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Abstract

Numerical simulations of solute transport in discrete fracture networks commonly
employ one of two mixing rules at fracture junctions: diffusion controlled complete mixing
or advection controlled streamline routing. These rules lead to different transport behavior
in the networks [Hull et al., 1987; Robinson and Gale, 1990]. Although twenty years of
research has been directed toward determining these mixing rules, there is still uncertainty

as to which rule is correct and under what conditions.

To address these uncertainties, lattice gas automata (LGA) numerical simulations and
physical experiments were performed to investigate the mixing behavior at idealized
fracture junctions in the low to middle range of fracture junction Peclet numbers (1-200).
In the LGA simulations, a new tracer particle algorithm was developed and applied to
simulate the transport of dilute solutions. Applications of the new algorithm in various
transport problems were successful. The LGA simulations of the mixing behavior at fracture
Jjuncions predict that for Peclet numbers smaller than 1, diffusion dominates the transport
process, and complete mixing occurs. For Peclet numbers larger than 1, both diffusion and
advection play important roles in the mixing process. A comparison between the LGA
simulations and the recently published simulations of Berkowitz et al. [1994] shows large

differences,

To test the numerical results, a lucite physical model was constructed with the same
geometry as used in the LGA simulations. The physical model had an aperture of 500
microns and a depth of 1.85 cm, and thus a fracture depth to width ratio of 37. Cl- and Br-
solutions were used as tracers to indicate mixing behavior at the junction of the physical
model. The concentration data from the two outlet fractures were analyzed by HPLC.
Experiments were conducted in the Peclet number range of 1-170. The experimental results
reveal that for Peclet numbers smaller than 1, diffusion dominates the transport process

resulting in complete mixing at the junction. For Peclet numbers in the range of 1 to 170,



both diffusion and advection are important. Mixing in this Peclet number range is referred
to as transition zone mixing; Although our experiments did not reach Peclet numbers larger
than 200, the experimental results of Hull and Koslow [1986] show that the mixing behavior

will be advection controlled, and streamline routing will be appropriate.

A comparison among the experimental results, the LGA simulations, and the simulations
of Berkowitz et al. [1994] shows that the LGA simulations are basically correct. The results
of Berkowitz et al. do not represent the mixing behavior at middle and low Peclet numbers
(200-1), and thus, their conclusion that complete mixing within a fracture intersection did

not properly represent the mass transfer process at any value of Peclet number is invalid.

The results of this research clarify previous arguments on mixing rules at fracture
junctions. Streamline routing, suggested by Hull and Koslow’s [1986] and Robinson and
Gale’s [1990] experiments, was shown to be valid only at Peclet numbers larger than 200;
it can not be generalized to represent mixing behavior at small or middle Peclet numbers (P,
in the range of 1-200). The LGA simulations indicate that the proportional streamline
routing proposed by Hull and Koslow [1986] for predicting concentrations in outlet fractures
fails to predict the mixing behavior at Peclet numbers below 5 because of the effect of

diffusive mixing at fracture junctions.

Finally, a heuristic mixing zone concept and model, based on the physical process
governing solute transport at fracture junctions, were developed to provide a physical
explanation for the diffusive mixing behavior observed in the experiments and the LGA
simulations. A heuristic formula is proposed for predicting diffusive mixing behavior at
continuous fracture junctions under equal and non-equal flow rate conditions. The LGA
simulations indicate that predictions from this formula are reasonably accurate when the
differences between the two inflow rates and the two outflow rates are relatively small, but

significant errors can arise otherwise.
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Chapter 1: Introduction

Groundwater flow and contaminant transport in fractured systems are encountered in the
study of water supply, groundwater protection and remediation, and nuclear waste repository
design. There are basically two approaches to modeling these systems: the equivalent porous
media approach and the discrete fracture network approach. A necessary condition for the
former approach is that the equivalent parameters describing flow and transport inside
fractures can be defined on an REV (Representative Elementary Volume) scale; this
approach is appropriate when the scale of the problem is large and the fracture density is high
[Long et al. 1982]. However, when the fracture density is low (so that the equivalent porous
media approach is not valid), and yet the fractures play an important role, the discrete
fracture network approach becomes necessary [Schwartz et al, 1983; Smith and Schwartz,
1984; Andersson and Thunvik, 1986; Huang and Evans, 1985; Cacas et al, 1990; Sudicky
and McLaren, 1992].

In numerical models of contaminant transport in discrete fracture networks, mixing rules
are applied at fracture junctions to redistribute the inflowing contaminant to the outflowing
fractures. There are basically two types of fracture junctions: continuous junction and

discontinuous junction, as shown in Figure 1.1. A continuous junction is characterized by

(a) continuous junction (b) discontinuous junction

Figure 1.1. Schematic of continuous and discontinuous fracture
junctions.



continuous inflow channels. No exit channel breaks the sequence of inflow channels [Hull
and Koslow, 1986]. On the other hand, a discontinuous junction has exit branches
interspersed among the inflow channels. In this thesis, only solute mixing behavior at a

continuous junction is considered because most of the fracture junctions in the field are this

type.

An idealized continuous orthogonal fracture junction with equal fracture apertures is
shown in Figure 1.2. Flow enters the junction from top and left with equal flow rates 0, and
leaves the junction through right and bottom branches also with the same equal flow rates.
The dividing stream line that separates the two flow regions is also shown in the figure.
Suppose the top fracture carries a solute of concentration C;=Cp, while the left inflow
fracture has no solute with C>=0. The question which arises is what happens to the solute
when the two inflows meet at the junction. In general, the solute redistribution process is
described by a mixing rule. Depending on the transport mechanism at the junction, the
mixing rule used in the numerical simulations of contaminant transport in discrete fracture

networks can be classified into two main categories: diffusion controlled complete mixing

Cr =G

Figure 1.2. Flow intersecting at an idealized fracture junction.



and advection controlled streamline routing. The complete mixing rule assumes a diffusion
dominated process around the fracture junction. It states that due to complete mixing at the
fracture junction, the flow leaving the junction through the bottom and right fractures has
equal concentrations, i.e. C3=Cy=0.5Cp, as illustrated in Figure 1.3(a). On the contrary, the
streamline routing assumes an advection dominated process at the fracture junction,
allowing no diffusive mixing across streamlines at the junctions. In the case of Figure 1.2,
flow in the top inflow fracture carries contaminant directly into the right fracture. The
concentration in the right outflow fracture is C4=C;=Cp, while the concentration in the
bottom outflow fracture is C3=C2=0, as shown in Figure 1.3(b). In the case of non-equal
flow rates at the fracture junction, additional mixing occurs in the system simply due to the
redistribution of flow as shown in Figure 1.3(c). Such mixing has been called forced mixing
[Robinson and Gale, 1990]. It is obvious that depending on flow conditions, diffusion can

also play a role in a forced mixing process.

Most models of contaminant transport in fracture networks use the complete mixing rule
[Schwartz et al., 1983, Travis, 1984, Huang and Evans, 1985]. But recently there has been
a shift to advection controlled streamline routing [Wilson and Witherspoon, 1976; Hull and
Koslow, 1986; Robinson and Gale, 1990]. Implementing different mixingrules in numerical

Ci1=Co C1=Co

\

=0 ¥ \ » (<G

Y

Ca=0 > Ci=0.5C,

C3=0.5Cy C3=0 C3=>0
(a) Complete mixing (b) Streamline routing (c) Forced mixing

Figure 1.3. Schematic of mixing behavior at a fracture junction. (a) Diffusion
controlled complete mixing. (b) Advection controlled streamline routing. (c)
Forced mixing.



simulations of miscible contaminant transport in discrete fracture networks yields a different
spatial distribution of the contaminant in the system [Endo et al., 1984; Hull et al., 1987;
Robinson and Gale, 1990].

The question arises as to which mixing rule should be used in the numerical simulation
of solute transport in discrete fracture networks and under what conditions. Unfortunately,
the scale of the mixing problem precludes field experiment, and only a few laboratory
experiments have been carried out using physical models with geometries similar to the one
shown in Figure 1.2, Krizak et al. [1972] conducted experiments on a single fracture junction
with one inlet fracture and two or three outlet fractures. Tracers carried in by the inflow
fracture were found in all of the outlet fractures. This phenomenon was explained by
complete mixing at the junction although in their experimental design there was only one
inlet fracture. What they called complete mixing was actually the result of flow
redistribution at the fracture junction instead of diffusive mixing. Wilson and Witherspoon
[1976], Hull and Koslow [1986], and Robinson and Gale [1990] carried out physical
experiments to study mixing behavior at fracture junctions and concluded that transport at
fracture junctions is advection controlled and, therefore, streamline routing is appropriate
in discrete fracture network models. Based on their experimental observations and the
principle of mass balance, Hull and Koslow [1986] derived a formula for predicting
concentrations in each outflow fracture. Later on, Philip [1988] derived approximate
analytical solutions for Stokes flow around discontinuous fracture junctions. He concluded
that the proportional streamline routing proposed by Hull and Koslow [1986] for fofced
mixing was inadequate for cases involving large uneven inflow rates and large uneven

outflow rates.

In order to compare different experimental and numerical results, we introduce the Peclet

number P, to represent the relative importance of advection and diffusion,

D 1.1



where V is the average flow velocity at the fracture junction, ( J212)b is the half diagonal
length of the junction (it is also the half length of the dividing streamline at the junction),
and D is the molecular diffusion coefficient of the solute. As flow velocity increases, the
Peclet number increases, and the influence of diffusion decreases. On the other hand, as
velocity decreases, the Peclet number decreases, and diffusion begins to play an important
role in the transport process. Using the data provided in the papers of Hull and Koslow
[1986], Robinson and Gale [1990], and Wilson and Witherspoon [1976], we estimate that
the Peclet numbers at the fracture junctions in their experiments were larger than 200, 3,000,
and 10,000, respectively. At such high Peclet numbers, the transport process at fracture
junctions is certainly advection controlled, which explains why they did not observe

diffusion controlled mixing in their experiments.

Instead of using mixing rules in their numerical simulation of tracer transport in fracture
networks, Hull et al. [1987] explicitly considered both advection and diffusion at a fracture
Jjunction in their particle tracking technique, a method rarely used in large networks because
of its high computation time. Their results indicated that, even at relatively high flow rates,
diffusion plays a significant role in the dispersion of solute in fracture networks, and

streamline routing does not provide a realistic prediction of tracer migration in the system.

To determine the range of mixing rules at a fracture junction, Hull et al. [1987] directly
applied the analytical results of solute transport in a single fracture to an idealized fracture
junction. They predicted that for advection controlled mixing to occur at the junction the
residence time of solute particles 5/V should be smaller than (0.00352)/D; for diffusion
controlled complete mixing, the residence time b/V sﬁould be bigger than (O.5b2)/D;
otherwise, the mixing behavior is controlled by both advection and diffusion. If the above
relationships are expressed in terms of the dimensionless Peclet number defined in equation
(1.1), we have that advection controlled streamline routing corresponds to Peclet numbers

larger than 235; diffusion controlled complete mixing corresponds to Peclet numbers



smaller than 1.414; and transition zone mixing corresponds to Peclet numbers in the range

of 1.414 to 235.

Berkowitzetal. [1994] applied arandom walk particle tracking technique to study mixing
behavior at an idealized junction. The flow field around the junction was computed
following Philip’s [1988] method. They concluded that streamline routing provides an
adequate approximation for contaminant transport at fracture junctions with Peclet numbers
greater than 1. For cases with equal inlet and outlet flow rates (Figure 1.2), they showed that
even when the Peclet numbers were lower than 10-2 at the junction, diffusion controlled
complete mixing could not be reached. But there is no experimental data available to verify

their numerical results, which clearly disagree with Hull et al. [1987].

Although research on mixing behavior at fracture junctions has been conducted for about
twenty years and several mixing rules have been proposed: complete mixing, streamline
routing, and some combination, there is still no certain answer as to which rule is correct and
under what conditions. We believe that the mixing rule depends on the range of Peclet
numbers in g fracture network, Figure 1.4 is arandom fracture network generated by Arnold
and Bahr [1993]. The fractures have a mean aperture of 10 microns, and the standard
deviation of the natural log of the aperture is 0.70. The hydraulic gradient is 0.01 from |
bottom to top. They computed the Peclet number for each fracture and performed some
averaging at each junction to yield an effective junction Peclet number. The resulting
histogram, shown in Figure 1.5, spans over five orders of magnitude. In this simulation, the
Peclet numbers are low, but we can easily increase them by scaling up the aperture, or more
easily the gradient. Thus, a single mixing rule may not be adequate to describe solute mixing
behavior in a fracture network with junction Peclet numbers spanning several orders of

magnitude.

Stimulated by previous research and prior to our own work, we hypothesized that there

should be a continuum of mixing rules, centered somewhere near a Peclet number of 1.
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Figure 1.4. Fracture network model from Arnold and Bahr [1993].
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Above this Peclet number, a transition zone exists between complete mixing and streamline
routing. As the Peclet number decreases, the mixing process is diffusion dominated, and the
complete mixing rule is appropriate. When the Peclet number increases, the mixing process
as the junction is advection controlled, and there will be little or no diffusive mixing. The

upper limit for the streamline routing should be around a Peclet number of 10.

The objective of our research was to investigate the hypothesized relationship between
the mixing behavior and the junction Peclet number. The nature and scale of the problem
precluded any attempt of direct field research. Thus, numerical simulations and laboratory
physical experiments were conducted to investigate mixing behavior at an idealized fracture
junction. The LGA (Lattice Gas Automata) method, which was first developed about ten
years ago, was used to simulate flow and transport behavior across the fracture junction. A
new algorithm, the tracer particle algorithm, was developed in this dissertation to allow the
LGA method to simulate advection and diffusion processes more efficiently for trace
constituents in the fluid system. The LGA simulation results were compared with previous

numerical and experimental results.

A physical fracture junction model was constructed, experiments were conducted with
the physical model to investigate mixing rules over reasonable values of Pe. The results from
the physical experiments were used to test the LGA simulation results and the results of
Berkowitz et al. [1994]. Finally, a heuristic new mixing zone theory was developed to

account for the mixing behavior observed in both LGA simulations and the experiments.
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Chapter 2: The Lattice Gas Automata Method
and the Tracer Particle Algorithm

2.1 Introduction

In the last ten years, lattice gas automata (LGA) have been developed as an alternative
to molecular dynamics for simulating macroscopic fluid dynamics on the basis of
microscopic behavior. Compared to the traditional numerical methods, like finite difference
and finite element methods, the LGA method has the following advantages: (1) The LGA
simulations have the same speed and efficiency when applied in simulating flow/transport
problems with complex geometries, while the speed and efficiency of the traditional
methods under this condition decreases; thus the LGA method is more suitable for
simulating flow/transport problems in complicated geometries. (2) Boundary conditions can
be easily implemented in the LGA method. (3) The LGA method can simulate flow and
transport processes simultaneously. (4) The LGA codes are usually easier and faster to
develop than the traditional methods. (5) The LGA which are discrete analogues of
molecular dynamics can give insight into the process on a macroscopic scale. In this
dissertation, we choose to use the LGA method in our research because of the above

advantages.

In this chapter, we first introduce the LGA method and then the new tracer particle

algorithm for simulating solute transport with the LGA method.

2.2 The Lattice Gas Automata Method
2.21  Introduction

On a microscopic level, fluids consist of particles, but upon defining an REV, the fluids
can be treated as continuous. Partial differential equations can then be developed to describe
the movement of the fluids. The basic idea of LGA (Lattice Gas Automata) is to simulate

large scale flow and transport behavior from the movement of particles on a microscopic
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level (discrete level). The LGA are discrete analogues of molecular dynamics, in which
particles with discrete velocities populate the links of a fixed array of sites [Wolfram, 1986].

Sufficiently large lattice gas automata can reflect flow behavior on the continuous level.

Wolfram [1986] developed the theoretical work for lattice gas automata, in which he
showed how the movement of particles on lattice grids can result in continuum scale
behavior based on averaging on a relatively large scale. He also proved that in two
dimensions, only the hexagonal lattice is isotropic. Wolfram’s work laid the theoretical basis
for the application of lattice gas automata in fluid dynamics. The first lattice gas automata
model capable of simulating the Navier-Stokes flow equations in two dimensions was
developed by Frisch, Hasslacher, and Pomeau (the FHP model) in 1986. Since then, lattice

gas automata have been widely used in numerical simulations of fluid dynamics.

2.2.2  Theoretical Basis of Lattice Gas Automata
The theory behind lattice gas automata is molecular dynamics, kinetic theory, and

statistical mechanics. To run a lattice gas model, particles are introduced onto a lattice field.
The most commonly used lattice grid in two dimensions is the hexagonal lattice, as shown
in Figure 2.2.1. At each node or site of the hexagonal lattice, there are six links connecting
the neighboring nodes. Particles can freely move along the links with the constraint that there

can only be one particle moving in each direction. Thus, there is a maximum of six moving

movement collision

> >

Figure 2.2.1. Lattice gas field and the evolution of particles in the field.
Collision rules are illustrated only for simple two and three body collisions.
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particles at each site. In models which involve zero-velocity particles, the maximum number
of particles that a site can hold is six moving particles plus one static particle. The evolution
of LGA follows two steps. First, each particle moves one step along the link to the
neighboring site. Second, collisions occur at sites with two or more particles. Collision rules
are chosen such that mass and local momentum are conserved at each site. The
microdynamic equation that governs the movement of particles in the lattice field can be
written as

Nix; + e, t+ 1) = Nfx, 1) + @, (2.2.1)

where N; is the number of particles moving in direction j which varies from 1 to 61in a
hexagonal lattice field. N; is a boolean variable; it equals 1 when a particle is moving in
direction j, yet zero when no particle is present in direction j; x; is the spatial location of
particles atsite i; tis time; Qj represents the collisionrules; ¢;1s the directional velocity vector
of a particle moving in direction j

Qn(é—l)], sin[m(é_ 1)

e; = {cos| 1} j=1,2,"+-6

(2.2.2)
To conserve mass and momentum, respectively, in the field, the collision term in equation
(2.2.1) must satisfy the following constraints

>e;=0

J (2.2.3)

Z'Q.lej =0
J

(2.2.4)

The simplest collision rules that conserve mass and momentum and yet are able to
simulate Navier-Stokes flow in two dimensions are the two and three body head-on
collision rules [Frisch et al., 1986] depicted in Figure 2.2.1. In the two body head—on
collision case, where two particles moving head-on collide at the site, there are two possible
moving directions for the two particles to be redistributed. A uniform random number

generator is used to choose one of the two possibilities. In three body head-on collisions,
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each particle is bounced back. The status of the particles is upgraded after each movement

and collision in the field. The process continues until equilibrium is reached.

In order to bring the microscopic result up to a continuum scale, averaging is applied to
the lattice field. The two most important quantities on the continuum scale are fluid density
and velocity. They can be evaluated by spatially averaging individual particle locations and
velocities. To obtain representative results, the size of the averaging window needs to be
bigger than the particle mean free path in the field. Once the averaging scale is chosen, the
mean particle density » and mean fluid velocity, respectively, can be estimated at location

X and time t:

n= ij
J

nu = Zf]ej
J

where f; is a neighborhood average of N;, representing the probability of finding a particle .

(2.2.5)

(2.2.6)

with velocity ¢; at position x and time 7. nu is the mean momentum density.

The governing equations on the continuum scale can now be derived from the Boltzmann
transport equation. In 1872 Boltzmann proposed a transport equation for describing the
evolution of the density of similar particles. The Boltzmann transport equation in its discrete

form can be written as [Wolfram, 1986]

i +e V=8
T V=8 @22.7)
Summing over all directions j, with equation (2.2.3), leads to
0 —
5T+ 28 V=0
i i (2.2.8)

which can be rewritten in terms of the mean properties of the fluid by using equation (2.2.5)

and (2.2.6)
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an ) —
5TV () =0 (22.9)

Equation (2.2.9) is the continuity equation of the lattice fluid on a continuum scale.

The continuum governing equation for the conservation of momentum can be derived in
the similar way [Wolfram, 1986], yielding
9 . =
3 210+ 2.0 (¢ V) =0
J J (2.2.10)
There is no simple macroscopic result for the second term in equation (2.2.10). Defining the

momentum flux density tensor, /I, as
My = > (e)e)f;
j

equation (2.2.10) can then be rewritten as

6(nuk) ankl_
a7 T =0 22.11)

Frischet al. [1986] applied the Chapman-Enskog expansion to equation (2.2.11) and derived

o(nuy)  olng(muu] p 9, M
+ = =t a-lugs
ot ax; dx;  0x;" 9x, (2.2.12)

where 1 is the shear viscosity of the fluid, and p is pressure. The appearance of g(n) in the
equation arises from the finite discretization of particle velocities in the lattice field. It should
be 1in order to simulate a physical continuum system. The presence of g(n) causes the LGA
model to lack Galilean invariance, such that vorticity in the field moves with a velocity
different from the fluid velocity. In two dimensions, for the simple two and three body

collision FHP model [Frisch et al., 1986]

_ 3-n
8 =&, (2.2.13)
A general formula for calculating g(n) can be found in the paper by d’Humieres and Searby
[1987]. The lack of Galilean invariance has little significance in one phase flow at small

Mach numbers where the higher order terms in the momentum equation can be ignored.
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For an incompressible fluid, equation (2.2.9) reduces to
V-u=0 2.2.14)

and equation (2.2.12) becomes

%‘—; + g(mu - Vu = -VP + v(n)V2

(2.2.15)
where P is the rescaled pressure. Except the extra factor g(n), equation (2.2.15) is very
similar to the usual Navier-Stokes equation. The kinematic viscosity for the FHP model
[Frisch et al, 1987] is

_ 1
V= 240 = ap

1
8 (2.2.16)
where d=n/6 is the number of particles per link per site. Equation (2.2.15) can be rescaled

in time and viscosity to restore Galilean invariance [Frisch et al., 1987]

_ v P
g P=

t

vV =1t-gn), v

After rescaling, the resulting governing equation has the same form as the usual

Navier-Stokes equation,

Apart from applications in fluid dynamics, the LGA method has also been used to study
solute transport processes in fluids. In the case of fluid self diffusion, colored particles,
usually labeled black and white, are introduced onto the lattice field [d’Humieres et al., 1987
and 1988]. The colored particles have the same properties; the only difference is that they
are labeled with different colors. The collision rules are independent of particle colors. Chen
and Matthaeus [1987] used the perturbation of colored particle densities to develop an LGA
advection—-diffusion equation for a pure fluid. They also derived a theoretical formula for
the self diffusion coefficient of the fluid (See equation 2.3.6, below). Besides applications
in self diffusion, the LGA method is also applied to study chemical reaction and solute
transport process. Wells et al. [1991] applied the LGA method to simulate diffusion
controlled chemical reactions at mineral surfaces and in pore networks. Holme and Rothman

[1991] developed an algorithm to produce a lattice gas with lower diffusivity in two
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dimensions. Their method maximizes the projection of color flux in the direction of the color
field. Chenetal. [1993] applied both lattice gas and lattice Boltzmann methods to chemically
reacting systems. More detailed information about the applications of LGA method in

studying transport process in fluids can be found in §2.3 of this chapter.

This review of theory simply illustrates that the LGA method simulate fluid flow and
transport processes based on the microscopic movement of particles, recovering the

macroscopic flow and transport behavior upon averaging.

2.2.3 Discussion

Several advantages that relate to the LGA method make it a useful tool in studying
complex flow phenomena. From a numerical simulation point of view, the most prominent
features of lattice gas automata come from the fact that LGA are discrete both in time and
space. As LGA operate on a discrete lattice grid, one can make a lattice field to fit any shape;
thus, they can easily handle problems with complex geometries. Since LGA only use
Boolean variables, they are numerically stable. The algorithm for LGA is completely
parallel, making it more suitable for parallel computing. Physically, the LGA method
simulates continuum scale flow and transport behavior based on the movement of particles

on discrete (lattice gas) scale. Thus, it can provide insight into the continuum scale processes.

None of the numerical methods used in computational fluid dynamics is perfect. The
LGA method requires significant computer time. The computational burden arises from the
collision rules and the large number of sites in the field. It increases sharply when there are
extensive collision rules involved in the simulations. Another disadvantage the LGA method
inherits is the noise of the numerical results. One way of smoothing the results is to carry
out averaging in both time and space domains. Recently, an improved version of the LGA
method, called the lattice Boltzmann approach, was developed to reduce noise and improve
the efficiency of the LGA method. The lattice Boltzmann (LB) method directly uses the

discrete Boltzmann equation to determine an average particle density in the field. Instead of
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using Boolean variables, the L.B method uses real numbers to represent the particle density
distributions in the field. Perturbations are then applied to drive flow in the field. As the LB
method directly uses the Boltzmann transport equation, it preserves the Galilean invariance

automatically and greatly reduces the noise.

Since the development of the first successful LGA model in 1986, research interest in the
applications of this numerical technique has been increasing. Numerical simulations have
been carried out to study hydrodynamic phenomena, multiphase flow, transport behavior,
temperature related flow phenomena, single and multiphase flow in porous media,
water-rock interactions, and flow in fractured porous media. In this dissertation, a tracer

particle algorithm is developed to simulate the solute mixing process at fracture junctions

with the LGA method.
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2.3 A Tracer Particle Algorithm for Simulating Solute
Transport With Lattice Gas Automata

23.1 Introduction

The lattice gas automata (LL.GA) method has been used to study diffusion and transport
processes in fluids. An important advantage of this approach is that it simulates continuum
scale flow and transport phenomena based on the microscopic behavior of particles. To
simulate diffusion behavior with the LGA method, colored particles are usually introduced
into the field [d’Humieres et al., 1987 and 1988]. Chen and Matthaeus [1987] used the
perturbation of colored particle densities to obtain an LGA advection-diffusion equation for
a pure liquid. Boon and Noullez [1989] applied the extended FHP (Frisch, Hasslacher, and
Pomeau) model in a study of self-diffusion coefficients and long time correlations.
Bernardin and Sero-Guillaume [1990] generalized earlier lattice gas mixture models for
mass diffusion by introducing particles with different speeds and masses. They applied the
Chapman-Enskog expansion to derive the dissipative properties of mixture models. The
diffusion coefficients and viscosities of non-reactive gases were derived mathematically.
Sero-Guillaume and Bernardin [1989] introduced an energy level method to simulate heat
transfer and reaction with lattice gas. Bernardin et al. [1991] extended the energy level
method to multispecies in two dimensions. Wells et al. [1991] studied diffusion controlled
chemical reactions at mineral surfaces and in pore networks. In their model, a method similar
to the energy levels approach was used to simulate diffusion processes in the liquids. Holme
and Rothman [1991] included a non-local interaction in lattice gas to produce a lattice gas
with lower diffusivity in two dimensions. This method maximizes the projection of color
flux in the direction of the color field. They also developed a lattice Boltzmann model with
non-local interaction. Dawson et al. [1993] developed an algorithm for simulating
reaction-diffusion equations with the lattice Boltzmann method. Chen et al. [1993] applied

both lattice gas and lattice Boltzmann methods to chemically reacting systems.
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The above algorithms involve collisions of all the particles in the field. Since different
diffusion coefficients require different collision rules, the simulations can be complicated
by these nontrivial rules and require significantly long computer times. Most of these
algorithms were developed for studying diffusion related processes. The movement of
particles in the field was only related to the concentration gradient of each species in the field
and had nothing to do with the local momentum of the field. Therefore, the influence of
advection on transport was neglected. However, the movement of particles in the field is
determined by both diffusion and advection processes; advection plays an especially
important role at high flow velocities. When these colored particle algorithms are applied
in simulating transport behavior in a complex flow field, some of the particles can move

upstream even though the velocity is quite high.

In this paper we develop a tracer particle algorithm to simulate transport of dilute solutes
using the lattice gas approach. A dilute solution consists of bulk fluid particles which act as
a solvent, and solute particles. In general, the movement of a solute particle is mainly
influenced by forces acting on it from the surrounding bulk fluid particles and by the energy
of the solute particle itself. It is assumed that solute particles do not interact with each other
because of their low concentrations. In the dilute solution, fluid properties and the flow
characteristics of the solution are not significantly affected by the presence of the solute,
while the solute particles act as tracers to indicate the flow and transport behavior of the bulk
fluid. With these thoughts in mind, we suggest a new algorithm using so-called “tracer
particles” for the study of solute transport phenomena with the lattice gas approach. The new
tracer particle algorithm does not require collision rules for the tracer particles, so it can be
easily implemented in any lattice gas model studying solute transport processes. The new
algorithm is computationally efficient since each tracer particle acts independently of the
others. It also can easily simulate solute diffusion processes with low diffusion coefficients.
We first describe the new algorithm; then we show some of the numerical results for solute

diffusion and for dispersion processes in a moving fluid.
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2.3.2  The Tracer Particle Algorithm

The tracer particle algorithm is based on the analog to solute particle movement at the
lattice gas level. Considering the fact that in a diffusion process the bulk fluid particles acting
as solvent move randomly in the field, the direction of the local momentum of the bulk fluid
particles also changes randomly. When flow is involved, at an REV (Representative Element
Volume) scale, the flow field has a certain pattern; there is no randomness. But at the lattice
gas (discrete) scale, depending on fluid velocity, the movement of fluid particles from site
to site still involves some random movement, as does the local momentum. As flow velocity
increases, the relative randomness of the fluid particles decreases, the local momentum has
a prevalent direction, and diffusion becomes less important. While, as flow velocity
decreases, the randomness of the fluid particles and the direction of the local momentum
increases at local scale, and diffusion begins to play an important role. Thus, local net
momentum alone could act as an indicator for the transport of tracer particles in the field.
In the current algorithm, only the local net momentum of the bulk fluid particles is used to -
direct the moving direction of the tracer particles. The tracer particles do not participate in
the collisions involving bulk particles, nor do they interact with each other. The tracer
particles are independent of each other. The introduction of tracer particles in the lattice field ‘
does not change the bulk fluid properties and the flow characteristics of the field. As aresult,
the mass and momentum of the fluid particles are conserved during the simulations.
Although the tracer particle momentum is not strictly conserved, this loss is not significant

because the density of the tracer particle is very low.

In the tracer particle algorithm, the fluid lattice field is computed in the standard way, with
bulk fluid particles of mass m moving from site to site and colliding with each other every
simulation time step. The tracer particles are moved only every & time steps. The length of
the waiting period k is proportional to the ‘diameter’ of the tracer particle. The bigger the
diameter of a tracer particle, the larger the value k, which means that as the diameter of a

tracer particle increases, its moving velocity decreases. Once a tracer particle reaches a site,
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it rests at that site for k-1 time steps before moving again. A new moving direction j is
computed, and the tracer particle moves in that direction with velocity u; = 1/k (lu/sts), where
lu is the length of the hexagonal lattice links, szs represents simulation time step, and for a
hexagonal lattice field, j=1, ....6. The process is then repeated. The length of the waiting
period k determines the tracer particle diffusion coefficient. Unlike the commonly used
colored particle algorithm, the tracer particle algorithm allows a tracer particle and a bulk
particle to have the same moving direction at one site. The bulk particles are allowed to pass

through the (usually) slow moving tracer particles.

The new moving direction of a tracer particle is computed in the following way. Suppose
a tracer particle is located at site i with moving direction in j at time . The tracer particle
remains at site i until some later time #+k. During this period it accumulates additional
momentum from the surrounding bulk fluid particles which is used to determine the new
moving direction. At the end of the period, the tracer particle moves to a neighboring site
and the direction of its movement is a weighted function of the accumulated momentum. The
momentum the tracer particle “obtains” from the bulk particles at a later time 7+k is given

by

t+k

Jiiex = ), ). me; (2.3.1)
b

where ¢; is the velocity ( 1 lu/sts) of a bulk fluid particle at site i moving in direction j after
collision among bulk fluid particles at time #. The terms on the right hand side of equation
(2.3.1) represent the accumulation of net local momentum at the lattice site from time 7 to

t+k.

The actual moving direction of the tracer particle at time step #+k must still be calculated
from the particle momentum described by equation (2.3.1). In the two dimensional case with
a hexagonal lattice, there are only six possible moving directions in the lattice field. If the

net local momentum J; , ., is zero, the moving direction of the tracer particle at the ith site
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is selected randomly with equal probability in all six directions. For non-zero J; , . the

direction of the net local momentum at site { is calculated as

Jiy
a; = arctan(r) (23.2)
w

where ¢; is the direction of the local net momentum; and J;; and Jj, are the cartesian x and

y components of the local net momentum J; ., ;. For a hexagonal lattice, the direction of

each link can be written as 7(j-1)/3, where j varies from 1 to 6, representing all the six
possible moving directions in a lattice field. If ¢; is in a lattice link direction, then the tracer
particle will exactly follow the direction of a;. When ¢; is not in a lattice link direction, the
moving direction of a tracer particle must be decided by some rule. In this paper, we
introduce an increment 6 around the moving directions 7(j-1)/3. Then ¢; satisfies one of the

following equations

M_d < a; < 7(-1) +d, or (2.3.3)
3 ! 3
7x(j-1) xj
3 to<as3-0 (2.3.4)

When equation (2.3.3) is satisfied, the momentum direction ¢, is within a & value of a link
direction m(j-1)/3 and the tracer particle is directed to move along direction j. If equation
(2.3.4) is satisfied, a uniform random number generator is used to choose the moving
direction of the tracer particle between the j and j+ ! directions. As the apparent density of
the tracer particles is very low, the probability that two tracer particles could end up at the
same site is very small; should this occur, the tracer particles will move along their previous
directions. Thus, the movement of the tracer particles in the field is an uncorrelated random

walk in time and space.

Within the colored particle algorithm, the self-diffusion coefficient Dy of a fluid can be
calculated from the theoretical analysis of certain collision rules. For example Chen and

Matthaeus [1987] used the perturbation of colored particle densities to obtain an LGA
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advection-diffusion equation for pure fluid. When the velocity of the fluid is zero, the

governing equation describes a diffusion process, yielding Fick’s second law

%_f =V (DYVO (2.3.5)
where D is the self-diffusion coefficient with units of [u2/sts. For simple FHP two and three

body head-on collision rules, the self-diffusion coefficient is given by
Dy =3(1 -5 (2.3.6)

where n/6 is the number of particles per link per site.

A current weakness of the tracer particle algorithm is that we have not been able to
theoretically calculate its diffusion coefficient. In this paper, numerical simulations inside
arectangular domain with a known analytical diffusion solution on the continuum scale were
carried out, and an analytical solution was used to fit the numerical simulation results to

estimate the diffusion coefficients of the tracer particles.

2.3.3 Diffusion Results and Discussion

Consider a rectangular domain in the x and y plane. Two kinds of colored particles are
introduced into the field, black and white. They are identical in properties and behavior, -
differing only in their labels and initial locations. The relative concentration is defined as the
ratio of the number of black particles over the total number of particles in the averaging
space. The white particles are initially distributed in the right part of the domain from x> i2
to x=/, the length of the domain, with a relative concentration of zero. The black particles
are initially located in the left part of the field from x=0 to x</ with a relative concentration
of unity (C/Cyp=1). No—flow boundary conditions are maintained along the borders of the
domain. The analytical solution for a y-direction averaged diffusion process inside this

domain is given by Crank [1970]

ey D22
C = C, % +%— Z % sz'nmlrh cosm;x exp( Dn t) 2.3.7
n=1



25
with the initial condition
C = CO O<x<h

C=0 h<x<l

and boundary conditions

€ 9 x=0
ox

oC _ -
ax—O x=1

where h is the initial domain length of the solution with assumed concentration Cp, and D
is the diffusion coefficient of black particles. This continuum solution predicts mean

concentration over a transect of the rectangular domain,

To test the numerical code, the LGA model was first run with the colored particle
algorithm for self diffusion of the fluid particles. In equation (2.3.7), D was replaced with
the self-diffusion coefficient of black and white particles. For simple two and three body
head--on collisionrules, Dy is given by (2.3.6). In the simulation, the mean density of the bulk
fluid was n=1.5 particles per site, with a theoretical self diffusion coefficient
Dy=4.74(lu?/sts). The rectangular shaped field had x and y dimensions of 240x84 (sites).
The fluid particles had a unit mass of m=1, and a unit velocity of 1 lu/sts. In the first step,
black fluid particles were randomly distributed only in the left half of the field, and white
fluid particles were randomly distributed only in the right half. The momentum of the
particles was distributed such that the total momentum of the field was zero. Thus, the
macroscopic velocity of the bulk fluid was zero. As the simulation proceeded, particles
moved freely along the lattice links. We examined the y-directional averaged relative
concentration in the field using (2.3.7). The averaging window used to compute the y
averaged colored concentrations in the simulation was 12x84 over one simulation time step.
The simulated relative concentration distribution for the black particles reproduces the
analytical relative concentration distribution calculated from equation (2.3.7), as shown in

Figure 2.3.1.
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Figure 2.3.1. Relative concentration distribution for self-diffusion in bulk
solution, theoretical self-diffusion coefficient Dy=4.74 (lu?/sts). The time ¢
represents the number of simulation time steps.

The same solution (2.3.7) was also used to examine the diffusion of tracer particles,
representing the diffusion of a solute. In the tracer particle method, black tracer particles
were initially distributed at the left half side of the field, again with a relative concentration
of 1, and white tracer particles were on the right half side of the field with relative
concentration zero. In this case, D was the tracer particle diffusion coefficient to be
determined. There are two approaches in determining the tracer particle diffusion coefficient
D. First, we can introduce just one tracer particle into the field and then measure the distance
X traveled by the tracer particle in time t. We then repeat this procedure for many tracer
particles to get a statistical relationship between X and . The tracer particle diffusion
coefficient can be determined from the classical Fickian relationship X=+/(2Dt). The

second approach used in this paper is to put many tracer particles into the field but also to
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ensure that the probability that two tracer particles can meet at the same site be close to zero.
Since the tracer particles are independent of each other, the results can be regarded as an
ensemble average over many individual tracer particle excursions. We used the second
method because it is far more efficient. The diffusion coefficient in equation (2.3.7) was
adjusted to match the analytical solution to the y-direction averaged tracer particle

concentrations.

In the following simulations, the lattice field had dimensions of 480x36 (sites). The
average number of bulk particles per site was, n=1.5, the same as for the bulk fluid
self-diffusion case. The number of tracer particles introduced onto the the lattice field was
10% of the total number of sites. Tests were run to check the possibility that two tracer
particles could meet at the same site, and the results showed that the probability was very
low; in 5,000 simulation time steps, only two cases were found involving two tracer particles
at the same site. The initial positions of the tracer particles inside the field were randomly
distributed by using a uniform random number generator, so that the diffusion process started
from an initially stable condition. The J value used to determine tracer particle moving

directions was 0 =2.78x1072 radians which corresponds to 5 degrees.

We first started with the case k=1. The tracer particles moved at the same velocity as the
bulk fluid particles. The simulated and fitted relative concentration curves for the tracer
particles are plotted in Figure 2.3.2 The tracer particle concentrations are consistent with a
Fickian molecular diffusion process described by equation (2.3.7); thus the algorithm
appears to be working. The tracer particles have a diffusion coefficient of D=0.88 (lu?/sts),
substantially lower than the bulk fluid self-diffusion coefficient, a situation that arises from
the fact that the tracer particles do not take part in the two and three body collisions with the
bulk fluid particles. Increasing the waiting time period £ has the effect of decreasing the
diffusion coefficient, as shown in Figure 2.3.3 for k=6. The tracer diffusion coefficient is

D=0.085 (Iu?/sts), an order of magnitude lower than that with waiting period k=1.
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Figure 2.3.2. Relative concentration distribution of tracer particles.
The fitted diffusion coefficient D=0.88 (Iu?/sts).
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Figure 2.3.3. Relative concentration distribution of tracer particles
with a waiting period k=6. The fitted diffusion coefficient D=0.085
(lu?/sts).



29

Additional simulations were run with different & values to investigate the influence of
waiting period k on tracer diffusion coefficients. Figure 2.3.4 shows the relationship between
logD and logk, for kranging from 1 to 200. The simulated data shows that for constant bulk
fluid density, tracer particle diffusion coefficient D is inversely proportional to £, the waiting
period. A linear regression of the tracer particle simulation results revealed that the slope of
the fitted line is around -1 if the point at k=1 is ignored. Recall that we suggested that the
waiting period £ is proportional to the size of the tracer particles. Thus, the tracer particle
diffusion coefficient is inversely proportional to the radius of the tracer particles. Einstein
[1908] derived a theoretical formula for calculating the diffusion coefficient of dilute

suspended particles in a liquid. He showed that the diffusion coefficient is inversely

proportional to the radius of the suspended particles.
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Figure 2.3.4. Variation of tracer diffusion coefficient, D,

with waiting period, k.
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In these simulations, only the local net momentum was used for directing the movement
of the tracer particles and the memory of the tracer particle was ignored. The memory can
be easily added in the current algorithm, but must be done carefully. If the memory is too
large, tracer particles basically follow their previous moving directions, and the influence
of local net momentum is ignored. Computationally, adding memory in the simulations
increases the computation time. Physically, the tracer particle algorithm without memory
appears to posses the desired diffusion behavior. Thus, we do not consider the memory in
simulations presented here. Further research is necessary to investigate the influence of the

tracer particle memory on the diffusion coefficients.

The numerical simulation results illustrate that with the tracer particle algorithm, the
lattice gas automata method can be easily applied to simulate diffusion transport processes

with low diffusion coefficients.

2.3.4  Taylor Dispersion Results and Discussion

One purpose for developing the tracer particle algorithm was to study solute transport
processes in a flowing fluid. The algorithm was tested for solute transport behavior during
flow between two parallel plates. The solution for the averaged concentration distribution
in the direction of flow can be easily derived from Taylor-Aris dispersion theory [Aris,
1955]

1 x-Vit
R F efCe= D,z)] (2.3.8)

Sla

7
Di=D+300D (239)

where x is the distance from the source, V is the average flow velocity, / is the width of the

channel, erfis the error function, and D is the longitudinal dispersion coefficient.

To test the tracer particle algorithm for the Taylor dispersion problem, a steady state flow

field was first formed and then tracer particles were injected into the field. The field had
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dimensions of 460x35 sites. In the numerical simulation, the mean density of bulk fluid
particles was n=1.91. The averaging window for flow estimation was 115x7 sites. The
average flow velocity in the field was 0.055 lu/sts. Tracer particles with the waiting period
k=1 were used in the simulation. The tracer particle diffusion coefficient was 0.68 lu?/sts
which was determined by running the diffusion problem described in equation (2.3.7) with
the mean bulk fluid particle density of n=1.91. The tracer particles were injected at a distance
of 174 lu from the upstream flow boundary to ensure a fully developed velocity profile,
which was checked by using a small averaging window for the flow field in the test runs.
When a tracer particle reached the downstream boundary, it was removed from the field. The
size of the averaging window used in the numerical experiments for estimating tracer
concentrations was 10x35. The reason for choosing a small averaging size for tracer particles
in x direction was that a large averaging size in x direction would smooth the concentration
profile. The averaging window for tracer particle concentrations was applied from the
injection boundary of tracer particles then down stream. The injection boundary of the tracer
particles was taken as the origin of the dispersion problem. The simulated relative
concentration curves of tracer particles at times 600, 1,000, and 2,000 simulation time steps
are plotted in Figure 2.3.5 and compared to those calculated from equation (2.3.8). Notice
that at 2,000 sts, the tracer particles have already reached the down stream boundary. This
test shows that the tracer particle algorithm can simulate transport processes involving both

diffusion and advection.

In the case of waiting period k> 1, the tracer particle moves at a velocity slower than the
fluid. The dispersion behavior can no longer be simply described by the Taylor-Aris
dispersion theory. Thus, the algorithm needs to be further developed for simulating
dispersion problems with low diffusion coefficients (waiting period k>1). In the fracture
junction problem we are thus required to use k=1 and to change fluid density » in order to

change the velocity, tracer diffusion coefficient, and Peclet number.
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Figure 2.3.5. Comparison between simulated concentration profiles and
the theoretical results.
2.3.5 Conclusions
The tracer particle algorithm simulates diffusion and advection processes properly. By
varying the waiting period of the dilute tracer particles, the effective diffusion coefficient
can be controlled over a wide range without changing the properties of the bulk fluid
particles. One important feature of this new algorithm is that it relates the local momentum
of the bulk fluid lattice field to the moving processes of tracer particles, reflecting the
dynamic transport process of solute particles in the flow field. This new method can be easily
extended to higher dimensions and multiple species. Unlike the colored particle methods,
the tracer particle algorithm does not involve collisions between tracer particles and bulk
particles nor among tracer particles themselves. The computational burden is reduced
greatly. Thus, the algorithm is more efficient. But the algorithm needs to be further

developed for simulating dispersion behavior involving waiting period £>1.
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Chapter 3: Mixing Behavior at Fracture Junctions:
The Numerical Simulation Results

3.1 Introduction

Past research on mixing behavior at fracture junctions has been focused on determining
mixing rules applied in numerical simulations of solute transport in discrete fracture
networks (see Chapter 1). Several mixing rules have been proposed: complete mixing,
streamline routing, and some combination. However, there is still no certain answer as to

which rule is correct and under what conditions.

Stimulated by previous research [Hull et al.,, 1987, Berkowitz, et al., 1994] we
hypothesized a mixing rule at idealized fracture junctions. There should be a continuous
mixing rule started somewhere near a Peclet number of 1. Above this Peclet number, a
transition zone exists between complete mixing and streamline routing (see Figure 3.1). As
the Peclet number decreases, the mixing process is diffusion dominated, and the complete
mixing rule is appropriate. When the Peclet number increases, the mixing process at the

junction is advection controlled, and there will be little or no diffusive mixing. The upper

diffusion controlled hydrodynamically
complete mixing streamline routing
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Figure 3.1 Hypothesized mixing rule at the idealized fracture junction of
Figure 3.2.
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limit for the streamline routing should be somewhere around a Peclet number of 10. If the
transition zone between the two limiting cases is narrow, then either the diffusion controlled
complete mixing rule or the advection controlled streamline routing can be used. If the
transition zone is broad, then an adaptive mixing rule is required, and it depends on local
conditions around each fracture junction in a network. Hull et al. [1987] had a similar

hypothesis, but with a higher estimate for the upper limit.

Of the very few attempts to study mixing behavior at fracture junctions, Hull et al. [1987]
implicitly considered this transitional hypothesis by creating a heuristic hybrid mixing rule
but never explicitly studied it. Berkowitz et al. [1994] applied a random walk particle
tracking technique to study mixing behavior at an idealized continuous junction as shown
in Figure 3.2. The flow field at the junction was computed following Philip’s [1988] method.
They concluded that streamline routing provides an adequate approximation for
contaminant transport at fracture junctions with Peclet numbers greater than 1; there is a
transition zone between diffusive mass transfer and advective mass transfer; and complete
mixing does not properly represent mixing behavior at any Peclet number. Berkowitz et al.
[1994] never observed diffusion controlled complete mixing in the simulations even at
junction Peclet numbers as low as 3x1073. There are no other numerical simulations or

experimental results available to verify their numerical results.

Figure 3.2. Mixing at an idealized continuous fracture junction.
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In the current research, we use the lattice gas automata (LGA) method to investigate this
hypothesis and other issues concerning mixing behavior at fracture junctions. The numerical
results from the LGA simulations are then compared with those of Berkowitz et al. [1994].
Under non-equal flow rate conditions, the proportional routing proposed by Hull and
Koslow [1986] for predicting concentrations in outlet fractures is tested with the LGA

simulations.

3.2 Numerical LGA Model of Mixing at a Fracture Junction

The idea of the LGA method is to simulate macroscopic flow and transport behavior from
the movement of particles on microscopic level (discrete level). Macroscopic fluid behavior
can be recovered after one defines average particle densities and velocities over suitable
regions of the lattice. Frisch et al. [1986] were the first to apply the LGA method to the
numerical simulation of the Navier-Stokes equation. The first step of the method is to
construct a lattice field. In two dimensions, a hexagonal lattice is isotropic and widely used
in the simulations of fluid dynamics (see Figure 2.2.1). To simulate a fluid in equilibrium,
particles are initially distributed in the field at random. Each fluid particle has unit mass and
moves with unit speed in one of the six possible directions. For the two dimensional
hexagonal lattice, the velocity vector in directionj ( j=1, 2, ... 6) 18

2.7'[(é— 1)]’ sin[m(é— 1)]

/

e = {cos| 3.1)

At each site of the lattice, no more than one fluid particle can move in the same direction,

so each site can have up to six moving particles.

The evolution of particles follows two steps. First, each particle moves one step along the
link to the neighboring site. Second, collisions occur at each site with two or more particles.
Collision rules are chosen such that mass and momentum are conserved after each collision.
In the current study, two, three, and four body head-on collision rules are used, as illustrated
in Figure 2.2.1 and Figure 3.3. When a fluid particle hits the fracture wall, it is bounced back
to preserve a non-slip boundary along the wall. Frisch et al. [1986] proved that such collision

rules can reproduce the Navier-Stokes equation on a macroscopic scale. The macroscopic
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Figure 3.3. Four body head--on collision rules used in the numerical simulations. There are
three possible configurations a, b and c. In each configuration, the left side refers to the state
before the collision. The right side refers to the state after the collision. A uniform random
number generator was used to choose one of the two possibilities.

mean density, d, and velocity, u, of the field are defined as

d = ‘%ﬁ Z(;Nj ) (3.2)

u= %a—lﬂ > Ngp (33)
i

where M is total number of sites, N; is the number of fluid particles at site i moving in
direction j; ¢; is the particle velocity vector in direction j. The relationship between
macroscopic mean fluid density d and mean fluid particle density n is d=2n/+/3. The ratio

2/ /3 comes from the fact that in a hexagonal lattice the number of nodes per unit areais 2/ /3

instead of 1.

The LGA method simulates flow and transport processes simultaneously, and it can
handle problems with complex geometries. In our LGA simulations, the fracture junction
model has an uniform aperture of 35 lu (lattice unit) with total length of 398 lu in each
direction. The total number of nodes in the field was 31,212. The numerical simulations were

run on a SUN SPARC-2 and a SPARC-IPX with a Wetek power up™ chip.

To simulate flow around the fracture junction, fluid particles were injected at each end
of the fracture. Only at the downstream outflow boundaries could fluid particles move freely

out of the field. In this way, a pressure gradient and flow field were established. The number
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of injected particles at both inflow and outflow boundaries were adjusted to create the
desired discharge and mean flow velocity in each fracture. Figure 3.4 shows the simulated
velocity profile around a fracture junction with equal discharge in each fracture, simulating
the situation shown in Figure 3.2. The mean fluid particle density n=2.67, and the average
velocity was 0.140 lu/sts (lattice unit/simulation time step) in each fracture. The averaging
window used for deriving velocity profiles in this and all the later simulations was 10x7
along and perpendicular to flow direction, respectively. It is clear that a dividing streamline
exists that separates the flow from fracture 1 and that from fracture 2 at the junction. In the

case of an advection controlled transport process, solute carried in from fracture 1 will follow
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Figure 3.4. Velocity distribution at the fracture junction. A dividing
streamline separates flow from top and left. A schematic of the grid
orientation is shown in the upper right corner for illustrative purpose at a
much reduced grid density.
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the streamline directly into fracture 4 (see Figure 1.3b). Only diffusion can cause solute to

move across the dividing streamlines to enter the flow region formed by fractures 2 and 3.

In order to simulate the mixing process at the fracture junction with the LGA method
more efficiently, a new algorithm, called the tracer particle algorithm, was developed (refer
to §2.3 for details) and used in the current research. The algorithm takes into account the
influences of both diffusion and advection on the transport of solute particles in the field.
As the word “tracer” implies, the introduction of tracer particles will not alter the flow field,
nor will it change the transport properties of the field. Thus, no collision rule is involved for
the tracer particles, and the computation burden is greatly reduced. In LGA simulations of
mixing behavior at fracture junctions, tracer particles were introduced onto the lattice field
as an indicator for flow and transport in the system, and they moved with the same velocity
as the fluid particles (the waiting period of the tracer particle was 1; see §2.3). The density
of tracer particles in the lattice field was kept very low to reduce the probability of two or
more tracer particles meeting at the same site, in such a case, each tracer particle would move

along its original direction.

The diffusion coefficient of tracer particles was estimated by running a self-diffusion
problem in a rectangular domain and fitting the numerical results with a known analytical
solution (refer to §2.3 for details). The tracer diffusion coefficient D depends on the fluid
particle density n which also determines the fluid pressure and viscosity. Numerical
simulations were run to estimate tracer particle diffusion coefficients for different particle
densities . Figure 3.5 shows the relationship between particle density » and tracer particle
diffusion coefficient D for two, three, and four body fluid particle head-on collision rules.
As the fluid particle density increases, the tracer particle diffusion coefficient decreases, but
at a decelerating rate. The simulated average flow velocity, the tracer particle diffusion

coefficient corresponding to the fluid particle density in the field, and the half diagonal
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Figure 3.5. Relationship between tracer particle diffusion coefficient and
fluid particle density for two, three, and four body head-on collisions.

length of the junction were used to calculate the junction Peclet number defined in equation

(1.1).

In the numerical simulations, tracer particles were injected at the top boundary of fracture:
1 as indicators for the movement of a solute through the junction, The tracer particles were
labeled black to distinguish from the white fluid particles. A constant mass flux boundary
condition was maintained at the top boundary by injecting tracer particles at certain time
intervals. To conserve the total mass of tracer particles injected, any injected tracer particle
that hit the entries of the two inflow boundaries was bounced back. Tracer particles could
only leave the system through outflow fractures 3 and 4. Once a tracer particle reached one
of the outflow boundaries, it was removed from the field, which is similar to a first type
boundary condition with zero concentration in a continuum model. The total number of
particles injected and the total number of particles flowing out of the system were counted

at the top, right, and bottom boundaries of the junction. Equilibrium was reached when the
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total number of particles injected equaled the total number of particles flowing out of the

system,

The mixing ratio, introduced to indicate the level of diffusive mixing at the fracture

junction, is defined as

¢ (G4

As shown in Figure 3.2, C3 is the concentration of contaminant in the outflow fracture 3, and
C; is the concentration of the original contaminant in the inflow fracture 1. In the LGA
simulations, the mixing ratio is redefined in terms of tracer particle numbers. In equation
(3.4) the concentration C3 is replaced by the total number of particles moving out through
fracture 3 within a certain number of simulation time steps, and (; is replaced by the total
number of tracer particles injected at the inflow boundary of fracture 1 during the same

period,

Ny (3.5)
Under equal flow conditions, a value of M,=0 indicates an advection controlled process at
the fracture junction. While the case of diffusion dominated complete mixing corresponds
to a mixing ratio of M,=0.5. Any value of M, between 0 and 0.5 indicates a transition mixing
process in which both advection and diffusion control the solute mixing behavior at the

junction.

33 Mixing Behavior at a Fracture Junction With Equal Flow Rates
For an idealized fracture junction with equal flow rates, solute transport at the junction
is determined by both advection and diffusion. But only diffusion can contribute to the
mixing of the solute at the junction. Numerical simulations were run from high Peclet
numbers down to low Peclet numbers to simulate a range of mixing behaviors at the fracture

junction.
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The first case was run with a mean fluid particle density n=2.67 and an average flow
velocity of 0.14 lu/sts in each fracture. The velocity profile of the flow field is shown in
Figure 3.4. At each simulation time step, one tracer particle was injected at the inflow
boundary of fracture 1. The tracer particles had a diffusion coefficient of 0.56 lu%/sts.
Starting from 20,000 sts, the system was at equilibrium with the number of particles moving
out of the system equaling the number of injected tracer particles. To obtain a proper estimate
of the mixing ratio, only the tracer particle data from 30,000 to 60,000 simulation time steps
was used. During this period, a total of 30,000 tracer particles were injected into the inflow
fracture 1, Of all the injected tracer particles, 5,135 of them moved out through fracture 3,
and 24,840 of them flowed out through fracture 4. The tracer mass balance error was
0.083%. Atequilibrium there were, on average, 1,475 tracer particles in the field at any time.
Compared to a total of 31,212 sites in the field, the number of tracer particles was very small.
In order to get a clear idea about the transport of tracer particles around the junction, a
superposed spatial distribution of tracer particles is used to represent the average behavior
of the tracer particles. Figure 3.6 shows the superposed spatial distribution of tracer particles,
exaggerated in size, in the field from snap shots at 40,000, 50,000, and 60,000 simulation
time steps. The tracer particles are shown in exaggerate size. The simulated mixing ratio at
the junction is 0.17, which means that of 100 tracer particles injected at the inflow boundary
of fracture 1, on average 83 of them left the system through fracture 4, and only 17 of them
moved across the dividing streamline under the influence of diffusion and left the system
through fracture 3. The Peclet number at the fracture junction calculated from equation (1.1)
is P,=6.10. It suggests that advection played a more important role than diffusion in the

transport process, consistent with the simulation results.

Figure 3.6 also clearly shows the dividing streamline along the diagonal of the fracture
junction. When flow from fracture 1 met flow from fracture 2 at the left upper corner of the
junction, few particles had a chance to move across the dividing streamline due to the

relatively high flow velocity and small residence time. As the flow moved toward the
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Figure 3.6. Superposed spatial distribution of tracer particles in the
field from snap shots at 40,000, 50,000, and 60,000 simulation time
steps for n=2.67, P,=6.10, and M,=0.17.

outflow fractures, the residence time of tracer particles increased, which in turn increased
the chance for a tracer particle moving adjacent to the dividing streamline to diffuse across
it and into the lower left flow domain. That is why the number of scattered tracer particles
increased from the upper left corner down to the lower right corner at the junction. Tﬁose
particles were then carried downstream into the lower outflow fracture 3. Once the tracer
particles were in the outflow, diffusion played an important role in homogenizing tracer
particle distribution downstream in the channel.

As flow velocity decreases, the residence time of tracer particles at the junction increases;
thus more tracer particles have the chance to diffuse across the dividing streamline. The

second case was run with a mean fluid particle density n=1.78 and an average velocity of
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0.1051u/sts in each fracture. At each simulation time step, one tracer particle was injected
at the entrance of the the inflow fracture 1. The diffusion coefficient of tracer particles in the
field was 0.71 lu?/sts and the Peclet number was P,=3.71. Transport equilibrium was
established in the system after 20,000 steps. Figure 3.7 shows the superposed spatial
distribution of tracer particles in the field with a mixing ratio of M,=0.25. From 30,000 to
60,000 sts, a total of 30,000 tracer particles were injected, with 22,520 of them flowing out
through fracture 4, and 7,484 of them moving out through fracture 3. The mass balance error
of the tracer particles was 0.013%. At equilibrium, the average number of tracer particles
in the field was 2,465, almost 1,000 more than the previous case. Comparing to previous case
in Figure 3.6, the spatial distribution of tracer particles in Figure 3.7 clearly shows that as

the average velocity decreases, more tracer particles cross the dividing streamline into the
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Figure 3.7. Superposed spatial distribution of tracer particles in the
field from snap shots at 40,000, 50,000, and 60,000 simulation time
steps for n=1.78, P,=3.71, and M,;=0.25.
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lower flow region formed by fractures 2 and 3. As a result, there is more diffusive mixing

at the junction.

A further decrease of flow velocity results in a much larger tracer particle residence time
in the junction, and thus an even higher mixing ratio. Figure 3.8 shows the snap shot of tracer
particle locations in the field at 80,000 simulation time steps. The average velocity in each
fracture is 0.05lu/sts with a mean bulk fluid particle density of 1.60 and a tracer diffusion
coefficient of 0.751u%/sts. The junction had a Peclet number of P,=1.67 and a mixing ratio
of M;=0.37. The numerical simulation was run for a total of 80,000 time steps to make sure
equilibrium was established in the field. A mass balance check on tracer particles indicated

that the system was at equilibrium after 30,000 steps. In a test run, one tracer particle at each
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Figure 3.8. Snap shot of tracer particle distributions in the field at 80,000
simulation time step for n=1.60, P,=1.67, and M,=0.37.



47

simulation time step was injected at the inflow boundary of fracture 1. The test result showed
a mixing ratio of 0.38 at the junction. An examination of the number of tracer particles per
site showed that some sites had more than one tracer particle. At a low flow velocity, the
injected tracer particles were not quickly carried out by the flow and the number of tracer
particles built up, exceeding the assumed maximum one tracer particle per site restriction
imposed to ensure statistical independence. In this case, the algorithm simply directs the
tracer particles to move in their original directions, which causes artificial mixing at the
junction. To eliminate this problem, the numerical simulation was rerun for the same flow
field but with a reduced number of tracer particles. Instead of injecting one tracer particle
at each time step, a tracer particle was injected every two simulation time steps. Thus, the
number of tracer particles in the field was greatly reduced. This the case shown in Figure 3.8.
From time step 50,000 to 80,000, a total of 15,000 tracer particles were injected with 9,366
of them moving out through fracture 4 and 5,591 flowing out through fracture 3. The mass
balance error of the tracer particles was 0.28%. At equilibrium, on average, there were 2,800
tracer particles in the field. The mixing ratio dropped slightly from 0.38 to 0.37. Figure 3.9
shows the superposed spatial distribution of tracer particles in the field from the snap shots
at 60,000, 70,000, and 80,000 simulation time steps. Compared with previous relatively high
Peclet number cases, it is easy to see that as velocity decreases, more and more tracer.
particles cross the dividing streamline, and the magnitude of diffusive mixing increases.
Another feature shown in both Figures 3.8 and 3.9 is that, due to diffusion, some of the tracer

particles moved upstream into inflow fracture 2.

We expect that when the velocity is reduced below a certain limit, complete mixing should
occur. Increased residence time of tracer particles at the junction should allow diffusion to
dominate the mixing process. The next simulation in Figure 3.10 illustrates this case. The
average velocity in each fracture was 0.02 lu/sts with a mean fluid particle density of n=1.64.
One tracer particle was injected at the inflow boundary of fracture 1 in every 10 simulation

steps. The tracer particles had a diffusion coefficient of 0.74 lu2/sts. The Peclet number at



48

400

350

300

250

200

150

Distance (lattice unit)

100

50

III[I'I|l||l||llIl‘llllllIlllllllllllllll

50 100 150 200 250 300 350 400
Distance (lattice unit)

O

Figure 3.9. Superposed tracer particle locations in the field from snap

shots at 60,000, 70,000, and 80,000 simulation time steps for n=1.60,

P.=1.67, and M,=0.37.
the junction was 0.68. The simulation was run for a total of 200,000 sts. The locations of
tracer particles in the field were output every 20,000 sts. A mass balance check of tracer
particles showed that equilibrium was established after 80,000 sts. Figure 3.10 presents the
superposed tracer particle distribution in the field from the snap shots at 160,000, 180,000,
and 200,0000 simulation time steps. It is apparent that complete mixing occurred. The tracer
particle data from 140,000 to 200,000 sts was used to calculate the mixing ratio at the
junction. During this period, a total of 6,000 tracer particles were injected into the field. Of
all of them, 3,047 moved out through fracture 3 and 2,950 moved out through fracture 4. The
mass balance error of the tracer particles is 0.05%. On the average, there were 2,145 tracer

particles in the field at equilibrium. The mixingratio at the junction was 0.508, slightly larger



49

400

350

2

O_IllllllllllllIlllilllllllll!lllllllill!ll

250
200

150

Distance (lattice unit)

100

50

Illlllllll11ll|llll||lll llllllllllllll

50 100 150 200 250 300 350 400

Distance (lattice unit)

Figure 3.10. Superposed spatial tracer particle distribution in the field
at 160,000, 180,000 and 20,0000 simulation time steps for n=1.64,
P,=0.68, and M,=0.508.

than 0.50, but within the statistical error of the method. At low velocity, due to the noise of
the flow field, the tracer particles move more randomly. Thus, the number of tracer particles
moving out from the outflow boundaries varies from time to time, which results in an
estimation error in the mixing ratio. Figure 3.10 also shows that under the influence of
diffusion, many of the tracer particles have migrated upstream into the left inflow fracture
2. The relatively low tracer particle densities around the outlet boundaries of fracture 3 and

4 were caused by the imposed zero concentration boundary condition at each end.

Other numerical simulations were run for Peclet numbers ranging from 0.37 to 6.10. The

detailed information on the average velocity, mean bulk fluid particle density, tracer particle
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diffusion coefficient, Peclet number, and mixing ratio for each case is listed Table A.1 of

Appendix A.

The results are plotted in Figure 3.11, demonstrating that in this model there is a transition
zone for mixing behavior at the fracture junction, in support of our hypothesis, As the Peclet
number decreases, the transport process becomes more and more diffusion controlled. As
aresult, there is more diffusive mixing at the junction, and the mixing ratio increases toward
an asymptotic value of M,=0.5. When the Peclet number is smaller than 0.68, there is
complete mixing. For a Peclet number larger than 0.68, the transport process is both
advection and diffusion controlled. The maximum Peclet number reached in the numerical

simulation was 6.10, corresponding to a mixing ratio of 0.17. We expect that as Peclet
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Figure 3.11. Relationship between mixing ratios and Peclet numbers at the
fracture junction,
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numbers further increase, the mixing ratio will approach zero. The transport process at the
junction should be dominated by advection only, with no diffusive mixing in the junction.
Thus, somewhere above a Peclet number of 10, streamline routing should become

appropriate.

We were not able to generate flow fields with high average velocity and high Peclet
numbers because of limitations with the LGA method. In the LGA method, flow properties
(density, viscosity, pressure, etc.) and flow velocity in the field are directly related to the fluid
particle density. The most difficult aspect in the LGA simulation of the fracture junction
problem is that there is no systematic way to determine how many particles should be
injected at the boundaries to obtain the desired evenly balanced flows. Thus, the numerical
simulations boil down to trial and error until balanced velocity profiles are established, thus
making the LGA method less efficient. When simulating flow at high velocity, a large
pressure gradient must be built up in the field. Due to the relatively low fluid particle
densities around each outflow boundary, the bulk fluid velocity tends to increase as it moves -
downstream. To balance the flow, more fluid particles should be injected at the outflow
boundaries, but doing so also reduces the velocity inside the fracture and the Peclet number

at the junction.

On the other hand, simulating transport behavior at Peclet numbers much lower than 1
was also very difficult due to the noise of the velocity field. Thus, a better method must be

developed in order to overcome this difficulty and simulate transport at high Peclet numbers.

34 Comparison With Previous Numerical Results

Berkowitz et al. [1994] applied a random walk particle tracking technique to simulate
mixing behavior at an idealized fracture junction with the same geometry as shown in Figure
3.2. Their numerical results for the equal flow rate case studied here are plotted in Figure
3.12 and compared to the LGA simulation results. It is clear that both numerical results

suggest a transition zone for the mixing process, but with a significant difference in the
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Figure 3.12. Comparision between the LGA simulation results and the

numerical results of Berkowitz et al. [1994].
corresponding range of Peclet numbers. The LGA results indicate the lower limit of the
transition zone is around the Peclet number of 1, while the results of Berkowitz et al. suggest.
a substantially lower limit of about 3x10-3. At the lower limit, the LGA simulations suggest
complete mixing, M,=0.5, but Berkowitz et al. only reach a mixing ratio of 0.34 even at the
Peclet number as low as 3x10-3. They explained this less complete mixing by noting that
particles entering the junction on a path line close to the left side of the wall of fracture 1 Have
a higher probability of moving across the dividing streamline into the left flow region than
remaining inside the original flow domain. The middle line of the inflow branch does not
correspond to the position where it was equally probable that particles could exit through the
two outflow branches [Berkowitz et al, 1994]. Their explanation is not convincing enough
to explain the less complete mixing in their numerical simulations. At their lowest Peclet

number, 3x1073, the average residence time of the particles in the junction is about 333 times
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longer than the time required for the particles entering the junction from fracture 1 along the
right side of the wall to diffuse across the dividing streamline. Thus, at a Peclet number well
below 1, they should have been able to observe complete mixing at the junction in their

numerical simulations.

The results of Berkowitz et al. [1994] suggest that the upper limit of the transition zone
is around Peclet number of 1, and the transition zone has a range of about 3 orders of
magnitude. The LGA results predict a transition zone of about 1 order of magnitude in the
Peclet number, starting near 1 and ending around 10. When the LGA results suggest
significant sensitivity of the mixing ratio to the Peclet number, the results of Berkowitz et
al, predict advection controlled streamline routing. Although both models show less mixing
at the junction as the Peclet number increases, the difference between them is significant (see

Figure 3.12).

Efforts were also directed at simulating the numerical results of Berkowitz et al. [1994]
by using the same geometry and boundary conditions as in their simulations. The LGA
simulations could notreproduce the results of Berkowitz et al. [1994]. Further investigations

are required to determine the cause of differences between these two numerical models.

With these two totally different numerical results on the mixing behavior around the‘
fracture junction, a decision has to be made as to which one, if either, is correct and represents
the physical process occurring at fracture junctions. To address this problem, physical
experiments under the same model conditions must be carried out to test the numerical

results. That is the second goal of this research and is addressed in the next chapter.

3.5. Mixing Behavior at a Fracture Junction: The Influence of
Non-equalFlow Rates

In the case of equal inflow and equal outflow, solute particles that move across the
dividing streamline by diffusion are carried out through fracture 3. In nature, the flow rates

in each fracture are most likely different due to differences in fracture geometries and



Figure 3.13. Schematic of the flow field around the
fracture junction with equal inflow but non-equal
outflow velocities.

hydraulic gradients. Figure 3.13 is a schematic sketch of the dividing streamlines for equal
inflow but non-equal outflow in the system. Part of the water from fracture 2 crosses the
junction and joins the flow from fracture 1, and then flows out through fracture 4. Thus, the
outlet flow rate Qg is larger than Q3. The upper dividing streamline in the figure separates:
the inflows while the lower one separates the outflows. Some of the solute particles that are
carried into the junction through fracture 1, diffuse across the upper dividing streamline. But
only a small portion of these solute particles move far enough to escape the cross flow region
(the region between the two dividing streamlines in the figure), and eventually ﬂow.out
through fracture 3. The particles remaining in the cross flow region are carried back into
fracture 4 to join the original solute stream. Thus, the mixing process at the junction in the
case of non—equal flow rates includes two parts: diffusive mixing and forced mixing due to
cross flow [Robinson and Gale,1990]. It is almost impossible to separate the effects of
diffusive mixing from forced mixing, so in the remainder of this chapter, unless specified,

the term "mixing” includes both diffusive mixing and forced mixing. The influence of
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non-equal outlet flow rates on mixing depends on the difference in magnitude between the
outlet flow rates Q3 and Q4. The mixing behavior at the junction is still characterized by the
Peclet number. The mean fracture velocity is used in equation (1.1) to calculate the Peclet
number. Several numerical simulations were performed to investigate the influence of

non-equal flow rates on mixing behavior.

3.5.1 Equal Inflow but Non-equal Outflow Rates

Based on their experimental results on mixing behavior at an idealized fracture junction,
Hull and Koslow [1986] suggested that streamline routing be used to describe mixing
process at the fracture junction. Using mass balance and ignoring diffusion, they developed
asimple formula for predicting the concentrations in each outlet fracture. This forced mixing
formula is also called proportional routing because the predicted concentrations in the outlet
fractures are proportional to the magnitude of the flow rates. For equal inflow but non-equal

outflow rates, with Q;=0» and Q4 >0, the formula predicts

Q Q
c4=CI-Q—i+c2-(1—Q—i

€3=6 3.6)
Since C3=0, we get C3=0. Thus, the equal flow rate mixing ratio, defined as C3/Cy, is 0,
implying no mixing at the junction; but this definition can not reflect the influence of
non-equal flow rate on mixing behavior at the junction. Due to non-equal outlet flow rates,
there is forced mixing in fracture 4. In order to provide a better description of the mixing
process at the junction, we introduce a mixing ratio for fracture 4. It is defined as the ratio
C4/C;. In this case, the mixing ratio in fracture 3 is 0, which indicates that there is no Iﬁixing

(diffusive/forced) while the mixing ratio in fracture 4 is Q;/Qy, larger than 0, indicating

mixing occurs at fracture 4.

A numerical simulation of this situation was run with a mean fluid particle density of

n=2.86 and an average inflow velocities in fractures 1 and 2 of 0.130 lu/sts. The velocity
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profile through the junction is plotted in Figure 3.14, showing significant cross flow. With
26% of the fluid from fracture 2 joins the flow from fracture 1 and moves into fracture 4,
the average outlet flow velocities in fractures 3 and 4 were 0.096 lu/sts and 0.170 lu/sts,
respectively. The flow had a mass balance error of 2.3%. To simulate the mixing process at
the junction, one tracer particle was injected at the inflow boundary of fracture 1 ateach time
step. The tracer particles had a diffusion coefficient of 0.545 1u?/sts. The Peclet number at
the junction was 5.99. System equilibrium was established after 20,000 sts with an average
of 1,320 tracer particles in the field. From 30,000 to 60,000 sts, a total of 30,000 tracer
particles were injected. The total number of particles moving out through fractures 3 and 4

during the same period are 1,499 and 28,486, respectively, with arelative mass balance error
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Figure 3.14. Velocity profile for moderate cross-flow with non-equal
outflow but equal inflow at the fracture junction.
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of 0.05%. The superposed spatial distribution of tracer particles in the field from snap shots
at 40,000, 50,000 and 60,000 sts is plotted in Figure 3.15. Clearly, there is diffusive mixing
at the junction. Using equation (3.5) to estimate the mixing ratio at the junction gives a
mixing ratio of 0.05 for fracture 3. However, this mixing ratio does not properly represent
the real mixing level at the junction because it neglects the influence of non-equal outflow
rates on the mixing process. The mixing ratio for the case of non-equal flow rates can not
be directly estimated from equation (3.5) by using only the number of particles flowing out
of the system. It must account for the influence of different flow rates. The concentration

in each fracture is
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Figure 3.15. Superposed tracer particles for moderate cross—flow (2 to
4) and median Peclet number from snap shots at 40,000, 50,000 and
60,000 simulation time steps for n=2.86, P,=5.99, M,3=0.07, and
M,4=0.73. The corresponding flow field is shown in Figure 3.14.
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Vit b 37
where NV, is the number of particles which flow out of the outlet fracture i during time period
t,V; is the average flow velocity in fracture i, and b; is the width of the corresponding outlet
fracture. Substituting equation (3.7) into equation (3.4), the mixing ratio for fracture / now
becomes

M _Nl'-vl.b].
TNV, b,
1 Vit b (3.8

The calculated mixing ratio for fracture 3 is M;3=0.07, and for fracture 4 is M,4=0.73,
further indicating diffusive mixing at the fracture junction. The proportional routing of Hull

and Koslow predicts mixing ratios of M,3=0 and M,4=0.76.

The predicted lower mixing ratio for fracture 3 and higher mixing ration for fracture 4
are the result of diffusive mixing at the junction. Under the influence of diffusion, some of
the tracer particles that diffused across the upper dividing streamline moved far enough to
escape from the cross flow region into the flow discharging into fracture 3. This process
increased the concentration in fracture 3, while it decreased the concentration in fracture 4.
The mixing ratios for the corresponding equal flow rate case are about 0.19 and 0.81
(extrapolated from Figure 3.11) for fracture 3 and 4, respectively. Compare the spatial
distribution of tracer particles in Figure 3.15 to a similar equal flow rate case in Figure 3.6
(Peclet number of 6.10 and mixing ratio 0.17). The influence of diffusive mixing at the

junction is greatly reduced by the cross flow.

A second phenomenon shown in Figure 3.15 relates to both diffusion and cross flow. In
the absence of diffusion, we would expect to find no tracer in the lower part of fracture 4,
which should be occupied by cross flow from fracture 2. Instead, we see tracer particles.
Although the density is initially somewhat lower than that at the upper corner of the entrance,

further downstream they fully mix across the fracture 4 under the influence of diffusion.
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A second simulation was run with a relatively low Peclet number of 1.42 and more cross
flow, with a mean fluid particle density of n=1.66. The inlet flow rates were 0.042lu/sts in
fractures 1 and 2, while the outlet flow rates in fractures 3 and 4 were 0.011lu/sts and
0.0721y/sts, respectively. Only 26% of the original flow in fracture 2 discharged into fracture
3; the other 74% crossed the junction flowed into fracture fracture 4. One tracer particle was
injected in every ten simulation time steps at the inflow boundary of fracture 1 to prevent
the build up of tracer particles in the field. The tracer particles had a diffusion coefficient of
0.74lu?/sts. The simulation was run for a total of 80,000 simulation time steps. Equilibrium
was established after 30,000 steps. The spatial distribution of the tracer particles in the field

is plotted in Figure 3.16 by superposing snap shots of tracer particles in the field at 60,000,
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Figure 3.16. Superposed tracer particles for high cross—flow (2 to 4) and
low Peclet number from snap shots at 60,000, 70,000, and 80,000
simulation time steps for n=1.66, P,=1.42, M,3=0.34, and M,4=0.53.
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70,000, and 80,000 sts. A total of 3,000 tracer particles were injected during this period. With
270 tracer particles leaving through fracture 3, and 2,734 leaving through fracture 4, the total
aumber of particles which left the field was 3,004 during the same period, indicating a mass
balance error of 0.13%. From equation (3.8), we have mixing ratios M,3=0.34 and
M,4=0.53. The mixing ratios predicted by the proportional routing of Hull and Koslow
[1986] are M,;3=0 and M,4=0.58. The large difference for fracture 3 is caused by the presence
of greater diffusive mixing at the junction due to this relatively low Peclet number. The
mixing ratios for the corresponding equal flow rate case are roughly 0.39 and 0.61 for
fracture 3 and 4, respectively. Compared with this case, although the mixing ratios are
similar, the actual number of tracer particles that were carried by the flow in each outlet

fracture differs significantly due to the difference in flow rates.

These two examples illustrate that even with cross flow at the fracture junction, diffusion
can play an important role in the mixing process, depending on the Peclet number at the
junction and the magnitude of the difference in outlet flow rates, The diffusive mixing
process is more sensitive to the difference in outlet flow rates at middle range of Peclet
numbers than at low Peclet numbers. In our case, at the Peclet number 5.99, with only 26%
cross flow in fracture 4, the diffusive mixing ratio for fracture 3 decreases from 0.19 t0 0.067,
while at the low Peclet number of 1.42, with much more (74%) cross flow, the mixing ratio
for fracture 3 decreased only slightly from 0.39 to 0.34. In both cases, proportional routing
predicted concentrations for fracture 4 that were close to the simulated results but failed in
fracture 3. Using proportional streamline routing at low to middle Peclet numbers could

resultin large errors for the predicted concentrations in the outlet fracture without cross flow.

3.5.2 Non-equal Inflow Rates but Equal Outflow Rates

The mixing process of non-equal inflow but equal outflow has a similar behavior as the
equal inflow but non-equal outflow cases. As an example, Figure 3.17 shows the velocity

profile around a junction with a mean fluid particle density of n=2.60. The average flow
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Figure 3.17. Velocity profile for the non-equal inflow but equal outflow case
with moderate cross-flow from fracture 1 to 3.

velocities in the inflow fractures 1 and 2 were 0.141u/sts and 0.07 6lu/sts, respectively. The
cross flow was from fracture 1 to fracture 3, with 21% of the fluid from fracture 1 joining
the fluid from fracture 2, then moving out through fracture 3. The remaining 79% of the fluid

in fracture 1 moved out through fracture 4. The average outlet flow velocities in fracture 3

and 4 were 0.111u/sts.

The proportional routing developed by Hull and Koslow [1986] for predicting tracer

concentrations in the outlet fractures with Q4<Q; now is
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2,

C3mC2-~Q—;+C1-(1—Q2

Q_3)
Cy=0C4 (3.9)

Since C2=0, the forced mixing ratios are M,3=C3/Cy=(1-0>/Q3) and M,y=1.

The LGA simulation was run to test the formula for a Peclet number of 4.84. At each
simulation time step only one tracer particle was injected at the entrance of the inflow
fracture 1. The tracer particles had a diffusion coefficient of 0.5711u2/sts. From simulation
time steps 30,000 to 60,000, a total of 30,000 tracer particles were injected at the top
boundary of fracture 1. Of these injected tracer particles, 20,514 of the them left through
fracture 4, and 9,490 left through fracture 3. The total number of particles leaving the system
was 30,004, suggesting a mass balance error of 0.013%. Figure 3.18 shows the superposed
spatial distribution of tracer particles in the field from snap shots at 40,000, 50,000, and
60,000 simulation time steps. The mixing ratio calculafed from equation (3.8) is 0.39 for
fracture 3, and 0.88 for fracture 4. Using the proportional streamline routing proposed by
Hull and Koslow [1986], we have mixing ratios of 0.31 and 1 for fractures 3 and 4,
respectively. The difference between the numerical simulation results and that predicted by
proportional routing is caused by diffusive mixing; the concentration in fracture 4 is lower
and the concentration in fracture 3 is higher. Comparing the distribution of tracer particles
in Figure 3.18 to the velocity field in Figure 3.17, it is clear that mixing occurred along the
boundary of the cross flow region. Figure 3.18 also shows the diffusion homogenized

concentration profile further downstream in fracture 3.
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Figure 3.18. Superposed spatial distributions of tracer particles in the field
under non-equal inflow rates, moderate cross-flow (1 to 3), and medium
Peclet number from snap shots at 40,000, 50,000, and 60,000 simulation
time steps for n=2.60, P,=4.84, M,3=0.39, and M;4=0.88. The velocity
profile is shown in Figure 3.17.

3.5.3 Non-equal Flow Rates in all Fractures

Around a natural fracture junction, flow rates are usually not equal in the fractures. Figure
3.19 shows the flow field at an example fracture junction with non—-equal flow rates and a
mean fluid particle density of n=2.13. The average velocities in the system were 0.082lu/sts
in fracture 1, 0.0411u/sts in fracture 2, 0.034lu/sts in fracture 3, and 0.0891u/sts in fracture
4. Most of the flow entered in fracture 1 and departed via fracture 4. 17% of the fluid from
fracture 2 crossed the junction into fracture 4, accounting for only 7% of the total flow in
that fracture. At each simulation step, one tracer particle was injected at the inflow boundary

of fracture 1. The tracer particles had a diffusion coefficient of 0.63lu%/sts, leading to a Peclet
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Figure 3.19. Velocity profile at the fracture junction with non-equal
flow rates. Most of the flow moves from fracture 1 to fracture 4.

number of 2.43 at the junction. The superposed spatial distribution of tracer particles in the
field from snap shots at 50,000 and 60,000 simulation time steps is shown in Figure 3.20.
From 40,000 to 60,000 sts, a total of 20,000 tracer particles were injected into the field. With
16,208 of them moving out through fracture 4 and 3,789 moving out through fracture 3, the
mass balance error of the tracer particles was 0.015%. At equilibrium, on average there were

2,990 tracer particles in the field.

The mixing ratios calculated from equation (3.8) are M;3=0.46 and M,4=0.75, while the
Q4=>0j proportional routing in equation (3.6) would yield equivalent mixing ratios of 0 and
0.92, respectively. Note, the high mixing ratio M,3=0.46 arises from the effect of the uneven

flow in the system; in the even flow case we would only have M;3=0.31 (see Figure 3.11).
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Figure 3.20. Superposed tracer particles in the field for non-equal flows and
a moderate to low Peclet number from snap shots at 50,000 and 60,000
simulation time steps for n=2.13, D=0.63 lu%/sts, M,3=0.46, and M,4=0.75.
The velocity profile is shown in Figure 3.19.

Since the cross flow only accounted for 7% of the flow in fracture 4, the width of the cross
flow region is smali. Many of the tracer particles that diffused across the dividing streamline
could escape from the cross flow region into the low velocity zone formed by the flow
moving from fracture 2 to fracture 3. The tracer particles in the flow region of fracture 3 were
not advected away quickly because of the low flow velocity; during the same time, tracer
particles continuously moved in under the influence of diffusion. As a result, the
concentration of tracer particles in fracture 3 built up, causing arelatively high concentration
in fracture 3. As illustrated by these numbers and Figure 3.20, diffusive mixing is amplified

by the low flow rate in fracture 3.
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The spatial distribution of tracer particles in Figure 3.20 also clearly show diffusive
mixing along the dividing streamline. As the lower left corner of the junction is far away
from the dividing streamline, the density of tracer particles around this corner of the junction

is relatively low.

3.54 Summary

These examples illustrate that non~equal flow rates (inflow/outflow or both) can have a
significant influence on mixing (diffusive/forced mixing) behavior at fracture junctions. For
junctions with low Peclet numbers, diffusive mixing plays a more important role than forced
mixing, thus the mixing ratios are less sensitive to the non-equal flow rates. However, at
middle Peclet numbers, diffusive mixing combining with forced mixing complicates the
mixing mechanism at the junction, particularly for the lower flow rate outlet fractures. The
proportional routing proposed by Hull and Koslow [1986] for predicting concentrations in
each outlet fracture only works for junctions with very high Peclet numbers. When the Peclet
numbers are low or in the middle range, using proportional routing can cause large errors

in predicted concentrations.

3.6 Conclusions and Discussion

In general, the LGA results support our hypothesis that there is a continuous mixing rule

starting somewhere near a Peclet number of 1. The following conclusions can be drawn:

(1) For Peclet numbers smaller than 1, the transport process at the junction is diffusion
controlled, and the complete mixing rule is appropriate. The prediction made by Hull et al.
[1987] about complete mixing occurs at Peclet numbers smaller than /2 is reasonably good.
In the Peclet number range of 1 to some value above 10, both advection and diffusion play
important roles in the mixing process. This Peclet number range we call the transition zone.
Although we were not able to simulate the mixing behavior at Peclet number larger than 10,
we expect that advection will eventually dominate the transport process, and thus streamline

routing will be the right choice for describing the mixing behavior.
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(2) The streamline routing suggested by Hull and Koslow [1986] and Robinson and Gale
[1990] based on experimental results at Peclet numbers larger than 200 (Hull and Koslow)
and 3,000 (Robinson and Gale) can not be generalized to represent mixing behavior at low

Peclet numbers (P, less than 10).

(3) A comparison between the LGA simulations and the numerical results of Berkowitz
et al. [1994] shows significant disagreement about the range of Peclet numbers that
correspond to complete mixing and to the transition zone. Physical experiments should be

carried out to test these two numerical models.

(4) The mixing process at a fracture junction with non-equal flow rates is sensitive to the
magnitude of the non-equal flow rates at middle Peclet numbers but less sensitive at low
Peclet numbers. The effect of diffusive mixing is amplified in the low flow rate outflow

fractures.

(5) The proportional routing proposed by Hull and Koslow [1986] for predicting forced
mixing concentrations in outflow fractures is adequate only at high Peclet numbers. When
the junction Peclet number is in the lower range (less than 5), diffusive mixing at the junction

plays an important role. The error of the proportional routing can be quite large.

Berkowitz et al. [1994] generated a 2-D (x-y) discrete fracture network using a stochastic
approach. A uniform hydraulic gradient was applied to the field in the x—direction, and
Peclet numbers were calculated using the average flow velocity at each fracture junction.
The Peclet numbers varied from 1070 to 1, spanning 6 orders of magnitude. The distribution
of Peclet numbers showed a log—-normal pattern with a mean of —2. Under this condition, the
LGA results suggest a complete mixing rule could be used at all fracture junctions when
simulating solute transport in the discrete fracture network, while the results of Berkowitz
et al. {1994] suggest that transition zone mixing should be used even at Peclet numbers
smaller than 10-2. Previous numerical simulations have shown that when different mixing

rules are applied in discrete fracture networks, they result in different spatial distributions
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of the solute [Hull et al, 1987; Robinson and Gale, 1990]. We can expect that applications
of these two different mixing rules to solute transport in discrete fracture networks will

generate different estimations of the strength of the solute.

The question still remains as to which mixing rule, if either, is correct and represents the
physical process occurring at fracture junctions. To answer this question, physical
experiments under the same model conditions must be carried out to test the numerical

results. That is the second goal of this research and is addressed in the next chapter.
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Chapter 4: Physical Experiments on Mixing
Behavior at the Fracture Junction

4.1 Introduction
As presented in Chapter 3, the LGA (Lattice Gas Automata) simulations of mixing

behavior at an idealized fracture junction support our hypothesis that there is a transition
zone between diffusion controlled complete mixing and advection controlled streamline
routing (refer to Chapter 3). Contrary to the earlier numerical results of Berkowitz et al,
[1994], the LG A simulations suggest that the transition zone corresponds to Peclet numbers
larger than 1, which is consistent with our hypothesis and that of Hull et al. [1987]. When
the Peclet number is less than 1, diffusion dominates the mixing process, and complete
mixing occurs at the junction. Berkowitz et al. [1994] did not observe complete mixing in
their simulations even at the Peclet number as low as 3x10~3. Thus, they concluded that
complete mixing at a fracture junction did not properly represent the transport process at any

value of the Peclet number.

With two sets of contradicting numerical simulation results on mixing behavior at
fracture junctions, the question has arisen as to which, if either, is correct and under what
conditions? All previous physical experiments were performed at very high Peclet numbers,
in the range of 200-10,000 (refer to Chapter 1). Yet, no physical experiment has ever been
carried out on mixing behavior in the low to middle range of Peclet numbers (1-200). The
physical experiments in this research focus on this range, using an idealized junction model
under equal inflow and outflow rate conditions. The objectives of the physical experiments
are (1) to determine the mixing rule and its corresponding Peclet numbers; (2) to test the
LGA results, the numerical results of Berkowitz et al. [1994], and our hypothesis (refer to
§3.1); and (3) to provide additional background information on the mixing process at

fracture junctions.
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4.2 The physical Fracture Junction Model

To test the numerical results and the hypothesis, we used a physical model with two
orthogonal channels of uniform width (aperture) b, and depth d (see Figure 4.1). The depth
d was sufficient (@>>6b) to ensure Stokes flow in the channels. Even flow rate Q entered
the model from channels 1 and 2, and left through channels 3 and 4, as shown in Figure 4.1.
The channel length L leading into and out of the junction was sufficient to ensure fully
developed flow in each fracture, thus minimizing effects of boundary conditions at the end

of each channel. Subsequently, we refer to the channels as fractures.

Under equal inflow and outflow conditions, only diffusive mixing can occur at the
junction. Todetect such mixing behavior, two different tracers, A and B, with concentrations
Ca1 and Cp, were introduced into fractures 1 and 2, respectively. The magnitude of mixing
was monitored by measuring tracer concentrations in both outflow fractures as they left the
model. Four measurements were available: concentrations of tracer A, C34 and Cyy, in
fractures 3 and 4, respectively; and concentrations of tracer B, C3p and Cyp, in fractures 3
and 4, respectively. From these data, the mass balance of each tracer was checked and four

mixing ratios were estimated. Theoretically, under equal inflow and outflow conditions, if

Figure 4.1 Schematic of the physical
fracture junction model (not to scale).
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mass is conserved and the measurement error is negligible, we would expect that

=34 -1 244 4B 1238

Cis Caa Cap Cip
M, = = , M,z = =
" Ca Cia BT Cop Cag (4.1)
The mixing ratios combined with the Peclet numbers described the mixing behavior at the

junction.

The physical model was designed to obtain Peclet numbers in the range of 1 to 200, by
carefully selecting a carrier fluid (gas or liquid), a fracture aperture b, and a fracture depth
d. At the fracture junction, with a discharge Q [L3/T] in each fracture, the Peclet number is

defined as

D 4D 4.2)
where (/' 2/2)b [L]is the half diagonal length of the fracture junction (it also equals the width
of the flow region from fracture 1 to fracture 4 at the junction), V is the mean fracture velocity
[L/T], and D [L2/T] is the solute molecular diffusion coefficient. From equation (4.2), for
a physical model, we can only change flow rate Q, fracture depth d, and diffusion coefficient

D to achieve different Peclet numbers.

One concern that relates to the flow rate in a physical model was ensuring laminar flow
in the fracture. The flow conditions in a system can be expressed in terms of the Reynolds

number, which in a fracture is defined as

R, =

V-b_Q _J/2D-P,
v dv v

(4.3)

where v is the fluid kinematic viscosity. For flow between two parallel plates, the upper limit
of laminar flow corresponds to a Reynolds number of 2,000. In equation (4.3), for a gas
Div=0(10°) while for a liquid Div=0(10"3), indicating that in the range of 1<<P,<C200,
the Reynolds number for water (our typical liquid) is clearly in the laminar flow range (eg,
P¢<1,000, R,<1.4<2,000). For a gas, R, and P, are roughly equal; and the Reynolds

numbers are also in the laminar range. Therefore, for Peclet numbers in the desired range,
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the flow will be laminar for a liquid or a gas. We chose to perform the experiment with water
because it is the fluid of interest in nature, and it is the same fluid used by previous

researchers.

Another consideration in the model design was the time required for establishing
equilibrium in the model. One measure of the equilibrium time is the solute diffusion time
across the fracture or fracture junction, which is on the order of

t, = b2
d ™ 4D (4.4)

For a liquid with tracer diffusion coefficient on the order of 10-5 cm?/sec, equation (4.4)
implies a limitation on fracture aperture b<</(4D1;). If the maximum desired diffusion
time is 1 day, then the fracture aperture b must be less than 1.86 cm, a size which is obviously

not a serious constraint for model construction.

A second measure of equilibrium is the time for tracer concentrations toreach equilibrium
throughout the model, in particular at its outlets. Advection and Taylor diffusion are the
active transport processes in the fractures leading away from the junction. If these fractures
are of length L, then the time for piston displacement is t’f:L/V. Dispersion adds to this time.
For example, the time # necessary for the concentration at the end of the fracture to reach
99.7% of its equilibrium can be estimated from Taylor-Aris dispersion theory (see §4.3.4):

V-t B

-y
2 /Dy (4.5)

where Dj is the Taylor-Aris dispersion coefficient

Vz.b2

210-D

P’
105 (4.6)

D;=D + = D(1 +

The longest displacement time of interest is when P,~31, for which D;~D. In order to ensure
developed flow, we also want L>5d=5b(d/b), where d/b is the fracture x—section aspect
ratio. Solving equation (4.5) for maximum aperture b in terms of a desired displacement time

%, leads to
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5(d/b)
For P,>>1 and d>>b, we have
‘/ED Pe tf 1
*= Fam "
For example, using a displacement time of 1 day and a typical tracer (D~10 cm?/sec)
requires that the maximum aperture b<<[4.4/+/ (d/b)] mm; for example, if d/b=16, then b<<
1.11 mm. Considering the equilibrium time and problems involved in building the model,
we selected d/b=37, so that b<Z 740 um. Because in the experiments tracer concentrations
were not measured directly at the junction model outlets but further downstream, the

displacement time increased further, which suggested an even smaller aperture.

In designing the model, flow rate measurement problems limited the size of the fracture.
The lowest flow rate occurs around a P.=1, for which equation (4.2) gives Q=dD+/2. Using
water with a desired tracer requires a low flow rate around Q=1.414dx10-5
cm3/sec=5.094x10-2 cm3/hr when the fracture depth is measured in cm. Recalling that
d/b=37, the low flow rate becomes 1.885 cm3/hr. From a displacement time perspective, a
maximum aperture size of around 0.075 cm indicates a low flow rate of about Q.14

cm3/hr=110 pl/hr. Thus, we have to control a low flow rate on the order of 100 ul/hr.

On the basis of the above analyses, the actual model was designed with an aperture of
5=500 um and a fracture depth of d=1.85 cm, for an aspect ratio of d/b=37. Each fracture
had a length of L=10cm. Water was the carrier fluid, and dilute KBr (potassium bromide)
and KCl (potassium chloride) were selected as the tracers for inflow fractures 1 and 2,
respectively. The diffusion coefficient for a KBr solution is around D=1.87x10-5 ¢cm2/sec
at 25°C [Weast et al., 1987], while for KCl it is around D=1.917x10"3 cm?/sec at 25°C
[Weast et al,, 1987]. The KBr solution strength was Cyp,=1.01x10-3 mol/I=120 mg/l, and
the KCl solution had a strength of Cgci=1.61x10-3 mol/l=120mg/l. For these

concentrations, the water density and viscosity were not significantly affected by the
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presence of the two dissolved tracers. In order to improve control, the experiments were run
at only slightly elevated pressures and temperature described in §4.3.4. Under these
conditions, a Peclet number in the range of 1 to 200 required that the fracture flow rates vary

from 0.179 ml/hr to 35.90 ml/hr.

The fracture junction model was constructed of lucite, with two rectangular cross-section
channels intersecting at right angles (see Figure 4.1.). The model was constructed by
bonding 3 layers of plexiglass together, as shown in Figure 4.2, Layer-1 was a 8 mm thick
20 cm x 20 cm rigid sheet which formed the bottom of the model. Layer-2, consisting of four
10 em x 10 cm blocks of plexiglass with a uniform thickness of 18.5 mm, formed the main
body of the fracture junction. Layer-2 was glued to layer-1 with a solvent. Layer-3 was

shaped like the fracture junction with a uniform thickness of 2 mm and was glued on the top

Figure 4.2 Schematic of the structure of the physical fracture junction model.
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of layer 2, covering the channels. To reduce head loss between the fractures and connected
flow tubes due to the sudden change in the geometry, a 1 cm long, smooth transition was
fitted inside the end openings of each channel (see Appendix B, Figure B.1), Tube fittings

were then attached to the ends of the four fractures to conduct water to and from the model.

4.3 Experiment set up

The model was connected to an external plumbing system designed to monitor and
control the flow rates. With two inflow lines and two outflow lines, controlling and balancing
the flow rates was difficult. To address this problem, positive displacement piston pumps
were used to inject tracer solutions into each inflow fracture, The discharge from these
pumps was independent of constant back pressure and provided positive control over the
inflows. The outflow rates were controlled by metering needle valves and monitored by a
flow meter. Adjusting the valve on one outflow line affected discharge in both outflow lines.
Balancing flows took some time, particularly at the lowest flow rates (Pe around 1). Once
the concentration equilibrium was established, samples were collected from the ends of the

outflow tubes and analyzed for tracers by HPLC.

A schematic showing how the model was connected to the plumbing system is shown in
Figure 4.3. The two positive displacement high precision piston pumps for the injecting of
KBr and Kel solutions are shown on the left. Pump flow rates were controlled by a digital
pump controller. A pressure transducer was installed in the KCl inflow channel to monitor
system pressure variations. The outlet flow rate in channel 4 was monitored by a flow meter
which used a differential pressure transducer to measure the pressure drop along the outflow
tube between two points with a known distance. Assuming Hagan-Poiseuille flow in the
tube, the flow rate could be easily calculated from the theoretical formula and checked in
calibration runs. Signals from the pressure transducers were sent to a current scanner, then
to a picoammeter, and finally to a PC for real time data analysis. The system pressure and

outlet flow rate data were plotted on the computer screen in real time for flow rate control.
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Figure 4.3. Experiment set up for flow connections and flow control.

The experiment was sensitive to temperature fluctuations, particularly at low flow rates.
The primary problem was thermal expansion of the water, which could induce flow in the
system. To control this problem, the physical fracture junction model was placed
horizontally in a constant temperature cabinet, as illustrated in Figure 4.4. A constant
temperature bath (CTB) was used to circulate water through pump jackets and the model
cabinet throughout the experiment. To monitor temperature variations, temperature probes
were installed in the lab, inside the cabinet, and in the water circulation tube of the pump
jackets. Signals from the temperature probes were sent to a data logger and then transferred

to the computer for analysis.

Essentially, the experimental system can be organized in four subsystems: tracer solution
injection and inlet flow rate control; system pressure and flow rate monitoring; outlet flow
rate control, sample collection and sample analysis; and temperature control, The detailed

information on each of subsystems is given below.



78

water back
to C.T.B.

Q

S tt binet

2 constant temp. cabine ;

q? —

§ to computer

[+

j

§ !:en}perature d

8 inside box

& data logger

g

! 1 | sample collection
- -— .

g g \ signal from
water from| & 8| circulation water pressure
C.TB. S S| temperature probe. transducer

— $—

Q
B~ — 1

—I || i3 pump controller
pump _l pump (ITTTLELT)

Figure 4.4. Experiment set up for instrument control and temperature control.

4.3.1  Tracer Solution Injection and Input Flow Rate Control

Two high-precision ISCO 100DM syringe pumps were used to dispense the aqueous
tracer solutions, KCl and KBr, into the two inflow channels of the physical model and to
control the injection flow rates. The pump cylinders were made of nitronic alloy and had a
capacity of 102.93ml with a dead volume of 1.30+0.020ml. The 100DM pump could be
operated at either constant pressure or constant flow mode. However, in our experiments,
the pumps were only operated at constant flow rate mode. The 100DM pump had a flow
range from 0.6ul/h to 1500ml/h for any pressure up to 10,000 psi and a specified flow rate
accuracy of +0.3%. Each pump had a pressure transducer at top of the cylinder to monitor
the fluid pressure inside the cylinder. The pressure transducer had a range of 10 psi to 10,000
psi with a specified accuracy of +2% full scale (4200 psi). At a low pressure range, this

transducer only indicated the relative pressure variation in the cylinder. The ambient
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operating temperature of the pump was from 0 to 40°C. To reduce the influence of
temperature variation on pump flow rates, cooling/heating jackets were installed for each
pump. Water at 26°C from a constant temperature bath was circulated through the pump
jackets to keep the tracer solutions inside the cylinders ata constant temperature (see §4.3.5).
A Campbell 107B [Campbell Scientific, Inc., Logan, Utah] soil/water temperature probe
was used to monitor the circulation water temperature from the pump jackets (see Figure
4.4). Atlow pump pressure and flow rate, variations in pump pressure can affect the accuracy
of the pump flow rate, a problem which was overcome by installing two 100 psi back
pressure regulators at the outlet of each pump. To ensure that any solids produced from wear
of the pump seals would not clog the flow channels in the system, two tantium 2 um inline

filters were connected between the pump outlets and the back pressure regulators.

AnISCO digital pump controller (no model number, specially designed for ISCO pumps)
was used to control the pump flow rates. The pump controller had three ports, A, B, and C
and could control up to three pumps. The power supply for the pump controller came from

the pump connected to port A.

Alltech color-coded PEEK (Poly Ether Ether Ketone) tubing with 0.020” ID was used
to conduct the aqueous solution into or from the model (see Figure 4.3). The PEEK tubing
is chemically inert, strong (maximum pressure for 1/16” OD and 0.020” ID tubing is 6000
psig), and very flexible. Knurl-Lok™ III wrench/fingertight fittings were used to connect
the PEEK tubing to the model (see Appendix B, Figure B.1). The fittings are also made of
PEEK material and are chemically inert. One advantage of using PEEK tubing was
preventing corrosion in the flow tubes, so that no deposit could be generated and clog. flow

channels in the system.

The ISCO pumps were calibrated separately by running each pump at a flow rate of 0.020
ml/hour for about 100 hours. Before the tests, each pump was filled with deaired type I water

(water was deaired by boiling it for about 30 minutes, then stirring and vacuuming until no
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air bubble could be seen) and was operated for a certain time until the pressure in the pump
cylinders was constant (typically around 400 psi). During the tests, the CTB was used to
circulate water at 26°C through the pump jacket to keep water inside at constant temperature.
Water dispensed from each pump was collected in a 2.5 ml vial with a known weight. Once
thc‘tests were finished, the amount of water dispensed by each pump was estimated by
subtracting the initial weight of the container from the final weight and then dividing by
water density (0.997 g/ml, Weast et al., 1987). The flow rate test for the pump later used for
KBr injection showed that in 99 hours and 20 minutes, a total of 1.973 ml water was
dispensed, which corresponds to a flow rate of 0.0199 ml/hour and a relative error of 0.5%.
The test result of the other pump, used later for KCl injection, showed that a total of 1,.993ml
of water was dispensed in 99 hours and 35 minutes, which corresponds to a pump flow rate
of 0.0200ml/hour. These two tests indicated that the ISCO pumps were indeed accurate.
Before a series (group) of experiments, the two pumps were also tested at the desired flow

rates. All the tests showed that the pumps were accurate.

During the pump flow rate tests, a known amount of mineral oil (Aldrich mineral oil,
density 0.838g/ml) was used in the sample vial to prevent the evaporation of water, Since
there was no physical data available on the evaporation rate of the oil, a lab test was
conducted to determine the evaporation rate. A 2.5 ml HPLC auto sampler vial with 10 mm
ID was filled with water and 1 ml of the mineral oil. The sample was weighed on a Mettler
AT400 analytical scale with an accuracy of 0.1mg. Before the test, the sample weighed
3.8214g. It was placed close to the model cabinet with the vial open to the air. The test began
at 10:00 pm Dec. 27, 1994 and ended at 3:00 pm Jan. 13, 1995. The final weight of the sample
was 3.8204g. In a total of 401 hours, the loss of mineral oil due to evaporation was only
0.0010g which corresponds to a volume of 1.2 ul. The evaporation rate of the mineral oil

proved to be extremely low and was, therefore, ignored in the calculations.
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4.3.2 System Pressure and Outlet Flow Rate Monitoring
Since the model inflow rates could be accurately controlled by the two ISCO 100DM

pumps, the primary problem in the experiments was to monitor and control the outlet flow
rates. System pressure and outlet flow rate monitoring offered key information for flow rate

control in each outlet fracture.

The purpose of the system pressure monitoring was to ensure that during the experiments,
the system was under constant pressure and there was no leaking or clogged flow channels
in the system. The system pressure was monitored by a SETRA C-206 pressure transducer
(Setra Systems, Inc., Acton, Massachusetts) which had a gauge pressure in the range of 0-25
psig and a proof pressure of 100 psi, the maximum pressure that might be applied without
changing performance beyond specification (<4-0.5% FS zero shift). The pressﬁre
transducer had a specified accuracy of +0.13% full scale (0-25 psig) at constant
temperature. It was factory calibrated with non-linearity of +0.1% full scale. The
transducer was located in the line of the KCl injection tube, just upstream of the model, as
shown in Figure 4.3. The excitation for the C~206 is 24 VDC, and the current output from
the transducer is in the range of 4-20mA. The relationship between current and pressure is

linear

=2
Pa = 15(C-Co) @7

where C' is the current output from the transducer, P, is the pressure measured relative to
ambient atmospheric pressure, and Cy is the base value of the current output under zero gage
pressure. If Cp did not equal 4.0 mA under zero gage pressure, it was reset to 4.0 mA by

adjusting the zero adjustment screw under the ambient atmospheric pressure conditions.

The output signals from the pressure transducer were sent to a Keithley Model 706 low
current scanner (Keithley Instruments, Inc., Cleveland, Ohio) which was connected to a
Keithley model 486 picoammeter and then to a PC. The Model 706 low current scanner could

accommodate ten plug-in scanner cards. It could be operated in continuous mode or manual
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mode. The selectable scan rate of the Model 706 was in the range of 10 msec to 999,999 sec.
Two Keithley Model 7158 low current scanner cards, each with 10 channels, were used with
the 706 scanner. The maximum signal level of the card was 100 mA at 30V peak resistive
load. The offset current error of the card is less than 1 pA (specified), and typically less than
30 fA. The actuation time of the card was less than 1 ms. Strength of the output signals from
the scanner were reduced ten times by adding appropriate resistors in the circuit so that
output signals from the scanner were then in the range of 0.4-2.0 mA before they were sent
to the picoammeter for data displaying and basic processing. The 486 picoammeter had a
current measurement range of 0 to 2.19999 mA at maximum voltage of 50 VDC. The
picoammeter also had two built-in filters, digital and analog, to stabilize noisy
measurements. In our experiments only the digital filter was selected. Signals from the
picoammeter were collected by the computer through an IEEE-488 connector (see Figure
4.3). In the computer, Keithley VIEWDAC software was used for data acquisition and data
processing. System pressure data from the C-206 transducer was analyzed according to

equation (4.7) and plotted on the computer screen in real time.

To ensure accurate experimental results, the flow rate in each outflow fracture had to be
precisely measured and controlled. There were two outlet flow tubes from the physical
model. The outlet flow rate in fracture 4 was monitored by a flow meter which measured the
pressure drop between two points with a known distance along the flow tube. Since the
Reynolds number inside the tube in all the experiments was far below 2,000, the upper limit
of laminar flow, the theoretical Hagan-Poiseuille results can be used to estimate average
flow rate in the outflow tube. From fluid dynamics, the flow rate through a circular tﬁbing
is (Hagan-Poiseuille flow) [Batchelor, 1967]

0 = _ZR* dP
128u  dx 4.8)

where R is the inner diameter of the tube; x is the dynamic viscosity of water (see Appendix

B, equation B.2); and dP/dx is the pressure gradient in the direction of flow. In equation (4.8),
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the only unknown is the pressure gradient. Once it was determined, the flow rate in the tube

could be easily calculated.

A SETRA C228-1 differential pressure transducer was used to measure pressure drops
Between two points along the outflow tube from fracture 4 (see Figures 4.3 and 4.5). A 0.02”
ID PEEK tubing connected the outlet of the fracture junction model to a “T” type connector
which connected one end to the high pressure port of the C228-1 and the other end to the
second in line “T” type connector for the flow. The second “T” type connector connected one
end to the low pressure port of the C228-1 and the other end to outflow tube. There was no
flow through the differential pressure transducer. The C228-1, which had a pressure range
of 0-1 psid with a specified accuracy of +£0.15% full scale, measured the pressure drop
between the two “T” connectors. The relationship between differential pressure and the

output current is linear

Pd == I—%(C—CO)

picoammeter @
706 low current scanner %

(4.9)

PE{:)EK differential  pressure
tubing transducer |
metering valve
flow direction i - 10cm -
— > e — F
LI a3y N Ty T I T I T TTT l‘ iz
0.01” PEEK tubing
from fracture outlet to sample collection
(0.02”ID PEEK tubing) (0.02”ID PEEK tubing)

Figure 4.5. Schematic of the connection of C228-1 differential pressure transducer in
the system for monitoring flow rate in fracture 4.
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where Py is the pressure difference between the two ports, and Cp is the base value of the
transducer which should be 4.0mA at O psid. However, Cp changed with the line pressure
in test runs. The excitation for the C228-1 was also 24 VDC. The output current of the
transducer was from 4 to 20 mA. Appropriate resistors were used in the circuit to reduce the
strength of the signals to a range of 0.4-2.0 mA before they were sent to the 486
picoammeter. The computer calculated the pressure drop between those two connectors, the
pressure gradient, the flow rate in the tube, and plotted the flow rates on the screen in real

time.

To ensure accurate flow rate data, the C228~1 was dynamically calibrated each time
before experiments were started. During the calibration, only KBr solution was injected into
the fracture model through inflow fracture 1, and the system pressure was monitored. The
KCl aqueous solution injection pump and the outflow through fracture 3 were shut off. Thus,
the KBr solution could only flow out through fracture 4. The metering valve for the flow rate
control in fracture 4 (see Figure 4.5 and next section) was adjusted until the desired system
pressure was reached. The base value of the C228-1 was then adjusted to match the
calculated flow rate from the flow meter to the pump injection rate. Once the C228-1 was

calibrated, the setting for the metering valve in fracture 4 was fixed.

Note that only the flow in outflow fracture 4 was monitored. Atlow Peclet numbers (low
flow rate), diffusion into or out of the dead volume in the two ‘T’ type connectors and
adjacent connections to the transducer in fracture 3 could cause additional mixing. By
monitoring the flow rate in only one of the outlets and leaving the other undisturbed, we
ensured that water samples coming out of the undisturbed channel were free from this
possible side effect. The flow rate in fracture 3 was estimated by subtracting the flow rate

of channel 4 from the total inlet flow rates.
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4.3.3 Output Flow Rate Control

The outlet flow rates from channels 3 and 4 were controlled by 1/16” SWAGELOK S’
series metering valves. The valve which controlled the flow rate in fracture 4 and the inline
flow meter were placed inside the constant temperature cabinet. The valve was adjusted
during flow calibration before each experiment (refer to §4.3.2 for details). The valve for
flow rate control in fracture 3 was located outside the cabinet for easy access. The body of
the metering valve was made of 316 stainless steel. The tapered stem used for flow control
in the metering valve was hard chrome plated and the orifice of the metering valve was
0.81mm. Vernier handles were used with the metering valves to facilitate flow adjustments.
During the experiments, input flow rates in fractures 1 and 2 were controlled by the two high
precision pumps. The system pressure and outlet flow rate in fracture 4 were monitored by
the pressure transducer and the flow meter, and the readings were plotted on the computer
screen in real time. The discharge rates in the model were adjusted mainly by turning the
metering valve which controlled the flow rate in fracture 3. The feed back could be read
directly from the computer screen and the valve readjusted as necessary. The above process
was repeated until the desired flow rate wasreached. Atlow flow rates (low Peclet numbers),
the relationship between the flow rate and the valve opening was nonlinear, making flow

adjustments tedious.

4.3.4. Sample Collection and Sample Analysis
In our experiments, under equal inflow and outflow conditions, only diffusion could
cause mixing at the junction, and by analyzing the concentrations of Br~ and Cl- in each

outflow channel, the magnitude of diffusive mixing was estimated.

In the model system, outlet flow tubes were connected to fractures 3 and 4 for discharging
the aqueous solutions from the model (see Figures 4.3 and 4.4). As described in §4.3.2, in
the line of the outlet flow from fracture 4, a flow meter was installed to monitor the flow rate

in fracture 4, while the outlet flow tube of fracture 3 was undisturbed. Two metering valves
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were used to control outlet flow rate in fractures 3 and 4 (see §4.3.2 and §4.3.3). The outlet

tubes were extended to the exterior of the cabinet for sample collections.

Drops of the effluent solutions discharging from the outlet tubes connected to fractures
3 and 4 were collected in two separate polypropylene autosampler vials (0.6 ml), as shown
in Figures 4.4 and 4.5. Each sample contained at least 0.1 ml of effluent solution from the
corresponding outlet tube. At low flow rates (low Peclet numbers), the time necessary to
collect a sample ranged from several minutes to about 30 minutes. Thus, to reduce possible
evaporation, the vials were closed with caps between drop collections. Once the sample
collections were completed, the vials were sealed with caps and parafilm and stored in a

refrigerator until sample analysis.

Representative samples of effluent solution could not be taken until the mixing was at
equilibrium and the resulting solution concentration had reached the sampling vial. The
waiting time was estimated with a simple model of transport involving mixing at the
junction, homogenization inside the outflow fractures, and homogenization inside the outlet
flow tubes. The necessary time for each process to reach equilibrium can be estimated
independently. Among all the three processes, the equilibrium time for mixing at the junction

is negligible and is not considered below.

The time required for diffusion to homogenize the concentration profile in a 10 cm long
fracture with an aperture of b can be estimated by the Taylor~Aris dispersion theory which
gives the averaged concentration at a cross section of the fracture [Aris, 1956]

C _ 1 x—V- tf
& =31 F e =

2Dy (4.10)

where 7 is the time the solute has traveled in the fracture, erfis the error function, and Dy is

the dispersion coefficient. For transport between two parallel plates Dy is

210 - D (4.11)
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A stable concentration profile is established in the fracture when C/Cp=1.0 at the end of the

fracture outlet. Thus from equation (4.10)

T
elf(z) - erf(z\/al?f) -

(4.12)
As an approximation, when the relative concentration at the end of the fracture is larger than
0.99, the concentration profile is taken to be at equilibrium, The value of z that makes
erf(z)=0.99532 and C/C)p=0.9977 is 2.00 [Abramowitz and Stegun, 1972]. The time 2
required for establishing a stable concentration profile at the end of a 10 cm long outflow
fracture can be solved from equations (4.11) and (4.12)

x—V * tf 2

2,/Diy (4.13)

The time £, required for building a stable concentration profile at the end of the outlet tube

can also be estimated in a similar way. The only difference is that the longitudinal dispersion
coefficient for transport inside a circular tubing is [Aris, 1956]

(V- n?
48 - D (4.14)

where r is the radius of the outflow tube, and V is the average flow velocity in the tubing.

The summation of #, %, and £, gives an estimation of the total elapsed time required before
collecting stable samples. For example, at a fracture flow rate of 30ml/hour, the Peclet
number at the junction is 170. The time # for establishing a stable concentration profile in
the outflow fractures is 2.50 minutes; and the necessary time #. for building a stable
concentration profile at the end of a 100 cm long outlet flow tube (the actual length of each
outlet flow tube was around 60 cm) is 0.49 minutes. Adding frand £, the total elapsed time
required to establish equilibrium in the system is approximately 3.00 minutes after equal

outlet flow rates have been established in each outflow fracture. Mixing at the flow meter
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“T” connectors contributed additional apparatus induced mixing, which increased the

necessary time for establishing equilibrium in the system.

During the experiments, the sample collection time was first calculated, Then two or more
samples (each sample contained at least 0.1 ml of the effluent solution) were collected at

intervals to ensure that the concentration profile in the physical model was at equilibrium.

Samples collected during the experiments were analyzed by high-performance liquid
chromatography (HPLC). The HPLC instrumentation consisted of a Model 994
programmable photodiodide array detector, a Model U6K syringe injector, and a Model 510
pump, all manufactured by Waters Chromotography Division, Millipore Corporation
(Milford, MA). The features of the Waters 994 detector included (1) variable wave length
from 190 to 800 nm (2) detection of components absorbing UV/visible light, and (3) peak

integration.

The detection mechanism of the Waters 994 detector was based on Beer’s law which

describes the relationship between absorbance and solute molar concentration

A =elC (4.15)

where ¢ is molar absorptivity, /is path length, and C is the molar concentration of the solute.
Beer’s law is only valid for well-equilibrated dilute solutions, such as in our experiments.
It assumes that the sample’s refractive index is constant, the light is monochromatic, and that

no stray light reaches the detector element.

The wave length of the UV detector was set at 195 nm with a band width of =+ 3nm for
detecting C1~ and Br~. At this wave length, the normalized detector response relative to
detection at 190 nm for Br~ is close to 90% and around 40% for Cl- [Bowman, 1984]. The
sensitivity of the UV detector was set at 0.01 because of the weak absorbancy of Cl~ to UV
light. The analytical column used for sample analysis was a Sphere/5 SAX (Phenomenex,
CA, USA) 250x46 mm 1.D. The mobile phase was 0.03M KH;PO4/H3POy4 at pH 2.63 with

18% acetonitrile. In a sample analysis, 25 pl of a water sample was manually injected into
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Figure 4.6. Chromatogram, using Phenomenex column, of a standard
tracer solution prepared in type I water.

the injector at mobile phase flow rate 2.0 ml/min and a pump pressure of 2750 psi. Figure
4.6 shows the chromatogram of Cl~ and Br~ with concentrations of 0.0008 mol/1 and 0.0005

mol/l, respectively. The retention time of C1~ was 11.71 minutes and 12.87 minutes for Br-.

Standard samples were used to determine the relationship between concentration and UV
absorbance for Br~ and CI-, respectively. In each calibration, four to six standard solutions
at different concentrations were used. The regression results are shown in Appendix B,
Figure B.32-B.43. In all the analyses, the UV absorbance peak height was used to calculate

sample concentrations from equation (4.15).
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4.3.5 Temperature Control During the Experiments

In general, as temperature increases, the solute diffusion coefficient increase, while the
viscosity and density of water decreases. Thus, temperature fluctuations during the
experiments would cause both flow rates and solute diffusion coefficients to vary, thereby,
reducing the accuracy of the experimental results. To mitigate these effects, the fracture
model and most of the plumbing, including the pressure transducers, were placed in an
insulated constant temperature cabinet built for the experiment. Coiled copper tubing was
placed on the inside walls of the cabinet to circulate water from a CTB (constant temperature
bath; Polyscience, model 1166). The CTB has both heating and cooling capabilities with a
water temperature control accuracy of 0.1 °C. The water temperature in the CTB was set at

26°C.

Campbell 107 air temperature probes were used to monitor room and model cabinet
temperatures during the experiments (see Figure 4.4). The 107 temperature probe had an
accuracy of 3-0.4°C over the range of -33°C to +44°C. Under normal conditions, the error
was typically less than the specification. The major error component was the -0.2°C offset
error of the thermistor from 0°C to 60°C, and the error could be determined with a single
point calibration and be compensated for in data analysis. Signals from the temperature
probes were sent to a Campbell 21x data logger which was connected to a PC through
Campbell RS232 interface (see Figure 4.4). The data logger was controlled by the PC with
the Campbell PC208 software. Temperature data was temporarily stored in the 21x data

logger and then dumped to the PC for data processing.

Figure 4.7 shows temperature variations in the room and the model cabinet several
months before the experiments were run. The room temperature fluctuated periodically with
a magnitude of almost 7°C, resulting in a 0.7°C fluctuation of temperature inside the
cabinet. During the day, the temperature was relatively stable, but it began to increase at

midnight and reached the highest value of 29°C in the early morning around 5:00 am. Such
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Figure 4.7. Temperature variations in the lab. and the model cabinet from 1/25 to
2/9, 1994,

large variations in room temperature could cause an unacceptably large error in the

experiments at low flow rates (low Peclet numbers).

For example, in the worst case, if a pump is filled with water (100.0m1) and operating at
a flow rate of 0.2 ml/hr for 6 hours, theoretically, the pump will dispense 1.20 ml water
during this period. If the temperature of the water inside the pump cylinder increases 7°C
in this period, the actual amount of water dispensed by the pump will increase. Using the
relationship between water density and temperature (see Appendix B, equation B.1) and the
principle of mass balance, we estimate that the actual volume of water dispensed by the pump
to be (1.240.183) ml. Thus, the relative error of flow rate is 15.3% under this condition. A
similar process occurs in the physical model. Since the total volume of the model is only
about 4.0ml, which is 25 times smaller than that in the pump cylinder, the influence of the

temperature increase on flow in the model will have an error of less than 1%. The above
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calculations illustrate that the temperature variation can cause significant error in pump flow

rates but a negligible influence on the model.

Temperature variation also affects the diffusion coefficient of the solute. As the solution
temperature increases, the diffusion coefficients of electrolytes increase. The variations of
the solute diffusion coefficient in the model due to temperature fluctuation could affect the
mixing process (Peclet numbers) at the junction. Theoretically, the diffusion coefficients of
strong electrolytes at infinite dilution are proportional to the absolute temperature of the
solution [Weast et al., 1987]. Although the tracer solution in our experiments was not at
infinite solution, we used this theoretical relationship to estimate the influence of
temperature on the solute diffusion coefficient and to obtain some idea about the magnitude
of the influence of temperature variation on solute diffusion coefficients. In our estimation,
if the solution temperature increases 7 °C and all the other properties (cation and anion
limiting equivalent conductances, cation valency, etc.) of the solute remain unchanged, the

diffusion coefficient of the solute will increase about 2.3%, which is relatively small.

Another aspect of temperature control during the experiments concerned water viscosity.
In general, water viscosity decreases as temperature increases and can affect flow rates in
a constant head system but will have little influence on flow rates in a constant flow system.
Since our experiments were conducted under constant flow conditions, the influence of

viscosity variation with temperature on flow rates in the model was negligible

The above analyses illustrate that temperature variation can cause large errors in pump
flow rates but relatively small errors on solute diffusion coefficients and flow rates in the
model. We had to determine within what magnitude the temperature variations had to be
controlled in order to minimize their influence. We determined that the influence of
temperature variation on pump flow rates should be controlled within & 3% of the set values.
Then a simple analysis showed that the water temperature inside the pump cylinders should

be controlled within a range of £0.2°C of the target temperature. Inside the constant
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temperature cabinet, temperature variations of less than + 1.0 °C would limit the flow rate
and diffusion coefficient variations in the model to much less than + 1%. Thus, the goal of
temperature control during the experiments was to control temperature variations to less than

+0.2°C in the pump cylinders and =+ 1.0 °C in the model cabinet.

An important aspect in controlling temperature variations was reducing room
temperature fluctuations. The periodic room temperature fluctuations illustrated in Figure
4.7 occurred because the cooling system for the entire building was shut down during the
night. This problem was corrected by leaving the cooling system on continuously. During
the fracture junction experiments, the room temperature was set at 25°C., Figure 4.8 shows
that the room temperature variations were greatly reduced. The figure also clearly shows that
the magnitude of the relative temperature variation inside the model cabinet was much less

than + 1.0°C as a result of room temperature control.
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Figure 4.8. Temperature variations with time in the lab and in the model cabinet.
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To control the temperature in the pump cylinders, water from the CTB first circulated
through the pump jackets of the two ISCO pumps, then through the model cabinet, and
finally flowed back to the CTB. The water temperature from the pump jacket was monitored
by a Campbell 107B water/soil temperature probe, as shown in Figure 4.4. The water
temperature variations in the pump jackets for a period of 12 days are plotted in Appendix
B, Figure B.2. The magnitude of the variation was far less than +0.2°C, which would limit
the influence of temperature variation on the pump flow rates to less than +3% of the set

values.

In general, by reducing room temperature variations, installing the model system in an
insulated cabinet, and using CTB to control temperature in pump cylinders and model
cabinet, the temperature in the experiments was well controlled, thus, significantly reducing

uncertainty in the experimental results.

4.4 Experimental procedures

The experiments were conducted in descending order from Peclet number 170 to 1. One
advantage of this sequence was a reduction of the mixing effects from the previous
experiment in the system. Preparation for the experiments included the following steps: (1)
preparing tracer solutions, (2) testing pump leakage and flow rate, and (3) removing air from
the physical model and filling it with tracer solutions. Then for each experiment at a unique
Peclet number, the additional steps were (4) calibrating the flow meter and setting the
metering valve for outlet flow rate control in fracture 4, (5) monitoring system pressure and
flow rate, (6) running the experiment and collecting samples, (7) analyzing samples. Each

of these steps is described below.

1. Preparing tracer solutions. Deaired type I water was used for preparing the KBr and
KClI tracer solutions. The purpose of using deaired water was to reduce the possibility of
generating air bubbles in the system and to help dissolve CO; later used for removing air

from the system. 12 mg of KBr (99.99% pure, Aldrich) and KCl (99.99+% pure, Aldrich)
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were dissolved in two separate beakers, each containing 100 ml of water. Thus, the
concentrations of Br~ and Cl- were 1.01x10~3 mol/l and 1.61x10-3 mol/l, respectively.

Standard samples were then taken for use in HPLC analysis.

2. Testing pump leakage and flow rate. Before a group (a series) of experiments could
begin, the two ISCO pumps were tested for leakage and corrected for flow rates. A pump
leakage test was conducted by running the pump at constant pressure mode. First, the outlet
tubing from the pump was removed and replaced with a plug. The pump was then filled with
the corresponding tracer solution and set at the normal pump operating pressure (around 400
psi). The leakage rate was estimated by operating the pump for about 12 hours and recording
both the initial and end volumes of solution left in the cylinder (the volume of the remaining
solution could be directly read from the screen of the pump controller). The initial volume
of the solution minus the end volume of the solution gave the total volume of water leaked
during the test period. The leakage rate then could be determined and added to the pump flow
rate for compensation. Tests showed that the leakage rates increased with the wear of the
pump seals. Initially, the leakage rates of both pumps were less than 1 pl/hour. However, by

the end of all of the experiments, the leakage rates had increased to around Sul/hour.

The flow rate of each pump was tested by running the pumps at the desired flow rates for
a certain periods (several hours to 10 hours, depending on the flow rates) and collecting the
water flowing out of the pumps (see §4.3.1). In general, the two ISCO pumps were very

accurate. In all tests, flow rate errors were less than +2%, including measurement errors.

3. Removing air from the system. Air inside the pressure transducer and the model was
removed to ensure accurate experimental results. An air bubble inside the transducers or the
model could affect the accuracy of the instruments or disturb the flow field in the model. Of
special concern were air bubbles around the junction which would change the flow field and
affect the mixing process. The following procedures were followed to remove the air in the

pressure transducers and the model.
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(3a). Removing air from the C-206 pressure transducer. The C-206 was placed in the
flow path of KCl injection between the back pressure regulator and the model to monitor
system pressure during the experiments (see Figures 4.3 and 4.9). To remove air from the
C-206, the 3—way valve controlling KCl injection to the model inflow fracture 2 was shut
off. The bleed hole on top of the transducer was opened. KCl solution was injected by the
pump through the inflow tube to push air out of the transducer. Once the solution flowed out

continuously from the bleed hole, the air was removed. The injection pump was shut off and

the bleed hole closed.
(3b). Flushing the physical model with CO, gas. The purpose of this step was to use CO2

to push air out of the model. The relatively high aqueous solubility of COj in water makes
it useful in removing gas from the model. The set up for CO; flushing is shown in Figure
4.9. CO3 gas from the supply tank passed through a pressure regulator and a 2 pm inline filter
(to remove dirt in the gas phase) to a 3-way valve. By switching the 3-way valve, the two
inflow fractures 1 and 2, and the two outflow fractures 3 and 4 could be flushed by CO» gas.

After COj flushing, the CO; 3-way switching valve was shut off.

KBr solution from physical model
ISCO pump

pressure
regulator

_ in line filter
it

KCl solution from
2| ISCO pump
= £
e:cn C-206 pressure
S transducer
Q to 706 current scanner

Figure 4.9. Schematic of experimental set up for removing air in the model.
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Figure 4.10. Schematic of model position for removing air from the model.

(3c). Removing CO, from the model and filling it with tracer solutions. This was the last

but the most important step in removing air from the model. The two outflow tubes
connected to outlet fractures, 3 and 4, were temporarily removed from the physical model.
KBr and KCl aqueous solutions were then injected into the physical model simultaneously.
The model was lifted into a vertical position so that the CO3 inside could be easily pushed
out through the outlet fractures by the aqueous solutions, as illustrated in Figure 4.10. Once
the model was CO; free (it could be easily checked by eye), the two outlet tubes were
re-attached to the physical model. The pumps were kept running to push gas out of these
outflow tubes until water continuously discharged from the two outlets. Then the pumps

were shut off.

(3d). Bleeding air out of the flow meter (C228-1 differential pressure transducer). The
differential pressure transducer must be air free to ensure accurate measurements. The
location and connections of the C228-1 differential pressure transducer are shown in Figures
44,45, and 4.9. There are two bleed holes in the C228-1, one for the high pressure port,

the other for the low pressure port. During the bleeding process, all the outflow control
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valves were shut off, and only KBr was injected into the model (the pump for KCl injection
was shut off). First, the air in the high pressure port was bled out, and then the air in low

pressure port.

After removing air from the physical model system, each fracture was flushed thoroughly
with the corresponding tracer solution. The purpose of this step was to remove the artificial
mixing effect of the two tracers during the pre-experiment set up, so that fractures 1 and 4
were initially filled with KBr solution, and fractures 2 and 3 were filled with KCl solution.
To flush fracture 2 and 3 with the KCl tracer solution, the metering valve controlling outlet
flow rate in fracture 4, the KBr injection pump, and the 3—-way for KBr injection were shut
off. Only the metering valve controlling the outlet flow rate in fracture 3 was open. KCl1
tracer solution was injected into the physical model at a rate of 30ml/h for 10 minutes. The
injected KCl solution flowed through fractures 2 and 3 and discharged through the outlet
flow tube. The same procedure was repeated to flush fractures 1 and 4 and the connected
outflow tubes. Thus, before the experiments, each fracture corresponded to a state of no
mixing at the junction, and any artificial mixing during the pre-experiment set up was

reduced.

4. Calibrating the flow meter and setting the metering valve for outlet flow rate control
in fracture 4. To ensure accurate flow rate data, the C228-1 differential transducer was

dynamically calibrated at the desired flow rate (and therefore the desired Peclet number)
before each experiment (see §4.3.2 for details). The metering valve for flow rate control in
fracture 4 was adjusted until the desired system operating pressure {(around 1-2 psi gage

pressure) was reached. It was left unaltered during the experiment.

5. Monitoring system pressure and flow rate during the experiment. The real time

information on flow rate and system pressure was essential for flow rate control during the
experiments. The VIEWDAC data acquisition software was programmed to obtain system

pressure data and inline pressure drop data from the C-206 pressure transducer and the
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(C228-1 differential pressure transducer every 5 seconds. The collected data were analyzed
in real time and then plotted on the computer screen as outlet flow rate in fracture 4 vs. time
and system pressure vs. time, respectively. VIEWDAC was also programmed to
automatically monitor flow rate and system pressure variations in the system. Whenever the
flow rate variation was over 3% of the designated flow rate or the system pressure rose above
the upper limit or dropped below the lower limit, the computer would beep to warn the
operator. Based on the real time flow rate data, outlet flow rates in the system could be
maintained at the desired values by mainly adjusting the metering valve controlling flow rate

in fracture 3.

6. Running the experiment and collecting samples. After these preparations, we began the
experiments by injecting KBr and KCl tracer solutions into fractures 1 and 2 simultaneously.
Manual adjustments on system outflow rate were made to ensure equal flow rates in each
outlet fracture. Figure 4.11 and Figure 4.12 are plots of flow rate and system pressure.
variations of the experiment at a high flow rate of 30.000 ml/hour and a Peclet number of
170. The average measured flow rate in fracture 4 was 30.030 ml/hour. The relative error
of the flow rate was 0.1%. The average velocity in the fracture was 5.39cm/minute with a
Reynolds number of 0.047 which is far below the upper limit (around 2,000) for laminar flow
between two parallel plates. The average velocity in the 0.02” ID PEEK flow tubing was
396.43cm/minute with a Reynolds number of 30.017. Figure 4.12 shows that during this
experiment, the system was at constant pressure. The estimated time required for
establishing a stable concentration profile in the system was about 3.00 minutes (more
detailed information on sample collection and sample analysis can be found in §4.3.4). Three
effluent water samples (0.5ml each) were taken at elapsed times of 6, 12, and 20 minutes.
These times and the estimated times at which the sampled water arrived at the fracture

junction are labeled in Figure 4.11.
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Figure 4.11. Flow rate variations in fracture 4 during the experiment at flow rate
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A second example shows the flow rate and system pressure variations of the experiment
at a middle flow rate of 1.000 ml/hour and a Peclet number of 5.67 (see Figures 4.13 and
4.14). The average flow rate in fracture 4 was 1.020 ml/hour. The relative error of flow rate
was 2%. Figure 4.13 shows a very slow increase in the flow rate from an initial flow rate of
1.00ml/hour to 1.02 ml/hour in 40 minutes. The flow rate then basically stabilized at 1.020
ml/hour. The system pressure also showed a very similar trend. The estimated time required
for establishing a stable concentration profile in the system was 71 minutes. Three samples
(0.1m] each) were taken at 133, 188, and 208 minutes after the outlet flow rates were

balanced.

A third example shows the flow rate and system pressure variations during the experiment
at a low flow rate 0.200mL/hour, corresponding to a Peclet number of 1.13 (see Figures 4.15
and 4.16). The average measured flow rate was 0.202 ml/hour. The average flow velocity
in each fracture was 3.59x10~2cm/minute with a Reynolds number of 3.143x104. Figure
4.15 shows small fluctuations in the flow rate. Those small fluctuations were caused by noise
in the differential pressure transducers and small real time adjustments in outlet flow rate
control. After the initial adjustment around relative time 2 hours, the system pressure in
Figure 4.16 slowly increased by 0.08psi over 10 hours. Due to the adjustments in outlet flow
rates at relative time 12 hours, the system pressure showed a quick increase of 0.12psi in 7
hours. The estimated elapsed time required for establishing a stable concentration profile in
the system was around 6.5 hours. A total of 6 samples (each contained 0.1 ml of the
corresponding effluent solution) were collected during the experiments as shown in Figure

4.16.

Samples collected during the experiments were sealed and temporarily stored in a

refrigerator. They were later analyzed by HPL.C.
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Figure 4.13. Flow rate variations in fracture 4 during the experiment at flow rate
1.00 ml/hour. The average flow rate was 1.02 ml/hour.
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Figure 4.14. Pressure variations with time during the experiment at flow rate
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Figure 4.15. Flow rate variations in fracture 4 during the experiment at flow rate
0.200ml/hour, The average flow rate was 0.202ml/hour.
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4.5 Experimental Results and Discussion

A total of 20 experiments were carried out to investigate the mixing behavior at the
fracture junction with Peclet numbers ranging from 1.13 to 170. The corresponding
Reynolds numbers in the fracture model were in the range of 3.14x1074 to 0.047. 104
samples were collected and analyzed by HPL.C for the concentrations of Br~and CI~ (theraw
data are listed in Appendix B, Table B.1). For some of the experiments, the raw data indicate
discrepancies in the concentrations for the Br~and Cl™in outlet fracture 3 and 4, respectively.
To determine the cause of this problem, the raw data and flow data were examined together.
We found that the discrepancies were mainly due to large outlet flow rate variations during

the experiments. Those data were then removed from data analysis (see Appendix B).

For the Br~ tracer in outlet fracture 3, the mixing ratio (the same as the normalized

concentration) is defined as

" Cip, (4.16)

where C3p, is the Br~ concentration in the outlet fracture 3, and Cjp, is the Br~ source
concentration in the inlet fracture 1. A similar mixing ratio, My;, can be estimated from Cl~
tracer concentration data in fracture 4. The expected maximum value of the mixing ratio is
0.5, which represents a diffusion controlled complete mixing process at the junction, The
minimum value of the mixing ratio is 0, corresponding to no diffusive mixing at junction,
such that the tranéport process at the junction is advection controlled. Any value of the
mixing ratio that is between O and 0.5 indicates a diffusion and advection controlled

transition zone mixing process.

The Br~ concentration data in fracture 4 can also be used to estimate the mixing ratio at

the junction, which is estimated as

Cigr (4.17)

where Cyp, is the Br™ concentration in the outlet fracture 4. Again, similar mixing ratio, M3/,
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can also be estimated from Cl- concentration data in fracture 3. The primed mixing ratios
calculated from equation (4.17) lie between 0.5 and 1, corresponding to complete mixing,

transition zone, or streamline routing. Theoretically, the sum of M and M should be 1.

From the final Br~ and Cl~ concentration data (the data that were seriously affected by
large outlet flow fluctuations had been removed, see Appendix B), we calculated four mixing
ratios, M3gr, Mypr, M3ci, Myci. These data are listed in Appendix B, Table B.2 and Table B.3
and are plotted in Figure 4.17. The data clearly show that as Peclet numbers decrease, the
mixing ratios increase and have larger variations at low Peclet numbers than at high Peclet

numbers.
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Figure 4.17. Relationship between mixing ratios and Peclet numbers at the junction.
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One way to look at the variations of the mixing ratios is to plot the mixing ratios M3p,
vs. M’ 4p, and M3c1 vs. M’ 4¢, as shown in Figures 4.18 and 4.19, respectively. Theoretically,
the relationship between M and M~ should be a straight line with a slope of 1. But due to
the influence of outlet flow rates variations during the experiments and errors in sample
analysis, the sum of M and M 'is rarely 1 (more detailed information on mass balance error

for Br- and Cl- is listed in Appendix Table B.2 and Table B.3) Figure 4.18 clearly shows
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Figure 4.18. Relationship between Figure 4.19. Relationship between
M3p, and M’ 4p, Mjscy and M 4¢y

that as M3p, increases, some of the data points stray from the straight line, and the variations
increase. The mixing ratio data determined from the Cl~ concentrations show relatively
small variations except for Myc; around 0.5. Thus, as a whole, the mixing ratios determined
from the Cl~ concentration data have smaller variations than those determined from Br~
concentration data, which does not necessarily mean that both M3c; and M’4¢; are more

reliable than M3p, or M’4p,.

In order to determine which concentration data can give the most reliable estimation of
the mixing ratio, the relationships between the mixing ratio and the Peclet number estimated
from Mj3p,, Myg,, M3c¢, and Myc; are plotted in Figures 4.20-23. It is clear that mixing ratios,
M3g,, determined from Br— concentration data in fracture 3 have the least variation, while
the mixing ratios, Myp,, determined from Br~ concentrations in fracture 4 have the largest

variation, especially at low Peclet numbers, thus explaining the large variations in Figure
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4.18. The mixing ratios determined from Cl~ concentrations in fracture 3 and 4 show
relatively small variations except for the Myc; data around Peclet numbers 50 and 1. To
ensure that the mixing ratio (M3p,) data determined from Br~ concentrations in fracture 3
are consistent with M3c; and My, the mixing ratio M3p, is compared with M3 and Mycy,
respectively, as shown in Figures 4.24 and 4.25. The conformity is obvious. Therefore, the

mixing ratio M3p, is reliable and has the least variation.

The large variation of the mixing ratio, Myp,, in Figure 4.20 determined from Br-
concentration data in fracture 4 could be due to additional dispersion caused by the dead

volume in the two ports for the inline flow meter’s differential pressure transducer (Refer
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to Figure 4.5 and Figure 4.10). The same problem could also affect the mixing ratios
determined from Cl~ concentrations in fracture 4. Fortunately, fracture 3 had no flow meter,
perhaps explaining the apparent lack of noise in mixing ratios determined on the basis of

tracer concentrations in this fracture.

Based on the above analysis, the mixing ratios calculated from Br~ concentrations in
fracture 3 were used to represent the magnitude of diffusive mixing at the junction in the
following discussion. For most Peclet numbers, there was more than one mixing ratio was
estimated from the Br~ concentration data (see Figure 4.21). These mixing ratios were
arithmetically averaged and are plotted in Figure 4.26, representing the relationship between

the mixing ratio and the Peclet number at the junction.
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Figure 4.26. Relationship between Peclet numbers and averaged mixing ratios
estimated from Br~ concentration data in fracture 3.
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The experiment results confirm our hypothesis that there is a transition zone between the
advection controlled streamline routing and the diffusion controlled complete mixing. As
expected, when the Peclet number is around 1, transport at the junction is diffusion
controlled, and complete mixing occurs at the junction. The transition zone corresponds to
the Peclet number in the range of 1 to 170. The upper limit is some what arbitrary. Indeed
the range is consistent with Hull et al.’s [1987] hypothesis, while our hypothesized upper
limit is less than that observed. Within this range both advection and diffusion control the
mixing process. We were unable to carry out the experiments at Peclet numbers smaller than
1 because controlling the outlet flow rates became extremely difficult at lower flow rates due
to the nonlinear property of the metering valves. On the other hand, experiments at Peclet
numbers higher than 170 could not be conducted under current experimental design due to

the high flow rates and thus high pressure in the system.

An important feature of the observed mixing process at the junction is that the mixing
ratio decreases asymptotically at the the top end of the transition zone. The highest Peclet
number in the experiments was around 170, which corresponds to an average flow velocity
of 5.39cm/minute, or 77.61m/day in the fractures. Even at this high Peclet number, the
mixing ratio at the fracture junction was 0.09 instead of 0. We expect that as the Peclet
number further increases, the influence of diffusion will be much less important and

eventually stream line routing will become appropriate.

Hull and Koslow [1986] conducted laboratory experiments to investigate mixing
behavior at the fracture junction with an idealized physical model. They conducted only one
experiment for the equal flow rate case ( referred to as D1 in their paper) at Peclet number
of 225. Twomixingratios were determined from their tracer concentration data in each outlet
fracture. They were 0.05 with -3.49% error and 0.92 (corresponding to 0.08 in their low
concentration fracture) with 8.00% error. This data is also plotted in Figure 4.26 and is

consistent with our asymptotic experimental results.
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4.6 Comparison Between the Numerical Simulation Results and the Experimental
Results

The LGA (Lattice Gas Automata) simulation results in Chapter 3 and the simulation
results of Berkowitz et al. [1994] are plotted together with our experimental results in Figure
4.27 for comparison. It is clear that the LGA simulation results are much closer to the
experimental results, while the difference between the results of Berkowitz et al. [1994] and
the experimental results is very large. For Peclet numbers smaller than 1, both the
experimental results and the LGA simulation results indicate complete mixing at the fracture
junction while the results of Berkowitz et al. predict a transition zone for Peclet numbers far
smaller than 1. More importantly, they never observed complete mixing even at the Peclet

numbers as low as 3x1073. They also suggest that for Peclet number greater than 1, the
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Figure 4.27. Comparisions of the mixing ratios at the fracture junction among
the numerical results of Berkowitz et al. [1994], the LGA results, and the
averaged experimental results from Br~ concentrations in fracture 3.
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transport process at the junction is advection controlled, and streamline routing is
appropriate. In contrast, the LGA results and the experimental results show that for Peclet
numbers larger than 1, transport at the junction is both advection and diffusion controlled,

and the mixing behavior at the junction has a broad transition zone.

The experimental results indicate that the LGA simulation results are basically correct,
providing additional evidence that the new tracer particle algorithm is physically correct and
can reflect the basic physical processes governing the transport of solute in the flow field.
One thing worth mentioning is that the I.GA simulations were completed before the
experiments began. The agreement between the LGA results and the experimental results
shows that the LGA method is capable of predicting macroscopic flow and transport

behavior,

The difference between the LGA results and the experimental results is relatively small
at low Peclet numbers, but tends to increase as the Peclet number increases. The largest
difference is about 0.08 at a Peclet number of 6.10, the largest Peclet number simulated by
L.GA. This difference could have been caused by a number of influencing factors. First, the
LGA simulations have some numerical error. The discreteness of the LGA approximation
introduces noise into the simulations which is smoothed with spatial and time averaging.
Second, there was some error in the experiments, possibly causing differences in outlet flow
rates that might have resulted in forced mixing at the junction, thus affecting the mixing
ratios. Third, a post—experiment examination of the model showed that the fracture junction
of the physical model was not perfectly symmetric. The apertures of the two outflow
fractures were larger than their corresponding inflow fractures, as shown in Figure 4.28. The
dividing streamline is about 1.38 times longer than the length of the orthogonal diagonal
direction. Although this difference did not affect the Peclet number at the junction under
equal flow rate conditions (refer to equation 4.2), the length of flow path at the junction was
increased and flow velocity was reduced due to the larger outflow fractures. As a result,

solute particle residence time might have increased, allowing more solute particles to diffuse
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Figure 4.28. Photo of the physical junction model. Blue dyed water and clear water
entered the junction from top and left fractures, respectively, then discharged through
right and bottom fractures. The blue dyed water from the top fracture shows the
dividing streamline along the diagonal direction of the junction.

across the dividing streamline, increasing the magnitude of diffusive mixing at the junction.
Thus, the mixing ratios for this specific geometry could be higher than the corresponding
idealized model. These three factors, taken together, can explain the difference between the

experiments and the numerical simulations.

To test the influence of this specific geometry on diffusive mixing at the junction. Three
LGA simulations were carried out for this specific junction at Peclet numbers of 6.10, 3.71,
and 1.67, respectively. The simulated corresponding mixing ratios for these three cases were
0.29, 0.33, and 0.43. Compared to the extrapolated corresponding experimental mixing
ratios 0of 0.27, 0.35, and 0.42, it is clear that the non—perfect geometry of the physical model
increased the diffusive mixing at the junction, and could explain all of the difference between

experimental and LGA simulated values presented in Figure 4.27.
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4.7 Conclusions

All previous experiments on mixing behavior at fracture junctions were conducted at
junction Peclet numbers in the range of 200-10,000 [Wilson and Witherspoon, 1976; Hull
and Koslow, 1986; Robinson and Gale, 1990]. These studies failed to establish a systematic
relationship between the mixing ratio and the junction Peclet number. Our experimental
results provided systematic information for junction Peclet numbers in the crucial range of

1-170. On the basis of the experimental results, we concluded that:

(1) The experimental results support our hypothesis (see Chapter 3) that there is a
transition zone between diffusion controlled complete mixing and advection dominated
streamline routing. The results further indicate that for Peclet numbers around 1, diffusion
dominates the transport process resulting in complete mixing at the junction. For Peclet
numbers in the range of 1 to 170, both diffusion and advection are important. Mixing in this
Peclet number range is referred to as transition zone mixing. Although our experiments did
not reach Peclet numbers larger than 200, the experimental results of Hull and Koslow
[1986] show that the mixing behavior will be advection controlled, and streamline routing
will be appropriate for junction Peclet numbers larger than 200. The experimental results
also shows that the prediction made by Hull et al. [1987], about the transition zone

corresponding to Peclet numbers in the range of /2 to 235, is reasonable.

(2) The streamline routing suggested by Hull and Koslow [1986] and Robinson and Gale
[1990] was only valid at Peclet numbers larger than 200; it can not be generalized torepresent

mixing behavior at small or middle Peclet numbers (P, in the range of 1-200).

(3) Our experimental results and the LGA simulations indicate that the numerical results
of Berkowitz et al. [1994] are invalid, and thus their conclusions that “the concept of

complete mixing within a fracture intersection does not properly represent the mass transfer
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process at any value of Peclet number...and streamline routing models provided a good

approximation for Peclet numbers greater than 1...” are disproved.

(4) The LGA simulations, which preceded the experiments, were basically correct,
suggesting that the new tracer particle algorithm is physically correct and can reflect the
physical processes governing solute transport, and the LGA can be used to predict previously

unobserved experimental phenomena.

(5) The small but systematic differences between the LGA simulations presented in
Chapter 3 and the experimental results can be explained by imperfections in the experimental
fracture junction geometry. LGA simulations run with this geometry are different from those
simulations with the idealized geometry, and are very close to the observed experimental

results.

In this research only mixing at an idealized fracture junction with even inflows and
outflows was tested. Under natural conditions, fracture junctions are likely to be imperfect
and with non-equal flow rates; thus, the mixing behavior at a real fracture junction is more
complicated. Nevertheless, results from the current research offer background knowledge

for future studies on mixing behavior at real fracture junctions.
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Chapter 5: Heuristic Theory on Diffusive Mixing
Behavior at Fracture Junctions

5.1 Introduction

The choice of mixing rules at fracture junctions affects the movement and spatial
distribution of solute in discrete fracture networks [Hull et al., 1987; Robinson and Gale,
1990]. Laboratory physical experiments have been applied to study these mixing rules.
Tracers/dyes were injected into the inflow channels of a physical model, and the mixing
behavior at the junction was determined from tracer concentrations in the outflow channels.
Experiments, at various levels of sophistication, have been carried out by Wilson and
Witherspoon [1976], Hull and Koslow [1986], and Robinson and Gale [1990]. Since
diffusive mixing was not observed, they all concluded that streamline routing is appropriate.
Hull and Koslow [1986] developed a proportional streamline routing for predicting

concentrations in outlet fractures due to forced mixing.

Mathematical/numerical simulations have also been performed to investigate solute
mixing behavior at a fracture junction. Philip [1988] studied the advection controlled forced
mixing process at an idealized discontinuous fracture junction. He used approximate
analytical solutions of Laplace and Stokes flow. He concluded that when the two inlet
discharges and the two outlet discharges both differ greatly in magnitude, the proportional
routing suggested by Hull and Koslow [1986] for forced mixing at the junction could result
in large error. Berkowitz et al. [1994] conducted numerical simulations on mixing behavior
at an idealized continuous junction. The flow field in the system was solved following the
stream function method suggested by Philip [1988], while a random walk particle tracking
method was applied to account for solute diffusion and advection processes. Their results
predicted that at Peclet numbers larger than 1, mixing at the junction was advection

controlled. Below that there was a diffusion and advection controlled transition zone.
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However, under equal flow conditions, they did not observe complete mixing at the junction

even at the Peclet number as low as 3x1073.

We conducted both numerical simulations and physical experiments to investigate the
solute mixing behavior at an idealized fracture junction. Both the LGA simulation results
and the experimental results support our hypothesis (see Chapters 3 & 4) that there is a
transition zone between diffusion controlled complete mixing and advection dominated
streamline routing. The results further indicate that for Peclet numbers smaller than 1,
diffusion dominates the transport process, resulting in complete mixing at the junction. For
Peclet numbers in the range of 1 to 170, both diffusion and advection are important. Mixing
in this Peclet number range is referred to as transition zone mixing. The experimental results
show that the streamline routing suggested by Hull and Koslow [1986] and Robinson and
Gale [1990] was only valid at Peclet numbers larger than 200 and can not be generalized to

represent mixing behavior at small or middle Peclet numbers (P, in the range of 1-200).

Realizing the impracticality of conducting numerical or physical simulations to
investigate the mixing behavior at a junction under all different flow combinations (there are
thousands of them), we start from a different point of view to heuristically investigate the
mixing behavior. We analyze the physical processes which dominate the mixing behavior
and develop a mixing zone concept that appears to explain the solute diffusive mixing

behavior at the junction.

5.2 Mixing Behavior at Fracture Junctions: The Physical Process

This heuristic study of mixing behavior around fracture junctions first focuses on the
idealized case which has uniform apertures and even flow rates in each fracture. The
idealized fracture junction is depicted in Figure 5.1. Flow enters the junction through inflow
fractures 1 and 2 and leaves the junction through outflow fractures 3 and 4. The dividing
streamline that separates the two inflow regions is along the diagonal of the junction (see

Figure 5.1). Supposing that the inflow fracture 1 carries a contaminant with uniform
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Figure 5.1. Schematic of an idealized fracture junction.

concentration while fracture 2 has no contaminant, when these two inflows meet at the
junction, solute mixing occurs. The two processes governing the solute mixing behavior are
diffusion and advection. Diffusion causes solute particles to move across the dividing
streamline into the flow region formed by fractures 2 and 3, while advection prevents the

solute from spreading. Thus, the degree of mixing depends on the strength of each process.

At the idealized junction with equal inflow and outflow, diffusion is the only driving
process for mixing at the junction. The magnitude of diffusive mixing depends on how long
the solute particles can stay at the junction, i.e., residence time. The solute residence time
is determined by the length of the flow path and flow velocity. Instead of calculating the
residence time of individual solute particle, we use the average flow velocity, V, in the inflow
fracture 1 and the length of the center streamline at the junction to estimate the representative

residence time 7, of the solute

r==%

17 (5.1)
where r is the length of the center streamline at the junction, measured from the entrance of

the junction, and varies from /2 -b/2 to 0 at the exit of the junction. At high flow velocity
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and short residence time, only solute particles that are adjacent to the dividing streamline can
move across the dividing streamline into fracture 3 under the influence of diffusion. There
is little mixing at the junction. As velocity decreases, solute residence time increases. More
solute particles can now diffuse across the dividing streamline, and there is more mixing.
When the residence time increases above a certain limit, then all the solute particles entering
the junction from fracture 1 can participate in the mixing process. As a result, complete

mixing occurs.

Another factor which also plays a key role in the mixing process is the solute diffusion
coefficient. It determines how far a solute particle can travel by diffusion in certain time
period. The time #; required for a solute particle to travel a distance of ¢ and diffuse across

the dividing streamline is estimated by
=

D (5.2)
where D is the solute diffusion coefficient. d varies from 0 to /2 + b/2 (the width of the flow
region formed by flow from fracture 1 to fracture 4 at the junction). Thus, for complete
mixing to occur at the junction, all the solute particles entering the junction should have the
opportunity to diffuse across the dividing streamline. The minimum residence time required
for complete mixing to occur is roughly

LG g |
D 2D (5.3)

If 4>1., then the transport process is diffusion controlled, and complete mixing should
occur. Otherwise, only part of the solute particles can participate in the mixing process. In

the case of <<y, mixing at the junction is dominated by advection, and streamline routing

becomes appropriate.

Equations (5.1) and (5.2) state that two competing processes determine the mixing
behavior: advection and diffusion. When #<#y, only part of the solute particles that are

within a distance 6 of the dividing streamline can contribute to the mixing process. When
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t>1y, all of the solute particle that are within ¢ can take part in the mixing process. Thus,
the population of solute particles that can effectively contribute to the mixing process
depends of the residence time. We introduce a mixing zone to represent this population. It
is defined as a zone inside which there is a high probability that solute particles can diffuse
across the dividing streamline to contribute to the mixing process at the junction. The size
of the mixing zone is determined by both the residence time and the solute diffusion

coefficient. Equating equation (5.1) and (5.2), the mixing zone is described by

6 e r-D
Vv (54)
This expression suggests that the size of the mixing zone is proportional to the length of the
flow path and the solute diffusion coefficient but inversely proportional to flow velocity.

Figure 5.2 is a schematic of mixing zones for different flow velocities. From zone 1 to zone

3, the average velocity in the system decreases. As water flows around the junction from

Figure 5.2. Schematic of the mixing zone.
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fracture 1 into the junction and toward the outlet fracture 4, the time for a solute particle to
stay at the junction decreases; therefore, the size of the mixing zone decreases. The dashed
lines in the flow region formed by flow from fracture 2 to fracture 3 represent the
corresponding zones of the solute particles that have moved across the dividing streamline.
In this flow region, a solute particle tends to move further away from the dividing streamline
under the influence of diffusion. The size of the corresponding mixing zones increases as the
water flows away from the junction. Figure 5.2 illustrates that as flow velocity decreases,
the residence time increases; thus, the size of the mixing zone increases, and more solute

particles can take part in the mixing process at the junction.

The Peclet number P, is used to characterize the transport process mechanism at a fracture

junction. It is defined as

_V-b2
Pe= 55— . (5.5)

As the Peclet number increases, advection begins to dominate the transport process. On the
other hand, as the Peclet number decreases, diffusion begins to play an important role and

the influence of advection decreases.

Combining equation (5.4) and equation (5.5), the mixing zone can be rewritten as a

function of the Peclet number and the representative flow path r in the junction

_ rmax'r
6 = P,

(5.6)
where fingy= /2 - b/2. We define the maximum width J,, of a mixing zone as the value of §

corresponds to r=rp,x

b

V' max

S|

(5.7
The left hand side of equation (5.7) is the ratio of the width of the mixing zone to 7i;4y.
Equation (5.7) shows that for a fixed value of 7,4y, as the Peclet number decreases, the width

of the mixing zone increases; more solute particles can cross the dividing streamline, and
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diffusion begins to dominate the transport process. On the contrary, as the Peclet number
increases, the width of the mixing zone decreases, and few particles can across the dividing

stream line. As a result, the transport process becomes advection controlled.

5.3 Applications of the Mixing Zone Theory in Data Analyses

The experimental relationship between the mixing ratio and the fracture junction Peclet
number presented in Chapter 4 (see Figure 4.19) shows that as the Peclet number decreases,
the mixing process quickly reaches complete mixing. But it asymptotically approaches
advection controlled streamline routing as the Peclet number increases. Why do we see an
asymptotic result at high Peclet numbers but not at the lower end? What is the physical

process that controls the mixing behavior?

To answer these questions, it is useful to look at the mixing behavior on the basis of the
mixing zone concept. The asymptotic character of the mixing ratio can be easily explained
by considering the size of the mixing zone at high Peclet numbers. Equation (5.7) indicates
that the width of the mixing zone is inversely proportional to the square root of the Peclet
number, suggesting that the size of the mixing zone decreases slowly as the Peclet number
increases. If the Peclet number P.=100 at the junction, then the mixing zone width calculated
from equation (5.7) is 0.17,4,. As the Peclet number P, increases to 10,000, the mixing zone
width decreases to 0.0lrmax. It is clear that although the Peclet number increases 100 times,
the width of the mixing zone only decreases 10 times. Thus, even at a Peclet number as high
as 10,000, there is still some kind of diffusive mixing occurring at the junction. The mixing
ratio asymptotically approaches 0 and advection dominated streamline routing. On the other
hand, at relatively low and decreasing Peclet numbers, the size of the mixing zone increases
at amuch faster rate. The size of the mixing zone soon reaches the limit required for complete
mixing to occur at the junction, and the mixing process quickly becomes diffusion

controlled.



124

Using the heuristic mixing zone concept, we can also attempt to explain why complete
mixing occurs at the Peclet number around 1. From equation (5.7), the width of the mixing

zone is

S

b

/P, P, (5.8)

To achieve complete mixing at the fracture junction, all the solute particles entering the

r
5m_ max __

junction from fracture 1 should be included in the mixing zone, which means the width of

the mixing zone, 0,,, must be equal to or larger than /2 - bi2, the half diagonal length of the

junction. Thus, complete mixing occurs around P,=1.

The above examples illustrate that the heuristic mixing zone concept reflects the basic
physical processes governing the mixing behavior at the junction. But understanding the
physical process is not the only goal of this research; our ultimate goal is to use the mixing
zone concept to predict the mixing behavior without conducting numerical simulations or
experiments. We use P.50 and 050 to represent the Peclet number and the width of the
mixing zone at complete mixing. The width of the diffusive mixing zone can be normalized

as

m50 —P—e_ 59
where M; is the normalized diffusive mixing zone width. As the size of the mixing zone
increases, more solute particles can contribute to the mixing process at the junction. When
M;>1, 6,;,=>0m50, complete mixing occurs; when M;=0, §,,=0, no diffusive mixing can
occur; any value of M; that is in the range of O and 1 indicates a diffusion and advection
controlled transition mixing zone. Thus, the normalized mixing zone width, M;, becomes
another indicator to represent the magnitude of diffusive mixing at the junction. Because the
mixing ratio varies from 0.5 for diffusion controlled complete mixing to O for advection

controlled streamline routing, to make the normalized mixing zone width comparable with
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the mixing ratio, equation 5.9 is rescaled to predict diffusive mixing ratio at the junction

05, M;=>05
Om

_ Poso _
20 150

1
2V P,

M,

M,
5.10

Substituting P.59=1 in equation (5.8), the values of M, are calculated and plotted as the
dashed line in Figure 5.3 together with the experimental results of Hull and Koslow [1986],
the numerical results of Berkowitz et al. [1994], our LGA results, and our new experimental
results. Figure 5.3 clearly shows that the values of (5.10) are very close to the LGA results
but below the experimental results. Even with this difference, Figure 5.3 indicates that the
heuristic concept of mixing zone is physically correct. The difference between the mixing
ratios predicted by the mixing zone and modeled by Berkowitz et al. [1994] is significant

for Peclet numbers smaller than 100. The differences between the predicted mixing ratios

1
i ® Experiment
0.9 i *LGA
0.8 I A Berkowitz et al. [1994]
i = Hull and Koslow [1986]
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Figure 5.3. Comparision among predicted mixing ratios, the
experimental results, and the numerical results.
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and the experimental results (refer to Chapter 4) may arise from the following factors. First,
the heuristic mixing zone concept is only a rough approximation of the real problem. Second,
the physical model used in the experiments was not geometrically perfect, as shown in Figure
4.28 and schematically redrawn in Figure 5.4. Reduced velocity at the junction and the

longer flow path can increase the residence time and contribute more mixing at the junction.

Based on the mixing zone concept, we can estimate the influence of the non—perféct
junction geometry on the mixing ratios without conducting new numerical simulations or
new physical experiments. In Figure 5.4, the apertures of the two outlet fractures are 16%
larger than that of their corresponding inflow fractures. The length, 27’4, of the dividing
streamline that separates the two inflow regions is about 1.38 times longer than the shorter
diagonal line, 27,4 . For a perfectly symmetric junction, 7’ jmay=Tmax=b~/2/2, and the Peclet
number is defined in equation (5.5). For the non-perfect physical junction model, the Peclet
number is defined as P, =Viya/D, and r’ ., represents the length of the center flow path
from the end of inflow fracture 1 to the entrance of the outflow fracture 4. As it is difficult

to estimate the change of velocities at the junction, we still use the average inflow velocity

Figure 5.4. Schematic of the real physical model.(not to scale)
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in the following calculations. In equation (5.6) with r replaced by r’ 4y, the width of the

mixing zone at the real junction is

5, = "’max'rmax
" Pe 5.11

From equation (4.2) in §4.2, we know that junction Peclet numbers does not depend on the
apertures of the fractures under equal flow rate conditions. Thus, the non—-perfect physical
junction model and the idealized model have the same junction Peclet number under the
same flow rate condition. Repeating the processes from equations (5.8) to (5.10), the
relationship between the mixing ratio at the non-perfect junction and that at the idealized
junction is

. 0.5, M’ y=>05
er — max . Mr

¥max

f

M’r
5.12

Since in the physical model r max/Tmax=1.38, equation 5.12 indicates that the mixing ratio
at the real physical junction increases systematically. Substituting M, from equation (5.10)
into equation (5.12), the corresponding mixing ratios M’, at the real physical junction are
calculated and plotted in Figure 5.5. Comparing Figures 5.3 and 5.5, we can see that this

specific junction geometry can increase diffusive mixing at the junction.
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Figure 5.5. Comparison between the experimental results and the
predicted mixing ratios for the non-perfect physical junction model.
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5.4 Applications of the Mixing Zone Theory to Non-equal
Flow Rate Diffusive Mixing Behavior at Fracture Junctions

Under natural conditions due to differences in fracture geometries and hydraulic
gradients, the flow rate in each fracture may be different. Figure 5.6 is a schematic of the flow
configuration at an idealized fracture junction with non-equal flow rates and the
corresponding mixing zones. The inlet flow rates Qy and Q3 are equal, but the outlet flow
rates are different with Q4>Qj3. Some of the water from fracture 2 crosses the junction, joins
the flow from fracture 1, and then discharges through fracture 4. Due to the cross flow, the
solute concentration in fracture 4 decreases, which is is referred to as ‘forced mixing’ by

Robinson and Gale [1990].

There are two schematic dividing streamlines in the Figure 5.6. The upper one separates

inflows coming from fractures 1 and 2. The lower one separates the inflow from fracture 2

Figure 5.6. Schematic of the mixing zone under non—equal
flow rate condition.
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into two parts: the cross flow which discharges into outflow fracture 4, and the outflow which
discharges into fracture 3. Solute particles that enter the junction from fracture 1 will
discharge into fracture 4 unless there is sufficient diffusive mixing to carry some of them
across both dividing streamlines. The dashed lines represent the boundary for diffusive
mixing in the junction. The upper dashed line represents the region of the solute particles
that can diffuse across the upper dividing streamline into the cross—flow region, while the
lower dashed line represents the zone that can be occupied by solute particles which have
crossed the upper dividing streamline. Because this zone overlaps the cross—flow region,
only the particles that are able to diffuse out of the cross-flow region contribute to diffusive
mixing in fracture 3. The solute particles which can not escape from the cross-flow region
will be carried into fracture 4 to join the main solute body. When the flow velocity is very
high or the magnitude of the cross—flow is large, the lower dashed line will be included inside
the cross—flow region. Solute particle can not escape from the cross-flow region, and no
solute particle in fracture 3 will be found. Thus, cross-flow at the junction reduces the

magnitude of diffusive mixing.

Hull and Koslow [1986] developed a formula to predict solute concentrations in the two
outflow fractures by assuming that streamlines do not cross (no diffusive mixing in the
junction). This formula is also called proportional routing because concentrations in each
outlet fracture are proportional to the magnitude of cross flow. In the case shown in Figure

5.4, the proportional routing predicts that concentrations in outflow fractures 3 and 4 are

o o
C4=:cl--(Zl‘+c2-(1—@11
C3 =0 (5.13)

In our case, let C»=0 and C;=1, giving C3=0, and Cy=(C;Q;)/Q4. Proportional routing
assumes that only forced mixing occurs. The LGA results presented in Chapter 3 have shown

that even with a cross-flow, diffusive mixing can still occur under some conditions. Using
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the mixing zone concept, we can estimate the influence of cross—flow on diffusive mixing

at the junction.

As the flow at the junction is no longer symmetric, determining the actual dividing
streamline and the length of the center flow path for the actual flow field is difficult. As an
approximation, we treat the non—equal flow rate system as an equal one for estimating the
Peclet number and the size of the mixing zone. We can expect that this kind of approach may
induce large error when the magnitude of the cross—flow is large. The Peclet number at the
junction can be estimated as

— V—@b
Pe=—F (5.14)

where V is the average inflow velocity of the system. Substituting the average Peclet number

into equation (5.8), the width of the diffusive mixing zone is estimated by

V2
“.p
6,,,-—““2

Pe (5.15)

But due to cross—flow from fracture 2, only some of the solute particles can escape from the
cross—-flow region into fracture 3. The effective size of the mixing zone that can contribute
to diffusive mixing in fracture 3 is reduced. The effective size of the mixing zone depends
on the width of the cross-flow region which can be estimated by assuming that the width of
the cross—flow region is proportional to the relative magnitude of the cross—flow in the outlet
fracture 4. The amount of flow from fracture 2 that crosses the junction discharges into
fracture 4 is (Q4-Q;). The width of the cross-flow region 6f is

(Q4 “" Ql) b
0, (5.16)

(5f=

From equations (5.15) and (5.16), the actual size of the mixing zone that can contribute to
diffusive mixing at the junction becomes

Opmix = Om0Of (5.17)
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Omir>0indicates that the width of the mixing zone is larger than that of the cross~flow region.
Under this condition both forced mixing and diffusive mixing occur, When Jp,;x<0, the width
of the diffusive mixing zone is smaller than that of the cross-flow region, and the diffusive
mixing zone is included inside the cross—flow region. No effective diffusive mixing can

occur, and no solute particle will move into fracture 3.

The mixing ratio determined from the normalized size of the mixing zone in equation
(5.10) only corresponds to the equal flow rate case. Under non-equal flow rate conditions,
it must be modified. The cross—flow from fracture 2 reduces the magnitude of outflow in
fracture 3. The normalized flow in fracture 3 corresponding to the average flow in the system
is
Q3

Oy = ot
>0, + 0y (5.18)

Under equal flow rate conditions, the normalized flow in fracture 3 is 1. In the case of equal
inflows but non-equal outflows, if Q3<Q;=0>, then the normalized flow rate, 0,3, in
fracture 3 will be smaller than 1. If the effective diffusive mixing zone is the same for both
the equal flow rate case and the non-equal flow rate case, then the non-equal flow rate case
will have a large diffusive mixing ratio due to the small flow rate in fracture 3. Thus, the
diffusive mixing ratio estimated from the normalized mixing zone has to account for the
relative difference in outlet flow rates. On the basis of equation (5.10), the mixing ratio for

this non-equal flow case can be estimated by

amix

1
M, = 2 “mx
" 20,5 b0 (5.19)

where J,,50 is the width of the mixing zone corresponds to complete mixing at the average
Peclet number of 1. From equation (5.15), 6,,50=+/2/(2b). A zero or negative M, indicates
that the mixing zone is included inside the cross—flow region, no solute particles can diffuse
out from this region i;lto fracture 3, and no effective diffusive mixing occurs at the junction.

When M,>0.5, diffusion controlled complete mixing occurs. Substituting 0,50 into
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equation (5.19) and redefining the range of M,, we have

0.5, My,>0.5

1 dmix
M, = m——=o =
r 20,3 b M, 0<M,<05

0, M<0 (5.20)

Equation 5.20 can be used to estimate the diffusive mixing ratios at the fracture junctions
under equal inflow rates but non-equal outflow rates conditions with Qs>Q3. A similar
formula can also be derived for the general cases with non-equal inflow and non-equal
outflow rates. As no detailed information on the flow field at the junction is required,

equation 5.20is easy to apply and can offer information about the diffusive mixing behavior.

The heuristic formula (5.20) is tested by comparing the predicted mixing ratios with the
simulated ones in Chapter 3. Two LGA simulations were performed in that chapter to
investigate the mixing behavior under equal inflow but non-equal out flow conditions. The
first case was run with an average inflow velocity of 0.13 lu/sts in fractures 1 and 2, and a
Peclet number of 5.45. With 26% of the water from fracture 2 crossing the junction and
discharging into fracture 4, the average outflow velocities in fracture 3 and 4 were
0.096lu/sts and 0.170lu/sts, respectively. The width of the cross—flow region estimated from
equation (5.16) was d7=0.21b. From equation (5.18), the normalized flow in fracture 3 was
0n3=0.74. The diffusive mixing zone width calculated from equation (5.15) was 6,,=0.28b.
Thus, the effective diffusive mixing zone width that contributed to diffusive mixing at the
junction was Op;,=0.07b. With these values, the heuristic formula predicts a diffusive
mixing ratio of M,;3=0.067 in fracture 3. The corresponding diffusive mixing ratio

determined from the LGA simulation was identical to this estimated value.

The second case was run at a relatively low Peclet number of 1.39. The inflow rate in
fractures 1 and 2 was 0.0415lu/sts. Almost 74% of the fluid from fracture 2 crossed the
junction and discharged into fracture 4; the outflow rates in fracture 3 and fracture 4 were

0.0111u/sts and 0.072lu/sts, respectively. The width of the cross-flow region was d¢=0.420.
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The normalized flow rate in fracture 3 was Q,,3=0.27. From equation (5.11), the width of the
diffusive mixing zone was ,,=0.60b. The effective diffusive mixing zone width was
Omix=0.18b. Using equation (5.20), the estimated diffusive mixing ratio was 0.47. The
mixing ratio determined from the numerical simulation was 0.34, Compared to the high
Peclet number case, we see that in the case of large cross—flow, using equation (5.20) can

introduce a large error in the predicted diffusive mixing ratio.

In both the cases, the proportional routing developed by Hull and Koslow predicted a
diffusive mixing ratio of M,=0. It is clear that the proportional routing is only appropriate
under very high Peclet number conditions or when the size of the diffusive mixing zone is

smaller than the cross-flow region.

Under more general conditions when the flow rates in the inflow outflow fractures are
not equal, the mixing process becomes more complicated. An LGA simulation was run with
the inflow velocities of 0.0821u/sts and 0.041 lu/sts in fractures 1 and 2, respectively, The
average outflow velocity in fractures 3 was 0.0341u/sts and in fracture 4 was 0.0891u/sts. The
Peclet number at the junction was 2.49 which corresponds to a diffusive mixing zone width
of 6,,=0.448b. The width of the cross-flow region calculated from equation (5.16) was
0.078b, the average flow velocity in the system was 0.0615lu/sts, and the normalized flow
in fracture 3 was Q,3=0.55. Under this flow condition, forced mixing occurred in fracture
4 but only diffusi;le mixing in fracture 3. The mixing ratio C3/C; estimated from the
simulation was 0.48. Note, this high mixing ratio was due to the non-equal inflow in the
system,; it only represents the relative magnitude of the concentration in fracture 3 and does
mean mixing at the junction was almost complete. Under non-equal inflow rate conditions,
in order to compare the mixing ratio predicted by equation (5.20) with the simulated mixing
ratio, the concentrations in fracture 3 needs to be normalized to the complete mixing
concentration instead of the source concentration. The flow corrected mixing ratio was

C3(Q; +02)/(2C; 01)=0.36. Using the mixing zone concept, the effective mixing zone width
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that contributed to the diffusive mixing in fracture 3 was d;,=0.37b. The heuristic formula
(5.20) predicts a mixing ratio of 0.48. Compared with the simulated mixing ratio of 0.36,
the difference is 0.12. This large difference arises mainly from the approximation of using

average velocity to represent the flow in the actual system.

5.5 Conclusions and Discussion

The heuristic mixing zone concept and model is shown to be physically correct by the
LGA simulations and the experimental results and is able to reflect the physical processes
governing solute transport at fracture junctions. The mixing zone concept gives the diffusive

mixing behavior under non-equal flow rate conditions a clear physical explanation.

The heuristic formula developed for predicting diffusive mixing ratios under equal flow
rate conditions proved to be valid. The generalized formula which takes into account the
influence of cross-flow can be used to estimate the diffusive mixing ratios, but the errors
increase as the magnitude of the inflows differs largely. Compared to the proportional
streamline routing proposed by Hull and Koslow [1986], the heuristic formula is able to take

into account the influence of diffusive mixing at a junction.

In this section, we demonstrate the applications of the mixing zone concept in predicting
diffusive mixing ratios at an idealized fracture junction, yet the mixing zone concept needs
to be further developed to take into account the influence of non-equal apertures on diffusive

mixing.
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Chapter 6: Conclusions and Recommendations

The major contributions and conclusions of this work to the research of mixing behavior

at fracture junctions can be summarized as follows:

(1) All previous experiments on mixing behavior at fracture junction were conducted at
junction Peclet numbers in the range of 200-10,000 [Wilson and Witherspoon, 1976; Hull
and Koslow, 1986; Robinson and Gale, 1990]. These studies failed to establish a systematic
relationship between the mixing ratio and the junction Peclet number. Our experimental
results provided that systematic information for junction Peclet numbers in the crucial range

of 1-170.

(2) Both the LGA simulation results and the experimental results support our hypothesis
(see Chapters 3 & 4) that there is a transition zone between diffusion controlled complete
mixing and advection dominated streamline routing. As suggested by our hypothesis and
Hull et al. [1987] the results further indicate that for Peclet numbers smaller than 1, diffusion
dominates the transport process resulting in complete mixing at the junction. For Peclet
numbers in the range of 1 to 170, both diffusion and advection are important. Mixing in this
Peclet number range is referred as transition zone mixing. Although our experiments did not
reach Peclet numbers larger than 200, the experimental results of Hull and Koslow [1986]
show that the mixing behavior will be advection controlled, and streamline routing will be
appropriate for junction Peclet numbers larger than 200. Hull et al.’s [1987] estimate for the

upper range of the transition zone, P,=233, is consistent with our findings.

(3) The experimental results clarified previous arguments on mixing rules at fracture
junctions. The streamline routing suggested by Hull and Koslow [1986] and Robinson and
Gale [1990] was shown to be only valid at Peclet numbers larger than 200; it can’t be
generalized to represent mixing behavior at small or middle Peclet numbers (P, in the range

of 1-200).
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(4) Our experimental results and the LGA simulations indicate that the numerical results
of Berkowitz et al. [1994] are invalid, and thus their conclusions that “the concept of
complete mixing within a fracture intersection does not properly represent the mass transfer
process at any value of Peclet number...and streamline routing models provided a good

approximation for Peclet numbers greater than 1...” are disproved.

(5) The proportional routing proposed by Hull and Koslow [1986] for predicting forced
mixing concentrations in outflow fractures was adequate only at very high Peclet numbers.
When the junction Peclet number is in the lower range (less than 5), diffusive mixing at the

junction play an important role, the error of the proportional routing can be quite large.

(6) A heuristic mixing zone concept and model was developed to provide a physical
explanation for the diffusive mixing behavior at fracture junctions. This new concept and
model was shown to be consistent with the LGA simulations and the experimental results,
and helped to explain the experimental observations. A heuristic formula is proposed for
predicting diffusive mixing behavior at continuous fracture junctions under equal and
non-equal flow rate conditions. The LGA simulations indicate that predictions from this
formula are reasonably good when the differences between the two inflow rates or the two
outflow rates are relatively small, but significant errors can arise otherwise. Nevertheless,
this formula is useful in offering information on the importance of diffusive mixing at a

fracture junction.

(7) A new tracer particle algorithm for simulating solute transport with the LGA method
was developed and applied in the research of the mixing behavior at fracture junctions. A
series of test problems, and the comparison between fracture junction LGA simulations and
experimental results, indicate that the new tracer particle algorithm is basically correct and

reflects the physical processes governing the transport of a non-reactive solute.



139

(8) The LGA simulations [Wilson et al., 1993; Li and Wilson, 1994] which preceded the
experiments was shown to be physically correct by the experimental results, suggesting that

the LGA method can simulate macroscopic flow and transport behavior properly.

In this research, we only examined the solute mixing behavior at an idealized fracture
junction (two orthogonal fractures with equal apertures), still, the primary results from this
research offers background knowledge for future research on the mixing behavior at fracture

junctions with more complex geometries.

In the field, fractures have different apertures, orientations, rough walls, and non-equal
flow rates. Under such conditions, the mixing behavior is much more complicated. On the

basis of the current research, the following problems are suggested for future research:

(1) Perform experiments and numerical simulations to investigate the influence of
non-equal flow rates on mixing (diffusive mixing and forced forced mixing) behavior at
fracture junctions in the Peclet number range of 0.1--200. The results from these experiments
can help elucidate the importance of diffusive mixing versus forced mixing under different

flow conditions.

(2) Perform experiments and simulations to study the influences of fracture junction
geometries (fractures with different apertures, different intersection angles, and wall

roughness) on the mixing process at fracture junctions.

(3) Generalize the heuristic mixing zone concept to include cases involving non-equal
apertures and non-equal flow rates and seek the possibility of applying the mixing zone

concept to predict mixing behavior at non-ideal fracture junctions.

(4) Build a physical fracture network model and perform experiments and numerical

simulations to test the new mixing rules.
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Appendix A: LGA Simulation Results

Table A.1. LGA simulation results of mixing behavior at an idealized
fracture junction.

Mean den. D Vv P Mixing ratio
(n) (1u?/sts) (lu/sts) M,
1.37 0.81 0.012 0.37 0.500
1.64 0.74 0.020 0.68 0.508
2.03 0.66 0.023 0.88 0.480
2.08 0.65 0.030 1.16 0.440
2.28 0.62 0.041 1.67 0.387
1.60 0.75 0.050 1.67 0.370
2.27 0.62 0.051 2.08 0.349
2.48 0.59 0.065 2.78 0.317
173 0.72 0.080 2.79 0.298
294 0.54 0.080 373 0.260
1.78 0.71 0.105 371 0.250
1.84 0.69 0.110 3.97 0.223
1.83 0.70 0.133 478 0.220
2.17 0.63 0.098 3.90 0.217
2.19 0.63 0.125 4.99 0.207
2.38 0.60 0.130 5.44 0.195
2.67 0.56 0.137 6.10 0.170
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Appendix B: Experimental set up and Results

KNURL-LOK III fitting
Fracture

\

Peek tubing, ID=0.02inch

Figure B.1. Cross—-sectional schematic of the structure at the inflow/out-
flow end of each fracture.

The variations of water density with temperature at 1 atm can be estimated as [Weast et al., 1987]
o = (999.83952 + 16.945176¢-7.9870401x10372

-46.170461x107%3 + 105.56302x107%s4
-280.54253x10713%) /(1 + 16.879850x10731) ®.1)
where t is temperature in degree centigrade.

The changes of dynamic viscosity with temperature is given by Helmholtz equation

Ho
1 + 0.03368: + 0.00022099:% B.2)

uo=1.783x103 Pass is the dynamic viscosity of water at 0°C

ﬂ:
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Figure B.2. Circulation water temperature variations in the pump jackets with time.
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Figure B.3. Flow rate variations during the experiment at flow rate 10ml/hour.
The average flow rate was 10.017ml/hour (Group-1).
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Figure B.4. Flow rate variations during the experiment at flow rate 10ml/hour.
The average flow rate was 9.8054ml/hour (Group-2).
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Figure B.5. Flow rate variations during the experiment at flow rate 10ml/hour.

The average flow rate was 10.078ml/hour (Group-3).
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Figure B.6. Flow rate variations during the experiment at flow rate Sml/hour.

The average flow rate was 5.061ml/hour (Group-3).
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Figure B.7. Flow rate variations during the experiment at flow rate 2.5ml/hour.
The average flow rate was 2.5192ml/hour (Group-1).
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Figure B.8. Flow rate variations during the experiment at flow rate 2.5ml/hour.
The average flow rate was 2.5677ml/hour (Group-3).
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Figure B.9. Flow rate variations during the experiment at flow rate 2.5ml/hour.
The average flow rate was 2.4972ml/hour (Group-6).
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Figure B.10. Pressure variations with time during experiment at flow rate 2.5ml/hour
(Group-6).
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Figure B.11. Flow rate variations during the experiment at flow rate 2.0ml/hour.
The average flow rate was 2.0245ml/hour (Group-5).
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Figure B.12. Pressure variations with time during the experiment at flow rate
2.0ml/hour (Group-5).
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Figure B.13. Flow rate variations during the experiment at flow rate 1.75ml/hour.
The average flow rate was 1.726ml/hour (Group-5).
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Figure B.14. Pressure variations with time during the experiment at flow rate
1.75ml/hour (Group-5).
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Figure B.15. Flow rate variations during the experiment at flow rate 1.5ml/hour.
The average flow rate was 1.46ml/hour (Group-35).
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Figure B.16. Pressure variations with time during the experiment at flow rate
1.5ml/hour (Group-5).
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Figure B.17. Flow rate variations during the experiment at flow rate 1.25ml/hour.
The average flow rate was 1.2208mlhour (Group-5).
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Figure B.18. Pressure variations with time during the experiment at flow
rate 1.25ml/hour (Group-5).
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Figure B.19. Flow rate variations during the experiment at flow rate 1.0ml/hour.
The average flow rate was 1.025 1ml/hour (Group-1).
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Figure B.20. Flow rate variations during the experiment at flow rate 0.9ml/hour.
The average flow rate was 0.8871ml/hour (Group-1).
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Figure B.21, Flow rate variations during the experiment at flow rate 1.0ml/hour.
The average flow rate was1.0314ml/hour (Group-6).
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Figure B.22. Pressure variations with time during the experiment at flow rate
1.00ml/hour (Group-6).
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Figure B.23. Flow rate variations during the experiment at flow rate 0.9ml/hour.
The average flow rate was 0.8857ml/hour (Group-6).
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Figure B.24. Pressure variations with time during the experiment at flow rate

0.90ml/hour (Group-6).
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Figure B.25. Flow rate variations during the experiment at flow rate 0.75ml/hour.
The average flow rate was 0.7505ml/hour (Group-2).
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Figure B.26. Flow rate variations during the experiment at flow rate 0.60ml/hour. The
average flow rate was 0.5975ml/hour (Group-3).
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Figure B.27. Flow rate variations during the experiment at flow rate 0.50ml/hour.
The average flow rate was 0.4997ml/hour (Group-4).
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Figure B.28. Flow rate variations during the experiment at flow rate 0.40ml/hour.
The average flow rate was 0.4015ml/hour (Group-4).
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Figure B.29. Flow rate variations during the experiment at flow rate 0.30ml/hour.

The average flow rate was 0.3049ml/hour (Group-4).
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Figure B.30. Pressure variations with time during the experiment at flow rate

0.30ml/hour (Group-4).
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Figure B.31. Relationship between UV absorbance and KBr
molar concentrations (Group-1).

0.015

r | @ Standard Sample
| | — Fitted

[ slope: 8.8479
" intercept: 1.74x10~4
0.010 b correlation coef.: 0.9997

0.005

Absorbance height (AU)

00 Be 4005 00041 005 5e-03 3003

Concentration (mol)

Figure B.32. Relationship between UV absorbance and KCl molar
concentrations (Group-1).
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Figure B.33. Relationship between UV absorbance and KBr molar
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Figure B.34. Relationship between UV absorbance and KCIl molar
concentrations (Group-2).
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Figure B.35. Relationship between UV absorbance and KBr
molar concentrations (Group-3).
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Figure B.36. Relationship between UV absorbance and KCl molar
concentrations (Group-3).
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Figure B.38. Relationship between UV absorbance and KCl molar
concentrations (Group-4).
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Figure B.39. Relationship between UV absorbance and KBr molar
concentrations (Group-5).
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Figure B.40. Relationship between UV absorbance and KCl molar
concentrations (Group-5).
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Figure B.41. Relationship between UV absorbance and KBr
molar concentrations (Group-6).

0.015
3 @ Standard Sample
— Fitted
5 - slope: 8.7978
< | intercept: -3.562x103
2 correlation coef.: 0.9999
« 0.010
=
2D
O
=
b}
2
'g 0.005
‘8 L
<

0. 08 %e+00 5. Oe-04 1. Oe-03 1. 5e—-03 2.0e-03
Concentration (mol)

Figure B.42. Relationship between UV absorbance and KCl
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A total of 6 group of experiments were performed. The raw data are listed in Table B.1.
The following notations are used in Table B.1:

Gd: Group ID.

Sample_name: The name of the sample. For example, s3b2330-1 standards for sample

from fracture 3 taken on b (Feburary) 23, flow rate was 30, this is the 1 st sample,

Tracer: Name of the tracer.

Set_Q: Pump flow rate.

Real Q: Flow rate in fracture. It was measured by the flow meter.

AU_height: UV absorbance height for the specified tracer.

measured_peak: Occasionally the integrator failed to integrate the UV absorbance

heigﬁt. In case that occurs, the UV absorbance height was measured on the figure.
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Table B.1. Raw data from the physical experiments.

Gd | Sample_name | Tracer | Set_Q | Real_Q | AU_height Note
ml/h mb/h
6 |s3b2330-1 Br 30 129988 |0.05247
6 |s3b2330-1 C1 30 (29988 |0.01237
6 |s4b2330-1 Br 30 |]29.892 049256
6 |s4b2330-1 Cl 30 [29.892 |0.00122
6 |s3b2330-2 Br 30 129988 ]0.05217
6 |s3b2330-2 Cl 30 29988 10.01270
6 {s4b2330-2 Br 30 129.892 ]049459
6 §s4b2330-2 Cl 30 129.892 ]0.00119
6 |s3b2330-3 Br 30 |29.988 |0.05123
6 |s3b2330-3 Cl 30 }29.988 |0.01276
6 |s4b2330-3 Br 30 |29.892 |0.49403
6 |s4b2330-3 Cl 30 129.892 |0.00120
2 |s3a2610-1 Br 10 |9.9455 ]0.064 air in the model.
2 |s3a2610-1 Cl 10 |9.9455 10.010846
2 |s4a2610-1 Br 10 |99835 10.48384
2 |s4a2610-1 Cl 10 |9.9835 [0.00169
2 |s3a2610-2 Br 10 |9.805 0.08698 flow rate not stable
2 |s3a2610-2 Cl 10 |9.805 0.01027
2 |s4a2610-2 Br 10 |9.805 049124
2 |s4a2610-2 Cl 10 |9.805 0.00111
1 1s322210-1 Br 10 {99 0.07128
1 {s3a2210-1 Cl 10 {99 0.01225
1 [s4a22210-1 Br 10 {100 047180
1 [s4a2210-1 Cl 10 |10.0 0.00222
1 [s3a2210-2 Br 10 1992733 }0.07312
1 [s3a2210-2 Cl 10 }9.92733 [0.01226
1 |s4a2210-2 Br 10 {9.88867 |0.72181
1 [s4a2210-2 Cl 10 19.88867 |0.00327
3 |s3a2910-1 Br 10 |10.063 }0.07671
3 |s3a2910-1 Ci 10 |9.8495 |0.01086
3 |s4a2910-1 Br 10 [9.8495 [0.51705
3 |s4a2910-1 Ci 10 [9.8495 }0.00160
3 }s3a2910-2 Br 10 (10260 {0.07820
3 |s3a2910-2 Cl 10 [10.260 |0.01066
3 |s4a2910-2 Br 10 9.8095 10.51748
3 |s4a2910-2 Cl 10 19.8085 |0.00134
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3 |s3a295-1 Br 5 5.0835 |0.09308
3 |s3a295-1 Cl 5 5.0835 10.01026
3 |s4a295-1 Br 5 4.89 }0.49627
3 |s4a295-1 Ci 5 4.89 0.00180
3 |s3a295-2 Br 5 49065 |0.09821
3 |s3a295-2 Cl 5 49065 |0.01020
3 |s4a295-2 Br 5 49115 |0.50193
3 |s4a295-2 Cl 5 49115 |0.00173
1 |s3a235-1 Br 5 5.0896 10.09912
1 |s3a235-1 Cl 5 5.0896 |0.01073
1 |s4a235-1 Br 5 48752 1045390
1 1s4a235-1 Cl 5 4.8752 |0.00197
1 |s3a235-2 Br 5 5.0896 |0.10467
1 |s3a235-2 Cl 5 5.0896 {0.01l16
1 |s4a235-2 Br 5 48752 (047528
1 [s4a235-2 Cl 5 14.8752 10.00150 measured peak
6 |s3b252.5-2 Br 25 |2475 0.10871 measured flow
6 |s3b252.5-2 Cl 25 2475 0.01146
6 |[s4b252.5-2 Br 25 (2443 044941 measured flow
6 |s4b252.5-2 Cl 25 12443 0.00259
6 |s3b252.5-3 Br 25 2478 0.10985 measured flow
6 |s3b252.5-3 1 25 2478 0.01163
6 |s4b252.5-3 Br 25 12429 044828 measured flow
6 |s4b252.5-3 Cl 25 2429 0.00260
5 |s3b202_1 Br 2 19152 10.1419%6 flow not stable
5 |[s3b202_1 Cl 2 19152 |0.01608
5 |s4b202_1 Br 2 120076 |0.44582
5 |s4b202_1 Cl 2 2.0076 |0.00296 measured peak
5 |s3b202-2 Br 2 1.972 0.11259
5 |s3b202-2 (6] 2 1.972 0.01085
5 |s4b202-2 Br 2 1.978 0.42646
5 |s4b202-2 Ci 2 1.978 0.00294
5 |s3b202-3 Br 2 12,001 0.11606
5 |s3b202-3 Cl 2 12,001 0.01061
5 |s4b202-3 Br 2 1.949 042647
5 |s4b202-3 Cl 2 1.949 0.00311
5 |s3b202. 4 Br 2 2,042 0.12337 measured peak
5 |s3b202-4 Ci 2 12.042 0.01088
5 |s4b202-4 Br 2 1.936 0.43727
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5 |s4b202-4 Cl 2 1.936 0.00282
5 |s3b201.75_1 Br 1.75 | 1.752 0.12217
5 [s3b201.75_1 Cl 1.75 |1.752 0.01065 measured peak
5 |}s4b201.75-1 Br 1.75 |1.738 041402
5 |s4b201,75-1 Cl 175 }1.738 0.00308
5 |s3b201.75-2 Br 1.75 1725 0.12577
5 [s3b201.75-2 Cl 175 {1.725 0.010575 |measured peak
5 |s4b201.75-2 Br 175 | L.76 043384 measured peak
5 |s4b201.75-2 i 175 | 1.76 0.00306
5 |s3b201.5-1 Br 1.5 1439 0.13991
5 |s3b201.5-1 Ci 1.5 |1439 0.01044
5 |s4b201.5-1 Br 1.5 1496 0.42445
5 |s4b201.5-1 C1 1.5 |1.496 0.00315
5 |s3b201.5-2 Br 15 |1451 0.13009
5 |s3b201.5-2 Cl 1.5 |1451 0.01025
5 |s4b201.5-2 Br 15 148 041503
5 |s4b201.5-2 C1 1.5 148 0.00325
5 |s3b201.5-3 Br 1.5 1458 0.13416
5 |s3b201.5-3 Ci 15 1458 0.01033
5 1s4b201.5-3 Br 15 |1464 0.42093
5 |s4b201.5-3 Cl 1.5 1464 0.00326
5 |s3b201.25_1 Br 125 11.148 0.13895
5 |s3b201.25-1 Cl 125 (1.148 0.00997
5 |s4b201.25-1 Br 125 1281 0.40934
5 |[s4b201.25-1 Cl 125 |1.281 0.00353
5 |s3b201.25-2 Br 1.25 11152 0.13831
5 |s3b201.25-2 Cl 125 |1.152 0.01008
5 |s4b201.25-2 Br 125 1285 0.40682
5 |[s4b201.25-2 Cl 125 |1.285 0.00352
5 |s3b201.25-3 Br 125 |1.176 0.143817 measured flow
5 |[s3b201.25-3 Cl 125 |1.176 0.01050
5 |s4b201.25-3 Br 125 11.228 040797 measured flow
5 |s4b201.25-3 Cl 125 |1.228 0.00350
5 |s3b201.25-4 Br 125 |1.183 0.13550
5 |[s3b201.25-4 Cl 1.25 |1.183 0.00971
5 |s4b201.25-4 Br 125 [1.263 041374
5 |s4b201.25-4 Ci 1.25 |1.263 0.00350
1 |s3a231-1 Br 1.0 09788 |0.19974
1 |s3a231-1 Cl 1.0 09788 |0.00828
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1 |s4a231-1 Br 1.0 |1.0059 [0.35268
1 |s4a231-1 Cl 1.0 109788 |0.00490
1 |s3a231-2 Br 1.0 109563 10.20978
1 [s3a231-2 o] 1.0 109563 |0.00871
1 |s4a231-2 Br 1.0 |1.0116 {0.35263
1 |s4a231-2 a 1.0 |1.0116 [0.00483
1 |s3a231-3 Br 1.0 09284 |0.20865
1 |s3a231-3 Cl 1.0 09284 |0.00853
1 |s4a231-3 Br 1.0 110235 (0.34708
1 |s4a231-3 C1 1.0 |1.0235 |[0.00496
6 |s3b251-1 Br 1.0 (0999 {0.16724 measured flow
6 |s3b251-1 C1 1.0 0999 |0.01031
6 |s4b251-1 Br 1.0 10947 {041301 measured flow
6 |s4b251-1 C 1.0 |0.947 [0.00400
6 |[s3b251-3 Br 1.0 0966 |0.16644
6 |s3b251-3 Cl 1.0 0966 |0.01012
6 |s4b251-3 Br 1.0 |1.034 (041496
6 |s4b251-3 Cl 1.0 |1.034 ]0.00408
6 |s3b250.9-1 Br 09 |0.88 |{0.17077
6 |s3b250.9-1 a 09 0385 ]0.01023
6 |s4b250.9-1 Br 09 0914 |{0.40054
6 |s4b250.9-1 Ci 09 0914 ]0.00418
6 |[s3b250.9-2 Br 09 |0.88 |[0.17077
6 |s3b250.9-2 c 09 |0.88 |0.01023
6 |s4b250.9-2 Br 09 |0914 |0.40054
6 |{s4b250.9-2 Cl 09 10914 ]0.00418
6 |s3b250.9-3 Br 09 088 {0.16826
6 |s3b250.9-3 1 09 10885 {0.01001
6 |s4b250.9-3 Br 09 0915 (040072
6 |s4b250.9-3 C1 09 10915 [0.00408
2 |[s3a270.75-1 Br | 0.75 |0.7754 ]0.19957
2 |s3a270.75-1 Cl | 075 {0.7754 |0.00899
2 |s4a270.75_1 Br | 075 (07754 |0338649 |measured peak
2 |s4a270.75-1 Cl | 075 [0.7245 |0.00425
2 |s3a270.75-2 Br | 075 |0.7549 }0.20684
2 |s3a270.75-2 Cl | 075 [0.7549 |0.00914
2 |s4a270.75-2 Br | 075 j0.704 ]0.37665
2 |s4a270.75-2 Cl | 075 j0.704 |0.00403
3 |s3a290.6-1 Br 0.6 |0.6028 ]0.21979
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3 |s3a290.6-1 Ci 0.6 |0.6028 [0.00778
3 |s4a290.6-1 Br 0.6 ]0.5743 ]0.38440
3 |s4a290.6-1 Cl 06 |05743 |0.00420
3 |[s3a290.6-2 Br 0.6 05961 [0.20882 measured peak
3 [s3a290.6-2 Ci 06 05961 |0.00764
3 |s4a290.6-2 Br 0.6 |05765 |]0.38846
3 |s4a290.6-2 Cl 0.6 05765 ]0.00431
4 |s3a290.5-1 Br 05 (05261 }0.20493
4 |s3a290.5-1 Ci 0.5 |05261 {0.00810
4 |s4a290.5-1 Br 05 104726 }0.34467
4 |s42290.5-1 Cl 05 04726 10.00467 measured peak
4 |s3b20.5-2 Br 05 105237 (0.21113
4 |53b20.5-2 Cl 05 05237 }0.00809
4 1s4b20.5-2 Br 0.5 04688 10.35502
4 |s4b20.5-2 Cl 0.5 04688 |0.00467
4 ]1s3b50.4-2 Br 04 04093 ]0.22287
4 |s3b50.4-2 Cl 04 ]04093 }0.00789
4 154b504-2 Br 04 03832 (033182
4 |54b504-2 C1 04 03832 {0.00496
4 }s304-4 Br 04 ]04093 |023878
4 153044 Cl 04 ]04093 |0.00864
4 154044 Br 04 03832 {0.37389
4 1s404-4 1 04 103832 }0.0066
4 1s30.3-1 Br 03 02845 }0.278750
4 |s30.3-1 Ci 03 ]0.2845 |0.00890
4 ]s40.3-1 Br 03 ]03213 {0.38740
4 1s40.3-1 Cl 0.3 103213 |0.00649
4 |s3b50.3-2 Br 03 ]02845 (024815
4 |s3b50.3-2 Cl 03 10.2845 10.00847
4 |s4b50.3-2 Br 03 03213 035725
4 |s4b50.3-2 Cl 03 ]03213 {0.00648
4 }s3b50.3-3 Br 03 02845 |023113
4 |s3b50.3-3 Cl 03 102845 |0.00777
4 |s4b50.3-3 Br 03 103213 |0.32517
4 |s4b50.3-3 Ci 03 03213 ]0.00550
4 |s3b70.2-1 Br 0.2 101972 |0.27286
4 1s3b70.2-1 Cl 02 10.1972 10.00803
4 |s4b70.2-1 Br 0.2 102000 ]0.33237
4 |s4b70.2-1 Ci 0.2 (02000 |0.00638
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4 |s3b70.2-2 Br 02 ]0.1972 ]0.26976
4 |s3b70.2-2 Cl 02 10.1972 {0.00803
4 |s4b70.2-2 Br 02 ]02000 |0.34136
4 |s4b70.2-2 Cl 0.2 |0.2000 |0.00666
4 |s3b70.2-3 Br 0.2 |0.1972 ]027328
4 |s3b70.2-3 Cl 0.2 |0.1972 }0.007%6
4 |s4b70.2-3 Br 02 02000 }0.34934
4 |s4b70.2-3 Cl 02 ]02000 |0.00667
4 |s3b70.2-4 Br 02 101972 027400
4 |s3b70.2-4 1 0.2 }0.1972 |0.00810
4 |s4b70.2-4 Br 02 (02000 |0.34376
4 |s4b70.2-4 a1 0.2 |02000 |0.00687
4 |s3b70.2-5 Br 02 101972 |0.25323
4 1s3b70.2-5 cl 02 01972 |0.00728
4 |s4b70.2-5 Br 02 02000 ]031051
4 |s4b70.2-5 Cl 0.2 10.2000 |0.00580
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Table B.2. Final mixing ratio data determined from the concentration data of Br~.

GD | Sample Name | Tracer | Set_Q | Real_ uv Peclet Mixing { Sum
mi/h mi/h Height Number Ratio

6 |s3b2330-1 Br | 300 | 29.988 | 0.05247 | 166.154 |0.091

6 |s4b2330-1 Br | 300 | 29.892 | 049256 | 166.154 |0914 [1.005

6 |s3b2330-2 Br | 300 | 29.988 | 0.05217 | 166.154 |0.091

6 |s4b2330-2 Br | 300 | 29.892 | 049459 | 166154 |0918 [1.009 |

6 |s362330-3 Br | 300 | 29.988 | 0.05123 | 166.154 |0.089

6 |s4b2330-3 Br | 300 | 29.892 [ 0.49403 | 166.154 |0.917 [W

1 [s3a2210-1 Br | 100 | 9900 | 007128 | 55385 [0.124

1 |s4a2210-1 Br | 100 | 9900 | 047180 | 55385 |0.819 [0.943

1 |s3a2210-2 Br | 100 | 9927 [ 007312 | 55385 [0.127

1 |s4a2210-2 Br | 100 | 9889 | 072181 | 55385 1252 [1379 |

3 [s3a2910-1 Br | 100 | 10.063 | 0.07671 | 5538 |0.115

3 [s4a2910-1 Br | 100 | 9.849 | 051705 | 55385 |0.872 [0987

3 [5322910-2 Br | 100 | 10260 | 007820 | 55385 [0.120

3 [s4a2910-2 Br | 100 | 9809 | 051748 | 55385 |0.869 IW

3 [s3a295-1 Br | 50 | 508 | 0.09308 | 27692 |0.146

3 |s4a295-1 Br | 50 | 4890 | 049627 | 27692 |0830 [0976 |

3 [s32295-2 Br | 50 | 4906 | 0.09821 | 27.692 |0.149

3 [s42295-2 Br | 50 [ 4911 [ 050193 | 27692 |0844 [0993 |

6 |s3b2525-2 Br | 25 | 2475 | 010871 | 13.846 |0.195

6 |s4b2525-2 Br | 25 | 2443 | 044941 | 13.846 |0.817 [m—‘

6 |s3b252.5-3 Br | 25 | 2478 | 0.10985 | 13.846 |0.197

6 |s4b2525-3 Br | 25 | 2429 | 044328 | 13.846 |0.811 [1.008

5 |s3b202-2 Br | 20 | 1972 | 0.11259 | 11077 |0.197

5 |s4b202-2 Br 2.0 1978 | 0.42646 11.077 10.804 |1.001

5 |s36202-3 Br | 2.0 | 2001 | 0.11606 | 11077 |0.207 '

5 |s4b202-3 Br | 2.0 | 1949 | 042647 | 11077 [0.792 [0.999

5 |s3b201.75_1 Br | 1.8 | 1752 [ 012217 | 9692 [0219

5 |s4b201.75-1 Br | 1.8 | 1738 | 041402 | 9692 (0783 [1.002

5 |s36201.75-2 | Br | 1.8 | 1725 | 0.12577 | 9692 |0.223

5 |s4b201.75-2 | Br | 18 | 1760 | 043384 | 9692 (0832 [1055 |

5 [s3b201.5-1 Br | 15 | 1439 | 0.13991 | 8308 |0243

5 [s4b201.5-1 Br | 15 | 149 | 042445 | 8308 0807 [1.050 |

5 |s3b201.5-2 Br | 15 | 1451 | 0.13009 | 8308 |0.227

5 |s4b201.5-2 Br | 15 | 1480 | 041503 | 8308 |0.780 [1.007

5 |s3b2015-3 Br | 15 | 1458 | 0.13416 | 8308 [0.236

5 [s4b201.5-3 Br | 15 | 1464 | 042093 | 8308 [0783 [1018 |
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5 [s3b20125-2 Br | 125 | 1152 | 0.13831 | 6923 [0231

5 [s4b201.25-2 Br | 125 | 1285 | 040682 | 6923 [0796 [1.027 |
5 [s3b201.25-3 Br | 125 | 1.176 | 0.14817 | 6923 [0254

5 |s4b201.25-3 Br | 125 | 1228 | 040797 | 6923 |0.763 [TY)T
6 |s3b251-1 Br | 1.0 | 0999 | 016724 | 5538 |0.306

6 |s4b251-1 Br | 10 | 0947 | 041301 | 5538 0727 [1034 |
6 |s3b251-3 Br | 10 | 0966 | 0.16644 | 5538 |0.295

6 |s4b251-3 Br | 10 | 1034 | 04149 | 5538 |0798 [1.093
6 |s302509-1 Br | 09 | 088 | 017077 | 498 |0309

6 |s4b2509-1 Br | 09 | 0914 [ 040054 | 4985 |0756 [1.065
6 |s36250.9-2 Br | 09 | 038 | 0.17077 | 498 |0309

6 |s4b250.9-2 Br | 09 | 0914 | 040054 | 498 |0756 [1.065
6 |s3b250.9-3 Br | 09 | 0885 | 0.16826 | 4985 [0.304

6 |s4b2509-3 Br | 09 | 0915 | 040072 | 4985 0757 [1.061
3 [53a290.6-1 Br | 06 | 0603 | 021979 | 3323 [0367

3 |542290.6-1 Br | 06 | 0574 | 038440 | 3323 0625 [0992
3 |$32290.6-2 Br | 06 | 0596 | 020882 | 3323 [0.344

3 [s4a290.6-2 Br | 06 | 0576 | 038846 | 3323 |0.634 [‘oﬁ—
4 [53b20.5-2 Br | 05 | 0524 | 021113 | 2769 [0.407

4 |s4b20.5-2 Br | 05 | 0469 | 035502 | 2769 [0622 [1.029
4 [s36503-2 Br | 03 | 0285 | 024815 | 1662 |0435

4 [s4b503-2 Br | 03 | 0321 | 035725 | 1662 |0.715 |T.15T
4 [s3650.3-3 Br | 03 | 0285 | 023113 | 1662 |0405

4 |s4b50.3-3 Br | 03 | 0321 | 032517 | 1662 |0.649 |'H)5T_
4 |s3b70.2-1 Br | 02 | 0.197 | 027286 | 1.108 |0499

4 |s4b70.2-1 Br | 02 | 0200 | 033237 | 1108 |0.620 W
4 [536702-2 Br | 02 | 0197 | 026976 | 1.108 |0493

4 |s4b7022 Br | 02 | 0200 | 034136 | 1108 |0.637 l'ﬁ?(i—
4 |s3b70.2-3 Br | 02 | 0197 | 027328 | 1.108 [0.500

4 |s4b702-3 Br | 02 | 0200 | 034934 | 1108 |0652 [1152 |
4 |s3b702-4 Br | 02 | 0197 | 027400 | 1.108 }0.501

4 |sd4b702-4 Br | 02 | 0200 | 034376 | 1.108 |0.642 W
4 |s3670.2-5 Br | 02 | 0197 | 025323 | 1.108 [0.462

4 |s4b702-5 Br | 02 | 0200 | 031051 | 1.108 [0.578 [1.040
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Table B.3. Final mixing ratio data determined from the concentration data of Cl-.

GD | Sample Name | Tracer | Set_Q | Real Q uv Peclet Mixing | Sum
ml/h ml/h Height Number Ratio

6 |s3b2330-1 Cl | 300 | 29988 | 0.01237 | 166.154 |0.873

6 |s4b2330-1 Cl | 300 | 29.892 | 0.00122 | 166.154 |0.086 [0.959

6 |s3b2330-2 Cl | 300 | 29988 | 0.01270 | 166.154 |0.396

6 |s4b2330-2 Cl | 300 | 29892 | 0.00119 | 166.154 |0.084 [0980 |

6 |s3b2330-3 Cl | 300 | 29988 | 0.01276 | 166.154 |0.901

6 |s4b2330-3 Cl | 300 | 29.892 | 0.00120 | 166.154 |0.084 |E§8?—

1 [s3a2210-1 Cl | 100 | 9900 | 001225 | 5538 |0.852

1 [s4a2210-1 Ccl | 100 | 9900 | 0.00222 | 55385 |0.154 |—1W—

1 |s3a2210-2 Cl | 100 | 9927 | 001226 | 55385 |0.855

1 [s4a2210-2 Ccl | 100 | 9889 | 0.00327 | 55385 |0.227 W

3 [s3a2910-1 cl | 100 | 9849 | 0.01086 | 55385 [0.374

3 |s4a2910-1 Cl | 100 | 9849 | 0.00160 | 55385 |0.118 [0.993

3 [s3a2910-2 c1 | 100 | 10260 | 0.01066 | 55.385 [0.894

3 [$4a2910-2 1 [ 100 | 9809 | 0.00134 | 55385 0096 [0.990

3 [s3a295-1 c | s0 | 5083 | 001026 | 27692 [0.852

3 [s4a295-1 a1l | 50 | 4890 | 000180 | 27.692 |0.134 W

3 [53a295-2 Cl | 50 | 4906 | 0.01020 | 27692 [0.817

3 [s4a295-2 Cl |50 | 4500 [ 000173 | 27692 [0.128  [0.946 |

6 |s3b2525-2 Cl | 25 | 2475 | 001146 | 13.846 |0.301

6 [s4b25252 Cl 25 | 2443 | 0.00259 | 13.846 |0.179 [6380—

6 |s3b2525-3 Cl | 25 | 2478 | 001163 | 13.846 03814

6 |s4b252.5-3 Cl | 25 | 2429 | 0.00260 | 13.846 |0.178 [0.992

5 |s3b202-2 Cl | 20 | 1972 | 001085 | 11.077 |0301

5 |sdb202-2 Cl | 20 | 1978 | 000294 | 11077 |0218 [1.018

5 [s36202-3 Cl | 20 | 2001 | 0.01061 | 11077 |0.794

5 |s4b202-3 Cl | 20 | 1949 | 000311 | 11077 0227 [r.021

5 |s3b201.75_1 Cl 18 | 1.752 | 0.01065 | 9.692 |0.798

5 [s4b201.75-1 1 1.8 | 1738 | 0.00308 | 9692 |0229 W

5 |s3b201.75-2 Cl 1.8 | 1725 | 0.01058 | 9.692 |0.780

5 |s4b201.75-2 cl 18 | 1760 | 000306 | 9692 |0230 [101l |

5 |s3b201.5-1 Cl 15 | 1439 | 001044 | 8308 |0.750

5 |s4b201.5-1 Cl 15 | 1496 | 000315 | 8308 |0235 [0.985

5 |s3b201.5-2 Cl 15 | 1451 | 0.01025 | 8.308 |0.742

5 |s4b201.5-2 Cl 15 | 1480 | 0.00325 | 8308 |0240 [0.982

5 [s3b201.5-3 cl 15 | 1458 | 001033 | 8308 |0.751

5 |s4b201.5-3 Cl 15 | 1464 | 000326 | 8308 [0238 [0.990
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5 [s3b201.25-2 Cl 12 [ 1152 | 001008 | 6923 0695

5 |s4b201.25-2 Cl 12 ] 128 | 000352 | 6923 |0271 IW—
5 |s3b201.25-3 Cl 12 | 1.176 | 001050 | 6923 |0.739

5 |sdb201.25-3 Cl 12 | 1228 | 000350 | 6923 |0257 [0.997
6 |s3b251-1 Cl 10 | 0999 | 001031 | 5538 |0.727

6 |sdb251-1 C1 10 | 0947 ] 000400 [ 5538 0267 [0995 |
6 |s3b251-3 Cl 10 | 0966 | 001012 | 5538 |[0.690

6 |s4b251-3 Cl 1.0 | 1034 | 000408 | 5538 |0.298 W
6 |s3b250.9-1 Ct | 09 | 0885 | 001023 | 4985 |0.710

6 |[s4b2509-1 cr | 09 [ 0914 | 000418 | 498 (0300 [1.010
6 |s3b250.9-2 c1 | 09 | 0885 | 001023 | 4985 |0.710

6 |s4b250.9-2 Cl | 09 [ 0914 [ 000418 | 4985 0300 [r010 |
6 |s3b250.9-3 Cl | 09 | 0885 | 0.01001 | 498 0695

6 |s4b250.9-3 Ct | 09 [ 0915 [ 00008 | 4985 ]0293 [0988 |
3 [53a290.6-1 cl | 06 | 0603 | 0.00778 | 3.323 |0.635

3 |s4a290.6-1 Cl |06 [ 0574 [ 000420 | 3323 |0321 [0.956
3 [$3a290.6-2 Cl | 06 | 059 | 0.00764 | 3323 |0617

3 [54a290.6-2 ct | o6 | 0576 | 0.00431 | 3323 (0331 [0.948
4 |s36205-2 cl | 05 | 0524 | 000809 | 2769 |0.650

4 |s4b2052 cl | o5 | 0469 | 000467 | 2769 |0334 [0.9%4
4 |[s3b50.3-2 ct | 03 [ 0285 | 000847 | 1662 0617

4 |s4b503-2 a | 03 | 0321 | 000648 | 1662 0532 W
4 |s3b50.3-3 cl | 03 | 0285 | 0.00777 | 1662 |0.565

4 [s4b503-3 Cl 03 | 0321 [ 000550 | T662 0450 W
4 [s3b70.2-1 C1 [ 02 | 0197 | 0.00803 | 1.108 |0.608

4 |s4b70.2-1 Cl | 02 | 0200 | 0.00638 | 1.108 |0489 [1.096
4 [s3b702-2 CI | 02 | 0197 | 0.00803 | 1.108 |0.608

4 |sd4b702-2 ) 02 | 0200 | 000666 | 1108 0510 [1118 |
4 |s3b702-3 Cl [ 02 | 0197 | 000796 | 1.108 |0.602

4 |s4b702-3 Cl 02 | 0200 | 0.00667 1.108 |0.511 W
4 [s3b70.2-4 Cl | 02 [ 0197 | 000810 | 1.108 |0.613

4 |s4b702-4 Cl 02 [ 0200 | 000687 | 1108 |0527 [1140 |
4 |s3b702-5 Cl | 02 | 0197 | 000728 | 1.108 |0550

4 |s4b702_5 Cl | 02 | 0200 | 0.00580 | 1.108 |0444 [0.99a




