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ABSTRACT

A study of moisture migration was conducted at a site located near
the New Mexico Institute of Mining and Technology. As part of this
project, numerous boreholes and tensiometers were placed within the
research area to monitor the movement of water through the system as
well as to define the lithology of the earth below the site. For this
paper, resistivity pseudosections, using a dipole-dipole configuration,
were measured and analyzed to study the migration of moisture in the
vadose zone. The analysis of the pseudosections included both numerical
modeling using an integrated finite difference code, as well as
qualitative grouping of resistivity measurements into intervals.
Additionally, Wenner vertical electrical soundings and horizontal
profiles were conducted to supplement the pseudosection data. The
Wenner vertical electrical soundings were analyzed using an inversion
code based on the Dar Zarrouk parameters. As a result of the lateral
inhomogeneities found within the research area and likely resistivity
changes within the pore water, no quantitatiVe analysis of the
relationship between moisture content and resistivity measurements was
possible. Recommendations to alleviate some of the difficulties

experienced in this research are included.






I. PURPOSE OF WORK

This research study was undertaken in order to apply earth
resistivity techniques, with an emphasis on dipole-dipole pseudo-
sections, in the monitoring of water infiltration in the vadose zone.
This research is an attempt to supplement a classical vadose zone
infiltration study technique, termed an instantaneous profile, which was
developed by Watson (1966) and extended by Hillel et al. (1972). An
instantaneous profile utilizes the following general equation which

describes the flow of water in a vertical soil profile.
¥ =35 3H
3t 32 (K(e) 5)

where 6 is the volumetric moisture content, t is time, z the vertical
depth, K the hydraulic conductivity, and H the hydraulic head. Thus,
two important physical parameters, matrix suction head and soil
moisture, must be measured with respect to depth and time. These
measurements can be made using both a tensiometer and a neutron moisture
probe. This requires the introduction of neutron meter access tubes as
well as of the tensiometers themselves throughout the soil profile.

. Essentially, this means drilling holes to specified depths which
disturbs the soil profile and is expensive. Moreover, measurements of
this type only yield point values whereas moisture distribution

throughout a volume of ground is desired.
¥
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Procedurally, once the instruments are in place, water is either
ponded on the surface or a constant flux is achieved just below the

surface. At this point, readings over a specified time interval can be

made of both soil matrix suction and soil moisture. From these data, an

infiltration rate through the soil profile can be derived.

Resistivity measurements, although labor intensive, require no
drilling. Thus, as stated earlier, the goal of this study was to use
earth resistivity techniques in observing moisture movement in the
vadose zone. This was accomplished by taking resistivity readings
before and after the introduction of water into the soil profile.
Although no actual infiltration rates are reported in this paper, the
techniques presented and suggested could help in the mapping of moisture
migration, especially if combined with direct measurement of soil

moisture at suitably spaced points, as outlined.
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II. INTRODUCTION

A. Geology

Socorro, New Mexico is located in Socorro County, approximately
75 miles south of Albuquerque, on Interstate 25. The infiltration study
site is located at T3S, RIW; within the city limits of Socorro, on the
western border of the New Mexico Institute of Mining and Technology
(NMIMT) golf course. Figure 1 is a sketch of the study area.
Géo]ogica1]y, the top 30 feet of sediment, the interval of interest in
this paper, corresponds to part of the Sierra Ladrones Formation of the
Santa Fe Group. The Sierra Ladrones Formation, deposited during early ‘
Pliocene to middle Pleistocene consists of alluvial fan, piedmont slope,
alluvial flat, flood plain, and axial stream deposits (Machette, 1978).
Specifically, two facies of the Sierra Ladrones Formation are
encountered here. The upper facies, corresponding approximately to the
top 12 feet of material at the study site, is defined as the Piedmont
slope facies of the Sierra Ladrones Formation (Chamberlin, 1980). It
consists of silty sands and pebbles derived from Socorro Peak, which
lies just west of the study site. The next 18 feet, defined as the
fluvial sand facies, is predominantly composed of clean, tan-colored,
fluvial sands derived from the ancient Rio Grande.

On a local scale, the stratigraphy of the study area was
investigated by Parsons (1988) through the installation of a series of
boreholes located throughout the study area. Parsons (1988) defined a
grid system for the study area through which the location of each

borehole could be defined. For consistency, the same grid locations are
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referred to in this work. Figure 1 identifies the location of five
boreholes, 15-15, 11-15, 19-15, 15-19, and 15-11, that are of particular
interest to this study. Figure 2, adapted from Parsons (1988),
identifies the lithologic symbols utilized in Figures 3 to 9. Figure 3,
a borehole geologic log located at 15-15, presents the general
depositional sequence of the Sierra Ladrones Formation encountered at
the site. Generally, the stratigraphy at the site alternates between
fine sand and silt to coarse sand, pebbles, and cobbles. Figures 4 to 7
are the‘boreho1e geologic logs located at 11-15, 19-15, 15-19, and 15-
11, respectively. These shallow borings illustrate the stratigraphy in
the upper 6 feet of the study area. Boreholes 11-15 and 19-15 indicate
a coarser upper zone (coarse sand and pebbles) while boreholes 15-19 and
15-11 represent a finer textured material (sand and silt). Figures 8
and 9, adapted from Parsons (1988), are geologic cross sections of the
study area oriented along the a’-a (south to north) and f-f’ (west to
east) center lines (Figure 1). Both cross sections illustrate the
site’s subsurface heterogeneity.

B. Hydrogeology

Hydrogeologically, there are two regional aquifers present in
Socorro Basin (Anderholm, 1983). The phreatic aquifer, located 70 to 75
feet from the surface, was the only aquifer penetrated by the
resistivity soundings conducted in this study. This unconfined aquifer,
with a saturqted thickness not exceeding 300 feet, is in the Sierra

Ladrones Formation. The gradient is in a southeasterly direction.



C. Background Information

As stated above, the interval of interest is the top 30 feet of
sediment. Specifically, resistivity surveys were conducted both before
and affer the introduction of a continuous flow of water into the
research area. The actual infiltration area was approximately 30.5 feet
squared. Prior to the pre-infiltration resistivity measurements, this
30.5 feet x 30.5 feet area was dug out to a depth of about 3 feet.

After the pre-infiltration resistivity measurements, PVC drip lines were
placed on the bottom of the dug out area. These drip lines, covered for
protection with halves of larger diameter PVC_pipe, were used to
introduce water into the system. Placed over the drip lines, in
ascending order, was a plastic liner, 6 to 12 inches of hay, backfill,
another plastic liner, and finally a thin layer of soil. In this study,
the two plastic Tiners proved troublesome because of their non-
conducting properties. Compaction during this construction stage
resulted in a level surface. The infiltration rate introduced into the
soil profile was 1 x 1075 cm/s or 100 times less than the estimated
saturated hydraulic conductivity of the soil. For details on site setup
see Matson (1989) and Parsons (1988).

Pre-infiltration resistivity measurements were conducted between
August 11, 1986 and October 31, 1986. The actual introduction of water
into the system did not occur until January 29, 1987. The post
infiltration resistivity measurements were started after approximately
three months of continuous water infiltration into the system. These

measurements were collected between May 6, 1987 and June 8, 1987.
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III. PREVIOUS WORK

Historically, direct current earth resistivity methods have been
used extensively in conjunction with groundwater studies. In almost all
cases, the application of resistivity techniques in hydrology has been
either in detecting a water table or detecting and monitoring leachate
from disposal/landfill sites. The first published study on monitoring
moisture migration in the vadose zone was issued by Kean et al. (1987).
A brief review of this paper seems in order.

Kean et al. (1987) used a reverse Schlumberger array, in
conjunction with a central circuit board and data logger, to
continuously monitor apparent resistivity both before and after a -
rainfall, at four sites exhibiting geoelectrical horizontal layering and
lateral homogeneity. The resistivity data were modeled using a Ghosh-
Koefoed inversion computer algorithm (Koefoed, 1970). This model
assumes horizontal layering. The layer thicknesses were found by hand-
augering. From their resistivity inversions and augering, the authors
deduced a three-layered earth at thrée of the four study sites. It
should be noted that these simple models were possible, in part, because
the water tables at all four reported study sites were between depths of
only 4.5 and 42 feet. The shorter the distance between the surface and
the water table, the less Tikely it is that a complex multi-layered
model will be necessary. In addition to the resistivity measurements,
gravimetric moisture measurements and tensiometer measurements were used

at some of the sites to define relevant soil parameters further. . Kean

t al. (1987) concluded that, "(1) moisture is retained for long periods
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of time in clay/silt-rich soils, (2) moisture migration is slow below a
moist soil zone and is not readily detected by surface resistivity
measurements, and (3) near-surface moisture changes can be defined by
surface resistivity." 7

The first of these conclusions appears rather obvious. The second
conclusion is difficult to substantiate with the data presented in the
present research since the time intervals between dry and wet
resistivity measurements were significantly different in both works.
Kean’s assertion that moisture migration is not readily detected by
surface resistivity measurements may be true using his more conservative
modeling approach; however, the more flexible resistivity modeling
techniques used in this paper are better suited to interpret unsaturated
zone resistivity measurements. As a result it does appear, based on our
results, that the modeling techniques presented in this paper can
differentiate moisture migration in successive sets of vadose zone
resistivity measurements. Although, for reasons that will be discussed
later, no quantitative evaluation of moisture resistivity changes was
possible from this work, it is believed that with the proper equipment
and a geologically and/or geoelectrically simpler site, a quantitative
appraisal of moisture movement in the vadose zone using resistivity
techniques may be possible. Finally, the results presented in this
paper qualitatively concur with Kean’s third conclusion, that near-

surface moisture changes can be defined by surface resistivity.
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iv. THEORY

A. Electrical Resistivity in the Vadose Zone

When monitoring the infiltration of water through the vadose zone
using resistivity methods it is important to consider the effects of
partial saturation of the soil profile on resistivity measurements.
Almost exclusively, the research relating groundwater hydrology with
electrical geophysical methods has involved the relationship between
saturated soil or rock and electrical resistivity measurements. In this
study, the unsaturated conditions chafacteristic of the vadose zone
result in a more complicated relationship between electrical resistivity
and a partially saturated soil profile. Therefore, it is important to
develop the conceptual differences between resistivity measurements
taken in a saturated profile, an unsaturated profile, and an unsaturated
profile experiencing infiltration.

When considering resistivity in a saturated soil system a good
starting point is the formation factor, originally defined by Archie

(1942) as

F=0p,/0u

where p, is the bulk resistivity of the soil system and p, is the pore
water resistivity. The term formation factor can be further defined as
apparent formation factor, where the effect of surface conductance and
other intergranular pore water contributions are considered, and the
intrinsic formation factor, where the rock matrix is assumed to be

perfectly nonconducting (Urish, 1981). In brine filled sediments, the
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apparent formation factor approaches the intrinsic formation factor
(Barker and Worthington, 1973) because the surface conductance effects
are much smaller than the pore water conductivity. An empirical form of

the formation factor was also given in Archie (1942) as

F

ag "

where ¢ is the porosity of the soil system and a and m are constants
representing the intrinsic properties of the grain matrix. This
relationship works well in brine filled sediments but does not apply to
fresh-water systems since the formation factor, in systems with high
pore water resistivities, varies with pore water resistivity and grain
size as well as with porosity.

A model of the electrical transport process in sediments
completely saturated with fresh water (low salt content) must account
for several factors. In terms of conductance, the grain matrix, pore
water, and solid-liquid interface (surface conductance) contribute to
the process. Usually, the conductivity of the grain matrix can be
Vignored; however, pore water and surface conductivity are integral
components of the electrical transport process. For a localized model
of electrical transport, pore water and surface conductance can be
cénsidered constant. Additionally, the tortuosity of the current flow
path, porosity of the matrix material, and the internal pore area
(defined as the total interstitial surface area of the pore per unit
pore volume) must be considered in a model of electrical flow in fresh-

water sediments (Urish, 1981).
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In the unsaturated zone, the intergranular spaces of the soi}
matrix are not comp]ete1y filled with water. For a partially saturated
profile, the intergranular spaces are made up of differing proportions
of a nonconductive gaseous phase (air) and a liquid phase (water). 1In
dry soils with very small moisture contents, water exists in an adsorbed
state immediately adjacent to the soil particle surface. This water,
known as "hygroscopic water" exists as extremely thin films surrounding
soil particles. Electrical current when applied to a soil containing
only hygroscopic water is conducted along this thin surficial film.
This aspect of unsaturated electrical transport is equivalent to surface
conductance in the saturated model. Because of the absence of a
conductive pore water to enhance current flow, the tortuosity of the
current path is great. As a result, the resistance to current flow is
generally greater/in this system than in a saturated system.

When moisture content in a soil increases slightly (i.e., less than
20% of the intergranu]ar space is filled with water) pore water will
remain almost entirely in capillary wedges at the contact points of the

particles (Figure 10). This results in the formation of separate and

| discontinuous pockets of pore water. Electrical current paths in this
system also have a much more tortuous route then in a saturated medium.

Infiltration in a partially saturated profile further complicates
electrical resistivity models in the vadose zone. As stated earlier, in
a saturated profile electrical current moves in a tortuous path through
the intergranular spaces. The actual path traveled by the current is
probably complex; however, the path itself should remain fairly constant

between measurements taken at the same location (assuming effective



11

porosity and pore water resistivity do not change). During infiltration

in an unsaturated system, this may not be the case. As water passes

through a dry profile, capillary wedge interconnection is in a transient

state. This is primarily true directly behind the wetting front of an
infiltration moisture profile. It is in this wetting zone that moisture
levels are in the range where pore water exists mainly in capillary
wedges (Hillel, 1980a). As a result, electrical resistivity
measurements taken at the same location over time may experience random
effects during infiltration since the medium through which the
electrical current travels is changing. Thus, in an unsaturated system
experiencing infiltration, the electrical flow lines generated from a
given electrode spacing may not be constant over time.

When a soil profile is experiencing infiltration under unsaturated
conditions, the interaction between the ionic constituents of the pore
water and matrix must be considered. During its passage through the
vadose zone, the wetting front tends to dissolve additional solids
(Hillel, 1980b). This additional load consists primarily of
electrolytic salts. As the infiltrated water moves further through the
profile, it carries this load in its convective stream, leaving some of
the salts behind to the extent that they are adsorbed or precipitated
whenever their concentrations exceed their solubility. Consequently,
soil water chemistry during infiltration is probably not constant
throughout the profile. Moreover, since soil water is dissolving and/or
precipitating salts, the soil portion of the system is also not

constant. The result of being unable to assume constant soil water or
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soil matrix during an infiltration event complicates the comparison of
resistivity measurements taken before and after the infiltration event.

As can be seen, a model of electrical transport in an unsaturated
medium is more complex than one for a saturated medium. Not only must
the grain matrix conductance, pore water conductance, surface
conductance, tortuosity, effective porosity, and internal pore area be
accounted for, but the moisture content must be considered.
Additionally, the chemical composition of the pore water is not
necessarily constant. All these factors must be considered when
interpreting the results of an electrical resistivity survey in the
vadose zone.

B. Factors Affecting Interpretation of Resistivity Data

Before electrical resistivity data can be analyzed, it is
necessary to consider factors that may complicate the interpretation.
Two factors that affect the interpretation of any set of resistivity
data are the thicknesses and the resistivities of the geoelectric layers
being surveyed. It should be recognized that the geoelectric section of
a profile may not be the same as the geologic section for a given survey
area. Geoelectric sections are synonymous with geologic sections only
when the boundaries between geologic layers coincide with the boundaries
between layers characterized by different resistivities (Zohdy et al,
1974). Theoretical type curves derived for the purpose of interpreting
vertical electrical soundings (VES) are an expression of the
relationship between layer thicknesses and resistivities in a
geoelectric section. However, a measured VES can correspond to several

subsurface distributions of thickness and resistivity. Thus, the
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inversion of the data is not unique. Interpretations of VES data must
utilize any geological information available about the study area to
help eliminate models that do not fit into the known geologic picture.
Another factor that complicates VES interpretation is lateral
inhomogeneities. The formation of a cusp, a pointed segment on a VES
curve, indicates the presence of a lateral inhomogeneity. Wenner VES
curves affected by lateral heterogeneities are particularly complicated
when the potential electrodes cross over or near an inhomogeneity (Zohdy
et al, 1974). Cusps and other deviations from smooth theoretical curves
such as those published by Mooney ahd Wetzel (1956) or Elliot (1974),
make interpretation of these geoelectric sections difficult. The
cha;acteristic smoothness in theoretical curves results from the
assumption of horizontal layering in geoelectric sections.
Consequently, fitting or inverting compliicated non-smooth field curves
does not result in a meaningful interpretation since the boundary
conditions used in deriving the analytical solutions were not met.
Dipole-dipole resistivity measurements are particularly sensitive
to lateral inhomogeneities. In a classical study of dipole methods,
Al’pin et al (1966) found that dipole-dipole VES curves taken in the
same area showed widely different results. They attributed these
discrepancies to "lateral changes in the total conductance of the rocks
above the basement." Thus, it was concluded that the dipole methods
showed a high degree of resolution in detecting such inhomogeneities.
Keller (1966) also discusses the extreme effects of lateral resistivity
changes on dipole-dipole measurements when the dipole source is over a

resistive zone. He recommends that the most conductive overburden be
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found and utilized as the sounding area. Frohlich (1968) found that
dipole methods are more affected by lateral resistivity changes than the
Schlumberger technique and concluded that interpretations based on a
horizontal layer case can provide uncertain results.

From the discussion above, it is concluded that VES curves derived
from dipole-dipole measurements can show a greater ambiguity then either
Wenner or Schlumberger arrays when lateral variations in resistivity are
present. This problem results from the laterally homogeneous layer
assumption in VES curve interpretations. This éssumption is believed to
be unnecessary when modeling pseudosections. The purpose of
pseudosections is to model inhomogeneities that, because of their
jrregularity, can not be simulated by other models. A logical question
that follows is: can 511 lateral inhomogeneities be accounted for in
two-dimensional dipole-dipole pseudosections?

To answer this question the modeling process itself must be
addressed. The operation of defining a model using either a finite-
difference or finite element approach can be quite laborious. Given a
pseudosection of field data, the modeler tries to match his model-
generated pseudosection by adjusting or "tweaking" the electrical
conductivity matrix input. The capacitance matrix that produces the
"hest fitting" match to the field pseudosection is considered the earth
model. In Dey and Morrison (1979a), the integrated finite-difference
approach to pseudosection interpretation views the resuitant model as
"two-dimensional structures defined as geologic bodies of arbitrary
cross section with infinite extent along the strike." Thus, along the

cross section, all inhomogeneities, within the modeling grid, are
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accounted for and modeled; howeyer, inhomogeneities along the strike,
i.e., in a direction normal to the modeled section, can not be handled
with presently available methods. |

One solution to this problem would be the application of a three-
dimensional pseudosection model (Dey and Morrison, 1979b). The
capacitance grid used-in the numerical solution bf a three-dimensional
pseudosection model would contain conductivity information perpendicular
to the orientation of the pseudosection. Dey.and Morrison (1979b) in
their three-dimensional pseudosection model applied mathematical
techniques very similar to the ones presented in their earlier two-
dimensional study (Dey and Morrison,. 1979a). One difference between Dey
and Morrison’s two- and three-dimensional models, however, involves the
use of a Fourier transform in their two-dimensional model. This
transformation resulted in a two-dimensional capacitance matrix, as
input, and a two-dimensional solution (see Chapter V, page 22). Their
three-dimensional model, on the other hand, ddes not require a
transformation. It utilizes a three-dimensional capacitance matrix as
input which, in turn, results in a three-dimensional solution.

The real difficulty in applying Dey and Morrison’s three-
dimensional model involves the size of the solution grid. In realistic
simulations of geologic models in three-dimensions for dipole-dipole
pseudosections, the discretization grid generally results in 10,000 to
15,000 nodes at which total potentials are evaluated for multiple
injection points (Dey and Morrison, 1979b). Such discretizations result
in matrices that are rather unwieldy to handle even on very fast main |

frames. Reducing the size of the grid in the third dimension, to
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decrease the size of the solution grid, defeats the purpose of using a

three-dimensional model. This is in contrast to a two-dimensional model
where much smaller grids (100 to 1000 nodes) are usually applied.
Although two-dimensional pseudosection modeling can account for
Jateral inhomogeneities along the section’s axis, a cross section
showing large heterogeneities is almost impossible to match using a hit
or miss "best fit" approach. As an example, the Dey and Morrison
(1979a) model, which was utilized in this report (Appendix B) has a 58 x
16 conductance matrix or 928 electrical conductivity values as input.
When these conductivity values show great variation, the possibility of
matching a model to field data can become a hopeless exercise. In
addition, it should be remembered that the inverse modeling method
described above does not produce a unique solution. Consequently, even
if a reasonable fit is found, the modeler must subjectively decide the
accuracy of his solution. Uncertainty increases in proportion to the

complexity of the modeled earth.



17

v. METHODS

A. Instrumentation

A Soiltest R-60 Earth Resistivity Meter (power unit and D.C.
millivoltmeter) was used to conduct the resistivity soundings. In this
system the power unit is connected to two steel stakes (current
electrodes), from which the battery generated current enters the earth.
The D.C. millivoltmeter is connected to two porous pots filled with
saturated copper sulfate solution (potential electrodes) between which
voltage is measured.

B. Surveying Techniques

Two types of electrode configurations, the Wenner and the dipole-
dipole array, were used to conduct the resistivity surveys presented in
this work. In this study, the Wenner surveys included horizontal
profiles as well as vertical electrical soundings (VES). In the case of
the dipole- dipole configuration, an additional form of presentation,
termed a pseudosection, was also employed.

1. Wenner Electrode Confiquration

As illustrated in Figure 11, four electrodes are placed
along the ground surface (in the order shown) so that an equal distance
(defined as a) exists between any two adjacent electrodes. The equation

for the apparent resistivity measured with the Wenner array is

- s AV
Py = 2na i
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where a is the electrode spacing, AV is the potential difference, and I
is the current.

The depth of investigation for the Wenner array, as determined by
Roy and Apparao (1971) is 11% of the total Wenner electrode spread (or
0.33a). Depth of investigation is defined as that depth at which a thin
horizontal layer of ground contributes the maximum amount to the total
measured signal at the ground surface. It should be noted that the
depth of investigation is not the depth at which the entire measured
signal originates. Obviously, other portions of the earth have
contributed to the signal; however, the largest contribution comes from
the depth of investigation. As a result, depth of investigation aids in
determining horizontal profiling spacings when the general depth of the

object or layer is known.

2. Dipole-Dipole Electrode Confiquration
The dipole-dipole configuration is commonly used in
resistivity surveys. Al’pin et al (1966) developed much of the
necessary theory for this configuration. In this work a polar or axial
dipole-dipole array was employed. Figure 12 illustrates the position of
the current and potential electrodes for the polar dipole-dipole array.
The equation for the apparent resistivity measured with the

dipole-dipole array is

Py =N (n+1)(n+2)a —%!

where a is the distance between electrodes in either dipole, n is an

integer multiple of the distance, AV is the potential difference, and I
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is the current (Figure 12). The dipole-dipole array has one of the
greatest depths of investigation among all electrode configurations used
in surface resistivity methods. Roy and Apparao (1971) found the depth
of investigation for a dipole-dipole array in a homogeneous earth to be
about 20% of the dipole separation. Roy and Apparao (1971) define
dipole separation as the distance between the midpoints of the two
dipoles (see Figure 12). This was in contrast to 11% for a Wenner array
(discussed above) and 12.5% for the Schlumberger configuration, where
these pércentages refer to distance between the current electrodes.
Essentially, this means that in order to get similar information in
resistivity soundings, the Wenner and Schlumberger arrays would have to
be almost twice as long as the dipole-dipole array. The dipole-dipole
configuration, however, requires more electrical power than the Wenner
and Schlumberger arrays. Keller (1966) estimates that this increase may
be an order of magnitude.

3. Vertical Electrical Sounding

In a vertical electrical sounding, the center of the

electrode configuration is fixed. Measurements are made at various
electrode spacings. We assume that wider electrode spacings produce
greater current penetration resulting in more information about deeper
structures. In this report, both Wenner and dipole-dipole vertical
electrical soundings were utilized.

4. Horizontal Profiling

In horizontal profiling, the electrode separation is

maintained at a constant value and the entire array is moved along a

traverse. Readings are taken at uniform intervals along this traverse.
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A lateral inhomogeneity or anomaly will cause a rise or fall in observed
readings. In this study Wenner horizontal resistivity profiles with
spacings of 30 and 50 feet were conducted.
5. Pseudosection

A pseudosection is a sort of electrical resistivity
cross-section. Although any electrical resistivity configuration can be
used, it is most frequently seen in conjunction with the dipole-dipole
array. In a pseudosection, the apparent resistivity values for each
station are plotted on a vertical section, the points of which are the
intersections of 45 degree lines, drawn from the surface, beginning at
the respectivermidpdints of the current and potential dipoles (Telford
et al. 1976). The technique is illustrated in Figure 12. From this
definition, it is easy to see that each vertical line of data in a
pseudosection represents an expansion of the array about a fixed center
and constitutes a VES curve. In addition, if we take each horizontal
line of data in the pseudosection, we find that it comprises a
horizontal profile.

C. Interpretational Techniques

1. Wenner VES Data

The Wenner VES models presented in this paper were developed
using a computer program written by Zohdy and Bisdorf (1975). Within
this program, modified Dar Zarrouk (MDZ) functions are utilized in an
jterative fashion to calculate the proper model parameters. Appendix B
contains a copy of this computer code.

The automatic inversion of vertical electrical soundings using

modified Dar Zarrouk functions is an interesting procedure. Zohdy (1975)
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gives a detailed derivation of the procedure. This derivation has
several typogréphica] errors and care should be taken when comparing its
equations to the computer code of Zohdy and Bisdorf (1975). Briefly,
the points on the digitized VES field curve are considered to be points
on an MDZ curve. The MDZ curve is then solved for layer thicknesses and
resistivities. The total kernel function (TKF) curve for this set of
thicknesses and resistivities is calculated using Sunde’s recursion
formula (Sunde, 1949), and the VES curve is calculated by convolution
using Ghosh’s coefficients (Ghosh, 1971). After comparing this
generated VES curve with the field curve, adjustments are initiated and
a new modified Dar Zarrouk curve is calculated. The process continues
as described above until a fit, within a prescribed tolerance, is
obtained between the generated and field VES curves.

The Zohdy inversion method for VES curves has some distinct
advantages. Unlike most direct interpretation methods, this technique
does not require initial assumptions on the number of layers or about
the layer resistivities or thicknesses. Instead, the VES curve is
digitized (at the rate of six points per logarithmic cycle), and the
number of layers is automatically fixed as equal to the number of points
on the digitized curve. In addition, the technique automatically
smoothes its output, so that most models do not coﬁtain an inordinate
number of layers. Frequently, the model is reduced eveh further by
visual inspection. The automatic smoothing process is especially useful
when inverting a distorted field curve, since the output of the computer

code will result in two solutions: one based on the inversion of the
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distorted field curve and the other on the inversion of the
automatically smoothed VES curve.

There are also some disadvantages to this method; the most
important of these involves the use of the Ghosh filter coefficients
(Ghosh, 1971). Zohdy (1975) reports that for VES curves with steeply
descending branches, the Ghosh filter coefficients will result in
inaccurate apparent resistivity values and therefore mean a poor fit.
Specifically, Zohdy (1975) reported that this becomes a problem when the
ratio of the minimum apparent resistivity to the maximum apparent
resistivity is less than 0.025. While testing the Zohdy and Bisdorf
(1975) code for use in this work, it was discovered that this technique
could not properly invert several of the theoretical curves derived by
Mooney and Wetzel (1956). Not all of these theoretical curves fe11-
exactly into Zohdy’s troublesome category, although all did have
descending branches. In terms of applying the Zohdy method, if the
visual inspection reveals a poor fit between the field and generated VES
curves, or if a known marker bed or depth (such as a clay/sandstone
boundary or a water table) does not correspond with the inverted model’s
interpretation, the technique should not be considered accurate.
Experience has shown that application of the Zohdy computer codes as an

interpretation tool should be decided on a case by case basis.

2. Dipole-Dipole Pseudosections
‘ For the dipole-dipole electrode configuration, the
computational method employed in this work is a finite-difference
technique which solves a three-dimensional potential distribution about

a point source of current located in or on the surface of a half-space
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containing an arbitrary two-dimensional distribution of conductivity.
The theory is well described by Dey and Morrison (1979a) and the
computer code used was published by the same authors three years earlier
(Dey and Morrison, 1976). Appendix B contains a cdpy of the
pseudosection modeling code used in this report.

Essentially, the finite-difference equations are derived for
Poisson’s equation (Dey and Morrison, 1979a, Equation 1) by using an
area discretization of the subsurface. This results in a block-centered
finite-difference grid. The governing equation (Poisson’s) is in three
dimensions, but through a Fourier transform, Dey and Morrison (1979a)
are left with a two dimensional space and a Fourier constant. The
potential values at all points in the grid are simultaneously obtained
for multiple point sources of current injection. In this report, the
multiple point sources of current are the current electrodes used in a
dipole-dipole resistivity survey. The solution to this problem is
obtained using a direct explicit matrix inversion. Since the
capacitance matrix (matrix of input conductivity values) is symmetric
and positive definite, the most practical matrix inversion solution
technique is the Cholesky decomposition method. Finally, this solution
technique achieves a three-dimensional distribution as an answer by
discretizing the Fourier constant into five distinct intervals,
inverting the entire capacitance matrix in each interval using the
Cholesky decomposition technique, and then combining each of the five
discretized solution sets. Although the potential solution is in three
dimensions, it should be kept in mind that the conductivity matrix, the

most important aspect in this work, is a two-dimensional structure. By
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a two-dimensional stfucture, it 'is meant thaf the geologic body _
producing the conductivity matrix is an arbitrary crdss-section with
infinite extent in the perpendicular direction.'

There are two distinct advantages to this modeling method. In a
computational sense, this technique uses very little computer time. The
eloquence of the mathematical derivation along with the utilization of
the Cholesky decomposition method combine to make this computer modeling
method extremely efficient. It should be kept in mind that this
technique does invert five 58 x 16 matrices, so that even on a main-
frame computer the computation is not instantaneous. The other
advantage is the ability to model arbitrary cross-sections of
conductivity. Many electrical techniques, ihc]uding the Zohdy method
previously discussed, must assume horizonta] Tayer stratification. The
Dey and Morrisoﬁ method has no such 1imitation."

Two disadvantages exist for this method. Even though the input
conductivity matrix is only about half the size of the actual inverted
matrix (58 x 16), one of the real problems with this technique is
deriving 928 conductivity values for a heterogeneous pseudosection.
Another problem with pseudosection modeling is the technique’s inability

to handle heterogeneities perpendicular to the cross section.
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VI. PRESENTATION OF RESULTS

A. Vertical Electrical Soundings

1. Wenner VESs

Two Wenner vertical electrical soundings were conducted at the
study site. Figures 13 and 14 are the Wenner resistivity data and Zohdy
VES inversions of these data, centered at locations 15-15 and 15-11,
respectively (Figure 1). The Wenner VES data centered at 15-15 was
conducted before any water infiltration had taken place, whereas the VES
data centered at 15-11 was conducted after three months of soil moisture
jnfiltration. A post-infiltration Wenner VES centered at 15-15 was not
possible because of the two plastic Tiners placed above the
infiltration lines during the construction stage of the project (see
Section 2, Background Information). Most VESs require a considerable
amount of electrode movement; moreover, the Wenner configuration
requires moving all four electrodes after each reading. For the smaller
Wenner electrode spacings (less than 10 feet), reproducing the exact
Tocations of the pre-infiltration measurements would have required
extensive excavation of the infiltration area, to insure penetration of
the plastic liners. Consequently, the post-infiltration Wenner VES was
moved approximately 15 feet south and was centered at 15-11.

Tables 1 and 2 are the computer output from the Zohdy VES

inversions of the Wenner resistivity data centered at 15-15 and 15-11,
respectively. The inverted geoelectric sections can be found under the
columns titled reduced depth (or reduced thickness) and reduced

resistivity. Figures 15 and 16 are the graphical representation of the
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inverted geoelectrical sections presented in Tables 1 and 2,
respectively.

2. Dipole-Dipole VESs

Figures 17 to 21 are the dipole-dipole VESs centered at 15-17.3,
15-19, 15-20.6, 15-22.3, and 15-24, respectively (Figure 1). These data
correspond to 5 vertical lines of data taken from the a-a’ pre-
infiltration pseudosection (Figure 1). The dipole-dipole VESs include
additional data collected using wider electrode spacings than are
presented in the a-a’ pseudosection. These additional data points were
not included in the a-a’ pseudosection because they were only measured
during the pre-infiltration collection phase. Consequently, no
corresponding post-infiltration dipole-dipole VESs are presented.

B. Horizontal Profiles

Two Wenner horizontal resistivity profiles were conducted from
south to north along the a’-a survey line. Figures 22 and 23 are the
Wenner horizontal resistivity profiles with electrode spacings of 30 and
50 feet, respectively. The station numbers refer to the locations of
the resistivity measurements. For both profiles, resistivity
measurements were taken at 10 foot intervals. The locations of the
station numbers corresponding to those presented in Figures 22 and 23
are identified in Figure 24. Both profiles were generated after
approximately 3 months of infiltration.

C. Dipole-Dipole Pseudosections
Pre- and post-infiltration pseudosections were conducted along

5 lines situated on or around the infiltration area (Figure 1). All
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pseudosections presenfed in this work were constrﬁcted using a dipole-
dipole electrode configuration with a dipo]é spacing of 10 feet.
Figure 25 is the legend of resistivity intervals represented in the
graphical illustrations of these pseudosections (Figures 26 to 35).
Figures 26 and 27 are the pre- and post-infiltration pseudosections
conducted along the a-a’, north-south center Tine. Figures 28 and 29,
30 and 31, 32 and 33, and 34 and 35 are the pre- and post-infiltration
pseudosections conducted along the b-b’ (west boundary), c-c¢’ (east
boundary), d-d’ (north boundary), and e-e’ (south boundary) lines,
respective]y. The pre- and post-infiltration dipole-dipole resistivity
measurements and their standard deviations are presented in Appendix A.

Table 3 is the computer output of the numerical inversion of the
pre-infiltration a-a’ pseudosection using a computer code developed by
Dey and Morrison (1976). The first page in Table 3 is the capacitance
matrix for the resistivity model. Each number in the matrix corresponds
to a resistivity value, which is defined at the bottom of the page under
the heading "resistivity key". The second page is the resulting
pseudosection inversion.

The a-a’ (north-south center line) pseudosection required
only four electrode positions directly within the plastic lined
infiltration area. Thus, it was possible to conduct this pseudosection
along the a;a’ Tine for both the pre- and post-infiltration resistivity
measurements. This was achieved by digging four holes through the top
three feet (containing the 2 plastic liners) of the infiltration area at
the approximate pre-infi]tfatioﬁ electrode 1ocatidns. A1l of the other

dipole-dipole post- infiltration resistivity measurements were also
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conducted over the same survey lines as the pre-infiltration
measurements.

Tables 4 through 8 present a comparison between pseudosection
resistivity measureménts and soil moisture réadings collected at the
same locations. The dipole-dipole measurements used to construct the
pseudosections were centered directly over boreﬁo]es which contained
neutron access tubes. As a result, the center vertical column of data
within each pseudosection corresponds to points within the earth in
which the moisture content was measured (Parsons, 1988). As illustrated
in Figure 1, borehole location 15-15 corresponds to the center of the a-
a’ pseudosection. In addition, borehole locations 11-15, 19-15, 15-19,
and 15-11 (Figures 3 to 7) correspond to the center vertical columns 1in
pseudosections b-b’, c-c¢’, d-d’, and e-e’, respectively. Only borehole
15-15 was installed and sampled deep enough in the infiltration area to
supply a complete vertical Tithologic profi]é of the infiltration area.
Consequently, this is the only location where a compTete pre- and post-
infiltration resistivity and soil moisture profiie can be compared to
lithology.

Tables 4 through 8 represent the center vertical columns of
resistivity measurements as well as percent moisture content by volume
of rock and percent saturation at particular depths. The resistivity
measurements and their standard deviations are presented in alternating
rows of two and three measurements. Given the geometric configuration
of dipole-dipole pseudosections used in this study, a resistivity
measurement -directly in line with the centrally located neutron access

tubes was not avai]ab}e for every depth (see Figure 12). For example,
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in the a-a’ pseudosection, a resistivity measurement directly in line
with borehole 15-15 was only available at the n equals 2, 4, 6, 8, 10,
and 12 electrode spacings. As can be seen in Table 4, these depths are
represented by three resistivity values, the center value corresponding
approximately to the neutron tube Tocation and the two values adjacent
to the center column being supplied to better illustrate resistivity
values at these depths. The n equals 1, 3, 5, 7, 9, and 11 electrode
spacings are only repfesented by two values. Theéé depths did not have
a resistivity reading directly in line with the borehole. Consequently,
these two values represent resistivity readings directly adjacent to
borehole 15-15.

The depths corresponding to each horizontal row of resistivity in
Tables 4 through 8 were calculated using the analytical formula for
resistivity depth of investigation derived by Roy and Apparao (1971).
For example, with a dipole-dipole separation (as defined by Roy and
Apparao, see Figure 12) of 20 feet (the n =.1 1ine of data in each
pseudosection) the depth of investigation, using the Roy and Apparao
(1971) technique is approximately 20% of the dipole separation or 4
feet. Thus, the percent moistufe content by volume of rock at the 4
foot depth is compared with the n equals 1, or 20 foot, dipole-dipole
electrode separation directly over the neutron measuring point.

Percent moisture in Tables 4 through 8 is presented in two forms:
percent moisture content by volume of rock and percent saturation. To
calculate this latter value, an average porosity of 43.4% (standard
deviation 6.23%, 68 samples tested) was used for the sediments from

ground surface to 12 feet below the surface (Piedmont Slope facies) and
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a porosity of 36% (standard deviation 4.53%, 21 samples tested) was used
for the sediments from 12 feet below surface to about 27 feet below
ground surface (Fluvial Sand facies). These average porosities, taken
from Parsons (1988), are useful when considering the effect of

saturation.
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VII. DISCUSSION

A. VES Interpretation

Two Wenner vertical electrical soundings (Figures 13 and 14), and
five dipole-dipole vertical electrical soundings (Figures 17 to 21) were
conducted at the study site. Inspection of these curves reveals two
distinct characteristics: the undulatory shape of all the VES field
curves and the sharp maxima/minima (singularities) evident in the
dipole-dipole curves. The undulating nature of the VES curves indicates
heterogeneity beneath the study site. The sharp maximum or minimum
points can be indicative of a buried resistive or conductive layer of
limited lateral extent (Zohdy et al., 1974). As can be seen in Figures
15 and 16, the Zohdy inversions of the field data clearly indicate a
multilayered geoelectric section. It should be noted; however, that the
inverted curves poorly fit the field data.

A comparison of the Zohdy inversion of the pre-infiltration Wenner
resistivity data centered at 15-15 with the 15-15 borehole geologic Tog
(Figures 3 and 15) shows only a poor correlation. Most significantly,
the Zohdy inversion lumped a 13 foot section (the 8 to 21 foot depth
interval from ground surface) containing an alternating sequence of
cobbles and sand with pebbles into a single geoelectric unit. If this’
sounding had been conducted solely to find the Tocation of the water
table, a resolution of this magnitude would be acceptable. However, for
a study involved in monitoring the migration of an infiltration profile,

lumping a sequence of layers into one unit is not satisfactory.
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The post-infiltration Wenner VES centered at 15-11 (Figure 14)
shows a different kind of complexity in curve shape than does the Wenner
sounding centered at 15-15 (Figure 13). This difference may be the’
result of the infiltration profile not being horizontally continuous in
a geoelectric sense, which violates the assumption of lateral
homogeneity necessary in VES inversions. As before, the poor inverted
fit coupled with the complexity of the inverted curve does not lend
itself to a useful interpretation of moisture migration in the vadose
zone. On the whole, resistivity is lower in this post-infiltration
profile (Figure 16).

Since the dipole-dipole configuration is oriented differently from
the Wenner array, similar looking VES field curves would not be
expected. All of the dipole-dipole field curves (Figures 17 to 21),
generated from the a-a’ pre-infiltration pseudosection show the same
general characteristic complexity as do the Wenner field data. However,
the dipole-dipole curves do have a common featufe: all 5 dipole-dipole
curves exhibit a number of sharp maxima and minima (singularities) over
a much smaller range of e]ectrode'spacings than the Wenner field curves.
This difference probably stems from two factors: a greater depth of
investigation (Roy and Apparao, 1971) and a greater sensitivity to
lateral inhomogeneities (Keller, 1966) that characterize the dipole-
dipole array. The south-north oriented geologic cross section presented
in Figure 8 illustrates the lateral inhomogeneities found in the
infiltration area. Specifically, within the 20 to 25 foot depth
interval a silt-clay layer is interrupted directly under the

infiltration area by an interval of fine to coarse sand. This
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particular sequence has undoubtedly affected the dipole-dipole field
data. Therefore, the complexity found in the dipole-dipole vertical
electrical soundings stems from combined effects of lateral
inhomogeneities and of a texture of stacked lenses, both of which are
illustrated in Figures 8 and 9. Curve matching using theoretical curves
derived by E11liot (1974) was not possible due to the complexity of the
field data. It should be noted that Al’pin et al. (1966) did derive
similar looking theoretical dipole-dipole curves for laterally
inhomogeneous earths.

B. Horizontal Profile Interpretation

Two post-infiltration Wenner horizontal resistivity profiles were
conducted along the a’-a south-north center line of the study area. The
most interesting feature in both of these horizontal surveys is the two
resistivity troughs illustrated in each graph (Figures 22 and 23). The
northernmost of these troughs in both figures correspond approximately
to the location of the infiltration area (Figure 24). Given the
increased soil moisture content in this area due to induced
infiltration, lower apparent resistivity values are not surprising.
However, the low values of resistivity evident in the southern portions
of both horizontal profiles can not be attributed to the infiltration
area. These resistivity measurements were not collected directly over
the infiltration area. Therefore, it would not be expected that the
infiltration area would greatly affect these resistivity measurements.
Rather, the low readings indicate an interval of Tow resistivity just
south of the infiltration area. Both these horizontal profiles further

illustrate the lack of lateral homogeneity found at the study area.
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C. Dipole-Dipole Pseudosections

1. Pseudosection Modeling

Without a simplified horizontal geoelectrical model for either the
pre- or post-infiltration portion of the experiment, the weight of
resistivity modeling was placed on the Dey and Morrison (1979a)
integrated finite-difference inversion technique. Because a complete
1ithologi§ column was available for the geometric center of the
infiltration area (Figure 3), the a-a’ center line (Figure 26) was the
focus of the modeling effort. Unfortunately, the previously discussed
factors of dipole-dipole sensitivity to lateral inhomogeneities, coupled
with the inability of two-dimensional pseudosection modeling to account
for heterogeneities in a direction normal to the section, combined to
frustrate this effort.

During the numerical modeling of the a-a’ dipole-dipole
pseudosection over 75 different capacitance matrices were utilized in an
attempt to simulate the field data. Table 3 is the "best fit" model
found among these inversions. Although the fit is reasonable, it is
highly complex and is not unique. Thus, there are no pseudosection
inversions with which the author feels confident enough to use in a
quantitative analysis. |

2. Moisture Content vs Dipole-Dipole Pseudosections

Despite the Tack of a good numerical inversion of the dipole-
dipole pseudosection data, a comparison can be made between portions of
the pseudosections and soil moisture information presented in Parsons

(1988). These comparisons are illustrated in Tables 4 to 8.
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Three general observations are apparent on review of the
information presented in these tables. In the 4 to 6 foot depth
interval, which will be referred to as the upper zone of the
pseudosection, a slight increase in resistivity values is evident
between the pre- and post-infiltration resistivity measurements.
Further, in the 8 to 12 foot depth interval or middle zone of the
pseudosections, a subtle but consistent drop in resistivity can be
observed between the pre- and post-infiltration resistivity
measurements. Finally, the 14 to 26 foot depth'interva1, which will be
referred to as the lower zone of the pseudosection, exhibits a confusing
picture of increasing and decreasing resistivity values where no clear “
trend is apparent.

a. Upper Zone

In Tables 4, 5, and 6 therpseudosection resistivity measurements
show a slight rise in value between pre- and post infiltration. This
subtle increase can be attributed to three factors: the construction at
the site necessary to place the infiltration pip%ng, the probable
jncrease in pore water resistivity as a result of months of
infiltration, and the almost static moisture content observed between
the pre- and post-infiltration measurements in the upper zone. A
second-order effect on post-infiltration resistivity measurements may
have been their minor relocation.

With respect to the construction problem, much activity was
necessary to place the plastic sheets, hay, and piping used to both
reduce evapotranspiration and introduce water into the system. Thus, it

is possible that the construction activity changed some of the
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electrical properties of the soil in the upper (0-6 foot depth) zone of
the site. Additionally, since the construction tended to remove the
Tocation markers used during the first phase of resistivity
measurements, it is possible, for the measurements directly over the
infiltration area, that the post-infiltration readings may have been
offset up to one foot from the previous pre-infiltration locations.
Both of these factors, the first-order changes in resistivity due to
site construction and the second-order changes as a result of
measurement relocations, become less of a problem with depth.

Given the over 5 months of infiltration between the pre- and post-
infiltration resistivity measurements, it is not unreasonable to assume °
a change in pore water resistivity between these readings. In this case
it would appear that the infiltration acted as a flushing mechanism,
moving electrolytic salts to lower zones of the profile. This would
result in a rise of recorded resistivity in the flushed zone of the
profile. Thus, the subtle increases in this zone of the pseudosection
can, in part, be attributed to a chemical factor.

The static moisture content in the upper zone of the profile can
be considered a factor in that it probably did not b]ay a major role in
controlling resistivity changes between the pre- and post-infiltration
event. Intéresting]y, at borehole 11-15 (Table 5) and borehole 19-15
(Table 6), the percent soil moisture was slight]y_reduced; however, these
changes were so small that they did not counteract the increase in

resistivity in the middle zone.
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b. Middle Zone

The middle zone, or the 8 to 12 foot depth interval, exhibits a
drop in resistivity between pre- and post-infiltration measurements in
all the pseudosections. A contributing factor to this change is
probably the great increase in moisture content. This is particularly
evident in the a-a’ pseudosection (Table 4). Pre-infiltration
saturations were generally below 20% for the middle zone of the profile.
Saturations this Tow will not result in much capillary water
interconnection between pores. After 5 months of infiltration, the
saturation had increased to over 30%. Consequently, it is not unlikely
that capillary interconnection of pore water in this zone of the profile
is prevalent. Thus, the subtle drop in resistivity values in this zone
of the profiles can primarily be attributed to soil moisture increases.

Another contributing factor to the decrease in post-infiltration
resistivity values, may be an increase in pore water conductivity. As a
result of electrolytic salts being flushed out of the upper zone, salt
concentrations in the middle zone pore water may have increased. These
salts would Tower the pore water resistivity which would result in lower
post-infiltration resistivity values.

c. Lower Zone

Table 4 illustrates the relationship between moisture content and
resistivity in the 14 to 26 foot depth interval (lower zone of the
pseudosection). Unfortunately, the other boreholes in which neutron
access tubes were placed are not deep enough to yield soil moisture data

at these depths. Thus, Tocation 15-15 (Figure 1), at the center of the
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a-a’ pseudosection, is the only boring with which a comparison between
deep so0il moisture readings and resistivity measurements can be made.

The most striking feature of the 14 to 26 foot depth interval was
the difference between pre- and post-infiltration soil moisture
readings. Before infiltration, with less then 20% of the pore space
filled with water, high resistivity values were measured. This is not
surprising since the tortuosity of the current paths would likely be
great due fo the lack of capillary wedge water interconnection.
However, by the time the second set of resistivity measurements were
taken, saturation ranged from 25 to 39%. If saturation was the only
factor, these values would cause resistivity to decrease as the current
found more direct paths through the pores. Inspection of the results
presented in Table 4 does not bear this out. The underlying assumption
here is that an average porosity is applicable within this depth
interval. However, inspection of Figures 8 and 9 (geologic cross
sections) reveals that the Tithology within this depth interval ranges
from medium sand to coarse sand and gravel. Consequently, the use of an
average porosity in this zone of the profile may be inappropriate.

A better way to analyze this interesting variability in
resistivity could be to evaluate the spatial changes in pore water
resistivity in relation to physical processes occurring within the
pores. As previously discussed, infiltration will flush salts through
the soil profile. As these salts are flushed through the system, their
concentration fronts may not be uniform. Frequently, these non-uniform
fronts are a result of localized heterogeneities in the porous medium

that can stimulate or inhibit unsaturated flow.
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In unsaturated conditions, it often happens that flow is impeded
as water moves from a finer grained to coarser grained material. The
occurrence of a layer of coarse sand or gravel in a finer-textured
profile, may actually impede unsaturated water movement until water
accumulates above the sand or gravel and suction decreases sufficiently
for water to enter the larger pores (Hillel, 1980b). This phenomenon
must surely be occurring at the study site since lenses of fine and
coarse grained materials interfinger throughout the infiltration area.
Differential flow paths result in differential concentration fronts of
electrolytic salts. The lack of any trends evident in the post-
infiltration resistivity measurements for the lTower zone may be a direcf
result of the variability in pore water resistivity.

3. Qualitative Analysis

Up to this point the discussion has focused on the problems
associated with a quantitative analysis of this research. The results
of this study will now be analyzed in a qualitative manner. To
facilitate this qualitative analysis, the dipole-dipole resistivity
measurements will be presented in a grouped interval format.

Figures 26 to 35 are the pre- and post-infiltration pseudosections
for the five lines of dipole-dipole resistivity measurements in this
study. The data in these figures have been grouped into six intervals:
Jess than 200 ohm ft, 201-400 ohm ft, 401-600 ohm ft, 601-800 ohm ft,
801-1000 ohm ft, and greater than 1000 ohm ft (Figure 25). This
grouping was designed in an effort to smooth the data so that
qualitative changes within the two sets of data (pre- and post-

infiltration) could be recognized. Since the highest pre- and post-
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infiltration resistivity contrast was on the order of 200 ohm ft, this
number was chosen as a suitable size for the intervals.

The d-d’ (north boundary) and e-e’ (south boundary) pseudosections,
both of which were conducted from west to east, illustrate the Kean et
al. (1987) assertion that "near-surface moisture changes can be defined
by resistivity". The most significant contrast between these two sets of
resistivity measurements occurs within their first 3 horizontal lines.
Within these readings, a distinct reduction in resistivity is apparent
between the pre- and post-infiltration resistivity measurements. A
reduction in resistivity is also apparent deeper in the pseudosection
(especially d-d’), particularly in the west side of the section. The
deepest portion of these pseudosections (horizontal lines 7 and greater)
did not exhibit a significant change in resistivity during the study.

When considering qualitative contrasts for the north-south oriented
pseudosections (east boundary, c-c’; west boundary, b-b’; and center
line, a-a’) the a-a’ pseudosection exhibits a clear contrast between pre;
and post-infiltration resistivity measurements. This is particularly
true in the middle portion of this section where a significant reduction
in resistivity has occurred. The contrasts become less distinct deeper
within the section.

For the c-c’ and b-b’ pseudosections, no distinct trends between
resistivity measurements are apparent, although a general reduction in
values can be inferred from the data. Interestingly, for the b-b’
pseudosection, the qualitative groupings indicate a rise in values
between pre- and post-infiltration resistivity measurements in the first

3 horizontal lines.
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virI.  CONCLUSIONS

The purpose of this study was to apply earth resistivity
techniques in the monitoring of water infiltration in the vadose zone.
Because the terrain is so very heterogeneous; a quantitative
relationship betWeen moisture content and resistivity could not be
developed. Thué, several conclusions have been‘feached concerning this
work.

The study area exhibits strong lateral inhomogeneity in three
dimensions. These inhomogeneities interfere with the numerical modeling
of resistivity pseudosections. Specifically, although Tateral
inhomogeneities along the survey Tine can be modeled, they can not be
accounted for if they also exist perpendicular to the survey line.

Electrical resistivity measurements in the vadose zone must be
considered in relation to saturation and pore water resistivity. Each
of these factors is capable of changing independently, resulting at
times in contrasting effects on resistivity. In this study, both of
these elements have combined to cloud a quahtitative comparison between
pre- and post-infiltration resistivity measurements.

Construction over the infiltration area and small changes in the
location of pre- and post-infiltration resistivity measurements appear
to have adversely affected the shallower dipole-dipole readings in the
pseudosections. Although these effects can be filtered out through
grouping the data into intervals, they do not readily permit a

comparison between pre- and post-infiltration resistivity measurements.
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These problems became less of a factor as the dipole-dipole electrode
spacings were increased.

Despite the problems encountered in this study, qualitative
decreases in resistivity could be correlated with increases in moisture
content in the sha]]oWer dipole-dipole resistivity measurements.
However, for the deeper resistivity measurements in the pseudosections,
no correlation between pre- and post-infiltration resistivity
measurements was apparent. Because of this qualitative result, it is
felt that in the absence of the.prob1ems encountered. here, an empirical
relationship between moisture content in the vadose zone and resistivity
measurements may be possible for shallow resistivity measurements in the

vadose zone.
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IX. RECOMMENDATIONS

As previously addressed in this paper, a number of factors in this
study have worked to confuse the results and make a quantitative
analysis impossible. Hindsight has supplied this author with several
ideas that may alleviate some of the problems encountered and permit a
simpler, as wei] as more revealing picture of soil water infiltration
monitoring by resistivity.

As can be seen in the preceding sections, because of the
complexity of interpreting resistivity measurements in a partially
saturated media, picking a study site that can be accurately modeled
using resistivity techniques as a three- and four-layered earth would be
beneficial. Such a study site would permit the development of a good
pre-infiltration resistivity model which could then be compared with
post-infiltration resistivity measurements and model. These two models
could be compared with soil moisture information to determine the
relationship between moisture content and resistivity in the vadose
zone.

An important aspect in electrical resistivity surveys is the
effect of observational and instrumental errors on the observed
readings. These type of errors often inhibit the development of
resistivity models of the earth. Two significant papers dealing with
both observational and instrumental errors in relation to a Wenner
electrical resistivity survey are Carpenter and Habberjam (1956) and
Habberjam and Watkins (1967). Their special technique, which in

addition to addressing these errors also quantifies lateral
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inhomogeneities, is termed a "tri-potential method of resistivity
prospecting”. _

In the "tri-potential method" the Wenner array is split into three
configurations. The standard Wenner array, C,P,P,C,, is defined as 2,
while B is defined as C,C,P,P,, and v is oriented C,P,C,P, (where C is a
current electrode and P represents a potential electrode).

Given that the distance between any two adjoining electrodes is
equal (the traditional Wenner electrode spacing), we have the

relationship

where R are the measured resistances. Although slight departures from
the above equation are to be expected, any significant deviations can be
attributed either to instrumental or observational errors.

Observational errors are those errors that can be attributed to
deviations from the common assumptions used in electrical resistivity
surveying (no sources or sinks, lateral homogeneity, etc.). For

example, if we take the cha) reading, we can define the error as
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Even more intriguing is the use by Habberjam and Watkins (1967)
of a Lateral Inhomogeneity Index (L.I.I.). Briefly, it is necessary to

take progressive readings at 2"a and 3.2"a electrode spacings, where n

is an increasing integer (i.e. n=1,2,3...) These readings can be used
by the researcher to construct a "Ladder Network" in which lateral
inhomogeneities in the readinjs can be singled out and corrected.

Given the complex pre-infiltration resistivity inversions
encountered in this study, the "tri-potential method" of geophyical
surveying appears to be a good technique to help select an area for a
resistivity-based vadose zone infiltration study. Ideally, when
geophysically possible, it should be applied by means of two Wenner VES
surveys, centered at the same location, but whose axes are
perpendicular. In this way, lateral information is gathered in four
different directions. Thus, a site with a low LII, that could
realistically be interpreted as a three- or four-layered earth, would
provide a good basis from which later (post-infiltration) readings could
be interpreted.

The most obvious remedy afforded by a study area with a low LII
would be the absence of lithologic lateral effects on pre-infiltration
resistivity measurements. With minimal lateral inhomogeneities present
at a resistivity surveying site, both VES and pseudosection inversion
techniques become easier to apply and interpret. Furthermore, the
simplified VES model (three- or four-layered earth) can be used to
construct the conductivity matrix used in the pre-infiltration

pseudosection inversion.

5
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Procedurally, once a good site is found, a simplified VES model
could be produced by curve fitting with theoretical sets of published
type curves (e.g. Mqoney and Wetzel, 1956; or Elliot, 1974).
Additionally, for three- or four-layered earth models not found with
these sets of type curves, VES inversion techniques developed by Zohdy
(1975) or Petrick et al., (1977) could be used. This initial
interpretation, using the restrictive assumption of lateral homogeneity,
is critical since this model will be used as the basis for the
capacitance matrix of electrical conductivity values used in the
numerical interpretations of the pre-infiltration dipole-dipole
pseudosections. The pre-infiltration conductivity matrix is important
because it is used as the basis from which the changes in the post-
infiltration conductivity marix are interpreted.

It is recognized, however, that because of the nonuniqueness
principle, the "absence of lateral resistivity changes is not proven if
a depth sounding curve matches with a calculated curve that is derived
from a horizontal layer model,"” (Frohlich et al., 1988). Thus, it is
probably prudent to apply an independent technique to verify the
accuracy of the earth model derived from resistivity. Such techniques
as electro-magnetic surveys using Geonics EM31 and EM33 induction
equipment could help check the accuracy of the working model.

Once a good layered-earth model has been verified, the dipole-
dipole pseudosections should be concentrated along the two perpendicular
Wenner VES lines. In this way, the initial Wenner surveys can be used
to fortify the pseudosection modeling. In addition, the vertical lines

of the pseudosection, which can be considered dipole-dipole VES curves,
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can also be utilized to check the Wenner VES modeling results as well as
to construct the conductivity matrix used in the pseudosection inversion
models.

Several complete pseudosections shou]d'be conducted, in a short
time interval, along the two perpendicular ]inest Consequently, the
equipment as well as measuring and recording teéhniques used by Kean et
al. (1987) appear most appropriate. A difficulty encountered in this
study was the time-consuming and Tlaborious process of resistivity
surveying. Kean et al. (1987) used equipment that, after initial setup
and measurement, could be kept in place for the duration of the study.
The use of a central circuit board and data logger was significant in
that it cut down on electrode movement. Obviously, not all resistivity
equipment can be utilized in this fashion and it is recognized that even
with instruments capable of this application, a proper resistivity
survey is a laborious exercise. However, the need_fof numerous
resistivity measurements can be the motivating force behind innovative
measuring techniques and devices. |

An important factor in pseudosection modeling is the choice of the
dipole spacing in the dipole-dipole configuration (Figure 3).

Optimally, this distance should be chosen to get the maximum amount of
pseudosection grid points within the area of interest. Logically, the
more points within the study area the greater is the chance of detecting
the moisture front as it moves through the system. Additionally,
numerous points along a vertical Tine in a pseudosection enable clearer
dipole-dipole VES curves to be constructed. Since these curves are used

as both a supplement and a verification for the conductivity matrix used



48

during the finite-difference modeling of the pseudosection, it is
important that they be properly defined.

On the other hand, a finely meshed grid can cause problems in the
numerical modeling of the system in question. As seen in this study,
when the earth shows a large degree of electrical heterogeneity, the
capacitance matrix used in the numerical simulation of the field data
becomes complex. This problem manifests itself when a finely meshed
pseudosection grid 1s'used, since a dense grid wiT] require a more
complex conductivity matrix than a less dense grid. Thus, conflicting
requirements exist with respect to the numerical modeling of resistivity
pseudosections. On the one hand, the researcher must strive to maximize
the number of points in the pseudosection; however, the denser the
pseudosection grid, the harder it is to model the system numerically.

With these conflicting requirements in mind, the electrode spacing
in the dipole-dipole configuration should be chosen such that the n=6
spacings penetrate the deepest zone of interest in the study area. The
n=6 spacing is recommended by Edwards (1977) as the maximum spacing for
a dipole-dipole pseudosection. The actual decision regarding the
electrode spacing can be aided with the Roy and Apparao (1971) method of
determining depth of invespigation. They found, -for a dipole-dipole
array, that the depth of investigation is approximately 20% of the
dipole separation. For example, in a study area with a water table at
30 feet, a pseudosection of n=1 through n=6 could be constructed with an
electrode spacing of 20 feet. This would result in approximate depths
of investigation of 8, 12, 16, 20, 24, and 28 feet for n=1 through 6,

respectively.
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Although the n=1 through 6 dipole-dipole measurements will be the
only ones modeled numericaT]y, deeper readings can be taken. With an
adequate power supply - dipole-dipole has a large power requirement
(Keller, 1966) - additional pseudosection measurements, from n=7 onward,
can be taken until the signal becomes too weak to take accurate
readings. These additional points can be used to construct the dipole-
dipole VES curves. In this way, the researcher has a properly sized
pseudosection (Edwards, 1977) and ample vertical readings to properly

construct dipoTe-dipo]e VES curves.
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'x1. FIGURES

Figure 1. Map of the Study Area.

Figure 2. Lithologic Legend.

Figure 3. Borehole Geologic Log Located at 15-15.

Figure 4. Borehole Geologic Log Located at 11-15.

Figure 5. Borehole Geologic Log Located at 19-15.

Figure 6. Borehole Geologic Log Located at 15-19.

Figure 7. Borehole Geologic Log Located at 15-11.

Figure 8. Geologic Cross Section (South-North) of the Infiltration

study area.

Figure 9. Geologic Cross Section (West-East) of the infiltration
study area.

| Figure 10. Water in an Unsaturated Coarse-Textured Soil.
Figure 11. Wenner Electrode Configuration.

Figure 12. Dipole-dipole Electrode Configuration and Pseudosection
Format.

Figure 13. Pre-infiltration Wenner Vertical Electrical Sounding
Centered at 15-15.

Figure 14. Post-infiltration Wenner Vertical Electrical Sounding
Centered at 15-11.

Figure 15. Geoelectric Section from Zohdy Inversion of Wenner VES
Centered at 15-15.

Figure 16. Geolectric Section from Zohdy Inversion of Wenner VES
Centerd at 15-11.

Figure 17. Dipole-dipole VES Derived from the a-a’ line, North-South
Center Line.

Figure 18. Dipole-dipole VES Derived from the a-a’ 1ine, North-South
Center Line.

Figure 19. Dipole-dipole VES Derived from the a-a’ line, North-Souther
Center Line.
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Dipole-dipole VES Derived from the a-a’ line, North-South
Center Line.

Dipole-dipole VES Derived from the a-a’ 1line, North-South
Center Line. : :

Post-infiltration Wenner Horizontal Resistivity Profile
(Electrode Spacing = 30 feet).

Post-infiltration Wenner Horizontal Resistivity Profile
(Electrode Spacing = 50 feet).

Map of the Study Area.
Pseudosection Resistivity Legend.

Pre-infiltration Pseudosection Conducted Along a-a’ North-
South Center Line.

Post-infiltration Pseudosection Conducted Along a-a’ North-
South Center Line.

Pre-infiltration Pseudosection Conducted Along b-b’ Western
Boundary of the Infiltration Area.

Post-infiltration Pseudosection Conducted along b-b’ Western
Boundary of the Infiltration Area.

Pre-infiltration Pseudosection Conducted Along c-c’ Eastern
Boundary of the Infiltration Area.

Post-infiltration Pseudosection Conducted Along c-c’ Eastern
Boundary of the Infiltration Area.

Pre-infiltration Pseudosection Conducted Along d-d’ Northern
Boundary of the Infiltration Area.

Post-infiltration Pseudosection Conducted along d-d’
Northern Boundary of the Infiltration Area.

Pre-infiltration Pseudosection Conducted Along e-e’ Southern
Boundary of the Infiltration Area.

Post-infiltration Pseudosection Conducted Along e-e¢’
Southern Boundary of the Infiltration Area.
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LITHOLOGIC LEGEND

- Fine Sand, Silt

Fine Sand, Silt, Pebbles

z=-='| Fine-Medium Sand, Silt

Fine-Coarse Sand, Silt

Fine-Coarse Sand, Silt, Pebbles

Fine Sand

Fine-Medium Sand

. '« .| Fine-Coarse Sand

{o;.? Fine-Coarse Sand, Pebbles

== Clay, Silt, Fine Sand
| Cobbles

Figure 2 Legend of 1ithologic symbols for Figures 3 to 9 (adapted from
Parsons (1988)).



BOREHOLE GEOLOGIC LOG

LOCATION: 15-i5

DATUM EL: 4650.65 feet
GND SURFACE EL: 4647.83 feet

D8O (ft) DESCRIPTION

Red brown fine-coarse angular sand, silt, 10% angular
\, fine-medium pebbles

Red brown fine sand, silt

Red brown fine-coarse sand, silt, 5% rounded and angular
A, Medium pebbles

Red brown fine-medium sand, silt

Poorly sorted red brown fine-coarse sand, 20% rounded

fine-coarse pebbles
\cobbm

Poorly sorted tan fine-coarse sand, 10-20% rounded
fine-coarse pebbles

Cobbles

Poorly sorted tan fine-coarse sand, 10-20% rounded
fine-coarse pebbles

Well sorted tan fine sand

Pebbles, cobbles

Poorly sorted orange fire-coarse sand

Clean tan fine-medium subangular sand

24 g '...'.'.
27 - el

27 1 :_’;_‘“o:‘ Pooriy sorted tan fine-coarse sand, 10X fine-coarse angular
30 pebbles

. . » » - - —

Figure 3 Borehole geologic log located at 15-15 (see Figure 1). DBD = depth below
datum. DBGS = depth below ground surface. (adapted from Parsons (1988))
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goma
BOREHQLE GEOLOGIC LOG
LOCATION: |{~15
DATUM EL: 4650.65 feet
GND SURFACE EL: 4447.83 feet
080 (FT) DESCRIPTION
0
0BGS (FT)
O 3-/_..~\...‘ - -
'_° ‘ '. - Red brown fine-coarse sand, silt, 2% rounded pebbles
3 :- ‘;'B-o
6 W= - :
S es Lo’ o od Red brown fine-coarse sand, silt, 20% rounded medium
pebbles
9
12 4 .
15 4
18 1
21 4
24 4
27
30 1
w

Figure 4 Borehole geologic log located at 11-15 (see Figure 1). DBD = depth below
datum. DBGS = depth below ground- surface. (adapted from Parsons (1988))
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w
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BOREHOLE GEQLOGIC LOG

LOCATION: 19-i8
DATUM EL: 4650.65 feet
GND SURFACE EL: 4647.53 feet

CESCRIPTION

12 7

157

18 4

219

24 1

27 <

30

Brown angular fine-coarse sand, silt,
\subromded pebbles

20% fine-medium

e sssess ol \ Red brown fine-coarse sand, silt

Red brown fine-medium sand, silt

Figure 5 Borehole geologic log located at 19-15 (see Figure 1).
DBGS = depth below ground surface. (adapted from Parsons (1988))

datum.

DBD = depth below




60

goa—
BOREHOLE GEOLOGIC LOG
D
LOCATION: 15-19
DATUM EL: 4650.65 feet
GND SURFACE EL: 4647.83 feet
o080 (FT) DESCRIPTION
(o]
osgs (FT)
0 — e
3 = S Red brown fine-medium sand, silt
n & & el —
ok N\ Red brown fine sand, siit
37 64-;‘.‘.'.:..“.4 | Red brown fine-coarse sand. silt
'é':.'?::;?‘ \Rcd brown fine-medium sand, silt
6 - 9 pesscsesd Red brown fine-cosrse sand, silt, 2% rounded fine pebbles
12 1
157
18
21 4
24 -
27
30 1

Figure 6 Borehole geologic log Tocated at 15-19 (see Figure 1). DBD = depth below
datum. DBGS = depth below ground surface. (adapted from Parsons (1988))
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BOREHOLE GEOLOGIC LOG

LOCATION: i5-11
DATUM EL: 4650.65 feet

GND SURFACE EL: 4647.83 feet

080 (FT) DESCRIPTION
o ,
0BGS (FfT)

0 3

Red brown fine sand, silt

r¥
N
AR

N

Red brown fine-medium sand, silt

()]
]
g
® §) -
AL
[ d
'3
[
ol
[ ]

12 4

15 4

187

217

24 4

274

30 1

R

Figure 7 Borehole geologic log located at 15-11 (see Figure 1). DBD = depth below
datum. DBGS = depth below ground surface. (adapted from Parsons (1988))
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DIPOLE-DIPOLE

ELECTRODE CONFIGURATION

and pseudosection format

n=

Plotted pseudosection value for
electrodes as shown Plotted pseudosection value for

Figure 12

electrodes 2,3 and 6,7

Dipole-dipole electrode configuration and graphical construction
for locating data points in a pseudosection. I = current, V =
potential (or measuring) dipole, a = dipole spacing, na = dipole
separation, where n = integer multiple of dipole spacing (adapted
from Telford et. al. (1976)), and r = dipole separation as defined
by Roy and Apparao (1971).
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GEOELECTRICAL SECTION

Zohdy inversion of Wenner VES
centered at location 15-15

Thickness Resistivity Depth (bgs)
(feet) (ohm feet) (feet)
1.3 < 915 (1).3
0.9 < 333 5 3
1.4 <::::j 207 3.7
4.0 678
7.7ﬂ
13.0 </ 1151 Z
20.8
14.2 <[ 549 Z
35.0
1o.o/z 110 7
\\\\\\ 45.0
23.6 <Z 72 V4
68.7
) <.7 o) 7/
o0

Figure 15 Geoelectrical section derived using Zohdy and Bisdorf (1975)
numerical inversion of Wenner VES centered at borehole 15-15
(see Figure 1). Inverted model is also presented in Table 1.
bgs = below ground surface
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GEOELECTRICAL SECTION

Zohdy inversion of Wenner VES
centered at location 15-11

Depth (bgs)

Thickness Resistivity
(feet) (ohm feet) (feet)
0
1.0 < 146 1.0
8.4 < : 277
9.5
9.9 <Z 152
19.4
48.6 Z 643
68.0
. 37.6 <( 236
105.7
0 <T 80
o

Figure 16 Geoelectrical section derived using Zohdy and Bisdorf (1975)
numerical inversion of Wenner VES centered at borehole 15-11

(see Figure 1).

bgs

Inverted model is also presented in Table 2.
below ground surface
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‘Figure 24 Map of study area. Numbered locations correspond to station
numbers found on Figure 22 (Wenner horizontal profile, a =
30) and Figure 23 (Wenner horizontal profile, a = 50).
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COMPUTER PROGRAMS FOR THE FORWARD CALCULATION AND
AUTOMATIC INVERSION OF WENNER SOUNDING CURVES

BY A. A. R. ZOHDY AND R. J. BISDORF

THIS ALGORITHM UTILIZES MODIFIED DAR ZARROUK FUNCTIONS IN AN
ITERATIVE FASHION TO INVERT FIELD DATA

INTEGER DD, XDD, NN

CHARACTER
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSTION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

TITLE*50
ALMF(50),DF(50),A(50),D(2),HF(50),PF(50)

PMF(50) ,HFF(50) ,DPF(50),PFF(50) -
AL(50),P(50),H(50),DP(50),SLOPE(50),SZ(50)
E(10,50),PA(10,50),VESX(10,50),VESS(50)
VESF(50),NERR(50)

XAMDA(100),VV(100),PS(19),PPS(50)
DZD(50),DZR(50),SS(50),TS(50)
SUMLSQ(50,50) , SMLSFF(50)
NERMIN(10),VESFF(50),HFINAL(50) ,DFINAL(50), PFINAL(50)

DOUBLE PRECISION VV,XRATIO,XAMDA,TS,SS,XMIN, XMAX

INPUT FILE = inweni, OUTPUT FILE = outweni

OPEN(99,FILE='inweni')

REWIND(99)

OPEN(25,FILE='outweni')

D(1)=0.0

D(2)=0.0

DO 50 I=1,50

A(I)=0.0
PS(I)=0.0

CONTINUE

MAXLYR = MAXIMUM NUMBER OF LAYERS IN THE REDUCED MODEL.
PROGRAM WILL ATTEMPT 3 TIMES TO REDUCE THE NUMBER OF
LAYERS IN THE DETAILED MODEL. IF UNSPECIFIED MAXLYR=10,.

RHOMIN = THE MINIMUM VALUE FOR THE TRUE RESISTIVITY OF ANY LAYER
‘ IN THE DETAILED MODEL. IF UNSPECIFIED RHOMIN=0 WHICH
GUARANTEES THE GENERATION OF LAYERS ONLY WITH POSITIVE
RESISTIVITIES. RHOMIN SHOULD NOT BE GREATER THEN ONE-HALF
THE VALUE OF THE MINIMUM APPARENT RESISTIVITY.
IFORCE = IF IFORCE=0, THEN THE PROGRAM WILL REJECT HIGHLY

DISTORTED CURVES. IF IFQRCE=1, THEN INTERPRETATION WILL
BE COMPLETED REGARDLESS OF THE DISTORTION.

MAXLYR=10

KIM=]1

RHOMIN=0.0

IFORCE=0



QOO0 00

545

55

1111

2222

ITYPE

READ( 99,
READ( 99,
READ(99,

126

IF ITYPE=1 THEN INPUT FORMAT AS FOLLOWS

NN=NUMBER OF LOGARITHMICALLY SPACED POINTS (SEE BELOW)
TITLE=TITLE OF STUDY

RADMIN=SMATLEST ELECTRODE SPACING

RADMAX=LARGEST ELECTRODE SPACING

PS(1,NN)=SUCESSIVE DIGITIZED (6 LOGARITHMICALLY EQUALLY
SPACED POINTS PER DECADE) APPARENT RESISTIVITY VALUES FROM
RADMIN TO RADMAX

IF ITYPE=0 THEN INPUT FORMAT AS FOLLOWS

NN=NUMBER OF FIELD MEASUREMENTS

TITLE=TITLE OF STUDY

A(1l,NN)=WENNER ELECTRODE SPACINGS USED IN THE STUDY .
PS(1,NN)=APPARENT RESISTIVITY CORRESPONDING TO EACH A(1l,NN)

*)ITYPE
*) NN
8) TITLE

FORMAT (AS50)
IF(ITYPE.EQ. 1) THEN

ENDIF
IF(ITYPE

ENDIF
READ( 99,
WRITE(25

READ( 99, * YRADMIN, RADMAX

.EQ.0)THEN
READ(99, *)(A(I),I=1,NN)

*)(PS(I),I=1,NN)
,545) TITLE

FORMAT (A20)

IF(A(L).
WRITE(6,
WRITE(6,
WRITE(6,
WRITE(6,
WRITE(6,
WRITE(6,
WRITE(25
WRITE (25
WRITE (25
WRITE (25

IF(A(l).
CALL NPT
CALL NPT

EQ.0.0) GO TO 5005
*)

*)y TITLE

*)
*)(A(I),I=1,NN)
*)
*Y(PS(I),I=1,NN)
¢ *)
I*)(A(I)II=11NN)
')
+*)(PS(I),I=1,NN)

EQ.0.0) GO TO 5005
S(PS,NP)
S(A,NA)

IF(NA.EQ.NP) GO TO 1111

WRITE(6,

55)

FORMAT(/,10X, 'NUMBER OF DIGITIZED POINTS IS WRONG')

N=NP
IF(NA.GT

.NP) N=NA

CALL LDAT(A,PS,N)

GO TO 10

0

CALL LDAT(A,PS,NA)

NRADII=N
LAYERS=N
N=NP

DO 2222

CONTINUE
XRATIO=D
GO TO 50

P
P

I=1,NRADII
AL(I)=A(I)

EXP(DLOG(10.0D0)/3.0D0)
02



QNN

NN

a0

aOOn

5005

180

190

200

52

53

301

1180

1190

1200

5006

5002

24

25

COMPUTE ELECTRODE SPACINGS

AT(1)=RADMIN

XRATIO=DEXP (DLOG(10.0D0)/6.0D0)
EPSLON=0.02*RADMAX

I=2

AT.(I)=XRATIO*AL(I-1)

IF (ABS(RADMAX-ATL(I)).LT.EPSLON) GO TO 200
I=I+1 :
GO TO 180

NRADII=I

N=NRADII

LAYERS=N

IF(KLM.GT.1) GO TO 301

CALL NPTS(PS,NP)

IF(NP.EQ.N) GO TO 53

IF(N.LT.(I-1)) N=I-1

WRITE(6,55)

CALL LDAT(AL,PS,N)

GO TO 100

CALL LDAT(AL,PS,N)

COMPUTE KERNEL FUNCTION SPACINGS

XMIN=(RADMIN/XRATIO**16.0)*1.36
XMAX=( RADMAX*XRATIO**2.0)*1.36
XAMDA (1)=XMIN
I=2
XAMDA ( I)=XRATIO*XAMDA(I-1)
IF(XMAX-XAMDA(I)) 1200,1200,1190
I=I+1
GO TO 1180
NRAD=I
IF(KIM.EQ.1l) GO TO 5002
CALL KERNEL(LYR,XAMDA,HFINAL, PFINAL,VV,NRAD)
CALL CONVES(AL,VV,VESS,NRAD,NRADII)
DO 5006 I=1,N

PS(I)=VESS(I)
CONTINUE

COMPUTE SLOPES AND FITTING TOLERANCE SZ ON OBSERVED VES

SZ(1)=5.0
DO 21 I=2,N
SLOPE(I)=ALOG(PS(I)/PS(I-1))/ALOG(AL(I)/AL(I-1))
IF(SLOPE(I).LE.1.0) GO TO 23
WRITE(25,24)
FORMAT (10X, 'WARNING.. SLOPE EXCEEDS +45 DEGREES',//)
IF(SLOPE(I).LE.1.4) GO TO 23
IF(IFORCE.EQ.1) GO TO 23

WRITE(25,25)

FORMAT (10X, 'SLOPE EXCEEDS +1.4, CURVE DISTORTED: LATERAL EFFECT,

+OR DIGITIZING ERRCR',//)

23
21

GO TO 100
SZ(I)=2.0+(SLOPE(I)*SLOPE(I))
CONTINUE

COMPUTE LAYERING WITH MDZ FROM VES



oleNe!

QOO0

ana

201

40
110

203
202

33

128
ITERAT=0

XZ=1.0

IK=0

IKK=0

YZ=0.20

=1
DO 201 I=1,N

PPS(I)=PS(I)

CONTINUE

GO TO 202

CONTINUE

IK=IK+1

XzZ=Xz-0.1

IF(IK.GT.9) GO TO 600

IF(IKK.EQ.1) GO TO 600

IF(ITERAT.GT.50) GO TO 600
DO 203 I=1,N

PS(I)=PPS(I)

CONTINUE

ID=0

J=1

IF(J.GT.10) GO TO 20

THIS MEANS ITERATION STOPS AFTER A MAXIMUN OF 10 ITERATIONS

P(1)=PS(1)

H(1)=AL(1)*XZ

DO 1 I=2,N
IF(PS(I).LT.PS(I-1)) GO TO 3
F=AL(I)*PS(I)-AL(I-1)*PS(I-1)
Q=AL(I)/PS(I)-AL(I-1)/PS(I-1)
IF(Q.LE.0.0) GO TO 90
P(I)=SQRT(F/Q)

H(I)=P(I)*Q*XZ

GO TO 98

USE MDZ-L AND REGULA FALSI METHOD
TO UNDERESTIMATE WE LET P(I)=RHOMIN

X=0.6
P(I)=RHOMIN
Q=AL(I)/PS(I)-AL(I-1)/PS({I-1)
Al=((AL(I-1)+P(I)*Q)/AL(I))*((AL(I-1)+P(I)*Q)/AL(I))
B1=AL(I-1)*PS(I-1)+(P(I)*P(I))*Q
Cl=AL(I)/PS(I)
D1=(AL(I-1)+P(I)*Q)

D1=D1*D1
AAl=(Al*(B1*Cl/D1l)**X)-1.0
IF(AAL.LT.0.0) GO TO 5

X=X-YZ

IF(X.LT.0.0) GO TO 20

GO TO 33

CONTINUE

TO OVERESTIMATE WE LET P(I)=PS(I)

P(I)=PS(I)
Al=((AL(I-1)+P(I)*Q)/AL(I))*((AL(I-1)+P(I)*Q)/AL(I))
B1=AL(I-1)*PS(I-1)+(P(I)*P(I))*Q

Cl=AL(I)/PS(I)



oNeoXeXe!

a0 oo

a0

108

90

99

92

96

D1=(AL(I~1)+P(I)*Q) 129

D1=D1*D1

BB=(Al*(B1*C1l/D1)**X)-1

Y1=0.0 |
P(I)=(BB*Y1-AA1*P(I))/(BB-AAl) |
DD=0 |
CONTINUE

Al=( (AL(I‘1)+P(I)*Q)/AL(I))*((AL(I—I)"’P(I)*Q)/AL(I))
B1=AL(I-1)*PS(I-1)+(P(I)*P(I))*Q

Cl=AL(I)/PS(I)

D1=(AL(I-1)+P(I)*Q)

D1=D1#*D1l

CC=(Al*(B1*C1l,/D1)**X)-1

IF(CC.GT.~1.0E-03) GO TO 7

P(I)=(CC*PS(I)~BB*P(I))/(CC~BB)

IF(DD.GT.15) GO TO 108

THE NUMBER 15 IN ABOVE STATEMENT DESIGNATES A MAXIMUM
OF 15 REGULA FALSI ITERATIONS

DD=DD+1

GO TO 6
CONTINUE
CONTINUE
H(I)=P(I)*Q*XZ
GO TO 98

USE MDZ-T
XX=0.9
TO OVERESTIMATE WE USE P(I)=50*PS(I)

P(I)=50.0%PS(I)
XA=(AL(I-1)+F/P(I))*(AL(I-1)+F/P(I))
XB=PS(I)*(AL(I-1)/PS(I-1)+F/(P(I)*P(I)))*AL(I)
XC=(XA/XB) **XX

XBB=( ((AL(I)*AL(I))/XA)*XC)~1.0

IF(XBB.GT.0.0) GO TO 92

XX=XX-0.1

IF(XX.LT.0.0) GO TO 20

GO TO 99

CONTINUE

TO UNDERESTIMATE WE USE P(I)=PS(I)

XA=(AL(I-1)+F/PS(I))*(AL(I-1)+F/PS(I))
XB=PS(I)*(AL(I~1)/PS(I-1)+F/(PS(I)*PS(I)))*AL(I)
XC=(XA/XB) **XX

XAA=( ((AL(I)*AL(I))/XA)*XC)-1.0
P(I)=(XBB*PS(I)-XAA*P(I))/(XBB-XAA)

XDD=0

CONTINUE

XA=(AL(I-1)+F/P(I))*(AL(I-1)+F/P(1))
XB=PS(I)*(AL(I-1)/PS(I-1)+F/(P(I)*P(I)))*AL(I)
XC=(XA/XB) **XX

XCC=( ((AL(I)*AL(I))/XA)*XC)-1.0
IF(XCC.LT.0.001) GO TO 97
P(I)=(XCC*PS(I)-XAA*P(I))/(XCC-XAA)
IF(XDD.GT.100) GO TO 106
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106
97

28

3001

4001

41

60
777
778

776
61

12

11

130
XDD=XDD+1
GO TO 96
CONTINUE
CONTINUE
H(I)=(F/P(I))*XZ
CONTINUE
CONTINUE'
H(N)=999999
SUMH=0.0
DO 28 I=1,N
SUMH=SUMH+H(I)
DP (I)=SUMH
CONTINUE

ITERAT=ITERAT+1

IF(A(1).GT.0.0) GO TO 3001

CALL KERNEL(LAYERS, XAMDA,H,P,VV,NRAD)

CALL CONVES(AL,VV,VESS,NRAD,NRADIT)

GO TO 4001

CALL CONVLV(AL,XRATIO,LAYERS,H,P,VESS,VV,NRADII)

ADJUST MDZ AND ITERATE

NERR(J)=0
DO 10 I=1,N
VESX(J,I)=VESS(I)
E(J,I)=((PPS(I)~VESX(J,I))/PPS(I))*100.0
Z=ABS(E(J,I))
IF(Z-Sz(I)) 10,10,41
NERR(J)=NERR(J)+1
CONTINUE
IF(VESX(J,1).LE.0.0) GO TO 777
SUMLSQ(J,1)=(ALOG10(PPS(1))-ALOGLO(VESX(J,1)))**2.0
DO 60 I=2,N _
IF(VESX(J,I).LE.0.0) GO TO 777
SUMLSQ(J, I)=(ALOG1O(PPS(I))~ALOGLO(VESX(J,I)))**2.0+SUMLSQ(J,I-1)
CONTINUE
GO TO 776
WRITE(25,778)
FORMAT(///10X, 'GHOSH COEFFICIENTS RESULT IN NEGATIVE APPARENT
+ RESISTIVITIES...PROBLEM CANNOT BE SOLVED BY CONVOLUTION')
GO TO 100
SMLS=SUMLSQ(J, N)
WRITE(25,61) SMLS
FORMAT (10X, 'SUM OF SQUARED RESIDUALS=',Fl10.5)
WRITE(6,*)'NERR(J) =',6NERR(J)
IF(NERR(J)-1) 534,12,12
IF(J.GT.1) GO TO 17
DO 11 I=1,N
VESF(I)=VESX(J,I)
HFF(I)=H(I)
DPF(I)=DP(I)
PFF(I)=P(I)
PA(J,I)=PPS(I)**2.0/VESX(J,I)
PS(I)=PA(J,I)
CONTINUE
NERRF=NERR (J)
SMLSQF=SMLS
J=J+1
GO TO 9
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605

18

19

15

26

16

20

881

801
802

803

181

804

534

603

KK=1 131
IF(SUMLSQ(J,N).LE.SUMLSQ(J-KK,N)) GO TO 605
GO TO 15

KK=KK+1

IF(KK.EQ.J) GO TO 18

GO TO 604

DO 19 I=1,N
VESF(I)=VESX(J,I)
HFF(I)=H(I)
DPF(I)=DP(I)
PFF(I)=P(I)

CONTINUE

NERRF=NERR (J)
SMLSQF=SUMLSQ(J, N)
GO TO 26

ID=ID+1

IF(ID.GT.5) GO TO 20
DO 16 I=1,N
PA(J,I)=(PPS(I)*PA(J~1,I))/VESX(J,I)
PS(I)=PA(J,I)
CONTINUE

J=J+1

GO TO 9
NERMIN(L)=NERRF
SMLSFF(L)=SMLSQF
IF(L.GT.1) GO TO 801
MERF=NERMIN(L)
SLSQ=SMLSFF(L)

DO 881 I=1,N
VESFF(I)=VESF(I)
HFINAL(I)=HFF(I)
DFINAL(I)=DPF(I)
PFINAL(I)=PFF(I)

CONTINUE

L=L+1

GO TO 40

LI=1

IF(SMLSFF(L).LE.SMLSFF(L-LL)) GO TO 803
L=1+1

IKK=IKK+1

GO TO 40

LI=LI+1

IF(LL.EQ.L) GO TO 181

GO TO 802

DO 804 I=1,N
VESFF(I)=VESF(I)
HFINAL(I)=HFF(I)
DFINAL(I)=DPF(I)
PFINAL(I)=PFF(I)

CONTINUE

MERF=NERMIN(L)
SLSQ=SMLSFF (L)
L=L+1

GO TO 40

DO 603 I=1,N
VESFF(I)=VESX(J,I)
HFINAL(I)=H(I)
DFINAL(I)=DP(I)
PFINAL(I)=P(I)

CONTINUE
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600
5050

333
334
1301
532
533
1201
1202

4000

5100
6001

5000

66
5001

5003

7001

8001

9001

1166
500

IF(KIM.EQ.1) GO TO 5001 132

WRITE(25,532)
WRITE(25,533) (HFINAL(T),DFINAL(I),PFINAL(I), I=1,N)
WRITE(25,1301)
WRITE(25,1201)(AL(I),VESFF(I),PPS(I),I=1,N)
FORMAT( /21X, 'A',14X, 'CALC. VES',10X,'SMOOTHED VES'/)
FORMAT (13X, 'THICKNESS',7X, 'DEPTH',4X, 'RESISTIVITY', /)
FORMAT(10X,3F12.4)
FORMAT (5X,3F20.5)
CALL DZ(HFINAL,PFINAL,N,DZR,DZD,TS,SS)
AD=2.0
CALL DZSMTH(DZD,DZR,TS,SS,N,ALMF, PMF, NBR, AD)
CALL LAYER(ALMF, PMF,HF, PF,NBR,DF, ITEST)
IF(ITEST.GT.0) GO TO 100
IF(A(1).GT.0.0) GO TO 5100
CALL KERNEL(NBR,XAMDA,HF,PF,VV,NRAD)
CALL CONVES(AL,VV,VESS,NRAD,NRADIT)
GO TO 6001
CALL CONVLV(AL,XRATIO,NBR,HF,PF,VESS,VV,NRADIT)
WRITE(25,1301)
WRITE(25,1201) (AL(I),VESS(I),PPS(I),I=1,N)
IF(NBR.LE.MAXLYR) GO TO 5000
AD=AD*2.0
IF(AD.GT.8.0) GO TO 5000
GO TO 4000
DO 68 I=1,N
DZR(I)=DZR(I)/10.0
DO 66 I=1,NBR
PMF(I)=PMF(I)/10.0
GO TO 100
IF(KLM.GT.1l) GO TO 100
KLM=KLM+1
WRITE(25,5003) ,
FORMAT( /10X, 'SOLUTION TO SMOOTHED VES CURVE FOLLOWS'//)
IF(A(1).GT.0.0) GO TO 7001
RADMIN=RADMIN/10.0
LYR=LAYERS
GO TO 5005
AL(1)=A(1)/10.0
DO 8001 I=2,6
AL(I)=AL(I-1)*EXP(ALOG(10.0)/6.0)
CONTINUE '
DO 9001 I=7,NRADII+6
AL(I)=A(I-6)
CONTINUE
NRADII=NRADII+6
LYR=LAYERS
CALL CONVLV (AL, XRATIO,LYR,HFINAL, PFINAL,VESS,VV,NRADII)
N=NRADII
LAYERS=NRADII
DO 1166 I=1,NRADII
PS(I)=VESS(I)
CONTINUE
GO TO 5002
STOP
END

Khkkkkxxkkxkkxk %k ** SUBROUTINE KERNEL*** %k k*kkkkkkkkkkk%*k

CALCULATES THE TKF (TOTAL KERNEL FUNCTION) CURVE FROM THE
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XK(1)=-0.0067D 00
XK(2)= 0.0179D 00
XK(3)=—0.0258D 00
XK(4)= 0.0416D 00
XK(5)=—0.0935D 00
XK(6)= 0.3473D 00
XK(7)=—-1.3341D 00
XK(8)= 1.5662D 00
XK(9)= 0.4582D 00
XK(10)= 0.0284D 00

VV1=KERNEL FUNCTION FOR FIRST STEP
VV2=KERNEL FUNCTION FOR SECOND SET, WHICH IS DISPLACED TO THE
RIGHT OF THE FIRST SET BT (EXP OF LN10/6)

OO0 n

WRITE(6,*)'IN CONVES'
DO 5 I=1,100
VV1(I)=0.0
VV2(I)=0.0

5 CONTINUE
NODD=0
NEVEN=0

TEST TO FIND IF NRAD IS EVEN OR ODD

oNeXe!

IF(MOD(NRAD,2).EQ.0) GO TO 15
NODD=NRAD
NN=(NODD+1) /2
GO TO 16
15 NEVEN=NRAD
NN=NEVEN /2
GO TO 18
16 DO 20 J=1,NN
VV1(JT)=VV(2*J-1)
20 CONTINUE
MM=NN-1
17 DO 22 J=1,MM
VV2(J)=VV(2*J)
22 CONTINUE
GO TO 24
18 DO 23 J=1,NN
VV1(J)=VV(2*J-1)
VV2(J)=VV(2*J)
23 CONTINUE
24 CONTINUE
M=0
L~=1
LL=10
11 DO 9 J=IL,LL
XVES1(J)=VV1(J)*XK(J-M)
XVES2(J)=VV2(J)*XK(JI-M)
9 CONTINUE
SMVES1=0.0
SMVES2=0.0
DO 10 J=L,LL
SMVES1=XVES1(J)+SMVES1
-~ SMVES2=XVES2(J)+SMVES2
10 CONTINUE
VES1(L)=SMVES1
VES2(L)=SMVES?2
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CONTINUE

L=L+1
LI=LL+1
M=M+1
IF(LL.GT.NRAD) GO TO 12
GO TO 11
12 IF(NRAD.EQ.NODD) GO TO 14
GO TO 13
14 DO 31 J=1,NN
VES({2*J—-1)=SNGL(VES1(J))
31 CONTINUE
DO 32 J=1,MM
VES(2*J)=SNGL(VES2(J))
32 CONTINUE
GO TO 34
13 DO 33 J=1,NN
VES(2*J-1)=SNGL(VES1(J))
VES(2*J)=SNGL(VES2(J))

33 CONTINUE
34 CONTINUE
o WRITE(25,200)

C200 FORMAT (19X, 'AB/2',20X, 'VES'//)
c WRITE(25,201)
c201 FORMAT(5X, 2F20.5)

500 RETURN
END
C .
C kkxkkkkkkhkkkkkkk*x*x*x*SUBROUTINE DZ**kkxxkkkkkhkkhhkxhkkkkkx*
C
C CALCULATES THE FUNDAMENTAL POINTS (POINTS DESIGNATING THE END OF
C ONE AND THE BEGINNING OF ANOTHER LAYER) ON A DZ (DAR ZARROUK) CURVE,
C FROM LAYER THICKNESSES AND RESISTIVITIES.
cC

SUBROUTINE DZ(TH,RE,N,R,AL,TS,SS)
DIMENSION AL(50),R(50),TH(50),RE(50),SS(50),TS(50)
DOUBLE PRECISION TS,SS
WRITE(6,*) "IN DZ'
SUMS=0.0
SUMT=0.0
DO 100 I=1,N
SUMS=SUMS+TH(I)/RE(I)
SS(I)=DBLE(SUMS)
SUMT=SUMT+TH(I)*RE(I)
TS(I)=DBLE(SUMT)
R(I)=SQRT(SUMT/SUMS)
AL(I)=SQRT(SUMT*SUMS)
100  CONTINUE
WRITE(25,96)
96 FORMAT(/16X,'DZ DEPTH',10X,'DZ RESISTIVITY',69X,'SUM T', 617X,
+'SUM S'/)
WRITE(25,97) (AL(I),R(I),TS(I),SS(I),I=1,N)
97  FORMAT(5X,4F20.5)
RETURN
END

*kkkkkkkkhkxk**x*GUBROUTINE LAYER***kkkkkkkkkkkkkhx k%

CALCULATES LAYER THICKNESSES AND RESISTIVITIES FRCM COORDINATES
OF POINTS ON A DZ CURVE.

QOO0 nN
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SUBROUTINE LAYER(LZF,PMF,H,P,LS,D,ITEST)
REAL LZF(100)
DIMENSION PMF(100),H(100),D(100),P(100)
DIMENSION T(100),S(100),TS(100),SS(100)
DOUBLE PRECISION TS,SS,T,S
WRITE(6,*) 'IN LAYER'
ITEST=0
P(1)=PMF(1)
H(1)=LZF(1)
TS(1)=DBLE(P(1l))*DBLE(H(1))
SS(1)=DBLE(H(1l))/DBLE(P(1))
DO 1 I=2,LS
TS(I)=DBLE(LZF(I))*DBLE(PMF(I))
SS(I)=DBLE(LZF(I))/DBLE(PMF(I))
T(I)=TS(I)-TS(I-1)
S(I)=SS(I)-SS(I-1)
RATIO=T(I)/S(I)
IF(RATIO.LE.0.0) GO TO 2
P(I)=SNGL(DSQRT(T(I)/S(I)))
H(I)=SNGL(S(I)*DBLE(P(I)))
D(1)=H(1)
D(I)=D(I~1)+H(I)

1  CONTINUE
WRITE(25,10)

10 FORMAT(//20X, 'REDUCED THICKNESS', 20X, 'REDUCED DEPTH',

+ 10X, 'REDUCED RESISTIVITY')

WRITE(25,20)(H(I),D(I),P(I),I=1,LS)

20 FORMAT(10X,F25.5,10X,F25.5,F25.5)

GO TO 3

2  ITEST=ITEST+1

3  RETURN
END

kkkkkkkkkkxk**x*%*** SUBROUTINE DZSMTH****k*kkkkkkkkkkkx Xk Kk x %

SMOOTHES DZ CURVE FOR DETAILED MODEIL, TO REDUCE NUMBER OF LAYERS.

N0 n0n

SUBROUTINE DZSMTH(ALM,PM,TS,SS,N,ALMFF, PMFF, NBR, AD)
DIMENSION SLP(50),AIM(50),PM(50),TS(50),SS(50),PMA(50)
DIMENSION SUMTS(50),SUMSS(50),SUMS2(50),SMTSSS(50)
DIMENSION P(50),SSA(50),TSA(50),ALMEPS(50),ALMSPE(50)
DIMENSION PMAEPS(50),PMASPE(50),A0(50),A1(50)
DIMENSION AQOF(50),AlF(50),PF(50),AIMFF(50),PMFF(50)
EQUIVALENCE(NPAl,NAPL)

DOUBLE PRECISION TS,SS,SUMTS,SUMSS,SUMS2, SMTSSS

COMPUTE FITTING TOLERENCE FOR THE FIRST DZ BRANCH

Q0N

WRITE(6,*) 'IN DZSMTH'
EPSLON=1.02
AZ=1.5%%(0.20)

101 DO 100 I=1,N

100 FT(I)=AZ
NBR=1
NTAP=1
SUMLOG (1)=ALOG(PM(1))
PMA(1)=PM(1)
NAP1=2
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SUMLOG ( NAP1)=ALOG(PM(T) ) +SUMLOG(NAP1-1)
ASUM=SUMLOG (NAP1) /NAP1
PMA (NAP1 )=EXP (ASUM)

I=1

DIVIAT(I)=PM(I)/PMA(NAPL)
IF(DIVIAT(I).GT.FT(I)) GO TO 3
IF(DIVIAT(I).LT.1/FT(I)) GO TO 3
IF(I.EQ.NAPl) GO TO 2

I=I+1

GO TO 4

NTAP=NTAP+1
IF(NTAP.EQ.N) GO TO 6
I=1+1

NAP1=NAP1l+1

GO TO 1

PMFF (1)=PMA(NTAP)

AIMFF(1)=99999999.

WRITE(25,200)

FORMAT (10X, ' PROBLEM REDUCED TO SEMI-INFINITE MEDIUM

+ WITH RESISTIVITY OF')

WRITE(25,201) PMF(1)
FORMAT( /10X, 1F10.5)
GO TO 600

PMFF (1)=PMA (NTAP)

PF(1)=PMA(NTAP)

AOF(NBR)=0.0

A1F(NBR)=PMFF(1)**2.0

NRP=N-NTAP

IF(NRP.EQ.1) GO TO 8

GO TO 7

NBR=NBR+1

PF (NBR)=SNGL(DSQRT( (TS(N)-TS(N-1))/(SS(N)—-SS(N-1))))
RATIO=PF (NBR)/PF(NBR-1)

IF(RATIO.GE.1.1) GO TO 340

IF(RATIO.LE.0.9) GO TO 340

NBR=NBR-1

PMFF ( NBR ) =PF (NBR)

AIMFF (NBR)=9999999.

GO TO 500

AlF(NBR)=PF(NBR)**2.0

AOF (NBR)=SNGL(TS(N)—( (DBLE(PF (NBR)*%2.0) ) *SS(N) ) )

AT INTERSECTION OF NBR AND NBR—-1 BRANCHES

SSA(NBR-1)=(AOF(NBR)—~AOF (NBR-1))/(A1F(NBR-1)-AlF(NBR))
TSA(NBR-1)=A0F (NBR-1)+A1F (NBR-1)*SSA(NBR-1)
PMFF ( NBR—1)=SQRT( TSA(NBR-1) /SSA(NBR-1))
ALMFF (NBR-1)=SQRT(TSA(NBR-1)*SSA(NBR-1))
AIMFF (NBR)=99999999.

PMFF ( NBR)=PF (NBR)

GO TO 500

I=NTAP

NAP1=1

SUMTS (NAP1)=TS(I)

SUMSS (NAP1)=SS(I)
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SUMS2(NAP1)=SS(I)**2.0

SMTSSS (NAP1)=TS(I)*SS(I)

GO TO 21

IF(NAP1.GT.2) GO TO 17

TS (NTAP)=DBLE (ALM(NTAP) ) *DBLE ( PMA (NTAP) )
SS(NTAP )=DBLE (ALM(NTAP) ) /DBLE ( PMA (NTAP) )
GO TO 7

NAP1=NAP1+1

NAP=NAP1+NTAP

I=I+1

SUMTS (NAP1)=TS(I)+SUMTS(NAP1-1)

SUMSS (NAP1)=SS(I)+SUMSS(NAP1-1)

SUMS2 (NAP1)=SS(I)**2.0+SUMS2(NAP1-1)
SMTSSS(NAP1)=(TS(I)*SS(I))+SMTSSS(NAP1-1)
AA=SNGL (NAP1*SMTSSS (NAP1)—-SUMTS (NAP1)*SUMSS (NAP1))
BB=SNGL(NAP1*SUMS2(NAP1)-SUMSS(NAP1)**2.0)
IF(BB.LE.0.0) GO TO 19

. A1(NAP1)=AA/BB

A0 (NAP1)=SNGL( (SUMTS (NAP1)-DBLE(A1l(NAP1) ) *SUMSS(NAP1))/NAP1)
IF(AL(NAP1).LE.0.0) GO TO 19
P(NAP1)=SQRT(Al(NAP1))

AT INTERSECTION

SSA(NBR)=(AO0 (NAP1)-AOF(NBR))/(ALF(NBR)-Al(NAP1l))
TSA(NBR)=AOF (NBR)+A1F (NBR) *SSA (NBR)
TSASSA=TSA(NBR)*SSA (NBR)
IF(TSASSA.LE.0.0) GO TO 17

ALMF (NPA1)=SQRT(TSA(NBR)*SSA(NBR) )
PMF (NPA1)=SQRT(TSA(NBR)/SSA(NBR))
IF(ALMF(NAP1).GT.ALM(I)) GO TO 40
GO TO 203

IF(NAP1.GT.2) GO TO 17

ALMF (NAP1)=ATM(I-1)

PMF (NAP1)=PMA(I-1)
IF(PM(I).GT.PM(I-1)) GO TO 20
P(NAP1)=PMF(NAP1)/50.0

GO TO 203
P (NAP1)=PMF(NAP1)*50.0
CONTINUE
IF(NAP1.GT.2) GO TO 32
GO TO 21

IF (AILMF (NAPl) /ALM(NTAP).LE.1.0) GO TO 33
IF (ALMF (NAP1).GE.ALM(NTAP+1)) GO TO 17
I=NTAP+1

NAP=NAP1+NTAP-1

GO TO 14

IF(NTAP.EQ.1) GO TO 38
IF(ALMF(NAP1).LT.ALM(NTAP-1)) GO TO 17
IF (ALM(NTAP) /ALMF (NAP1) .GT.EPSLON) GO TO 34
GO TO 38

I=NTAP

NAP=NAP1+NTAP-1

COMPUTE SLOPES OF DZ AND FITTING TOLERANCES

AIMEPS( I)=ALM(I)*EPSLON
AIMSPE(I)=ALM(I)/EPSLON

Z1=—AIMF (NAP1)* (P(NAP1)**2.0~PMF(NAP1)**2.0)
72=(-Z1)**2.0
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ZEPS=4.0* ( (ALMEPS(I)*PMF(NAP1)*P(NAPl))**2.0)
PMAEPS(I)=(Z1+SQRT(Z2+ZEPS))/(2.0*AILMEPS(T)*PMF (NAP1))
ZSPE=4 .0* ( (ALMSPE(I)*PMF (NAP1)*P(NAPL))**2.0)
PMASPE(I)=(Z1+SQRT(Z2+ZSPE))/(2.0*AIMSPE(I)*PMF(NAP1))
Z=4.0*( (ALM(I)*PMF(NAP1)*P(NAP1))**2,0)
PMA(I)=(ZL1+SQRT(Z2+Z))/(2.0*AIM(I)*PMF(NAP1))
SLP(I)=ALOGLO(PMAEPS(I)/PMASPE(I))/ALOG10(ALMEPS(I)/ALMSPE(I))
Bl=1.5707963*SLP(I)

B2=COS(B1)

B3=((2.0+SLP(I))*B2)/10.0

FT(I)=AD**B3

DIVIAT(I)=PM(I)/PMA(I)

IF(DIVIAT(I).GT.FT(I)) GO TO 15
IF(DIVIAT(I).LT.1.0/FT(I)) GO TO 15
IF(I.EQ.NAP) GO TO 11

I=I+1

GO TO 14

IF(NAP.EQ.N) GO TO 16

GO TO 21

IF(NAP.EQ. (NAP1+NTAP-1)) GO TO 10
NAP=NAP1+NTAP-2

GO TO 10

NAP=NAP-1

NAP1=NAP1-1

NTAP=NAP

AIMFF (NBR)=ALMF ( NPAl)

PMFF (NBR ) =PMF (NAP1)

NBR=NBR+1

PF(NBR)=P (NAP1)

AOF(NBR)=A0(NAP1)

AlF(NBR)=Al(NAP1)

NRP=N-NTAP

GO TO 22

NBR=NBR+1

PF(NBR)=P (NAP1)

PMFF ( NBR—1)=PMF (NAP1)

AIMFF (NBR-1)=ALMF (NAP1)
AIMFF(NBR)=99999999.0

PMFF (NBR)=PF (NBR)

WRITE(25,501)

FORMAT(//20X, 'REDUCED DZ DEPTH',5X, 'REDUCED DZ RESISTIVITY')
WRITE(25,502) (ALMFF(I),PMFF(I),I=1,NBR)
FORMAT(10X,F20.5,5X,F20.5)

RETURN

END

khkkrxkRKRkKk***k*k*kk*x*x SQUBROUTINE NPTS *kkkkkkhkkkkkhkk*kkx

POINT COUNTER FOR ARRAY X

SUBROUTINE NPTS(X,N)
DIMENSION X(50)
DO 33 I=1,50
IF(X(I).EQ.0.0) GO TO 2
CONTINUE
I=I+1
N=I-1
RETURN
END
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Ak kkkk kKX KIRKKI KK KK SUBROUTINE 1DAT kkkkkkhkkRKXKKKKITXK

OUTPUT CHECK OF A (ELECTRODE SPACINGS) AND P (APPARENT RESISTIVITIES)

SUBROUTINE LDAT(A,P,N)
DIMENSION A(50),P(50)
WRITE(25,31)

WRITE(25,32) (A(I),P(I), I=1,N)
FORMAT(/,6X,'A',9X, '0OBS'//)
FORMAT(1X,F9.3,2X,F9.3)
RETURN

END

********************SUBROUTINE CONVLV********************

CALCULATES THE APPARENT RESISTITITIES ON A VES CURVE BY TWICE
CONVOLVING GHOSH'S INVERSE FILTER COEFFICIENTS (GHOSH GEOPHYS.
PROSP., V.19, NO. 4, pp.769-775) WITH THE TKF CURVE WHICH IS
CALCULATED BY SUBROUTINE KERNEL.

NOTE: RESULTS IN A WENNER SOUNDING CURVE THAT IS CALCULATED
AT ANY PERSCRIBED WENNER ELECTRODE SPACINGS.

SUBROUTINE CONVEV(AB,XRATIO,LAYERS,THICK,RESIST,VES,VV,NRADII)

DIMENSION AB(SO),THICK(SO),RESIST(SO),VV(lOO),VES(SO),
XK(lO),XAMDA(lOO),XVES(lOO)

DOUBLE PRECISION XMIN, XAMDA , XRATIO, VV

XK(1)=—0.0067D 00

XK(2)= 0.0179D 00

XK(3)=—0.0253D 00

XK(4)= 0.0416D 00

XK (5)=—0.0935D 00

XK(6)= 0.3473D 00

XK(7)=-1.3341D 00

XK(8)= 1.5662D 00

XK(9)= 0.4582D 00

XK(10)=0.0284D 00

KERNEL FUNCTION SPACINGS

WRITE(6,*)'IN CONVLV'
K=1

-1

XMIN=(AB(I)/XRATIO**8.0D 00)*1.36D 00

XAMDA( 1)=XMIN

I=2 |

IF(I.GT.10) GO TO 406

XAMDA ( I )=XAMDA ( I-1)*XRATIO

I=1+1

GO TO 405

NRAD=10

CALL KERNEL(LAYERS,XAMDA,THICK,RESIST,VV,NRAD)

SUMVES=0.0

po 1 J=1,10
XVES(J)=VV(J) *XK(J)
SUMVES=XVES (J) +SUMVES

CONTINUE

VES(K)=SUMVES

K=K+1

IF(I.LE.NRADII) GO TO 410



CONTINUE
RETURN
END
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PROGRAM RESIS2

author - Abhijit Dey Engineering Geoscience
University of California, Berkeley

INTEGER OPTPUN

DIMENSION A(1808,17),RS(1808,23),UL(1808,17)
DIMENSION VKY(5,23,23),V(23,23)

DIMENSION X(113),Z(16),YKY(5),ITXP(23),IRXP(23),
YSHIFT(1),ZSHIFT(1l),ZRSHIF(1l),ICODE(16,113),RESIS(10),
PFE(lO),IXS(23),IZS(23),COND(ll3,16),DX(ll2),
DZ(15),ICONFG(1l),NSQURC(23)

DIMENSION XMAT(1808)

character title(18)

COMMON /PACKl/ INCLIN, ISHIFT,NRLIM

COMMON /GANGl/ OPTPUN, THETA, IPRINT

Kk kkkkkxkkkkxxkkxxkx*x input data files **xxxxkkkkkkkkkkkkkx

OPEN(31,FILE="'for3l"')
OPEN(32,FILE="'for32")

Axkkkkkkkkxxxkxxkkxx output data files *xxkxkkkkkkxkkkkkxkk

OPEN(87 ,FILE="'for87"')
OPEN(88,FILE='for88"')

Ak Kkkkkkkkkkxkk*k*kx Input parameters **kkxkkxxkk Ak kk kX KKk Kk

nnodx—-number of nodes in x-direction

nnodz-number of nodes in z-direction

nky-number of discrete (Fourier) Ky values

nxbeg-in x-direction, the first node to be defined
ie. all nodes to the left of nxbeg are assigned the same value
as nxbeg

nxend-in x-direction, the last node to be defined
ie. all nodes to the right of nxend are assigned the same value
as nxend

narray-number of resistivity survey configurations

xscal-scale factor in x-direction of mesh

zscal-scale factor in z-direction of mesh

unit-scaling factor of the mesh distances in terms of the unit length
for the electrode configuration

dx-separation of nodes in x-direction

dz-separation of nodes in z-direction

yky-array of discrete (Fourier) Ky values

iconfg-array of code numbers for various electrode configurations

l=collinear dipole-dipole and pole-dipole
2=reconnaissance bipole-dipole
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ntx-number of transmitting electrode nodes (projected at z=0)
nzsft-number of surface and subsurface layers of transmitter
electrodes
nrx-number of receiver electrode nodes (projected at z=0)
nysft-number of lines shifted along strike where receiver
electrodes are located (including y=0 line)
nzrsft-number of surface and subsurface layers of receiver
electrodes
itxp-array of node numbers of the receiver electrodes
irxp-array of node numbers of the transmitter electrodes
zshift-array of depths of the layers of transmitting electrodes
zrshif-array of depths of layers of receiver electrodes
yshift-array of values of y-shifts for various receiver lines
(in terms of unit)
ipkey 0=if only resistivity response is sought
0>1if resistivity as well as percent frequency effects
responses are sought
resis-array of intrinsic resistivity values (0-9)
pfe-array of intrinsic percent frequency effect values (0-9)
icode-array of coded resistivity distribution in the lower
Xx—-z plane in terms of symbols 0-9 '

KKK KRR R KRR A KRR R A AR AR KRR Rk A A ARk Rk Ak Ak khk kA Ak A Ak kkhkkhkh kAR A KAk kKA X AR ckkk %

READ(31,*) NNODX,NNODZ,NKY,NXBEG,NXEND,NARRAY , XSCAL, ZSCAL, UNIT
NELX=NNODX-1
NELZ=NNODZ-1
READ(31,*) (DX(I),I=1,NELX)
READ(31,*) (Dz(J),J=1,NELZ)
READ(31,*) (YKY(K),K=1,NKY)
READ(31,*) (ICONFG(I),I=1,NARRAY)
READ(31,*) NTX,NZSFT,NRX,NYSFT,NZRSFT
READ(31,*) (ITXP(I),I=1,NTX)
READ(31,*) (IRXP(J),J=1,NRX)
READ(31,*) (ZSHIFT(I),I=1,NZSFT)
READ(31,*) (ZRSHIF(I),I=1,NZRSFT)
READ(31,*) (YSHIFT(K),K=1,NYSFT)
READ(31,*) IPKEY
READ(32,*) (RESIS(I),I=1,10)
READ(32,*) (PFE(I),I=1,10)

DO 103 I=1,NNODZ

READ(32,2) (ICODE(I,J),J=NXBEG,NXEND)

CONTINUE

FORMAT (2X,58(I1))

**xx*x READ IN THE SPECIAL INPUT DATA FOR CERTAIN ARRAYS ***x*x%%

IF(NARRAY.EQ.1.AND.ICONFG(1l).EQ.1)THEN
READ(32,*) OPTPUN, IPRINT,THETA

ENDIF

IF(NARRAY.EQ.1.AND.ICONFG(1l).EQ.2)THEN
READ(32,*) INCLIN,ISHIFT,NRLIM

ENDIF

READ(32,*) MORE

*kxkkxkkxxkxx PRINT IMAGES OF THE INPUT DATA ****kkxkkkkx
WRITE(87,99)

FORMAT(1H1,//,25X, 'IMAGES OF THE INPUT DATA '//)
IF(MORE.NE.O) GO TO 998
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WRITE(87,*) NNODX,NNODZ,NKY,NXBEG,NXEND,NARRAY,XSCAL,ZSCAL,UNIT
WRITE(87,*) (DX(I),I=1,NELX)
WRITE(87,*) (DZ(J),J=1,NELZ)
WRITE(87,*) (YKY(K),K=1,NKY)
WRITE(87,*) (ICONFG(I),I=1,NARRAY)
WRITE(87,*) NTX,NZSFT,NRX, NYSFT, NZRSFT
WRITE(87,*) (ITXP(I), I=1,NTX)
WRITE(87,*) (IRXP(J),J=1,NRX)
WRITE(87,*) (ZSHIFT(I),I=1,NZSFT)
WRITE(87,*) (ZRSHIF(I),I=1,NZRSFT)
WRITE(87,%) (YSHIFT(K),K=1,NYSFT)
WRITE(87,*) IPKEY,(TITLE(I),I=1,3)
WRITE(87,*) (PFE(I),I=1,10)
WRITE(88, *)
WRITE(88,*) 'RESISTIVITY MODEL'
WRITE (88, *)
DO 133 I=1,NNODZ
WRITE(88,28) (ICODE(I,J),J=NXBEG,NXEND)
continue
format(2x,5811)
WRITE(88,*)
WRITE(88,*)
write(SB,*)'resistivity key'
WRITE(88, *)
write(88,29)RESIS(l),RESIS(Z),RESIS(3),RESIS(4),RESIS(5)
write(88,30)RESIS(6),RESIS(7),RESIS(8),RESIS(9),RESIS(lO)
FORMAT(lX,'O=’,F6.l,2X,'l=',F6.l,2X,'2=',F6.l,2X,‘3=',F6.1,2X,
"4=',f6.1)
FORMAT(lX,'5=’,F6.1,2X,‘6=',F6.l,2X,‘7=',F6.l,2X,‘8=’,F9.l,2X,
'9="',f9.1)
WRITE(87,*) MORE
WRITE(87,*) OPTPUN, IPRINT, THETA
WRITE(87,*) INCLIN,ISHIFT,NRLIM
NTXTOT=NTX*NZSFT
NRXTIT=NRX*NZRSFT
NRXTOT=NRX*NZRSFT*NYSFT
ipcnt=0

*** SETTING UP THE SCALED DISTANCES AND ASSIGNED CONDUCTIVITY #*x*=*
DISTRIBUTION AT EACH ELEMENT IN THE MESH

IF(MORE.NE.0) GO TO 1303
X(1)=0.00
Z(1)=0.00
DO 104 IX=2,NNODX
' X(IX)=X(IX-1)+(DX(IX-1)/XSCAL)
DO 105 IZ=2,NNODZ
Z(IZ)=%(Iz-1)+(DZ(Iz~1)/ZSCAL)
CONTINUE
IPCNT=1
DO 106 IZ=1,NNODZ
DO 106 IX=1,NNODX
IF(IPCNT.NE.1) GO TO 107
IF(IX.LT.NXBEG) ICODE(IZ,IX)=ICODE(IZ,NXBEG)
IF(IX.GT.NXEND) ICODE(IZ,IX)=ICODE(IZ,NXEND)
IRESX=ICODE(IZ,IX)+1
COND(IX,IZ)=1.0/RESIS(IRESX)
GO TO 106
IRESX=ICODE(IZ,IX)+1
COND(IX,IZ)=(1.0+PFE(IRESX)/100.0)/RESIS(IRESX)
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CONTINUE
IF(MORE.NE.O.OR.IPCNT.NE.1) GO TO 1304
DO 130 IX=1,NELX
DX(IX)=DX(IX)/XSCAL
DO 135 IZ=1,NELZ
DZ(I1Z)=DZ(IZ)/ZSCAL
WRITE(87,1045)
FORMAT(5X, 'NODE DISTANCES IN MESH UNITS FROM THE ORGIN LOCATED

1 AT THE TOP, LEFT HAND CORNER OF THE MESH',6//)

WRITE(87,1040) (IX,X(IX),DX(IX), IX=1,NNODX)
FORMAT(2X, 'IX=',I5,3X, 'X(IX)=',F10.3,3X, 'DX(IX)=',F10.3)
WRITE(87,1050) (IZ,Z(IZ),DZ(IZ), I1Z=1,NNODZ)
FORMAT(2X,'Iz=',I5,3X,'2(Iz)=',F10.3,3X, 'DZ(IZ)=",F10.3)
CONTINUE
DO 111 IZTX=1,NZSFT
ZSFT=ZSHIFT(IZTX) *UNIT
DO 112 INDXZ=1,NNODZ
IF(ZSFT.EQ.Z(INDXZ)) IZSQ=INDXZ
CONTINUE
DO 114 IXTX=1,NTX
NTXCNT=( IZTX-1) *NTX+IXTX
IXS (NTXCNT)=ITXP ( IXTX)
IZS (NTXCNT)=IZSQ
CONTINUE
CONTINUE
NNODE=NNODX*NNODZ
NBAND=2*NNODZ+1
NNTOT=NNODE*NTXCNT
NLNA=NNODE* (NNODZ+1)
NBAND2=NNODZ+1
WRITE(87,1171) NLNA,NNTOT
FORMAT(1H1, 25X, 'DIMENSION OF A SHOULD BE AT LEAST =',bI20,
5X,/,24X, 'DIMENSION OF RS SHOULD BE AT LEAST =',I20)
DO 110 IKY=1,NKY
YLAMDA=YKY ( IKY)

*x*** FINITE DIFFERENCE SOLUTION FOR EACH OF THE KY VALUES #***%x%

write(6,*) 'entering slvent #',iky

CALL SLVENT(X,Z,COND, IXS,IZS,YLAMDA,DX,DZ,NNODX,NNODZ, IKY,
NTXCNT ,NTX, ITXP,NRX, IRXP,NZRSFT, ZRSHIF,NKY, NTXTOT, NRXTIT,
NNTOT, NBAND, NBAND2, NNODE , NLNA, VKY,UNIT, A, RS, XMAT, UL, NSOURC)
CONTINUE

write(6,*) 'out of slvent'

*** INVERSE TRANSFORMATION OF THE POTENTIALS IN (X,KY,Z) SPACE #*=*x*
WITH APPROPRIATE Y-SHIFTS

ICPT .EQ. O INTEGRATION BY SUBSECTION EXPONENTIAL FIT
IOPT .NE. O INTEGRATION BY TRAPEZOIDAL RULE
IOPT=0

write(6,*)'entering ytran'

CALL YTRAN(NRX,NYSFT,NZRSFT,YSHIFT,NTX,NZSFT, NKY,NTXTOT,
NRXTOT, NRXTIT, YKY,VKY,V,IOPT,UNIT)

write(6,*)'leaving ytran'

***xx* SORT OUT COMBINATIONS OF THE POINT SOURCE POTENTIALS ***%x
FOR VARIOUS ELECTRODE ARRAYS

IF(IPKEY.EQ.O) IPINDX=0
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IF(IPKEY.NE.O.AND.IPCNT.EQ.1)IPINDX=0

IF(IPKEY.NE.O.AND.IPCNT.EQ.2)IPINDX=1

write(6,*)'entering arrays'

CALL ARRAYS(X,Z,NARRAY,ICONFG,TITLE,NTXTOT,NRXTOT,NTX,NRX,
ITXP,IRXP,NZSFT,NYSFT,NZRSFT,ZSHIFT,YSHIFT,ZRSHIF,IPINDX,V,
NNODX, NNODZ , UNIT)

write(6,*)'leaving arrays’

STOP

END

FEKKK KK kK kkAkkkkkkx*x*x SUBROUTINE SOLVENT **kkkkkxkk*%%%*

THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM AND IT SETS UP

AND SOLVES THE CAPACITANCE MATRIX EQUATIONS IN (X,KY,Z) SPACE

FOR ALL SPECIFIED TRANSMITTING NODES SIMULTANEOUSLY. THE SOLUTION
PROVIDES THE POTENTIAL DISTRIBUTION AT EACH NODE IN THE GRID AND
THEIR VALUES AT RELEVANT RECEIVER NODES ARE SELECTED AND STORED.

SUBROUTINE SLVENT(X,Z,COND,IXS,IZS,YLAMDA,DX,DZ, NNODX,
NNODZ , IKY , NTXCNT, NTX, ITXP, NRX, IRXP,NZRSFT, ZRSHIF, NKY,
NTXTOT, NRXTIT, NNTOT, NBAND, NBAND2, NNODE, NLNA , VKY , UNIT,
A,RS,XMAT, UL, NSOURC) ,
DIMENSION A(NNODE,NBAND2),RS(NNODE,NTXCNT), XMAT ( NNODE),
VKY (NKY, NTXTOT, NRXTIT) , UL(NNODE, NBANB2 )
DIMENSION COND(113,16),DX(112),Dz(15), ITXP(NTX), IRXP(NRX),
X(113),%(16),ZRSHIF (1), IXS(NTXTOT), IZS(NTXTOT),
. C(33),NSOURC(NTX)
EXTERNAL AKO,AK1
DATA PI/3.141592853/
IPC=0
AMP=2.0*PI
XCENTR=(X(1)+X(NNODX))/2.0
NELX=NNODX-1
NELZ=NNODZ-1
DO 100 ITX=1,NTXCNT
IXSP=IXS(ITX)
IZSP=IZS(ITX)
NSOURC ( ITX)=(IXSP—1)*NNODZ+IZSP
DO 100 IX=1,NNODX
DO 100 IZ=1,NNODZ
N=(IX-1)*NNODZ+IZ
RS(N,ITX)=0.00
IF(N.NE.NSOURC(ITX)) GO TO 100
| RS(N, ITX)=AMP/2.00
CONTINUE

**xx*kkxxxx% SET UP COEFFICIENT MATRIX FOR THE MESH *%%**x%%%%x

N1=1

NCENT=NBAND?2

NMIDL=NBAND2-1

NMIDU=NBAND2+1

NEND=NBAND

DO 210 IX=1,NNODX

DO 220 IZ=1,NNODZ

N=(IX-1)*NNODZ+IZ
IF(IX.EQ.1.0R.IX.EQ.NNODX) GO TO 310
IF(IZ.EQ.NNODZ) GO TO 315
IF(IZ.EQ.1) GO TO 320
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C ***x** COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF AN **%x%x
C INTERIOR NODE
C
ARCON=(COND(IX-1,I%-1)*DX(IX-1)*DZ(IZ~1)/4.0)+
1 (COND(IX,IZ-1)*DX(IX)*DZ(IZ-1)/4.0)+(COND(IX,IZ)*
1 DX(IX)*DZ(IZ)/4.0)+(COND(IX-1,IZ)*DX(IX~1)*DZ(IZ)/4.0)
DO 400 KC=1,NBAND
400 C(KC)=0.0
C(Nl)=—((DZ(IZ—l)*COND(IX—l,IZ—l)+DZ(IZ)*COND(IX—l,IZ))/
1 (2.0*DX(IX-1)))
C(NMIDL)=“((DX(IX—l)*COND(IX—l,IZ—l)+DX(IX)*COND(IX,IZ—l)
1 )/(2.0*DZ(IZ-1))) '
C(NMIDU)==((DX(IX~-1)*COND(IX-1,IZ)+DX(IX)*COND(IX,IZ))/
1 (2.0*DZ(IZ)))
C(NEND)=—((DZ(IZ-1)*COND(IX,IZ-1)+DZ(IZ)*COND(IX,IZ))/
1 (2.0*DX(IX)))
C(NCENT)=-(C(N1)+C(NMIDL)+C(NMIDU)+C(NEND)-YTLAMDA*YLAMDA
1 *ARCON)
DO 410 KC=1,NBAND2
410 A(N,KC)=C(KC)
GO TO 350
320 CONTINUE
C
c **x*%** COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE **xx%xx*
cC LOCATED ON THE TOP SURFACE (Neumann type condition)
C
ARCON=(COND(IX-1,IZ)*DX(IX-1)*DZ(IZ)/4.0)+(COND(IX,IZ)
1 *DX(IX)*DZ(IZ)/4.0)
DO 420 KC=1,NBAND
420 C(KC)=0.0
C(Nl)=—DZ(IZ)*COND(IX—l,IZ)/(2.0*DX(IX—1))
C(NMIDL)=0.0
C(NMIDU)=-((DX(IX)*COND(IX,IZ)+DX(IX-1)*COND(IX-1,IZ))/
1 (2.0*DZ(IZ)))
C(NEND)=-DZ(IZ)*COND(IX,IZ)/(2.0*DX(IX)) ,
C(NCENT)=-(C(N1)+C(NMIDL)+C(NMIDU)+C(NEND)—YLAMDA*YLAMDA
1 * ARCON)
DO 430 KC=1,NBAND2
430 A(N,KC)=C(KC)
GO TO 350

315 CONTINUE

****x** COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE ***%xx
LOCATED ON THE BOTTOM SURFACE (mixed boundary condition)

QN

ARCON=(COND(IX~1,IZ-1)*DX(IX~1)*DZ(IZ-1)/4.0)+(COND(IX,IZ-1)
1 *DX(IX)*DZ(IZ~1)/4.0)

XTX=ABS (X(IX)-XCENTR)

R=SQRT(XTX*XTX+Z(IZ)*Z(IZ))

ARG=YLAMDA*R

ARG1=AK1(ARG)

ARG2=AKO (ARG)

IF(ARGL.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.0

IF(ARG1.GE.1.0E-30.0R.ARG2.GE.1.0E~30) ARG3=ARG1/ARG2

THETA=ATAN(XTX/Z(1Z))

DO 440 KC=1,NBAND
440 C(KC)=0.0

C(N1)=-DZ(IZ-1)*COND(IX-1,IZ-1)/(2.0*DX(IX~-1}))

C(NMIDL)=-( (DX (IX)*COND(IX,IZ~1)+DX(IX-1)*COND(IX-1,IZ-1))/
1 (2.0*DZ(IZ-1)))
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C(NMIDU)=0.00
C(NEND)=-DZ(IZ-1)*COND(IX,IZ~1)/(2.0*DX(IX))
CADD=-C(NMIDL) *DZ ( IZ—1) *YLAMDA*COS ( THETA ) *ARG 3
C(NCENT)=-(C(N1)+C(NMIDL)+C(NMIDU)+C (NEND)~-YLAMDA*YLAMDA
* ARCON ) +CADD

DO 441 KC=1,NBAND2

A(N,KC)=C(KC)
GO TO 350
CONTINUE
IF(IX.EQ.NNODX) GO TO 330

DO 450 KC=1,NBAND

C(KC)=0.00
IF(IZ.GT.1.AND.IZ.NE.NNODZ) GO TO 4501
IF(IZ.EQ.NNODZ) GO TO 4502

***xxx* COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE ***x%%
LOCATED AT THE TOP LEFT CORNER
(Neumann on top, mixed on the left)

ARCON=COND( IX,IZ)*DX(IX)*DZ(IZ)/4.0

XTX=ABS (X (IX)~-XCENTR)

R=XTX

ARG=YLAMDA*R

ARG1=AK1 (ARG)

ARG2=AKO0 (ARG)

IF(ARG1.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.0

IF(ARG1.GE.1.0E-30.0R.ARG2.GE.1.0E-30) ARG3=ARG1/ARG2

C(N1)=0.00

C(NMIDL)=0.00

C(NMIDU)=-DX(IX)*COND(IX,IZ)/(2.0*DZ(IZ))

C(NEND)=—-DZ(IZ)*COND(IX,IZ)/(2.0*DX(IX))

CADD=-C (NEND) *DX ( IX) *YLAMDA *ARG3

C(NCENT)=-(C(N1)+C(NMIDL)+C(NMIDU)+C (NEND)~-YLAMDA* YLAMDA
*ARCON ) +CADD

GO TO 4503

***xx%x* COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE ***x%x
LOCATED AT THE LEFT EDGE (mixed boundary condition)

ARCON=(COND(IX,IZ-1)*DX(IX)*DZ(IZ-1)/4.0)+(COND(IX,IZ)
*DX(IX)*DZ(IZ)/4.0)

XTX=ABS(X(IX)-XCENTR)

R=SQRT(XTX*XTX+Z(IZ)*Z(IZ))

~ ARG=YLAMDA*R

ARG1=AK1 (ARG)

ARG2=AKO (ARG)

IF(ARG1.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.0

IF(ARG1.GE.1.0E-30.0R.ARG2.GE.1.0E-30) ARG3=ARG1/ARG2

THETA=ATAN(Z(IZ)/XTX)

C(N1)=0.0

C(NMIDL)=-DX(IX)*COND(IX,IZ~1)/(2.0*Dz(IZ-1))

C(NMIDU)=-DX(IX)*COND(IX,IZ)/(2.0*DZ(IZ))

C(NEND)=~( (DZ(I1Z)*COND(IX,IZ)+DZ(IZ-1)*COND(IX,IZ~1))
/(2.0*DX(IX)))

CADD=~C(NEND) *DX( IX) *YLAMDA*COS ( THETA ) *ARG3

C(NCENT )=-(C(N1)+C(NMIDL)+C(NMIDU)+C(NEND)—-YLAMDA*YLAMDA

*ARCON ) +CADD
GO TO 4503

**xx** COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE ###**x



c
C

NN

QOO0

4502

4503
4511

330

460

4001

148
LOCATED AT THE BOTTOM LEFT CORNER (mixed boundary condition)

ARCON=COND(IX,IZ~1)*DX(IX)*DZ(IZ-1)/4.0

XTX=ABS (X ( IX)—XCENTR)

R=SQRT (XTX*XTX+Z(IZ)*Z(IZ))

ARG=YLAMDA*R

ARG1=AK1(ARG)

ARG2=AKO0 (ARG)

IF(ARG1.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.0

IF(ARG1.GE.1.0E-30.0R.ARG2.GE.1.0E~30) ARG3=ARG1l/ARG2

THETA1=ATAN(Z(IZ)/XTX)

THETA2=ATAN(XTX/Z(IZ))

C(N1)=0.0

C(NMIDL)=-DX(IX)*COND(IX,IZ-1)/(2.0*DZ(IZ-1))

C(NMIDU)=0.0

C(NEND)=-DZ(IZ-1)*COND(IX,IZ-1)/(2.0*DX(IX))

CADD=-(C(NMIDL)*DZ(IZ~1)*COS(THETA2)+C (NEND) *

DX(IX)*COS(THETAL))*ARG3*YLAMDA

C(NCENT)=—(C(N1)+C(NMIDL)+C(NMIDU)+C(NEND)~YLAMDA*YLAMDA
*ARCON ) +CADD

DO 4511 KC=1,NBAND2

A(N,KC)=C(KC)

GO TO 350

CONTINUE
DO 460 KC=1,NBAND
C(KC)=0.0

IF(IZ.GT.1.AND.IZ.NE.NNODZ) GO TO 4601
IF(IZ.EQ.NNODZ) GO TO 4602

**x*xx*x* COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE ***x%x
: LOCATED AT THE TOP RIGHT CORNER
(Neumann on top, mixed on the right)

ARCON=COND(IX~1,IZ)*DX(IX-1)*DZ(IZ)/4.00

XTX=ABS (X(IX)-XCENTR)

R=XTX

ARG=YLAMDA*R

ARG1=AK1 (ARG)

ARG2=AKO (ARG)

IF(ARG1.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.00

IF(ARG1.GE.1.0E-30.0R.ARG2.GE.1.0E-30) ARG3=ARG1l/ARG2

C(N1)=-DZ(IZ)*COND(IX-1,IZ)/(2.0*DX(IX-1))

C(NMIDL)=0.00

C(NMIDU)=-DX(IX-1)*COND(IX~-1,IZ)/(2.0*DZ(IZ))

C(NEND)=0.00

CADD=-C (N1)*DX(IX-1)*YLAMDA*ARG3

C(NCENT)=-(C(N1)+C(NMIDL)+C (NMIDU)+C(NEND)-YLAMDA*YLAMDA
*ARCON ) +CADD

GO TO 4603

*k*xx*x* COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE *#**x*x
LOCATED AT THE RIGHT EDGE (mixed boundary condition)

ARCON=(COND(IX-1,IZ~-1)*DX(IX-1)*DZ(IZ-1)/4.0)+(COND(
IX-1,IZ)*DX(IX-1)*DZ(IZ)/4.0)

XTX=ABS (X(IX)-XCENTR)

R=SQRT ( XTX*XTX+Z (IZ)*Z(IZ))

ARG=YLAMDA*R

ARG1=AK1(ARG)

ARG2=AKO (ARG)
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IF(ARGL.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.0
IF(ARG1.GE.1.0E-30.0R.ARG2.GE.1.0E~30) ARG3=ARG1/ARG2
THETA=ATAN(Z(IZ)/XTX)
C(N1)=-(DZ(IZ)*COND(IX-1,IZ)+DZ(IZ-1)*COND(IX-1,IZ-1))
/(2.0*DX(IX-1))
C(NMIDL)=~DX(IX-1)*COND(IX-1,IZ-1)/(2.0*DZ(IZ-1))
C(NMIDU)=-DX(IX-1)*COND(IX-1,IZ)/(2.0%*DZ(IZ))
C(NEND)=0.00
CADD=-C(N1)*DX(IX-1)*YLAMDA*COS(THETA)*ARG3
C(NCENT)=—=(C(N1)+C(NMIDL)+C(NMIDU)+C(NEND)-YLAMDA*YLAMDA
*ARCON ) +CADD
GO TO 4603

***xx*x COEFFICIENTS FOR THE SELF ADJOINT EQUATION OF A NODE **x*%%
LOCATED AT THE BOTTOM RIGHT CORNER (mixed boundary condition)

ARCON=COND(IX-1,IZ-1)*DX(IX-1)*DZ(IZ-1)/4.0
XTX=ABS (X (IX)-XCENTR)
R=SQRT (XTX*XTX+Z (IZ)*Z(IZ))
ARG=YLAMDA*R
ARG1=AK1 (ARG)
ARG2=AKO (ARG)
IF(ARG1.LT.1.0E-30.AND.ARG2.LT.1.0E-30) ARG3=1.0
IF(ARGL.GE.1.0E-30.0R.ARG2.GE.1.0E-30) ARG3=ARG1/ARG2
THETA2=ATAN(Z(IZ)/XTX)
THETA1=ATAN(XTX/Z(IZ))
C(N1)=-DZ(IZ~1)*COND(IX-1,IZ-1)/(2.0*DX(IX~1))
C(NMIDL)=-DX(IX-1)*COND(IX-1,IZ-1)/(2.0*DZ(IZ~1))
C(NMIDU)=0.00
C(NEND)=0.00
CADD=—(C(NMIDL)*DZ(IZ-1)*COS(THETA2)+C(N1)*DX(IX-1)*

COS(THETAL) ) *YLAMDA*ARG3
C(NCENT)=-(C(N1)+C(NMIDL)+C(NMIDU)+C (NEND)~-YLAMDA*YI.AMDA

*ARCON ) +CADD

DO 4611 KC=1,NBAND2

A(N,KC)=C(KC)
CONTINUE
CONTINUE
CONTINUE

**x*x*x* gending capacitance matrix to band-solver **x*xx
(symmetric Cholesky decomposition)

Write(6,*)'ENTERING BNDSYM'

CALL BNDSYM(A,NNODE,NNODZ,NNODE, RS, NNODE, NTXCNT, 14,D1,D2,
NBAND2, XMAT, IER, UL)

WRITE(6,*) 'LEAVING BNDSYM'

WRITE(87,910) IER
FORMAT (20X, 'MATRIX SOLUTION ERROR INDEX = ',I5)
DO 1210 ITX=1,NTXCNT
DO 1220 IDWN=1,NZRSFT
ZRSFT=ZRSHIF ( IDWN) *UNIT
DO 1230 INDXZ=1,NNODZ
IF(ZRSFT.EQ.Z(INDXZ)) IZRS=INDXZ
DO 1240 IRX=1,NRX
IRXX=TIRXP ( IRX)
IRDWNX=IRX+ ( IDWN—1) *NRX
NRXCHK=( IRXX~-1) *NNODZ+IZRS
VKY(IKY, ITX, IRDWNX)=RS (NRXCHK, ITX)
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CONTINUE 150

CONTINUE
CONTINUE
RETURN
END

****x*xx LINEAR EQUATION SOLVER-SYMMETRIC BAND STORAGE MODE- ***x*x

51

SPACE ECONOMIZER SOLUTION

A-(INPUT) THE COEFFICIENT MATRIX OF THE EQUATION AX = B, WHERE A

DIMENSIONS N BY (NC+1)
(OUTPUT) A IS REPLACED BY L WHERE A = L*L-TRANSPOSE. L IS A LOWER
BAND MATRIX STORED IN BAND FORM AND THEREFORE HAS DIMENSIONS
N BY (NC+1). NOTE THAT THE DIAGONAL ELEMENTS OF L ARE STORED
IN RECIPROCAIL FORM

N-ORDER OF THE MATRIX A AND NUMBER OF ROWS 1IN B.

NC-NUMBER OF UPPER OR LOWER CO-DIAGONALS CF A.

NBND-NC+1

IA-ROW DIMENSION OD A AS SPECIFIED IN THE MAIN PROGRAM

B—(INPUT) MATRIX OF DIMENSION N BY M CONTAINING THE M RIGHT-HAND
SIDES OF THE EQUATION AX = B.
(CUTPUT) THE N BY M SOLUTION MATRIX X REPLACES B.

IB-ROW DIMENSION OF B AS SPECIFIED IN THE MAIN PROGRAM.

M-NUMBER OF RIGHT HAND SIDES (COLUMNS IN B)

D1,D2-COMPONENTS OF THE DETERMINANT OF A

IER-ERROR PARAMETERS

SUBROUTINE BNDSYM(A,N,NC,IA,B,IB,M,IDGT,Dl,DZ,NBND,X,IER,UL)
DIMENSION A(IA,NBND),B(IB,M)

DIMENSION X(N),UL(IA,NBND)

IER=0

SUBROUTINE LUDAPB - IMSL CALL
LU DECOMPOSITION OF A POSITIVE DEFINITE SYMMETRIC BAND MATRIX
— CHOLESKY DECOMPOSITION

WRITE(6,*)'ENTERING LUDAPB'
CALL LUDAPB(A,N,NC,IA,UL,IA,Dl,DZ,IER)
WRITE(6,*)'LEAVING LUDAPB'
IF(IER.NE.Q)THEN

WRITE(6,*)'SHIT'

STOP
ENDIF -
WRITE(6,*) 'ENTERING SOLVE (BACK SUBSTITUTION)'
DO 5 1=1,M

SOLUTION OF AX=B

DO 51 IX=1,N
X(IX)=B(IX,I)
CALL SOLVE(UL,X,N,NC,IA,NBND)
DO 52 IX=1,N
B(IX,I)=X(IX)
CONTINUE
WRITE(6,*) 'LEAVING SOLVE' .
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CONTINUE
RETURN
END

ELIMINATION PORTION OF THE SOLUTION OF AX=B
SYMMETRIC BAND STORAGE MCDE

UL-OQUTPUT MATRIX L WHERE A = L*L-TRANSPOSE. L IS STORED IN
BAND STORAGE MODE. UL SHOULD BE AN ARRAY OF SIZE N BY NC+1
NOTE THAT THE DIAGONAL OF UL CONTAINS THE RECIPROCALS OF
THE ACTUAL DIAGONAL ELEMENTS.

IU-ROW DIMENSION OF UL AS SPECIFIED IN THE MAIN PROGRAM.

SUBROUTINE SOLVE(UL,X,N,NC,IA,NBND)
DIMENSION UL(IA,NBND)
DIMENSION X(N)

SOLUTION LY=B

NC1=NC+1
IW=0
1=0
DO 15 I=1,N
SUM=X(I)
IF(NC.LE.O) GO TO 10
IF(IW.EQ.0) GO TO 9
L=L+1
IF(L.GT.NC) L=NC
K=NC1-L
KL=I-L
DO 5 J=K,NC :
SUM=SUM-X (KL) *UL(I,J)
KL=KL+1
CONTINUE
GO TO 10
IF(SUM.NE.0.0) IW=1
X(I)=SUM*UL(I,NC1)
CONTINUE

SOLUTION UX = Y

X(N)=X(N)*UL(N,NC1)
IF(N.LE.1) GO TO 40

N1=N+1
DO 35 I=2,N
K=N1-I
SUM=X(K)
IF(NC.LE.O) GO TO 30
KL=K+1
K1=MINO(N,K+NC)
I=1
DO 25 J=KL,K1
SUM=SUM-X (J ) *UL(J, NC1-L)
L=L+1
CONTINUE
X(K)=SUM*UL(K,NC1)
CONTINUE
RETURN
END
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EVALUATES THE MODIFIED BESSEL FUNCTION OF ZEROETH
ORDER FOR ARGUMENT X

FUNCTION AKO(X)

IF(X.GE.2.0) GO TO 10

T=X/3.75

T=T*T

Bl=1.0+T*(3.5156229+T*(3.0899424+T*(1.2067492+T+
(0.2659732+T*(0.0360768+T*0.0045813)))))

T=0.5*X

Y=T*T

AKO=—ALOG(T)*B1—O.57721566+Y*(O.42278420+Y*(0.23069756+Y*
(0.03488590+Y*(0.00262698+Y*(0.00018750+Y*0.00000740)))))

RETURN

T=2.00/X

F=EXP(-X) /SQRT(X)

AKO=F*(1.25331414+T*(—0.07832358+T*(0.02189568+T*(—0.01062446
+T*(0.00587872+T*(—0.00251540+T*0.00053208))))))

RETURN

END

EVALUATES THE MODIFIED BESSEL FUNCTION OF ORDER 1
FOR AN ARGUMENT X :

FUNCTION AK1(X)

IF(X.GE.2.00) GO TO 100

T=X/3.75

T2=T*T

T4=T2*T2

T6=T4*T2

T8=T4*T4

T10=T6*T4

T12=T8*T4

B=O.50+O.87890594*T2+O.51498869*T4+O.15084934*T6+
0.02658733*T8+0.00301532*T10+0.000324ll*T12

BI1=X*B

T=X*0.5

T2=T*T

T4=T2*T2

T6=T4*T2

T8=T4*T4

T10=T6*T4

T12=T8*T4 ‘

AA=X*ALOG(T)*BIl+l.OO+O.15443144*T2—O.67278579*T4—O.18156897
*T6~o.01919402*T8—o.0011040*T10—o.00004686*T12

AK1=AA/X

RETURN

T=2.0/X

T2=T*T

T3=T2*T

T4=T2*T2

T5=T3*T2

T6=T4*T2

BB=1.2533l4l4+0.23498619*T—0.03655620*T2+0.01504268*T3—
0.00780353*T4+0.00325614*T5—0.00068245*T6

AK1=BB*EXP(-X)/SQRT(X)

RETURN

END
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SUBROUTINE YTRAN PERFORMS THE INVERSE FOURIER TRANSFORM

OF THE POTENTIALS IN (X-KY—-Z) SPACE BACK TO (X-Y-Z) SPACE.

THE TRANSFORMATION INTEGRAL IS DETERMINED BY FITTING SUBSECTIONS
IN KY-SPACE BY EXPONENTIALS OR BY TRAPOZOIDAL RULE

SUBROUTINE YTRAN(NRX,NYSFT,NZRSFT,YSHIFT,NTX,NZSFT,NKY, NTXTOT,
NRXTOT, NRXTIT, YKY,VKY,V, INDEX, UNIT)

DIMENSION VKY(NKY,NTXTOT,NRXTIT),V(NTXTOT, NRXTOT)

DIMENSION YSHIFT(1),YKY(5)

DO 100 ID=1,NZSFT

DO 100 IE=1,NTX

ITX=(ID-1)*NTX+IE

IRX=0

DO 100 IA=1,NZRSFT

DO 100 IC=1,NYSFT

Y=YSHIFT(IC)*UNIT

DO 100 IB=1,NRX

IRXA=( IA-1)*NRX+IB

IRX=IRX+1

IF(INDEX.NE.O.AND.Y.EQ.0.00) GO TO 300

INTEGRATION BY SUBSECTIONAL EXPONENTIAL FITS

IF(Y.EQ.0.00) VA=VKY(1l,ITX,IRXA)*YKY(1)
IF(Y.NE.0.00) VA=VKY(l,ITX,IRXA)*SIN(YKY(1l)*Y)/Y

DO 200 IKY=2,NKY

IK1=IKY-1

XK1=YKY(IK1)

XK2=YKY ( IKY)

Y1=VKY(IK1l,ITX,IRXA)

Y2=VKY (IKY, ITX, IRXA)
IF(Y1.LT.1.0E-30.0R.Y2.LT.1.0E-30) GO TO 210
=-ALOG(Y2/Y1)/(XK2-XK1)

GO TO 215

2=0.00

CONTINUE

IF(A.EQ.0.00.AND.Y.EQ.0.00) GO TO 220

VA=VA+ (Y1* (A*COS(XK1*Y)—~Y*SIN(XK1*Y))-Y2* (A*COS(XK2*Y)

—Y*SIN(XK2*Y)))/(A*A+Y*Y)

GO TO 225

VA=VA+Y1*(XK2-XK1)

CONTINUE

CONTINUE

GO TO 250

CONTINUE

INTEGRATION BY TRAPEZOIDAL RULE

VA=VKY(1,ITX,IRXA)*YKY(1)
DO 310 IKY=2,NKY
IK1=IKY-1

XK1=YKY(IK1)

XK2=YKY ( IKY)
Y1=VKY(IK1l,ITX,IRXA)
Y2=VKY(IKY,ITX, IRXA)
AA=(Y1+Y2)*0.50%(XK2-XK1)
VA=VA+AA

CONTINUE :
V(ITX,IRX)=(VA*2.0/3.141592653)*UNIT
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CONTINUE
RETURN
END

THE THREE-DIMENSIONAL POTENTIAL DISTRIBUTION FOR ALL OF THE
SELECTED RECEIVER NODES FOR THE PRESCRIBED TRANSMITTER NODES
ARE USED, IN COMBINATION, TO EVALUATE THE APPARENT RESISTIVITY
RESPONSE FOR ANY ARBITARY ARRAY. THIS SUBROUTINE WILL SELECT
THE SPECIFIC SUBROUTINE REQUIRED TO COMPUTE RESPONSES FOR ANY
PARTICULAR CONFIGURATION.

SUBROUTINE ARRAYS(X,Z,NARRAY, ICONFG, TITLE, NTXTOT, NRXTOT,
NTX,NRX, ITXP, IRXP,NZSFT,NYSFT,NZRSFT, ZSHIFT, YSHIFT,
ZRSHIF, IPKEY,V,NNODX,NNODZ,UNIT)

DIMENSION V(NTXTOT,NRXTOT)

DIMENSION X(113),Z(16),ICONFG(1l),ITXP(NTS),IRXP(NRX)

,ZSHIFT(1),YSHIFT(1),ZRSHIF(1) , )

CHARACTER TITLE(18)

DO 10 IX=1,NNODX

X(IX)=X(IX)/UNIT
DO 15 IZ=1,NNODZ
Z(IZ)=Z(IZ)/UNIT

DO 100 I=1,NARRAY

INDEX=ICONFG(I)

write(6,*)'hi paul'’

GO TO (1,2), INDEX

WRITE(6,*) 'ENTERING CLINDP'

CALL CLINDP(X,Z,IPKEY,TITLE,NTXTOT,NRXTOT, NRX, IRXP,

NTX, ITXP,NYSFT,YSHIFT,V,NNODX, NNODZ)

WRITE(6,*)'LEAVING CLINDP'

GO TO 99

WRITE(6,*) 'ENTERING RECN2D'

CALL RECN2D(X,Z,NTXTOT,NRXTOT,NTX,NRX, ITXP, IRXP, NYSFT,

YSHIFT,TITLE,V,NNODX,NNODZ)

WRITE(6,*)'LEAVING RECN2D'

CONTINUE

CONTINUE

DO 11 IX=1,NNODX

X(IX)=X(IX)*UNIT

DO 16 IZ=1,NNODZ

Z(IZ)=Z(IZ)*UNIT

RETURN

END

THIS SUBROUTINES PURPOSE IS TO OBTAIN PROFILES OF APPARENT
RESISTIVITY OVER INHOMOGENEITIES WITH DIPOLE-DIPOLE AND POLE-DIPOLE
CONFIGURATION OF ELECTRODES. THE PROFILE LINES ARE INCLIND TO THE
STRIKE OF THE INHOMOGENEITY.

SUBROUTINE CLINDP(X,Z,IPKEY,TITLE,NTXTOT,NRXTOT,NRX, IRXP,
NTX, ITXP,NYSFT, YSHIFT,V, NNODX, NNODZ )

INTEGER OPTPUN

COMMON /GANGl/ OPTPUN,THETA, IPRINT

DIMENSION V(NTXTOT,NRXTOT)

DIMENSION X(113),Z(16),IRXP(NRX),ITXP(NTX),YSHIFT(1)

DIMENSION NPTS(19),NRA(18),NRB(18),GEOMFD(18),GEOMFP(18),
APRES1(25),APRES2(25) ,APIP1(25,20),APIP2(25,20),
APRDC1(25,20) ,APRDC2(25,20),APMCFD(25,20) ,APMCFP (25, 20),
TXA(50), TXB(50) ,RXP(50)
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DIMENSION TXPOS(23),RXPOS(23),CRFD(19),CRFP(18)

CHARACTER TITLE(18)

DATA NTA/1/,NTB/2/

DATA NRA/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18/

DATA NRB/2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19/

DATA NPTS/22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4/

DATA TXPOS/-12.0,-11.0,-10.0,-9.0,-8.0,-7.0,-6.0,-5.0,-4.0,
-3.0,-2.0,-1.0,0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0/

DATA RXPOS/-10.0,-9.0,-8.0,-7.0,-6.0,-5.0,-4.0,-3.0,-2.0,-1.0
,0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0/

DATA GEOMFD/3.0,12.0,30.0,60.0,105.0,168.0,252.0,360.0,495.0,
660.0,858.0,1092.0,1365.0,1680.0,2040.0,2448.0,2907.0,3420.0/

DATA GEOMFP/2.0,6.0,12.0,20.0,30.0,42.0,56.0,72.0,90.0,110.0,
132.0,156.0,182.0,210.0,240.0,272.0,306.0,342.0/

THE ARRAYS CRFD AND CRFP CONSIST OF THE CORRECTION FACTORS
EMPLOYED TO THE DP-DP AND P-DP ARRAYS FOR DIFFERENT DIPOLE
SEPARATIONS. THESE FACTORS ARE BASED ON COMPARISONS WITH KNOWN
SOLUTIONS OVER TWO-DIMENSIONAL STRUCTURES (FOR A PRESCRIBED
SET OF KY VALUES USED)

DATA CRFD/0.945,0.96,0.965,0.96,0.96,0.96,0.96,0.96,0.96,
0.96,0.96,0.966,0.97,0.97,0.97,0.97,0.97,0.97,0.97/

DATA CRFP/0.99,1.00,1.00,1.01,1.01,1.02,1.03,1.03,1.04,
1.06,1.07,1.08,1.08,1.09,1.09,1.09,1.09,1.09/

XCENTR=(X(1)+X(NNODX))/2.0

THETAX=THETA/57.296

DO 16 NSEP=1,18

N1=NPTS (NSEP)

DO 15 I=1,N1

IA=NTA+I-1

IB=NTB+I-1

JC=NRA(NSEP)+I-1

JD=NRB(NSEP)+I-1

IF(THETA.EQ.90.00) GO TO 771

COORDINATES OF THE TX AND RX ELECTRODES ON THE INCLIND PROFILE

AX=TXPOS(IA)
BX=TXPOS ( IB)
CX=RXPOS(JC)
DX=RXPOS (JD)

COORDINATES OF THE TX AND RX ELECTRODES ON THE X-Y PLANE

CC=SIN(THETAX)
SS=COS ( THETAX)
XATX=(AX*CC)+XCENTR
XBTX=(BX*CC)+XCENTR
XCRX=(CX*CC)+XCENTR
XDRX=(DX*CC ) +XCENTR
YATX=AX*SS
YBTX=BX*SS
YCRX=CX*SS
YDRX=DX*SS
NTPOSX=NTX-1

DO 12 IXl=1,NTPOSX

NX1=ITXP(IX1)

NX2=ITXP(IX1+1)
X1=X(NX1)
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X2=X(NX2)
AA=ABS(X1-X2)
IF(XATX.LT.X2.AND.XATX.GE.X1) ITAX-IX1
IF(XBTX.LT.X2.AND.XBTX.GE.X1) ITBX=IXl
CONTINUE
NRPOSX=NRX-1
DO 13 IX2=1,NRPOSX
NX1=IRXP(IX2)
NX2=IRXP(IX2+1)
X1=X(NX1)
X2=X(NX2)
' IF(XCRX.LT.X2.AND.XCRX.GE.X1) IRCX=IX2
IF(XDRX.LT.X2.AND.XDRX.GE.X1) IRDX=IX2
CONTINUE

DETERMINATION OF THE RELATIVE Y—SHIFT BETWEEN TX AND RX POLES

NRLINY=NYSFT-1

DO 14 IY1l=1,NRLINY

Y1=YSHIFT(IY1)

Y2=YSHIFT(IY1l+1)

IF(ABS(YATX-YCRX).LT.Y2.AND.ABS (YATX-YCRX).GE.Y1l) IACY=IYl
IF(ABS(YATX-YDRX).LT.Y2.AND.ABS(YATX-YDRX).GE.Y1l) IADY=IY1l
IF(ABS(YBTX-YCRX).LT.Y2.AND.ABS(YBTX-YCRX).GE.Y1l) IBCY=IY1l
IF(ABS(YBTX-YDRX).LT.Y2.AND.ABS(YBTX-YDRX).GE.Y1l) IBDY=IY1l
CONTINUE

TWO-DIMENSIONAL INTERPOLATION OF V(RECEIVER) ASSUMING LINEAR
VARIATION ALONG THE EDGES OF A SQUARE GRID OF KNOWN CORNER VALUES
AA IS THE SIDE DIMENSION OF THE SQUARE GRID

KNXA=ITXP ( ITAX)

DXA=ABS ( X (KNXA)—XATX)

KNXC=IRXP ( IRCX)

KRC1=(IACY-1)*NRX+IRCX

KRC2=KRC1+1

KRC3=KRC2+NRX

KRC4=KRC1+NRX

V1=V (ITAX,KRC1)=-(DXA*(V(ITAX,KRC1)-V(ITAX+1,KRC1))/AA)

V2=V (ITAX,KRC2)-(DXA*(V(ITAX,KRC2)-V(ITAX+1,KRC2))/AA)

V3=V(ITAX,KRC3)-(DXA*(V(ITAX,KRC3)-V(ITAX+1,KRC3))/AA)

V4=V (ITAX,KRC4)-(DXA* (V(ITAX,KRC4)-V(ITAX+1,KRC4))/AA)

DXC=ABS ( X (KNXC)-XCRX)

DYC=ABS (ABS ( YATX-YCRX)-YSHIFT(IACY))

V(IA,JC)=V1+(DXC*(V2-V1)/AA)+(DYC*(V4-V1)/AA)+
(DXC*DYC* (V1-V2+V3-V4)/(AA*AA))

KNXD=IRXP ( IRDX)

KRD1=( IADY-1)*NRX+IRDX

KRD2=KRD1+1

KRD3=KRD2+NRX

KRD4=KRD1+NRX

V1=V (ITAX,KRD1)-(DXA*(V(ITAX,KRD1)-V(ITAX+1,KRD1))/AA)

V2=V ( ITAX,KRD2)-(DXA* (V(ITAX,KRD2)-V(ITAX+1,KRD2)) /A7)

V3=V (ITAX,KRD3)-(DXA*(V(ITAX,KRD3)-V(ITAX+1,KRD3))/AA)

V4=V (ITAX,KRD4)—(DXA*(V(ITAX,KRD4 )-V(ITAX+1,KRD4)) /A7)

DXD=ABS ( X ( KNXD ) ~XDRX)

DYD=ABS (ABS ( YATX-YDRX)—YSHIFT(IADY))

V(IA,JD)=V1+(DXD*(V2-V1)/AA)+(DYD*(V4-V1)/AA)+(DXD*DYD*
(V1-V2+V3-V4)/(AA*AA))
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KNXB=ITXP ( ITBX)
DXB=ABS (X (KNXB)-XBTX)
KNXC=IRXP ( IRCX)
KRC1l=(IBCY-1)*NRX+IRCX
KRC2=KRC1+1
KRC3=KRC2+NRX
KRC4=KRC1+NRX
V1=V (ITBX,KRC1l)~(DXB*(V(ITBX,KRC1)-V(ITBX+1,KRC1))/AA)
V2=V ( ITBX,KRC2)-(DXB* (V(ITBX,KRC2)-V(ITBX+1,KRC2))/AA)
V3=V(ITBX,KRC3)-(DXB*(V(ITBX,KRC3)-V(ITBX+1,KRC3))/AA)
V4=V (ITBX,KRC4)—(DXB*(V(ITBX,KRC4)~-V(ITBX+1,KRC4))/AA)
DXC=ABS ( X (KNXC)—XCRX)
DYC=ABS (ABS ( YBTX-YCRX)-YSHIFT( IBCY))
V(IB,JC)=V1+(DXC*(V2-V1)/AA)+(DYC*(V4-V1)/AA)+
(DXC*DYC* (V1-V2+V3-V4)/(AA*AA))
KNXD=IRXP ( IRDX)
KRD1=(IBDY-1)*NRX+IRDX
KRD2=KRD1+1
KRD3=KRD2+NRX
KRD4=KRD1+NRX
V1=V (ITBX,KRD1)—(DXB*(V(ITBX,KRD1)-V(ITBX+1,KRD1))/AA)
V2=V (ITBX,KRD2)~-(DXB* (V(ITBX,KRD2)-V(ITBX+1,KRD2))/AA)
V3=V (ITBX,KRD3)~(DXB* (V(ITBX,KRD3)-V(ITBX+1,KRD3))/AA)
V4=V (ITBX,KRD4 )-(DXB* (V(ITBX,KRD4 )~V (ITBX+1,KRD4))/AA)
DXD=ABS ( X (KNXD)-XDRX)
DYD=ABS ( ABS ( YBTX~YDRX)~YSHIFT( IBDY))
V(IB,JD)=V1+(DXD*(V2-V1)/AA)+(DYD*(V4-V1)/AA)+(DXD*DYD*
(V1-V2+V3-V4) /(AA*AA)) ,
CONTINUE

TXA(I)=TXPOS(IA)

TXB(I)=TXPOS(IB)

RXP(I)=(RXPOS(JC)+RXPOS(JD))/2.0

APRES1(I)=ABS((V(IB,JC)+V(IA,JD)-V(IA,JC)~V(IB,JD))*
GEOMFD (NSEP) ) *CRFD(NSEP)

APRES2(I)=ABS((V(IB,JC)-V(IB,JD))*GEOMFP (NSEP))*CRFP (NSEP)

IF(IPKEY) 11,10,11

APIP1(I,NSEP)=((APRDC1(I,NSEP)~APRES1(I))/APRESL(I))*100.0

APMCFD(I,NSEP)=APIP1(I,NSEP)*1000.0/APRDC1(I,NSEP)

APIP2(I,NSEP)=( (APRDC2(I,NSEP)~APRES2(I))/APRES2(I))*100.0

APMCFP(I,NSEP)=APIP2(I,NSEP)*1000.0/APRDC2(I,NSEP)

GO TO 15

APRDC1(I,NSEP)=APRES1(I)

APRDC2(I,NSEP)=APRES2(I)

CONTINUE

IF(IPRINT.EQ.0) GO TO 991

WRITE(87,170) (TITLE(LL),LL=1,3)

FORMAT(1H1,//////,55X, 'CASE',1X,3A4,///,50X, 'DIPOLE-DIPOLE

CONFIGURATION OF ELECTRODES'//)

WRITE(87,171) THETA,NSEP

FORMAT( /20X, 'THE PROFILE LINE IS INCLIND TO THE STRIKE

(+Y DIR) AT '/F10.3, 'DEGREES',/, 50X, 'DIPOLE-SEPARATION="',I5//)

WRITE(87,172) (TXA(I),TXB(I),RXP(I),APRDC1(I,NSEP),
APIP1(I,NSEP),APMCFD(I,NSEP),I=1,N1)
FORMAT(1X, 'CURRENT ELECTRODES AT',1X,F7.2,1X,'AND',1X,
F7.2,12X, 'CENTER OF RECEIVER=',6F7.2,1X,'APP. RES.=',
F8.2,2X,'APP. P.F.E.=',F7.3,2X,'APP. MCF =',F8.2)
WRITE(87,173) (TITLE(LL),LL=1,3)
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181
182
998
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200

221

205

220

231
232
233
234
235
236
237
238
239
240
241
24 2

FORMAT(1H1,//////,55X, 'CASE',1X,374,///,50X, 'POLE-DIPOLE

158

CONFIGURATION OF ELECTRODES'//)
WRITE(87,171) THETA,NSEP

WRITE(87,174) (TXB(I),RXP(I),APRDC2(I,NSEP),
APIP2(I,NSEP), APMCFP(I NSEP),I=1,N1)
FORMAT(lX,'CURRENT ELECTRODES AT',1X,F7.2,1X, AND'
F7.2,12X, 'CENTER OF RECEIVER=' ,F7 2,1X,'APP. RES. ",
P.F.E.=',F7.3,2X,'APP. MCF =',F3.3)

F9.2,2X,'APP.
CONTINUE

IF(OPTPUN.EQ.0) GO TO 998

WRITE(88,180) (RXP(I),I=1,N1)
WRITE(88,181) (APRDC1(I,NSEP),I=1,N1)
WRITE(88,182) (APRDC2(I,NSEP),I=1,Nl)

FORMAT(8F10.4)
FORMAT(8F10.4)
FORMAT(8F10.4)
CONTINUE
continue

IF(IPRINT.EQ.1) GO TO 9915

write(88,*)
write(88,*)

WRITE(88,200) (TITLE(LL),LL=1,18)

FORMAT(1x, 'CASE',1X,183,/,50X, ' DIPOLE-DIPOLE
CONFIGURATION OF ELECTRODES')

WRITE(87,221)

FORMAT( /80X, 'PSEUDO-SECTION OF THE APPARENT RESISTIVITY')

WRITE(87,205) THETA

FORMAT( /45X, 'THE PROFILE LINE IS INCLIND TO THE STRIKE
( +Y DIR ) AT ',F4.1,

WRITE (88, *)
FORMAT (4X, 'X
X.o...X....X...
X')
WRITE(88,231)
WRITE(88,232)
WRITE(88,233)
WRITE(88,234)
WRITE(88,235)
WRITE(88,236)
WRITE(88,237)
WRITE(88,238)
WRITE(88,239)
WRITE(88,240)
WRITE(88,241)
WRITE(88,242)

FORMAT(/////,3X,' 1',12(F6.1,
' 2', 4X,11(F6.
' 3', 8X,10(F6.

FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,2X,
FORMAT( //,2X,
FORMAT( //,2X,
IF(IPKEY.EQ.0)

XKoL XLl WXL

X.o.L W X

.X.
(APRDC1(I, 1
(APRDC1(I, 2
(APRDC1(I, 3
(APRDC1(I, 4
(APRDC1(I, 5
(APRDC1(I, 6
(APRDC1(I, 7
(APRDC1(I, 8
(APRDC1(I, 9
(APRDC1(I, 10
(APRDC1(I,11)
APRDC1(6,12)

)
)
)
)
)
)
)
)
)
)

4',12X,10(F6
5',16X, 9(F6

RETURN
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3X))
1,3X))
1,3X))

.1,3X))
.1,3%))
6',20X, 9(F6.
7',24X, 8(F6.
8',28X, 8(F6.
' 9',32X, 7(F6.
'10',36X, 7(F6.
'11',40X, 6(F6.
'12',44X, 6(F6.

1,3X))
1,3X))
1,3X))
1,3X))
1,3X))
1,3X))
1,3X))

WRITE(87,200) (TITLE(LL),LL=1,3)

WRITE(87,222)



222

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

381
382
383
384
385
386
387
388

389

390
391
392

FORMAT (50X, ' PSEUDO-SECTION OF THE PERCENT FREQUENCY EFFECT')

WRITE(87,205)
WRITE(87,220)
WRITE(87,331)
WRITE(87,332)
WRITE(87,333)
WRITE(87,334)
WRITE(87,335)
WRITE(87,336)
WRITE(87,337)
WRITE(87,338)
WRITE(87,339)
WRITE(87,340)
WRITE(87,341)
WRITE(87,342)
WRITE(87,343)
WRITE(87,344)
WRITE(87,345)

THETA

(APIP1(I, 1
(APIP1(I, 2
(APIP1(I, 3
(APIP1(I, 4
(APIP1(I, 5
(APIP1(I, 6
(APIP1(I, 7
(APIP1(I, 8
(APIP1(I, 9
(APIP1(I,10
(APIP1(I, 11
(APIP1(I,12)
(APIP1(TI,13),1I
(APIP1(I,14),1I
(APIP1(I,15),1

)
)
)
)
)
)
)
)
)
)
)

HHEMHMHRHMHRHFHRBEHH

14
’
14
4
14
4
4
14
4
4
4
’

FORMAT(/////,4X,' 1',11(F6.1

FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
FORMAT( //,3X,
WRITE(87,381)
WRITE(87,382)
WRITE(87,383)
WRITE(87,384)
WRITE(87,385)
WRITE(87,386)
WRITE(87,387)
WRITE(87,388)
WRITE(87,389)
WRITE(87,390)
WRITE(87,391)
WRITE(87,392)
WRITE(87,393)
WRITE(87,394)
WRITE(87,395)

''2', 5X,11(F6.
3',10X,10(F6.

4',15X,10(F6

' 5',20X, 9(F6.
' 6',25X, 9(F6.
!
1
¢

7',30X, B(F6

8',35X, 8(F6.

9',40X, 7(F6

'10',45X, 7(F6.

'11',50X, 6(F7

'12',55X, 6(F7.
'13',60X, S(F7.

'14',65X, 5(F7

'15',70X, 4(F7.

(APIP1(I, 1),I
(APIP1(I, 2),I
(APIP1(I, 3),I
(APIP1(I, 4),1I
(APIP1(I, 5),I
(APIP1(I, 6),1I

(APIP1(I, 7),I=

(APIP1(I, 8
(APIP1(I, 9
(APIP1(I,10
(APIP1(I,11),I
(APIP1(I,12),1I
(APIP1(I,13),I
(APIP1(T,14),I
(APIP1(I,15),I

N~ N NN
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el

O T T |

e

14
4
14
4
4
r )
4
’
4
4
4
4

=1, 5)
=1, 5)
=1, 4)
»3X))
1,3X))
1,3X))
.1,3X))
1,3X))
1,3X))
.1,3X))
1,3X))
.1,3X))
1,3X))
.1,3X))
1,3X))
1,3X))
.1,3X%))
1,3X))
=12,22)
=11,21)
=11,20)
=10,19)
=10,18)
=9,17)

~]

,13)
7,12)
-6,11)
=6,10)
=5,9)
=5,8)

[ |

FORMAT(/////,10X,11(F7.1,3X),'1")
FORMAT( //, 5X,11(F7.1,3X),

FORMAT( //,10X,10(F7.
FORMAT( //, 5X,10(F7.

FORMAT( //,10X, 9(F7.1,3X),?2
FORMAT( //, 5X, 9(F7.1,3X),2
FORMAT( //,10X, 8(F7.1,3X),3
FORMAT( //, 5X, 8(F7.1,3X),3
FORMAT( //,10X, 7(F7.1,3X),4
FORMAT( //, 5X, 7(F7.1,3X),4
FORMAT( //,10X, 6(F7.1,3X),50%,'11"')
FORMAT( //, 5X, 6(F7.1,3X),55X,'12"')

5X,'2")

1,3X),10X,'3")
1,3X),15X%,'4")

0X,'5")
5X,'6")
0X,'7")
5X,'8')
0X,'9")
5X,'10")
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393
394
395
9915

1333
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FORMAT( //,10X, 5(F7.1,3X),60X,'13")
FORMAT( //, 5X, 5(F7.1,3X),65X,'14")
FORMAT( //,10X, 4(F7.1,3X),70X,'15")
CONTINUE

RETURN

END

THIS SUBROUTINE PRODUCES A MAP OF SEVERAL apparent resistivity
PARAMETERS ON THE X-Y PLANE OF THE GROUND SURFACE. THE LENGTH
AND ORIENTATION OF THE TRANSMITTING DIPOLE WITH RESPECT TO THE
STRIKE-DIRECTION CAN BE MADE ARBITARY, BY A PROPER SELECTION OF
THE GRID IN X-Z AND X-Y PLANES.

SUBROUTINE RECN2D(X,Z,NTXTOT,NRXTOT,NTX, NRX, ITXP, IRXP,
NYSFT,YSHIFT, TITLE, V,NNODX, NNODZ)

DIMENSION X(113),Z2(16),YSHIFT(1l),IRXP(NRX), ITXP(NTX)

DIMENSION V(NTXTOT,NRXTOT)

DIMENSTON RESKEL(50),CONKEL(50),RXP(50), THETA(50) ,APREST(50),
1 APRESX(50),APRESY(50),APRESP(50),CRFX(50),YSHIFX(50),
1 APRES1(50),APRES2(50),GMFX(50),GMFY(50),GMFP(50)

DIMENSION CRF1(50),CRF2(50),GMF1(50),GMF2(50)

CHARACTER TITLE(18)

COMMON /PACK1/ INCLIN,ISHIFT,NRLIM

DO 1333 III=1,50
CRF1(III)=0.96
CRF2(III)=0.96

CONTINUE

CRFX(III)=0.96

PI=3.141592654

XCENTR=(X(1)+X(95))/2.0

XCENTR=(X(1)+X(NNODX))/2.0

NTXX=NTX-1

DO 100 ITX=1,NTXX

IA=ITX

IB=ITX+1

NIA=ITXP(IA)

NIB=ITXP(IB)

TXA=X(NIA)-XCENTR

TXB=X (NIB)—-XCENTR

CRF=1.00

IF(INCLIN.NE.0) GO TO 500

NRL=NRLIM

ILX=0

DO 200 I=1,NRL,2

DO 200 I=1,NRL

ILX=ILX+1
RYY=YSHIFT(I)
YSHIFX(ILX)=RYY
RYYD2=RYY+YSHIFT(2)
NRP=NRX-2

JRX=0 .

DO 300 J=1,NRP

DO 300 J=2,NRP,2
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JC=J+1
JD1=JC+1
JD2=JC-1
JE1=JD1

JE2=JC
JCC=JC+(I-1)*NRX
JDD1=JCC+NRX+1
JDD2=JCC+NRX-1
JEE1=JCC+1
JEE2=JDD1-1
NJC=IRXP(JC)
NJD1=IRXP (JD1)
NJD2=IRXP (JD2)

RXL=ABS (X(NJC)-X(NJD1))*1.4142

RXTL=ABS (X(NJC)-X(NJD1))
TXLONG=ABS (X(NIB)—-X(NIA))

CALCULATE RELEVANT DISTANCES

AC=X(NJC)-X(NIA)
BC=X(NJC)-X(NIB )
IF((AC+BC).EQ.0.0) GO TO 300
IF(ABS(AC).LT.1.10.0R.ABS(BC).LT.1.10) GO TO 300
JRX=JRX+1

RXP (JRX)=X(NJC)-XCENTR
AE1=X(NJD1)-X(NIA)
BE1=X(NJD1)-X(NIB)
AD2=X(NJD2)-X(NIA)
BD2=X(NJD2)-X(NIB)

AE2=AC

BE2=BC

RAC=SQRT(AC*AC+RYY*RYY)
RBC=SQRT(BC*BC+RYY*RYY)
RAC3=1.0/RAC

RBC3=1.0/RBC
RAE1=1.0/SQRT(AE1*AE1+RYY*RYY)
RBE1=1.0/SQRT(BE1*BE1+RYY*RYY)
RAE2=1.0/SQRT(AE2*AE2+RYYD2*RYYD2)
RBE2=1.0/SQRT(BE2*BE2+RYYD2*RYYD2)
RAD1=1.0/SQRT(AE1*AE1+RYYD2*RYYD2)
RBD1=1.0/SQRT(BE1*BE1l+RYYD2*RYYD?2)
RAD2=1.0/SQRT(AD2*AD2+RYYD2*RYYD2)
RBD2=1.0/SQRT(BD2*BD2+RYYD2*RYYD2)

EVALUATE THE POTENTIAL DIFFERENCES OBSERVED AT THE TWO
ORTHOGONAL RECEIVER DIPQOLES

DELV1=(V(IA,JCC)-V(IB,JCC)-V(IA,JDD1)+V(IB,JDDl))
DELV2=(V(IA,JCC)-V(IB,JCC)-V(IA,JDD2)+V(IB,JDD2))
DELVX=(V(IA,JCC)-V(IB,JCC)-V(IA,JEE1)+V(IB,JEEL))
DELVY=(V(IA,JCC)-V(IB,JCC)-V(IA,JEE2)+V(IB,JEE2))
DELVP=(V(IA,JCC)-V(IB,JCC))

DELVX=DELVX*CRF1(JRX).
DELVY=DELVY*CRF2 (JRX)
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E1=DELVX/RXL

E2=DELVY /RXL

ETOT=SQRT(E1*E1+E2*E2)

COSDEL~=( RBC*RBC+RAC*RAC-TXLONG*TXLONG) /(2. 0*RAC*RBC)
DELTA=ACOS (COSDEL)

EVALUATE RESISTIVITY PARAMETERS A I.A KELLER

DENOM1=RAC3-RBC3-RAD1+RBD1

DENOM2=RAC3-RBC3-RAD2+RBD?2

DENOMX=RAC3—-RBC3—-RAE1+RBEl

DENOMY=RAC3—-RBC3—-RAE2+RBE?2

DENOM=SQRT (1.0+( (RAC*RAC*RAC*RAC)/(RBC*RBC*RBC*RBC) )—
2.00* (RAC*RAC/(RBC*RBC) ) *COS(DELTA) )

RESKEL (JRX ) =ETOT*RAC*RAC*CRF /DENOM
DNUM=SQRT (1. 0+ (RAC*RAC,/ (RBC*RBC) )—2. 0* (RAC/RBC) *COS (DELTA) )
CONKEL (JRX ) =DNUM/ ( ETOT*RAC) |

VTOT=SQRT ( DELVX*DELVX+DELVY *DELVY)

RESKEL (JRX ) =VTOT/ ( SQRT ( DENOMX * DENOMX+DENOMY *DENOMY ) )
DNUMA=ALOG ( RAC3 ) —ALOG (RBC3 ) —ALOG ( RAE1 ) +ALOG (RBEL)
DNUMB=ALOG ( RAC3 ) —~ALOG ( RBC3 ) ~ALOG ( RAE2 ) +AL.OG (RBE2 )
DUMNX=SQRT ( DNUMA * DNUMA+DNUMB*DNUMB )

CONKEL ( JRX ) =DNUMX /VTOT

EVALUATE THE TOTAL APPARENT RESISTIVITY IN THE VECTCR
E-FIELD DIRECTION AT EACH OBSERVATION POINT

IF (DENOML1.EQ.
IF(DENOML.NE.
IF (DENOM2.EQ.
IF(DENOM2.NE.
IF (DENOMX. EQ.
IF (DENOMX.NE.

.00) GMF1(JRX)=0.00

.00) GMF1(JRX)=1.00/DENOM1
.00) GMF2(JRX)=0.00

.00) GMF2(JRX)=1.00/DENOM2
.00) GMFX(JRX)=0.00

.00) GMFX(JRX)=1.00/DENOMX
IF(DENOMY.EQ.0.00) GMFY(JRX)=0.00
IF(DENOMY.NE.0.00) GMFY(JRX)=1.00/DENOMY
IF(RAC3.EQ.RBC3) GMFP(JRX)=0.00
IF(RAC3.NE.RBC3) GMFP(JRX)=1.00/(RAC3-RBC3)
APRES1 (JRX)=ABS (DELV1*GMF1 (JRX))

APRES?2 (JRX)=ABS (DELV2*GMF2 (JRX) )

APRESX (JRX )=ABS (DELVX*GMFX (JRX) )

APRESY (JRX )=ABS (DELVY*GMFY (JRX) )

APRESP (JRX )=ABS (DELVP*GMFP (JRX) ) *CRFX ( JRX)
RXTL=RXL .

DELVT=ETOT*RXTL

COOOOOOO

ANGLE OF THE FIELD LINES ARE CALCULATED ON THE BASIS OF
THE MEASURED EX AND EY OVER THE LENGH OF THE ORTHOGONAL
RECEIVER

IF(E1.EQ.0.00) BETA=PI*0.50

IF(EL.NE.0.00) BETA=ATAN2(E2,El)

DELX=RXTL*COS ( BETA)

DELY=RXTL*SIN(BETA)

THETA1=BETA*57.296

RAD3=1.0/SQRT( (AC+DELX) * (AC+DELX)+ (RYY+DELY ) * (RYY+DELY) )
RBD3=1.0/SQRT( (BC+DELX) * (BC+DELX )+ (RYY+DELY ) * (RYY+DELY ) )
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GMF=1.0/(RAC3-RBC3-RAD3+RBD3)
APREST (JRX)=ABS (GMF*DELVT ) *CRF

CALCULATE THE DEVIATION IN THE CURRENT LINES FROM THE
HOMOGENEQOUS HALF SPACE SITUATION

HDELV1=RAC3-RBC3-RAE1+RBE1

HDELV2=RAC3-RBC3-RAE2+RBE2

IF(HDELV1.EQ.0.00) BETA=PI*0.50

IF(HDELV1.NE.O.00) BETA=ATAN2(HDELV2,HDELV1)

THETA2=BETA*57.296

THETA (JRX)=THETA2-THETA1

NJRX=JRX

CONTINUE

WRITE(87,310) (TITLE(LL),LL=1,3)

FORMAT(1H1,///,55X, 'CASE',1X,3A4,//,40X, ' TRANSMITTING

1 DIPOLE IS PERPENDICULAR TO THE STRIKE OF THE INHOMOGENEITY',/)

311
1
1

312

1110

314

e N

200

500

WRITE(87,311) TXA,TXB,RXL

FORMAT(/, 30X, 'CURRENT ELECTRODES ARE LOCATED AT ',F12.4,2X,
'AND',F12.4,/,35X, 'LENGTH OF THE RECEIVER DIPOLES ARE ',
2X,F12.4)

WRITE(87,312) RYY

FORMAT(/, 20X, 'POINTS OF OBSERVATION ARE SITUATED ON THE LINE
SHIFTED ON Y-AXIS BY ',F12.4,/)

WRITE(87,1110)

FORMAT(/,10X, 'OBS.PT. ',5X,'GMFX',5X, 'APRES(X)',5X, 'GMFY',SX,
'APRES(Y)',5X, 'GMFP',5X, 'APRESP',5X, 'RESKEL',5X, ' CONKEL',5X,
'APREST',5X, 'THETA',//)

WRITE(87,314) (RXP(JRX),GMFX(JRX),APRESX(JRX),GMFY (JRX),
APRESY (JRX) ,GMFP (JRX) , APRESP (JRX) , RESKEL (JRX) , CONKEL (JRX),
APREST(JRX) , THETA(JRX) ,JRX=1, NJRX)
FORMAT(7X,F8.2,4X,E10.3,2X,F8.2,2X,E10.3,2X,F8.2,2X,E10.3, 2%,
F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2)

NRLX=ILX

CONTINUE

GO TO 1500

CONTINUE

INCLIN=1 FOR THE CASE WITH TX AT AN ACUTE ANGLE TO X-AXIS
INCLIN=2 FOR THE CASE WITH TX AT AN OBTUSE ANGLE TO X—-AXIS

AYA=0.00

AYB=0.00 '

NRL=2*NRLIM-1

RYT=YSHIFT(ISHIFT)

TXLONG=SQRT( (X(NIA)-X(NIB))* (X(NIA)-X(NIB))+RYT*RYT)
ILX=0

DO 600 I=1,NRL

DO 600 I=1,NRL,2

ILX=ILX+1

IF(I.LE.NRLIM) RYY=YSHIFT(I)
IF(I.GT.NRLIM) RYY=YSHIFT(I-NRLIM+1)
YSHIFX(ILX)=RYY

RYYD2=RYY+YSHIFT(2)

NRP=NRX-2

JRX=0

DO 700 J=1,NRP
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DG 700 J=2,NRP,2
JC=J+1

JD1=JC+1
JD2=JC-1
NJC=IRXP(JC)
NJD1=IRXP(JD1)
NJD2=IRXP(JD2)
AC=X(NJC)—X(NIA)
BC=X(NJC)—X(NIB)

IF(ABS(AC).LT.1.10.0R.ABS(BC).LT.1.10) GO TO 700

IF(RYT.EQ.0.00.AND. (AC+BC).EQ.0.00) GO TO 700

JRX=JRX+1

AE1=X(NJD1)-X(NIA)
IF(AE1.EQ.0.00) GO TO 700
BE1=X(NJD1)-X(NIB)

AD1=AEl

BD1=BE1l

AE2=AC

BE2=BC

RXL=ABS (X(NJC)-X(NJD1))
AD2=X(NJD2)—-X(NIA)
BD2=X(NJD2)-X(NIB)

RXP (JRX)=X(NJC)~-XCENTR
IF(I.LE.NRLIM) GO TO 710
IF(I.GT.NRLIM) GO TO 720
NRY=IABS(ISHIFT-1)*NRX
JCC=JC+(I-1)*NRX
JDD1=JCC+NRX+1

JDD2=JCC+NRX~-1

JEE1=JCC+1

JEE2=JCC+NRX

JCCX=JC+NRY

JEE1X=JCCX+1

IF(ISHIFT.LE.I) JDD1X=JC+NRY+NRX+1
IF(ISHIFT.GT.I) JDD1X=JC+NRY-NRX+1
JDD2X=JDD1X-2 ‘
JEE2X=JDD1X-1

IF(INCLIN.EQ.1) GO TO 715
IF(INCLIN.EQ.2) GO TO 716
RAC=SQRT (AC*AC+RYY*RYY)
RBC=SQRT(BC*BC+(RYY-RYT) * (RYY—RYT) )
AYB=RYT
RAE1=1.00/SORT(AE1*AE1+RYY*RYY)
RAD1=1.00/SQRT(AD1*AD1+RYY*RYY)

RBE1=1.00/SQRT(BE1*BEl+(RYY-RYT)* (RYY~RYT))
RBD1=1.00/SQRT(BD1*BD1+(RYY-RYT)* (RYY-RYT))

RAE2=1.00/SQRT(AE2*AE2+RYYD2*RYYD2)

‘RAD2=1.00/SQRT (AD2*AD2+RYYD2*RYYD2)

RBE2=1.00/SQRT(BE2*BE2+(RYYD2-RYT) * (RYYD2-RYT) )
RBD2=1.00/SQRT(BD2*BD2+(RYYD2-RYT) * (RYYD2-RYT) )
DELV1=(V(IA,JCC)-V(IA,JDD1)~V(IB,JCCX)+V(IB,JDD1X))
DELV2=(V(IA,JCC)-V(IA,JDD2)~V(IB,JCCX)+V(IB,JDD2X))
DELVX=(V(IA,JCC)-V(IA,JEE1)-V(IB,JCCX)+V(IB,JEEL1X))
DELVY=(V(IA,JCC)-V(IA,JEE2)-V(IB,JCCX)+V(IB,JEE2X))

DELVP=(V(IA,JCC)~V(IB,JCCX))
RYTC=RYY-RYT

GO TO 745

RAC=SQRT (AC*AC+(RYY~RYT) * (RYY-RYT) )
RBC=SQRT (BC*BC+RYY*RYY)

AYA=RYT
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RAE1=1.00/SQRT(AE1*AE1l+(RYY-RYT) * (RYY-RYT) )
RAD1=1.00/SQRT(AD1*AD1+(RYY-RYT)* (RYY-RYT) )
RBE1=1.00/SQRT(BE1*BE1+RYY*RYY)
RBD1=1.00/SQRT(BD1*BD1+RYY*RYY)
RAE2=1.00/SQRT(AE2*AE2+(RYYD2-RYT) * (RYYD2-RYT) )
RAD2=1.00/SQRT(AD2#*AD2+ (RYYD2-RYT) * (RYYD2-RYT) )
RBE2=1.00/SQRT(BE2*BE2+RYYD2*RYYD2)

RBD2=1.00/SQRT (BD2*BD2+RYYD2*RYYD2)
DELV1=(V(IA,JCCX)-V(IA,JDD1X)-V(IB,JCC)+V(IB,JDD1))
DELV2=(V(IA,JCCX)-V(IA,JDD2X)-V(IB,JCC)+V(IB,JDD2))
DELVX=(V(IA,JCCX)-V(IA,JEE1X)-V(IB,JCC)+V(IB,JEEL))
DELVY=(V(IA,JCCX)-V(IA,JEE2X)~V(IB,JCC)+V(IB,JEE2))
DELVP=(V(IA,JCCX)-V(IB,JCC))

RYTC=RYY-RYT

GO TO 745

NRY=IABS ( ISHIFT+I~NRLIM-1)*NRX
JCC=JC+ ( I-NRLIM) *NRX

JDD1=JCC-NRX+1

JDD2=JCC-NRX~1

JEE1=JCC+1

JEE2=JCC—-NRX

JCCX=JC+NRY

JDD1X=JCCX-NRX+1

JDD2X=JDD1X-2

JEE1X=JCCX+1

JEE2X=JDD1X-1

IF(INCLIN.EQ.1) GO TO 725

IF(INCLIN.EQ.2) GO TO 726

RAC=SQRT (AC*AC+RYY*RYY)
RBC=SQRT(BC*BC+(RYY-RYT) * (RYY-RYT) )
RAE1=1.0/SQRT(AE1*AE1+RYY*RYY)
RAD1=1.0/SQRT(AD1*AD1+RYY*RYY)
RBEl=1.0/SQRT(BEL*BELl+(RYY~RYT)* (RYY-RYT) )
RBD1=1.0/SQRT(BD1*BD1+(RYY~RYT)* (RYY~RYT))
RAE2=1.0/SQRT(AE2*AE2+RYYD2*RYYD2)
RAD2=1.0/SQRT(AD2*AD2+RYYD2*RYYD2)
RBE2=1.0/SQRT(BE2*BE2+(RYYD2-RYT) * (RYYD2-RYT))
RBD2=1.0/SQRT(BD2*BD2+(RYYD2-RYT) * (RYYD2-RYT) )
DELV1=(V(IA,JCC)-V(IA,JDD1)-V(IB,JCCX)+V(IB,JDD1X))
DELV2=(V(IA,JCC)-V(IA,JDD2)-V(IB,JCCX)+V(IB,JDD2X))
DELVX=(V(IA,JCC)-V(IA,JEE1)-V(IB,JCCX)+V(IB,JEELX))
DELVY=(V(IA,JCC)-V(IA,JEE2)-V(IB,JCCX)+V(IB,JEE2X))
DELVP=(V(IA,JCC)-V(IB,JCCX))

GO TO 745

RAC=SQRT(AC*AC+(RYY-RYT) * (RYY-RYT) )

RBC=SQRT (BC*BC+RYY*RYY)
RAE1=1.0/SQRT(AEL*AEl+(RYY-RYT)* (RYY-RYT))
RAD1=1.0/SQORT(AD1*AD1+(RYY-RYT)* (RYY-RYT))
RBE1=1.0/SQRT(BE1*BE1+RYY*RYY)
RBD1=1.0/SQRT(BD1*BD1+RYY*RYY)
RAE2=1.0/SQRT(AE2*AE2+(RYYD2-RYT) * (RYYD2-RYT))
RAD2=1.0/SQRT(AD2*AD2+ (RYYD2-RYT) * (RYYD2-RYT) )
RBE2=1.0/SQRT(BE2*BE2+RYYD2*RYYD2)
RBD2=1.0/SQRT(BD2*BD2+RYYD2*RYYD?2)
DELV1=(V(IA,JCCX)-V(IA,JDD1X)-V(IB,JCC)+V(IB,JDD1))
DELV2=(V(IA,JCCX)-V(IA,JDD2X)-V(IB,JCC)+V(IB,JDD2))
DELVX=(V(IA,JCCX)-V(IA,JEE1X)~V(IB,JCC)+V(IB,JEEL))
DELVY=(V(IA,JCCX)-V(IA,JEE2X)-V(IB,JCC)+V(IB,JEE2))
DELVP=(V(IA,JCCX)-V(EB,JCC))

CONTINUE
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DELVX=DELVX*CRF1 (JRX)
DELVY=DELVY*CRF2 (JRX)
El1=DELVX/RXL
E2=DELVY/RXL
ETOT=SQRT(E1*E1+E2*E2)

EVALUATE THE RESISTIVITY PARAMETERS A LA KELLER

RAC3=1.0/RAC

RBC3=1.0/RBC

DENOMX=RAC3-RBC3-RAE1+RBE1

DENOM1=RAC3-RBC3-RAD1+RBD1

DENOMY=RAC3-RBC3-RAE2+RBE?2

DENOM2=RAC3-RBC3-RAD2+RBD2

COSDEL= ( RBC*RBC+RAC*RAC~-TXLONG*TXLONG) /(2. 0*RAC*RBC)

DELTA=ACOS (COSDEL)

DENOM=SQRT (1. 0+( (RAC*RAC*RAC*RAC)/(RBC*RBC*RBC*RBC) ) -
2.00* (RAC*RAC/ (RBC*RBC) ) *COS (DELTA) )

RESKEL (JRX)=ETOT*RAC*RAC*CRF /DENOM
DNUM=SQRT(1.0+(RAC/RBC)*(RAC/RBC)-2.0*(RAC/RBC)*COS(DELTA) )
CONKEL (JRX)=DNUM/(ETOT*RAC)

VTOT=SQRT ( DELVX*DELVX+DELVY *DELVY )
RESKEL(JRX)=VTOT/ ( SQRT ( DENOMX * DENOMX+DENOMY *DENOMY ) )
DNUMA=ALOG ( RAC3 ) ~ALOG (RBC3 ) —ALOG (RAE1 ) +AL.OG (RBE1)
DNUMB=ALOG (RAC3 ) ~ALOG (RBC3 ) —ALOG (RAE2 ) +ALOG (RBE2)
DNUMX=SQRT ( DNUMA * DNUMA+DNUMB*DNUMB )
CONKEL ( JRX ) =DNUMX /VTOT

IF (DENOM1.EQ.0.00) GMF1(JRX)=0.00
IF(DENOM1.NE.0.00) GMF1(JRX)=1.0/DENOM1

IF (DENCM2.EQ.0.00) GMF2(JRX)=0.00
IF(DENOM2.NE.0.00) GMF2(JRX)=1.0/DENOM?2

IF (DENOMX.EQ.0.00) GMFX(JRX)=0.00

IF (DENOMX.NE.0.00) GMFX(JRX)=1.0/DENOMX

IF (DENOMY.EQ.0.00) GMFY(JRX)=0.00

IF (DENOMY.NE.0.00) GMFY(JRX)=1.0/DENOMY
IF(RAC3.EQ.RBC3) GMFP(JRX)=0.00

IF(RAC3.NE.RBC3) GMFP(JRX)=1.0/(RAC3-RBC3)

OOOOOOOO

APRES1 (JRX)=ABS(DELV1*GMF1 (JRX))
APRES2 (JRX)=ABS(DELV2*GMF2 (JRX) )
APRESX(JRX)=ABS(DELVX*GMFX (JRX))
APRESY (JRX)=ABS(DELVY*GMFY (JRX))
APRESP (JRX)=ABS (DELVP*GMFP (JRX) ) *CRFX(JRX)

EVALUATE THE TOTAL APPARENT RESISTIVITY IN THE VECTOR
E-FIELD DIRECTION

RXTL=RXL
DELVT=ETOT*RXTL

ANGLE OF THE FIELD LINES ARE CALCULATED ON THE BASIS OF
THE MEASURED EX AND EY OVER THE LENGHT OF THE ORTHOGONAL
RECEIVER DIPOLES
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IF(E1.EQ.0.00) BETA=PI*0.50
IF(E1.NE.0.00) BETA=ATAN2(E2,El)
DELX=RXTL*COS (BETA)
DELY=RXTL*SIN(BETA)
THETA1=BETA*57.296
IF(INCLIN.EQ.1) GO TO 810
IF(INCLIN.EQ.2) GO TO 820
810  RAD3=1.0/SQRT((AC+DELX)* (AC+DELX)+ (RYY+DELY)* (RYY+DELY) )
RBD3=1.0/SQRT( (BC+DELX) * (BC+DELX )+ (RYY~RYT+DELY ) *

1 (RYY-RYT+DELY) )
GO TO 845
820 RAD3=1.0/SQRT( (AC+DELX) * (AC+DELX)+(RYY—-RYT+DELY)
1 *{RYY-RYT+DELY) ).

RBD3=1.0/SQRT( (BC+DELX) * (BC+DELX )+ (RYY+DELY ) * (RYY+DELY) )
845  GMF=1.0/(RAC3-RBC3-RAD3+RBD3)
APREST (JRX)=ABS (GMF*DELVT) *CRF

CALCULATE THE DEVIATION OF THE CURRENT LINES FROM THE
HOMOGENEOUS HALF SPACE SITUATION

[eXoRoNe!

HDELV1=RAC3-RBC3-RAE1+RBEl
HDELV2=RAC3—-RBC3-RAE2+RBE2
IF(HDELV1.EQ.0.00) BETA=PI*0.50
IF(HDELV1.NE.0.00) BETA=ATAN2(HDELV2,HDELV])
THETA2=BETA*57.296

THETA(JRX)=THETA2-THETAl

NJRX=JRX

TOTCON (JRX, ILX)=CONKEL(JRX)
TOTRES (JRX, ILX)=RESKEL (JRX)

QOO0

700  CONTINUE
WRITE(87,910) (TITLE(LL),LI~=1,3)
910 FORMAT(1H1,///,50X,'CASE',1X,324,//,35X, ' TRANSMITTING
1 DIPOLE IS INCLINED TO THE STRIKE OF THE INHOMOGENEITY'/)
WRITE(87,911) TXA,AYA,TXB,AYB,RXL
911  FORMAT(//25X, 'CURRENT ELECTRODE POSITIONS ARE AT Xl=',
1 F10.2,2X,'Yl=',F10.2,2X, 'AND AT X2=',F10.2,2X,'Y2="',
1 F10.2,25X,'LENGTH OF THE RECEIVER DIPOLES ARE ',F10.3/)
- WRITE(87,912) RYY
912  FORMAT(/20X, 'POINTS OF OBSERVATION ARE SITUATED ON A LINE
1 SHIFTED ON Y-AXIS BY ',Fl2.4/)
WRITE(87,1110)
WRITE(87,914) (RXP(JRX),GMFX(JRX),APRESX(JRX),GMFY(JRX),

1 APRESY (JRX) ,GMFP (JRX) ,APRESP (JRX) , RESKEL(JRX),
1 CONKEL(JRX) ,APREST(JRX) , THETA(JRX) ,JRX=1,NJRX)
914 FORMAT(7X,F8.2,4X,E10.3,2X,F8.2,2X,E10.3,2X,F8.2,2X,E10.3, 2%,
1 F8.2,2X,F8.2,2X,F8.2,2%X,F8.2,2X,F8.2)
NRLX=ILX

600 CONTINUE
1500 CONTINUE
NJRXX=NJRX-1

DO 1444 J=2,NJRXX

DO 1444 I=1,NRL

IF(APRESP(J).NE.0.00) GO TO 1444
APRESP(J)=(APRESP (J-1)+APRESP(J+1))*0.50
CONTINUE

WRITE(88,325) (TITLE(LL),LI~1,3)

FORMAT (3A5)
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WRITE(88,321) (RXP(JRX),JRX=1,NRLX)
FORMAT(8F10. 3)
WRITE(88,322) (YSHIFX(ILX),ILX=1,NRLX)
FORMAT( 10F8. 3)
WRITE(88,323) ((TOTRES(JRX,ILX),JRX=1,NJRX),ILX=1,NRLX)
FORMAT(8E10.3)
WRITE(88,324) ((TOTCON(JRX,ILX),JRX=1,NJRX),ILX=1,NRLX)
FORMAT(10F8. 3)
CONTINUE
RETURN
END
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ABSTRACT

An electrical resistivity survey was performed at the La Union, New Mexico lower (old)
landfill. The study, conducted in conjunction with the Environmental Improvement Divi-
sion of New Mexico, is part of an on going investigation of possible groundwater contami-
nation in the region. The collected field data included horizontal resistivity profiles as
well as a vertical electrical sounding (VES) using a Wenner electrode configuration.
Examination of the field data revealed anomalously low resistivity readings in the south-
eastern corner of the landfill. The source of these irregular measurements can be attrib-
- uted to either a change in pore-water resistivity (contamination) or a lithologic in-
homogeneity. A conclusive interpretation was not possible without further data. As a
result, it has been recommended that a test well be drilled in the vicinity of the anoma-

lous resistivity area.
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PURPOSE OF WORK

This report is the result of a resistivity profiling survey implemented at the La Union
lower landf{ill. The survey was conducted in conjunction with the Environmental Im-
provement Division of New Mexico. After preliminary traverses of the landfill using
Geonics EM-34-3 induction equipment, horizontal resistivity profiles were performed
over areas found to be highly conductive. In addition, a vertical electrical sounding was
executed to help improve interpretation. The purpose of these surveys was to perform a
preliminary study of the anomalous resistivity areas with special attention paid to possible

contamination of the subsurface.

INTRODUCTION

La Union, New Mexico is situated in Dona Ana County, approximately 30 miles south
of Las Cruces on N.M. highway 28. The lower (old) landfill is located at T27S, R3E,
Section 18.442, just outside the village of La Union (figure 1). Geologically the older
landfill sits atop the Fort Hancock formation of the middle Santa Fe group. The Fort
Hancock formation consists mainly of interbedded sand, silt, and clay with discontinuous
zones of calcic cementation (Hawley and Lozinsky, 1986). Table I shows relevant sec-
tions of a U.S.G.S. borehole taken about 300 feet above and 2 miles northwest of the
lower landfill (figure 1). Groundwater depth, as reported by Wilson et. al. (1981), is
about 20 to 25 feet below the surface and its gradient is in the southeast direction indicat-

ing that the water is flowing toward the community.

PRESENTATION OF RESULTS

Using Soiltest’s R-60 Earth Resistivity Meter (power unit and D.C. millivoltmeter) both
horizontal and vertical soundings were conducted utilizing a Wenner array (figure 2).

The equation for the apparent resistivity , when using a Wenner array is
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AV
Qa=2ﬂa—1‘- (1)

L\

where a is the Wenner electrode spacing, AV is the potential difference and I is the
current

In horizontal profiling the electrode separation is maintained at a constant value and
the entire configuration is moved along a traverse. Readings along this traverse are taken
at regular intervals. In theory, with array spacings held constant, any lateral in-
homogeneity or anomaly will cause a rise or fall in observed readings. In this report,
Wenner spacings of 50 and 100 feet where used. Readings were taken every 25 feet.
Figure 3 is a map of the lower landfill vicinity showing approximate locations of the
traverses. For the horizontal profiling data, apparent resistivities are plotted against the
midpoint location of the Wenner configuration.

In vertical profiling, the center of the electrode configuration is fixed and measurements
are made at various electrode spacings. Logically, we assume that wider electrode spac-
ings produce greater current penetration which results in more information about deeper
structures.  In this report 10 data points were collected at spacings of 1 to 200 feet.

The actual resistivities reported in this péper are averages of two sets of readings.
Specifically, a set is comprised of two measurement taken at the same current setting,
where both the current and potential electrode poles are switched. This results in four
resistivity readings, two at a normal polar orientation and two with the poles reversed.

Figures 4 through 9 are graphical representations of the horizontal profiling data col-
lected at the La Union lower landfill. Electrode spacings of 50 and 100 feet were used.
Both the D and X lines where oriented north-south while the F line was in the east—west
direction. Inferred measurements are indicated by dashed lines. Profiles along the X line
(figures 8 and 9) where taken for background resistivity information on the landfill.
Although these profiles are clearly off any low resistivity areas, their location was situated

on the landfill.
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The vertical electrical sounding, represented in figures 19 and 20, was conducted along
the F line approximately centered at location 14. Another VES, along the D line and
centered at location 13, was attempted but surface objects impaired reasonable readings
for small electrode spacings ( a=1 through 10 ft.).

Finally, a dipole-dipole configuration was used in an attempt to collect a cross—sectional
pseudo-section of resistivity values. Unlike the Wenner array, the dipole-dipole configu-
ration requires a large current injection into the subsurface. This requirement is intensi-
fied as the dipole separation increases. Due to a highly conductive layer just under the
surface (see vertical interpretation) and weakened batteries in our power unit the dipole-

dipole array produced unsatisfactory results.

DISCUSSION

Electrical resistivity has proven itself a useful instrument in mapping geologic structures.
Investigators such as Zohdy et. al. (1974), Petrick et. al. (1977) and a score of others
have successfully applied this tool. Mapping groundwater contamination plumes is another
excellent example of electrical resistivity application and can be seen in the works of
Stollar and Roux (1975), Kelly (1976), and Urish (1983) amoung others. With these
examples in mind it is easy to see how Cartwright and McComas (1968) concluded that,
“resistivity is controlled by two factors - character of material and water quality”.

Although the researchers cited above have had success with surface electrical methods
these techniques cannot always distinguish between changing lithology of a rock and
varying pore-water resistivity. As a result of this problem assumptions are necessary to
interpret resistivity surveys. These assumptions narrow down the possible interpretations
of collected field data. In electrical profiling one can assume the soil matrix is relatively
uniform (Urish, 1983), then any variation in apparent resistivity would be due tc a change
in pore water resistivity. Since many contaminants cause an increase in total dissolved
solids, as for instance landfill leachate, this could result in an increase in conductivity and

produce a resistivity trough in the profile.



In the alternative, a variation in electrical profiling data can be a consequence of a
lithological change. Specifically silt, shale, and clay will exhibit lower apparent resistivity
values than gravel or sand. Klefstad et. al. (1975) found resistivity values quite sensitive
to the thicknesses of silt and clay lenses. Thus, a drop in readings can be the product of a
soil’s physical characteristics. A hydrologic situation where both conditions exist can
result in an ambiguous situation. Stollar and Roux (1975) found that extreme lateral
variations in lithology overlying a contaminant plume can make interpretation difficult.
Klefstad er. al. {1975) refer to natural "scatter” obscuring a decrease in resistivity due to
contamination and limiting the usefulness of the technique.

As we can see, these two opposing premises, constant water quality or constant lithol-
ogy, can lead to very different model interpretations. Adding to the difficulty is the fact
that profiling curves derived from either of these assumptions can be quite similar. It can
not be overemphasized that an integrated approach, using at least two independent geo-
physical techniques, can help reduce the ambiguities that are inherent in surface electrical
resistivity studies. As a consequence of the above stated problem two separate interpreta-
tions will be posed below for the horizontal profiling data. In relation to the vertical elec-
trical soundings, two different inversions of the field data, both fitting within geologic

controls, will be presented.

HORIZONTAL PROFILE

CASE | UNIFORM LITHOLOGY

In this model we assume any change in profile readings a consequence of pore-water
conductivity. As a rule, groundwater contamination by ix"norganic salts that ionize is usu-
ally indicated by anomalously low electrical resistivity. High conductivity anomalies asso-
ciated with low pH and high concentrations of acidity, iron, sulfates, and trace metals
have been described by Ladwig (1984). Although organic contaminants are usually poor
conductors (Slaine et. al., 1984) it has been reported that organics, accompanied by
inorganic compounds in sufficient concentrations, can result in a low-resistivity anomaly

(Bruehl 19&4). Figure 10, adapted from Kunetz (1966), illustrates the general form of a



horizontal resistivity profile across a perfectly conducting plate. The diagnostic feature in
this graph is its resistivity trough. In this theoretical example, the drop in resistivity is on
an order of magnitude. A similar drop in resistivity was reported by Cartwright and
X'IcCamas (1968) who showed, in their study of a sanitary landfill, horizontal profiling
data with a low of 8 Q m and a high of 87 &0 m. Clearly, in figures 4 through 7, although
the drop is not quite as large as the theoretical model, it is sufficient to have been caused
by a thin, highly conductive layer. As implied above, this layer could be the result of
inorganic compounds in higher than normal concentrations.

A rough estimate for pore-water resistivity in a contaminated zone was presented by

Urish (1983). It utilizes the formation factor formulas

F=qp™ (2)
and
F = Qo (3)
Ow

as well as the formula for specific conductance

0 w [umhos/cm] = _ 10000 (4)

ow [ Q2 m ]

where a and m are empirical constants, ¢ is porosity, 0o and Qw are the resistivities of

the rock and water respectively and 0 w is specific conductance. Reasonable values for

a and m, derived by Wyllie and Gregory (1953) and utilized by Urish (1981), are 1 and

1.3 respectively. Uncertainties in these empirical constants are not serious and a variety

of different numbers have been used. A much more serious limitation to the formation
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factor stems from the assigned value for porosity. A sensitivity analysis of the formation
factor formula shows an inverse relationship between porosity and equivalent salinity. As
we increase porosity, we decrease the equivalent salinity. Equivalent salinity of a solution
is defined a$ the salinity of a sodium chloride solution which would have the same resis-
tivity as that of the particular solution for which the equivalent salinity is being expressed
(Keller and Frischknecht, 1966). An obvious corollary is that as we decrease the equiva-
lent salinity, we increase the pore—water resistivity. With this limitation in mind, a poros-

ity can be derived using available water data. At the U.S.G.S. borehole cited earlier, a

water analysis conducted by D. White found a native specific conductance of 0 = 838

pwmhos/cm at an elevation comparable with that of the lower landfill. If we let 0o =95 Q

feet = 31.16 O m (estimated background resistivity qualitatively derived from figures 8

and 9) and calculate Ow using the native specific conductance, we have, rearranging

equation (3)
Ow = 10000 / 838 umhos/cm = 11.83 O m
and
F=31160m/ 1193 Qm = 2.61

Rearranging equation (2) we have
_ 1
¢ =F T3=0.48

The low value for the formation factor and its correspondingly high porosity is consistent
with the soil and rock types identified by the U.S.G.S. borehole data (table I} and the
E.1.D. augered hole (table II). The equivalent salinity, using the calculated values above
is 7.69 meq/liter.

The next step in the analysis is to use this derived porosity to calculate a specific conduc-

tance for the horizontal profiling resistivity troughs. We have, from our previous calcula-



tion F = 2.61. Rearranging equation (3), using the lowest recorded resistivity readings in

the trough,

Ow = 25 Q feet/2.61=3.14 Q0 m.

Employing the formula for the specific conductance (equation 4),

0 w [pmhos/cm] = 10000 3184 umhos/cm .

314 Qm

The above calculations have resulted in Qw = 11.93 Q m for the background pore-

water resistivity and 9w = 3.14 Q m for the area with low resistivity measurements.
Although Keller and Frischknecht (1966) report a limiting range, for pore-water resis-
tivities, between 10 Q m and 0.1 Q m, the calculated pore-water resistivity for the back-
ground is not altogether surprising. In fine grained rocks, apparent pore-water
resisitivities are always much lower than would be expected on the basis of a chemical
analvsis of water extracted from the rock (Keller and Frischknecht, 1966). This is a
result of the cation exchange capacity that exists between the pore-water and the rock.
Obviously, this exchange capacity can not be accounted for once the water is removed
from the rock. Unfortunately, a quantitative evaluation of the discrepancy between insitu
and laboratory pore~water resistivities is not possible without knowledge of the cation
exchange capacity of the rock. Since the background pore-water resistivity was calcu-
lated using a laboratory derived specific conductance, the above mentioned phenomena
may explain the difference between this resistivity and Keller and Frischknecht’s limiting

values.

As indicated by Urish (1983), when the calculated specific conductance of the pore-
water is substantially higher than the native water, it can be surmised that this discrepancy
is due to the effect of contamination. As can be seen above, the native specific conduc-
tance is lower than the calculated one. Another limitations to this approach will be men-

tioned. It should be recognized that we have implicitly assumed that the apparent resis-
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tivity ( Qo ) at its lowest value approaches the bulk resistivity of the saturated layer.
Nevertheless, this approach can illustrate that a pore-water anomaly does exist.
Inorzanic contaminants are not the only possible cause of a highly conductive layer.
Visual inspection of the study area reveals buried metal near the surface. Although this
will have some effect on the results we do not believe this metal is the sole reason for the
amomalously low readings. Examination of depth of investigation (figures 11 and 12) for
the Wenner array, given model parameters presented in table IV, reveal a probing depth
of approximately 24 feet for a spacing of 100 feet, and of 16 feet for a spacing of 50
feet. Depth of investigation is defined as that depth at which a thin horizontal (parallel to
the ground surface) layer of ground contributes the maximum amount to the total meas-
ured signal at the ground surface (Evjen, 1938; Roy and Apparao, 1971). It should be
emphasized here that these depths are not absolute depths of targets since other layers
contribute to the received signal. In addition, a simplified current penetration model (Van
Nostrand and Cook, 1966), again using parameters from Table IV, reveals only 0.9% of
the injected current is in the top layer for a spacing of 50 feet and 0.5% for a spacing of
100 feet. Thus, although there was visible metal at he surface, it does not appear this

metal could cause the anomalous resistivity measurements.

CASE I CONSTANT PORE-WATER RESISTIVITY

For this interpretation we assert that a change in profile measurements originates in the
lithology of the material. As discussed earlier, a model of this type assumes constant
pore-water resistvity. Figures 13 through 16 are normalized plots of the F and D line

profiles. The abscissa is marked x/a where x is the distance from the center of the
anomaly and a is the Wenner electrode spacing. The ordinate is defined as 0z /¢ where

0. is the measured resistivity and 0 is taken as 170 Q feet. This ¢ value is not arbitrary
but derived from both of the VES inversions 1o be presented below. The normalized plot
in figure 17 is a theoretical model adapted from Van Nostrand and Cook (1966) and is
for an oblate hemispheroid., Distance between the two peaks, 1abe1¢d A and B, minus the

electrode spacing indicates the width of the body in question. Examination of figure 13
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shows that the F line for a = 50 feet most closely matches the theoretical curve of figure
17. Calculation of the width of the geologic form using Van Nostrand’s generalization
indicates a structural diameter of approximately 300 feet. A graphical comparison for the
F line a = 100 feet profile was not possible, but a logical extension of the theoretical
graphs presented in Van Nostrand and Cook ( p. 219) implies that the shape of the
profile (figure 14, labeled C) should flatten as the a spacing becomes a bigger fraction of
the structure diameter. In other words, we would expect the range of apparent resistivity
measurements to become smaller as the electrode spacing increases. This would appear
to be the trend for the F line as we increase the a spacing from 50 to 100 feet (figures 13
and 14). »

It has been reported (Van Nostrand and Cook, 1966) that if the width of the sink is
small in comparison with its length and depth, the edge effects are approximately those
due to a vertical dike of finite length. With this in mind, we will assume that the F lines
crossed over the length of the structure while the D lines crossed over its width. Using
this assumption, it was found that the a = 50 feet D line (figure 15) closely resembles that
of a theoretical profile (figure 18) for a vertical dike with a/2 = 100 feet width. This same
model fits reasonably well for the a = 100 feet D line (figure 16) where, assuming a
structural width of a/4, the expected theoretical curve would again have a flatter appear-
ance (see Van Nostrand and Cook, 1966, p156). Thus, assuming constant pore—water
resistivity, the structural dimensions of the geologic body causing the resistivity troughs in
the horizontal profiling data can be defined as: width = 25 feet, length = 300 feet, and
depth = 70 {eet (from VES models).

It should be noted that all of the comparisons made with Van Nostrand and Cook
theoretical curves are qualitative in nature. It can not be expected that the boundary
conditions used to derive these curves where met in the field. Nonetheless, reasonable

extensions can be applied if the above mentioned limitations are kept in mind.
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VERTICAL ELECTRICAL SOUNDINGS (VES)

MODELING PROCEDURE FOR WENNER VES

The modeling of the La Union lower landfill VES data was conducted in 5 phases.

1) The initial Wenner VES data were plotted on log-log paper. This curve was matched
to a theoretical curve using a set of curves published by Mooney and Wetzel (1936).

2) Parameters derived from curve matching where adjusted using the forward calculation
portion of Fortran program SLUMB (Petrick et. al., 1977, as modified by LaBrecque,
1987, unpublished)

3) Best forward fit was then inverted using SLUMB. During the inversions several differ-
ent parameter combinations were held constant. The final result is the statistically best-
fitting inverted model from this group.

4) An additional inversion using the Zohdy and Bisdorf (1975) method was applied.

3) Both models were compared to known geologic controls for verification and adjust-

ment.

INVERSION MODELS OF WENNER VES

The 4-layvered earth model used in this report (figure 19 and table III) is the result of a
numerical inversion of the collected field data using the Fortran p\rogram SLUMIB.
SLUMB, which can be described as a simultaneous lavered-earth plane wave and resis-
tvity inversion program, was originally written by William Petrick and most recently re-
vised by Doug LaBrecque of the University of Utah. SLUMB uses nonlinear weighted
least squares inversion with Marquardt stabilization (sometimes called ridge regression).

In PetricK’s algorithm, input includes: number of layers, layer thicknesses, and layer
resistivities. In effect, the program user can control the complexity of the inverted model
with respect to the input parameters. In this interpretation the 4-layer model was forced
because it was felt that a more complicated case could not be rationalized with only 10

data points to invert.

10



Table III consists of the model parameters (resistivities and thicknesses) as well as
several statistical parameters. The first section of the table, labeled observed apparent
resistivity, essentially contains inputted field data along with the user calculated data
weights. The data weighting is derived as follows: for each set of field data points a per-
cent observation standard deviation is calculated. The actual weight is then 1/(percent
observation standard deviation). Underneath the inputted data are the initial and calcu-
lated layered-earth model parameters. In this example only two iterations after the initial
guess were permitted. The resulting apparent resistivities, from the final iteration, are
shown in the next section.

The remaining portions of Table III present relevant statistical parameters. The

weighted residual is calculated as

Weighted residual=(In(observ)-In(calc. rspns)) *Wt.

where In is defined as the natural logarithm. The next section, labeled normalized deriva-
tives, is essentially a sensitivity matrix. Each row corresponds to a particular electrode
spacing, ordered from station 1 to station 10. The columns each correspond to the in-
verted geophysical parameters (resistivity or thickness). Normally, a four layered model
would have 7 columns. Columns 1 through 4 would represent the resistivities of layers 1
through 4 while columns 5 through 7 would describe the thicknesses of layers 1 through 3
(layer 4 having infinite thickness). In table III, since the resistivities were held constant,
columns 1 through 3 correspond to model thicknesses for layers 1 through 3. The nor-
malized derivatives themselves represent contributions of a particular array separation
(associated with a particular field observation and station) to the parameter (resistivity or
thickness) represented by the column. Thus, each number represents the sensitivity of
either a resistivity or thickness to a particular electrode spacing. The higher normalized
derivatives indicate where the major contributions to the recorded signal lie. As ex-
pected, the greater contributions to the signal are associated with larger spacings.

The next section of table III is labeled estimated percent parameter standard devia-

tions. General working experience with SLUMB has shown these percentages should

11
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normally be below 30 to assure a good model fit. Finally, the covariance matrix repre-
sents the statistical relationship or correlation between any two parameters in the model.

The automatically inverted curve presented in figure 20 and table IV was derived using a
different approach from that of the Petrick model. Zohdy and Bisdorf’s algorithm utilizes
modified Dar Zarrouk functions in an iterative fashion to calculate the proper model
parameters. Table IV is an adjusted sample output from the Zohdy program. The col-
umn labeled adjusted reduction is the result of a visual qualitative reduction of model
parameters. Zohdy recommends that manual smoothing of layers may be necessary to
produce geologically acceptable results. As can be seen, the first three layers, with a total
depth of 4.81 feet, can be considered an equivalent single layer with an approximate

resistivity of 177 € feet. The resulting model is a much more manageable § laver case.

COMPARISON AND INTERPRETATION

Although both inversion codes use different approaches, the resulting models are not
entirely different. Visual inspection confirms a better fit for the Zohdy model but it
should be remembered that the Petrick inversion was forced to a simpler model and its
statistical parameters are well witﬁin accepted ranges. If the Zohdy inversion were further
reduced, as for example combining the third and fourth layers, it would be quite similar to
the Petrick model.

Prior knowledge of geologic controls are essential for an accurate inversion of electrical
resistivity data. For example, the lower landfill had a reported depth of 5 to 10 feet.
This information matches the estimated thickness of the uppermost laver in both the
Zohdy and Petrick inversion models. This permits interpretation of either model’s top
laver as that of the landlfill itself. Another illustration showing the importance of prior
Kknowledge of geologic controls is the gradual fall in resistivities between the second and
third layers. Examination of both the Zohdy and Petrick inversions reveal that the drop
in resistivity between the second and third layer is not particularly great. Without prior
knowledge of the water table level (20-25 ft.), the boundary between the second and

third layer could be misconstrued as something other than a water table boundary. It is

12
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reassuring, given this prior knowledge, that the Zohdy model places an electrical layer at
24 feet and the Petrick model at 23 feet. Thus, we can interpret this electrical boundary
as the top of the water table.

The above mentioned drop in resistivity values between the second and third lavers is
an important interpretation feature. Figure 21, an adaprtation from Urish (1983), shows
the contrasting VES graphs for gravel, sand, and silt as they move from unsatwurated to
saturated conditions. The gradual slope of the silt line, as opposed to those of gravel and
sand, closelv resembles those found in figures 19 and 20. This result is not surprising,
given the borehole and augered data presented in tables I and II. Thus we can interpret
the second and third lavers as a silt or clay layer passing from unsaturated to saturated
conditions.

It should be recognized that this implied silt layer may not be vertically continuous. The
Wenner configuration, in general, has the tendency to average out thin contrasting layers.
A perfect example of this phenomenon is the fact that neither model interpreted the one-
foot gravel laver found during augering (table II}). As stated by Zohdy er. al. (1974),
“the detectablity of a layer of given resistivity depends on its relative thickness, which is
defined as the ratio of bed thickness to its depth of burial”. In essence, the smaller the
relative thickness, the smaller the chance of detecting it in an electrical sounding. Thus,

since the relative thickness of the gravel layer is 0.06, neither VES model detected it.

SUMMARY OF CONCLUSIONS

Analvsis of the field measurements resulted in two conflicting interpretations. Assuming
constant lithology, it can be concluded that the low-resistivity readings are a result of a
change in pore-water resistivity. This case is supported by an evaluation utilizing the
formation factor and specific conductance of the native water. A second view, one in
which the drop in resistivities is attributed to a change in lithology, is supported by a
comparison with theoretical horizontal profiling curves presented in Van Nostrand and

Cook (1966). In addition, an evaluation of the VES curve, using methods developed by

13
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Petrick er. al. (1977) and Zohdy and Bisdorf (1975), supports the changing lithology
interpretation.

Although a definitive model for the low-resistivity measurements was not possible, it
was concluded, from an analysis of the depth of investigation and current penetration,

that the cause of the anomalous readings was not within the first § to 7 feet (top layer).

RECOMMENDATIONS

This report has demonstrated that resistivity methods alone are not adequate to fully
study a possible groundwater contaminant plume. Moreover, these techniques. can not
necessarily distinguish between a pollutant and a geologic body. As alluded to earlier, an
integrated attack, one in which at least two independent geophysical or geological tech-
niques are applied, is the preferred approach. Gilmer and Helbling (1984) combined
electromagnetic and vertical electrical soundings with seismic refraction techniques to
help develop a monitoring well system. Gilkeson er. al. (1984) used an approach which
included electrical earth resistivity with shallow geothermic surveys to delineate contami-
nant pathways at an Illinois site. Finally, Benson et. al. (1984) give an excellent review
of the integrated approach which includes comments on ground-penetrating radar,
electromagnetics, resistivity, seismic refraction and reflection, metal detection, mag-
netometry, and organic vapor analysis.

Unfortunately, the two techniques applied at the La Union lower landfill, electromag-
netics and resistivity, can not be considered independent of each other. Similar draw-
backs to the ones discussed in this paper can inhibit interpretation of electromagnetic
results. The wwo methods are, however, complementary in nature. For example, in a
geological environment with a highly conductive top layer, electromagnetic methods may
be of limited use as opposed to resistivity measurements (White et. al., 1984). On the
other hand, a thin highly resistive caliche layer that distorted resistivity data appeared
transparent with respect to the Geonics EM-34-3 electromagnetic induction equipment
(LeBrecque et. al., 1984). In truth, the interpretation techniques (ie. inversion program-

ming, type curves, etc.) are much more developed for resistivity methods. It is recog-

14
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nized, however, that the ease with which electomagnetic surveys are conducted makes the
technique a very powerful tool in the field.

A common denominator in almost all groundwater pollution investigations using either
electrical resistivity or electromagnetic induction was the use of test wells to verify or
adjust proposed earth models. Zohdy et. al. (1974) go as far as 10 recommend that
parametric electrical soundings be made near test wells in order to determine the resis-
ti\'it\y parameters of layers using accurately determined laver thicknesses. Thus, it is ad-
vised that a test well be drilled in the vicinity of the resistivity troughs reported in figures
4 through 9. Figure 3 shows the recommended location of the test well. This location is
preferred because it is down gradient from the lowest resistivity readings recorded yet still
within the high conductivity troughs. A well down-gradient from the investigation area
will permit \'aluablé water sampling both now and at a future date. In addition, since the
location is sull within the anomalously low resistivity area, lithologic study of the well
borings can help confirm or dismiss either interpretation of the horizontal profiling data.
Drilling on the landfill is not recommended because of the unknown nature of the possi-
ble contaminant source. Contaminant filled drums, under pressure, could rupture caus-
ing injury and possibly permitting pollutants to spread through uncontaminated portions of

the system.

15



191

LIST OF REFERENCES

Benson, R. C., R. A. Glaccum and M. R. Noel, 1984, Geophysical techniques for
sensing buried wastes and waste migration: a applications review: Proceedings of the
NWWA/EPA conference on surface and borehole geophysical methods in ground
water investigations, San Antonio Texas, pp. 533-566

Bruehl, D. H., 1984, Delineation of ground water contamination by electrical resis—
tivity depth soundings: Proceedings of the NWWA/EPA conference on surface and
borehole geophysical methods in ground water investigations, San Antonio Texas,
pp. 403-412

Cartwright, K., and M. R. McComas, 1968, Geophysical surveys in the vicinity of
sanitary landfills in northeastern Illinois: Ground Water, v. 6, no. 5, pp. 23-30

Evjen, H. M., 1938, Depth factor and resolving power of electrical measurements:
Geophysics, v. 3, pp. 78-98

Gilkeson, R. H., T. H. Larson, and P. C. Heigold, 1984, Definition of contaminant
pathways: an integrated geophysical and geological study: Proceedings of the
NWWA/EPA conference on surface and borehole geophysical methods in ground
water investigations, San Antonio Texas, pp. 567-583

Gilmer, T. H., and M. P. Helbling, 1984, Geophysical investigations of a hazardous
waste site, Massachusetts: Proceedings of the NWWA/EPA conference on surface
and borehole geophysical methods in ground water investigations, San Antonio
Texas, pp. 618-636

Hawley J. W., and R. P. Lozinsky, 1986, Progress report on: Hydrogeologic and geo-
physical framework of the Mesilla basin in southern New Mexico and western
Texas. New Mexico Bureau of Mines and Mineral Resources

Keller, G. V., and F. C. Frischknecht, 1966, Electrical Methods in Geophysical Pros-
pecting: New York, Pergamon Press, 519 pp.

Kelly, W. E., 1976, Geoelectrical sounding for delineating ground-water contamina-
tion: Ground Water, v. 14, no. 1, pp. 6~10

Klefstad, G., L. V. A. Sendlein, and R. C. Palmquist, 1975, Limitations of the elec-
trical resistivity method in landfill investigations: Ground Water, v. 13, no. S, pp.
418-426

Kunetz, G., 1966, Principles of Direct Current Resistivity Prospecting: Berlin, Gebru-
der Borntraeger, 103 pp.

16



192

Ladwig K.J., 1984, Use of surface geophysics to determine flow patterns in surface
mine spoil: Proceedings of the NWWA/EPA conference on surface and borehole
geophysical methods in ground water investigations, San Antonio Texas, pp.
455-471

LaBrecque D. J., D. D. Weber, and R. B. Evans, 1984, Comparison of resistivity and
electromagnetic methods over a contaminant plume using numerical methods:
Proceedings of the NWWA/EPA conference on surface and borehole geophysical

methods in ground water investigations, San Antonio Texas, pp. 316-333

Mooney, H. M., and W. W. Wetzel, 1956, The potentials about a point electrode
and apparent resistivity curves for a two-, three-, and four-layer earth: Min-
neapolis, Univ. Minnesota Press, p. 146 and 243 loose sheets of reference curves.

Petrick, W. R., W. H. Pelton, and S. H. Ward, 1977, Ridge regression inversion ap-
plied to crustal resistivity sounding data from South Africa: Geophysics, v. 42, pp.
965-100S5.

Roy, A., and A. Apparao, 1971, Depth of investigation in direct current methods:
Geophysics, v. 36, no. 5, pp. 943-959

Slaine, D. D., P. K. Lee, and J. P. Phimister, 1984, A comparison of a geophysically
and geochemically mapped contaminant plume: Proceedings of the NWWA/EPA
conference on surface and borehole geophysical methods in ground water investi—
gations, San Antonio Texas, pp. 383-402

Stollar, R. L., and P. Roux, 1975, Earth resistivity surveys—a method for defining
ground-water contamination: Ground Water, v. 13, no. 2, pp. 145-150

Urish, D. W., 1981, Electrical resistivity-hydraulic conductivity relationships in glacial
outwash aquifers: Water Resources Research, v. 17, no. S, pp. 1401-1408

Urish, D. W., 1983, The practical application of surface electrical resistivity to detec-
tion of Ground-water pollution: Ground Water, v. 21, no. 2, pp. 144-152

Van Nostrand, R. G., and K. L. Cook, 1966, Interpretation of resisitivity data: U, S.
Geol. Survey Prof. Paper 499, 310 p.

White, R. M., D. G. Miller, Jr., S. S. Bradwein, and A. F. Benson, 1984, Pitfalls of
electrical surveys for ground water contamination investigations: Proceedings of the
NWWA/EPA conference on surface and borehole geophysical methods in ground
water investigations, San Antonio Texas, pp. 472-482

Wilson, C. A., R. R. White, B. R. Orr, and R. G. Roybal, 1981, Water resources of
the Rincon and Mesilla Valleys and Adjacent Areas, New Mexico: N.M. State
Engineer Technical Report no. 43.

17



193

Wyllie, M. R. J. and A. R. Gregory, 1953, Formation factors of unconsolidated po-
rous media: influence of particle shape and effect of cementation: Jouhal of
Petroleum Technology, v. 198, pp. 103-110.

Zohdy, A. A. R., G. P. Eaton, and D. R. Mabey, 1974, Application of surface
geophysics to Ground-water investigations: Techniques of Water Resources Investi-
gations of the U.S. Geological Survey. Book 2, Chap. DI U.S. Government Print—
ing office, Washington D.C.

Zohdy, A. A. R., and R. J. Bisdorf, 1975, Computer programs for the forward calcu-
lation and automatic inversion of Wenner sounding curves: National Technical
Information Service, U.S. Department of Commerce. Report no. PB-247-265

18



194

Table I U.S.G.S. borehole #27S8.2.13.333

I E R SRR ERE R E R EE RN EEE R E R R R R R R R R R EE R R R AR R E R R R R E R E R NN RN NN EE N

Depth from surface (ft.) Geologic description
300-325 silt and sandy silt interbeds
325-375 silt and sandy silt with minor clay
375-400 medium to fine sand
400-500 medium coarse sand with minor clay

interbeds, moderately sorted

500-550 medium coarse sand with silt and clay interbeds

LR R R R R R AR R E S R R R R R R R R R R R R A R Y R R R R R R R R R R R R R R E R E R R R R EEE N EE N
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Table II E.I.D. augered hole 6/11/87

‘t‘tt‘t‘t‘ttttt#."l‘t‘ttttl‘ttltt‘t‘lt‘**‘#l-‘13“‘#“*3!#&#‘ttl‘t!ttt

Depth from surface (ft.) Geologic description

0-6 pit

6-11 medium sand
11-15 hard, dry clay
15-16 gravel

16-22 clay

22.25-7 sandy clay (wet)

XXX XXX L E XX XN KL KB A E S XN A SRR IR R AR A K A KR E KR AR XX KRR X B AR K K X KA N K KK KR KA B B XKk % & &
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Table I -

La Union, lower landfill

196

Wenner inversion program (Petrick)

OBSERVED APPARENT RESISTIVITY.... WENNER

STATION (3*A)/2

1.500E+00
4.500E+00
7.500E+00
1.050E+01
1.500E+01
4.500E+01
7.500E+01
1.050E+02
1.500E+02
3.000E+02

O O 00 3 AN LN

[owy

A

1.000E+00
3.000E+00
5.000E+00
7.000E+00
1.000E+01
3.000E+01
$.000E+01
7.000E+01
1.000E+02
2.000E+02

APP. RES. WT

150.000
149.550
142.630
122.820
83.330
35.560
25.400
30.450
34.020
55.650

5.000
20.400
26.300
138.500
65.800
11.500
65.000
10.400
25.000
16.700

LAYERED EARTH MODEL PARAMETERS

LAYER 1
LAYER 2
LAYER 3
LAYER 4

AFTER ITERATION 1 MQT PARAM IS

1.50E+01

RESISTIVITY=
RESISTIVITY=
RESISTIVITY=
RESISTIVITY=

NEW PARAMETERS ARE

LAYER 1
LAYER 2
LAYER 3
LAYER 4

AFTER ITERATION 2 MQT PARAM IS

1.38E+01

RESISTIVITY=
RESISTIVITY=
RESISTIVITY=
RESISTIVITY=

NEW PARAMETERS ARE

"LAYER 1
LAYER 2
LAYER 3
LAYER 4

177.84
27.54
18.00
96.80

177.84
27.54
18.00
96.80

THICKNESS=
THICKNESS=
THICKNESS=

THICKNESS=
THICKNESS=
THICKNESS=

RESISTIVITY= 177.84 THICKNESS=
RESISTIVITY=  27.54 THICKNESS=
RESISTIVITY=  18.00 THICKNESS=
RESISTIVITY=  96.80

21

6.76
14.12
42.67

1.00E-03 THE SQUARE ERROR IS

5.91
18.60
41.36

1.00E-04 THE SQUARE ERROR IS

5.98
16.92
41.42



Table III - cont.

LR R R AR E R R R EE R R R R R E A R R R R R R R R R S R R R R R E R R R R A R R R R RS E A R R E R R R E R NN NN RN

APPARENT RESISTIVITY CALCULATED....WENNER

STATION (3*A)/2 A APP. RES.
1 1.500E+00 1.0000E+00 177.402
2 4.500E+00 3.0000E+00 168.735
3 7.500E+00 S5.0000E+00 147.569
4 1.050E+01 7.0000E+00 121.286
5 1.500E+01 1.0000E+01 86.359
6 4.500E+01 3.0000E+01 27.356
7 7.500E+01 S5.0000E+01 25.632
8 1.050E+02 7.0000E+01 28.449
9 1.500E+02 1.0000E+02 34.504
10  3.000E+02 2.0000E+02 51.810

I E R RS R EREEEEREEEE SRR R R R R R R R R R R R R R R R R R Rl EE R R R EREREREREREERRENEESSES:]

WEIGHTED RESIDUAL
-5.93E-01
-1.74E+00
-5.94E-01

1.23E+00
-1.66E+00
2.13E+00
~4.18E-01
5.00E-01
-2.50E-01
8.44E-01

I E AR R R E REERE R R E R EEEE R R E R R E R EES R E S R R R R R R R R R R R R R R E R R R R R R R E R R R R R R

DERIVATIVE NORMALIZING FACTORS

1.19E-02 2.65E-02 2.73E-02

I E R E R E R RS EEREEEEEEEER R RS E R EE R RS E R R R E RS R R R S E R R R E R R R R R E R E R E R E R R RN AR RN
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Table III - cont.

I B EEEEENEEEREEEE R RS SR E R R N R R R R R R S R R R R R R R N R R E R R R R E R R RS R R R SR

NORMALIZED DERIVATIVES

1.14E-05 0.00E-01 0.00E-01
3.82E-03 1.78E-04 0.00E-01
1.94E-02 1.78E-03 -5.70E-05
9.47E-01 1.56E-01 -4.74E-03
3.20E-01 1.23E~01 -4.99E-03
2.99E-03 5.90E-02 -9.40E-03
1.91E-02 9.50E-01 -9.61E-01
1.34E-04 -1.25E-02 -3.75E-02
-1.36E-05 -2.11E-01 -2.56E-01
-8.87E~-05 -9.76E-02 -9.92E-02

IR R EE R R EE R EE R R SRR E SR R EE R ER R R E R SRR RN E R R R E R R R R R R R R RS R R R R R RS R E R R R R NN

THE ESTIMATED PCT PARAMETER STD DEV IS
1.79E+00
7.55E+00
7.60E+00

[ E R B EE R RN EREE SR RS EEE R R R E R R R R R R R R R R R R R E R R R R R R R R R R R R R R E R E R EE R R RN

PARAMETER CORRELATION MATRIX

1.00E+00
-3.52E-01 1.00E+00
-2.92E-01 8.64E-01 1.00E+00

IR E RS A E R R R R R SR R E R R R R R R R R R R R E R R R R R R R R R E R R EE R R E R R R E R R EEEREEE R EREEEREERERESS

23



Table IV - Wenner inversion program (Zohdy)

I A A EE R ERE EEEE RS EEERE RN R R EEEE R R R E R R EE R RS R R R R R EE R R E R RN R E RN E R R R RN EE R EERE RN R

THICKNESS DEPTH RESISTIVITY ADJUSTED
REDUCTION
0.55260 0.55260 171.45830 -
0.39314 0.94574 94.92809 -
3.87386 4.81960 186.42143 177.00000
19.57811 24.39771 49.50846 49.50846
26.74222 51.13993 12.57237 12.57237
28.14887 79.28880 28.92520 28.92520
99999712.00000 201.94412 201.94412

99999632.00000

I A R R EEEE R B S S E R R N R R R R R R R R E R R R R E R R R E R R R R R R R R R S S R R R R E E R R RS R E R R R R E RN R R

0.10000
0.14678
0.21544
0.31623
0.46416
0.68129
1.00000
3.00000
5.00000
7.00000
10.00000
30.00000
50.00000
70.00000
100.00000
200.00000

OBS.VES

150.0000
149.5500
142.9300
122.8200
83.3300
35.5600
25.4000
30.4500
34.0200
55.6500

CALC. VES

171.38560
171.10847
170.12898
167.61008
162.51166
154.87502
148.42145
154.05205
141.08444
119.53151
91.38408
37.40022
28.02647
28.24363
34.44092
58.48822

24

SMOOTHED VES

172.22380
172.03365
171.29735
169.16843
164.37317
156.12839
146.66124
151.81024
143.62614
121.03464

© 91.25313

36.66403
27.32483
28.25742
34.17486
58.23745
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(a)
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. eowm

]
‘ a e a e

WENNER ELECTRODE ARRAY

()

(b)

® DENOTES ELECTRODE LOCATION

b

]
77 ATTAS

7777777

\

—

VERTICAL SECTION

PLAN SECTION

Figure 2. (a) Wenner electrode configuration
(b) Electrical current flow in the earth (plan section)
(c) Electrical current flow in the earth (vertical section)
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