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ABSTRACT

Several pumping test were conducted to estimate the planar anisotropy and other
pertinent hydrological parameters of an unconfined alluvial aquifer. Drawdown data were
measured at six different wells. Two curve matching methods based on different models
were used to analyze the pumping test data. The first model assumes one-dimensional
radial flow and includes an empirical delay coefficient to represent the water release
process, and to account for the delayed-drawdown region of the time-drawdown graph.
This model does not account for the vertical components of flow in the aquifer, thus if
can not be used directly to obtain the vertical hydraulic conductivity of the aquifer. The
second model assumes two-dimensional radial vertical flow and instantaneous anc
complete drainage at the water table to account for the delayed-drawdown region of the
time-drawdown graph. Sensitivity analysis was performed to better understand the effect:
on drawdown from interested parameters.

FORTRAN computer programs were written to calculate the theoretical drawdowi
of both models by numerical inverting the Laplace domain solution. The theoretica
drawdown produced by the estimated parameters was compared with measured drawdow!
data. The comparison of theoretical drawdown and measured drawdown was facilitate:
by using Matlab software to plot data. The values of transmissivity and elastic storag
coefficient obtained from different curve-matching methods were similar, however th

value of specific yield were different as it has larger effect on the time-drawdown curve



Using the values of transmissivity from different wells, a system of three linearized
simultaneous equations was set up and solved to determine components of the planar
anisotropy tensor. The principal value and direction of the planar transmissivity was
finally obtained by using Matlab software and the results can be used as input parameters

for further modelling study at Sevilleta study site.



INTRODUCTION

Problem and Purpose of Study

The purpose of this study was to estimate the planar anisotropy and other
pertinent hydrological parameters in an unconfined alluvial aquifer. Several pumping test
were conducted at study site in fall of 1992 and spring of 1993. Drawdown data were
measured at six different wells. Two curve matching methods based on different models,
Boulton (1954, 1963) and Neuman model (1972, 1973, 1974), were used to analyze the
pumping test data. The other pertinent hydrological parameter such as storage coefficient
and specific yield were estimated and used to calculate the theoretical drawdown. The
theoretical drawdown produced by the estimated parameters was compared with the

measured drawdown data to check the accuracy of estimated parameters.

Site Development

The study site is located in the Sevilleta National Wildlife Refuge approximately 2¢
kilometers north of Socorro, New Mexico as shown in Figure 1. The site lies on the
flood plain of the Rio Salado, an ephemeral braided tributary of the Rio Grande, whict
is dry channel on the average of 320 days per year. The area receives about 20 cm o
precipitation per year and the gross annual potential lake evaporation is about 178 cm
The aquifer where the pumping and observation wells are installed consists of Holocen

Rio Salado alluvium overlying Pleistocene axial stream deposits of the Sierra Ladrone:
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Figure 1: Location of the Sevilleta study site.



formation. The Rio Salado alluvium consists of interbedded sand, gravel, and silt and the
axial stream deposits interbedded sand and silt with occasional gravel and clay layers.
Split spoon samples taken during the drilling from three boreholes show that the contact
between the Rio Salado and axial stream deposits is located between 13.72 m and 19.81
m below the ground surface and the contact depth increases from north to south which
indicates that old channel of Rio Salado was located farther south than the present
channel. The drilling experience and seismological study suggest that the aquifer is
unconfined and more than 100 m thick.

The regional groundwater flow observed in the four outside observation wells was
relatively uniform, and the hydraulic gradient was very small about 10 m/m with
direction from NE to SE. The water table is approximately 3 meters below the ground
surface.

The detail of configuration of wells at study site is shown in Figure 2. Threc
multilevel samplers/piezometers (MSLP) and ten fully screened observation wells are
located on three rays surrounding Well A. Well A and B are pumping/water supply well:
with 15.24 centimeters diameter and cased from the top of well to 6.1 meters in depth
and screened from 6.1 to 24.38 meters and 12.19 meters respectively. Only Well A wa
used as pumping well in this study. The other wells are named by the direction and th
distance from Well A. For example, NE10 is the well at 10 meters distance in NI
direction from Well A. The ten fully screened observation wells are 5.08 centimeter PV(
pipe with 0.8 millimeter machine cut slots.

The well depths and screen intervals of Well A and ten fully screened observatio
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Figure 2. Configuration of Wells at the Sevilleta Study Site.



wells are shown in detail in Figure 3. All depths are with respect to the top of Well A.
The three multilevel samplers/piezometers are used to collect depth-specific groundwater
samples and to measure depth-specific drawdown. As this study is emphasize on fully
screened (two dimensional) case, MSLP are not described in detail here.

Since the fine sand may settled in wells, the fully screened observation wells were

developed periodically to ensure that they are remain free of sediment.

Field Set Up of Pumping Test

From analysis of the depth specific pumping test data, a low permeability layer
exists at approximately 11 to 13 meters below ground surface. Whenever water i
pumped from Well A at any part including the layer below the low permeability layer
mentioned above, an anomalous drawdown pattern was noted in the vertically averagec
drawdown data take from fully screened observation wells. The drawdowns measurec
from W15 and SE15 at farther distance from pumping Well A were greater thai
drawdowns measured from W10 and SE10 at closer distance from pumping Well £
respectively. When water was withdrawn from above the pack which was placed at 12.1'
to 14.63 meters below the to of Well A, the above anomalous drawdown profile was nc
observed. It is clearly shown that Well A, W15 and NE15 are deeper than W10, SE10
NE10 and NE15. The existence of a highly permeable zone at about 24 meters belo
ground surface where Well A, W15 and SE15 reached, provided most portion of watc
to Well A during pumping. This may be the cause for the anomalous drawdown profile

In order to avoid this complication, only upper stratum was used for further study, i.¢
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the packer was placed at 12.19 to 14.63 meters below the top of pumping Well A during
an aquifer tests.

Because of the lack of diagnostic curvature in the mid-range of time on a plot of
drawdown versus time, accurate evaluation of aquifer parameters in unconfined aquifer

usually requires long-term pumping. For this study the pumping tests were lasted more

30 hours.

Field Data Collection

The initial groundwater table is about 2.98 meters below the ground surface and
is assumed to be horizontal according to monitored regional groundwater movement. The
initial saturated thickness therefore is taken as 9 m in the following analysis, since the
low permeable layer is located at about 12 meters below ground surface. The vertically
averaged drawdowns were collected automatically by a datalogger through pressure
transducers in W10, W15, NE10, NE1S5, SE10, and SE15. When transducers wert
placed at different depths of the same well, they recorded almost identical drawdow
indicating a good vertical mixing inside the fully screened observation wells.

Before conducting pumping test, the pressure transducers were calibrated in orde
to insure accurate results. Initially the drawdown data measured in the fully screene:
observation wells were noisy. Work was done to improve the quality of data. First, a
fully screened observation wells and Well A were developed again, in order to be sur
each well to be free of sediment. Next, weights were added to the pressure transducer

to insure that they remain stable during the pumping test. After these two improvemen'



were made, the quality of drawdown data improved.

The best data from wells W10 and SE10 were measured during pumping tests on
September 17 to 20, 1992 and the data from well NE15 were measured on February 27
to 28, 1993 (Figure 4). These data were selected for analysis. The pumping test
conducted on September 17 to 20 was the longer one. About 7*10* seconds after
pumping started drawdown began to decrease. The decrease was possibly caused by an
unstable pumping rate or recharge boundary being reached. In order to avoid to spend
more energy and man power to collect useless data at large time, the second pumping test
lasted less than 7*10* seconds and the decrease was not observed. The pumping rate of
test on September 17 to 20 was 3.949*10° m*/s and the pumping rate of test on February

27 to 28 was 6.310*102 m®%/s.

10
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METHODOLOGY

Walton (1960) described that the time-drawdown curve measured in an unconfined
aquifer with delayed yield can be divided into three distinct segments on logarithmic
paper. The first segment, covering a short period after pumping has begun indicates that
an unconfined aquifer reacts initially in the same way as does a confined aquifer. Water
is released instantaneously from storage by the compaction of the aquifer and by
expansion of water itself. Gravity drainage has not yet started. The second segment of
the time-drawdown curve shows a decrease in slope because of the replenishment by
gravity drainage from the interstices above the cone of depression . During this time,
there is marked discrepancy between the observed data curve and the Theis type curve
for unsteady state flow. The third segment, which may start from several minutes tc
several days after pumping has begun, again conforms closely to a second Theis-type

curve with respect to specific yield.

Boulton’s Curve-Matching Method:

Boulton (1954, 1963) and Prickett (1965) introduced a method of analyzing
pumping test data from unconfined aquifers, in which allowance is made for the delaye«
yield from storage due to slow gravity drainage. The assumptions are list as following
The aquifer is unconfined and rests on horizontal impermeable layer; The aquifer i

infinite in areal extent; The aquifer is of the same thickness throughout; The aquifer i

12



homogeneous and isotropic; The well has an infinitesimal diameter and penetrates the
fully thickness of the formation; The drawdown is very small in comparison to the
thickness of the aquifer. The one-dimensional radial flow model for non-equilibrium
condition in unconfined aquifers uses the exponential integral in governing equation (1)
as a source term to represent the water release process, and to account for the delayed-
drawdown region of the time-drawdown graph. An empirical coefficient is included in
the source term. Boulton’s analytical treatment does not account for vertical components
of flow in the aquifer, and the theory can not be used directly to obtain the vertical
hydraulic conductivity of the aquifer.

The mathematical model in cylindrical coordinates are:

Fho 10k _ SOk, B 1Ok, ang, (M
or: ror T ot T Jo Ot

h(r,t=0) = 0

h(r==,1 =0

I]mr.a_.h. = ..___Q_

r-o gr 2nT

The terms are defined in the Notation section at the end. The solution [Boulton 1955

Equation 9] is:
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in which
n = S * Sy = 1 4 _‘Si (3)
S S

and p is dummy variable and I, denotes the Bessel function of the first kind of zero
order.

Because it is difficult to generate appropriate type curves for the full range of the
parameters using equation (2), asymptotic solutions at large and small-time were used in
the curve-matching method.

Equation (2) can symbolically and in analogy to the Theis equation, can be writter

as.

. Q9 r 4
b 2 Wi 1) @

Where W(u,z, /D) is called the "well function of Boulton". For the early time, thi
equation describes the first segment of the time-drawdown curve and equation (4) reduce

fo

. Q r
h= 25 Wy, 3) )

where



uA=r—ZS (9]

For the later time, equation (4) describes the third segment of the time-drawdown curve

and reduces to:

h--2 wa, L )
4T (v D)
where
2 2
. r (Sy+S) 3 r Sy (8)
B ATt 4Tt

The factor 5 is defined as in equation (3).

The above mentioned formulas are only valid if 5 tends to infinity, in practice this
means that y > 100. If 10 < 4 < 100, the second segment of the time-drawdown curve
is no longer horizontal, but the Boulton’s method still gives a fairly good approximation.

If 9 tends to infinity, the second segment is described by

s
h= 2 k(L) ©)

where K, (/D) is the modified Bessel function of the second kind and zero order. The

drainage factor D is expressed in meters and defined as:

p- | L (10)

aSy

15



where an empirical constant 1/a is called the *Boulton delay index’.

The family of *Boulton type curve’, which are type A curves (W(u,, 1/D) versus
1/u,) and type B curves (W(ug, 1/D) versus 1/uy), are constructed for a practical range
of values of r/B on double logarithmic paper. The measured drawdown data versus time
should be plotted on another sheet of double logarithmic paper with the same scale used
for type curves. Superimpose the measured drawdown plot on the type A curves, and
adjust by moving and keeping the coordinate axis of the two curves parallel until as much
as possible of the early time field data fall on one of the type A curves. Note the value
of /B on type A curve. Select an arbitrary point on the overlapping portion and note the
value of h,, 4, 1/u, and W(u,, 1/D) for this point. Substitute these value into equatior
(5) and (6). The value of T and S can be calculated. Then superimpose the measured datz
plot on type curve B, and move until as much as possible of the later time field data fal
on the type B curve with the same value of 1/B as noted from type curve A. Select ai
arbitrary point and note the values of h*,, '3, 1/uy and W(ug, 1/D) for it. Using thes
values, T and S, can be calculated by equation (7) and (8). The transmissivity "
calculated by equation (5) and (7) should be approximately the same. According equatio:

(10), the empirical coefficient can be calculated as following:

r 2
T (1)

2
Syr

a:

The factor » should be calculated from equation (3) to check the validation of tk

method.



Since the Laplace domain solution shown in eq (12) is much simpler in form than
real time solution equation (2), drawdowns were calculated using the Stehfest (1970)
numerical inversion of Laplace transform solution. Since the Stehfest method is fast,
accurate and easy to use, it has been frequently apply to numerically invert Laplace

transform solutions of groundwater problems.

H-_9 K,-‘_S'_E+_'S_’Z_£__ 12)
2nTp ° T T p+a

where K, is the modified Bessel function of the second kind of zero order. Because k,
is smoothly varying and declines exponentially with increasing value of its argument,

Equation (12) is easy to inverse.

Neuman’s Curve-Matching Method

Neuman (1972, 1973) gave a three dimensional flow model of unconfined aquifer
with instantaneous and complete drainage at the water table assumed. The simplifying
assumptions are similar to Boulton model as: the aquifer is unconfined and is infinite
areal extent with uniform thickness; aquifer is homogeneous isotropy or anisotropy anc
water table is horizontal before the pumping start; wells penetrates the entire thicknes:
of the aquifer and diameters are infinitesimal; the influence of unsaturated zone upon th
drawdown is negligible.

The mathematical model given below has been adopted from those study. Th

linearized mathematical model become:

177



azh+la_h+.{(_zizl_1=ssah 0<z<bd

a2 ror K, a2 Kot

h(r, 2, 0) = 0
(e 2,0 = 0
—(r, 0,0 =
hir b 1) = -2 ah(r b, 1)
:
timf gﬁdz ) _2nQK

Since the Laplace domain solution is much simpler in form than the real tim
solution, this study uses the Laplace domain solution to calculate the drawdown ir
FORTRAN program. According to equation A7 (Neuman 1972) Laplace domait

solution (Chen et.al. 1993) can be rewritten as

__Q pS Qo r° aJ (ar)
Hnz0=5 0 °(r\ ) 21bK,0 K, cosh(vz)da
2y 3sinh(v b) +pv3cosh(vb)

Y

1R



where a is dummy variable and

K
V2 = __h a2 + _‘Sp_
K, bK,

The averaged drawdown solution in Laplace domain is simply the average over

that vertical distance according to Neuman (1974) as following

H, 0 = % fobH(r, 2 Ddz

o al (ar
0 K[zg] 0w,
o
2mb7K, 70 Za e +pcoth(vb)v?
Sy
The first term is Theis solution in Laplace domain. Guassian 32 point numerica
integration method was used to deal with the integration and IMSL function was used t
solve J, Bessel function in Fortran code.
Neuman (1975) developed curve-matching method base on his theory (1972
1973, 1974), and this method can be used to determine the transmissivity of anisotropi
unconfined aquifers from pumping test data.
Neuman (1975) gave the drawdown solution as

__Q |
h= 3= Wiy B) (13)

in



This equatidn can be reduced to describe the first segment of the time-drawdown curve

as
.9 14
b= =Wy B) (14)
where
2
uA = r S (15)
4Tt

The late-time time-drawdown curve can be described by reducing equation (13) as

h = - W, 16
4T (g P)
where
2
4y = an
4Tt
and parameter B is defined as
2
B - r’'K, 18)
b*K,

The curve-matching procedure is very similar to the Boulton’s curve-matching
method. The family of Neuman type curves should be plotted on the same scale as the
measured time-drawdown data. Neuman (1975) provided a series of type curves in

practical range. The observed time-drawdown should be superimpose on the type curve

nN



B and match late time observed data on the selected curve as much as possible and note
the value of 8. Read the values of W(ug, ), 1/up, h'y and t'y for an arbitrary selected
point. Transmissivity T and storage coefficient S can be calculated by equation (14) and
(15) by substituting these values with the known values of Q and r. Match the early time
drawdown curve on type curve A with the same value of 8, and read the value of W(u,,
B), 1/u,, h", and t°, for an arbitrary point, S, and T can be obtained by equation (16)
and (17). Transmissivity calculated by equation (14) and (16) should be close to each
other, and the average value can be taken as final result if the difference is not large.
According equation (18), K, can be calculated as following
K, - P_sz_T (19)

After all calculation, the value of S and S, should be compared to check whether

the condition S, > 10 S is satisfied.

Type Curves

Boulton (1963) gave asymptotic solution for which % tends to infinity as follows:

® ( 2
h = __Q__f ZJD(_Lx)]_— 1 exp AL -€ _di (20)
4nT D x2+1 \ x2+1 X

where

2
e = 2 exp{-ant(x?+1)} @n
x2+1

1



For t tends to zero, Equation (20) reduce to

Q () —expl-ant2+ & 22)
ﬂTL 2J0(Dx)x2+1{1 exp[-antx +1)]}x (

substitute o and 7 into Equation (22), the type curve A of Boulton model can be

calculated by

W(,r) uA] h.“_"l'_f 27 L )x +1{1—ex;{%(%)2;1:@2+1)]}%

where 1/u, and D are defined in Equation (6) and (10) respectively.

When t > > 0, the function e defined in Equation (21) vanishes. Equation (20)

reduces to

. Q 2J( ) L ep| o8 ggc_ (23)
4nTY0 D x2+1 x2+1

again substitute o and rearrange them, the type curve B of Boulton model can be

calculated by

o 2 2
LA B ZJO(L,C) 1-—L exp _I.(L)i x* | dv
D Ug 4T Jo D x2+1 4\D qu2+1 X

where 1/ug and D are defined in Equation (8) and (10) respectively.
According to Laplace transform solution provided by Neuman, Moench (1993)
gave Laplace transform solution in dimensionless term. Again for two dimensional radial

vertical flow, the averaged dimensionless drawdown should be integrated as follows

22



(Neuman 1974):

Hy@ps B, ) = [ "Hy(pps B 2p» )2y

therefore
o B o) - 2K(JPp) , 2 [ ~sinh(1)xJo(x)dx @4)
pi¥p> B> pp B0 ysinh(P)o P +pycoth(y)]
where
IR S e /. 5)
Pp 4 ’ Sy, p

and B is the same as defined in Equation (18). In order to reduce independen
dimensionless parameters from three to two a convenient way is to consider the case ir
which ¢ approaches zero (Neuman 1972). Two asymptotic form can be obtained for
calculation of type curve A and B. For type curve A, t tends to zero, thus pp >> 1

asymptotic form of Equation (24) for type curve A becomes

1), N R x 47 0= *5M)
L BleL Py B)) = L7 LU i S
W(4uA ] {Hp(Ppa» B)} 1(pDA)5/4 exp(m) ) fo ¥2p,, e }

in which 1/u,, 8, and y are defined in Equation (15), (18) and (25) respectively, and p;,
is inversely related to 1/4 of 1/u,.

When t > > 1, then p;, tends to zero. asymptotic form of Equation (24) for typ
curve B can be written as

in which 1/ug, B, and y are defined in Equation (17), (18) and (25) respectively, and p;

~



e 235f xJ,%)

w(_ ) (Ho(PonsB )} ~L 1 Poo mh( ]m “{ ]

is inversely related to 1/4 of 1/u;.

Parameter Sensitivity Analysis

In order to better understand the effect of interested parameters, theoretical time-
drawdown curves for several conditions were calculated using both the Boulton and
Neuman models. All effects were observed as parameters were varied.

The effects of changing each of the pertinent hydrological parameters of Boulton’s
are shown in Figure 5. In each diagram, one parameter was varied, while the other
parameters remain fixed. The actual (or close to actual) pumping rate, Q=3.14*10-3
m3/s, radius, r=10m, from the field test, Sy=0.1, T=0.01 m?¥s and or=0.001 1/s
were selected as basic data for the simulations. The elastic storage coefficient was varied
from 0.0001 to 0.01, while the other parameters remained constant. Clearly, the elastic
storage coefficient only affects the early time drawdown and has negligible effect on late
time drawdown. As S increased, the drawdown become smaller at early time (Figure
5). The values of Specific yield Sy tested ranging from 0.05 to 0.3. As can been seen
it has influence both on the mid-time and large-time drawdown curve. A clear
relationship appears to exit between the mid-time and large-time drawdown curve
resulting from varying the S, parameter values. As the value of S, increased, the mid-

time and large-time drawdown decreases. Increasing transmissivity T from 0.0005 tc
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Figure 5: Boulton’s Model Parameter Sensitivity.
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0.01 affected the whole time-drawdown curve but did not reveal a clear trend i.e. the
effects of permutations of the T parameter were not constant. The effects of variations
in the empirical coefficient on drawdown curve were evaluated for changes of o from
0.00005 to 0.0003. The empirical coefficient (reciprocal of delay index) only affects the
delayed drawdown curve region. The smaller value of a, the smaller the drawdown at
delayed draw own region, i.e. the mid-time drawdown curve region.

Sensitivity of parameter S, Sy, T and Kz are presented in Figure 6 for Neuman’s
model. The actual (or very close to actual) pumping rate, Q=3.14*103 m’/s, radius,
r=10m, and initial saturated thickness, b=10m, in the field test were selected for the
simulations. The values of S, S, and T were changed in the same range as Boulton’s
model, and S and T own the same effects on the time-drawdown curve. Unlike Boulton’s
model, specific yield shown less effect on the mid-time drawdown. Vertical hydraulic
conductivity K, increased two order magnitude from 5%10 to 1*¥10*, and it is the only
parameter to control delayed drawdown region and shows very similar effect as o ir

Boulton’s model.
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Figure 6: Neuman’s Model Parameter Sensitivity.
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Estimation of Planar Anisotropy

Horizontally isotropy is the assumption for both Boulton and Neuman model
which are applied above, but both solutions has been adapted to anisotropic aquifers by
using coordinated transformation given by Papadopulos (1965). Anisotropic aquifers were
further studied by Hantush (1965,1966), Way S.C. and C.R. McKee (1982), and
Neuman et. al. (1984). The two dimensional anisotropy tensor can be expressed as:

T, T,
T, T,

where T,,=T,,, and T,,, Ty and Ty, are the components of the transmissivity tensor. In

the coordinate transformation, the term r and Tr are expressed as

T, x*+T,y"-2T, xy

r? = (26)
Te
and
T = T,T,-Ts @7)

substitute equation (26) and (27) into equation (6), (8), (15), or (17) and using the dat

from three pair of matching point. Three simultaneous equation can be made as:

8 TyHTxi-2T %y,
u,‘ - . ( Py )
4¢; T

i €

where i=1, 2, 3 for each matching point. In order to linearize the three simultaneou

equations, T, is taken as:

faYel



1
T, 3 (T

in which T,, T, and T, are the value obtained by the curve-matching method for each set
of measured data. This approximation made three simultaneous equations linearized and
solved without difficulty. After storage coefficient lumped with transmissivity, three

equations can be written as:

y% x% “209 | T 4t1"1Ti
VA x; 20y, Iy = 4t2u2Ti

y § x% ~2%3Y5 Ly 4tyu, Ti

where

Pxx

28
T,|=8|T. (28)
r

After T, T, and T, obtained by solving three simultaneous equation, storage coefficien
can be calculated according to equation (27) and (28):

g =1 Ly T

T

€

substitute S into equation (28), then the components of transmissivity are:



Txx th
1

T, = 3 L,

Txy I‘xy

Once the symmetrical components of transmissivity tensor are known, associated
principal values (eigenvalues) and principal directions (eigenvectors) can be easily

calculated using Matlab software.
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RESULTS AND DISCUSSIONS

The results from Boulton and Neuman curve-matching method were list in table
(1) in the following. It was checked that S, > 10 S was true for all three set of data in
Neuman’s curve matching methods. Only one set of data from observation well NE1S,
n = 7.43 which was less than 10 in Boulton’s curve method. In order to check the
accuracy of parameter obtained by both method, the comparison of measured drawdown
and theoretical drawdown calculated by estimated parameters were plotted in Figure 7
and Figure 8. This procedure was important to adjust the accuracy of graphical method,

since error can be easily caused by eye matching and reading from logarithm scale.

Table 1. The results obtained by curve-matching methods.

Boulton model Neuman model
T (m¥s) S S, a(lls) Tm¥s) S S, K/m/s)
W10 0.01 0.0038 0.25 0.00015 0.01 0.0034 0.29 0.000094
SE1I0 0.015 0.0036 0.15 0.00016 0.013 0.0035 0.30 0.000064
NE15 0.028 0.0056 0.036 0.0011 0.025 0.0049 0.047 0.0002

"Since the values of T, Sy, and S are determined from the early and laf

fa I



10!
) i
=t "
g
"g 10-2 =
& a
Tt
o K
10-3 1 1 lll|||| i 1 I|||Ill L [IIIIH! i |I»||||l| 1 |l[|l|l| L L 1
10° 10! 10% 10% 104 10% 106
time (sec)
10! |
& ;
s
R
a1 10- .
St -
© -
1 ll|l|||‘ i ||II||II 1 llll)ll‘ L lllllll‘ 1 1|Il|l|| 1 11
10° 10! 102 103 10t 10° 108
- time (sec)
10! |
) -
o -
Z
"g 10'2 =
® -
St
= L
10—3 1 Pl 1 (il‘ 1 l|)|l||} i illlllll 1 VVlI|H[ 1 |llL|H‘ L 1t r ptl

10° 10! 10% 103 104 10° 108

time (sec)

Figure 7: Comparison of measured drawdown with theoritic drawdown calculated

by Boulton’s model using estimated parameters.
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drawdown data that fit the early and the late Theis curves, respectively, the results
obtained with the aid of Boulton’s theory will be practically identical to those obtained
with the methods described in this paper" Neuman (1975). It was not seen in this study.
Comparing the results obtained by two methods, only the values of T were very close
to each other and S were close enough. But the values of S, were different. Recall the
simulation of both model parameter sensitivity, S, showed the different effect on time-
drawdown curve. That may be a reason for the cause of difference. The main drawback
of Boulton’s model was the empirical constant - delayed index (1/a) which was not cleai
to any physical definition. Overall the results obtained by Neuman’s curve-matching anc
the early time matching point data was used to estimate the planar anisotropy o
transmissivity. It was found that two orthogonal horizontal principal transmissivity wert
0.021 meter square per second in the direction N20.83E and 0.012 meter square pe
second in the direction of N69.13W. The ratio of maximum and minimum transmissivit!
at Sevilleta study site was 1.75. The graphic presentation of anisotropy was shown I
Figure 9. Comparison of measured drawdown with theoretic drawdown calculated b
estimated planar anisotropy are shown in Figure 10, and they show fair agreement. Th

inaccuracy may be caused by linearizing the equation, i.e. taking averaged transmissivit

as effective transmissivity T.. This could be avoided by solving three non-linear equatio

directly.
In this study, it was found that choosing appropriate curve (i.e. appropriate 1/.
in Boulton’s type curve , appropriate B in Neuman’s type curve) to matching was cruci

in matching procedure. Otherwise the results may get into the range out of physic



T,=0.021 (m?%/s)

Ty=0.012 (m?%/s)

69.13°
A > x

Figure 9. The planar anisotropy ellipse of transmissivity at Sevilleta

study site.
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meaning such as S, > 1. This mistake was made at the first matching, since a too big
“value of 1/D or 8 type curve was chosen for trying to fit drawdown data within 20
seconds too. Those drawdown were neglected later on. As the pumping rate can not
reach the constant right after the pumping and the time lap in responding, drawdown data
within 20 seconds were smaller than they should be. Matching the late time drawdown
curve first may avoid this problem as in Neuman’s curve-matching method (Neuman

1975).
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SUMMARY AND CONCLUSIONS

The major work of this study is using Boulton’s and Neuman’s curve matching
method to determine transmissivity in three different directions, setting three
simultaneous equations to obtain the components of the planar transmissivity tensor, and
finally calculating the principal value and direction of the planar transmissivity tensor.
The two curve matching methods based on different theory and assumption provided
similar results. All estimated parameters were verified by comparing measured
drawdowns with analytical drawdowns which were calculated by estimated parameters.

Using pumping test data, aquifer properties can be estimated by nonlinear least:
square analysis (Kashyap et al. 1988; Johns et al. 1992). The advantage of nonlineal
least-square method is that all test data both early and late time are matched together. Bu
it still can not replace graphical method. The results obtained by graphical method ca
provide preliminary estimation of aquifer parameters for nonlinear least-square method
As the ﬁme of this study is limited, nonlinear least-square method may be applied fo

further study.
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NOTATION

b initial saturated aquifer thickness [L].

D drainage factor D=(T/aS,)” [L].

h drawdown [L].

h*,, h' arbitrary drawdown matching point [L].

H Laplace domain variable inversely related with drawdown h.
K, vertical hydraulic conductivity [L/T].

K, horizontal hydraulic conductivity [L/T].

Laplace domain variable inversely related with time t.

Q pumping rate [L*/T].

r radial distance from pumping well (L).
S elastic storage coefficient.

Sy specific yield.

t elapsed time [T].

t, t's arbitrary time matching point [T].
T transmissivity [L%/T]

T transmissivity tensor

Txx, Tyy, Txy components of transmissivity [L*/T]
Tx, Ty principal transmissivity [L*/T]

X, Y, Z space coordinates [L]
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o reciprocal of delay index [1/T]

I'xx, Tyy, I'xy ST,,, ST,y, ST,, respectively [L*/T].
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APPENDIX

Table 2. The data of matching points

Boulton model

Neuman model

h'a(m) ta(s) hm) th() /D h(m) t(s) h'sm) tH(s) B
w10 003 9 003 600 0.6 0.03 8 0.03 700 0.1
SEI0  0.02 5 0.023 250 0.4 0.025 7 0.025 600 0.6
NEI5 0016 12 0.02 60 0.6 0.021 11 0.021 110 0.2

Table 3. Diary of calculation of Eigenvectors and Eigenvalues in MATLAB.

>> t =[0.0132 0.00306
0.00306
t =
0.0132  0.0031

0.0031 0.0201

0.0201] % input the component of anisotropy tensor

> > [v,d] = eig(t) % calculate the eigenvector and eigenvalue of t

a4



VvV =
0.9349  0.3549

-0.3549 0.9349

0.0120 0

0 0.0213

Table 4. FORTRAN program for calculating the theoretical drawdown for Boulton
model.
****************************************************************
* The program is used to calculate drawdowns in unconfined. .
* of Boulton’s model by inversing Laplace domain solution
* using Stehfest’s numerical inverse method.
s e s e s ek e e e e ek ks e ke s e ks s oo s s ks e ol sk ke ok
program main
implicit double precision (a-h,0-z)
dimension w(18),t(200),h(200)
dimension tm(200),hm(200),th(200),cb(200),cm(200)
character*12 file,infile,outfile,plotfile

integer exten

data w/ .000049603174603175,



* -0.609573412698412809,

* 274.594047619047614717,

* -26306.956746031748480164,

* 957257.201388888875953853,

*  -17358694.845833331346511841,
*  182421222.647222220897674561,
* -1218533288.309126853942871094,
* 5491680025.283035278320312500,
* -17362131115.206844329833984375,
* 39455096903.527381896972656250,
* -65266516985.175003051757812500,
* 78730068328.220825195312500000,
* -68556444196.120834350585937500,
* 41984343475.053573608398437500,
* -17160934711.839284896850585938,
*  4204550039.102678775787353516,

*  -467172226.566964268684387207/

pi=4.0d0*datan(1.0d0)

write(*,*)’Please enter data file name (no extension name):’

read (*,*) file
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exten=index(file,” ’)
infile (1:exten)=file
infile (exten:exten+3)=".dat’
outfile (1:exten)=file
outfile (exten:exten+3)=".out’
plotfile(1:exten)=file

plotfile(exten:exten+1)=".m’

open (5,file=infile)
open (7,file=outfile)

open (9,file=plotfile)

read(5,*) mchoice

if (mchoice .eq. 1) then

read(5,*) n,q,x,y,ha,ta,hb,tb,rd

read(5,*)
t1=q/(4.0*pi*ha)
r=dsqrt(x**2 +y**2)
s=4.0%t] *ta/r**2
t2=q/(4.0*pi*hb)

sy =4.0*t2%tb/r**2

tr=0.5*(t1 +t2)
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alp=rd**2/4./tb
write(*,5) T = ’,tr
write(*,5)" Sy = ’,sy
write(*,5) S =7,8
write(*,6)’ alpha = ’,alp
elseif (mchoice .eq. 2) then
read(5,*) n,q,x,y,tr,s,sy,alp
r=dsqrt(y**2+x**2)
else
read(5,*) n,q,x,y,txx,tyy,txy,s,sy,alp .
tr=dsqrt(txx *tyy-txy**2)
r =dsqrt((txx*y**2 +tyy*x**2-2.0d0*txy*x *y)/tr)
endif

format(a,f7.4)

format(a,e9.4)

doi=1,n
sum=0
tsum=0
read(5,*) t())
p=dlog(2.0d0)/t()

do j=1,18

AO



Pi=p*

x =r*dsqrt(s*pj/tr+sy*alp*pj/(pj +alp)/tr)

y=r*dsqrt(s*pj/tr)

h(i) =q/(2.0d0*pi*tr*pj)*dbsk0(x)

th(i) =q/(2.0d0*pi*tr*pj)*dbskO(y)

sum=sum-+w()*h(i)
tsum =tsum+w(j)*th(i)
enddo
h(i)=p*sum
th(i) =p*tsum
cb(i)=th(i)-h(®)

cm(i) =th(@)-hm@)

enddo

write(7,*)’

write(7,*)
write(7,300 Q =’,q

if (mchoice .eq. 3) then

write(7,400)’ x =’,x
write(7,400)’ 'y =’,y
write(7,500)" Txx =’,txx

write(7,500)" Tyy =’,tyy

’ outfile,"

Boulton model"
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write(7,500)’ Txy =’,txy
else
write(7,600)’ r =’,r
write(7,600)° Tr =’,tr
endif
write(7,600)’ S =’,s
write(7,500)’ Sy =’,sy
write(7,600)’ alp =’,alp
write(7,*)
300 format(16x,a,e7.4)
400 format(16x,a,2x,f7.1)
500 format(16x,a,f7.3)
600 format(16x,a,e10.2)

700 format(16x,a,2x,f5.1)

write(7,100)’time’, h-bton’
sum=0.
write(9,*)’clear’
read (5,%) m
doi=1,m
read (5,%) tm(i), hm(i)

write(9,10) "tm(’,i,”)=",tm(D),’; hm(,i,’)=",hm(),’;’

[N
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c

100

110

120

130

enddo
format(a,i3,a,f8.0,a,i3,a,f10.5,a)
doi=1,n

write(7,120) t(i),h(i)

write(9,10)'tc(,i,")=",t(0),”; he(,i,))=":h(®,";’

sum =sum +abs(hm(i)-h())
enddo

write(9,*)"loglog(tm,hm,’0’,tc,he,’-")"

write(9,*)"title(’Boulton type curve method - “,outfile,"’)"

write(9,*)"xlabel(Ctime (sec)’)"
write(9, ¥)"ylabelCdrawdown (m)’)"
format(17x,a,5x,a,5x,2,4x,a)
format(11x,e12.5,6(3x,e12.5))
format(11x,f10.0,3(3x,18.5))

format(15x,a,f3.2)

write(*,*)’ The results are in the file :
write(*,*)’ The Matlab for plot is
close(5)

close(7)

close(9)

end

P }

* outfile

: *,plotfile



Table 5. FORTRAN program for calculating the theoretical drawdown for Neuman
model.
s sk sk e sk ke ok sk e o ke sk s s s ke st aeshe s sk s e sk sfe s e s s s e sk ke s ke sk e sk ke ok ke ok e st e i o e sk s sk s e e sfe sk o sk e sk e sfe o afesfe e sk ke
*  This program calculate the drawdwon in unconfined aquifer of
*  Neuman model by numerical inverting Laplace transform solution
*  using Stehfest method.
st ok sk sfe ke sk ¢ st ok 2k obe fe 3 sk ke ok she ok sk sfe e s sfe e sk sfe e e 3k afe e she ke o 3k afe ke e ok ofe ok sk ofe e sk ke ke ke o ek ke e ke s sfesfe ok sfe ke ok kel ok e vfe ok ke
implicit double precision (a-h,k-z)
dimension ht(500),hc(500),t(500),count(500)
dimension tm(500),hm(500)
dimension wi(18),x0(40),c(16),w(16)
dimension psum(52)
common /al/r,tr,s,kz,b,qpi2,thc
common /a2/rs,ry,kd,p
common /a3/wi,x0,c,w
integer 1i,j,k,n,nres,numrl2,count,kk,exten

character*12 file,infile,outfile,plotfile

data wi/  .000049603174603175,
* -0.609573412698412809,
* 274.594047619047614717,

* -26306.956746031748480164,
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* 957257.201388888875953853,
*  -17358694.845833331346511841,
* 182421222.647222220897674561,
* -1218533288.309126853942871094,
* 5491680025.283035278320312500,
* -17362131115.206844329833984375,
* 39455096903.527381896972656250,
* -65266516985.175003051757812500,
* 78730068328.220825195312500000,
* -68556444196.120834350585937500,
* 41984343475.053573608398437500,
* -17160934711.839284896850585938,
*  4204550039.102678775787353516,

*  -467172226.566964268684387207/

data x0/2.4048256d0, 5.5200781d0, 8.6537279d0, 11.7915344d0,
* 14.9309177d0, 18.0710640d0, 21.2116366d0, 24.3524715d0,
* 27.4934791d0, 30.6346065d0, 33.7758202d0, 36.9170984d0,
* 40.0584258d0, 43.1997917d0, 46.3411884d0, 49.4826099d0,
* 52.6240518d0, 55.7655108d0, 58.9069839d0, 62.0404692d0,
* 65.1899648d0, 68.3314693d0, 71.4729816d0, 74.6145006d0,

* 77.7560256d0, 80.8975559d0, 84.0390908d0, 87.1806298d0,
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* 90.3221726d0, 93.4637188d0, 96.6052680d0, 99.7468199d0,
* 102.8883743d0, 106.0299309d0, 109.1714896d0, 112.3130503d0,

* 115.4546127d0, 118.5961766d0, 121.7377421d0, 124.8793089d0/

data ¢ / .49863193092474078D0, .49280575577263417D0,

* .48238112779375322D0, .46745303796886984D0,
* .44816057788302606D0, .42468380686628499D0,
* .39724189798397120D0, .36609105937014484D0,
* .33152213346510760D0, .29385787862038116D0,
* .25344995446611470D0, .21067563806531767D0,
* .16593430114106382D0, .11964368112606854D0,
* .7223598079139825D-1, .24153832843869158D-1/

data w / .35093050047350483D-2, .8137197365452835D-2,

* .12696032654631030D-1, .17136931456510717D-1,
* .21417949011113340D-1, .25499029631188088D-1,
* .29342046739267774D-1, .32911111388180923D-1,
* .36172897054424253D-1, .39096947893535153D-1,
* .41655962113473378D-1, .43826046502201906D-1,
* .45586939347881942D-1, .46922199540402283D-1,

* .47819360039637430D-1, .48270044257363900D-1/
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kk=5
pi=4.0d0*datan(1.0d0)

log2 = dlog(2.0d0)

write(*,*¥)’  please give data file name (no extension name):’

read (*,*) file

exten=index(file,” ’)
infile (l:exten)=file
infile (éxten :exten+3)=".dat’
outfile (1:exten)=file
outfile (exten:exten+3)=".out’
plotfile(1:exten) =file

plotfile(exten:exten+1)=".m’

open (5,file=infile)
open (7,file=outfile)

open (9,file=plotfile)

read(5,*)mchoice
if (mchoice .eq. 1) then

read(5,*) n,q,x,y,b,ha,ta,hb,tb,gama

]g



t1=q/(4.0d0*pi*ha)
r=dsqri(x**2 +y**2)
s=4.0d0*t1*ta/r**2
t2=q/(4.0d0*pi*hb)
sy =4.0d0*t2*tb/r**2
tr=0.5d0*(t1 +1t2)
kz=gama*tr*b/r**2
write(*,5)’ T = ,tr

write(*,5)° S =,

write(*,6)’ Sy = ’,sy
write(*,6)’ Kz = " kz
elseif(mchoice .eq. 2) then
read (5,%) n,q,x,y,tr,s,sy,kz,b
r=dsqrt(x**2 +y**2)
eise
read(5,*) n,q,x,y,txx,tyy,txy,s,sy,kz,b
tr=dsqrt(txx*tyy-txy**2)
r =dsqri((txx*y**2 +tyy*x**2-2.0d0*txy *x *y)/tr)
write(7,*)’ > outfile,"  Neuman’s model”
write(7,*)
write(7,300)’ Q =’,q

write(7,400)° x =’x
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write(7,400)’ y =,y
write(7,400)° Txx=",txx
write(7,400)° Tyy=",tyy
write(7,500)” Txy=",txy
write(7,600)° S =’,s
write(7,500)° Sy =’,sy
write(7,600)’ Kz =’,kz
write(7,700)’ b =’,b

endif

if (mchoice .eq. 3) goto 7
write(7,300)’ Q =’,q
write(7,400)’ r =’,r
write(7,500) Tr=",tr
write(7,600)° S =’,s
write(7,500)’ Sy =’,sy
write(7,600)’ Kz =",kz

write(7,700)’ b =’,b

format(a,f7.4)
format(a,9.6)
qpi2 = ¢/2.0d0/pi

rs=tr/s



ry=kz/sy
kd=kz*b/tr

fhe=qpi2/b**2/kz/r**2

doi=1,n

read (5,%) t(i)

write(*,*) ’runing at...time: ’,t(i)

p=log2/t(i)

call stehfest(0,1,f)

ht(@)=f

x1=0

yy=0

nres=0

numrl2=0

presult=0

count(i)=0

do j=1kk
count(i) =j
xu=x0(j)
a=0.5d0*(xu-+xl)
bb=xu-xl

y=0.d0

<o
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do k=1,16
ptl=a-c(k)*bb
ptr=a+c(k)*bb
y=y+w(k)*(gfunc(ptl) +gfunc(ptr))
enddo
y=y*bb
yy=yy+y
if (abs(y) .It. le-12) go to 20
xl=xu
if (j .1t. 2) go to 10
numrl2 =numrl2+1
psum(numrl2)=yy
if (numrl2.1t.3) go to 10
call dgelg(numrl2,psum,yy,abseps,res3la,nres)
if (abseps .1t. 1.0d-12) go to 20
enddo
he())=yy

enddo

write(7,%)
write(7,100)’time’,’h-cul’

write(9,*)’clear’

[0



read (5,%) m
doi=1,m

read (5,*) tm(i), hm(i)

write(9,9) ’tm(’,i,”)=",tm(@),”; hm(,i,”)=",hm(@),”;’
enddo

9 format(a,i3,a,f8.0,a,i3,a,f10.5,a)

sum=0.
t(1)=5.0
doi=1,n
c write(7,200)t(i), ht(i)-hc(i),ht(i) ,hc(i),count(i)
write(7,222) t(i),ht(i)-hc(i)
write(9,9) ’tc(’,i,”)=",t(1),”; hec(,i,”)=",ht(i)-hc(i),’;’
er=hm(i)-ht(i)+hc(i)
sum=sum-+abs(er)
enddo
write(9,*)"loglog(tm,hm,’0’,tc,he,’-*)"
c write(9,*)"title("Neuman type curve method - “,outfile,"’)"
c write(9,*)"xlabel(’time (sec)’)"
c write(9,*)"ylabel(’drawdown (m)’)"
100 format(15x,a,7x,a,6x,a,6x,a)

200 format(11x,e8.2,3(3x,f12.2),6x,i3)
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222 format(11x,19.0,3(3x,f10.5))

300 format(16x,a,f7.3)

400 format(16x,a,2x,f6.0)

500 format(16x,a,f7.3)

600 format(16x,a,e10.2)

700 format(16x,a,2x,f5.1)

800 format(16x,a)
write(*,*¥)’ The results are in the file : ’,outfile
write(*,*)’ The the Matlab file for plot: ’,plotfile
close(5)
close(7)
close(9)

end

sfe sk 3k 3 s ok 3 3k s afe e e sk s sfesfe e sk st sfe e e s s s sk s s sk ik e ok ok s s e ok s sfe sk sl ke sk ok ok she ke ke s st fedfe e sk sk sfesfesfe e ok ke ke sk e ke sk ke ek ke

subroutine stehfest(x,i,h)

implicit double precision (a-h,k-z)
dimension wi(18),x0(40),c(16),w(16)
common /al/r,tr,s,kz,b,qpi2,fhc
common /a2/rs,ry,kd,p

common /a3/wi,x0,c,w

external gfunc,lintg
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sum=0
pj=0
if (i .eq. 1) then
do j=1,18
Pj=pj+p
xx =r*dsqrt(s*pj/tr)
th=qpi2*dbsk0(xx)/tr/pj
sum=sum+wi(j)*th
enddo
else
do j=1,18
pj=pj+p
sum =sum+wi(j)*lintg(x,pj)
enddo
endif
h=p*sum
return

end

***********************************************************************f

¢ integrand function

function gfunc(x)



implicit double precision (a-h,k-z)
dimension wi(18),x0(40),c(16),w(16)
common /al/r,tr,s,kz,b,qpi2,the
common /a2/rs,ry,kd,p

common /a3/wi,x0,c,w

call stehfest(x,3,f)
gfunc=fhc*x*dbsjO(x)*f
return
end
sk e e ek s s ke ek ke s et ke s etk ks sk sk ek skl sk ke sk ok ke ke ek e o
¢ the part of integrand in Laplace form
function lintg(x,pj)
implicit double precision (a-h,k-z)
dimension wi(18),x0(40),c(16),w(16)
common /al/r,tr,s,kz,b,qpi2,thc
common /a2/rs,ry,kd,p

common /a3/wi,x0,c,w

n=dsqrt((x/r)**2/kd +pj/rs/kd)
lintg=1.0d0/(ry*n**4+pj/dtanh(n*b)*n**3)

return
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end

************************************************************************

subroutine dqelg(n,epstab,result,abserr,res3la,nres)

double precision abserr,dabs,deltal ,delta2,delta3,dmax1,d1mach,
* epmach,epsinf,epstab,error,errl,err2,err3 ,e0,el,elabs,e2,e3,
* oflow,res,result,res3la,ss,toll,tol2,tol3

integer 1,ib,ib2,ie,indx,k1 ,k2,k3,limexp,n,newelm,nres,num

dimension epstab(52),res3la(3)

epmach = dlmach(4)
oflow = dlmach(2)
nres = nres+1
abserr = oflow
result = epstab(n)
if(n.1t.3) go to 100
limexp = 50
epstab(n+2) = epstab(n)
newelm = (n-1)/2
epstab(n) = oflow
num = n

ki =n
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do 401 = 1,newelm

k2 = kl-1

k3 = k1-2

res = epstab(kl+2)

e0 = epstab(k3)

el = epstab(k2)

e2 = res

elabs = dabs(el)

delta2 = e2-el

err2 = dabs(delta2)

tol2 = dmax1(dabs(e2),elabs)*epmach
delta3 = el-e0

err3 = dabs(deltal)

tol3 = dmax1(elabs,dabs(e0))*epmach
if(err2.gt.tol2.or.err3.gt.tol3) go to 10
result = res

abserr = err2+err3

go to 100

e3 = epstab(kl)

epstab(kl) = el

deltal = el-e3

errl = dabs(deltal)



toll = dmax1(elabs,dabs(e3))*epmach
if(errl.le.toll.or.err2.le.tol2.or.err3.1e.tol3) go to 20
ss = 0.1d+01/deltal +0.1d+01/delta2-0.1d+01/delta3
epsinf = dabs(ss*el)
if(epsinf.gt.0.1d-03) go to 30
20 n = i+i-1
go to 50
30 res = el+0.1d+01/ss
epstab(kl) = res
k1l = k1-2
error = err2+dabs(res-e2)+err3
if(error.gt.abserr) go to 40
abserr = error
result = res
40 continue
50 if(n.eq.limexp) n = 2*(limexp/2)-1
ib =1
if((num/2)*2.eq.num) ib = 2
ie = newelm+1
do 60 i=1,ie
ib2 = ib+2

epstab(ib) = epstab(ib2)
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ib = ib2
60 continue
if(num.eq.n) go to 80
indx = num-n+1
do70i=1,n
epstab(i)= epstab(indx)
indx = indx+1
70 continue
80 if(nres.ge.4) go to 90
res3la(nres) = result
abserr = oflow
go to 100
90 abserr = dabs(result-res3la(3))+dabs(result-res3la(2))
*  +4dabs(result-res3la(l))
res3la(l) = res3la(2)
res3la(2) = res3la(3)
res3la(3) = result
100 abserr = dmax1(abserr,0.5d+01*epmach*dabs(result))
return

end

***********************************************************************2
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DOUBLE PRECISION FUNCTION DIMACH(I)

INTEGER SMALL(2)
INTEGER LARGE(2)
INTEGER RIGHT(2)
INTEGER DIVER(2)
INTEGER LOG10(2)
INTEGER SC

DOUBLE PRECISION DMACH(5)

EQUIVALENCE (DMACH(1),SMALL(1))
EQUIVALENCE (DMACH(2),LARGE(1))
EQUIVALENCE (DMACH(3),RIGHT(1))
EQUIVALENCE (DMACH(4),DIVER(1))

EQUIVALENCE (DMACH(5),LOG10(1))

DATA SMALL(1),SMALL(2) / 1048576, 0/
DATA LARGE(1),LARGE(2) / 2146435071, 1/
DATA RIGHT(1),RIGHT(2) / 1017118720, 0/
DATA DIVER(1),DIVER(2) / 1018167296, 0/

DATA LOG10(1),LOG10(2) / 1070810131, 1352628735 /, SC/987/
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IF (SC .NE. 987) STOP 779
IF (DMACH(4) .GE. 1.0D0) STOP 778
IF (I.LT. 1 .OR. I.GT.5) GOTO 999
DIMACH = DMACH())
RETURN

999 WRITE(*,1999) I

1999 FORMAT( DIMACH - I OUT OF BOUNDS’,110)
STOP
END
INTEGER FUNCTION I1MACH(T)
INTEGER IMACH(16),0UTPUT,SANITY

EQUIVALENCE (IMACH(4),0UTPUT)

DATA IMACH( 1)/ 5/
DATA IMACH(2)/ 6/
DATA IMACH(3)/ 7/
DATA IMACH(4)/ 6/
DATA IMACH(5)/ 32/
DATA IMACH(6) / 4/
DATA IMACH(7)/ 21/
DATA IMACH( 8) / 31/

DATA IMACH( 9) / 2147483647 /



DATA IMACH(10) / 2/
DATA IMACH(11) / 24/
DATA IMACH(12) / -125 /
DATA IMACH(13) / 128/
DATA IMACH(14) / 53/
DATA IMACH(I5) / -1021 /
DATA IMACH(16) / 1024 /, SANITY/987/
IF (SANITY .NE. 987) STOP 777
IF(@.LT. 1 .OR. I.GT. 16) GO TO 10
[IMACH = IMACH(I)
IF(I.EQ.6) IIMACH=1
RETURN
10 WRITE(OUTPUT,1999) I

1999 FORMAT(’ IIMACH - I OUT OF BOUNDS’,I10)

STOP

END
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