Geophysics Open-File Report 62 Geoscience Department and Geophysical Research Center New Mexico Tech Socorro, NM 87801 September, 1989

Analysis of some Events from an Earthquake Swarm

Occurring during April and May 1989 at

Loma de las Cañas in the Central Rio Grande Rift

By

Joseph B. Greer

Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree

New Mexico Institute of Mining and Technology

Socorro, New Mexico

September, 1989

Acknowledgements

I would like to thank Dr. Allan Sanford for his patience, flexibility and numerous critical reviews I required to complete this study.

THROUGH HOLLOWING

Table of Contents

Introduction	1
Data	2
Location of Earthquakes	4
Processing of Digital Data	10
Fault Plane Solutions	24
Discussion/Conclusion	26
References	30

PAPE COLLIDA CONTRA

Introduction

The Study

At the end of April 1986, New Mexico Tech's seismic network detected a microearthquake swarm occurring approximately 15 km SE of the city of Socorro in an area known as Loma de las Canas. Swarms of microearthquakes in the Socorro area of the Rio Grande rift are not unusual (Sanford et al. [1979]). On April 28 at 12:59 GMT, an earthquake measuring 2.57 M_d occurred in the swarm area indicating that this was a significant swarm. Portable seismographs were deployed in the swarm area for about four days; three recording on helicoders and one recording digitally. This study uses only data acquired while the portable stations were in operation.

In this study, I developed station corrections for the portable stations for use in the location program HYPO71(Rev). At the same time, adjustments were made to established station corrections to account for effects of spatial variations in crustal velocity at the site of the swarm. The customizing of station corrections was done with only events having well constrained locations.

Earlier studies of swarm events in the Socorro area have noted waveforms of extremely similar character with correlation coefficients exceeding 81 percent. I made comparisons of waveforms and their spectra from the digital station data using both the eye and the computer. By eye, it appeared that events could be placed into groups but correlation coefficients and characteristics of the spectra indicated that this was illusionary. First motion data were composited to obtain well constrained fault plane solutions, which indicated dominately strike-slip motion.

The Setting

In central New Mexico, the Rio Grande rift is a major physiographic feature. It separates the Great Plains from the Colorado Plateau in the north and the Basin and Range Province in the south. At Socorro, the Rio Grande rift changes from the singular basins of the northern and middle reaches to multiple basins that eventually merge to the south with the Basin and Range Province in an ill understood manner. Details of the geologic, tectonic and geophysical characteristics can be found in numerous papers but good summaries appear in Rio Grande Rift: Tectonics and Magmatism edited by R.E. Riecker [1979].

Data

Recording

Figure 1 shows the geographic location of the seismometer stations used in this project.

Events were recorded in three manners:

- On helicoders of the NMT Seismic Network operating at 1 mm/sec; stations: LAZ BAR
 LPM SB CAR SMC WTX MAG LJY LEM
- 2) With portable Geotech Portacorders at 2 mm/sec; stations: LC1 LC2 LC3 LC4
- With a portable Sprengnether DR100A seismograph recording digitally at a rate of 100 samples/sec; station: LC5

The NMT Seismic Network is permanent and in operation continuously 24 hours per day. The portable seismometers were in operation from approximately 21:00 4/29/86 until 22:00 5/1/86. The digital station, LC5, was in operation from 00:07 4/30/89 until 20:01 5/01/86. Station LC4 was in operation only from 21:00 4/30/86 until 20:40 5/1/86 and was not used in the analysis of any events.

Timing

Small clock drifts (less than 11 msec) of the permanent network were corrected once daily with respect to WWV. The clocks for the Geotech Portacorders were set to WWV when recording started and drift with respect to WWV checked at the end of each record. A clock correction based on linear interpolation of the drift was applied. Absolute timing of the digitally recorded events was uncertain. The header and trailer time values were duplicated on some of the records in the transfer from field cassettes to mainframe memory. To prevent errors, arrival times from station LC5 were not used in locating the events.

Figure 1. NM Tech permanent network station locations.

Figure 2. Comparison of station delay developments. The first iteration was not included due to the large drop from initial values compared to subsequent changes.

Location of Earthquakes

The swarm consisted mostly of very small (magnitude < -0.5) earthquakes. Of the 61 events observed from 00:07 4/30/86 to 20:01 5/01/86, only 14 were clearly recorded on both permanent and portable stations. The standard location program HYPO71(Revised 11/25/73) was used to determine the spatial position of these 14 quakes. A crustal model consisting of a single half-space with a velocity of 5.85 km/sec was selected because previous studies have indicated this model produces the best locations for microearthquakes inside the rift in the vicinity of the permanent station network (Sanford; personal communication). The parameter settings for HYPO71(Rev) are listed in Table 1.

Table 1.	HYPO71	(Rev) Test	Settings
TEST(1)	0.10	TEST(8)	2.79
TEST(2)	10.00	TEST(9)	0.00
TEST(3)	2.00	TEST(10)	100.00
TEST(4)	0.05	TEST(11)	8.00
TEST(5)	6.00	TEST(12)	0.50
TEST(6)	4.00	TEST(13)	0.30
TEST(7)	-3.63		

Station Delay Development

To establish station corrections for the swarm site, HYPO71(Rev) was run on all 14 locatable events with station delays set to standard values for stations of the NMT network and 0.0 sec for the portable stations (Procedure 1). This initial run was used to determine the best constrained of the 14 event locations. It yielded seven "A" and two "B" solutions to use in tailoring the station delays. The average station residuals of the 14 event initial iteration were added to the station delays (corrections). The nine best events were used in the second and subsequent iterations. After each iteration, the average of the station residuals were added to the station delays before the next iteration.

The second procedure was to initially set all station delays of the nine best events to 0.0 sec.

and iterate as before. The "best fit" station correction values were chosen by looking at how size

and rate of change of average station residuals diminished as well as by where location RMS values

and location errors went to a minimum. The RMS of a location is defined by:

$$RMS = \sqrt{\frac{\sum R_i^2}{\# of stations}}$$

where

Ri = time residual for the ith station

This RMS number includes residuals of S readings. The location errors in HYPO71(Rev) are not standard deviations. They are considered a crude estimate of hypocenter errors (personal communication from L. C. Lahr via Allan Sanford).

The station corrections obtained from the two procedures did not converge to one set of values. Both started with relatively large jumps on the first iteration to a certain set of values and then drifted by small amounts with each subsequent iteration. The best choice was expected to be one or two iterations after known "good" values of station corrections were used as the starting point (Procedure 1). However, for Procedure 1, the average absolute value of the average of the stations residuals went through a minimum and then started increasing, indicating an unstable situation. The second procedure started with large residuals in the first iteration but the second iteration had small residuals which continued reducing slowly (Table 2). The station corrections produced at the end of the third iteration in the second procedure were selected for use in final locations of the swarm events. As can be seen in Figure 2, the average RMS is at a minimum as are the depth and epicentral errors by the third iteration. Table 3 lists the initial values of depth error, epicentral error and RMS values for the individual event location and their changes with each iteration.

The resulting locations of each of the nine events used in this development can be seen in Figure 3. The entire 14 event group plus the largest event (1259) of the swarm (magnitude 2.6) is shown in Figure 4 and listed in Table 4. The average epicentral error was ±0.51 [km]. The average depth was 10.3 [km] with anaverage error of ±0.56 [km]. All the located events had epicenters within a square 2.5 km on a side. The HYPO71(Rev) solution sheets are included in Appendix A.

Swarm Events and Portable Station Locations

Figure 3. Locations of the nine events used in the station delay development. The circle is the location of the largest event in the swarm (not used in delay development).

Figure 4. Locations of the 14 swarm events recorded by both portable and permanent stations.

The circle is the epicenter of the largest earthquake in the swarm.

Table 2: Station Delays Developed from Residuals of Location Runs

		Statio	on Delay Devel	opment				
	Procedure 1	: Start with nets	work station corr	ections - know	good values			
Station		Iteration						
	#1	#2	#3	#4	#5	from #5		
LAZ	0.04	0.04	0.09	0.14	0.20	0.06		
BAR	-0.03	0.13	0.19	0.23	0.27	0.05		
LPM	-0.23	-0.21	-0.18	-0.12	-0.06	0.07		
SB	0.22	0.38	0.41	0.44	0.46	0.02		
CAR	0.03	0.03	0.00	-0.02	-0.04	-0.02		
SMC	0.11	0.06	0.08	0.09	0.10	0.00		
WTX	-0.08	0.04	0.03	0.02	0.01	0.00		
MAG	0.08	0.02	0.05	0.09	0.13	0.04		
LJY	0.56	0.75	0.81	0.86	0.92	0.08		
LEM	0.06	0.04	0.06	0.08	0.10	0.04		
LC1	0.00	-0.02	-0.08	-0.15	-0.20	-0.05		
LC2	0.00	-0.31	-0.40	-0.45	-0.49	-0.04		
LC3	0.00	-0.01	-0.10	-0.18	-0.23	-0.05		
		de	craged residual v	alues				
	0.086	0.044	0.041	0.037	0.040			
		Procedure 2:	Start with all c	orrections = 0.0				
Station			Iteration			residuals		
	#1	#2	#3	#1	#5	from #5		
LAZ	0.00	0.04	0.09	0.15	0.20	0.04		
BAR	0.00	0.29	0.32	0.35	0.39	0.04		
LPM	0.00	-0.10	-0.06	0.00	0.06	0.06		
SB	0.00	0.23	0.28	0.31	0.33	0.03		
CAR	0.00	0.01	0.00	-0.02	-0.04	-0.01		
SMC	0.00	-0.09	-0.06	-0.05	-0.04	0.02		
WTX	0.00	-0.02	-0.03	-0.04	-0.04	-0.01		
MAG	0.00	-0.06	-0.02	0.01	0.05	0.03		
LJY	0.00	0.80	0.86	0.91	0.97	0.05		
LEM	0.00	0.03	0.04	0.06	0.09	0.02		
LCI	0.00	-0.08	-0.15	-0.21	-0.26	-0.04		
LCE	0.00	-0.28	-0.36	-0.42	-0.46	-0.04		
LCS	0.00	-0.01	-0.10	-0.18	-0.23	-0.05		
		any	eraged residual v	sluce		Table 2		
	0.157	0.044	0.040	0.036	0.033			

Table 3a. Station Delay Development - Procedure 1

	Iteration									
	#1		#2	#3	#1	#5				
Location 1										
RMS	0.16	Δ RMS	-0.01	0.0	+0.01	0.0				
ERH	0.6	Δ ERH	0.0	0.0	0.0	0.0				
ERZ	0.7	Δ ERZ	0.0	0.0	0.0	0.0				
Location 2										
RMS	0.18	Δ RMS	-0.09	0.0	+0.01	+0.01				
ERH	0.9	Δ ERH	-0.4	0.0	+0.10	0.0				
ERZ	0.9	Δ ERZ	-0.4	0.0	0.0	+0.10				
Location 3										
RMS	0.13	Δ RMS	-0.04	-0.01	0.0	+0.01				
ERH	0.4	Δ ERH	-0.1	0.0	0.0	0.0				
ERZ	0.5	Δ ERZ	-0.2	0.0	0.0	+0.10				
Location 4										
RMS	0.15	Δ RMS	-0.05	-0.01	-0.01	0.0				
ERH	0.5	Δ ERH	-0.1	-0.10	0.0	0.0				
ERZ	0.6	Δ ERZ	-0.2	0.0	0.0	0.0				
Location 5										
RMS	0.14	Δ RMS	-0.05	+0.01	0.0	0.0				
ERH	0.6	Δ ERH	-0.2	+0.10	0.0	0.0				
ERZ	0.6	Δ ERZ	-0.2	0.0	0.0	0.0				
Location 6										
RMS	0.18	Δ RMS	-0.04	-0.01	0.0	0.0				
ERH	0.5	Δ ERH	-0.1	0.0	0.0	+0.10				
ERZ	0.6	Δ ERZ	-0.1	0.0	0.0	0.0				
Location 7										
RMS	0.12	Δ RMS	-0.04	+0.01	0.0	0.0				
ERH	0.4	Δ ERH	-0.1	0.0	0.0	0.0				
ERZ	0.5	Δ ERZ	-0.2	0.0	0.0	0.0				
Location 8										
RMS	0.14	Δ RMS	-0.05	0.0	-0.01	0.0				
ERH	0.5	Δ ERH	-0.2	0.0	0.0	0.0				
ERZ	0.5	Δ ERZ	-0.2	0.0	0.0	0.0				
Location 9										
RMS	0.20	Δ RMS	-0.05	0.0	0.0	0.0				
ERH	0.7	Δ ERH	-0.2	0.0	0.0	+0.10				
ERZ	1.0	Δ ERZ	-0.3	0.0	0.0	0.0				

Table 3b. Station Delay Development - Procedure 2

	Iteration									
	#1		#2	#3	#1	#5				
Location 1										
RMS	0.18	Δ RMS	-0.03	0.0	0.0	0.0				
ERH	0.7	Δ ERH	-0.1	0.0	0.0	0.0				
ERZ	0.8	Δ ERZ	-0.1	0.0	0.0	0.0				
Location 2										
RMS	0.20	Δ RMS	-0.11	0.0	+0.01	0.0				
ERH	1.0	Δ ERH	-0.5	0.0	+0.10	0.0				
ERZ	1.1	Δ ERZ	-0.6	0.0	0.0	+0.10				
Location 3										
RMS	0.19	Δ RMS	-0.11	0.0	0.0	+0.01				
ERH	0.6	Δ ERH	-0.3	0.0	0.0	0.0				
ERZ	0.7	Δ ERZ	-0.4	0.0	0.0	+0.10				
Location 4										
RMS	0.18	Δ RMS	-0.08	-0.01	-0.01	+0.01				
ERH	0.7	Δ ERH	-0.3	+0.10	+0.20	0.0				
ERZ	0.8	Δ ERZ	-0.4	0.0	0.0	0.0				
Location 5										
RMS	0.17	Δ RMS	-0.08	0.0	0.0	+0.01				
ERH	0.8	Δ ERH	-0.4	0.0	+0.10	0.0				
ERZ	0.7	Δ ERZ	-0.3	0.0	0.0	0.0				
Location 6										
RMS	0.22	Δ RMS	-0.08	-0.01	0.0	0.0				
ERH	0.6	Δ ERH	-0.2	0.0	0.0	0.0				
ERZ	0.8	Δ ERZ	-0.3	0.0	0.0	0.0				
Location 7										
RMS	0.14	Δ RMS	-0.05	0.0	0.0	0.0				
ERH	0.4	Δ ERH	-0.1	0.0	0.0	0.0				
ERZ	0.5	Δ ERZ	-0.2	0.0	0.0	0.0				
Location 8										
RMS	0.18	Δ RMS	-0.08	-0.01	+0.01	-0.01				
ERH	0.6	Δ ERH	-0.2	-0.10	0.0	0.0				
ERZ	0.7	Δ ERZ	-0.3	-0.10	0.0	0.0				
Location 9										
RMS	0.21	Δ RMS	-0.07	+0.01	0.0	0.0				
ERH	0.7	Δ ERH	-0.2	0.0	0.0	+0.10				
ERZ	1.0	Δ ERZ	-0.3	0.0	0.0	0.0				

Table 4. Final Location of Swarm Events

Origin Time		Event ID	Lat N	Long W	Epicentral Error[km]	Depth[km]	Quality
04/28/86	12:50:49.22	1259\$	34-01.78	106-49.17	±0.6	9.51 ±1.6	BA/B
04/30/86	00:11:25.47	0011	34-00,70	106-49.14	±0.5	12.27 ±0.4	CA/D
	01:28:28.99	0128	34-01.14	105-48.94	±0.6	12.79 ±0.7	BB/A
	04:07:44.20	0407	34-01.87	106-49.09	±0.3	9.73 ±0.3	A A/A
	05:39:52.61	0539	34-01.70	106-49.00	±0.3	10.27 ±0.4	A A/A
	05:41:48.64	0541	34-01.59	106-48.97	±0.4	10.62 ±0.4	A A/A
	13:10:25.38	1310	34-01.71	106-49.67	±0.9	11.29 ±0.9	BB/B
	16:12:18.65	1612	34-01.95	106-48.41	±0.4	10.14 ±0.5	A A/A
	16:15:27.74	1615	34-01.88	106-48.88	±0.3	8.14 ±0.3	A A/A
	18:06:53.62	1806	34-01.55	106-48.79	±0.5	11.68 ±0.5	BA/B
05/01/86	03:53:29.04	0358	34-01.49	106-48.75	±0.5	11.06 ±0.6	BA/C
	09:32:07.38	0932	34-01.71	106-49.05	±0.3	7.85 ±0.3	A A/A
	11:43:36.64	1148	34-01.48	105-48.23	±0.8	11.45 ±1.0	BA/C
	16:28:32.92	1688	34-01.00	106-48.98	±0.5	7.00 ±0.7	A A/A
	19-06-59 18	1906	34-00.77	106-48-57	+0.9	10.27 +0.8	CAD

Main Event

Processing of Digital Data

Digital station LC5 recorded 61 events of the swarm. Data from LC5 had timing marks every two seconds that consisted of a single data sample point of the value 2048. These were removed and replaced by the average value of the preceding and following data point. The maximum value for a saturated signal is 2047. The records of swarm earthquakes obtained by station LC5 were normalized such that the largest value in the S-phase equalled 1.0. This was accomplished by simply dividing each data point by the maximum value of the S-phase. The files were next reformatted for use with the Seismic Analysis Code (SAC) software. SAC is a program developed at Lawrence Livermore National Laboratory by Joseph E. Tull for analysis, manipulation and plotting of digitally recorded seismic events on a SUN Microsystem workstation. The digital records were plotted via an internal SAC plotting routine.

Correlations

Seismograms for all digitally recorded swarm events were examined and separated by eye into 12 groups believing to have similar waveforms. Shape and zero crossings received the largest weighting and total amplitude the least. Allowances were made for different S-P intervals by com-

paring the P-phases, shifting along the time axis, and then comparing the S-phases. Five of the groups had one or more of the 14 located events in Figure 4 within them. Cross correlations were run to determine quantitatively how well the events were grouped by eye. SAC does not produce a normalized cross-correlation function automatically. To normalize, autocorrelations of each event were first run to determine the energy level at zero offset. These values were then used to compute a normalizing factor for the cross-correlation functions $\phi_{xy}(t)$ that the SAC software provided.

$$\phi_{xy}(t)_{\text{normalized}} = \frac{\phi_{xy}(t)}{\sqrt{\phi_{xx}(0)\phi_{yy}(0)}}$$

The first 8.0 sec of the events were used for calculation of the whole event correlation coefficient. For the P-phase correlations, only the first 0.5 sec were used. The beginning of a 1.0 sec window for the S-phase was selected by using the computed S-P interval from the HYPO71 locations minus 0.1 sec (Table 5). The windowed waveforms can be seen in Figures 5-16.

In a study by Ake and Sanford [1988] of earthquakes observed in a swarm located approximately 25 km to the west, the correlation coefficients of full waveforms as well as P and S phases were found to be consistently high (avg. 0.81). In another study by Ake [1984] of a group of events directly under Socorro Mountain (a 3 km relief upthrust horst block), he discerned a high correlation among the P-phases and markedly lower correlations for the S-phases.

For the Loma de las Canas swarm, I found generally that the correlation coefficients were low, only a few moderately good matches were found (Table 5). One unusual result was that some S-phases have higher coefficients than their corresponding P-phases. The unexpectedly low values for the whole event coefficients prompted the use of a second correlation program. This program using computational subroutines developed by Dr. John Knapp at NMT confirmed the results of the SAC software. This program is listed in Appendix C.

Table 5. Cross Correlation Coefficients for Group Earthquakes

Group Event		P-phase interval	S-phase interval	8.0 sec interval	Magnitude (duration)	
G	0407	1.0	1.0	1.0	0.18	
	0011	.85	.50	.65	-0.42	
	0932	.74	.65	.70	-0.29	
	1628	.63	.50	.50	0.64	
K	1906	1.0	1.0	1.0	-0.28	
	1615	.45	.35	.25	0.28	
	1806	.67	.40	.30	-0.31	
	0358	.62	.65	.50	-0.49	
1	0128	1.0	1.0	1.0	-0.11	
	1612	.56	.50	.65	0.49	
200	1148	.57	.75	.80	-0.45	
1	0589	1.0	1.0	1.0	0.11	
26.15.6	1810	.68	.75	.65	-0.12	

Note: The first event in each group is the master the others are correlated against. The magnitude is calculated by HYPO71(Rev).

Ground Amplitude Spectra

A Fast Fourier transform was used to determine ground velocity amplitude spectra for the grouped events. Spectra were calculated for the whole event (8.0 sec), the P-phase (0.5 sec) and the S-phase (1.0 sec). Figures 5-16 presents results for each group. The whole event spectra do not display any special characteristics by group. For the whole event, most of the energy lies between 10 and 17 Hz with a sharp drop between 18 and 20 Hz. This is followed on most events by a minor energy peak centered between 20 and 25 Hz. The P-phase has a distribution similar to the whole event and has no group correlating characteristics. The main energy is more concentrated around 15 Hz than for the whole waveform. Also minor peaks can be seen on some events at 8-9 Hz, 20-25 Hz and 30-33 Hz. The S-phase has the most diversity of character between events but again nothing to distinguish the different correlated groups. A common characteristic of the S-phase is a sharp drop in energy just below 20 Hz.

Figure 5. Ground velocity amplitude spectra and waveforms of the first 8.0 sec of the events in group G.

Figure 6. Ground velocity amplitude spectra and waveforms of the first 8.0 sec of the events in group K.

Figure 7. Ground velocity amplitude spectra and waveforms of the first 8.0 sec of the events in group J.

Figure 8. Ground velocity amplitude spectra and waveforms of the first 8.0 sec of the events in group 1.

Figure 9. Ground velocity amplitude spectra and waveforms of the P-phase of events in group G. Duration is 0.5 sec.

Figure 10. Ground velocity amplitude spectra and waveforms of the P-phase of events in group K. Duration is 0.5 sec.

Figure 11. Ground velocity amplitude spectra and waveforms of the P-phase of events in group J. Duration is 0.5 sec.

Figure 12. Ground velocity amplitude spectra and waveforms of the P-phase of events in group I. Duration is 0.5 sec.

Figure 13. Ground velocity amplitude spectra and waveforms of the S-phase of events in group G. Starting time is 0.1 sec before S-phase arrival and duration is 1.0 sec.

Figure 14. Ground velocity amplitude spectra and waveforms of the S-phase of events in group K. Starting time is 0.1 sec before S-phase arrival and duration is 1.0 sec.

Figure 15. Ground velocity amplitude spectra and waveforms of the S-phase of events in group

J. Starting time is 0.1 see before S-phase arrival and duration is 1.0 sec.

Figure 16. Ground velocity amplitude spectra and waveforms of the S-phase of events in group

1. Starting time is 0.1 sec before S-phase arrival and duration is 1.0 sec.

Fault Plane Solutions

First Motions

To correct for instrumental polarity reversals, each station was inspected for the sense of first motion of either an explosion or the teleseismic event that arrived on 5/30/86 at 07:11; both of which should have produced an up first motion. Only unequivocally distinct first motions were classified as dilatational or compressional. Emergent first motions were noted in an effort to identify nodal planes. The resulting compilation of first motions is given in Table 6. The first motions for the 14 events located with portable station data and the single large event were also plotted on the upper focal sphere using an Equal Area Net stereographic projection and appear in Appendix B.

Compositing

Even though event (1259) was not recorded by any portable stations, I felt that because it was significantly larger than any other event in the swarm, its first motion data (Figure B-15) should be included in the compositing. Of immediate notice on Table 6 is that all the far stations, CAR to LPM, have the same direction of first motion except for SB. The near portable stations (LC1,LC2,LC3,LC5) were either all dilatational or LC1 was dilatational and the rest of the portable stations compressional. This inconsistancy of the near stations and SB led to the hypothesis that there was a small band of slip directions as opposed to a single direction. With this in mind, all events were composited on a single Equal Area Net stereographic projection (Figure 17).

Figure 17. Composite first motion diagram for located events. Circles are dilatational arrivals, solid dots are compressional arrivals and X are emergent arrivals. The solid lines are the end members of the possible fault planes and the dashed lines are the range of auxiliary planes.

Table 6. First Motions

Events	Stations													
Lventa	LCI	LC2	LC3	LC5	CAR	SMC	BAR	LEM	WTX	LAZ	MAG	LJY	SB	LPM
0011					0	-		0		***	1			
0128					0			0	0	0	-			
0407	0				0	-		0	0	0	0			
0559	0			0	0			0	0	0				
0641	-			0	0			0	0	0			*	
1810		-	-	0	0					0				
1612	0				0			0		0	0	-	0	
1615	0			0										
1807				0				0		0	0			
0858		0		0	0				-			-		
0982	0		35		0			0				95 8		
1143					0			0				*		
1628					0			0	0	-				
1906		0	-	0	0	1.		-						
1259‡	10.5	15	1.		1:			0	0	0	0	0		

*(emergent arrival) "(no data) O(dilatational) *(compressional)

Fault Plane Solutions

Solutions were sought by picking two auxiliary planes that enclosed the stations with inconsistant first motions. By drawing the fault plane through the poles of these auxiliary planes, a range of solutions for the individual events was created. The common fault planes with their range of auxiliary planes were tested against the 15 individual first motion diagrams in Appendix B.

The strike found for the common fault plane ranged from N04 °E to N08 °W and the dip ranged from 60 °E to 80 °E. The strikes for the auxiliary plane ranged between N80 °W and S75 °W and the dip ranged between 16 °S and 30 °N. The assumed fault planes gave solutions with a left lateral strike-slip motion. A roughly N-S trend to the structural grain of the rift as seen in Figure 18 and the spatial location of epicenters in Figure 4 reinforces the selection of the fault plane made here.

Discussion/Conclusion

The development of station delays (corrections) customized for event locations centered at 34.05 °N and 106.82 °W gave some results worth discussing. The difference between the customized station delays and those refined from a number of years of locating microearthquakes inside the

^{\$} Main Event

Figure 18. Geologic map for the swarm area. Solid triangles are stations.

boundaries of the network are shown in Figure 19. Note that stations located generally to the SW had relatively early arrivals, up to 0.17 sec for SMC and 0.14 for SB. Similarly, stations to the NW had relatively late arrivals, for example station LPM is 0.2 sec slower than "normal".

Comparing the portable stations, which are all within 7.0 km of each other and roughly at the same elevation but each on different geologic units, station LC2 has earlier arrivals (0.26 - 0.21 sec) than LC1 and LC3 which are only 0.05 sec different (Figure 18). LC1 and LC3 are lined up roughly NS and 3 km further west into the rift. A fault dipping to the west can be seen just to the west of LC2. LC2 is enough closer to the edge of the rift to be underlain by higher velocity material.

I attribute the generally low correlation coefficients of the whole waveforms, and the P and S phases to complex crustal structure at depth in combination with small changes in focal mechanism. A complex crustal situation will produce multiple travel paths for earthquake energy to a given point on the surface. For small source events, the differences in observed spectra at a specific station are wholly dependent on the travel path. Each of the multiple travel paths will have a characteristic spectra. At the surface, the waves from the various paths add together to form the signal recorded by the seismometer. When the direction of fault motion changes, the directions of maximum energy emission (the energy lobes) will shift. This shift of the energy lobes will put greater and less energy into the various paths. For events in the same location, travel times for the paths will not change, so their phases will add together in the same way at the surface. However, the signals in the various paths will have different relative strengths. Paths will gain or lose effect on the final signal characteristics depending on the orientation of the energy lobes at the source. A small change in spatial location under a very complex crustal situation could also produce large changes in signal characteristics without change in the focal mechanism. However, the changes in direction of first motion of the near stations indicates some changes in focal mechanism during the swarm. This implies a dynamically shifting stress field at least during the time of the swarm.

The attenuation of high frequencies for events of this small magnitude also indicates a complex path. The cause could be a series of closely spaced discontinuities such as faults and/or intruded sills near the source region or directly under the recording station LC5.

Figure 19. Time differences between standard station delays and those developed for the swarm area are shown next to their respective station.

References

- Ake, J.P., (1984). An analysis of the May and July, 1983 Socorro Mountain microearthquake swarms, Geophysics Open-File Rept. 49, New Mexico, M.S. Independent Study, New Mexico Institute of Mining and Technology, Socorro, New Mexico, 107 pp.
- Ake, J.P., and A.R. Sanford, (1988). New evidence for the existence and internal structure of a thin layer of magma at midcrustal depths near Socorro, New Mexico, Bulletin of the Seismological Society of America, vol. 78, no. 3, pp. 1335-1359, June.
- Lee, W.H.K., and J.C. Lahr, (1975). HYPO71(Revised): A computer program for determing hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geological Survey , Open-File Report 75-311, Menlo Park, California
- Riecker, R.E. (ED), (1979). Rio Grande Rift: Tectonics and Magmatism, AGU, Washington D.C.
- Sanford, A.R., K.H. Olsen, and L.H. Jaksha, (1979). Seismicity of the Rio Grande rift, in Rio Grande Rift: Tectonics and Magmatism, edited by R.E. Riecker, pp. 145-168, AGU, Washington D.C.

Appendix A

This appendix contains the HYPO71(Rev) hypocenter solution sheets for the 15 events of the Loma de las Cañas swarm used in this study.

```
****** PROCRAM: HYPO71 REVISED (11/25/73) ******
                                                                       0.0500
0.0500
                                                                                        TEST(5)
5.0000
6.0000
                                                                                                        TEST(6) TEST(7)
4.0000 -0.8700
4.0000 -3.6300
                                                                                                                                       TEST(8)
2.0000
2.7900
                                                                                                                                                          TEST(9) TEST(10) TEST(11)
0.0035 100.0000 3.0000
0.0000 100.0000 8.0000
STANDARD RESET TO
             SARRH RCXGYMHHIZZSS
      VELOCITY DEPTH
ZTR XNEAR XF AR POS
7. 20. 25 0.1.7320508
```

big	AND TIME OF	RUN 2/28/8	9 10:15 J	36							
RESET TO VELOCITY			TEST(3) TE 2.0000 0.	51(4) TEST(T(3) TEST()	3 18818	183 TEST(113	TEST 51862 TE	814939
CR 1			PIH ON 34 -00* 9 0.2 -51 12 0.1		CF DLAT DLO 2-00 10-87 10-9 2-00 -2-30 -2-8 2-00 -2-30 -2-8 2-00 -2-17 -2-8 2-00 -3-18 -0-1		PARTIAL F- OLAT DLON 9-57125-35 9-57125-35 0-27-1-00 0-19 0-19	0.00 0.00 -1.00	STANDARD ERR DLAT DLON 0-86 0-94 0-40 0-39 0-41 0-40	ORS ADJUSTM 0.00 10.87 1 0.00 0.00 1 0.00 0.00	TAKEN DLON DZ 10-50 0-00 -2-80 2-51 0-00 0-00 0-00 0-00
	ORI 61N 1259 49.22	LAT N LO		TH HAG NO			8 198 4.31	IN NR 0	" 80.0 60.		AYER 5853 1
CATA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P 0 1237	1-70 2-43 1-70 2-63 1-70 2-63 1-70 2-63 1-70 4-03 1-70 5-88 1-70 5-88 1-70 6-78 1-70 6-78 1-70 6-78	2.69 -0.05 3.90 0.04 4.04 -0.06 6.16 0.86 6.15 -0.06	0014 1115 000	0 0.00	K XMAG RMK	200 2.8	G SRMK S-SEC	13093 3-463	5-41 01
CALLAND ANGLE	3 48 105 3 48 105 3 7 105 3 7 105 3 7 105 3 7 105	P 0 1233	5.50 5.28 6.00 6.78 5.50 6.28 6.30 7.08 8.40 7.18	6.16 0.86 6.16 -0.02 7.16 -0.02 8.82 -0.10	-0.02 1.15 0 -0.01 1.14 0 -0.07 1.10 3	0 0.00	0	157 3:5	5 3 76.30	27.05 -0.14	0.20
	415 51 NG S	TATION DELT	AZIM E 1 206.4 2 37.3 2 330.8 4 168.6	X-GAP RO-GA 76.1 32: 82.6 32: 16.5 6: 76.1 31:							
t	AT LO		AVRPS	RMS		DRMS					
- 1	4 48.3		0.02	9:13	0.02	,	0.01				
1.			-0.03	8:11		0.00					
1.					0.01	0.00					
	11:3		-0.02 -0.02 -0.04	0.12 0.11 0.11	(0.31	,	(0.00)				

DATE AND TIME OF RUN 2/28/89 10:15 J86

RESET TO	1EST (1	10.0000	7EST(3)	1EST(4) TES	1(5) TEST(6)	-3.6300 Z	EST(8) TEST(9) TEST(10) T	EST(11) TES	T(12) TEST(13)	11
VELOCITY 5.850	DEPTH 0000	ZTR XNEA	R XFAR PO	S 10 20508 3	KHS KFH IPUN		1 1011				
1 0R 1G 1 26.26 2 25.67 3 25.47 3 25.47	14 T N 14- 1-96 14- 1-04 14- 0-70 14- 0-70	LONG W 106-47.25 106-48.92 106-49.14 106-49.14	DEPTH DM 7-00 0 11-81 2 12-27 3 12-27 3	RMS AVRPS SK 0.32 0.00 C0 0.08 -0.10 A1 0.06 0.00 A3 0.06 0.00 A2	D CF DLAT B 2-00 -1-69 D 0-50 -0-64 D 0-50 -0-07	DLON DZ 2-57 4-81 0-34 0-46 0-00 0-05 0-03 0-08	PARTIAL F-V DLAT DLON 22-29 44-84 2-77 0-75 -1-00 -1-00 0.03 0.01	98.21 0.36 1.16 0.38 0.02 0.00 0.04 0.39	ARD ERR CRS DLON DZ 0.38 0.49 0.39 0.42 0.00 0.32 0.39 0.42	DLAT DLON	4.81 0.46 0.00
85 04 30 01	ORI GIN	34- 0.70	LONG W	DEPTH -MAG 12.27 -0.42	NO DH GAP H 0	RMS ERH ER	Z e Sep ADJ	IN NR AVR 10 14 0.00 0	AAR NH AVXH	SDXH NF AVFH 0.0 4 -0.4	SDF4 I
STN DIST LC5 0-1 LC2 0-1 CAR 010-2 LEM 0-22-2 BAR - 037-2	A ZM AIN 1 32 177 7 3 51 168 2 55 163 2 1 300 149 3 51 118 5 27 108	P 3 81	1 32.10 6.	03 0.75 -0.0	6 -0:06 1:22	AHX PRX CAL 0 0 0-00 0 0 0-00 0 0 0-00 0 0 0-00 0 0 0-00 0 0 0-00	X K XMAG RMK	FMP FMAG SRM 4 4 5 3 2 2 8 15-0.5 5 12-0.6 S	K 5-SEC TSO: -87-20-60-2 -60 3-13- -70 3-23 -330-10 7- -433-00 7- 434-00 8-	BS S-RES S-WT 4.24 0.00 0.42**0.00 0.05 0.87 63 -0.09 0.44 53 -0.69 0.00 53 -3.05 0.00	
LAT	115 SING S	Service and the president work	Z AVRP	ALTO THE RESIDENCE OF THE PARTY	GAP 2.0	DRMS					
0 - 86 0 - 86 0 - 86 0 - 86	49.3 48.9 49.3 48.9	3 11:	97 0.0		0.0	AND THE RESERVE OF THE PARTY OF	0.01				
0.70	49.1	4 12.		7 0.06		0.01	01)				
0.53 0.53 0.53	49.3 48.9 49.3 48.9	3 11: 3 12:	97 97 57 -0.0 57 -0.0	0.10 0.08 7 0.06 5 0.07	0.0	0.00)	0.03				

DATE AND TIME OF RUN 2/28/89 10:15 J3G

RESET TO VELOCITY				\$1(4) TEST (5		-3.6360°		769) TEST	10) TEST(11)	TEST(12) T	EST(13)28
5.850	0.000 ZTR	XNEAR XFAR 20. 250.	1.73205	08 10 KMS					CTANDARD EDG	005 AD HIST	MENTS TAKEN
1 0RIG L 1 29.62 34 2 29.34 34 3 28.99 34 4 28.99 34 4 23.99 34	AT N LON - 1-96 106- - 1-14 106- - 1-14 106-	G W DEPTH 47.25 7.00 48.61 10.53	DM RM 0 0.4	S AVRPS SKD 7 0.00 COA 0 -0.09 B0A 6 0.00 B1A 5 0.00 B2A	CF OLAT 2-00 -1.52 2-00 0.00 0.50 0.00 0.50 0.00 0.50 0.00	DLON 2.09 7 0.00 0 0.50 0	PARTIAL DZ DLAT DL .05 14.13 35. .26 -1.00 1. .00 -1.00 -1. .34 -1.00 -1.	ON DZ 05 83.97 79 11.68 69 0.35 00 0.29 02 0.22	STANDARD ERR DLAT DLON 0.40 0.35 0.00 0.00 0.00 0.39 0.00 0.40 0.46 0.41	0RS ADJUST 0.77 -1.52 0.66 0.00 0.00 0.00 0.63 0.00 0.70 0.00	DLON 3.53
4 28.99 34	- 1:14 106-	48.94 12.79 48.94 12.79 48.94 12.79	2 0.1	6 0-00 B1A 5 0-00 B3A 5 0-00 B2A	2.00 0.03	0.05 0	34 -1.00 -1.	0.29	0:46 0:41	0.70 0.00	0.50 0.00
DATE 08	1 GIN LAT	N LONG	94 DEP	TH HAG NO	DM GAP M 6	RMS ERH 15 0.6	ERZ 9 590 A	J IN NR 50 10 24 0	AVR AAR NE	AVXH SOXH N	F AVEH SOFM I
STN DIST	AZM AIN PRM 174 175 P 338 171 P	K HRYN P-SE	TPOBS *******	7PCAL DLY/H1 2-20 0-00-2 2-21 -0-10	P-RES P-WT 7-94 0.00 0.40 0.55	AHX PRX	CALX K XMAG R	K FMP FMA		TSOBS S-RE 44-28-25 0 21 0.55**0	.00
LC1 0 4.3 CAR 010.5	2 18 161 P	0 128 30.8 0 128 31.1 0 128 31.7	2:11	2.25 -0.36 - 2.31 -0.15 - 2.83 0.00 -	0.08 1.51	0 0	0.00 0	26 0.3	2 32 - 70 3 - 70	71 0-44 0 81 0-07 0 4-71 -0-1	:47
LC5 1.2 LC2 4.3 CAR 010.5 VIX D21.9 BAR 4.22.0 SMC 4.35.6	135 141 P 296 134 P 318 120 P 52 120 P	0 128 32.0 0 128 33.4 0 128 33.6 1 128 35.5	1 81 2 71 3 01 4 61 6 51 7 51	2.25 -0.36 - 2.31 -0.15 - 2.83 -0.03 - 3.17 -0.03 - 4.36 -0.06 - 6.63 -0.06 - 7.44 -0.02	0.13 1.51 0.04 1.52 0.07 1.51 0.17 1.06	0 0	.00 0	26 0.3 13-0.5 19-0.1 24 0.2 14-0.4	S 2 34.20 S 2 36.50 S 3 37.00	7.51 -0.0 8.01 -0.0 8.81 -1.4	9 0.00 2 0.71 6 0.76 9 0.37
HAG 41.6 LAZ 051.9	27 100 P 293 107 P 325 104 P	1288 331-10 1288 331-4 0 1288 335-4 0 1288 335-5 1288 335-5 1288 335-5 1288 335-5 1288 335-5 1288 335-5	0 6.51 7.51 9.61	6.63 -0.06 - 7.44 -0.02 9.14 0.09	0.07 1.42 0.09 1.04 0.38 0.00	0 0	0.00 0	17-0.2 19-0.1 18-0.1	332 - 833 - 700 332 - 833 - 700 532 - 833 - 700 533 - 803 - 700 534 - 700 535 - 700 535 - 700 536 - 700 537 - 700	11.61 0.2 12.21 -0.6 15.41 -0.5	9 0.37 7 0.00 2 0.69 4 0.00 8 0.00
LAT	LON		AVRPS	RMS		DR					
1:30 1:30 1:30 1:30	49.13 48.74 49.13 48.74	12.49 12.49 13.09 13.09	0.06 0.04 -0.02 -0.03	0-16 0-16 0-16	0.01	0.01)	0.00				
							(0.0)			
1.14	48.94	12.27	0.06	0.15 0.15 0.16		0.0	0.00)				
					0-01		0.007				
0.98 0.98 0.98 0.98	49.13 48.74 49.13 48.74	12.49 13.09 13.09	0.03	0.16 0.16 0.16 0.16		0.01)	0.01				
0.70	*****	13.04	-0.05	0.10			(0.0				

3 DATE AND TIME OF RUN 2/28/89 10:15 J3G

RESET		TEST(1)	10.0000	TEST(3 2.0000	0.0500	6.000	0 4.0	0000 -	E ST (7 3.6300	2.7	900 0.0	T(9) TEST		EST(11) 8.0000	TEST 0.5	4/30 12) TES	T(13)	7
AETOCI	TY	0.000	ZTR XNEAR	250. 1.	7320508	10 KH	S KFH	IPUN I	1 1	IR IP	1011							
1 09	16 1 39 54 19 34 19 34 20 34	4- 1-96 1	LONG W 06-47.25 06-48.96 06-48.96 06-49.09	DEPTH D 7.00 10.59 9.98 9.73 9.73	0 0.38 0. 1 0.11 -0. 1 0.09 -0.	00 COA 00 COA 00 AOA 01 A1A 00 A3A	CF 2-00 0-50 0-50	0.00	0.00 - 0.21 - 0.00 -	3.59 -	PARTIAL DLAT DLO 0.06 99.100 0.64 1.00 0.12 -1.00 0.04 0.10 0.04 0.10 0.04 0.10 0.10	06 0.55	DLAT 0.00 0.21 0.17 0.19	ARD ERR DL ON 0-26 0-00 0-20 0-00 0-19	ORS A 0.43 0.34 0.34 0.32	0.00 0.00 0.16	11.04	3.59 0.61 0.25 0.00
DATE	OF	RICIN 7 44-20 3	LAT N 4- 1.87 1	LONG W	DEPTH 9.73	MAG NO 0.18 22	DH GAP	M RM	5 ERH	ERZ 0.3	SOD A	07 IN NR 37 10 24	0.00 C	AAR NH	AVXH S	DXH NF 0.0 13	AVFH S	SDF# I
SCHOOL REAL PROPERTY AND LINE	01ST 0.7 2.6 3.0 5.3 11.7 12.6 20.7	AZM AIN 3 14 176	PRMK HRMY P 4 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 0 4 7 P 1 4 7 P 1 4 7	P-SEC T 45-70 45-90 46-90 48-60 50-50 51-20 51-40	POBS TPCAL 1.50 1.6 1.60 1.7 1.40 1.7 1.40 1.7 1.50 2.6 2.70 2.7 4.00 3.9 4.00 3.9 4.00 5.9 4.00 6.3 6.30 6.3 7.20 7.1 9.00 8.8	DLY/H1 -0-10 -0-36	P-RES		PRO000000000000000000000000000000000000	X0000000000000000000000000000000000000	XMAG R		AG SRS		75085 60-470 3-50 3-50 10-60 10-80	S-RES -0.02 58 0.21 0.47 0.05 -0.02 -0.38 -0.02	0.39	
	LAT	LON		Z AV	RPS	RMS			D	RMS								
	-03	49.29 48.90 49.29 48.90	10.5	33 -0	-01	0.10 0.10		(0.	.03)		0.02	2)						
	1.87	49.09			.05 .05	0.08			0.	0.00	,							
	:71 :71	49.29 48.90 49.29 48.90	10.0	3 -0	-02	0.09		0.01	.01)		0.01	0)						

DATE AND TIME OF RUN 2/28/89 10:15 JBG

	TEST(2) TEST(3) T	EST(4) TEST(5)	TEST(6) -3.6300 Z.	51(8) TEST(9) I	EST(10) TEST(11)	TEST(12) TEST(13)
VELOCITY DEPTH ZT	7. 20. 250. 1.7320	508 10 KMS	KFH IPUN IMAG IR I	PRN CODE 1 1011		
1 52.88 34- 1.96 106 2 52.68 34- 1.96 106 3 52.58 34- 1.70 106	-48.85 10.63 1 0.	MS AVRPS SKD 23 38 0.00 COA 2. 12 -0.08 AOA 2. 10 -0.01 A1A 0. 09 0.00 A3A 0. 09 0.00 A2A 2.	ADJUSTMENTS (KM) DLAT DLON DZ 00 0.00 2.46 3.63 00 -0.49 0.00 0.00 0.50 0.00 0.24 -0.35 0.50 -0.14 0.00 0.00 0.00 -0.12 0.05 -0.10	PARTIAL F-VALU DLAT DLON 1-13 62-81 51- 3-41 0-42 -1- 0-14 1-16 0- 0-42 -1-00 -1- 0-24 0-05 0-	DZ DLAT DLON	DRS ADJUSTMENTS TAKEN DZ DLAT DLON DZ DLAT DLON DZ DC
95 04 30 539 52 61 34-	T N LONG W DE	PTH MAG NO DE	GAP M RMS ERH ERZ	0 500 ADJ IN A A!A 0.43 10	NR AVR AAR NM /	AVXM SDXM NF AVFM SDFM 1
LEST WILD SEE 174 P		TPCAL DLY/H1 P-	RES P-WT AMX PRX CALX 08 1.58 0 0 0.00 06 0.00 0 0 0.00 08 1.58 0 0 0.00	K XMAG RMK FHP	FMAG SRMK S-SEC	TSORS S-RES S-WT DT
HAG -41-1 291 104 P	0 539 58.90 6.29	1.82 -0.36 -0. 1.96 -0.15 -0. 2.61 -0.03 -0. 4.00 -0.4 -0. 4.07 -0.32 -0. 5.98 -0.06 -0. 6.36 -0.06 -0. 6.36 -0.06 -0. 8.90 -0.09 -0.	03 1.13 0 0 0.00	0 18	-0.3 S 2 59.60 -0.3 S 3 60.50 -0.1 S 4 63.20 0.0 S 3 63.20	6.99 -0.02 0.79 7.89 0.28 0.29 10.59 0.33 0.00 10.69 -0.03 0.74 12.59 0.08 0.36 15.79 0.22 0.31
LAT LON	Z AVRPS	RHS	DRMS			
1.86 49.20 1.86 48.81 1.86 49.20 1.36 48.81	9.97 9.97 10.57 10.57 -0.02	0-10 0-10 0-11 0-11	0.01	0.01		
1.70 49.00 1.70 49.00	9.75 0.06 10.79 -0.05	0:09 0:10	0.00			
1.54 49.20 1.54 48.61 1.54 49.20 1.54 48.81	9.97 9.97 10.57 10.57 10.57	0.09 0.10 0.10	0.00	0.01		

DATE AND TIME OF RUN 2/28/89 10:15 J8G

RESET TO	TEST(1) TES	ST(2) TEST	(3) TES	T(4) TEST (5) TEST(6)	TEST (7) TEST	(8) TEST(23 TEST(1 03 100.00	0) TEST(11	TEST(12)	TEST(13)
		XNEAR XFAR			S KEM IPUN	IMAG		CODE				••••
1 0R IG L4 1 49.02 34- 2 48.68 34- 3 48.64 34- 3 48.64 34-	1.96 106-4 1.59 106-4 1.59 106-4 1.59 106-4	7.25 7.00 8.78 11.02 8.97 10.62 3.97 10.62	DM RMS 0 0.35 1 0.09 1 0.09	AVRPS SKD 0-00 COA 0-03 A1A 0-00 A3A 0-00 A2A	CF DLAT 2.00 -0.68 0.50 0.00 0.50 -0.09 2.00 -0.09	STMENTS DL ON 2.36 0.29 -	(KM) PA DZ DL 4.02 9. 0.40 0. 0.00 0.	RTIAL F- AT DLON 26113.51 .05 1.16 .11 -1.00 .08 0.00	VALUES S 0Z D 143.16 0 1.39 0 -1.00 0	TANDARD ER LAT DLON -22 0-22 -00 0-27 -26 0-00 -31 0-30	0.34 -0.68 0.34 -0.68 0.34 0.00 0.38 0.00	THENTS TAKEN DLON DZ 2.36 4-02 0.29 -0-40 0.00 0.00 0.00 0.00
3ATE ORIG 850430 641	GIN LAT 1	N LONG W	97 DEPT	H -0.27 15	DH GAP H 0	RMS ERH	ERZ 9	590 A0J	IN NR A	VR 0.07 0	AVXH SDXM 0.0 0.0	NF AVEM SDEM 1
CAR 013-0 2 CAR 011-0 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ZM AIN PRMK Z6 174 P 3 75 169 P 4 250 165 P 0 11 155 P 0 17 117 P 1 54 116 P 0 17 117 P 1 54 116 P 0 124 108 P 1 24 102 P 1	HRNN P-SEC 641 50-30 641 50-40 641 51-50 641 52-70 641 52-70 641 52-70 641 53-10 641 53-10 641 57-80	TPOBS 1 ****** 1.66 ***** 1.76 2.66 2.66 4.06 4.46 5.96 6.36 9.16	PCAL DLY/H1 1.83 -0.10- 1.88 -0.36 2.00 -0.15 2.63 -0.03 4.06 -0.04 4.11 -0.32 5.97 -0.06 8.94 -0.09	P-RES P-WI -0.07 0.37 43.09 1.50 -0.10 1.50 -0.03 1.50 -0.04 1.12 -0.04 1.04 0.03 1.49 0.04 1.04	0 0 0	CALX 6000000000000000000000000000000000000	XMAG RMK	15-0-3 12-0-6 25-0-3* 13-0-5 20-0-0 211-0-7	\$ 2 51.76 \$ 2 51.76 \$ 3 56.3	06 - 0 - 07 0 2 - 86 0 - 0 - 0	02 0.37
1.75	LON 49-17	10.32	AVRPS 0.04	RMS 0-09	0.0		RMS					
1 - 75 1 - 75 1 - 75 1 - 75	48-78 49-17 48-78	10.32	0.04 -0.03 -0.03	0-09 0-09 0-10 0-10	(0.01)	,	(0.01)				
1.59	48.97 48.97	10.10	0.06	0-07		-0.	0200000					
1:43	49-17 48-78 49-17 48-76	10.32	0.03 0.02 -0.04 -0.04	0.08 0.07 0.09 0.09	-0-0			(0.00)				

DATE AND THE OF RUN 2/23/89 10:15 JB

DATE AND TIME OF NON 2/23/89 10:15 350	6) TEST(7) TEST(8) TEST(9) TEST(10) TEST(11) TEST(12) TEST(13) 0 -3.6300 2.7900 0.0000 100.0000 8.0000 0.5000 0.3000
AD	UN IMAG IR IPRN CODE JUSTMENTS (KM) PARTIAL E-VALUES STANDARD ERRORS ADJUSTMENTS TAKEN
1 0R16 LAT N LONG 2 DEPTH OM RMS AVRPS SKO CF OL 25.95 34- 1.96 106-47.25 7.00 0 0.48 0.00 COA 2.00 0. 25.52 34- 1.96 106-49.34 11.29 3 0.16 -0.12 B18 0.50 -0. 3 25.38 34- 1.71 106-49.67 11.29 4 0.15 0.00 B3B 2.00 -0.	JUSTHENTS (KM) PARTIAL F-VALUES STANDARD ERRORS ADJUSTMENTS TAKEN DZ DLAT DLON DZ DLON DZ DLAT DLON DZ DLON D
3 23:38 34- 1:71 108-49:87 11:29 4 8:13 8:00 828 2:00 -8:	41 6:11 6:66 6:46 6:03 6:45 6:65 6:59 6:89 6:66 6:66 6:66
SATE ORIGIN LAT N LONG W DEPTH MAG NO DH GAP M	
STN DIST AZM AIN PRMX 1849 P-SEC TPOBS TPCAL DLY/HI P-RES P- LCS 2.6 151 167 P 4 1510 2.95 ****** 1.98 0.00-24.41 0. LC2 3.9 86 161 P 0 1510 26.90 1.52 2.04 -0.36 -0.16 2. LC1 0 4.7 159 157 P 1 1510 26.70 2.02 2.09 -0.15 0.08 1. CAR 012.1 134 153 P 2 1510 28.10 2.72 2.82 0.00 -0.10 1.	WT AMX PRX CALX K XHAG RMK FHP FMAG SRMK S-SEC ISOBS S-RES S-WT DT
CAR 012:1 134 153 P 2 1310 27:40 2:02 2:09 -0.15 0:08 1. CAR 012:1 134 153 P 2 1310 28:10 2:72 2:32 0:00 -0.10 1. LEM 20:3 3 18 119 P 3 1310 29:60 4:22 3:98 0:04 0:21 0: BAR 422:3 56 117 P 1 1310 30:00 4:62 4:28 0:32 0:02 1. LAZ 050:4 525 103 P 2 1310 34:10 8:72 8:83 0:09 -0.20 0.	08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LAZ 050:4 325 103 P 1 1310 31:90 6:52 6:49 -0:06 0:09 1:	등 TO HEAD NEW TO BE THE THE TO THE TO THE TOTAL STATE OF THE TOTAL ST
LAT LON Z AVRPS RMS	DRNS
1 87 49 48 10 39 0 06 0 16	(0.01) (0.00)
1.71 49.67 10.77 0.07 0.16 1.71 49.67 11.81 -0.07 0.15	0-01
1 55 49 48 10-29 0-04 0-15	-00
1:55 49:48 11:59 -0:04 0:14	(-0.01)

DATE AND TIME OF RUN 2/23/89 10:15 J80

			7 TEST(10) TEST(11) TEST(12) TEST(13) TEST(13)
I ORIG LATING LONG W. DEPTH DX		PUN IMAG JR IPRN CODE PUSTHENTS (KM) PARTIAL F-V	ALUES STANDARD ERRORS ADJUSTMENTS TAKEY
I ORIG LAT N LONG W DEPTH DN 0 0 1 18.88 34-1.96 106-47.25 7.00 0 0 0 18.70 34-1.96 106-48.41 10.14 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		AT DLON DZ DLAT DLON DZ	
SIN DIST AZH ALN PRHE HRYY P-SEC TPOR	5 TPCAL DLY/H1 P-RES P-	O.13 6.4 6.5 A APA 3.62	IN NR 0.4VR 0.4AR NM AVXM SDXM NF AVFM SDFM I FMP FMAG SRMK S-SEC TSDBS S-RES 5-4T DT 31 0.5 5 2 21.10 2.45 0.01 0.84 31 0.5 4 265-1.90 3.25 0.02 0.84
CAR 11.1 143 1420 P 0 1612 20.40 1.7 WIX 13.5 289 127 P 1 1612 21.40 2.7 BAR 20.5 14 1160 P 0 1612 23.00 4.5	1.80 0.00-17.10 0. 2.01 -0.15 -0.12 1. 5 2.57 0.00 0.07 1. 5 2.89 -0.03 -0.12 1. 3.91 0.32 0.12 1.		E 4 4 4E-14 00-17 17 0 00
LC2 2.8 194 165 P 4 1612 13.35****** LC3 2.8 194 165 P 4 1612 20.40 1.76 LC4 2.8 194 165 P 0 1612 20.40 2.77 LC4 2.8 194 165 P 0 1612 20.40 2.77 BAR 20.5 284 1164 P 0 1612 22.40 4.10 LS4 21.5 21.5 1064 P 0 1612 22.5 30 6.11 LS4 3 21.5 1064 P 0 1612 22.5 30 6.11 LS4 3 21.5 1064 P 0 1612 22.5 30 6.11 LS4 3 2.7 1064 P 0 1612 22.5 30 6.13 LS4 3 2.7 1064 P 1 1612 25.70 7.30 LS4 3 2.7 1064 P 1 1612 25.70 7.30 LS4 3 2.7 1064 P 1 1612 25.70 7.30 LS4 3 2.7 1064 P 1 1612 25.70 7.30	5 4.94 0.32 0.12 1. 5 4.04 0.04 0.07 1. 5 6.12 -0.06 -0.02 1. 6 18 0.36 0.11 0. 5 6.22 -0.06 0.19 1. 6 25 0.28 -0.08 0. 7 35 -0.02 0.02 1.	57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0.5 5 29-10 10-45 -0-22 0-72 24 0.5 5 3 29-40 10-75 -0-56**0-01
LAT LON Z AVRPS	RHS 0-14 0	DRMS	34 0.6 5 3 33.90 15.25 -0.35 0.24
2:12 48:22 2:84 0:03 2:12 48:22 10:44 -0:03	8:15	(0.02)	
1.96 48.41 9.52 0.05 1.96 48.41 10.56 -0.06	8:12	0-00-01)	
1.80 48.61 2.34 0.04 1.80 48.61 10.44 -0.03 1.80 48.22 10.44 -0.05	0:13 0:14 0:14	(0.01)	

DATE AND TIME OF RUN 2/23/89 10:15 J3G

RESET					T(4) TEST(5)	1681(6) -158		2) [EST(10) TEST(1	1) TEST(12) TEST(13) 15
VELOC	6.	3 .500 ZT	7. XNEAR XE	. 1.732050	8 10 K45	KEM IPUN IMAG	No. of Contract of Contract of Children		
1 22	R 16 14 -74 34 -74 34	- 1.90 106	NG W DEP	0 0.32	AVRPS SKD 0.00 COA 2 -0.04 AOA 2 0.00 AIA 0	ADJUSTMEN DLAT 0L0 00 0.00 2.5 00 0.00 0.0 50 -0.16 0.0 50 -0.03 0.0	TS (KM) PARTIAL F- 0Z DLAT DLON 1 1.61 0.61131.07 0 -0.47 0.32 -1.00 0 0.00 0.35 0.06 0 0.00 -1.00 0.09 5 0.05 0.02 0.05	VALUES STANDARD E 02 OLAT DLON 22.04 0.00 0.22 2.48 0.00 0.00 -1.00 0.17 0.00 -1.00 0.00 0.19 0.02 0.20 0.21	RRORS ADJUSTMENTS TAKEN DZ DLAT DLON DZ 0.34 0.00 2.51 1.61 0.30 0.00 0.00 -0.47 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00
. 2 21	: 74 34	- 1.88 106 - 1.88 106	-48.88 8. -48.88 8.	4 1 0:09	0-00 A1A 0 0-00 A3A 0 0-00 A2A 2	:00 -0:03 0:0	5 0.05 0.02 0.05	-1.00 0.00 0.19	0.33 0.00 0.00 0.00
35045		1 GIN LA	T N LONG	8.88 B.1	H MAG NO D	GAP M RHS	ERH ERZ 9 S9D ADJ	IN NR AVR AAR N	M AVXM SDXM NF AVFM SDFM [
LC3	0.9	4 ZM AIN PR 2 99 174 P 1 79 163 P	1 1615 29. 4 1615 3	75	PCAL DLY/H1 P 1.40 -0.10 -0 1.46 0.00-25	RES P-WT AMX	PRX CALX K XMAG RMK	18-0.1 S 3 30.	EC TS08S S-RES S-WT DT 10 2.36 0.11 0.42 3.04-25.57 0.00 80 2.06 0.15 0.81
CAR	11.5	1 79 163 P 91 1520 P 2 10 1469 P 1 40 125 P	0 1615 29	80 1.06 20 1.46 20 2.46	1.46 -0.36 -0 1.68 -0.15 -0 2.40 0.00 0	07 1.74 0	0 0.00 0	40 0.8* 5 4 31.	30 2.56 -0.09 0.86 30 2.56 -0.09 0.86 90 4.16 0.00 0.00
LCC2 LCCAR WEMR BARC SMS M	20.9	291 122- P 315 1110 P 55 11114 P 214 1044 P 200 103- P	1 1615 29 4 1615 29 0 1615 29 0 1615 30 0 1615 31 1 1615 31 1 1615 33 0 1615 33 0 1615 33 1 1615	30 1 06 20 1 46 20 2 46 40 2 66 70 3 96 90 4 16 60 5 86 00 6 26 90 7 16 60 8 86	1 22 0 17 -0	08 0.43 0 .08 1.72 0 .03 1.74 0 .03 1.23 0	0 0.00 0	20 0.0 30 0.5 32 0.6 21 0.1 22 0.1 22 0.1 29 0.5 24 0.2 27 0.4 38.	70 6.96 0.24 0.29 70 6.96 -0.31 0.21 00 10.26 0.07 0.81 30 10.56 -0.39**0.10
SHC SHC	33.8 34.4 35.4	28 1034 P	2 1615 34 0 1615 34	00 6.26	5.95 -0.06 -0. 6.04 0.28 -0. 6.21 -0.06 0	06 0.82 0	0 0.00 0	32 0.6 5 3 34. 21 0.1 5 2 38. 22 0.5 5 3 38. 29 0.2 5 3 38. 27 0.4 5 2 43.	00 10.26 0.07 0.81 30 10.56 -0.39**0.10 30 10.56 -0.09 0.40
HAG	50:3	3 24 1990 5	1 1613 36:	90 7:16 60 8:86	7-17 -0-02 -0:	83 1:13 8	8 8:88 8	24 0:2 27 0:4 S 2 43.	00 15.26 -0.15 0.73
	LAT	LON	2	AVRPS	RMS		DRMS		
	2.04	49.07	7:34	0.04	0.09	0.01	0.02		
	2.04	49.07	3:44	-0.03	8:18	(0.02	(0.02)		
	1.88	48.88	7.63	0.05	9-10				
	1.88	48.38	8.56	-0.05	0.10 0.09 0.10		(0-01)		
	1:71	49.07	7:34	0:03	0.10 0.10 0.10 0.10	0.01	0.02		
	1:71	49.07	3:44	-0:03	0.10	(0.01	(0.01)		

DATE AND TIME OF RUN 2/23/89 10:15 JBG

RESET TO	IEST(1)	TEST(3) I	SI(3) 158	T(4) TEST(5	, TEST (6)	TEST (7)	TEST(3) TES 2.7900 0.	T(9) [EST(10]	TEST(11) T	EST(12) TEST(13)	6
	DEPTH Z1	P. XNEAR XE	R 1.732050	8 19 KAS	KEH IPUN	IMAG I	R IPRN CODE				
I CRIG L 1 54.25 34 2 53.71 34 3 53.61 34 3 53.62 34	1 1 N 96 100 - 1 1 55 100 - 1 1 55 100	ONG 25 7: 6-48:58 11: 6-48:79 11: 6-48:79 11:	TH DY 245	AVRPS SKO 0.00 COA -0.09 A18 0.00 A38	CF DLAT 2-00 -0-76 0-50 0-00 0-50 0-00 2-50 0-00	0.03 -0 0.05 -0	DZ DLAT DL .63 4.65 30. .00 -1.00 1. .17 -1.00 -1. .19 0.00 0.	F-VALUES ST ON 02 DL 73 62.62 0. 04 0.20 0. 00 0.22 0.	NDARD ERROR 1 DLON 55 0.37 0. 00 0.32 0. 00 0.35 0.	DZ DLAT DLON 59 -0.76 2.04 4 00 0.00 0.33 0 36 0.00 0.00 0	.00 .00
3AFE 9R 860430 18 6	1 GIN 14	AT N LON-	8.79 DEP	# -0.31 13	DM GAP M o	RMS ERH .09 0.5	ERZ 9 590 A	33 IN NR 0.0	0.07 NO AV	XM SDXM NE AVEM S	0F1 1
LCS 2:5	AZM AIN P	RMK HRHY P-	SEC TPOBS 1	PCAL DLY/H1	P-RES P-WT	AHK PRX	CALX K XMAG R 0-00 0	MK FHP FHAG	57.00 3.38 4.30-49.32	5085 S-RES S-WT	OT
CGS 2005 CGAR 201-4 CGAR 211-5 CGAR 211-5 CGAR 211-5 CGAR 211-5	138 1370 138 1370	1 18 5 55	30 2.68 20 4.58	2-18 -0-15 - 2-73 0-00 - 4-17 0-32 - 4-18 -0-04	0.04 1.32	000	0.00 0	18-0-1 17-0-2	\$7.20 3.58 \$ 3 58.00 \$ 3 61.30	4.38 -0.35**0.07 7.68 -0.09 0.43	
LAZ 31:3	27 1084 524 103	1 18 6 62	20 6.58 70 9.08	9.01 0.09 -	0.02 1.00	3 8	0.00 0	15-0.3	5 2 64.50 1	0.28 -1.02 0.00 10.88 -0.18 0.74 12.38 -3.39 0.00	
LAT	LON	Z	AVRPS	RMS		No. of London, Name of Street, or other party of the last of the l	MS				
1:71	48.98 48.59 48.98 48.59	11.58 11.58 11.98 11.98	-0.05	0.10 0.10 0.10	0.0	0.31)	0.01				
							(0.0	5)			
1.55	48.79	11.16	0.07	0.09		0.0	0.01)				
1.39	48.98 48.59 48.98 48.59	11:38	0.02	0.10	0.0		0.01	1)			

DATE	AND	TIME	DF	RUN	2/28/89	10:15	13.6
DAIL	M (NIA)	1 1/16	U.F	R O'R	6160101	LUILI	330

RESET	то	1EST(1)	TEST(2)	1EST(3)	153564 TES	165 TESTS	6) TEST (7) TESTO	8) TEST(9)	TEST(10)	TEST (11)	TEST (125 TE	57(13) 5.3000	
VELOC	TY 3	EPTH 2	TR XNEAR	250. 1.73	0508 19	KHS KEH IP	ON THAG	IR IPRY	1011					
1 .0	RIG .LA	T. N	ONG W	DEPTH OH	RHS AVRPS SK	CF AD	AT DE ON	CKM) PA	AT DLON	LUES STA	T DLON	CRS ADJUSTM	NTS TAKEN	
5 59	06 34-	1:36	8-48:52	11:13	0.30 -0.00 CO 0.07 -0.07 A1	B 2.00 -0.	28 0.34	-0.33	04 1.58	0.69 0.2	8 0.27	0.40 0.28	34 -0.33	
- 222	06 34- 03 34- 01 34- 00 34-	1.58 1	6-48:73	11:33	0.07 -0.07 A1 0.10 -0.02 A1 0.10 -0.01 A1 0.10 -0.01 A1 0.10 -0.01 A1	0.500 00	28 0.34 00 0.00 00 0.00 00 0.00 00 0.00	0.00 -1	00 -1.00 00 -1.00 00 -1.00	1.00 0.0 1.00 0.0 0.78 0.0	0 0:00	0.00 -0.06 -	0.07 0.07 0.07 0.07 0.07 0.07 0.00 -0.40 0.00 0.00	
4 23	04 34-	1:42 1	6-48-75	11:06 2	0.10 -0.01 A1 0.07 0.00 A3 0.09 0.00 A2	2.00 -0.	28 0.34 00 0.00 00 0.00 00 0.00 00 0.00 00 0.11	-0.33 0.00 -1 0.00 -1 0.00 -1 -0.40 -1 0.00 -1	00 0 10	1.00	5 0.28 0.27 0 0.00 0 0.00 0 0.00 0 0.34 7 0.38	0.47 -0.28 -0.00 -	0.00 0.00	
DATE	ORI	GIN I	AT N	LONG W	DEPTH - MAG	NO DH GAP H	RMS ER		SOD ADJ	N NR AVE		AVXH SDXM NF	AYFM SOFY	
35050	353	29.04 3	- 1.49 1			12 2 178 1	0.09 0.		A1C 0.40	10 16 0.00	0.07 0	0.0 0.0 6	-0.5 0.3 0	•
F63	1:5 3	19 172	P 2 353	30.80 1.	76 1.91 -0.1 1.92 0.0 66 1.94 -0.3	0-0.05 0.	87 0 0	0.00 0	Anau Ana	10-0.8	32,204.35	16 0.03 0.	40.00	
CAR	10:3 1	74 1670 38 1360 53 1174	P 0 353	31.70 2:	66 2.64 0.3 66 2.64 0.3 66 4.12 0.3	0 0.02 1.	75 0 0 75 0 0	0.00 0		20 0.0	\$ 3 33.78	4-26 -0-31	0.44	
LAZ	35.9 3	16 117- 27 1074 24 102-	P 1 353	33.10 4.	66 2.64 0.0 66 4.12 0.3 66 4.15 0.0 66 6.43 -0.0	6 0.09 1. 9 0.06 0.	87 0 0 000 0 0 75 0 0 75 0 0 75 0 0 75 0 0 75 0 0 75 0 0	0.00 0		20 0 0 0 12-0 6 15-0 5 13-0 5 12-0 6	\$ 4 36.00	10.96 -0.29 10.96 -0.07 11.96 -3.81	0.00	
	#15	51 NG ST	7104 DE	154 ATIM		GAP								
	LAT	LON		Z AVRP	1. Y - 1711 T - 1770 H 1 1 1 1 1 1			DRMS						
	1.65	48.94	10:7	6 -0.0	0.07		.03	-0	.01					
	:65	48.94					(-0.03)		(-0.01)					
	1.49	48.75	10.5		0.09			(50.02)						
	1.49	48.75	10.7			0								
	32	48.94 48.55 48.55	10:7	6 -0.0	0.10		(-0.01)	0	(0.00)					
	1.32	48.55	11.3	0 -0.0	3 0.07				(0.00)					

DATE AND FINE OF RUN 2/28/89 10:15 JBG

RESET TO	TEST (1	10.0000	TEST(3)	EST(4) TEST(2, TEST (6) -	E 21 82 , 12	\$163) TESTO	2 TEST(10) T	EST(11) TEST	(15% test (138) 32
VELOCITY	0.000	ZTR XVEAR	XFAR 1.7320	508 19 KM	S KEN IPUN IN	AG IR I	PRN CODE 1 1011			
1 0R IG 1 7.47 5 2 7.37 5 3 7.38 3 3 7.38 3	1:71 1:71				CF DLAT 0	ENTS (KM) - ON 02 - 77 1 39 - 00 - 0 55 - 10 0 0 0 - 12 - 0 12	PARTIAL F-V DLAT DLON 4.03135.64 -1.00 0.05 -1.00 0.22 0.02 0.24	ALUES STAND 17.34 0.23 3.66 0.00 -1.00 3.00 0.13 0.24	0.24 0.33 0.20 0.22 0.00 0.25 0.34	DUSTMENTS TAKEN 0.00 0.00 0.55 0.00 0.00 0.55 0.00 0.00 0.00
3ATE 0	RI GIN	LAT N 1	LONG W DE	PTH -MAG NO -0.29 17	OH GAP H RMS	ERH ERZ	9 590 ADJ	IN NR AVR	AAR NH AVXH	SOXH NF AVEN SOFT
SIN DIST	134 AIN	PRHK HRHY	P-SEC TPORS	TPCAL DLY/H1	P-RES P-WT AN	X PRX CALX	K XMAG RHK	FMP FMAG SRM	K S-SEC TSOR	S S-RES S-VT DT
FC2 4 5:3	1 23 164	P 4 932	3:35	1:49 -8:39	-5:42 9:59	9 9 9:00	9	52 9	40 -2 73 -5	20 0.00
CAR 811.5	1 18 111	P 9 232	11.30 3.91	3:37 8:89	8:84 1:29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ő	25 0.3* 5	2 11.70 4.3 4 14.50 7.1	8:42 8:78
COL 0 5.11 CAR 0 021.05 EAR 0.21.05 SYC 0.33.48 LPM 0.33.48	2 14 103	P 1 932	13:20 3:20	5-87 -0.06	8:02 1:12	9 0 0.00	8	9-1.0* \$ 13-0.5 \$	3 17:50 10:1	2 0.23 0.79 0.42 0.00 2 0.02 0.79 2 0.02 0.37
142 31:8	324 99	b 1 325	16:48 5:62	8: 81 0:00	8:12 1:03	3 8 8:00	8	15-0:3		
LAT	LO	N 1	Z AVRPS	RMS		DRMS				
1.87 1.87 1.87	48.8 49.24 48.8	7:1	0.04	0.10 0.10 0.10	0.00		0.01			
1:37	48.8	8:1	-0:02	8:18	(0.		(0.01)			
1.71	49.05	7.3	0.05	0.08		-0-01				
1.71	49.0	8.30	6 -0.06	0.10		(0.0	0)			
1:55	49.24 48.8 49.24 48.8	7:1	0.32	0-19 0-58 8-19	0.00		-0.01			
1:33	48.8	1:1:	-8:32	8:12	(0.	91)	(-0.01)			

RESET TO			2 TEST(3) 2.0000		water to make the second		TEST(8) T		(10) TEST(1	1) TEST(13) TEST(13)	43
1 37:31	[]	106-47.2 106-43.2 106-43.2	DEPTH DE 7.00 0	RMS AVRPS 0.27 0.00 0.11 -3.07 0.11 0.00	SKO CF DLAT BOB 2.00 -0.89 A3C 0.50 -0.20 A2C 2.00 -0.27	DLON 1.50 0.00 0.06	02 OLAT 02 OLAT 0-00 0-32 -	F-VALUES DLON DZ 1-16 17-11 1-00 -1-00 1-01 0-03	STANDARD E OLAT OLON 0.45 0.50 0.36 0.00 0.54 0.55	0Z DLAT DLON 1.08 -0.39 1.50 0.00 0.00 0.00	4.45 0.00 0.00
33 55 51 1	ORI GIN	34- 1.45	LONG W	DEPTH - MA	6 10 04 GAP # 6	RMS ERH 11 0.8	ERZ 9 590	ADJ IN NR	AVR AAR N	AVXH SOX NE AVEN	SOF# [
LCCARR COLLAR	57 4 78 A17 -1 2 C8 17 -2 3 C8 17 -2 3 C8 17 -2 3 C8 17 -3 15 11 -2 3 C8 17 -3 15 11 -6 3 C4 10	N PRMK 49 14 P 1 11 0 - P 4 11 90 P 0 11 90 P 1 11 70 P 2 11 80 P 3 11	7 P-SEC TP 3 8-20 1 3 8-30 2 5 39-30 2 5 41-10 4 43-00 6 45 45-70 9	085 TPCAL DL .56 1.98 -0 .26 1.99 -0 .26 1.99 -0 .26 2.63 0 .45 4.06 0 .26 4.27 0 .26 4.27 0 .26 9.11 0	7/H1 P-RES P-WT 36 -0.06 1.46 00-35.68 0.00 100 0.37 1.97 32 0.08 1.47 04 -0.05 0.38 06 0.03 1.38	A4X PRX 2 0 0 0 0 0 0 0 0 0 0 0 0 0	CALX K XMAG 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	19-0- 15-0- 11-0- 13-0-	AG SRMK 5-S 5 3 39.80-3 5 4 41.241. 5 2 44. 6 5 4 45. 7 5 4 49.	EC TSO3S S-RES S-VT 3.16-0.35 0.24 2.34-35-78 0.00 4.76-1.48 0.00 7.56-0.02 0.98 000 7.56-0.02 0.98 000 9.36-1.61 0.00 000 12.36-3.57 0.00	DT
- 1.		ON 11	Z AVA		0.01		RHS				
1:5	1	23 11	15 -0	03 0:12 03 0:13		0.02)	0.02	.02)			
1.4	8 48.	23 10.	.93 0.	06 9:10		-0-	0.01)				
1.4	CONTRACTOR STATE		.97 -0.		-0.01	,					
_ [:]	1 4	3 11	15 75 -0	00 0.10 07 0.11 03 0.11		0.000	0.00	.01)			

(3)

DATE AND TIME OF RUN 2/28/89 10:15 J3G

TEST/IN TEST/IN TEST/IN TEST		(8) TEST(9) TEST(10) TEST(11) TEST(12) TEST(13)
RESET TO 0.1000 10.0000 2.0000 0.0		00 0.0000 100.0000 8.0000 0.5000 0.3000
VELOCITY DEPTH ZTR XNEAR XFAR 1 POS	IN KMS KEM IPUN INAG IR IPE	1011 1011
1 ORIG LAT N LONG & DEPTH DM RMS	AVRPS SKO CF PLAT DLON DZ	ARTIAL F-VALUES STANDARD ERRORS ADJUSTMENTS TAKEN DATE DION DZ DLAT DLON DZ
2 32.98 34- 1.96 106-43.98 7.00 1 0.16	AVRPS SKD CF DLAT DLON DZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-13 -1-00 0-15 0-34 0-00 0-00 0-00 0-00 0-00 0-00
3 32.92 34- 1.69 106-48.98 7.00 1 0.15 3 32.92 34- 1.69 106-48.98 7.00 1 0.15	0.00 AZA 2.00 -0.03 0.01 -0.21 0	.01 0.00 0.09 0.37 0.38 0.68 0.00 0.00 0.00
DATE ORIGIN LAT N LONG W DEPTH	MAG NO DN GAP M RHS ERH ERZ 0	SQD ADJ IN NR AVR AAR NM AVXM SDXM NF AVFM SDFM I
STN DIST AZM AIN PRNK ARMY P-SEC TPOBS TO	CAL DLY/H1 P-RES P-WT AMX PRX CALX 6	XMAG RMK FMP FMAG SRMK S-SEC TSDBS S-RES S-WT DT
LC3	1.26 0.00-30.33 0.00 0 0 0.00 0 1.29 -0.36 -0.15 1.52 0 0 0.00 0 2.27 0.00 -0.09 1.54 0 0 0.00 0	37 0.7 4 5 4 3 34.70 1.78 0.17 0.38
UTX 0 12.9 2 92 118 P 1 1628 35.00 2.68 LEM 6 21.1 3 16 108 P 0 1628 36.80 3.88 548 421.5 54 108 P 0 1628 37.20 4.28	2.51 -0.03 0.20 1.12 0 0 0.00 0	15-0.3* 39 0.8 48 1.1 35 0.7 S 2 43.00 10.08 0.07 0.73 28 0.4 S 2 43.40 10.48 -0.33 0.56 25 0.3 S 4 45.60 12.68 0.63 0.00 40 0.8 S 4 43.30 10.38 -0.31 0.00 34 0.6 S 2 48.00 15.03 -0.33 0.52
TTX 0 12.9 2.92 118 P 1 1628 35.60 2.68 LEM 0 21.1 3 16 108 P 0 1628 36.80 3.88 54R 421.5 54 108 P 0 1628 38.70 5.78 54R 421.5 54 102 P 0 1628 38.70 5.78 54R 421.5 60 102 P 2 1628 39.40 6.48 LJY 35.0 348 101 P 3 1628 39.40 6.48 LJY 35.0 348 101 P 3 1628 39.40 6.48 LJY 4 45.5 8 28 101 P 3 1628 40.20 7.48 44.2 2.91 100 P 2 1628 40.20 7.28	3.86 0.34 0.04 1.55 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 0:7 \$ 2 43:20 10:28 -0:37 0:58
Fr. 433.9 50 101 F 0 1053 34.10 5.10	5.23 -0.06 0.01 1.45 0 0 0.00	25 0.3 5 4 45.60 12.68 0.63 0.00 40 0.8 5 4 43.30 10.38 -0.31 0.00
[42 31.0 324 90 P 0 1025 41.00 5.00	7.14 -0.02 0.16 0.68 0 0 0.00 0	40 0.8 S 2 48.00 15.08 -0.33 0.52
LAT LON Z AVRPS	RHS	
1.85 49.17 6.70 0.04 1.85 48.78 6.70 0.02 1.85 49.17 7.30 -0.01	0.15 0.15 0.16 0.15 (0.01)	0.00
		(0.01)
1.69 48.98 6.43 0.04 1.69 48.98 7.52 -0.04	0.14 0.15 0.15	
	0.15 0.01	
1.53 49.17 6.70 0.03 1.53 49.17 7.30 -0.02 1.53 48.78 7.30 -0.04	0.14 0.16 0.15 (0.01)	0.00

DATE AND TIME OF RUN 2/23/89 10:15 J3G

RESET TO 0.1000 10.0000 2.0000 0.0500 6.0000 4.	ST(6) TEST(7) TEST(8) TEST(9) TEST(10) TEST(11) TEST(12) TEST(13) 6
A 100 B 100 B 2 B 2 B 2 B 2 B 2 B 2 B 3 B 3 B 3 B 3	IPUN IMAG IR IPRN CODE
1 59.82 34- 1.96 106-47.25 7.00 0 0.34 AVRPS SKD CF 2 59.82 34- 0.95 106-48.67 10.27 2 0.14 -0.08 A10 0.50 3 59.18 34- 0.77 106-48.67 10.27 3 0.14 0.00 A30 0.50 3 59.18 34- 0.77 106-48.67 10.27 3 0.14 0.00 A20 2.00	ADJUSTMENTS (KM) PARTIAL F-VALUES STANDARD ERRORS ADJUSTMENTS TAKEN DLAT DLON DZ DL
SATE ORIGIN LAT N LONG W DEPTH MAG NO DM GAS	S H RMS ERH ERZ 2 590 ADJ IN NR AVR AAR NH AVXH SDXH NF AVFH SDFH 1
STN DIST AZM AIN PRMK HRMY P-SEC TPOBS TPCAL DLY/H1 P-RES LCS 0.6 2 10 1777—P 4 19 7 3.25 4.07 1.76 0.00 2.31 LCS 2.7 536 1650 P 1 19 7 0.70 1.52 1.32 -0.10 -0.20 LCZ 3.1 49 1630 P 0 19 7 0.60 1.42 1.83 -0.36 -0.05 CAR 9.7 133 1360 P 0 19 7 1.80 2.62 2.42 0.00 0.20 3AR 22.2 50 1150 P 0 19 7 3.60 4.42 4.17 0.32 -0.08 LEM 22.6 518 1144—P 2 19 7 3.40 4.22 4.25 0.04 -0.07 LPM 37.1 26 1050 P 1 19 7 5.90 6.72 6.58 -0.06 0.20	P-WT ANK PRX CALX K XMAG RMK FMP FMAG SRMK S-SEC TSOBS S-RES S-WT DT 0.00 0 0.00 0 54 4.30 5.12 2.07 0.00 0 1.15 0.40 52 1.80 2.62 0.07 0.83 0.78 1.65 0 0 0.00 0 20 0.00 5 3 2.30 3.12 0.15 0.40 0.78 1.65 0 0 0.00 0 20 0.00 5 3 3.20 4.02 -0.17 0.78 1.62 0 0 0.00 0 15-0.3 5 3 6.90 7.72 -0.07 0.41 0.82 0 0.00 0 15-0.3 5 4 5.60 6.42 -1.01 0.00 1.05 0 0 0.00 0 14-0.4 5 2 10.50 11.32 0.03 0.76
LAT LON Z AVRPS RMS	1.53 3 0 0.00 0 20 0.00 0 15-0.3 \$ 3 6.90 7.72 -0.07 0.41 0.82 0 0 0.00 0 15-0.3 \$ 4 5.60 6.42 -1.01 0.00 14-0.4 \$ 2 10.50 11.32 0.03 0.76
0:23 48:86 2:27 0:04 0:14 0:23 48:86 10:57 -0:04 0:14 0:23 48:47 10:57 -0:01 0:15	0.00 (0.01) (0.01)
0.77 48.67 9.75 0.07 0.14 0.77 48.67 10.79 -0.07 0.15	0-00
0.61 48.86 9.97 0.00 0.14 0.61 48.86 9.97 0.04 0.14 0.61 48.86 10.57 -0.08 0.14	0.00

**** EXTRA BLANK CARD ENCOUNTERED *****

Appendix B

This appendix contains first motion diagrams of the 15 Loma de las Cañas swarm events used in this study. Each event is plotted on the upper focal sphere of an Equal Area Net stereographic projection.

ERSINOR HOLLERS

Figure B-1. First motion diagram for the earthquake occurring 4/30/86 at 00:11 GMT.

Figure B-2. First motion diagram for the earthquake occurring 4/30/86 at 01:28 GMT.

Figure B-3. First motion diagram for the earthquake occurring 4/30/86 at 04:07 GMT.

Figure B-1. First motion diagram for the earthquake occurring 4/30/86 at 05:39 GMT.

Figure B-5. First motion diagram for the earthquake occurring 4/30/86 at 06:41 GMT.

Figure B-6. First motion diagram for the earthquake occurring 4/30/86 at 13:10 GMT.

Figure B-7. First motion diagram for the earthquake occurring 4/30/86 at 16:12 GMT.

Figure B-8. First motion diagram for the earthquake occurring 4/30/86 at 16:15 GMT.

Figure B-9. First motion diagram for the earthquake occurring 4/30/86 at 18:06 GMT.

Figure B-10. First motion diagram for the earthquake occurring 5/01/86 at 03:53 GMT.

Figure B-11. First motion diagram for the earthquake occurring 5/01/86 at 09:32 GMT.

Figure B-12. First motion diagram for the earthquake occurring 5/01/86 at 11:43 GMT.

Figure B-13. First motion diagram for the earthquake occurring 5/01/86 at 16:28 GMT.

Figure B-14. First motion diagram for the earthquake occurring 5/01/86 at 19:06 GMT.

Figure B-15. First motion diagram for the largest event of the swarm. This carthquake occurred 4/28/1986 at 12:59 GMT. The duration magnitude as calculated by HYPO71(Rev) was 2.57.

Appendix C

This appendix contains the program used to verify the correlation coefficients obtained by the SAC program.

c This program reads two data files, computes a cross correlation function for them c and determines the maximum correlation coefficient.

```
parameter(max=5000)
    dimension a(max),b(max),c(max)
   character*30 file1,file2
   write(*,*)'what is first file for correlation?'
   read (*,*) file1
write(*,*)'what is second file for correlation?'
   read (*,*) file2
   open(20,file-file1)
   open(21,file=file2)
    open(22,file='corr.out')
   read(20,100,end=10)(a(i),i=1,max)
10 lx-i
   rewind(unit-20)
   read(21,100,end=15)(b(i),i=1,max)
15 ly-i
   rewind(unit-21)
   call xcor(a,lx,b,ly,c)
   lc = lx + ly - 1
   cmax=0.0
    do 20 i=1,lc
      tmp1 = abs(c(i))
      tmp2 = abs(cmax)
      if(tmp1.gt.tmp2) cmax=c(i)
     continue
    write(22,101) le,emax
    write(22,100)(c(i),i=1,lc)
100 format(5f15.7)
101 format(i5,3x,f15.7)
   end
¢
   subroutine cross(x,lx,w,lw,ls,s)
c
c Crosscorrelation between x and w. Only positive time lags computed
c w is the operator that is xcor. with x
   ls should not exceed lx . output correlated trace is in s
   dimension x(1), w(1), s(1)
   do 10 i=1,ls
     m = min0(lw + i - 1, lx) - i + 1
     if(m.le.0) then
       q = 0.0
     else
       call dot(x(i),w,m,q)
     endif
     s(i) = q
10 continue
   return
   end
                                       XCOR
```

```
c
c
   subroutine xcor(x,lx,y,ly,s)
c %%%%%% Crosscorrelation based on convolution
    array s output will have length lx + ly - 1
   dimension x(1), y(1), s(1)
   call revers(y,ly)
   call fold(x,lx,y,ly,s,ls)
   call revers(y,ly)
   return
   end
subroutine dot(x,y,lnth,dprod)
  calc. the dot product between vectors x & y, each of length 'Inth'
   dimension x(1), y(1)
   data lunout/6/
   dprod = 0.0
   if (lnth.le.0) goto 100
   do 20 i-1,lnth
      dprod = dprod + x(i) * y(i)
   return
100 write(lunout,6010) lnth
6010 format(lx,'error in dot.f length',i8)
   return
   end
                                           REVERS
   subroutine revers(x,lx)
c
          - reverse the sequence of x
c
   dimension x(1)
   nn = lx/2
   do 10 i=1,nn
     temp = x(i)
     x(i) = x(lx-i+1)
     x(lx-i+1) = temp
      continue
10
   return
   end
                                     FOLD
   subroutine fold(a,la,b,lb,z,lz)
```

SEAR BOLLOW KENNIE NE