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ABSTRACT

In the past decades, numerous analytical or semianalytical solutions for groundwa-
ter problems have been obtained with the Laplace transform technique. As the physical
understanding of realistic groundwater problems evolves, the corresponding mathemati-
cal models become more complicated, to which analytical solutions are no longer easily
obtainable. Therefore, a great deal of interest has been focused on finding semianalytical
solutions for groundu ater problems. The semianalytical solutions are the result of numer-
ical inversion of the Laplace domain solutions. Many different Laplace numerical inversion
methods have been employed to determine the semianalytical solutions. Here, eight dif-
ferent Laplace numerical inversion methods are examined; they are the Stehfest [Stehfest,
1970], Schapery | Schapery, 1962], Widder [Widder, 1934], Dubner and Abate [Dubner
and Abate, 1968], Koizumi [see Squire, 1984], Crump [Crump, 1975], Weeks [Weeks, 1966]
and Talbot [Talbot, 1979] methods. These eight methods are tested for their accuracy and
computational efficiency on groundwater problems. It is found that the Crump method
1s suggested for use in groundwater problems because it can successfully invert functions
which are oscillatory, smooth, or of discontinuities in the first derivative. In addition to
this suggestion, we noted that for oscillatory functions, the Talbot method may be used
instead of the Crump method for less CPU times are needed by the Talbot method. For
smooth functions, due to its simplicity in application the Stehfest method may be used
with care, noting that it vields spurious oscillatory results at large times for transport
problems. Other methods such as Schapery’s, Widder’ s, Dubner and Abate’s, Koizumi’ s,

and Weeks’s methods are not recommended for groundwater problems because they have

the limitation in accuracy or computational efficiency.
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Chapter 1.

INTRODUCTION

Mathematical modeling has been an important theoretical approach in studying
groundwater problems. Generally, it involves finding the solutions to the mathematical
model constructed to investigate the problem of interest. Usually, a mathematical model
consists of a set of differential equation(s) (i.e., the governing equation(s)) mathemati-
cally describing the physical conditions of the problem and a set of boundary and initial
conditions appropriately prescribed. Many analytical/semianalytical solutions for vari-
ous groundwater mathematical models have been obtained with the aid of the Laplace

transform technique in the past decades. The Laplace transform of f(z,t) with respect

to t is formally defined as

F(z,s) = /000 e " f(z,t)dt (1)

where s is the transform parameter being complex, z denotes the spatial coordinates, and t
represents temporal variable. Applications of the Laplace transform to the mathematical
models simplifies the models by reducing the degree of freedom (i.e., the independent
variables). By doing so, the solutions for the transformed models in the Laplace domain
can be easier obtained. If the Laplace domain solutions are determined, they need to
be inverted to the original domain such that the true solutions can be known. The

Laplace inversion of F(z,s) can be formally defined by the Mellin integral (e.g., Krylov
and Skoblya [1977], Lepage {1961]) as

1 Y+ioco
flet) = 5 / | Plasetds (2)
where v 1s a positive real number so chosen that all the singularities of the integrand lie
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left of the vertical line defined by v —i00 to 4+ 200 in the complex plane, and ¢ represents

the complex number defined to be 4/—1.

Calculation of (2) can be carried out by making use of the Cauchy integral theorem
to find the sum of residues of the integrand at each of its singularities within the region
bounded by the contour in the complex plane. A number of analytical solutions based
on this analytical inversion method have been determined. Chen and Woodside [1988]
obtained the analytical solution for a mathematical model investigating aquifer decon-
tamination by a single withdrawl well. This analytical solution studied concentration
variation inside the aquifer during the withdrawal process. Chen [1987] determined the
analytical solutions for four different radial dispersion problems from an injection well;
namely, resident and flux concentration distributions dealing with a continuous or a pulse
injection, respectively. The well bore was simulated as a Cauchy boundary condition. To
the similar problems studied by Chen [1987] yet subject to a Dirichlet boundary condi-
tion at the well bore, Tang and Babu [1979], and Hsieh [1986] gave analytical solutions
in terms of Bessel and Airy functions, respectively. Boulton and Streltsova [1977] derived
the equation for the drawdown in a fissured water-bearing formation, which was idealized
as an aquifer-aqgitard combination, assumed an impermeable boundary at the top of the
aquitard. Numan and Witherspoon [1969] obtained an analytical solution for the problem
of groundwater flowing into a well in an infinite radial system composed of two aquifers
that are seperated by an aquitard. Other analytical solutions for groundwater problems

can be found in Bear [1972] or Hantush [1964, p.281-432].

In general, the most difficult task in using (2) for analytical solutions is to find the
singularities of the integrand involved. If the integrand is complicated and its singulari-
ties are difficult to know, sometimes the so-called asymptotic solutions are desired. The
asymptotic solutions are the inversion of the simplified Laplace domain solutions evalu-
ated at large or small arguments. Many asymptotic solutions for groundwater problems

have been obtained. Chen [1987] gave the short-time asymptotic solutions for resident
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concentration dealing with a continuous injection from a single well. Chen [1986] ob-
tained the short-time asymptotic solution for radionuclide transport from an injection
well into a single fracture by radial advection and longitudinal dispersion. Chen [1985]
dealt with comtaminat transport from an injection well into an aquifer with simultaneous
diffusion into adjacent aquitards. Voigt and Haefner [1987], and Chen and Reddel [1983]
determined the short and long time asymptotic solutions for heat transfer in aquifers with
finite thickness caprock during a thermal injection process. Sageev [1986] presented the
early and late time asymptotic solutions for head response in an aquifer to a slug test
in a fully penetrating well with well bore storage and the skin effect around the active

well. Hantush [1960] determined the short and long time drawdown distributions in leaky

aquifers.

Since the asymptotic solutions are only valid for short or long time periods of the
problems, they do not provide information for the intermidiate time periods. Therefore,
hydrologists have been interested in finding semianalytical solutions that are useful for
any time periods. These semianalytical solutions were obtained by numerically inverting
the Laplace domain solutions; they are called semianalytical solutions because usually
the Laplace domain solutions are in terms of analytical functions yet their inversions are
calculated by numerical methods instead of analytical or asymptotic techniques. The
Stehfest method [Stehfest, 1970] has been widely applied to invert the transformed solu-
tions in Laplace domain for various groundwater problems. The following works used the
Stehfest method to obtain the semianalytical solutions. Karasaki et al. [1988] gave the
semianalytical solutions for various models of slug tests. Hemker and Maas [1987] applied
the Stehfest method to obtain a semianalytical solution for the drawdowns in leaky and
confined multi-aquifer systems, results were compared with a analytical solutions devel-
oped by Maas [1987] and excellent agreement was noted. Sageev [1986] generated the
intermediate time type curves of slug test by the Stehfest method. Moench [1985] used

this method to find the semianalytical solutions for the groundwater flow toward a large-
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diameter well in a leaky aquifer. Barker [1985] evaluated the generalized well function for
homogeneous and fissured aquifer. Moench [1984] provided double-porosity models for a
fissured groundwater reservoir with fracture skin. Moench and Ogata [1984] noted that
the Stehfest method gave good results for various groundwater flow problems. Moench
and Ogata [1981], and Chen [1985, 1986] applied this method to determine semianalytical
solutions for radial dispersion from an injection well into a granular or fracture aquifers.

Chen [1989] obtained semianalytical solutions for solute transport in a leaky aquifer
receiving wastewater injection by making use of three different numerical inversion meth-
ods; namely, Stehfest [1970], Dubner and Abate [1968], and Crump [1976]. He noted
that both Dubner and Abate’s and Crump’s method gave essentially the same results,
yet the Stehfest method showed oscillatory results at small dimensionless time periods.
Kipp [1985] used the Crump method to analyze the response of a well to a slug test. He
found that the Stehfest method could not accurately invert a decaying sinusoid analyt-
ical function. Barker [1982] presented graphs for solute migration in fissured aquifer by
using the Crump [1976] and Durbin [1974] methods. Valocchi [1985] used Durbin’s and
Stehfest’s method to enhance the reliability of the calculated results for the validity of
the local equilibrium assumption for modeling sorbing solute transport through homoge-
neous soils. He found that results by these two methods generally agreed to within a few
percent. Durbin’s method is based on Fouier cosine and sine series, an approach used
in Crump’s method. However, Davies and Martine [1979] noted that Crump’s method is
computaionally more eflicient.

Barker and Black [1983] applied the Talbot method [Talbot, 1979] to determine the
head solutions of slug tests in fissured aquifers. Sposito et al. [1986] used the same method
to obtain semianalytical solutions for a transfer function of solute transport through soil.

Chen [1980] used the Schapery method [Schapery, 1962] to acquire steady state
semianalytical solutions for an aquifer thermal injection problem; satisfactory results

were noted. Clegg [1967] used this method for some simple problems in plane radial flow;
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accurate results were obtained. He noted that the Schapery method was satisfactory
provided that the function s e F(s) satisfies the condition that it was approximately a
linear function of In(s).

Another useful numerical Laplace inversion method has been proposed by Weeks
[1966]. Wada [1981] used the Weeks method to obtain accurate results in mechanical
engineering problem for the transient torsional vibrations of a rigid mass connected to an
elastic half-space by an elastic circular rod. Although the Weeks method has not been
used in the area of groundwater, we feel that it may be an effective technique in dealing
with groundwater problems. In addition to the Weeks method, the Koizumi method (see
Squire [1984]) may be a successful method for numerically inverting the Laplace domain
solutions of groundwater problems, because it is based on the Fourier series, an approach
used in Crump’s, and Dubner and Abate’ methods. Widder [1934] gave a numerical
Laplace inversion formula which is employed in this study due to the simple structure.
Piessens [1975], and Piessens and Dang [1976] provided detailed bibliography for Laplace
numerical inversion methods. Davies and Martine [1979] gave a suvey and comparison of
methods for numerical inversion of Laplace transform.

As discussed earlier, the semianalytical solutions can usually be obtained with ap-
propriate numerical inversion methods. However, their accuracy depends on the cho-
sen methods. Therefore, the objective of this study is to evaluate the applicability of
eight different numerical Laplace inversion methods that have been used in dealing with
groundwater or other practical problems. Specifically, these eight methods are Stehfest,

Schapery, Widder, Dubner and Abate, Koizumi, Crump, Weeks, and Talbot.



Chapter 2.

NUMERICAL LAPLACE INVERSION METHODS

This section discusses the eight numerical inversion methods mentioned earlier.

They are the Stehfest, Schapery, Widder, Dubner and Abate, Koizumi, Crump, Weeks,
and Talbot methods.

§2.1 The Stehfest Method:

Stehfest [1970] gave the following formula to numerically invert F(s) as

f(t)=[se ) KneF(ns)] (3)

s=in(2/1)
where the transform parameter s is defined in calculations to be In(2/t). The weighting
coefficients K, are given by

min{(n,N/2)
Kn= (-1 37
k:(n+1)/2

kN/2(2k)!
(N/2 — &)k (k — 1)l(n — &)I(2k — n)! (4)

In (4) N must be even. According to Stehfest, the accuracy can be improved by increasing
N. However, roundoff error limits the value of N. Moench and Ogata [1981] obtained
accurate results by using N = 18 for duouble precision. They noted that the limiting

factor in the accuracy of the results is the number of significant figures that the computer

is capable of holding.

§2.2 The Schapery Method:
Schapery [1962] proposed a numerical inversion formula for F(s) as
f@)[se F(s)]s=1/2t (5)
where the transform parameter s is defined to be 1/2¢t. The formula of (5) is simple in
structure and no weighting coefficients need to be calculated.
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§2.3 The Widder Method:

Widder [1934] obtained a formula to numerically invert F(s) as
F(&) 2 (1) ()T ST FM ()] o (6)

where the transform parameter s is defined to be n/t. F(™(s) is the n-th derivative of
F(s) with respect to s. In general using higher derivatives (i.e., large value of n) gives

higher accuracy, but tests by Davies and Martine [1979] indicated that convergence was

slow.

§2.4 Methods approximate the Laplace inversion by expressing the trans-
formed function in a Fourier series:

In (1), s is a complex variable which can be expressed as s = a + w, where a is
an arbitrary real number and w will be defined later. Substituting the s into (1) and by

the identity e = cos(wt) + isin(wt) for the exponential term of (1), the integral can be

replaced by

oo

F(s) = /000 e” " f(t)cos(wt)dt — i/o e f(t)sin(wt)dt (7)

F(s) = Re[F(a + iw)] + iIm[F(a + iw)] (8)
where
Re[F(a +iw)] = /0 oot f(#)cos(wt)dt )
Im[F(a+ iw)] = — /0 oot f()sin(wt)dt (10)

Introducing (8) with s = a + iw and ds = idw into (2) and rearraging the integral of (2)

gives

eot +o0
f(t) = 5 {/_ [Re[F(s)]coswt — Im[F(s)]sinwt]dw
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+oo
+17 /_ [Im[F(s)]coswt + Re[F(s)]sinwt] dw} (11)

By substituting (9) and (10) into (11), the imaginary part can be expressed as

+ oo
/ [Im[F(s)]coswt + Re[F(s)]sinwt]dw} =

— o0

_ / " /0 et () sin(wt)dt] o cos(wt)dw

— 00

+ o0 [e’e]
+/ [/0 e f(t)cos(wt)dt] e sin(wt)dw = 0 (12)

fadle @]

According to (12), (11) reduces to
eat +o0
f() = o / [Re[F(s)]coswt — Im[F(s)]sinwt] dw
T J—o
which can be simplified to the following equation by noting that the integrand is an even
function

eat

f(t) = —/ (Re[F(s)]cos(wt) - Im[F(s)]sin(wt)) dw (13)
T Jo
§2.4.1 The Crump Method:
Crump [1975] approximated the Lapalce inversion by writting (13) as an infinite

series which was constructed to be an infinite set of even periodic functions ¢,(¢) and odd

periodic functions K, (t), each with period 2T. For n=0,1,23,.. go(t) and K, (¢) are given
by

h(t nT <t<{(n+1)T;

gn(t) = { hgz)nT —1) (n-1)T é t < 72T. (14)
h(t), nT <t < (n+1)T;

Ka(t) = { —(h)(ZnT —0), (n=1)T é £ < e (15)

where h(t) is a real function and h(t) = 0 for ¢ < 0. Therefore, the Fourier cosine

representation of each g,(t) is

_Qnpo = mmt
gn(t) = 5>+ D an,meos(—5-) (16)

m=1



where

=7 [ oo

The Fourier sine representation of each K,(t) is

) n=0,1,2,3,... (17)

4
K,(t) = Z bn msm(m) (18)
where
(n+1)T
b = —/ h(@)sin( TNt = 0,1,2,3, .. (19)
’ T J.T T

It is seen from (17) and (19) that convert the finite Fourier cosine transform to a true

integral transform is to sum over n so that the upper limit becomes infinite. Summing

(16) over n and replacing h(t) = e™** f(t) gives

> et A= > mw
3 galt)ett = =0+ 3 Apncos( ) (20)
n=0 m=1
where
Ap=o = / e~ * f(t)dt = Re[F(a)) (21a)
0

Ap = A mtf(t)cos( )dt Re[F(a + )] pr/r (210)

Summing (18) over n and replacing h(t) = e~ f(t) yields

o0

S etK (1) = Z Bmsm(m—”)] (22)
where
5 /Ooo J—at f(t)sm(ﬂ;i)dt = —Im|[F(a+iw)] o pr/r (23)

9



Dividing (20) and (22) by two and adding together obtains

1 ¢ at 1 - at
5 D etgal(t) + 5 N e K () =

n=0 n=0

2e* Am—o | t t
; [ 5 ¢4 E Amcos(m7r Z Bmsm(ﬂ) (24)
m=1

m=0

Equation (24) contained an error term which can be carried out by summing (14) over n

and multiplying e*' to both sides, then

3 etga(t) = 3 e h(2nT +8) + Y e*h(2nT — 1) (25)
n=0 n=0 n=1

Furthermore, making the substitution h(t) = e~ f(t) into (25) becomes

oo oo

Z e gn(t) = Z e 2T f(onT +t) + Z e?4te=2nTe f(onT — ) (26)

n=0 n=0 n=1

Seperating the n = 0 term out of the summation in (26) gives

D e gn(t) = F(Bnmoy + ) €T f(2nT + 1) + 2 f(2nT — 1)) (27)
n=0 n=1

with 5707 L e 2nTe[f(2nT +t) + €2** f(2nT — t)] being one part of error term. (27) can
be rewritten as

o0

Y e*ga(t) = f(t) + ERROR1 (28)

n=0

By using the same procedures of (25)-(28), (15) with the other part of error term can be
expressed as

o

Y e* Ku(t) = f(t) + ERROR2 (29)

n==0
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where ERROR2= Y20, 72T f(2nT +t) — €' f(2nT —t)]. Again dividing (28) and
(29) by two and adding generates

n—‘O n—O
By noting (24), (30) can be rewritten as

at[Am —0
T

Z Amcos(mm) + Z Bmsm(——-—)] f(t)+ ERROR3  (31)

where the truncation error ERROR3 is equal to (1/2)ERRORL + (1/2)ERROR2. 1t is
clear that (31) combines the Fourier cosine and sine series to be the approximate formula

for the Laplace inversion of (13). In essence, (31) given by Crump is calculated with the
aid of epsilon algorithm (e.g., MacDonald [1964]).
§2.4.2 The Dubner and Abate Method:

Dubner and Abate [1968] approximated (13) by expressing the transformed function
in Fourier cosine series, neglecting the term involving sin(wt) in (13). By noting (20),

(28) can be rewritten as

at A
m=0

Z Amcos(

] f(t) + ERROR1 (32)

Clearly, (32) is an approximate formula for the Laplace inversion with an error term
named ERROR1. In (32) the Fourier cosine series is computed with the fast Fourier
transform (FFT) method (see, for example, Cooley and Tukey [1965]).

§2.4.3 The Koizumi Method:

The development of the Koizumi method (see Squire [1984]) is very similar to that

of Dubner and Abate. Koizumi, however, approximated (13) by writting the transformed
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function in Fourier sine series, neglecting the term involving cos(wt) in (13). By noting

(22), (29) can be rewritten as

26” iBmsm(Tf)] f(t) + ERROR? (33)

m=0
Obviously, (33) is an approximate formula given by Koizumi for the Lapalce inversion

with an error term called ERROR2. The Fourier sine series is evaluated by a modification

of Clenshaw’s recursive procedures (e.g., Mattheman [1963]). In the next section more

details about those errors will be discussed.

§2.4.4 Error Analysis:

Some conclusions regarding the best method can be draw by analyzing the errors
associated with thses three methods. If f(¢) < ¢ for all t and ¢ is a constant, then

ERROR1 in (32) can be written as

FRROR1 < Z e~ 2enT [c + ce2“t]
n=1
<ce Z e—2anT[1 + e2at]
n=1

e—2aT

SC.[l‘*‘Czat].m

(~aT+at) cosh(at)
stnh(aT)

In (34) ERRORI is bounded as 0 < ¢ < T. When ¢t — T , ERROR1 approches to

<cee

(34)

coth(aT) which becomes prohibitively large when aT is less than 1.2 (Abramowitz and
Stegun [1970, p.83]). Therefore, the representation is restricted to the interval 0 < ¢ < T'/2
(i.e., T 2> 2tmqs) with an error of the order ce e~ 2T, For example , suppose after determing
T(> 2tmaz), @ value is chosen such that aT=10, then for the case under consideration,
our approximation of f(t) on the interval(0,T/2) is good to within an error of the order

c #1075, Similarly the error term of (33) can be shown by

- h(—at)
ERR < (—aT+at) sin
OR2<cece —sznh(aT) (35)
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ERROR2 is also bounded as 0 < t < T. When ¢t — T, ERROR2 approches to
a constant ¢ which may be large. Moreover, the representation is also restricted to the
interval 0 < t < T/2. It is clear that neither of these formulas (34) and (35) shows
any specific advantage because both error terms contain a factor which is expoentially
increasing with t

If {(t) is again bounded by a constant c for all t, then in (31) the error term gives

ERROR3<ce Z e~ 2nTa

n=1

< e-—2aT
Sce 1— e——ZaT

1
<ce T (36)

The interest of (36) is twofold by Durbin [1974]:  First of all, ERROR3 is now bounded
by a fixed quantity; allowing us to use reprsentation of f(t) on the interval (0,2T) instead
of (0,T/2). Secondly, This fixed bound depends only on the product aT. For example,
when aT=10 the ERROR3 < c ¢ 107°, whereas the Dubner and Abate, and Koizumi

methods give only c ¢ 107° and 0 < ¢t < T'/2. This implies that the Crump method is

capable of obtaining more accurate results.

§2.5 The Weeks Method:

Weeks [1966] developed a method for the numerical inversion of Laplace transform,

in which the Laplace inversion was obtained as an expansion in terms of orthonormal

Laguerre functions.

If the function f(t) satisfies the conditions

/000 e” N f(t)|dt < oo (37a)

and

/0 B e~ f(1)|?dt < oo (37b)
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, then from Schohat [1940] and Widder [1935], (2) can be approximated by a function
fn(t) as

N ¢
IOEY an () (38)

In (38), the function of ¢(t/T) is defined by
HZ) = " La() (39)
/7% T

where L,(t/T) is the Laguerre polynomial of degree n. These polynomials are determined

by the orthogonality condition as

/0 T et Lo (2)Im(z) = { (1) " 7 ™ (40)

In essence, (36) indicates that the Laguerre polynomials L,(z) are orthogonal on (0,00)

with respect to the weight function e™%.

In (38), T must be greater than zero. Weeks [1966, p.424] empirically found that a

satisfactory choice was

tmaz
T=" (41)

A satisfactory choice of ¢ given by Weeks {1966, p424] was

1

c=(c0+t Yo u(co +

max tmax

) (42)

where ¢ is the abscissa of convergence of the Laplace integral and u(x) is the Unit step

function described as
0, ifxz<0
u(z) = { 1, ifz>0. (43)

The coeflicients a, in (38) are determined by the following procedures. Let Fin(s)
be the Laplace transform of fx(t), that is

Fn(s) = /000 fn(t)e tdt (44)

14



Introducing (38) to (44) gives

oo N
1%@):[;e@ﬂﬂ§)%a%wt (45)

Calculating the Laplace transform of e“*¢(%) with the inversion formula tabulated by

Magnus and Oberhettinger [1954, p.129] yields

(s —c—1/2T)"
s—c+1/2T)"

N
Fn(s) = Z an ® ( (46)

The function fn(t) approximates f(t) in the sense that for any € > 0, there exists

an integer N, such that

/0 = e 2 (1) — fn ()P dt < e (47)

If £(t) is absolutely integrable, and bounded, then f(t) and F(s) can be related by the

formula of Parseval theorem as

oo ~+100
[ vera= o [T P (48)

0 —100

Therefore, it follows that the function f(¢)— fa(¢) can be related to its Laplace transform
F(s) — Fn(s) by Parseval theorem.

e £ o di == [ Fs) - Fu(s) Pd
[ e a0 — gt Por= o [T TFG) = Fa(o) P (49)
By noting (47), (49) can be rewritten as

y+ioco
if/. |F(s) — Fn(s)|’ds < € (50)

—1100

Introducing (46) with s = ¢ + iw and ds = tdw into (50) yields

1 [+ al (iw = 57 |
%/ ‘F(C+ZC&))—Zan.m‘dM<€ (51)
-0 n=0 2T



By making change of the variable w = [(1/2T)cot(8/2], (51) can be rearranged as

t coto N : :
—/ ](—+—cot )F(c+z )—Zanoe’"0|d9<e (52)
n=0
It is seen from (52) that
cot cot? N .
(——+z 2)VF(cti=2) Y apee™ (53)
2T 2T opar!

, indicating that the right hand side of (53) converges in the mean to the left hand side

with increasing N.

Fi(c,w) and Fy(c,w) represent the real and imaginary parts, respectively, of F(c +
iw), then

F(c+ iw) = Fi(c,w) + tFy(c,w) (54)

By making use of the identity ™% = cos(n8) + isin(nf) for the exponential term of the

right hand side of (53), it can be rewritten as

N
( 7+ z—l—cot )[Fl(c w+ iF{c,w)] ~ E an ¢ [cos(nb) + isin(nb)] (55)

By separating both sides of (55) into real and imaginary part, the real part is taken as

1 1 6
ﬁ;Fl(c 2Tcoif ) Fz(c cot )cot— ~ Z an ¢ cos(nf) (56)

and the imaginary part is taken as

1 1 1 1 0
——Fz(c 2Tcot )-l— Fl(c cot )cot—- e Z an ¢ sin(nf) (57)

By applying the trigonometric interpolation formula (e.g., Hildebrand [1956]) to cos(nf)

in (56), coeflicients a,, when n=0 can be determined as

6

1 1 6
=7 Z 2TF1(c 2Tcot )— ——Fz(c cot )cot2]9 , (58a)

=0 =6;
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For n = 1,2, 3... the coefficients a, are written as

N
6., 8
= E Fl(c cot ) 1 FQ(C ! cot )cot ]
J=0 29=¢

i

cos(nb;) (58b)

By applying the trigonometric interpolation formula to sin(n6) in (57), coefficients a,,

when n=0 can be given as

ap =0 (59a)
For n = 1,2, 3... the coefficients a, are generated as
N
1 1 1 6 6 .
ap = N Z:O 2TF1(c 2Tcot )— ~———F2(c 2Tcot )cot2]6=ojsm(n9j) (590)

Finally, Weeks [1966] applied the coeflicients of (58) to (38) and by making use of

the recurrence relations for Laguerre polynomial given as

Lo(%) =1
Ll(i):1—%
nLn( )—(2n—1*—)Ln 1( 7))~ (n=1)Ln- 2( T (60)

, so that the approximate function fy(t) given in (38) to numerically invert F(s) is readily
obtained.
§2.6 The Talbot Method:

Talbot [1979] provided a method for the numerical inversion of Laplace transform

in which the Laplace inversion is approximated by trapezoidal integration along a special

contour.

(2) can be rewritten as

ft) = 5% /B e** F(s)ds (61)
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where B is the Bromwich contour from r —t00 to r+200 and ¢ > 0, so that B is to the right
of all singularities of F(s). However, in the fromal definition of Lapalce inversion as shown
in (61) t can be any real number (e.g., Lepage [1961, p.324]). Therefore, the condition
of t > 0 in the Talbot method indicates a restriction of its usage. For example, if F(s)
has the function of e{!=%*_ then the Talbot method gives accurate results as t > k, k is
any positive real number. Direct numerical integration along B may be difficult for some
problems, Talbot overcome the difficulty by replacing B with the aid of an equivalent

contour L, such that

(a) L includes all singularities of F(s)

(b) F(s) uniformly converge as |s| — oo

Condition (a) may well not be satisfied with this particular L by a given F(s).
However, this condition can be made to hold in general for the modified function F(As+o)
by a suitable choice of the scaling parameter A defined later and shift parameter o which

is zero for most functions of F(s). For example, if F(s) has a singularity so, then F(As+0)
has the corresponding singularity

Sg — O

; (62)

Sy =

and (61) can be replaced by

by ot
f@) = 267”, /Le)‘”F(/\s + o)ds (63)
Let z be a complex variable, M the imaginary interval from z = —2m: to +2x:

and s=S(z) a real uniform analytical function of z which (i) has singularities at 271,
and residues there with imaginary part positive and negative, respectively. (ii) has no
singularities in the interval from z = —2x: to +27¢ (i.e., |y| < 27) (ili) maps M onto a
contour L in the s-plane, which encloses all singularities of F((As + o) for some A and o.

(iv) maps the half strip H: # > 0, |y| < 27 into the exterior of L.
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Introducing (i), (ii), (iii), and (iv) into (63) and rewritting terms yields
1 +21|'

16 =57 [ Q= 5= [ QGuay (64)

-2

where Q(z) = Ae*S@+elt o F(AS(2) + 0)S'(2). A trapezoidal approximation to f(t) in
the real integral (64) is

N-
f6) = F(t) = Z e[Q(zr)) (65)
k=0
where z; = 2’“% Therefore, (65) is the general inversion formula considered in Talbot’s

method. Theoretically, the accuracy in (65) can be improved by increasing the value of

N.

Talbot [1979] selected a mapping function for S(z) given by

S(z) = ~+az = %(cothi

5+) (66)

where a = (" . ; v generally can be set to 1 (i.e., a = 0). Substituting z = 267 into (66)

and rearranging terms yields
S(6) = Bcotf + iv8 (67)

In (65), S'(z)=dS/dz=(dS/d8)e(d8/dz); dz/df = 2i and dS/df = 5'(6). Thus

_ fcotbe(fcotfd—1)
where =0+ ——p——
Introducing (67) and (68) into (65), the approximate function of f(t) becomes

N
eat

i Re[(v + Bi)e"OTFAS(8) + o]] ,_,, (69)
k=0

Ft) ~ T = 2

where 6 = I—cz\l,'-, k=0,1,2....N-1 and 7 = At.
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or

et N1 .
@) = i Re[z ax ® e¥*%] (70)
k=0
where a = Bcoth

ar = e*" (v + 18)F[\S(6) + o]

TUT

$="N

Therefore, (70) is a workable form applied by Talbot for (65) and the sum ) in (70)

can be evaluated by an algorithm almost identical to Clenshaw’s recursive procedure for

Chebyshev sums.
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Chapter 3.

RESULTS AND DISCUSSIONS

To evaluate the applicability of eight different numerical Laplace inversion methods
described previously, two numerical examples are tested with those methods. The appli-
cability is concerned with the accuracy of the results obtained by those methods. If they

can provide accurate results, then the computational efficience (i.e., CPU time) will be

considered.
§3.1 The Unit Step Function Tests:

The first example is the Laplace transform of the following function

F(s) = % o ks (7la)

The Laplace inversion of (71a) is

if ;
=we-n={3 I

where u(t-k) is the Unit step function, k is an arbitrary real number. The Unit step
function has a sharp front (i.e., a first derivative discontinuity) at ¢t = k. This function
is involved in solutions for advection dominant solute transport problems. The Unit step
function is chosen to test the applicability of eight Laplace numerical inversion methods
because the sharp front condition is difficult to handle numerically.

The calculated results by those eight different methods for (71a) when k is ten
are tabulated in Table 1-6. All the calculations were carried out on Micro Vax II at
New Mexico Institute of Mining and Technology. In those tables, CPU times are given
in the bottom row. The first column gives values of independent variable t and the
second column lists the exact values of f(t) (i.e., u(t-k)). The rest column(s) give(s) the

approximate values of f(t) (i.e., semianalytical solutions numerically inverted by those

eight methods).
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In Table 1, the results inverted by Stehfest’s method are presented. Three different
numbers of weighting points (i.e., N=16, 18 and 24) were used. The weighting number of
24 gives the maximum allowable length for the decimal figures of double precision in Micro
Vax II. It is seen from Table 1 that accuracy of numerical results are not significantly
improved by using more weighting points. The Stehfest method fails to give accurate
results for the sharp front functions.

In Table 2, the results inverted by Schapery’s method are presented. Although
Schapery’s method is simple in structure and no weighting coefficients are needed, it dose
not give accurate results for the sharp front functions.

In Table 3, the results inverted by Widder’s method are presented. Three different
derivatives (i.e., N=1, 4, and 10) were used. Although accuracy of numerical inversion is
improved by using higher derivatives, yet when N is equal to ten the calculated results
do not converge to the true solutions. In general, for groundwater problems the Laplace
domain solutions may be complicated so that their higher derivatives are difficult to
obtain. Therefore, Widder’s method is not suggested to use.

In Table 4, the results inverted by Crump’s, Dubner and Abate’s, and Koizumi’s
methods are presented. For these calculations, a fixed value of aT was selected. Subject
to this consistent aT, the truncation error (see (34) and (35)) for Dubner and Abate’s, and
Koizumi’s methods is about 1072, and 10™* for Crump’s method (see (36)). Theoretically,
Crump’s method is capable of obtaining most accurate results due to the small truncation

error. To further evaluate accuracy of the three methods, we define the percentage error

as

|calculated results-exact solutions]
percentage error = %

(72)

exact solutions

The maximum percentage error of calculated results for Crump’s method is about 0.8%

at t=11 that is less than 1 % at t=20 given by Dubner and Abate’s, and 3 % at t=9.95
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given by Koizumi’s methods. This indicates that Crump’s method indeed gives most
accurate results as aT is fixed. Regarding computaional efficiency, the Crump method
used the least CPU time ( i.e., 58.5 seconds for Crump’s method that is less than Dubner
and Abate’s 4 minutes and Koizumi’s 1 minute). Therefore, we suggest that among the
three methods based on Fourier series expansion, the Crump method be used for sharp
front functions.

In Table 5, the results inverted by Weeks’s method are presented. Because Weeks’s
method is written in an infinite series form, we choose four different numbers of terms
(i.e., N=>50, 70, 100, and 150) to test its applicability. Although the accuracy of numerical
inversion is improved by increasing the number of terms, the maximum percentage error
is about 45.8 % at t=10.01 when N is equal to 150. It is clear that the Weeks method
dose not give accurate results for the sharp front functions.

In Table 6, the results inverted by Talbot’s method are presented. As Talbot’s
method is expressed in an infinite series form, four different numbers of terms (i.e., N=5,
15, 30, 45) were selected to test its applicability. In general, accuracy of numerical
inversion is improved by increasing the number of terms; when N is equal to 45 accurate
results (i.e., the maximum percentage error occuring at t=10.01 is about 1.1 %) are
observed as the values of t are greater than 10(=k). However, inaccurate results exist for
t being less than 10. This indicates that the Talbot method is only appropriate for the

range of ¢t > k as discussed earlier. To further quantitatively examine this limitation, we

chose another two problems. The first one is

1 ks

F(s) = ;2‘6— (73a)

where k is 5. The Laplace inversion of (73a) is given by
F(#) = (¢ — kyutt — k) (73%)

Results of numerically inverting (73a) by Talbot’s method are plotted in Figure la. Very
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good agreement between the exact solutions and the calculated results is observed when

t is greater than 5; poor agreement exists for t less than 5. The second test function is

6—ks

F(s) = _1____

S

(T4a)

where k has the same value of 5 as used in (73a). The Laplace inversion of (74a) is
7(8) = u(t) — u(t — k) (748)

The inversion results of (74a) by Talbot’s method are ploted against the exact solution

of (74b). Again it is noted that Talbot’s method fails to yield accurate results for ¢ < k.

§3.2 Oscillatory function Tests:

The second example is the Laplace transform of a sinusoid function described by

s
F(s) = (T5a
O = G )
The Laplace inversion of (74a) is
t e sin(i
ey = Lo (750)

Equation (75a) is selected because this kind oscillatory behavior is related to groundwater
problems associated with the decaying sinusoidal displacement of the well water level
(e.g., Kipp [1988]; van der Kamp [1976]). The calculated results for (75a) by those eight
methods are tabulated in Table 7-12, which have the similar format as used in Table 1-6.
In Table 7, the results inverted by Stehfest’s method are presented. Three different
numbers of weghting points (i.e., N=16, 18, and 24) were used. It is noted that for all of

N, Stehfest’s method dose not give accurate results for oscillatory functions.
In Table 8, the results inverted by Schapery’s method are presented. It is also
noted that the Schapery method dose not give accurate results for oscillatory functions.
In Table 9, the results inverted by Widder’s method are presented. Four different

numbers of derivatives (i.e., N=1, 2, 3, and 4) were used. The accuracy of numerical
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inversion dose not improved by using higher derivatives for the oscillatory function. For

all of N, the Widder method dose not give accurate results.

In Table 10, the results inverted by Crump’s, Dubner and Abate’s, and Koizumi’s
methods are presented. A fiexed value of 15 for aT was chosen for these calculations. The
truncation error (see (34) and (35)) for Dubner and Abate’s, and Koizumi’s methods is
about 1077 , and 1071* for Crump’s method (see (36)). Accurate results are obtained by
all of three methods (i.e., the maximum percentage error occuring at t=20 is less than
1073 % for all the three methods). However, the Crump method is most computationally

efficient (i.e., 7.2 seconds CPU time for Crump’s method that is less than Dubner and

Abate’s 26.4 seconds, and Koizumi’s 9.5 seconds).

In Table 11, the results inverted by the Talbot method are presented. The number
of N has the same definition as used in Table 6. Three different numbers (i.e., N=10, 15
and 64) were used. Accuracy of numerical inversion can be improved by increasing the
number of terms. When N is equal to 64, accurate results (i.e., the percentage error is less
than 10™% % for all values of t) are obseved. Although the Talbot and Crump methods
give the same level of accuracy for the oscillatory function tested, the Talbot method is
suggested to use because less CPU times are needed by Talbot’s method (i.e., for Talbot’s

method CPU time is 1.2 seconds while 7.2 seconds by Crump’s method).

In Table 12, the results inverted by Weeks’s method are presented. The number of
N has the same definition as used in Table 5. Four different numbers (i.e., N=30, 40, 53
and 70) were used. In principle, the accuracy of numerical inversion can be improved by
increasing the number of terms. However, roundoff error limits the value of N so that the
accurate results (i.e., the maximun percentage error occuring at t=10 is about 2.4 %) are
obtained when N is 53 instead of 70. The Weeks method utilizes about 1 minute CPU
time which is much longer than 1.2 seconds by Talbot’s method or 7.2 seconds by Crump’s
method. The Weeks method dose not appear to be a computationally efficient technique,

supporting the conclusion noted by Lyness and Giunta [1986]. However, they described
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a modification for Weeks’s method which could improve the computational efficiency of
Weeks’s method. We did not use this improved scheme because Talbot’s method has been

noted to be appropriate method for oscillatory functions in this study.

Comparisons between (75b) and results numerically inverted by those eight methods
for (75a) are also shown in the Figure 2. Good agreement provided by the Crump,
Dubner and Abate, Koizumi, Weeks, and Talbot methods can be noted in Figure 2a;
poor agreement by the Stehfest, Schapery, and Widder methods is shown in Figure 2b.

According to the earlier discussions, the four methods of Schapery, Widder, Dubner
and Abate, and Koizumi will not be used for further tests because they have limitation in
accuracy or compuational efficiency. The other four methods of Stehfest, Crump, Weeks,
and Talbot will be used for testing groundwater problems which do not possess sharp

front, or oscillatory functions.

§3.3 Radial Dispersion Tests:

In this section, the four Laplace inversion methods of Stehfest, Crump, Weeks,
and Talbot are tested against various analytical radial dispersion solutions given by Chen
[1987]. In Figure 3, results of the resident concentration distributions for continuous injec-
tion from a single well [Chen, equation 21] are compared with appropriate semianalytical
solutions for equation (12) of Chen [1987]. In Figure 4, results of the flux concetration
distributions for continuous injection from a single well [Chen, equation 30] are com-
pared with appropriate semianalytical solutions for the concentration transformation of
equation (12) described in Chen [1987]. In Figure 5, results of the resident concentra-
tion distributions dealing with pulse injection from a single well [Chen, equation 28] are
compared with the appropriate semianalytical solutions for equation (12) without (1/p)
term of Chen [1987]. In Figure 6, results of the flux concentration for pulse injection
from a single well [Chen, equation 32] are compared with the appropriate semianalytical

solutions for the concentration transformation of equation (12) and without (1/p) term

in Chen [1987].
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In preparation of these four figures, the semianalytical solutions were determined by
all the four numerical methods. Evaluation of these analytical solutions become uneasy
as the dimensionless time is large. This is due to the difficulty involved in the necessary
numerical integrations of pertinent functions. Therefore, the numerical inversion meth-
ods offer an alternative to obtain the desired solutions at large times. The semianalytical
solutions at dimensionless time of 5000 are given in Figure 3 and 4 for demenstration pur-
poses. It is seen from these four figures that the Crump, Weeks, and Talbot methods give
accurate results for all dimensionless times. The Stehfest method yields accurate results

for small dimensionless times and gives spurious oscillatory results for large dimensionless

time.

To the similar problem studied by Chen [1987] yet subject to a Dirichlet boundary
condition at the well bore, Moench and Ogata [1981] also noted that for large dimension-
less times, the accuracy of the Stehfest method was limited by the number of significant

digits that the computer could hold.

§3.4 Radial Flow Tests:

Karasaki et al. [1988] provided a linear radial flow model which was a composite
system with two concentric regions. The flow was assumed to be linear in the inner region
and radial in the outer region. The inner region was composed of a finite number of
fractures whose flow characteristics and properties were different from the average values
for the entire system. In the outer region the flow took place in a sufficient number of
fractures so that the flow was radial. Analytical solutions were not given in his paper, but
semianlytical solutions by Stehfest method were given. Here we use the four numerical
methods to find the semianalytical solutions of the problem given by Karasaki [1988].
Results of dimensionless pressure heads at well bore for different dimensionless diffusivity
a. and dimensionless transmissivity £ are shown in Figure 7 and 8. Very good agreement
for these four methods is observed. As opposed to the test results discussed in section 3.3,

the Stehfest method dose not yield oscillatory results at large times. Since the Stehfest
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method is the easiest one to use, it appears to be the best method for this particular test.
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EXACT APPROXIMATE f(t)
+
1.00 0.00000 0.00000 0.00000 0.00000
2.00 0.00000 -0.00014 -0.00013 -0.00002
3.00 0.00000 -0.00099 0.00251 -0.00072
4.00 0.00000 -0.00247 -0.01163 0.00495
5.00 0.00000 0.03449 0.02894 -0.01510
6.00 0.00000 -0.03419 0.00035 0.03708
7.00 0.00000 -0.09548 -0.09113 -0.02807
8.00 0.00000 0.00975 -0.02631 -0.08671
9.00 0.00000 0.25372 0.22094 0.13293
2.95 0.00000 0.51522 0.51049 0.49948
10.00 0.50000 0.52824 0.52508 0.51879
10.01 1.00000 0.53083 0.52798 0.52263
11.00 1.00000 0.75562 0.77774 0.84277
12.00 1.00000 0.91002 0.94058 1.01354
13.00 1.00000 0.99817 1.02311 1.06072
14.00 1.00000 1.03857 1.05141 1.04665
15.00 1.00000 C1.04959 1.05014 1.01752
16.00 1.00000 1.04517 1.03656 0.99500
17.00 1.00000 1.03433 1.02063 0.98419
18.00 1.00000 1.02225 1.00702 0.98270
19.00 1.00000 1.01149 0.99730 ~ 0.98639
20.00 1.00000 1.00305 0.99140 0.99186
CPU
T/ME 00:00.00.130 { 00:00.00.130 00:00.00.150

Table 1. Using the Stehfest method [Stehfest, 1970] to numerically

invert (71a) at three different numbers of weighting points.



EXACT | APPROXIMATE

f(t) f(t)
1.00 0.000 0.0067¢4
2.00 0.000 0.08209
3.00 0.000 0.18888
4.00 0.000 0.284650
5.00 0.000 0.36788
6.00 0.000 0.43460
7.00 0.000 0.48954
8.00 0.000 0.53526
9.00 0.000 0.57375
10.00 0.500 0.60653
10.01 1.000 0.60683
11.00 1.000 0.63474
12.00 1.000 0.65924
13.00 1.000 0.68071
14.00 1.000 0.69967
15.00 1.000 0.71653
16.00 1.000 0.73162
17.00 1.000 0.74519
18.00 1.000 0.75747
19.00 1.000 0.76862
20.00 1.000 0.77880

CPU
00:00.00.16

TIME

Table 2. Using the Schapery method [Schapery, 1962] to

numerically invert (71a).
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EXACT APPROXIMATE f(t)
f(t) N=1I |N=4 [N=/0
1.00 8.00000 0.00050 0.00000 0.00000
2.00 0.00000 0.04043 0.00002 0.00000
3.00 0.00000 0.15459 0.00254 0.00000
4.00 0.00000 0.28730 0.02925 0.00059
5.00 0.00000 0.40601 0.09963 0.01081
6.00 0.00000 0.50367 0.20563 0.05733
7.00 0.00000 0.58201% 0.32512 0.15745
8.00 0.00000 0.64464 0.44049 0.29681
9.00 0.00000 0.69496 0.54268 0.44586
9.95 0.00000 0.73391 0.62491 0.57479
10.00 0.50000 0.73576 0.62884 0.58100
10.01 1.00000 0.73613 0.62962 0.58223
11.00 1.00000 0.76915 0.69947 0.6%9096
12.00 1.00000 0.79676 0.75649 0.77397
13.00 1.00000 0.81981 0.80218 0.83306
14.00 1.00000 0.83921 0.83867 0.87288
15.00 1.00000 0.85570 0.86783 0.89799
16.00 1.00000 0.86980 0.89118 0.91224
17.00 1.00000 0.88196 0.90994 0.91863
18.00 1.00000 0.89251 0.92508 0.91943
19.00 . 1.00000 0.90171 0.93735 0.91632
20.00 1.00000 0.90980 0.94735 0.91050
CRU
T/ME 00:00.00.070 | 00:00.00.060 | 00:00.00.080

Table 3. Using the Widder method [Widder, 1934] to numerically

invert (71a), N is the n-th derivative.

31



4 |EXACT APPROXIMATE f(t)
DUBNER|KOIZUMI{ CRUMP
f(t) &ABATE
aT=4.5 aT=4.5 aT=4.5

1.00 0.060000 ©.0002803 0.0000313 ©.0000000
2.00 0.00000 0.0003157 0.000096% 0.0000006
3.00 0.00000 0.00036%1 ©.0001188 ©.0000202
4£.00 0.00000 0.0004309 0.0001033 0.0000063
5.00 0.00000 0.0005085 0.0002570 0.0000084
6.00 0.00000 0.0006060 0.0005430 -0.0000043
7.00 0.00000 0.0007289 0.0004718 -0.0000345
8.00 0.00000 0.0008848 £.0000535 0.0004516
9.00 0.00000 0.0010899 0.0008197 | --0.0003940
9.95 0.00000 0.0043174 -0.0293043- 0.0010010
10.00 0.50000 0.5612920 0.5007749 0.4947337
10.0% 1.00000 0.9990843 1.0047979 0.99944654
11.00 1.00000 1.0015535 1.0013345 1.0083534
12.00 1.00000 1.0019403 1.0028337. 1.0013146
13.00 1.00000 - 1.0024091 1.0021769 1.0015003
14.00 1.00000 1.0029921 1.0019945 0.9993314
15.00 1.00000 1.0037203 1.0034824 1.0009883
16.00 1.00000 1.0044313 1.0050749 0.9992479
17.00 1.00000 1.0057716 1.0055323 1.0010493
18.00 1.00000 1.0071993 1.0062767 4.0006855
19.00 1.00000 1.0089870 1.0087461 1.0002603
20.00 1.00000 1.0112256 1.0117089 1.0000605

CPU

T[ME 00:04.15.180 | 00:01.04.050{ 00:00.58.490

Table 4. Using the Dubner and Abate [1968], Koizumi [see Squire, 1984] and

Crump [1975] method to numerically invert (71a) with aT = 4.5 chosen

for an error of order in (34), (35) and (36).




EXACT APPROXIMATE f(t)
t
ft) |\ N=50|N=70 | N=100|N=I50
1.00 0.00000 0.03982 0.06250 0.07588 0.02499
2.00 0.00000 0.09084 -0.05568 0.04512 -0.02665
3.00 0.00008 -0.02774 -0.01306 -0.05664 -0.05116
4.00 0.00000 0.01287 -0.04089 0.01586 -0.00628
5.00 0.00000 0.03637 -0.06527 0.04207 -0.00540
6.00 0.00000 -0.07690 -0.06362 -0.00198 0.04146
7.00 0.00000 0.04613 -0.02420 -0.06641 0.02742
8.00 0.00000 0.00594 0.010%2 -0.02438 -0.04283
9.00 0.00000 -0.07470 0.01321 0.03948 -0.02395
9.95 6.00000 0.43481 0.39423 '0.39253 0.34284 .
18.00 0.50000 - 0.49421 0.47096 0.50585 0.50887.
10.01 1.00000 0.50609 0.48650 - 0.52852 0.54219
11.00 1.00000 1.09245 1.01918 0.95663 1.02263
12.00 1.00000 0.94169 1.04700 0.97383 0.98407
13.00 1.00000  } 9 04632 0.95842 0.97632 1.01253
14.00 1.00000 0.95559 1.01257 0.98158 0.99221
15.00 1.00000 1.03406 1.00486 0.99544 0.99104
16.00 1.00000 0.97754 0.98121 1.01026 1.00278
17.00 1.00000 0.99806 1.01915 1.00798 1.00560
18.00 1.00000 1.01874 0.97649 0.99020 1.00182
19.00 1.00000 0.96913 1.01853 0.98949 0.99773
20.00 1.00000 1.01457 0.97818 1.00692 0.99537
CPU
TI ME 00:01.51.390 }00:03.41.300 {00:07.35.860 | 00:17.08.830

Table 5. Using the Weeks method [Weeks, 1966] to numerically
invert (71a) with four different numbers

of term in series of (38).
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EXACT!| APPROXIMATE f(t)

14

f(t) IN= 5 IN=I5 |N=30 |N=45
1.00 0.00000 0.76030 0.56063 -1.03809 -9.40436
2.00 0.00000 0.84924 0.88349 0.81893 0.65816
3.00 6.00000 0.87232 0.92881 0.92740 0.90604
4.00 0.00000 0.88279 0.94512 0.95562 0.95342
5.00 0.00000 0.88876 0.95330 0.96747 0.97023
6.00 0.00000 0.89260 0.95817 0.97377 0.97823
7.00 6.00000 0.89529 0.94613% 0.97750 0.98274
8.00 . 0.00000 0.89727 0.96366 0.98016 0.98558
9.00 0.00000 0.89879 0.96536 0.98198 0.98750
9.95 0.00000 0.89995 0.96661 0.98327 0.98883
10.00 0.50000 0.90000 0.96667 0.98333 0.98889
10.01 1.00000 0.90001 0.96568 0.98335 0.98890
11.00 1.00000 0.90098 0.96771 0.58438 0.98993
12.00 1.00000 0.90179 0.96856 0.98521 0.99073
13.00 1.00000 0.90247 0.96926 0.98588 0.99137
14.00 1.00000 0.90305 0.96985 0.98644 0.99189
15.00 1.00000 0.90355 0.97036 0.98691 0.99232
16.00 1.00000 0.903%9 6.9707% 0.98731 0.99248
17.00 1.00000 0.90437 0.97118 0.98765 0.99298
18.00 1.00000 0.90471 0.97151 0.98795 _0.99325
19.00 1.00000 0.90502 0.97181 0.98822 0.99348
20.00 1.00000 0.90529 0.97208 0.98845 0.99368

CPU
T/ME 00:00.00.170 | 00:00.00.430 }00:00.00.800 | 00:00.01.190

Table 6. Using the Talbot method [Talbot, 1979] to numerically
invert (71a) with four different numbers of

term in series of (70).
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" EXACT APPROXIMATE f(t)

f(t) | N=l6 |N=I8 |N=24

0.10 0.00499 0.00499 0.00499 0.00499
0.50 0.11986 0.11985 0.11984 0.11986
0.80 0.28594 0.28691 0.28693 0.28697
1.00 0.42074 0.42088 0.42070 0.42074
2.00 0.90930 0.89325 0.90649 0.90929
3.00 0.21168 0.33501 0.25352 0.21047
4.00 -1.51360 -1.89921 -1.59339% -1.49978
5.00 ~2.39731 -2.35135 -2.73089 -2.40929
6.00 -0.83825 0.56260 0.17794 -1.04662
7.00 2.29945 2.16533 2.78985 2.91773
8.00 3.95743 1.33167 1.90496 4.08613
9.00 1.85453 -0.00410 -0.18198 0.16514
10.00 -2.72011 -0.66477 -1.21222 -3.29330
15.00 4.87716 0.09808 0.28455 0.84362
20.00 9.12945 0.03281 -0.01266 -0.21756
30.00 -14.82047 -0.00586 -0.00308 0.00183

CRPU
00:00.00.030 | 00:00.00.040 00:00.00.040
TIME -

Table 7. Using the Stehfest method [Stehfest, 1970] to numerically

invert (75a) at three different numbers of weighting points.



EXACT | APPROXIMATE
frt) f(t)
1.00 0.42074 0.16000
2.00 0.90930 0.05536
3.00 0.21168 0.02630
4.00 +1.513560 0.01515
5.00 -2.39731 0.00980
6.00 -0.83825 0.00685
7.00 2.29945 0.00505
8.00 3.95743 0.00388
9.00 1.85453 0.00307
10.00 -2.72011 0.00249
cPU
00:00.00.11
TIME

Table 8. Using the Schapery method [Schapery, 1962] to

numerically invert (75a).
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" EXACT APPROXIMATE f(t)
ftt) {N=1 N=2 N=3 N=4
1.00 0.42074 0.25000 0.46080 0.51192 0.51842
2.00 0.90930 -0.03200 ©6.00000 0.10646 0.22528
3.00 0.21168 -0.05400 -0.15126 -0.25000 -0.32388
4.00 -1.51360 -0.04234 -0.11520 -0.20676 -0.31250
5.00 -2.39731 -0.03129 -0.07126 -0.10875 -0.14627
6.00 -0.83825 -0.02345 -0.04320 -0.04B54 -0.04117
7.00 2.29945 -0.01803 -0.02683 -0.01940 0.00174
8.00 3.95743 -0.01422 -0.01724 -0.00630 0.01408
9.00 1.85453 -0.01146 -0.01147 -0.00072 0.01492
10.00 -2.72011 -0.00941 -0.00788 0.00148 0.0124%
CPU
00:00.00.030 |00:00.00.030 |060:00.00.030 | 00:00.00.030
TIME

Table 9. Using the Widder method [Widder, 1934] to numerically

invert (75a), N is the n-th derivative.
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t |EXACT|  APPROXIMATE f(t)
DUBNER | KOIZUMI| CRUMP
f(t) &ABATE
aT=15 aT=15 aT=15
1.00 0.4207355 0.4207355 0.4207358 0.4207355
2.00 0.9092974 0.9092974 0.9092578 0.9092974
3.00 0.2116800 0.2116830 0.2116805 0.2116800
4.00 -1.5136050 =1.5134050 +1.5136042 -1.5136050
5.00 -2.3973107 -2.3973107 -2.3973093 -2.3973107
6.00 -0.8382465 -0.8382465 | -0.8382439 -0.8382465
7.00 2.2994531 2.2994532 2.2994579 2.2994531
8.00 3.9574330 3.9574334 3.9574420 3.9574330
9.00 1.8545332 1.8545328 1.8545497 | 1.8545332
10.00 -2.7201056 -2.7201101 ~2.7200771 -2.7201056
CPU
00:00.26.370 | 00:00.09.490 | 00:00.07.170
TIME

Table 10. Using the Dubner and Abate [1968], Koizumui [see Squire, 1984]
and Crump [1975] methods to numerically invert (75a) with aT = 15 chosen

for an error of order in (34), (35) and (36)
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EXACT APPROXIMATE f(t)
f(t) IN=I0 |N=|5 |[N=64
1.00 0.42074 0.50574 0.42075 0.42074
2.00 0.90930 1.24187 0.90924 0.90930
3.00 0.21168 0.95902 0.21180 0.21168
4.00 -1.513640 -0.20037 -1.51381 . -1.51360
5.00 -2.39731 -0.38939 -2.39702 -2.39731
6.00 -0.83825 2.01086 -0.83859 -0.83825
7.00 2.29945 6.08568 2.29980 2.29945
8.00 3.95743 8.75194 3.95720 3.95743
9.00 1.85453 7.77161 1.85446 1.85453
10.00 -2.72011 £.32564 <2.71946. -2.72011
CPU
00:00.00.220 |00:00.00.310 | 00:00.01.200
TIME ‘

Table 11. Using the Talbot [1979] method to numerically invert (75a)

with three different numbers of term in series of (70).
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; EXACT APPROXIMATE f(t)
f(t) IN=30 |N=40 |N=53 |N=70
1.00 0.42074 0.41355 0.29263 0.41150 0.46126
2.00 0.90930 0.89735 0.95500 0.90796 0.91040
3.00 0.21168 -0.05569 0.26329 0.20978 0.18795
4.00 -1.513460 -1.94180 -1.46274 ~1.47956 -1.53035
5.00 -2.39731 -2.36232 -2.43940 -2.35763 -2.39853
6.00 -0.83825 -0.55415 -0.94550 -0.82486 -0.75585
7.00 2.29945 2.58485 2.19855 2.25357 2.36127
8.00 3.95743 4.25247 3.85280 3.87481 3.90863
9.00 1.85453 1.37869 2.08978 1.81374 1.71744
10.00 -2.72011 -3.32702 -2.38632 -2.65465 -2.83802
CPU
00:00.20.290 ] 00:00.35.900 {00:01.03.160 | 00:01.50.540
TIME

Table 12. Using the Weeks [1966] method to numerically invert (75a)

at four different numbers of term in series of (38).
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Fig. 1 Comparisons showing Talbot’s method is not appropriate for inverting

functions of e(*~% as t < k. (a) Results inverted by Tablot’s method for (73a);

(b) Results inverted by Talbot’ method for (74a)
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(a)

: o CRUMP —— ANALYTICAL SOLUTICN
| 4 TALBOT LEq. ]
= 0O DUBMER AND ABATE

R KOIZUMI

Rz 1]
! 0 ’lJ lIO o ll5 2‘0 25 S0
t
(b)
» STEHFEST —— ANALYTICAL SOLUTICN
X SCHAPERY [Eq. 75(5)]
S - O WIDDER
Zo!
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?Of 1 . 1 ! ! M T ' ’ ! { T 1 ' ' 1 N '
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t

Fig. 2 Comparisons between the analytical solution of (75b) and semianalytical

solutions for (75a) by eight different numerical inversion methods. (a) Good
agreement by Crump, Dubner and Abate, Koizumi, Weeks and Talbot methos;

(b) Poor agreement by Stehfest, Schapery and Widder nethods
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Fig. 5 Comparisons of different numerical inversion methods with analytical
solutions for resident concentration dealing with a pluse

injection from a single well at various dimensionless time
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Fig. 6 Comparisons of different numerical inversion methods with analytical
solutions for flux concentration dealing with a pulse

injection from a single well at various dimensionless time
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Chapter 4.

CONCLUSIONS AND SUGGESTIONS

This study permitted the following conclusions to be drawn.

1. For functions with a steep first derivative (e.g., sharp concentration front resulted
from advection dominant transport process), the Sthefest, Schapery, Widder, Weeks and
Talbot methods do no give accurate results. The accurate results can be obtained by
the Crump, Dubner and Abate and Koizumi methods. The Crump method is most
computationally efficient (i.e., least CPU time) among these three successful methods.

2. For functions having oscillatory behavior, the Stehfest, Schapery, and Widder
methods do not provide accurate results. The Crump, Koizumi, Dubner and Abate,
Weeks and Talbot methods generate accurate results. Among these five successful meth-
ods, the Talbot method is most efficient (i.e., least CPU time).

3. In dealing with groundwater solute transport and flow problems without sharp
front conditions, or rapid oscillations, the Stehfest, Crump, Weeks and Talbot methods
give essentially the same results. However, the Stehfest method yields spurious oscillatory
results at large dimensionless times for transport problems. Computationally, the Stehfest
method is the easiest to use; the Crump, Weeks, and Talbot methods involve complex
number calculations for the Laplace transform parameter needs to be declared as complex.

Therefore, among the eight numerical Laplace inversion methods, we suggest that
the Crump method be used for groundwater problems because it can successfully invert
functions that are oscillatory, smooth, or of discontinuities in the first derivative. In
addition to this suggestions, we offer the following comments:

(1) For oscillatory functions, the Talbot method may be used instead of the Crump

method for less CPU time are needed by the Talbot method.

(2) For smooth functions, due to its simplicity in application the Stehfest method
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may be used with care, noting that it may give spurious oscillatory results at large times
for transport problems.

(3) Other methods such as Schapery’s, Weeks’s, Dubner and Abate’s, Koizumi’s,
and Weeks’s methods are not recommended for groundwater problems. However, We
noted that Lyness and Giunta [1986] gave a modified Weeks’s method that may improve

its computational efficiency. This improvement has not been tested here for groundwater

problems.
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