 199 is the transition probability for moving from the sorbed phase 2 to

the aqueous phase.
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The transition probabilities for fixed At are given by

T2 (6] k_f At + O(At) & g kf At

T21

1 — Taoa = 1 At-f'O(At) r:V-[.l»l At

(4.5)
(4.6)

in the discrete approximation adopted here. The transition probability for moving

from the aqueous state to sorbed state 1 is related to the sorption rate (k;) and the

probability that sorption is to site 1 {e;). The transition probability of moving from

sorbed state 1 to the aqueous state is the product of the desorption rate () and

the time step (At). Similar transition probabilities can be obtained for sorption and

desorption to sites 2 and 3.

Using these transition probabilities the following recursions are true, for

k> n,

1
Pélxg = T PTE—)I,k—l + 712 Pn(?k):—l +
ris Pog_y +ra B
2 2
PR = Pr(z,lg—l +ra BV, s

P3 = ry P+ PO L

PY = ru P

s n

(,213—1 + T4 P151—)1,k—1

These recursion formulas are solved with boundary conditions:

PTE,ln = Th

PE = it (1—ra)
B = 1 (1-rs)
PY = it (1-ry)

(4.7)
(4.8)
(4.9)

(4.10)
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Pl(’lk) = TiaTh Ty +

T13 r§;2 T31 + T14 TZ4_2 T4, kK> 2 (4.15)
PR = rh'(1-m), k>2 (4.16)
PY = it (1—ry), k22 (4.17)
PE = rEl(1—ry), E>2 (4.18)
PO = 0, k<nj=1,234 (4.19)

For example, the boundary condition in equation 4.15 represents the probability of
moving one space step in k time steps, starting in the aqueous state. This probability

can be obtained in three ways

1. The solute particle moves from the aqueous state to the sorbed state (2) which
is given by 712 and remains in sorbed state 2 for k-2 time steps which is given
by 75, % and then comes back to aqueous state in the kth time step given by roy;

or

2. The solute particle moves from the aqueous state to the sorbed state (3) and
remains in sorbed state 3 for k-2 time steps and then comes back to aqueous

state in the kth time step; or

3. The solute particle moves from the aqueous state to the sorbed state (4) and
remains in sorbed state 4 for k-2 time steps and then comes back to aqueous

state in the kth time step.

As all of the above events are disjoint, the final result is obtained as a sum of the

three probabilities.
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The breakthrough curve for the case of three different sorption sites can be
compared with the case of single sites for the same values of sorption and desorption
rates. The parameters used are given in Table 4.1. The choice of the parameters (y;),
i=1,3 are for the purposes of illustration only. The only restriction that we impose is
that the mean of the hyperexponential distribution be the same as that of the one-site
exponential model. We could have selected another set of parameters with the same
mean and different variance which would have resulted in a different breakthrough

curve. We postpone the discussion of the non-uniqueness issue to a later section.

The mean desorption time is 5 days for both the exponential (Markov) and
the three-site hyperexponential model. The variance for the exponential model is 25
while it is 255 for the hyperexponential model. The example shown in Figure 4.2
illustrates the long tail seen in the case of the three-site model. This kind of behavior
is typical of what has been termed to be non-equilibrium sorption phenomena (Figure

4.2).

By way of contrast, a case of two different sites is shown in Figure 4.3. In this
case the breakthrough curve shows behavior similar to the one-site Markov model.
In this case also, the mean desorption time is same (5 days) for the two models. The
variance of the two-site hyperexponential model is 35 compared to 25 for the Markov
model. The values of oz, ¢ =1, 2 and the g, are given in Table 4.1. The choice of
the values for the different parameters (u;, @;’s) were made so as to Irave the same

mean desorption time in all the different cases.

The differences in the two breakthrough curves obtained using the hyperex-
ponential model for two sites and three sites can possibly be explained on the basis

of the variances of the desorption times which are given in Table 4.1. The variance
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Figure 4.2: Breakthrough curves for a three-site hyperexponential model compared to
a single-site model for same mean &y, k. values. The variance of the hyperexponential

model is 255 compared to 25 for the exponential model.



82

0.02 T T T T

—— Hyperexponential
- — Exponential

0.018

0.018

0.014

0.012f

0.01r

Concentration

0.008-

0.006

0.004

0.002

0 50 100 150 200 250
Time

Figure 4.3: Breakthrough curves for a two-site hyperexponential model compared to
a single-site model for same mean &y, k, values. The variance of the hyperexponential

model is 35 compared to 25 for the exponential model.
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of the desorption time for the three site model is an order of magnitude higher than
the two site model and is the major factor influencing the shape of the breakthrough

curve.

In our derivation of the results above, particular reference was made to a
physical model with different sites. However the results also hold for single site models
where the residence time has the hyperexponential density given by equation 4.1,
and the “different sites” are essentially just mathematical devices to emulate the
mixed probability density given in equation 4.1. Stating it differently, the model
presented above describes the breakthrough curve for the case where the time spent
in the sorbed phase has a hyperexponential distribution. We can make the distinction
between the one-site and the multi-site model based on the assumption that the one-
site model has an exponential distribution of the sorbed time while the multi-site
has a hyperexponential distribution. If the exponential and hyperexponential can
be chosen to have the same mean, the hyperexponential will have a larger variance.
In the next section we examine a model with a variance smaller than that of the

corresponding exponential.

4.4 Gamma Model

In the discussions above, the sorption to the surface, either one site or
multiple sites was directly from the aqueous phase. However there couldebe situations
where the solute may pass through intermediary steps before being sorbed onto the
final surface. This process we term as phased sorption and we develop the recursion

formulation for this below.

Here we hypothesize a phased sorption process - sorption onto the overlying
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organic matter and then onto the mineral surface, for example. If the time spent in
both the phases are two independent identically distributed exponentials, then the

entire sorbed time has a gamma distribution.

Once again we restrict ourselves to linear sorption and desorption rates
where the distribution coefficient Ky is defined by Ky = ky/k, and where ks and k,
are sorption and desorption rates, respectively. If the solute is sorbed, the time spent
in the sorbed phase will have a gamma distribution with mean m /68, where m is the
number of possible states in the sorbing phase and 8 is the rate parameter for the
gamma distribution. Since we want the mean time in the sorbed state to be 1/k,,
the parameter ¢ for the gamma distribution is m k.. Below we assume that there are

two states; namely m is 2.

The three possible states in which the solute can reside in are designated as
1 (the aqueous state); 2 (the first sorbed state) and 3 (the second sorbed state). The
following transitions are considered: 7o, the transition from the aqueous to sorbed
state 1 which is equal to 1 — 7y1; 723. the transition from sorbed state 2 to 3 which
is equal to 1 — 735 and 73y, the transition from sorbed state 3 to the aqueous state
which is equal to 1 — rz3. It should be noted that the solute can only go to sorbed
phase 1 from the aqueous state and can enter the aqueous state from sorbed state 3

signifying a one-way street from 1 — 2 — 3 — 1.

The recursion formulation can be written as before with £ >"n,

P(llg = T Prs,l—)l,k—l + 719 P,E,z]z_l (420)
P = ™ Pr(z,zlg-l + 723 Prg?lz—l (4.21)

P& = 1y PO 4 PO, (4.22)

n
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These recursion formulas are solved with the following boundary conditions:

Pl = (4.23)
PR = it (4.24)
P = rurg, k=2 ©(4.25)
P1(1k) = 7191 T12 (Tz +723), k=3 (4.26)
Pl(,lk) = i1 Tia (T2 & Tog Tog + Tog Ta3), k=4 (4.27)
Pl(,lk) = ’”2‘:37_;2 A3 (11g To3 Tar +

;10 ri2 ), k>5,1=0k—3 (4.28)
P = rara, k=2 (4.29)
P1(2k) = (rog+rT3) 723731, k=3 (4.30)
PE = Yorura () (1Y), k=4 (@)

-
PR = Yrsralry) (57, k25 (4.32)

1=0
Pl(,3k) = T33 Ty + 7Ty T12, k=2 (4.33)
Pl(?;s) = T31(T32}3 + T g+ Te3 T12), k=3 (4.34)
P1(:2 = 7"31(ng +T§2 ria +

Ta3 T12 Taz + T3 T12 Ta3), Kk =4 (4.35)
Pl(,ak) = 7"31('r§3‘1) + 731T§2—2 T12 + T31 T23 T12 T§{3 + .

T3 Ta3 TiaThs 0, k> 6 (4.36)
P =0, k<nj=1234 (4.37)

The boundary conditions are slightly complicated to account for the transi-

tions from sorbed state 2 to 3. As an example the boundary condition in equation 4.34



86

represents the probability that a solute particle starting in the second sorbed state
(state 3) moves one space step in k=3 time steps. This can be done in the following

three possible ways:

1. The solute particle remains in state 3 for 2 time steps given by r3; and then

moves from state 3 to 1 i.e. the aqueous state;

2. The solute particle moves from the state 3 to 1 i.e. the aqueous state given by
1 — r33 where it travels one space step in a given time step; it then makes the

transition to state 2 given by 1 —ry; and then stays in state 2 given by 732; and

3. The solute particle moves from the state 3 to 1 i.e. the aqueous state given by
1 — r33 where it travels one space step in a given time step; it then makes the
transition to state 2 given by 1 — 7;; and then makes one more transition from

sate 2 to 3 given by 1 — ros.

The events are disjoint and the sum gives the final result.

‘The breakthrough curve for a gamma model is shown in Figure 4.4. The
peak concentration is slightly increased when compared to the single-site model and
the spread of the breakthrough curve is slightly decreased because the variance is

smaller than the exponential model (Table 4.1).

It appears that the mean of the different distributions contfols the peak
position while the variances control the tailing of the breakthrough curves. In all the
above cases the k, value is 0.2/day giving a mean desorption time of 5 days, with an
input velocity of 0.1 m/day; the peak is around 60 days (Figure 4.2) for a 1 m flow
length. For the three-site hyperexponential model the peak shifts to about 20 days
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which can be explained by the parameters in Table 4.1. A significant portion of the
sites (60%) had a faster rate of 0.8/day which contributed to the peak position, while
10% of the sites with a very slow rate of 0.0274/day led to the very extended tailing
seen on the breakthrough curve. This observation of the apparent non-equilibrium

effect seen for the three-site hyperexponential model is examined further in the next

section.
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Figure 4.4: Breakthrough curves for a two-site gamma model compared to the single-
site model for same mean kf, k. values. The variance of the gamma model is 12.5

compared to 25 for the exponential model.
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4.5 Sensitivity Analysis

QOur preliminary analysis shows that the the mean and the variance of the
desorption time are the two parameters which effect the shape and the peak position.
Both these parameters are lumped into one parameter, the coefficient of variation

(CV) defined as

oy - (veriance)l (4.38)

mean

For a hyperexponential random variable with the same mean as a corresponding
exponential, the variance will exceed that of the exponential. For a gamma random
variable with the same mean as an exponential the variance will be less than that of

the exponential. Specifically the CV of a m stage gamma is given by

cv = 2 (4.39)

m?

The breakthrough curve for the hyperexponential model is sensitive to both
the mean and the variance of the desorption time. However, in the cases above, the
p;'s for the desorption times for the individual sites were changing. In the next series
of simulations, the values of y; are kept same and the o;’s are gradually changed to
obtain different values of the CV (Table 4.2). The effect of the CV for the three-site
hyperexponential model is clearly observed in Figure 4.5, when the CV is increased
from 1.4 to 3.2 and the complete range of breakthrough curves is obsérved starting
with a GGaussian shaped curve to one that shows a sharp peak followed by an extended
tail. In the four simulation runs made (R1-R4) an increase in CV leads to non-

equilibrium behavior as seen in the breakthrough curves.
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| Description | ',uz Us | o1 | as | a3 | Mean | Variance | C.V.
R1 5101105030601 6.26 81.64 1.44
R2 5(01(05(05{04]0.1]| 430 62.35 | 1.84
R3 5 (01050603101 3.32 49.83 2.13
R4 210170510702 710.1] 2.34 35.38 2.54

Table 4.2: Parameters to study the effect of varying CV for a three-site hyperexpo-

nential model.

| - |
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Figure 4.5: Breakthrough curves for the three-site hyperexponential model for CV

ranging from 1.44 to 2.54.
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4.6 Non-uniqueness Issue

We used the CV for the h.yperexponential distribution to characterize the
breakthrough curves. The three-site model has five independent parameters (three
pi's and the two a;’s). There are various combinations of these parameters which
would give same mean and variances and hence the same CV. However, the break-

through curves may differ significantly between the various cases with the same CV

as we show below.

I'irst, we show the case where the mean desorption time. is kept constant (a
value of 6) but the variances differ to see whether different combinations of p; and
a; lead to significant differences in the breakthrough curve (Table 4.3). For a mean
desorption time of 6 days, the curves in Figure 4.6 show that the individual rates are
important. Three runs (CM1, CM2, and CM3) are presented with variances of 122,
79 and 78 respectively. Run CM1 which has the highest variance shows extended
tailing. Also noticeable is the bimodal peak with the contribution of the fastest site

(rate=5) and with the largest fraction of sites present (0.51).

Description | Rates o Mean | Variance | C.V.
CM1 5,.1,.05 .51, .39 | 6.002 | 122.02 | 1.84
CM2 9,.1,.5 |.33, .57 | 5.996 79.23 1.49
CM3 5,.1,1.0| .1,.57 | 6.05 78.06 1.46

constant mean of a three-site hyperexponential model.

Table 4.3: Parameters used to study the sensitivity of the breakthrough curves for a
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Figure 4.6: Breakthrough curves for the three-site hyperexponential model for same

mean but different variances.

Cases CM2 and CM3 have very similar means (5.996 and 6.05) and similar
variances (79 and 78) and show very similar breakthrough curves. The specific values
of the u;’s and «;’s are different in these two runs. One observation t0 be noted is
that the rates in the two runs (CM2 and CM3) are varying over just one order of
magnitude unlike case CM1 where the difference in the rates between the fastest and

the slowest sites is two orders of magnitude.

The last case studied was one where both the means and variances were



92

constant to see if a large contrast in rates still contributes to significant differences in
the breakthrough curves. Two runs (CONS1 and CONS2) are presented in Figure 4.7.
The parameters for these two runs are given in Table 4.4. Both the runs have the same
mean of 6 days and variances of around 122. However run CONSI1 which has rates
varying over two orders of magnitude (5 and 0.05) shows a bimodal behavior while
the other run (CONS2) which has a maximum rate difference of a factor of 5 does not
show the same behavior. This signifies that we need to consider the heterogeneity of

sites explicitly in our models to be able to predict the breakthrough behavior.

Description ~ Rates o Mean | Variance | C.V.

CONS1 9, 0.1, 0.05 0.51,0.39 | 6.002 | 122.02 | 1.84

CONS2 | 0.29, 0.04, 0.05 | 0.87, 0.08 | 6.001 | 124.69 | 1.86

Table 4.4: Parameters used to study the sensitivity of the breakthrough curves for

constant mean and variance of a three-site hyperexponential model.

4.7 Discussion and Conclusions

Partitioning of nonionic organic compounds due to sorption between the
aqueous and the solid phases has been observed to be incompletely rf:versible and
to exhibit non-equilibrium behavior. Slow desorption behavior has been noted for
several types of compounds, e.g. pesticides, phenols, halogenated aliphatic hydro-
carbons, chlorinated benzenes, and polynuclear aromatic hydrocarbons [Pignatello,

1989, 1990].

We have shown that, for the case of sorbing molecules exhibiting a wide
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range of desorption rates, that a semi-Markov model can be used to predict the
breakthrough curves. The hyperexponential model presented for two and three sites
shows that explicitly modeling the presence of different types of sorption sites can
lead to a breakthrough curve which shows behavior similar to kinetically limited
sorption models. This may also provide a model to account for heterogeneity of sites
that are available for sorption. In addition, the effect of aging of the soils can be
modeled by varying the proportion of different surfaces which are participating in the
sorption processes. This mode] thus provides a very elementary but a mechanistically-
based approach to study and model some of the time-dependent sorption phenomena

observed for pesticides in soils.

We have studied the sensitivity of the breakthrough curves to the means
and variances of the three-site hyperexponential model. While we were able to show
the effect of CV on the breakthrough curve, the non-uniqueness of the parameters
remained an issue. Our results indicate that a complete evaluation of all the specific
sorption sites are required to be able to use the semi-Markov models, specifically
when the multiple sorption sites have rates that vary over two to three orders of
magnitude. For porus medium with similar rates of desorption, modeling in terms of

CV may suflice.



Chapter 5

A Streamline Simulator For Field-Scale Transport

5.1 Overview

We present a two-dimensional field scale simulator for modeling transport of
sorbing solutes characterized by linear kinetic rates of sorption and desorption. Our
method involves applying a one-dimensional semi-analytical reactive transport solu-
tion along each streamline to account for a varying velocity field as well as spatially
varying rates. This approach captures the tails on the breakthrough curve which is
a major advantage when compared to other numerical methods used for modeling
non-equilibrium transport. An application of the method to transport of PCE at a
field similar to the Borden site experiment [Roberts et al., 1986] illustrates several
important features about plume shape, particularly the highly heterogeneous and ir-
regular pattern of the aqueous concentration distribution. We study (1) the effect
of spatially varying sorption-desorption rates (ky and &,) and the mean rates (sen-
sitivity of aqueous concentration distribution to mean rates varied ovér two orders
of magnitude); (2) the effect of varying correlation between In K and In K; and (3)
the effect of initial plume size. Sensitivity to the various parameters is studied by

analyzing the first three spatial moments.

95
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5.2 Introduction

In Chapter 1 we discussed the complexity of modeling the wide variety of
interactions that occur at the rock-water interface. However, we are often interested
in studying a particular process, e.g. transport of a sorbing solute under natural
gradient conditions. We develop a simpler conceptual model of the problem and define
the problem in a more precise mathematical form which (under various assumptions
of the injtial and boundary conditions) can be solved analytically or numerically.
Groundwater flow and transport simulations are used for a number of purposes: as
a modeling tool to study the various processes affecting the solute movement, as
a calibration tool to obtain estimates of parameters such as dispersion coefficients,
retardation factors, etc., in an inverse modeling sense, and perhaps most widely as a

predictive tool for assessing alternative remediation designs.

These simulators involve discretization of the spatial domain of the study
area and use finite-difference, finite elements, mixed boundary element, and other
numerical schemes with the appropriate boundary and initial conditions (Anderson
and Woessner [1992] and Zheng and Bennet [1996]). The starting point for all these
models is the advection-dispersion equation defined for a representative elementary
volume (REV) which is then solved numerically. We present an alternative scheme
for modeling solute transport in a two-dimensional flow field based on the recursion
formulation developed for_ one-dimensional flow presented in Chapter 3.<In particular
the focus is on developing a fast and efficient algorithm for modeling transport of
a linearly sorbing solute undergoing kinetic sorption. The rates of adsorption and
desorption, denoted by k; and k;, are spatially variable. We will use the Lagrangian

approach in order to develop a fleld-scale simulator to study the interactions of a
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linearly sorbing solute along a streamline.

5.3 Reactive Transport for a Linearly Sorbing Solute

The transport of organic solutes at the field scale has been investigated for
several decades. Understanding the role of the various mechanisms and verification
of the analytical results developed for a linearly sorbing solute at equilibrium condi-
tions has been a major focus of these experiments. The results of a field experiment
[Roberts et al., 1986] conducted at the Canadian Air Forces Base, Borden, Ontario,
Canada (henceforth referred to as the Borden site) show that the retardation factor
(R) for nonpolar organic solute increases with time (or displacement). The field re-
sults further indicate that the solute may incur enhanced spreading. The increase
in the bulk retardation factor seen at the Borden site field is not observed in simple

| laboratory column experiments for solutes exhibiting linear equilibrium sorption.

The increase in the observed R with time has led to several diverse theories

to explain this anamolous behavior. These can be briefly categorized as follows:

1. several types of rate-limited sorption may be the primary controlling mechanism
including intra-particle mass transfer limitations [Goltz and Roberts, 1988, and
Burr et al., 1994]; soil surface reaction kinetics [Burr et. al., 1994, Cvetkovic
and Dagan, 1994, Ptacek and Gilham, 1992]; and a combination of the two

above [Brusseau, 1992];

2. spatial variability of the soil sorption distribution coefficient (Kj) correlated
with variations of the hydraulic conductivity [Burr et al., 1994] may lead to an

increase in R with time.
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Using the concept of immobile water, which is present in the microscopic
fractures and dead ends of the solid phase, it has been postulated that intra-particle
diffusion will be the controlling mechanism for a rate-limited sorption process [Roberts
et al., 1986; Goltz and Roberts, 1986, 1988; Ball et al., 1990; Wood et al., 1990; Ball
and Roberts, 1991]. Theoretical analyses by Kabala and Sposito [1991] showed that an
increasingly negative cross correlation between spatially varying K and K4 can lead to
an R increasing with time. However Dagan [1989] suggests that if the cross correlation
between the two parameters is constant with time, then the bulk R is also a constant
and its value is a function of the degree and type of cross correlation. Kabala and
Sposito [1991] and Dagan [1989] showed that for a decaying solute undergoing first-
order decay with spatially varying decay coefficient, the retardation factor can show
a time-dependent behavior. Thus a number of possible mechanisms can contribute

to the temporal behavior of R.

Increased dispersion, especially in the direction of the mean groundwater
flow for a reactive solute, based on another field experiment conducted at Cape Cod
Site [LeBlanc et al., 1991], was larger than that of a non-reactive solute after the
plumes in both the cases have traveled an equivalent distance [Garabedian, 1987].
The cause of this enhanced dispersion is attributed to the spatial variability of the
solute velocity and the interaction with the heterogeneous sorption parameter fields
[Hu et al., 1995]. A number of results based on stochastic-analytic techniques have
been developed to relate macrodispersion to field scale flow, based on simple linear
correlation between the spatially variable hydraulic conductivity and retardation fac-
tor (R) or distribution coefficient (X4). Numerical evaluation of these theories have
been done in studies conducted by Graham and McLaughlin [1989a}, Quinodoz and
Valocchi [1990], and Bellin et al. [1992] in two-dimensions and by Robin [1991] and
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Burr et al. {1994] in three dimensions.

In the previous chapters we developed a recursion formulation for the trans-
port of a sorbing solute with spatially varying rates. This formulation is used to
extend the semi-analytical solution developed in one-dimension to a two-dimensional

problem.

5.4 Development of a Streamline Simulator

We present a streamline-based algorithm to model reactive transport where
the spatial heterogeneity of both the hydraulic conductivity field and the sorption
parameters are incorporated. This work extends the results of Burr et al., [1994]
where the kinetic sorption rates were constant. The use of streamlines to model areal
flow has been quite prevalent in hydrology [Daus and Frind, 1985; Burnett and Frind,
1987; Matanga, 1988, 1993, 1996} and petroleum engineering [Martin and Wegner,
1979; Lake et al., 1981; Hewett and Behrens, 1991]. These models have been applied
to water-flooding and miscible displacements in two and three dimensions [Thiele et

al., 1996].

The advantages of using the streamline approach are

1. there is no restriction on the time-step size as is the case with finite-difference

simulators which must be dictated by Courant number; and

2. grid orientation effects are minimized.

The governing flow equations used to define the streamfunctions are first

developed. The procedure for defining streamlines based on the streamfunction is
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then described. The recursion formulation which describes the transport of kinetically
limited sorbing solute is presented after that and is used to obtain the plume position
at different times for a setting similar to the Borden site. The different spatial moment
estimators are obtained from the concentration field and these moments are used for
comparisons with the field data, other theoretical results and for studying field-scale

migration of the sorbing plume.

5.4.1 Flow Problem

The governing flow equation for steady-state fluid flow in a saturated, rigid

two-dimensional porous media is given by

; o gi(z) =0 (5.1)

where x is the spatial coordinate vector x=(z1, z3). The flow field considered is a
two dimensional system with prescribed heads on the two sides and no-flux on the

other two sides.

For a two-dimensional field with steady-state conditions, we can define a
streamline to be the curve everywhere tangent to the velocity field. This can be
expressed using the cross product of the specific discharge (q) and an incremental

distance (dr) as

gxdr = 0 (5.2)
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In two dimensions this implies

q,dz —g.dy = 0 (5.3)

The streamlines can be computed directly by means of streamfunctions.
Plots of streamlines and equipotential lines are called Hownets and are used in cal-
culating flux through the system. This method assumes no distributed sources or
sinks. Two adjacent streamlines form a streamtube; for steady-state flow, the flux
through the streamtube is constant. Flownets for anisotropic and heterogeneous me-
dia may be constructed more easily by generating equipotential lines and streamlines
numerically. We briefly outline the numerical procedure used to generate these two

functions.

The streamfunction is analogous to the equipotential function and is ob-

tained from equation 5.3 by noting that

o, o

dy = axdx—}- 3ydy (5.4)
_ 9y

gz = 8—7; (5.5)
o

gy = oz (5.6)

The units of the streamfunction are L2/T. A streamtube is the region between two
adjacent streamlines with streamfunction values ¥ and 1 + At (the flux through the
streamtube is equal to Aty). We can solve for the streamfunctions directly by writing

[Bear, 1972]
Vxg/K = 0 (5.7)

and substituting for q from equation 5.3 to give

@ 19p 9 18y

6x(Fy%) + %(Ea) = (5.8)
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The above equation is similar in form to the governing equation for two- dimensional

steady-state flow with hydraulic head as the dependent variable:

S oL = 0 (5:9)
The similar forms of equation 5.8 and equation 5.9 allows us to use standard finite-
difference flow codes to solve for h to calculate streamfunctions by replacing K, with
1/K, and K, with 1/K; and some modifications to the boundary conditions [see
Bramlet and Borden, 1990 and Fogg and Senger, 1985 for details|.

The streamfunction field is contoured to give the position of the paths along
which a solute particle injected at the upstream end will move through the field.
Fluxes in streamtubes are calculated directly from the streamfunction solution. The

linear velocity can also be calculated from the streamfunction solution as follows:

Ay
V= A (5.10)

where n. is the effective porosity and As is the distance between two streamlines.
These velocities are the inputs for the solute transport model, in which the recursion

formulation is applied along different streamlines.

5.4.2 Outline of the Algorithm

3

For the cases examined here the conductivity, K(x) and the rates ks(x) and
k-(x) are considered to be random fields. In the simulations these are generated as
log-normal random fields with a prescribed mean and a given covariance structure

with a Fast Fourier Transform method [Gutjahr, 1989].

A brief description of the different steps of the simulation follow.
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1. We generate a hydraulic conductivity or transmissivity field using a random

field generator.
2. We solve equation 5.8 using a finite-difference formulation as outlined above.

3. The next step is to model the transport of solutes that undergo kinetically
limited linear sorption. We solve the recursion formulation along each streamline

to get the breakthrough curves.

P& = ra(n) PO+ (L= () PE, (5.11)

BE = rp(n) PO+ (1 =) PY (5.12)

7,

The symbols have the same meaning as discussed in Chapter 3. The one-
dimensional transport solution for the adsorbing solute is applied to each of the
streamlines to obtain the concentration distribution at any given time for each

of the streamlines.

4. Each streamtube is bounded by two adjacent streamlines. The flux of water
through any streamtube section is determined by the difference in the values of
the two streamfunctions difference in the two values of the streamfunctions. The
streamtube velocity is calculated at each position where the the concentration
is to be evaluated by the recursion formulation. The recursion formulation gives
a variable velocity simulation in each tube, assuming a uniform cross-sectional
area. The variation in the cross-sectional area along a streamtube is shown
schematically in Figure 5.1. The concentration obtained from the recursion
formulation is weighted by the product of velocity and cross-sectional area at
each location. This weighting takes into account the variable cross-sectional

area.
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Figure 5.1: Schematic representation of a streamline within a streamtube.
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5. The concentration distribution is contoured across the flow domain to give the

plume position at the given time.

6. The various spatial moments are evaluated as discussed in a later section.

This algorithm is applied to a field-scale test conducted at the Borden site [Mackay
et al, 1986; Freyberg, 1986; Roberts et al., 1986; Curtis et al, 1986; Sudicky, 1986]
where detailed spatial monitoring of reactive and non-reactive solutes was conducted
over a period of more than two years as mentioned above. One of the main features

evident in the field data is the increase of the bulk retardation factor (R) with time.

5.4.3 Description of the Flow Field

We consider a steady state two-dimensional flow field governed by the flow
equation 5.1. The hydraulic conductivity field is assumed to be a heterogeneous field
with a prescribed covariance structure. We use an exponential covariance function
given by

2
h1

&
Tt %

C¢h) = 0? exp|—( 2

+ 5y (5.13)

where hy, ho are the lags in the z;,z, directions, A;, Ay are the correlation length
scales of In[K(x)], and ¢} is the variance of In[K(x)]. We assume that the field is
isotropic with A; = Ay = 5.2 m, a}: 0.29 and a geometric mean of K e;qual to 6.182
m/d. These values are similar to those reported by Woodbury and Sudicky [1991]

and were used by Burr et al. [1994] in their three-dimensional simulations.

Five realizations of spatially correlated random log hydraulic conductivity

fields using the FFT algorithm [Gutjahr, 1989] were generated (Table 5.1). The field
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generated has 128x128 nodes with a grid spacing of 56 cm in both the directions and
approximately 10 points per correlation length for a square field of 14 correlation
lengths. One such realization of the In[K(x)] field is shown in Figure 5.2. The z; axis
is aligned with the mean flow direction while z, is horizontally transverse to it. A
fixed hydraulic head of 30.8224 ¢cm on one end and 0 at the other end was imposed to
produce an average hydraulic gradient of 0.0043 in the z; direction while the other

two boundaries were no-flow boundaries.

Description Value Remarks
Covariance Exponential Isotropic
Variance 0.29 : o}
Mean K 6.182 m/day Geometric Mean
Corr. Length 5.2 m A=Ay
Field Size 128 x 128 approx. 14 corr. lengths
Grid Spacing 56 cm Az=Ay
Fixed Head | 30.8224 and 0 cm | Hydraulic Gradient=0.0043
Mean velocity 0.089 m/day Orientation yl direction

Table 5.1: Flow Field Simulation Parameters

The random field generated was used as the input to a finite-difference flow
simulator that calculated the head field as well as the streamfunctions solution. Figure
5.3 shows the streamfunctions solution corresponding to the hydraulic conductivity

field shown in Figure 5.2.
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Figure 5.2: Perturbations of the hydraulic conductivity field (f) generated as a log-

normal field with E(f)=0 by FFT method (Table 5.1).
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5.4.4 Modeling Reactive Transport

The streamlines obtained from the steady-state solution to the flow problem
determine the paths taken by the solute particles through the flow domain. Our
approach is to use these streamlines to obtain the concentration distribution at any
given time. The one-dimensional solution for kinetically limited sorption-desorption

where the rates are spatially varying was developed in Chapter 3.

The concentration profile along each streamline is obtained for a given time
using the algorithm outlined above. If we look at the streamline positions in Fig-
ure 5.3, we see that the streamlines converge in regions of high conductivity and
diverge in areas where the conductivity is low. We take into account the varying
fluxes across different regions by assuming the boundaries of two adjacent stream-
lines form a streamtube with varying cross-section and the flux is calculated by the
product of velocity and the cross-sectional area, both of which vary with position.

Accounting for this varying flux allows the model to preserve mass.

For the example considered here, we investigate the movement of a PCE
plume as it is advected by the groundwater. In particular we focus our attention on

the following:
1. The effect of rates of sorption and desorption;

2. The effect of different correlation between In K and In Ky, e.g. perfect correla-

tion, either positive or negative, or partial correlation.
3. The effect of initial plume size.

The tools that we employ for studying these various factors and parameters are the

spatial moments of concentrations. The first, second and third spatial moments of
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the plume concentration are examined as they change temporally and compared with

results based on field observations.

5.4.5 Transport Simulation Parameters

In the initial set of runs, In K and In K; are independent of each other,
although both vary spatially with prescribed covariance functions. Spatial variability
of K4 has been observed in the field; however, the nature of correlation between K
and Ky is still a matter of debate. In later runs the In K;’s are generated with various
degrees of correlation with In K; the kinetically limited case where K is considered
to be split up into two independent processes ks and k, with either equal or unequal
variances is also treated. The input variance of In [Kj] was chosen to be 0.52, the input
geometric mean of K; was 0.526 mL/g, and the correlation length scale for spatially
varying K4 was 5.2 m, equal to that of the In K field. Tables 5.2 and 5.3 give details

of all the various simulation runs with the values of the different parameters used.

For the non-equilibrium case, the desorption rate, &, was obtained by using
the empirical relationship between Ky and &, developed by Brusseau and Rao [1989b]
for a broad spectrum of nonpolar hydrophobic organic chemicals exhibiting non-

equilibrium sorption on various natural sorbents:

logk, = 0.301 —0.668 log K, (5.14)

These values are similar to those used by Burr et al. [1994] in their simu-
lation of the Borden aquifer. However, unlike their simulations which are based on

a constant value of kinetic rate parameter, we allow for spatial variability of the k;
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and k,. We include one case in which the rates are kept constant [case CONS in
Table 5.2]. The simulations were run for 650 days, the time period during which field
observations were made, so that the results could be compared to data from the tracer
test. For each realization, the spatial moments (Appendix D) are obtained from nu-
merically simulated aqueous concentration. The plume dispersion is calculated for

each realization with respect to the centroid of the plume for that realization.

Case | Mean ky | Mean k, | Variance | Source

1/day 1/day k¢ k| Size (m)

CONS 2.412 0.67 - 6.0

FAST 2.412 0.67 0.26, 0.26 6.0

SLOW | 0.2412 0.067 | 0.26, 0.26 6.0

DVAR | 2412 0.67 0.13, 0.39 6.0

LRGS 2.412 0.67 0.26, 0.26 10.5

SMLS 2.412 0.67 0.26, 0.26 2.5

Table 5.2: Parameters for (a) varying rates and (b) varying source sizes. The rates are
generated as log-normal random variables with an exponential correlation structure,
and correlation length of 5.2 m. The spatially varying rates are two individual SRFs,
each independent of In K and of each other.

The k; and k, fields were generated as a log-normal field with an exponential

correlation structure of correlation length 5.2 m. For the case where In K and In K,
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Case Mean | Variance | Corr. | Source
K, p | Size (m)
KDSRF | -0.6425 0.52 0 6.0
NCOR1 | -0.6425 0.52 -1 6.0

NCRPS | -0.6425 0.52 -0.5 6.0

PCORI1 | -0.6425 0.52 1 6.0

PCRP5 | -0.6425 0.52 0.5 6.0

Table 5.3: Parameters for varying correlation between In K and In K.
are correlated, the model used is

InKy; = alnK+b (5.15)

The values of a and b are obtained by using the appropriate means and variances of
In K and In Ky4. The mean of In K used is -4.83 and variance of In K is 0.29. The
mean of In Ky used is -0.6425 and a variance of In Ky of 0.52 (Table 5.3). These are

the values also used by Burr et al. [1994] in their simulations.

5.5 Modeling PCE Plume Migration

We would like to emphasize that all the parameters used for the simulation
runs are obtained from previous studies [Roberts et al., 1986; Woobury and Sudicky,
1991; Burr et al., 1994]. The only difference (which we will show is significant) is the

spatial variability of the sorption-desorption rates.
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The base case for all simulations is the case where the k; and k, fields are
generated as two separate parameters and is referred to as case FAST in Table 5.2.
The fates are fast enough so that equilibrium conditions are approached. In this case
the sorption and desorption rates are generated as two independent processes with
an exponential correlation structure of correlation length 5.2 m each with a variance

of 0.26. By independence the variance of In Kj is then 0.52 [Burr et al., 1994].

For each realization of the K field, the flow field was solved and the plume
position evaluated at 15, 30, 85, 250, 400, and 650 days. The plume position at 250
days is given in Figure 5.4. The model parameters for this simulation correspond to
case FAST. The following are some interesting features of the aqueous concentration

distribution observed in Figure 5.4:

1. The aqueous concentration distribution shows an irregular pattern.

2. The peak concentration does not correspond to the center of the plume. The
centroid co-ordinates at time equal to 250 days are 5.36 m along the flow direc-

tion and 3.71 m in the transverse direction.

3. The highly irregular pattern of concentration distribution with a number of
local maxima or “hot spots” is similar to the spatial distribution observed in

the Borden field and elsewhere [Roberts et al., 1986; LeBlanc et al., 1991].

4. The simulation results which represent individual realizations are a better rep-
resentation of the subsurface concentration than other methods which predict

the mean concentration [Hu et al., 1997].

While a study of the individual realizations provides information about the

interactions between the spatially varying rates and the velocity field, we can also
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Figure 5.4: Aqueous concentration distribution for the PCE plume for case FAST

after 250 days, realization number 5.
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study the various spatial moments that provide summary statistics for the plume.
The spatial moments are also a useful bulk measure of transport phenomena. An-
other motivation for calculating the various spatial moments is that most of the
stochastic analysis results are in the form of expressions for the various moments and
a comparison of the spatial moments computed from the numerical simulations with
the analytical results provides a means to test the assumptions and the simplifications
used in the stochastic analysis. It should be noted that in the discussions below, the

spatial moment results are the averages of five realizations.

Details of the spatial moments analysis developed by Dagan and Cvetkovic
[1993] using a Lagrangian approach are presented in Appendix F. Their analysis
assumed a constant Ky. An alternative derivation for the first three spatial moments
is presented in Appendix F. We note the equivalence in the definition of ¥ from Dagan
and Cvetkovic [1993] with P,E,I) of our recursion formulation. Both of these terms give
the spatial distribution of a linearly sorbing solute along a streamline at a given
time. While the expression for 7y is evaluated for constant rates, we can generalize
the results for the spatially varying rates by replacing v with P,El,g and evaluating the
I';, 1=10,1,2 (see Appendix F for an explanation of the term) to obtain the various

moments.
In this work we evaluated the first three spatial moments and used the

results to study .

1. The displacement of the centroid with time. The first moment results are also

used to calculate the retardation factor of the bulk plume.

2. The second moment or the spread of the plume. In particular we look at the

longitudinal second moment.
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3. The third moment which is used to evaluate the skewness coefficient of the

plume.

5.6 Analysis of Centroid Displacement

The bulk velocity of a reactive plume and hence its displacement, is less than
that for a non-reactive solute because the solute partitions onto the solid phase of the
aquifer material. This reduction of the reactive solute plume displacement is referred
to as retardation. Much interest has focused on the apparent time dependence of
the retardation factor of the reactive solutes as seen in the field-scale experiment
performed at the Borden site [Roberts et al., 1986]. We will examine some of the

scenarios discussed earlier and study the temporal behavior of R.

The simulated plume centroid, X is plotted in Figure 5.5 and compared
to the first moment estimated by Roberts et al. [1986] from the field data. The fit
is remarkable, especially since the parameters used for the simulation (case FAST)
were based on previous studies and not adjusted. In this and some of the following
plots we also show the predicted behavior for the case of constant rates (CONST, see

Table 5.2), as a control.

An interesting feature observed for PCE simulation is an overall slowing
down of the bulk plume displacement with time, due to a slight decreage in the bulk
solute velocity. In contrast, some analytical results based on Eulerian and Lagrangian
analyses that assume constant K, but spatially varying velocities are not able to pre-
dict the field-scale based time-dependent behavior [Dagan and Cvetkovic, 1993, Hu
et al., 1995). It may be noted that recently some work done by Miralles-Wilhelm and
Gelhar [1996] and Rajaram [1997] showed time-dependent behavior for R. The ana-
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Figure 5.5: Position of the centroid of the plume. The analytical solution corre-
sponds to results of Dagan and Cvetkovic [1993]. The field-based estimates of the

first moment are obtained from Roberts et al. [1986].
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lytical results [Dagan and Cvetkovic, 1993] for the same parameters are also shown in
Figure 5.5 and show that the assumption of constant K; does not accurately capture
all the subtleties of the time-dependent behavior of the centroid displacement. Burr
et al. [1994] and Hu et al. [1995] both have postulated the presence of an “unde-
fined nonlinear time dependency” and “possible non-linear interactions between the
spatially varying velocity field and the kinetically limited rates” to explain the time
dependency observed in the field. Explicit modeling of the sorption and desorption
rates would appear to provide a very good description of the phenomena controlling
the contaminant transport. This is a relatively simple explanation in contrast to the

postulation of the more complex non-linear time dependence discussed above.

It should be noted that Burr et al. [1994] performed a series of simulations
based upon a three-dimensional form of the advection dispersion equation incorporat-
ing the multiprocess nonequilibrium (MPNE) model [Bruesseau et al., 1989; Therrien

et al., 1990]. They studied two different forms of first-order mass transfer reactions:

1. Inclusion of a mass transfer coefficient representing solute diffusion between the

mobile and immobile fluid zones, and

2. A first-order kinetic reaction reaction rate.

In above studies [Burr et al., 1994], both these parameters were kept constant. For
their studies the results for centroid displacement showed that the process of intra-
particle diffusion caused very little change to the time displacement curve for the

duration of the simulation experiment.
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5.7 Analysis of Retardation Factor

The study of time-varying R was motivated by the conclusions reached by
Burr et al. [1994] who found that the early time R is the harmonic mean of the
spatially varying R into which the initial plume is injected. At later time, after the
plume has grown in size to encompass several horizontal length scales, the ensemble
mean R is closer to the arithmetic mean R. This is the bulk estimate suggested by
Garabedian [1987] based on his stochastic-analytic treatment of the linear equilibrium
sorptive transport problem. However, Dagan [1989] found that the bulk R can differ
from arithmetic mean if linear cross correlation between the local R and In K is

included.

The centroid displacement is a measure of the bulk plume movement and
is used to calculate the retardation factor (see Burr et al., 1994 for an alternative
definition of R in terms of the mean velocity of the reactive and non-reactive solutes).
In our simulations, the nonreactive tracer is assumed to be moving at a constant
velocity of 0.089 m/day based on observation of the chloride and bromide plumes
[Roberts et al., 1986]. We next report R values for the various runs discussed in

Table 5.2 and 5.3.

Varying Rates
As discussed above, the simple equilibrium model with spatially varying ks and k,
gives a good description of the centroid position and the resulting retardation factor.
In Figure 5.6 we present additional results showing the sensitivity of R to hypotheses

about the k¢ and &, processes:

1. Case FAST : Equilibrium conditions (shown above).
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2. Case DVAR: The variance of k; is higher than that of k;. The total variance of
In K; was split into one-third and two-thirds for In k; and In k., respectively.
This simulation was motivated by our one-dimensional simulation studies where

the BTC was shown to be sensitive to the variance of k,.

3. Case SLOW : In order to study the effect of kinetically limited sorption, mean
k; and k, were reduced below the values used in case FAST. For slow sorption

the mean rates were 0.246/day and 0.067/day with variances of 0.26 each.

All three cases (Figure 5.6), show the retardation factor R increasing with
time. The FAST case most closely matches the rétardation estimates based on field
observations. The plots in the figure are for averages of the retardation calculated
for each of five realizations and are based on travel distances. The same behavior
was observed in each of the individual realizations. This result stands in contrast of
Burr et al.’s [1994] results, which show erratic behavior from realization to realization.
Even their ensemble behavior showed only a very mild increase in R unlike the field

observations where R increased from about 3 to 6 over a 650 day period.

The case of spatially varying rates with unequal variance (DVAR) shows
that R changes with time and is similar to the trend of the field observations. The
slower rates of sorption-desorption (SLOW) lead to R changing much more slowly.
Similar results were also observed by Burr et al. [1994] but they only reported centroid
displacement with time for a case where k,=0.001/day. A fourth simulation where
the rates were reduced still further (k,=0.0067 /day) was also studied. However the
results of this run were similar to SLOW and so are not reported here. Both slow
rate cases showed a much smaller change in R. It did not reach an asymptote even

after 650 days (Figure 5.6).
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Varying Correlation Between K and K,
Cross-correlation of K and K has been invoked in a number of studies involving
reacﬁve transport of a sorbing solute [Kabala and Sposito, 1991, Dagan, 1989]. Burr
et al. [1994] used a perfect negative cross-correlation between In K and In K, for
their detailed three-dimensional simulations of PCE plume. We also ran a series of
simnulations where different cross-correlations were assumed between In K and In K,

(Table 5.3). These cases are

1. Case KDSRF: p(Ln K4, Ln K) = 0.

2. Case NCOR1: p(Ln Ky, Ln K) = -1.0.
3. Case NCRPS5: p(Ln K4, Ln K) = -0.5.
4, Case PCORL: p(Ln Ky, Ln K) = 1.0.

5. Case PCRP3: p(Ln Ky, Ln K) = 0.5.

The case KDSRF' assumes that the In K and In K fields are not correlated
with each other. However, we would like to point out that this case is different from
case FAST, SLOW or DVAR with respect to the procedure for obtaining the sorption
and desorption rates. In the case of KDSRF, the K, field is generated as a log-
normal field with a given mean and an exponential correlation structure from which
the rates are obtained using the relationship. given in equation 5.14. This is slightly
different from the other cases where the two rates are generated independently of each
other (see Chapter 3 for additional discussion). In the case of KDSRF, the rates are

negatively correlated as shown below.

log Kg = logks—logk, (5.16)
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log Ky = —1.409 log k, + 0.4506 (5.17)
logks = log Kq+logk, (5.18)
= —1.409 log k, + 0.4506 + log k. (5.19)
= —0.409 log k, + 0.45 (5.20)

Sorption parameters that are spatially varying but not strongly correlated to hy-
draulic conductivity have been independently confirmed in the field study of Robin
et al. [1991] who found either a weak negative correlation or no correlation between
In K and In K, for strontium for the Borden site. Comparison of R from the runs
where different correlations between In K and In Kj were postulated showed that
the perfectly negative correlation (NCOR) and negative correlation of 0.5 (NCRP5)
provided a bound to the time varying R (Figure 5.7). The case where In K; was
generated as an independent random field (KDSRF) is also presented. These obser-
vations based on matching R with time show that modeling K; as an independent
process uncorrelated with K is an adequate assumption for these simulations. How-
ever, none of these simulations provided as good a fit to the observed field data as
the FAST case where the rates were generated as two independent spatially varying
fields. The positive correlation cases (PCOR1 and PCRP5) both did not show a good
match with the data and are presented in Appendix E.

Effect of Source Size
The next series of simulations were run to study the effect of the source size on the

bulk retardation factor. Three different runs are discussed below:

1. Case FAST where the source size is 6 m, the same as used in the Borden field

site study, and about the same correlation length used for In K, In kf and In k..
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2. Case LRGS, where the source size is 10.5 m which is about twice the correlation

length of the In K field; and

3. Case SMLS, where the source size is 2.5 m, about half the correlation length of
the In K field.

The individual parameters for the three cases are given in Table 5.2 and R as a
function of time is shown in Figure 5.8. The two largest source (FAST and LRGS)
show a trend like that observed in the field. Retardation for the smaller source
(SMLS) grows significantly faster, perhaps because of insufficient sampling of the

heterogeneities by the initial plume.

Using theoretical results of Dagan [1989], Burr et al. [1994] calculated a
mean R of 4.55 which differs from their value of 4.48 for the equilibrium case. We
have shown that bulk R temporal behavior can be easily explained by modeling the
sorption and desorption rates as two independent processes. A review of the various
runs discussed above also shows that in all the cases R increases from about 2.5 to
6. While the field observations are closely matched by case FAST, the other cases,
DVAR, NCOR1 and KDSRF, show the same general trend. Unlike Burr et al. [1994]
we did not see any case where R first decreases and then increases. The mean R
calculated for the case of NCORI, which corresponds to the simulation study of Burr
et al. [1994], shows a very distinct increasing trend unlike their results where the
ensemble mean R did not show any trend at all. We believe the temporal behavior of
R is the result of the heterogeneities in the sorption-desorption parameters. We next

look at the spreading of the plume about its centroid.
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5.8 Amnalysis of Longitudinal Second Moment

One of the striking observations of the field-scale experiments is the en-
hanced dispersion of the plume relative to the predictions based on column exper-
iments [Sudicky et al., 1983; Freyberg, 1986; Garabedian, 1987]. One possible ex-
planation suggested for this phenomenon has been the heterogeneity of the aquifer
materials, in particular that of K. The increase in the plume’s spreading rate is at-
tributed to the variability in the direction and magnitude of the solute velocity field
at the field scale. As discussed in Chapter 2 previous studies have assumed that
K is constant or correlated with K field. We will use our computational algorithm,
which incorporates spatially variable kinetic sorption to study the effects of those as-
sumptions. The goal of this investigation is to examine the specific features of plume
spreading resulting from non-equilibrium behavior of the sorbing solute. Once again
we will study the effect of rates, of varying cross-correlation between In K and In K,

and of the source size.

We report the second moment results for spreading about the centroid po-
sition of each realization, rather than the ensemble mean centroid location. These
individual results are again averaged. It has been shown [Rajaram and Gelhar, 1993]
that using the bulk displacement of each individual plume realization as a basis for
plume spreading produces less dispersion in a mean sense than if second moment

values were obtained with respect to the ensemble mean displacement.

Varying Rates
Centroid-based longitudinal second moment, values are calculated for each of the five
realizations and the mean result at various time is depicted in Figure 5.9 for cases

FAST, DVAR and SLOW. Roberts and Mackay [1986] computed the second spatial
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moments of the PCE plume based on the site data. A comparison of the modeling
results for the case where k; and k, are modeled as two independent random processes
(case FAST) shows a good match with the data, especially at later time. The second
moment is very sensitive to low to low rates of sorption and desorption, which cause
large plume spreading. The higher rates, FAST and DVAR, provide a better match
than the SLOW rate case.
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Figure 5.9: Longitudinal second moment for varying rates.

Varying Correlation Between K and K

We present the result of longitudinal second moment for the three cases of KDSRF,
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NCORI1, NCRP5 (Table 5.3). We have indicated earlier that several recent studies
assumed some cross-correlation between K and KX;. The second moment for the three
cases, NCOR1, NCRP5, and KDSRF, are shown in Figure 5.10. All have similar
behavior. NCOR1, which assumes perfect negative correlation between In K and In
K fields, gives the highest dispersion, although it is still below field observation. The
positively correlated cases, PCOR1 and PCRP5 have even smaller values than these

three and are shown in Appendix E.
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Figure 5.10: Longitudinal second moment results for the correlated K and K, case

compared with field results.
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Varying Initial Plume Size
One qf the issues of interest is the influence of the plume size on the various spatial
moments. This is of importance because classical stochastic theory assumes that the
plume size is sufficiently large so that it has sampled all the heterogeneities of the
velocity field. This requires that the plume size be about 10-20 times the correlation
length of the In K field. The base case (FAST) assumed that the initial plume
source was about a correlation length. As discussed above we examined two other
source sizes, one smaller (SMLS) and one larger (LRGS) than the actual experiment
(Table 5.2). The plots in Figure 5.11 show very similar second moments for the two
larger éources, and a much smaller plume dispersion for the small source. Presumably
the small source has a larger drift, a feature that would be reflected in a much larger

ensemble average second moment.

Comparison of Analytical Solutions
Analytical results based on Lagrangian analysis neglecting local dispersion [Dagan
and Cvetkovic, 1993] and also an Eulerian framework which includes local disper-
sion [Cushman et al., 1996] have been discussed by these researchers. Their second

moments based on constant Ky are discussed in Appendix F.

The second moment results based on the analytical solution of Dagan and
Cvetkovic [1993] are plotted in Figure 5.12 and compared to the FAST simulation. It
is very clear that the best match to the field data is obtained for the case where the
rates are assumed to be two independent spatially varying processes. Neglecting the
variability of the sorption-desorption parameters underpredicts the spreading of the

reactive plume.
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5.9 Analysis of Macrodispersivities

The field-scale hydrodynamic dispersion tensor D;; can be expressed as
(Robin, 1991)

<R>d< 5, >
2 dt

where < Sj; > is the ensemble longitudinal second moment, and < R > is the bulk
retardation factor. The principal macrodispersivity components, < A; >, can be

evaluated by assuming that D;; =< A; > v.

Theoretical macrodispersivities for the PCE plume can be obtained from the
formulation developed by Garabedian [1987] and Dagan [1989]. They assume a linear
relationship between the In K and In K fields. The reactive solute macrodispersivity
in the longitudinal direction is given by [Garabedian, 1987]
oM

T "y (5.22)

An - 0. Ra

where b is the slope of the linear relationship between g, K; and In K and R4 is
the arithmetic mean retardation factor. The expression derived by Dagan [1989)
is the same as that above with 77 = 1. For negatively cross-correlated In K and
In Ky, evaluation of the above equation suggests that the theoretical longitudinal
macrodispersivity for PCE should be 5.2 m. Burr et al. [1994] obtained a value of
2.1 m based on a much longer simulation time of 2000-2500 days Whefl the second-
moment showed a linear trend with time. However his mean value of the dispersivity,
based on five realizations, was 1.565 m (equilibrium case) and 1.025 m for the kinetic

sorption case (rates constant).

Varying Rates

The dispersivity values calculated from our simulated second moments show a contin-
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uously increasing trend with time which ranges from 0.25 m to a maximum of about
1 m for the FAST case and about 1.5 m for SLOW case (Figure 5.13). Unlike the
non-reactive tracer results of Burr et al. [1994] where the longitudinal dispersivity
approaches an asymptotic limit, we do not see any such limiting behavior for the
linearly sorbing solute when the rates vary. A possible reason a constant value of dis-
persivity is not attained is that the simulations were only run for 650 days. Further
studies with a longer simulation time extending to 2000-2500 days is warranted to

study this aspect.
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Figure 5.13: Longitudinal macrodispersivities for varying rates



135

Varying Correlation between In K and In K,
Similar trends of increasing macrodispersivity with time are obtained as the cross-
correlation between In K and In Kj is varied, with maximum dispersivity values less
than 1 m (Figure 5.14). These values are substantially smaller than 5.2, the theoretical
asymptotic macro-dispersivity calculated from the stochastic analyses of Dagan [1989)
or Garabedian [1987]. One possible explanation is that the asymptotic regime has not
yet been reached since the plume has traveled only about 2 correlation lengths (1)
while the theoretical results would be applicable only for travel distances on the order
of 10 or more correlation lengths. The simulations suggest that there is a long period
of preasymptotié plume development with a time-dependent macrodispersivity. The
asymptotic analytical results overpredict the dispersion and hence would underpredict

the resulting concentration of the contaminant.

Varying Initial Plume Sizes
The longitudinal macrodispersivities for the three different souce cases, FAST, LRGS,
and SMLS show a continuous increase in the macrodispersivity with time and do
not reach any sort of a limiting value over the period of simulation of 650 days
(Figure 5.15). The larger initial size plumes have dispersivities that grow at a faster
rate initially but this growth rate of dispersivity decreases at around 400 days. The
stnaller size plume initially has a slow growth rate but this growth continues to show
an increase of dispersivity even at 650 days. This result can be explained by realizing
that the smaller plume has not yet sampled all the heterogeneities and is still growing

in size with time at a rate which keeps increasing with time.

The concept of macrodispersion has been helpful in characterizing the plume

shape, assuming it is Gaussian. We have seen that for reactive plumes undergoing
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sorption, the asymptotic results may not be applicable for the times considered here.
‘The plume-scale transport is a complicated interaction of the spatially varying velocity
field with the sorption-desorption rates. In the next section we briefly examine the

shape of the plume in terms of its skewness coefficient.

5.10 Analysis of Skewness Coeflicient

The Lagrangian formulation [Dagan and Cvetkovic, 1993] and Eulerian for-
mulation based on the non-local theory of transport [Cushman et al., 1995 show
that the third moment is linear in time for large time. Since the first moment X;(t)
increases linearly with time, the skewness decreases at the rate of 1/ V't. Once again
we studied the sensitivity of the skewness coefficient of the plume to various sorption-
desorption parameters: (a) varying rates, (b) varying correlation between In K and
In Kg and (c) initial plume sizes.

Varying Rates
Simulations FAST and DVAR show a gradual approach to zero skewness, as predicted
by stochastic analyses (Figure 5.16). However SLOW shows an anamolous behavior,

with a continuously increasing skewness coefficient.

Varying Correlation Between In K and In K
For the case where In K and In K, are cross-correlated, all the varim{s cases show
a gradual approach to zero skewness, with KDSRF and NCOR1 reaching it very
rapidly, within about 400 days, while NCRP5 shows a very gradual approach to zero
(Figure 5.17).

Effect of Plume Size

The skewness coefficient for the smaller size plume shows a very erratic behavior. It
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increases during the first 100 days, then starts decreasing, goes negative and then
finally starts increasing again after 400 days (Figure 5.18). The other two plumes

show a gradual approach to zero skewness with time.
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Figure 5.18: Skewness coefficient for different initial plume sizes.

5.11 Discussion and Conclusions

The transport of a sorbing solute dissolved in groundwater was simulated
based on the detailed geostatistical parameters obtained at the Borden site from

previous studies. The goal of this study was to use the transport simulator based
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on a recursion formulation to study contaminant transport in a heterogeneous media
by means of Monte-Carlo simulation. The focus was on field-scale displacement and
dispersive behavior of PCE migrating in a aquifer with characteristics similar to
Borden aquifer. Previous studies have assumed equilibrium conditions for sorption
and concluded that the effect of local-scale transport processes such as intra-particle
diffusion and kinetic sorption do not contribute to the field-scale plume behavior [Burr

et al., 1994].

The results of our simulation have shown that sorption-desorption hetero-
geneities can explain the observed behavior of increasing R with time seen in the
field. A number of possible mechanisms can explain the temporal growth of R with
time; interestingly the simplest case when sorption-desorption processes are modeled
as two independent processes with different variances for k; and k, gave very good
agreement with field data (see Figures 5.6, 5.12). This conclusion contradicts that of
Burr et al., [1994] who did not see any effect of kinetic sorption on the reactive solute
displacement process and hence the bulk retardation factor. They used a spatially
varying In Ky negatively correlated with In K in their simulations which is similar
to our case NCORIL. The results of the different cases show that NCORL is just one
particular case of the various possible correlations. Simulation of the plume transport
and the resulting plume position at a given time illustrates the complex character-
istics of the concentration field. The shape of the plume is highly irregular and the
shape is distorted relative to the initial well-defined injection profile. The resulting
concentration field is an outcome of the interactions of the spatially varying velocity
field and the kinetically limited sorption and desorption rates. Cushman et al. [1995]
postulated a non-linear interaction which is not amenable to straightforward analyses

[Hu et al., 1997]. However we consider only linear interactions and can easily simulate
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the complexity of the varying rates along with the velocity field, obtaining a better

understanding of the plume scale transport.

The semi-analytical method is fast and robust while accurately capturing
the extended tailing due to non-equilibrium sorption phenomena. The plot of the
plume position (Figure 5.4) shows a very complicated pattern of the aqueous concen-
tration distribution very similar to the pattern seen in the field experiment including

distributed areas of high concentrations or local “hot spots” which are non-continuous.

Using our simulations, particularly FAST (sorption and desorption rates
are two independent SRFs) and NCOR1 ( In K and In K, negatively correlated) the
need for modeling k; and k. as two independent spatially varying processes can be
examined. Does the negative correlation between K and K, (equilibrium conditions)
give a different spreading behavior compared to uncorrelated rates (kinetically lim-
ited sorption)? Burr et al. [1994] used a cross-correlation between In K and In K
to simulate PCE migration and compared the dispersive behavior of a solute under-
going equilibrium linear sorption with that of a non-reactive solute, They concluded
that the dispersion in the longitudinal direction is the largest for the reactive solute
(for an equivalent centroid displacement) compared to a non-reactive solute, and the
transverse spreading is of the same magnitude in both the vertical and horizontal
transverse directions. The assumed negative cross-correlation between the In K and
In K, fields presumably leads to an increase in the variability of the-solute veloc-
ity, which in turn causes larger spreading [Garabedian, 1987; Dagan, 1989; Valocchi,
1989; Robin, 1991]. The effects of the local-scale processes of kinetic sorption and
intra-particle diffusion on the longitudinal second moment of the PCE plume were

found to be weak and the results differed from those of equilibrium conditions by only
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a few percent [Burr et al., 1994].

The results of the simulations with spatially varying rates that are uncorre-
lated with K show a larger spreading in comparison to the spatially varying Ky case,
where In K is either independent of In K or negatively correlated with In K. The
difference in the second moment in the longitudinal direction increases with time and
would be significant for longer time period. The kinetically limited non-equilibrium
sorption case (case FAST) has a second moment temporal behavior similar to the field
observations. Modeling the sorption-desorption rates as random processes provides a

good match with both the first and second moment results for the Borden site data.

During the course of the simulation we were able to see a distinct change in
the shape of the plume which. was related to the rates. The slower rates corresponding
to non-equilibrium sorption-desorption showed that the skewness kept increasing with
time, while for the equilibrium cases, the plume approached a Gaussian shape. We
find that for kinetically limited conditions which may exist in the field, the skewness

coefficient is an additional feature for characterizing the plume.



Chapter 6

Transverse Dispersion Of A Sorbing Solute

6.1 Overview

In transport theory one goal is to study plume evolution with time as the
initial plume mass is advected by groundwater flow. The movement of the solute mass
is affected by spreading and dilution. For a sorbing solute we studied the evolution
of a plume due to a spatially varying velocity field and sorption and desorption rates.
We focussed our attention in the previous chaptef on the longitudinal second moment
which provided a measure of spreading of the plume in the direction of the mean flow
field. For a multi - dimensional flow field, the plume will also spread in the transverse
directions. In this chapter we study transverse dispersion of a linearly sorbing solute

in order to address the asymptotic behavior of a plume.

We will first outline past results of two different existing approaches (Eu-
lerian and Lagrangian) to predict spatial moments, with particular attention on the
transverse second moment. The second moments in the transverse ch'rec%ion obtained
using the two approaches are significantly different. We briefly review these published
approaches, outline the reasons for the difference, and then present our formulation
for transverse dispersion in a stratified aquifer for both non-reactive and linearly

sorbing solutes.

145
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6.2 Spatial Moments Results

Using a first-order perturbation analysis within an Eulerian framework, non-

local models of flow and transport have been developed for non-reactive solutes [Koch

and Brady, 1987; Cushman, 1991; Cushman and Ginn, 1993; Deng et al.,

1993;

Neuman, 1993], and for reactive solutes undergoing linear sorption with deterministic

K4 [Hu et al., 1995]. Analytical methods have been used to analyze the various spatial

moments for reactive transport with kinetically limited linear sorption assumptions.

In the previous chapter we outlined the results of spatial moments obtained from

Lagrangian analyses [Dagan and Cvetkovic, 1993]. Here we present the expressions

for the spatial moments obtained from Eulerian analysis [Hu and Cushman, 1997].

Xi(t)

where X;(¢) is the first moment, Xj;, 7 = 1,2,3 are the second moments.
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H(t) ) (Hl(t))z AL(t)
2d LU U + 22
"Ho(?) Ho(t) Ho(t) Hy(t)
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(6.6)

These

spatial moments are obtained as functions of U, the mean velocity along the flow

direction, d;, ¢ = 1,2,3, the local dispersivities, and other terms like Hy, H;, H,
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given above. The expression A}(t) is given by

Al() = (‘2'72})_3 [ 7 00,8) < 0y > (00 (6.7)

where < v;v; > is the Fourier transform of the velocity covariance function in j di-
rection. A detailed evaluation of the different quantities (like Y'(k,t)) is given in Hu
and Cushman [1997].

For the Lagrangian analysis, the zeroth and the first moment are identical
to the Eulerian results (see Appendix F). The second moment differs from the Eule-
rian case by the presence of the d; terms that account for the local dispersion. For
example, in equation 6.2, d; is the local longitudinal dispersitvity and the remain-
ing parameters are as defined before. Hu and Cushman [1997] compared the first
three central moments for the case of an exponential correlation of the In K field.
Their compafisons showed that both the Eulerian and Lagrangian approaches yield

the same values if local dispersivity is neglected.

While it is a common assumption in Lagrangian analysis to neglect the local
dispersivity, Hu and Cushman [1997] illustrated the errors that can occur when this
is done. For a mean velocity of 1 m/day, a?::l, a correlation length of 1 m and
an anisotropy ratio of 1, the second longitudinal moments are only slightly affected
by the local dispersion. However, the transverse second moments are significantly
affected by the presence of local dispersion. Their comparisons indicate that if local
dispersion is included, the second transverse moment will increase linearly with time
in contrast to the second transverse moment reaching a constant asymptotic value if

local dispersion is zero.

For the case of an isotropic medium at large time, the longitudinal and
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transverse second moment Eulerian results obtained by Hu and Cushman [1997] are

2d;,  2VEK,, 203V

Xu(t) = e+t b (6.8)
2d; 4d; K 2031
Xj;(t) = f] +#R2d+—3i', J=23 (6.9)

where R is the retardation factor, V the mean velocity, ! the correlation length, <:r12c
the Variance of In K field. Thus, for the Eulerian analysis, the asymptotic values of
the second spatial moments in both the longitudinal and transverse directions are
linear in time. In equations 6.8 and 6.9 the first term represents the contribution of
local-scale dispersion to spreading in both the longitudinal or transverse directions.
Only for d; equal to zero, do Eulerian and Lagrangian results agree. At large time
this first term will dominate, indicating a linear increase with time of the second
transverse moment. Hu and Cushman {1997] have hypothesized “that inclusion of a
Brownian local-scale dispersive displacement in the Lagrangian analysis would result

in moments consistent with the Eulerian moments (with local dispersivity)”.

In this chapter we present an approach for transverse dispersion using a La-
grangian framework where local dispersion is included to verify the above hypothesis.
To illustrate this we restrict our attention to a simplified two-dimensional stratified
flow system. Again we use a recursion formulation for the transverse motion with an

added recursion used for the the horizontal motion.

6.3 Transverse Dispersion in a Stratified Aquifer

In this section, we study the effect of local dispersion on the transverse
spreading of a contaminant source injected at a point in a stratified aquifer. An ide-

alized stratified system is used to understand and develop the algorithm in a simplified
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setting. The ultimate goal is to use it in a real-world situation of anisotropic flow
regime in three dimensions. In a stratified system which is oriented in the horizontal

direction, the velocity variations depend only on the transverse direction.

Consider a stratified aquifer in which flow is at steady state. The K field
and the resulting velocity field vary only in the transverse directions (Figure 6.1).
Here we define v;=velocity in the jth streamline or layer; Az= distance between two

adjacent streamlines; and At= one time step.
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Figure 6.1: Schematic representation of hydraulic conductivity and velocity variations

in a stratified aquifer based on Gelhar et al. [1989].
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Our primary interest is in the transverse spreading of the injected contam-
inant source. Thus let g;= probability that a solute particle in layer j moves to an
adjacent layer (streamline) in time At. The random variable Z denotes a particle’s
transverse position indexed by the the streamline number. We allow a particle to
either remain in the streamline or move from streamline j to an adjacent streamline

with the following probabilities

P(Z=j+Az) = g (6.10)
P(Z=j-Az) = g (6.11)
P(Z=j) = 1-2g “ (6.12)
Then E(Z) = j (6.13)
Var(Z) = 2(A2)* g (6.14)

We further define o= local transverse dispersivity. For a time interval, At,

the variance of the particle displacement is also given by
Var(Z) = 2arv; At (6.15)

Equating the two variance expressions (equations 6.14 and 6.15) gives a relationship
between g;, Az, At and or:

O V; At
‘This relates the probability that a solute particle will move from a given streamline to
an adjacent one to the local transverse dispersivity, (ar), the velocity (v;), the spacing

between the streamlines (Az) and the discretization in the time domain (At). Note

one could also let Az depend on j but for simplicity we take it to be constant. Varying
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Az may be useful for cases where large changes in velocity occur over short vertical

distances.

For a reactive solute undergoing sorption-desorption under linear sorption
conditions, we can envisage a particle injected at a given location moving along the
mean flow direction. The process of transverse dispersion will shift the particle to
an adjacent streamline with a given probability, ¢; and the particle then moves along
the new streamline until it is shifted to another adjacent streamline. A particle
can undergo many such transverse displacements as it moves in the longitudinal
direction. The resulting position of all the particles after a given time then will give
a measure of the spread in the transverse direction. We are interested in evaluating
this expression for the variance of a particle position, which is then related to the

transverse dispersion.

Let 87" (s) be the probability that a solute particle leaves layer j for the first
time at time step s (or time s At) starting from state m, where m==1 again indicates
the aqueous state; m=2 sorbed state. As before, 715 is the probability of moving from
the aqueous to the sorbed phase in time At. The transition probabilities given by
712 are related to the sorption and desorption rates for a linearly sorbing solute as
discussed in Chapter 3. The formulation given below considers constant ry5 and o,

but we will later generalize the results to the spatially varying case. We then have

the following expressions , .
Bi1) = 2¢; (1—rp) (6.17)
Bi (1) = 2¢5mm (6.18)
Bi(s) = rp Bis—1)+ry (1-24¢) Bi(s—1) (6.19)

Bi(s) = ru(1—2¢;) Bis—1)+(1- 721)8; (s — 1) (6.20)



152

Once again we have a set of recursion equations for the #'s. Equation 6.17 refers to
the probability that the solute particle leaves the jth streamline at time At; this is
the probability that the particle remains in the aqueous phase (given by 1 —17)5) times

the probability that the solute particle leaves the jth streamline or (2 g;).

Using the f7*(s) values we next develop the recursion for the transverse
particle position: namely the probability that a particle will be in layer j at time t.
Since the particle can ounly move when in the aqueous phase, we will henceforth be

working only with m=1 and so we drop the superscript to simplify the notation.

Let @y, j(k)=Probability that a solute particle is in layer n at time kAt

starting in the aqueous phase from layer j at time 0. The recursion formulation for

(0, j(k) is given by

k
i) = 52005k 9+ Quinlk =] ) (62)

Equation 6.21 gives the probability that a particle is in layer n starting from layer j.

This is obtained as follows:

1. B;(s) = probability that a particle leaves the layer j for the first time on time

step s;

2. When the particle leaves layer j, it will go to either layer j-1 or j+1, each with
probability 1/2. .

3. The first expression in the bracket sum gives the probability of moving to layer

n from layer (j-1) in time (k-s);

4. The second expression in the bracket sum gives the probability of moving to

layer n from layer (j+1) in time (k-s);
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5. We then multiply by 8j(s) and sum over all possible values of s=1 to k time

steps.

The boundary conditions are

k-1

Ql’ 1(](1) = (1 — 2q1)k -+ Z_: ,Bll(S)Ql’ 2(]{2 — S) (622)
k-1

Qv n(k) = (1- 2QN)k + Z JBJIV(S)QN, o1k —s) (6.23)

Since the boundaries are closed, the particles are reflected back from the boundary
streamlines. We further assume all mass is injected in the aqueous state at time 0.

Here the initial condition is given by

@iy, 0(0) = 1; (6.24)
- Qi5(0) = 0;i=3+#j (6.25)

The initial condition specified by equations 6.24 and 6.25 indicate that all the mass
is injected into a specified layer, jp at time zero and there is no solute present in the

aqueous state in any other layer before time zero.

We look at the growth of the transverse dispersion in a stratified model by
instantaneously injecting solute in the aqueous phase in layer N/2. The steady state
velocity field and local dispersion will lead to the solute particles being distributed
across the various layers until after a sufficiently long time the particles occupy all
the layers from j=1 to N where N is the maximum number of layers. The variance
of the particles in the transverse direction at time kAt is a measure of the second
transverse spatial moments. It is given by

=N
Saa(k) = D (-4 @ k), §=N/2 (6.26)

i=1
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6.4 Outline of the Algorithm

In our simulations we used a system with 128 layers. Table 6.1 summarizes
the various system and numerical model parameters. Spatially varying parameters
(V, ks and k) are independent log normally distributed Gaussian random variables,
with an exponential spatial covariance function. The parameters of variance and
correlation length for generating the three different fields (V, ky and k) are the
same. We simulated 100 days of transport using 1000 timesteps. The simulations

were designed so that the transverse boundaries should not play a role.

Description Value

Az, spacing between streamlines [ 0.04 m

At 0.1 day

ar, local transverse dispersivity [ 0.001 m

E(V), Mean Velocity 1.0 m/day
oZ, ., Variance of In v 0.1
Ay, vertical Corr. Length 0.4 m

Table 6.1: Parameters for Transverse Dispersion Simulations

The simulation steps consist of the following

1. Compute g;, T12, r21 from the input parameters of v;, k;(j), k-(5), At, Az.

2. Calculate 8]"(s) terms.
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3. Calculate @y, ;(k) from the recursion formulations and the boundary conditions

at different time steps, k ranging from 1 to 1000 in our example.

4. Calculate the variance of the particle positions at each time.

6.5 Non-reactive Solute

The recursion formulation given above for a linearly sorbing solute can also
be applied to nonreactive solutes by setting k; and k, equal to zero. For a non-reactive
solute the transition probability 71, is always equal to unity (and ryy = 199 = 79 = 0)
since the solute remains in the aqueous phase at all times. We first illustrate the
second spatial moment for a non-reacting solute (Figure 6.2) where a constant velocity

of 1 m/day in all the layers is used.

The variance of the particles initially injected in the middle layer is shown
at various times in Figure 6.2. The two individual lines are for 128 and 64 layers.
The increase in transverse variance is found to be linear with time. This result is in

accordance with the theory where the variance of the particles is given by
Variance = 2ar Ut (6.27)

For the parameters chosen for the simulations, the variance at time = 100 days
should be 0.2 which is indeed the value obtained from our simulation results. These

simulations show that even for the 64 layer case the boundary conditions should not

influence the result.

We next include the effect of spatially varying velocity field that varies with
the stratification. A mean velocity of 1 m/day with an exponential covariance, a

correlation length of 0.4 m and a variance of 0.1 is input for a 128 layer model.
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The effect of velocity variations along the individual streamtubes leads to a higher
spreading in the transverse direction, as shown in Figure 6.3. The salient feature is
a linear trend of the transverse variance with time, very similar to the earlier case of

constant velocity.
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Figure 6.3: Second transverse spatial moment for a non-reacting solute for spatially

varying velocity compared to constant velocity. N= 128
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6.6 Reactive Solute Transverse Spreading

For linearly sorbing solutes, the k; and &, values are input to calculate the
transition rates and hence the §7*’s. Once again we will first evaluate the case of

constant rates using ks and k, values of 1.0 and 0.2/day.

6.6.1 Constant Rates and Velocity

The base case of constant velocity for a linearly sorbing solute in a homoge-
neous medium is compared to the non-reactive solute in Figure 6.4. The transverse
spreading of a sorbing solute is much smaller than the corresponding spreading of
a nonreactive solute. The reactive solute curve follows the non-reactive curve for
about a time period of 5 days which corresponds to the mean time of sorption and
then the reactive curve follows a different curve with a much smaller slope due to the
retardation of transverse motion by sorption. However the variance increases linearly
with time and does not show an asymptotic limit even after a time period of 100
days unlike previous results of Dagan and Cvetkovic [1993]. These results show that
inclusion of local dispersion does contribute to a different behavior for transverse dis-
persion, especially for large time in a Lagrangian framework and is consistent with

the Eulerian analysis [Hu and Cushman, 1997] where local dispersion was included.

6.6.2 Constant Rates and Spatially Varying Velocity

If the velocity is spatially varying in the different streamlines, the resulting
transverse spreading is increased compared to the case where the velocity is constant

(Figure 6.5). We still see the same linear trend of variance with time. In this case
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the solute dispersion follows that of a non-sorbing solute for a time corresponding to
1/k, which in our example is 5 days (k,=0.2/day). Only after this period does the

bulk plume experience the effect of kinetic sorption-desorption.
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Figure 6.5: Second transverse spatial moment for a reacting solute. The case of
constant velocity of 1 m/day is compared to the case where velocity is log-normally

distributed with a mean of 1 m/day and a variance of 0.1.
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6.6.3 Spatially Varying Rates and Velocity

The most general case where all three fields (V, kg, and k) are spatially
varying is considered next. The k; and %, fields are assumed to be log-normally
distributed with a mean of 1/day and 0.2/day, respectively. The velocity field is gen-
erated as a log-normal distribution with a mean velocity of 1 m/day. The covariance
structure of all the three random fields are kept the same: an exponential covariance
with a variance of 0.1 and a correlation length of 0.4 m. The variance is plotted in
Figure 6.6. Although it initially grows at a faster rate than before, after 5 days the
rate becomes significantly smaller. The variability in the rates has a greater effect on
the transverse dispersion behavior than the velocity fluctuations alone, and it is in

the opposite direction. It lowers transverse dispersion.

In Figure 6.7 we examine the sensitivity to the mean values of k; and k,:
for slower rates the transverse variance results show an approach to the non-reacting
case. The figure shows two different cases — Case 1, rates of 1 and 0.2/day and Case
2, rates of 0.1 and 0.02/day. For case 2 (i.e. non-equilibrium conditions), the plume
continues to grow in the transverse direction like a non-reactive solute and after a time
equal to 50 days which corresponds to the mean time of sorption, follows a different
trajectory. Case 1 (i.e. equilibrium conditions) shows a very different time behavior
of the growth of the transverse second moment. For a kinetically limited sorption
behavior, the equilibrium conditions will underpredict the transverse spreading. We
have illustrated in this example that an aécurate prediction of transverse dispersion

is greatly affected by the rates.
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6.7 Discussion and Conclusions

We have developed a Lagrangian formulation for transverse spreading which
incorporates local dispersion. The formulation is very general and can be used to
model both nonreactive and reactive transport. Both the velocity field and the rates
could be constant or spatially varying. Our simulations indicate that including the
local dispersion in transverse spreading leads to an increase of transverse variance with
time unlike results where local dispersivity is neglected [Dagan and Cvetkovic, 1993).
Our results agree with Hu and Cushman [1997] who show that if local dispersivity is

not included, the asymptotic transverse second moment will reach a constant value.

The second transverse moment for a linearly sorbing solute is an order of
magnitude smaller than that of a non-reactive solute. The linearly sorbing solute
however follows the same trend as the non-reactive solute for a time equivalent to
1/E(k,) before the effect of the sorption is felt. At this time the slope of the line
changes and after a period of transition attains the smaller slope corresponding to
the reactive solute. The transition zone is a function of the rates and for slow rates

we see a much longer zone relative to the case when the rates are high.



Chapter 7

Summary And Recommendations For Future Work

We studied transport of linearly sorbing solutes under non-equilibrium con-
ditions. The main focus was to study the transport of solute at the field scale where
physical and chemical heterogeneity characterizes the natural variability of the dif-
ferent parameters like hydraulic conductivity, sorption and desorption rates. We
developed an efficient approach to simulate the breakthrough curves accounting for
the heterogeneity of the rates. The recursion formulations both for the constant and

spatially varying cases are one of the main contributions of this work.

For the case of constant rates, the results for the breakthrough curves are
similar to results presented previously [Giddings and Eyring, 1955]. Extension to the
more general case of spatially varying rates is easily accomplished within our recursion

formulation.

7.1 Important Results

7.1.1 One-dimensional Flow System

1. We formulate a recursion formulation for the transport of linearly sorbing solutes

undergoing non-equilibrium sorption. The sorption and desorption rates are
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specified in terms of k; and k.. Constant or spatially varying sorption kinetics

are modeled using the recursion formulation.

. We investigate the influence of spatial variability in sorption-desorption rates
on solute breakthrough by computational studies on one-dimensional systems.
The sorption and desorption rates are modeled as two independent random
processes with a prescribed mean and covariance structure. Incorporation of
spatial variability in the rate parameters is the main feature of this work. The
recursion solution, given in terms of the probability density function for solute
travel times, is derived by specifying transition probabilities for moving between

the aqueous and sorbed phases.

. The recursion formulation effectively mimics particle tracking involving an in-
finite number of particles and hence enables accurate modeling of long-tailed
breakthrough curves. Variability in sorption-desorption rates typically leads
to longer tailed breakthrough curves. The influence of increased variance in

sorption-desorption rates is seen for small as well as large Damkohler numbers.

. Sensitivity studies of the relative influence of variability in sorption and desorp-
tion rates reveal that variability in the desorption rate influences solute break-

through most significantly.

. We can model the combined processes of sorption and decay by specifying a

linear decay rate either in the aqueous and/or the sorbed phases.
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7.1.2 Semi-Markov Models of Recursion Formulation

The recursion formulation developed for the simple case of sorption to a
single type of site is extended to model more complex processes such as sorption to

heterogeneous sites.

1. We model sorption to two or three different sites accessed in parallel by the
solute in the aqueous phase. In this hyperexponential model the dissolved solute
has a finite probability of accessing each different site with its individual %,

values.

2. We propose a gamma model for sites which are accessed in series and we develop

a recursion formulation for two sites. -

3. We study the sensitivity of the coefficient of variation (C.V.) for the hyperexpo-
nential model and note the influence of the variance which controls the extended
tailing on the breakthrough curve. A higher C.V. leads to a sharp peak followed
by a long tail of the breakthrough curve. The simulations, however, show that
characterization of the problem in terms of C. V. does not provide unique iden-
tification of the breakthrough curve. We thus need to know the rates for the

different sites explicitly to determine the breakthrough curve.

7.1.3 Streamline Simulator for Field-scale Transport

The recursion formulation obtained for a one-dimensional flow system pro-
vides a very efficient method for application to multi-dimensional transport of linearly
sorbing solutes. For many non-polar organic solutes, which constitute the contami-

nation at a significant number of facilities in the industrial world, the assumption of
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linear sorption is adequate for the ranges of concentration in which these solutes are
usually encountered. We address the problem of developing a fast and an efficient

transport simulator for kinetically-limited conditions.

1. We develop a two-dimensional algorithm for simulating the transport of a lin-
early sorbing solute. The simulator is presently applicable to a steady-state flow
field. We examined the case of prescribed heads on two sides of a flow domain

and no-flow boundaries on the other two sides.

2. We apply the algorithm to model transport of PCE at Borden-like site. We
obtain plume characteristics similar to those observed in the field, with areas of

high concentrations irregularly distributed and not connected to one another.

3. We evaluate the first three moments for a number of scenarios that represent
various combinations of the rates and possible correlations with ln K. These
are denoted as FAST, DVAR, SLOW, KDSRF, NCOR1, NCRP5, SMLS, and
LRGS.

4. We find that a very simple and general description of the chemical heterogene-
ity, in terms of spatially varying k; and k, uncorrelated with K, provides an
adequate description of the plume migration. The centroid displacement, the
retardation factor and the longitudinal second moment for the PCE plume at
the Borden site are fairly well matched with the FAST case of our simulation

runs.

5. We derive an alternate formulation of the one-dimensional breakthrough curve
solution obtained by Dagan and Cvetkovic [1993]. The direct probabilistic for-

mulation gives more insight to the mechanistic aspects of transport of a linearly
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sorbing solute. We use our result to obtain the first three moments for the
constant ky and k. case and show that results identical to that of Dagan and
Cvetkovic [1993] are obtained. Using the equivalence of the v and recursion for-
mulation, £, we then propose to use our formulation for the case of spatially

varying rates to obtain the spatial moment results for this case.

7.1.4 Transverse Dispersion

We next study the transverse dispersion of a sorbing solute in a stratified

aquifer.

1. We develop a recursion formulation for computing the transverse dispersion of
a non-sorbing solute and a linearly sorbing solute in a spatially varying veloc-
ity field. The sorbing solute has sorption and desorption rates which can be

constant or spatially varying.

2. The Lagrangian formulation developed above includes local transverse disper-
sion. The second transverse moment is shown to continuously increase with
time, unlike the moment computed by other Lagrangian analyses which do not
include local dispersion. Qur results, for the non-reactive and reactive solutes,
are consistent with similar Eulerian analysis about the large time behavior of

the second transverse moment. .

7.2 Future Work

Starting from the very simple concept of Markov-process description of lin-

ear sorption phenomena, we have obtained a model of the transport behavior of
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sorbing solutes exhibiting kinetically-limited rate conditions. However the major
questipn of identifying the rates remain an open question. The identification of these
parameters requires significant field and laboratory investigations where carefully de-
signed experiments are run to get the data. The other big issue is the scaling of the
rates determined from the small-scale or laboratory experiments to those required for
studying field-scale migration. A preliminary attempt to address this issue has been
discussed by Cvetkovic [1995]. The discrepancy between laboratory and field reac-
tion parameters may be due to their spatial variability so that data from laboratory
experiments do not provide representative values. In addition, due to heterogeneity,
mixing will be different in the laboratory and the field, having significant impact on
modeled reactions [Kent et al., 1994]. A straightforward approach to this problem is
to derive an upscaled, effective value such that the rates are constant along a given
flow path [Cvetkovic and Dagan, 1996]. By way of contrast we have tried to apply
a simple conceptual model which is very general and allows the examination of the

spatially varying interactions of a linearly sorbing solute with the porous media.

Within the framework that we have developed, there are a number of pos-

sible extensions that could be made:

1. The one-dimensional recursion model, while appealing, is restricted to linear
sorption-desorption reactions for a solute. The recursion formulation can also
be extended to modeling multi-component transport involving linear reactions,

by beginning from a multi-state Markov process model.

2. We have discussed the combined processes of decay (e.g. radionuclide decay) in
the aqueous or the sorbed phase along with sorption. This approach can also

be used to study complex processes associated with biodegradation.
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3. The semi-Markov model developed for the sorption site heterogeneities can be
extended to model colloidal transport where the colloidal phase provides an

additional site for sorption.

4. Another avenue of research is the case where sorption and desorption rates are
correlated. To handle these situations, cross- correlated ks and k. processes
can be jointly generated using a Fast Fourier Transform algorithm developed

by Bullard, [1994], and Gutjahr et al., [1996].

5. The two-dimensional algorithm could be extended to a three-dimensional flow

and transport code.

6. The method could be extended to apply to fields where the velocity field can
be changing with time and to a remediation scenario where some initial solute
concentration already exists in the aquifer which is then being removed by a

pump-and-treat method or by the use of enhanced remediation methods.

7. Similarly, the effect of conditioning of the concentration to observed field data
has not been considered. Joint conditioning on transmissivity, head and con-
centration along the lines of the work by Hughson [1997] could be coupled with

the recursion approach.

The main emphasis of this work has been to study the effect of spatially
varying sorption and desorption rates on the transport of a linearly sorbing solute.
We have found that the interaction between the sorbing solute and the spatially
varying velocity field even for the case of steady-state flow in a heterogeneous media

results in distinct features of the breakthrough curve which are related to the kinetics
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of the sorption processes. In a two-dimensional flow field, these complex interac-
tions produce a plume characterized by a highly irregular pattern of concentration

distribution, very similar to those observed in the field experiments.

Analysis of the resulting plumes based on the behavior of the spatial mo-
ments supports the hypothesis that the kinetically limited sorption and desorption
rates interact in non-linear fashion with velocity field. The numerical scheme with its
streamline-based recursion formulation, provides a very attractive option for studying
the transport of a reactive solute. Further developments to the model should lead
to a very general purpose algorithm suitable for a wide variety of applications in

groundwater studies.
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Appendix A

List Of Notation

Macrodispersion, [L?/T)

Local concentration fluctuation, [M/L?]
Aqueous Concentration, [M/L?]
Covariance function at a lag ¢
Hydrodynamic Dispersion, [L?/T]
First-order decay rate, [1/7T]
Damkohler Number 1

Damkohler Number II

Diffusion Coefficient, [ L?/T)]
Expectation operator

Mean of In kf process

Freundlich exponent

Hydraulic head, [L]

Mean head gradient aligned along the flow direction
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Hydraulic Conductivity, [L/T]

Distribution coefficient, [L3/M]

Freundlich coefficient

Geometric mean of hydraulic conductivity, [L/T)

Sorption rate coefficient, [1/day]

Desorption rate coefficient, [1/day]

Length of the column [L]

Porosity

Probability that a solute particle takes n space steps

to move k time steps starting from state j,

j=1 is aqueous state, j=2 is sorbed state

Probability that a solute particle is in layer n

at time k starting from layer j at time 0 (stratified aquifer)
Specific discharge, [L/T]

Probability of moving from layer j to

an adjacent layer (stratified aquifer)
Probability of remaining in the aqueous phase

Probability of remaining in the sorbed phase
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T21
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Transition probability to move from

the aqueous to the sorbed phase

Transition probability to move from

the sorbed to the aqueous phase

Retardation factor

Mass of solute sorbed per dry unit weigth of solid, [mg/g]
Mass of solute sorbed per formation solid volume, [mg/cc]
Maximum amount of solute sorbed on

a solid, Langmuir model, [mg/g]

Mean velocity, [L/T]

Local fluctutaions in velocity, [L/T]

Random velocity, [L/T]

Velocity in layer j (stratified aquifer), [L/7T]

Variance

Constant fluid velocity, [L/T]
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‘@ Mass transfer coefficient, [1/T]
ay Constant related to Langmuir isotherm
a; Probability of sorption to site i in hyperexponential model
a; Local transverse dispesivity
B7*(s) Probability to leave layer j at time s
starting from state m (stratified aquifer)
At Time step [T]
Az Space step [L]
Az Distance between two adjacent streamlines (stratified aquifer), [L]
p Bulk density of the porbus medium, [M/L3]
pgy  Mean of ky, [1/T]
i Desorption rate of site i in hyperexponential model, [1/T]
¢ Streamfunction, [L*/T]
o* Variance of In k¢ or In k,
0y, o Variance of In K
A, 1,1 Correlation length of In K(x), [L]

¢ Desorption rate for the gamma model, [1/T]
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Modified Covariance Function

A modified form of the covariance function for the retardation factor, R is

developed where the two processes ks and k, are considered to be two independent

processes.

Assume that k; and %, are log-normal processes with means given by K

and K, respectively. Further, f; and f, are mean zero perturbations of the In ks and

In k, random processes, with variances o] and o2 respectively. The two processes ks

and k, can then be denoted by

E(Kq

( f2

)
var(fi — f2)
)
R =R-E(R)

cov(R'(z), R'(z + y))

eEr oh

K,- f2

K
f1 f2

eXr

eKr

eXr

var(fi) + var(fa)
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(B.1)
(B.2)
(B.3)
(B.4)
(B.5)
(B.6)
(B.7)

(B.8)
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where C;(y) = cov[fj(z + v), f;(z)],7 = 1,2 represent the covariance function for
the two second-order stationary processes fi and f;. For our example we use an
exponential covariance function with a variance of 0.1 and correlation length of 4.8

m to match with Chrysikopoulos et al., [1990] results.



Appendix C

Particle Tracking Algorithm For A Linearly Sorbing Solute

A brief description of the particle tracking code used for modeling transport

of a linearly sorbing solute in a one-dimensional flow column is given in this appendix.

Describing the sorption process as a Markov process with two states, a
sorbed state and an aqueous state, the number of transitions between the two states
is given by a Poisson process with the time spent in each state being an exponential

distribution.

Using our notation of kf for the rate of sorption, and &, for the rate of
desorption, the mean time spent in the aqueous state is given by 1 /ks and in the

sorbed state by 1/k,.

The algorithm for the reactive transport is

% input parameters
N= number of particles

L

length of column
v=velocity

dt=time step
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D=dispersion coefficient
ri2=transition probability for moving from aqueous to sorbed phase

rii=1-r12

for each particle

“start in aqueous phase at 0

%dis=distan§e moved in one time step

tot=total time spend in the column

dis=0

tot=0

while dis < L

dis= dis+ vkdt + \((2+D*dt)"{0.5}\)

tot=tot+dt

%at end of each time step check probability of moving to sorbed phase
tp=ran ) generate a random number from uniform distribution
if tp > r12 .
move to sorbed phase

% spend time in sorbed phase given by an

% exponential distribution with mean 1/kr
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st= time spent in sorbed state
tot=tot+st

else

remain in aqueous state

and check if dis > L

if not go back to beginning of loop
else

check if all particles traversed.
if not go back to next particle
else

quit

From the distribution of time taken for all N particles, the breakthrough

curve is generated.

A matlab code is available from the author.



Appendix D

Calculation Of Spatial Moments

Spatial moments of the concentration distributions up to third order are
calculated to facilitate comparison of the field data with the simulation results and
to study how the different physical processes might impact movement of the solute.
These spatial moments have been calculated on the basis of the aqueous phase resident

concentration [Dagan, 1989]. The zeroth to third spatial moments are given below:

The zeroth moment, which gives the mass of the solute in the aqueous phase

M) = /}22 n C(x,t) dx (D.1)

where n is the porosity and C(x,t) the aqueous concentration.

The first moment about the origin, which defines the location of the center

of the mass of the plume

Xi(t) = %/Rnx Clx,t) dx,i = 1,2 (D.2)

The second moment about the center of mass is a measure of the dispersion

of the plume and is given by a second rank covariance tensor whose components are
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1
Xii(t) = M-Lﬁmizj C(x,t) dx — X;X;, 1,5 =1,2 (D.3)

The third moment and the skewness coefficient are

_ 1 3 .
Xilt) = M/Pt?n(z,-—Xi(t)) C(x,t) dx,i=1,2 (D.4)
Xiii
Skewness = 7 (D.5)

i
The centroid coordinates, defined by the position vector X(t) can be used

to calculate the bulk velocity of the plume,

Vi(t) = d)g%(t), i=1,2 (D.6)




Appendix E

PCE Simulation: Additional Results

We present the simulation results of PCE transport at the Borden site for
the case where log K and log K are positively correlated with correlation coefficient

of 0.5 and 1.0. These cases are also discussed in chapter 5 as PCRP5 and PCORL.

We present the results for retardation factor (Figure E.1), longitudinal sec-
ond moment (Figure E.2), longitudinal macrodispersivity (Figure E.3) and skewness
coefficient (Figure E.4) for both the cases. In all the cases we find that the positively

correlated cases do not show a good match with the field data.
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Appendix F

A Probabilistic Model For «

F.1 Overview

The solution of the transport problem for a linearly sorbing solute in a
steady How field in a heterogeneous aquifer where the velocity was assumed to be a
random field was examined by Dagan and Cvetkovic [1993] and Cvetkovic and Dagan
[1994]. They assume a uniform mean flow in the horizontal plane and a solute plume
of constant concentration injected instantaneously into the formation. They then
extend the results for a conservative solute [Dagan, 1984] to a more general form for
a reactive solute undergoing kinetically controlled sorption with a constant X,;. The
plume is characterized by the expected values of the first three spatial moments. Their
approach is summarized below. We follow that by a simple alternate derivation of
some important expressions required in the equations of Cvetkovic and Dagan [1994].
We further point out how the recursive approach can be used to extend all of the

spatial moment analysis to the non-constant K case. :

F.2 Previous Results

Cvetkovic and Dagan [1994] relate the moments of the reactive solute to the

corresponding moments of the conservative case. The moments used are like those in

189
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Appendix D (equations D.1 and D.2). For e.g.
M(t) = [nClz bz (F.1)

X(t) = Hl-@—) /nzc(z,t)dz (F.2)

Equation F.2 is the first moment, and similar expressions hold for the other moments.
In addition, expected values are applied to the moments to obtain the ensemble

results. Thus, for example, the expected second moments, are

So) = B g7 [ lex - BUGO by - B0 Ctlde] ()

In the Lagrangian framework, some of the basic results given by Cvetkovic
and Dagan [1994] are equations for S;;(t) as well as other moments. We will focus
primarily on Si1(t) in this appendix, i.e. the expected longitudinal second moment.

e let R;;(t) be the corresponding second moment for the consérvative solute, namely
the expectation in equation I'.3 for the non-reactive case. For Sj;(t), Cvetkovic and

Dagan [1994] obtain

Su(t) = Su(0)+U? [Fz(t)} -U [Fl(t)]z T

Lo(?) To(2) 1 /m Ryy (T)y(t, 7)dr(F.4)

o(t) 0
U is the constant mean velocity for the random velocity field. The functions I',(t)

and 7(t,7) are the focus of the discussion here and are explained below.

¥(t,7) is a transfer function for the time it will take a particle to travel
distance 7 in a non-random unit velocity, one-dimensional field for the reactive case.
More specifically, y(¢, 7) d7 is the probability that a particle that starts in the aqueous
phase at time 0 will have travelled a distance between 7 and 7 + d7 and will again be

in the aqueous phase at time t. Note the integral over 7 will simply be the probability
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that the particle is in the aqueous phase at time t. With this interpretation we see
that (¢, 7) dr is analogous to the recurrence formulation given in Chapter 3 for the

unit velocity, one-dimensional constant rate case. There we solved for the travel time

while here the interest is on travel distance.

The I[',(2) terms are moments associated with (¢, 7):
Ty(t) = / Tyt ) dr (F.5)
D

Cvetkovic and Dagan [1994] find (¢, 7) by solving the advective transport equa-
tion coupled with the first-order rate of sorption equation in a unit velocity, one-

dimensional field;

oC¢  oC as
) + 5 = o (F.6)
aCc
& —k, .
5 ks C S (F.7)
They obtain a general solution for the Laplace transform on t:
¥(r,8) = exp{—s[l +W*(s)] 7} (F.8)

where W*(s) = 5*(s)/C*(s), and the asterisks indicate Laplace transforms. For a

pulse injection the final solution is

v{t,7) = exp(—kst) 6(t—7)+

kpkerexp(—ksr — ket + ko) Ljksker (t — T H(E = 7) (F.9)
L(Z) = L(2zV%z\/? (F.10)
where I; is the modified Bessel function of the first kind of order one, H is the

Heaviside function and § is the delta function. Cvetkovic and Dagan [1994] then

derive I'p(¢) by differentiating the Laplace transform on 7.
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We derive these results based on purely a probabilistic argnment which
suggests some other ways to treat the spatially variable rate case. We also use a

different approach for finding I, (%).

F.3 Alternative Derivations

Using the probabilistic interpretation and the exponential residence times
implied in the first-order constant rate model, we can derive v(t, 7) as describe below.
The particle starts in the aqueous state at time 0. At time t, it is again set to be in

the aqueous state. This can occur in several ways:

1. The particle never leaves the aqueous state. This occurs with probability e *s*

or with probability density 6(t — 7) e~%7%;

2. The particle visits the sorbed state n > 1 times and enters the aqueous state
for the last time at time t-u (see Figure F.1). Then in all the n visits to the
aqueous state it spent a total time 7 — u in that state and in all the n visits
to the sorbed state state it spent a total time t-7 there. Since these times are
sums of independent exponentials each has a gamma distribution. Thus the
joint probability density when there are n visits to the two states (aqueous and

sorbed) and a final time of u in the aqueous state is

b [Rr (t — )] o—kr(t—m) K [f(r = w)]*!
(n—1)! (n —1)!

e~hi(T—u)g—ksu (F.11)
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Sorbed T T2

Aqueous __, - .

Tn+Ts+u=r7
Th+To +To+Tet+u=t
T11 + Thz=sum of two independent exponentials, rate ky

Ty + Tyy=sum of two independent exponentials, rate k,

Figure F.1: Schematic representation of time spent in the aqueous and sorbed states

for a sorbing solute with rates k¢, k.. The number of transitions, n=2.

3. We need to integrate over all u and sum on n, the number of visits to the sorbed

state. First integrating,

T kr [kr (t— T)]n_l —kp(t—7) ,—kpT ky [kf (r— “)]nwl
/0 =1 e e (1) du (F.12)
o L k) (t—7) ks (kg 7)"
— 'l T T—._....__.__ > ]
] e e ra t>T (F.13)

4. Since n, the number of transitions can range from 1 to infinity, we finally sum

over 1n to get

¥, 7) = e FrE(t — 1)+

oo —T n—1 )"
5 k,[kzs_ 1))!] L ka(t7) e_kﬂ(_’?imi H(t—7) (F.14)

n=1
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Noting that
o0 yn
Liy) = nZ=1 CEnT (F.15)

we obtain the previous representation of Cvetkovic and Dagan [1994].

F.4 Evaluation of I',(t)

Before discussing the ramfications of our derivation we note that to obtain
the I[')’s Cvetkovic and Dagan [1994] Laplace transformed 7 over 7 and needed to
evaluate the derivatives given as

&

L) = (-]

ls=0 (F.16)

To find T,(t) we will instead use Laplace transform on t.

e = [ Crey(t, ) dr (F.17)

k[k t“’r]" ' o~ hr ()

L = [ ertae-n+ [

kn n-+p
—’“ﬂ# dr (F.18)
n!

(1 — T
= Pekrt / U-kr(t—'r)
+ Z (n— 1)'

e*FW”“"”@wunm+p—n~wn+n
(n+p)! A

dr (F.19)

The Laplace transform on t gives
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p! o0 (n + p)! kf n+p+l k'r n
* S — F.2
FP(S) (kf + S)p-l-l + Z k?-l—l n! kf + 8 kr +s ( 0)

P! "~ 1
T Gt ot Gyt
> ! n
(& [rtema] ) -
— ! n
- (ks +15)p+1 1;) - :‘p)- [(kf +I;§IZ;CT +s)] (F.22)
The sum can be evaluated by noting that
i{, - :!p)!“n - a% [1‘1} (F.23)

and substituting a= k¢ k;/(ks + s) (k- + s) after differentiation.

The moments I',() can now be evaluated for p=0, 1, 2, etc. For example

for p=1;
1 1
Is) = ( o ) (F.24)
(kr + ) \ (1 - eriemsy?
— ) (F.25)

s [(ky + &) + 5] (ks +5)?
Inverting this expression using Laplace transform tables [Nixon, 1965] and

simplifying we get

R? k. R krR3
This agrees with the first spatial moment derived by Cvetkovic and Dagan [1994].

2
2K
Fl(t) - L + ( k_f ) t e—(kf+kr)t + _d“‘[]. _ ew(kf+k7-)t} (F26)

F.5 Consequences and Ramifications

The simpler approach that we present gives a clear insight to the evalua-

tion of the various terms. We can use the same approach to evaluate the temporal
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moments in a similar fashion. The physical analogy of v now allows a very direct
comparison with the semi-analytical solution along an individual streamline that we
have developed. The significance of the alternate epxression of v and evaluation of
the spatial moments is that we can use our recursion formulation for the case of spa-
tially varying rates and use it to obtain the various moments for the more generalized
case of transport in a chemically heterogeneous media. Specifically we can use the
variable k; and &, to derive -y along a given path. The result would be conditioned
on the path. We would then need to generalize the result by unconditioning. This is

proposed as part of future work.
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