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ABSTRACT

A new technique for obtaining stochastic predictions of groundwater flow through
heterogeneous aquifer materials is presented. The aquifer properties are viewed as
statistically homogeneous stochastic processes which are characterized by covariance
functions. The governing stochastic stochastic differential equation for flow is written
for mean-removed random variables whose joint distribution is assumed to be Gaus-
sian. This transformed equation is then linearized by applying perturbation theory.
Finally, spectral theory is used to obtain a relationship between the head spectrum
and the logarithm of Transmissivity (InT) spectrum. Using this relationship, an
algorithm is developed for generating discrete random fields of head and InT simul-
taneously. The probability behavior of the head process can then be estimated by
computing its statistics over an ensemble of fields obtained through repeated applica-
tion of the cogeneration algorithm. This cosimulation procedure is computationally
much cheaper and faster than the standard sequential Monte Carlo method which
involves solving a system of algebraic equations for each realization of the head field
obtained. However, the method is restricted to relatively small input variances.

The theory is initially developed for the infinite domain problem in order to avoid
complications arising from boundary conditions. It is then extended, using geostatis-
tical methods, to enable the cosimulations to be conditioned on measurements of T
and/or head, thus addressing the bounded domain problem.

The technique is demonstrated (without conditioning) for steady, confined flow
in one and two-dimensional domains with unidirectional, linear mean hydraulic gra-
dient. Practical aspects associated with computer implementation of the procedure
are discussed in detail. The cogenerated fields are examined to determine under
what conditions they preserve the proper statistical behavior and satisfy the mass

conservation principle.
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INTRODUCTION

This study deals with numerical modeling of fluid flow through heterogeneous
materials. Geohydrologists and petroleum engineers have long recognized that natu-
ral earth systems are extremely heterogeneous; ie. variations in the lithology and the
hydrologic properties that characterize the flow in aquifers or petroleum resevoirs are
known to be distributed in a very irregular manner in space. Furthermore, the prop-
erty values are extremely variable, often spanning several orders of magnitude within
a given hydrogeologic unit. These heterogenieties play a key role in determining the
fate of solutes transported through the flow system and are a major cause of large-
scale dispersion of contaminants in the groundwater. Groundwater contamination
problems resulting from industrial waste discharges, underground storage tank leaks,
landfill leachates, agricultural activities and other sources have received much atten-
tion in recent years, especially with regard to developing mitigative strategies for pol-
luted aquifers. In addition, much of the research emphasis in the petroleum industry
has focused on developing new techniques for enhancing oil recovery in heterogeneous
environments [see eg Coats et al, 1970, 1974; Aziz and Settari, 1979]. Obtaining a
good understanding of how the flow system behaves is an essential prerequisite to
evaluating the efficacy of different remediation alternatives or recovery techniques.
In recognizing the need to account for the influence of aquifer/reservoir heterogeni-
eties on the flow behavior, groundwater hydrologists and petroleum engineers have
attempted to increase their understanding of subsurface flow processes by incorporat-

ing more of the details of these complex heterogeneous systems into their analyses.

An analysis is carried out by developing a model of the flow system in which
a number of simplifying assumptions are combined with a mathematical description
of the flow processes; the model is then used to simulate the flow behavior under
hypothetical conditions and predict the response of the system to those conditions.
The methods used in the analyses have often shifted from analytical to numerical

methods as the latter are more capable of handling aquifer heterogenieties, irregu-




lar geometries, and complex distributions of known state and flux. As advances in
computer technology and computational methods have progressed during the past
two decades, it has become possible to incorporate much more detailed descriptions
of the material property variations into these numerical models [see eg. Cole et
al., 1985,1987]. In spite of this, a great deal of uncertainty exists in our numerical
models, especially concerning the accuracy and representativeness of the input pa-
rameters. In the traditional approach to numerical modeling, the model parameters
are treated as deterministic functions of space; ie. the spatial distribution of the
material properties is assumed known. In reality it is inferred, usually from only a
handful of measurements, some knowledge of the geology, and frequently with the aid
of geostatistical methods such as kriging. Both hand interpreted and kriged values
are inherently smooth interpolators and therefore do not accurately reflect the true
(random) nature of the heterogenieties. Furthermore, in the process of incorporating
the interpolated data into the numerical model, the continuous nature of the porous
medium is approximated by discrete blocks of uniform composition, so that much of
the fine scale detail of the spatial variability is lost. Modeling uncertainty thus arises
from our limited ability to adequately represent the continuous and random nature of
the spatial variations and from interpolation errors resulting from a paucity of field
data. The reliability of predictions made with these models then naturally comes into

question in light of these uncertainties.

Stochasﬁc methods provide a means of assessing the reliability of model predic-
tions by presenting the results of the flow analysis in terms of probabilities rather
than absolute quantities. In the stochastic approach, the spatial variation of the ma-
terial properties i;s modeled as a spatial stochastic process or random field; ie. the
material properties are regarded as random variables whose magnitude variations are
characterized by some joint probability distribution and whose spatial dependence
is characterized by an autocovariance function. The uncertainty in the input of the
stochastic model is then translated into uncertainty in the output which is evaluated

statistically by computing, among other things, the variance of the model predictions.




A number of different techniques have been used to make stochastic predictions
. of groundwater flow in heterogeneous environments. The method of perturbations is
described in de Marsily, [1986] and has been used for flow analysis by Sagar, [1978],
Gelhar and Azness, [1983] and Anderson and Shapiro, [1983]; Tang and Pinder,
[1977] used it for mass transport (see comment by Gelhar et al, [1979]). The first
order second moment method described by Dettinger and Wilson, [1981] might also
be classified as a perturbation technique. Spectral techniques along with perturba-
tion analysis have been used to obtain analytical solutions [Gelhar, 1974; Bakr et
al., 1978; Gutjahr et al., 1978; Gutjehr and Gelhar, 1981; Mizell et al., 1982] but are
generally limited to the analysis of stationary processes in infinite domains and whose
input variance is relatively small. Naff and Vecchia, [1986] used Green’s functions to
solve for three-dimensional flows in a bounded domain. Monte Carlo simulation is the
most commonly used technique and can be applied to virtually any type of problem
that existing codes can fnodel. Most importantly, it is not restricted to problems
with small input variances or unbounded domains. In many of the earlier works,
the spatial correlation structure of the random fields was ignored [ Warren and Price,
1961; Freeze, 1975] while later studies included auto-correlated parameters [Smith
and Freeze, 1979a,b; Smith and Schwartz, 1981; Dagan, 1982; Clifton et al, 1984].
The major drawback with the Monte Carlo approach is its computational expense.
The probability behavior of the output process is estimated by calculating the statis-
tics of the output over an ensemble of realizations. However, for each realization of
the output, a system of equations must be solved, which is an expensive and time

consuming computational step.

Emphasis on reducing the uncertainty in these stochastic models led to the formu-
lation of the inverse problem where the input parameters (eg, hydraulic conductvity,
permeability, boundary conditions) are treated as dependent variables which are es-
timated with the aid of head observations. Further reduction of model prediction
uncertainty is accomplished by requiring each realization of the input to conform

locally to measured values using geostatistical techniques in a procedure known as
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conditional simulation [Delhomme, 1979; Clifton and Neuman, 1982; Kitanidis and
Vomuvoris, 1983; Townley and Wilson, 1983; Hoeksema and Kitanidis, 1984, 1985a,b].

In the present study, we propose a new technique in which the input and out-
put processes are generated simultaneously. The cosimulation approach is illustrated
schematically and contrasted with the standard sequential method in Figure 1. The
proposed method combines elements from the perturbation and spectral analysis tech-
niques with Monte Carlo simulation to obtain stochastic predictions of groundwater
flow. The theory is developed for conditional cosimulations in which observations
of both transmissivity and heads are preserved. Important practical applications of
this kind of modeling include predictions of oil-water cut, sweep efficiency and other
oil recovery performance measures as well as travelpath, traveltime and contaminant
concentration predictions in the field of hydrology. A major advantage of the proposed
method is the significant reduction in the computational effort required to amass the
statistics of the output (head) process. The output head and input log-transmissivity
fields are cogenerated using standard techniques for generating random fields which
do not require the solution of a system of equations. As a first step toward evaluating
the feasibility of such a method, we test it on a simple conceptual model of steady,
confined flow in a system with unidirectional linear mean hydraulic gradient. The
viability of the method is evaluated by examining the individual and joint behavior
of the cosimulated random fields (head and transmissivity) to determine if, or under
what conditions they preserve the proper statistical relationships and satisfy the mass
conservation principle.

We begin by listing the assumptions involved and then describe the cosimulation
algorithm. Next we show the theoretical analysis, in one dimension, for the statistical
and mass conservation measures. Finally, the technique is demonstrated for one- and

two-dimensional domains and the results are compared with the the theory.
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AssuMPTIONS UsED IN THE COSIMULATION APPROACH

The conceptual model and spectral analysis approach is the same as that used
by Bakr et al., [1978] for one and three dimensions, and Mizell et al., [1982] for two
dimensions in their stochastic analysis of groundwater flow. The analysis involves a
transformation of the governing differential equation into an algebraic equation relat-
ing the spectrum of the head field to the spectrum of the log-hydraulic conductivity
field and is described in detail in both of those papers. Here, we’ll briefly review the
steps in the analysis in order to emphasize the inherent assumptions involved.

We begin by treating the parameters and state variable of the governing partial
differential equation for steady, confined flow in a heterogeneous medium as spatial
stochastic processes or random fields. The head and conductivity fields are considered
to be continuous processes whose magnitude variations are described by probability
density functions at every point in space. In reality, there is only one (unique) re-
alization that can be used to chai‘acterize this joint probability behavior, therefore
measurements taken at a few locations in the real field are used to estimate the
parameters which characterize the joint probability distribution of the hypothetical
random field. The ergodic hypothesis, which is essentic;xlly a statement of equivalence
between ensemble and spatial statistics, is therefore implicitly assumed.

The form of the distribution of log-hydraulic conductivity is assumed to be Gaus-
sian, which can be completely described by its mean and variance statistics [Van-
marke, 1984]. This assumption is reasonable for the log-transformed conductivity pro-
cess [Freeze, 1975; Bakr, 1976; Neuman, 1982] and therefore the governing stochastic
differential equation is written in terms of the logarithm of hydraulic conductivity
(InK) or the logarithm of transmissivity (InT').

For simplicity, the mathematics will be presented in a one-dimensional framework.

The governing differential equation for steady, confined flow in one dimension
d (. .dé
T = 1
dr ( d:r) 0, (1)

d*¢ + dlnTﬂ — 0
dz? dz dr

1s written i1n terms of InT as

()
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where the head, ¢, and InT variables are considered to be spatial stochastic processes
or random fields.

The spatial correlation structure of each random field is characterized by an auto-
covariance function; the head covariance function is derived from the InT covariance
model whose functional form may be inferred from field data, or simply assumed. In
Bakr’s one-dimensional model, the InT covariance function, R(£), is a hole function

model of the form
R(g) = o*(1—|¢l/De Mt (3)

2 is the variance of the process, £ is the lag or separation distance, and

where o
[ is a correlation length parameter. Mizell used two modified forms of the Whittle
covariance function for his two-dimensional model of the InT covariance; here we use
the Telis covariance model [Mantoglou and Wilson, 1981,1982]. Because field data
are generally sparse, the covariance mode] is assumed to hold over the entire domain
and the random field is thus assumed to be 2nd order stationary or statistically
homogeneous. Stationarity is also a requirement of the mathematics used in the field
generation method.

The stochastic variables ¢ and InT are assumed to be composed of a non-random
mean part and random fluctuations about the mean. Only the random behavior of
these variables is of interest as it is assumed that the non-random part is known. The
governing equation is thus written to describe the behavior of the perturbations in
flow by subtracting out the mean flow components. Using the same notation as in
Bakr et al, [1978], we write the stochastic variables for one-dimensional flow as

¢(z) = H(z) + h(z)
InT(z) = F + f(z)

where H(z) is a non-random linear function of z representing the mean hydraulic

(4)

head and h(z) the random perturbation about the mean. Similarly, F' represents the
constant mean value of InT and f(z) the perturbation in InT about the mean. Both

h(z) and f(z) are mean-zero stochastic processes. Substituting (4) into (2) leads to

[d'-'ﬂ d’zh] [dF df],[dH ‘”‘] = 0. ()

doz ' a2 pri st Il R el
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Taking the expectation of (5) to obtain the mean flow equation and subtracting that

from (5) yields a non-linear equation governing the perturbations in flow,

d*h Jﬁ + df dh E[flf_d_h} — 0

drdz dz dz

dz? dz dz de (6)
where J = —dH /dxz is the mean hydraulic gradient and E[ | denotes expectation.

In order to simplify the mathematics and obtain a linear equation, the terms
involving products of perturbations are neglected; it is assumed that the deviation of
the perturbation product terms from their mean value is negligibly small relative to

the other terms in (6). Thus, the perturbation equation (6) is reduced to

&2k d
5 - I =0 (7)

The remaining mean-zero, statistically homogeneous stochastic processes (f and
h) are then represented by Fourier-Stieltjes integrals [see eg. Vanmarke, 1984] (also

referred to as the spectral representation theorem, [Lumley and Panofsky, 1964])
+ oo

f2) = [ e dzsw) ()

—00
+o

h(z) = / % 474 (w) (9)

—0
where ¢ is the complex constant, ¢ = /=1, and the dZ(w) terms are complex Fourier
amplitudes of the spatial fluctuations. After substituting (8) and (9) into (7) and
differentiating, the uniqueness property of the spectral representation is used [see
Bakr et al, 1978] to obtain

dZn(w) = 'T‘”dzf(w). (10)

Further properties of the spectral representation theorem (which are discussed in the

next section) are used to transform (10) into
J?
Suw) = L 5w) ()

which relates the head spectrum, Si(w), to the InT spectrum, Sg{w). We'll use this
one-dimensional spectral relationship as a starting point for describing the cosimula-

tion algorithm.



CoSIMULATION ALGORITEM IN ONE-DIMENSION

The algorithm for generating the random fields of head and InT is based on a
discretized representation of the head and InT spectra. The spectrum of a process
is a frequency domain representation which-describes how the variability of the pro-
cess is distributed over different spatial frequencies. The frequencies are inversely
related to spatial separation distances or lags. For example, the spectral density at
high frequencies describes how much of the variance is associated with short-range
fluctuations of the process. The degree to which points separated by different lags
are correlated is described by the covariance function, R(¢), which is related to the

spectrum or spectral density function by the Fourier transform relationship

“+oo
RE) = [ etS(w)dw (12)
where { is the lag or separation distance. In generating the random fields, we make
use of the spectral representation theorem which states that if f(z) is a real, 2 order
stationary, mean-zero stochastic process, then there exists a unique, with probability

one, com@lex stochastic process, Zs(w), such that f(z) can be represented by the

Fourier-Stieltjes integral
Ele)

@) = [ emdzs(w). (13)

The dZ¢(w) represent complex Fourier amplitudes of the fluctuations which are re-

lated to the spectrum of the f process by

EldZs(w)dZ}(w")] = { sﬁ?w)dw = dFj(w) e (14)

where * represents complex conjugate, Sg(w) is the spectral density function of the f
process and dFy(w) is the integrated spectrum or spectral distribution function. We
can generate the random field f(z) having covariance behavior R(¢) given by (12),
by constructing the stochastic process dZ;(w) in (13) such that (14) holds. This is

accomplished in the following manner:
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The Fourier—Stieltjes integral representation (13) is expanded and written as

0 o0

flz) = /ei‘””de(w) + /ei‘”de(w) (15a)
flz) = Yo(z) + Yi(z). (15b)

Substituting —a = w into Yj(z) gives

0

Yo(z) = /e-m dZs(~a). (16)

o>

In order to insure that f(z) is a real process, we construct the dZy process such that

dZs(—a) = —dZ}(a); then (16) becomes
Yo(z) = / e~ 47%(a) = Y{(z).
0
(15b) can then be written as

flz) = Y (z) + Yi(=)
= 2ReYi(z)
and thus (13) becomes

oo

flz) = 2Re/ei”’° dZ ¢(w). (17)
0
The representation (17) is then approximated by integrating over a finite number of

frequencies up to some maximum frequency, Q. To implement this on the computer,

we discretize frequency space and replace the integral in (17) with the summation

M-

f(z) = 2Re e T d7 o(wy) (18)
k=0

where M is the number of harmonics, wx = (k + 1)Aw, and Aw = /M. The

dZ ¢(wy) process is constructed by setting
dZs(wr) = / dFs(wr) (Ur +iVi)
= /SH{wi)Aw (Ur + V)

where the Uy and Vi are mean-zero, variance % uncorrelated random variables. Sub-

(19)

stituting (19) and its complex conjugate into (14) and taking expected values gives

E[dZ(w;)dzi(w)] = {0 17k
[ £{w;) f("“"k)] = | Sg{wk)Aw j=k.

10



Thus, f(z) = InT can be represented approximately using (18) and (19) as

f(z) & 2Re X:l e =\ [ Se{wi)Aw (Uy + iV3). (20)
k=0

Similarly, the head process, k(z), can be represented by discretizing (9) in 2 manner

analgous to (18) as
M1
R(z) = 2Re y  “**dZn(ws)
k=0

where dZp(wy) is given by (10) in terms of dZf(wy). Finally, we substitute (19) into
(10) to obtain

M-1 7
h(:z:) = 2Re Z giwr® ]z\/Sﬁ(wk)Aw (Uk + in). (21)
k=0 k

W

For each location z, the representations (20} and (21) involve the summation of M
complex numbers where the kth term of the sum is the product of the terms to the
right of the 2~ in (20) and (21). The Uy and Vj terms are obtained by calling a random
number generator routine which is usually provided as an intrinsic function on most
Fortran compilers 1. The cosimulation of the head and InT fields is accomplished
by using the same random numbers, Uk and Vj, in both (20) and (21). Thus, for
each %, the product of the exponential term, the radical, and the random numbers
is the same for both (20) and (21). The computational work is therefore reduced

by generating f(z) and h(z) simultaneously by computing this product, using it in

—J
ke

(20) and using =%* times the same product in (21). The cosimulation procedure is
illustrated schematically in Figure 1.
In the next section, we use the representations (20) and (21) to theoretically test

the viability of the cosimulation approach.

T Most Foriran callable random number generator routines output numbers in the range [0, 1] which yields a
random process with mean 1/2 and variance 1/12. To obtain a mean-zero, variance 1/2 random process, the cutput

on {0, 1] must be mapped into the range [—v/6/2, +v/6/2].

11




THEORETICAL ANALYSIS IN ONE-DIMENSION

The first test for success or failure of the method is to determine whether the
cogenerated head and InT fields exhibit the proper statistical behavior, both individ-
ually and jointly. Secondly, if the technique is to be of any practical utility, it must
be shown that the cogenerated fields satisfy the mass conservation principle. An
analytical analysis of this second requirement involves formidable mathematical diffi-
culties, therefore, the theoretical “mass balance” analysis is restricted to determining
whether the discrete representations (20) and (21) satisfy the governing differential
equation (the perturbation equation (7}, a non-mass flow equation). The mass con-
servation issue is addressed, however, via numerical flux calculations. In this section,
we show how the cogenerated fields, given by the representations (20) and (21),
theoretically preserve the proper statistical relationships and satisfy the governing

differential equation.

Covariance Analvsis

To determine whether the proper statistical structure is preserved, we examine
the auto- and cross-covariance behavior of the cogenerated discrete fields as repre-
sented by (20) and (21) and compare that to the theoretical behavior for continuous
processes. The theoretical auto-covariance of the head and InT fields, Ru(£) and
R{£) respectively, is obtained by Fourier transforming the head and InT spectra
respectively as in (12). Similarly, the theoretical cross—covariance function is ob-
tained by replacing S(w) in (12) with the cross-spectrum, Sp(w) and carrying out
the integration. The analysis for the auto— and cross—covariances is redundant, so we
illustrate it only for the auto-covariance. The auto-covariance, Rg{¢€), is defined in

terms of expected values as

Ry(6) = E[f(@)f(r)], r=z+¢
where z is a coordinate location and ¢ is the lag or separation distance. Using the
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form (20), Rg{¢) is written as
M-1
Elf@)f(r)] = E [QRe > R[S {wr)Aw (Uk + V) -
k=0
M-1
2Re Z eiwif\/sﬁ(wj)Aw (U; + zVJ)]

J=0

and we note that terms involving complex quantities can be combined as
ek (U + Vi) = {Ukcos(wk:c) - Vksin(wka:)} + i{Uk.sin(wkx) + chos(wkx)}

so that (22) becomes, after discarding the imaginary parts,

4303 \/Swn)y/ Sew;) Aw -
=05=0 (23)

{Ukco.s(wkx) - Vksin(wkx}} . {chos(WjT) - V}sz‘n(w,—r)}] .

>

E[f(2)f()] =

i: M-1 M-1

The only random components in (23) are the U’s and V’s inside the braces; taking
the expectation on the right hand side of (23) involves the evaluation of

A ] = 0 jFk
E[:U;] = E[WV;] = { 12 jZk
E[Uij} = 0 forall j,%.
where Ux = U; and Vi = Vj, if k = 7. The expectation of the terms in braces in (23)

becomes
E{}{} = [cos(wkx)cos(wkr) + szn(wka:)szn(wkrﬂ = lcos((.u,;C &)

where the last reduction occurs after replacing 7 with z + ¢ and using trigonometric
identities. Thus, the theoretical auto-covariance of InT, derived from the discrete
representation (20), is given by
M-1

E[f(2)f(7)] = Rg(e) = 2 Y cos(rt)Sglwr)dw (24)
which is the discrete form of (12). Thus the covarianceis preserved in its discrete form.
The cross-covariance, Rp(¢), can similarly be shown to be preserved by replacing
Sg{w;) with Su(w;) in equation (22) and carrying out the rest of the analysis in

exactly the same way.
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Mass Balance Analvsis

The second test is to determine if the cogenerated head and InT fields satisfy the
governing continuity equation. The representations (20) and (21) are developed from
the perturbation equation (7) which differs from the original governing differential
equation (1) due to the missing perturbation product terms. The assumption made
is that the perturbation products are negligibly small, so that satisfying (7) is nearly
equivalent to satisfying the governing equation (1) written in terms of InT, as in (2).
Note that (7) is not really a “mass” balance equation since it is written in terms of
the logarithm of transmissivity. Here we check to see if the perturbation equation is
satisfied by substituting the discrete representations (20) and (21) into {7); to avoid
difficulties associated with differentiating those expressions (which involve the Real

operator), we write
M-1

2Rez

k=0

Then using (20), the term —J gf;- becomes

It

M-1
3.
k=-M

P M1 '
— Efz; = —2J ) e“*Fiwpy/Sg{wr)Aw (Ux +1V3) (25)

E=-M

and via (21) the d2h/dz? term becomes

d*h M1 —Ji )
—_ = T - 2 , w
72 2 kgwe (fwk) o  SH{wi)Aw (U + Vi)
M-1
= 27 3 €*Tiwg/Swr)be (Uk +iVe) (26)
k=-M

where the derivative operator has been carried through the summation terms. Adding
the two components (25) and (26) together shows that the representations (20) and
(21) satisfy the perturbation equation exactly.

In the next section, we cogenerate discrete one-dimensional random fields of head
and InT and analyse those fields numerically to verify the preceding results. In ad-

dition, we perform a Darcy flux analysis to address the mass conservation issue.

14



COGENERATION AND ANALYSIS OF DISCRETE
ONE-DIMENSIONAL RANDOM FIELDS

The f(z) and h(z) representations (20) and (21) are written for continuous func-
tions of space. In order to take advantage of Fast Fourier Transform (FFT) algo-

rithms, we cogenerate the f and h flelds at evenly spaced intervals and write (20) as

M-
f(jAz) = 2Re Z:I 6iwijz\/Sﬁ(wk)Aw (Ur 4 Vi) (27)
k=0

where the discretization interval Az = 2x/Q and j = 0,1... M —1. The maximum
frequency, {2, must be chosen sufficiently large to capture practically all of the in-
formation under the spectrum. Furthermore, the frequency spacing, Aw = Q/M,
must be chosen sufficiently small (M sufficiently large) to accurately capture rapid
changes in the spectrum. Deciding what values to use for  and Aw is an important
practical consideration that eﬁ’ec;;s whether or not the resulting field will possess the
proper statistical structure. If ( is too small the simulated field will not achieve
its prescribed variance, and if Aw is too large the covariance structure at large lags
will not be preserved. In our case, two fields are being generated simultaneously (M
and (2 are the same for both), therefore the choice for 2 and Aw must satisfy the
minimum requirements necessary to adequately represent both the f and k spectra.
Furthermore, since these fields are being cocgenerated, 2 and Aw must also satisfy the
minimum requirements of the cross-spectral density, Sp(w). An appropriate choice
for {2 can be determined by examining the spectral distribution function (the inte-
grated spectrum) and choosing the wp,> = {2 which contains 98 or 99 percent of the
frequency content. An appropriate value for Aw can be determined by examining the
large lag covariance behavior of the generated field. If the discrete covariance deviates
from the theoretical behavior at large lags, it may be an indication that Aw is too
large to adequately represent the low frequency end of the spectrum where most of
the rapid changes occur (see Figure 2).

It is also important to note that the finite Fourier Transform introduces anti-
periodicities in the output sequence so that only half the transformed array should

15
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be used; in general this does not pose any problems, but in two-dimensions it means
that 3/4ths of the transformed field must be thrown away. Thus, two-dimensional
simulations may require very large input arrays which grow in size as the square of the
number of generation points in the grid. A derivation showing why the anti-periodic
behavior occurs is given in Appendix A (see also McKay, [1988]).

The one-dimensional fields are analysed as follows. Covariance analysis is used
to estimate the auto and cross-covariance behavior of the discrete fields and compare
it with the theoretical covariance functions. The governing perturbation equation is
discretized and the cosimulated fields are analysed to determine if the perturbation
equation is satisfied. Darcy flux calculations are made to determine whether the
algorithm preserves mass, and finally, the cosimulated head field is compared to a

deterministic head solution corresponding to the same parameter (InT ) field.

Covariance Analysis
Two different InT covariance functions are used in the discrete field analyses. The
first one used in these simulations is referred to here as the “hole” function and is

given by (3). The corresponding spectral density function,

20} w23

Sg{w) = T Q1o (28)
is used together with (11) to obtain the head spectrum
2J25% 3
Su(w) = =L — (29)

r  (1+wi2)?’
The theoretical head covariance is obtained by subsubstituting (29) into (12) and
integrating to give

Ru(€) = T3 (L+[€l/De V1. (30)
The theoretical cross-spectrum, Sg{w), is derived by multiplying both sides of (10) by
dZ%(w), taking expected values and using (14) to obtain

E[dZy(w)dZ}(w)] = E[Igidzf(w)dz;(w)]
Salw) = T 5p(w). (31)
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The theoretical cross-covariance function is derived by substituting (31) into (12) and

integrating to give [Gutjahr et al, 1978]
Rp(€) = o3jge il (32)

Multiple sets of discrete random fields are cogenerated and the auto- and cross-
covariance statistics are calculated over the ensemble of fields. These discrete co-
variances are compared with the theoretical covariance functions given by (3), (30)
and (32) in Figure 3. The results show excellent agreement verifying that the method
preserves the proper statistical relationships. The discrete covariances were calcu-
lated (see eg Journel and Huijbregts, [1978]) over an ensemble of cogenerated random
fields spanning 10,000 correlation lengths of the InT" process (60 simulations, each 166
correlation lengths long). The correlation length is a rough measure of the average
distance over which the values of the process are correlated and is defined here as the
parameter “[” in the covariance model for InT , equation (3). Spectral estimates of

these discrete fields were not made.

Perturbation Analvsis

A finite difference approximation is applied to the perturbation equation (7) as

hizi — 2R+ hio 11 — fio1

ssfirhn lacto o
where the subscript ¢ indexes the nodal location in the one-dimensional f and & ar-
rays. Figures 4 and 5 show the results of perturbation analyses conducted on four sets
of cosimulated head and InT random fields. The fields are generated at discretization
levels of 10, 20, 40, and 80 output points per correlation length of the InT process.
This was done to determine what level of discretization is needed to obtain conver-
gence. The thick dark lines represent the residuals of equation (33), whose magnitude
should be small relative to the individual terms in that equation. The dashed and
thin-solid lines represent the second derivative of head and gradient times first deriva-

tive of InT terms respectively. The values are normalized by an arbitrary scale factor

18
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in order to show their relative magnitudes in the range of [—1, +1]. These plots indi-
cate that the perturbation equation is satisfied only at extreme levels of discretization
whereupon the cosimulation procedure loses its practical utility. It should be noted,
however, that a?; is set equal to 1.0 in these cosimulations; perturbation analysis gen-
erally assumes ¢% is small (0} <« 1) [Gutjahr et al, 1978; Smith and Freeze, 1979; de
Marsily, 1986]. Figure 6 is a plot of cosimulated head perturbations and InT fields
at a discretization level of 40 points per correlation length. The fields are mean-zero
and plotted as they are output from the code (no normalization used). This figure
shows the noisy behavior of the InT field and the smoothness of the head field. The
InT field must be output at an extremely fine spacing in order to accurately compute

numerical derivatives of this process.

Differentiability

These somewhat discouraging results leads to a closer examination of the the-
oretical InT covariance function to obtain a better understanding of, and hopefully

resolve, this problem. The spectral representation of the derivative of the InT process

is given by
+o0 d +o0 +[oc
! — twe , - = iwr g7 0 — wr o,
fi(z) = _/ et dZp(w) = — / e% dZ 1(w) e dZs(w), (34)

thus, dZ ¢/(w) = tw dZ¢(w). The variance of the derivative process can be computed
by integrating its spectrum, which is given by

E[dZp(w)dZ(w)] = B[ (w)dZpw) i) dZ3(w)]
w? E[|dZ(w)f* |
= wSyw)dw (35)
= Sfl (UJ) dw.

The variance of f'(z) is then given by substituting (28) into (35) and integrating :

. Foo 20% e
gp = _/ Sp(w)dw = - __O/o (1+w212)2d“" = o (36)
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This result shows that the variance of the derivative process of (3) is infinite, therefore
this InT process is not differentiable. Because the discrete field is generated from a
representation of the spectrum containing a finite number of frequencies, the corre-
sponding discrete process is actually differentiable, but only at an impractical level

of resolution as illustrated in Figures 4 and 5.

The Bell Covariance Function
As a consequence of the foregoing analysis, consider another covariance model for
the InT process which yields stationary heads and is differentiable. A modified form
of the hole function defined by
2 £y g o
Ryf§) = o}(1-35)em (37)
which we refer to here as the “bell” covariance function, satisfies both of these con-
ditions. This function gives rise to the spectrum-covariance pairs shown in Table 1.
The variance of the derivative process, given by Rp(0) = 3—72%, varies inversely with
the square of the correlation parameter, [, while the variénce of the head process,

Ri{0) = o3 1% J?, varies directly with /2. All of the bell field simulations described

here are carried out with the { = 1 and a‘? =1,

Table 1. Spectrum/covariarnce pairs for the “bell” function.

Random Covariance Spectral
Process Function Density
2.3 2
2 [ ar 3 ) 12,2
2 22\~ 57 b ddladiPE
f(=) a7 (1 mRE )e 2% Ver ©
22 oFJ® 8,2
2 7272 ,— %% b PR
h(z:) o'f] [“e™ 22 e
22 IO Biw 2.2
2 -y —id
fh(z) Jo‘_f:ce 2 -—f—_h e~
1 2(zt 6z | 3\ . —%% E_Qflai _122
fi(=) "?(Ts“ 1 "‘ﬁ)e # Viz ¢
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The auto- and cross-covariance statistics are calculated on the cosimulated output
fields as before and compared to their theoretical functions (Table 1). The results are
plotted in Figure 7 which again shows excellent correspondence between the theoret-
ical and experimental statistics. Results of a bell field perturbation analysis is shown
in Figure 8 where, at a discretization level of 10 output points per correlation length,
the residuals for this realization are negligibly small. Thus, the perturbation equation
(33) is satisfied at a resonable level of discretization when the bell covariance func-
tion is used for the InT process. To contrast the bell fields with the hole fields, the
cogenerated head and bell InT fields are plotted in Figure 9; the bell InT process is
much smoother and consequently better suited for numerical differentiation than the
InT field shown in Figure 6. Now that the perturbation equation has been adequately

satisfied, the mass conservation issue can be addressed.

Mass Balance Analysis

An assessment of how well continuity is being maintained can be made by casting
these results in the framework of a true mass balance analysis, ie. by calculating ~the
Darcy flux imbalances in each grid block of a finite difference version of (1). The

volumetric Darcy flux, @, is calculated using

Q) = -1(z) 22 (39)

where Q(z) = @Q = constant for one-dimensional steady flow. The transmissivity,

T(z), and total hydraulic head, ¢(z), are generated from
T(z) = exp{F + f(z)}
¢(z) = H(z) + h(z),

where F' is the mean of the InT process and H{z) the mean hydraulic head. The

(39)

mass balance errors are calculated as a percentage deviation from the mean Qux, gm,

which is given by [Gutjahr et al, 1978]

gm = eF( —%Zf') J. (40)

<
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The magnitude of the flux errors varied greatly throughout a cogenerated field, re-
maining relatively small over most of the domain, but occasionally being interrupted
by large mass balance deviations as illustrated in Figure 10. It is evident from this
plot that mass is conserved globally (ie. the positive and negative mass imbalances
sum to zero). The foot mean-square error (RMSE), calculated over an entire realiza-
tion, is used as a scalar measure of the average local mass imbalance. The magnitude
of the RMSE is partially a function of the input variance, a?, and partially a func-
tion of the resolution at which the fields are represented and numerical derivatives
estimated. Table 2 shows the results of several runs for different values of o% and for
different levels of resolution for a bell InT field. The statistics for each run are based
on 40 simulations, each 6 correlation lengths long, or a total of about 250 correlation
lengths of the InT process (the statistical estimates stabilized with this quantity of
data). The results clearly show that a relatively high resolution grid and a low input
variance are necessary for the algorithm to yield acceptable mass balance results. It
should also be noted that these results are indicative of how well the linearized version
of (1), equation (7), approximates the true equation (1). The local flux imbalances

-are plotted along with the head and InT fields as described in the following section.

Table 2. Mass balance results for bell fields generated at 10 and 20
points per correlation length; numbers are RMSE in %.

Pts/Cl o2 =10.1 0} =0.25 0% = 0.5 o2 =1.0
10 1.9 6.6 16 70
20 0.8 2.9 8.8 25

Comparison with a Deterministic Solution

To further aid the analysis, we compare the cogenerated results with a deter-
ministic solution for the flow. The deterministic solution represents the solution to

the “forward” problem where the head field is solved for, given the InT parameter

29



(1o/83d 7 ‘e 0 Hmbv "G 2N ul 9atud pajjop
9} 03 spuodsalion pAIND s1( ], "spjay peoy pue LU [2q poye
-IauaFod jo HOLRZ|[Ra} 2UO 1oy svur|equul Xnjy Loxe(] feoory | aunfy

(1w jo mﬁﬁwaoﬁ UO01)e[2.1109) @Ogﬁ.\a.mﬁa

cl 6 9 ¥
_ _ _

o\

O

|
0 01—

(%) aox1y aouwereg ssel

01

30



distribution and boundary conditions as knowns. Standard numerical flow simulation
models may be used for this purpose. Only the boundary conditions present a prob-
lem since the cogenerated solution is developed in connection with a mean hydraulic
head gradient arising from boundary conditions essentially placed at infinity. To over-
come this, we chose ¢.(0) and ¢.(L), the cogenerated total hjrdra,ulic head values at
z=0 and =L, as Dirichlet boundary conditions for the deterministic case. Although
this is not entirely consistent with the theory, which is based on an infinite domain

conceptual model, it was felt that some insight might be gained from this approach.

Three different cases are examined, each one representing a sample run corre-
sponding to one of the bold-faced entries in Table 2. These cases were chosen to
illustrate the effects of a reduction in the input variance and to show what happens
with increased resolution. The results for the deterministic solution and the cogen-
erated solution are plotted together with the parameter field for the perturbations
in I{nT and the mass balance errors in Figures 11, 12 and 13. Figure 11 represents
the case of high variance, low resolution (0}=1.0, 10 pts/cl); Figure 12 represents the
case of low variance, low resolution (0’)%-:0.25, 10 pts/cl); Figure 13 represents the
case of high variance, high resolution (93=1.0, 20 pts/cl). In all of these cases, the
cogenerated solution generally mimics the behavior of the deterministic solution and
displays the proper character in that heads are correlated over greater distances than
InT | the hydraulic gradient steepens when f(z) dips below zero (low transmissivity
areas), and the gradient flattens in areas of high transmissivity. The slanted dashed
lines in these Figures represent the mean hydraulic head and the shaded zones above
and below that line represent the local mass balance errors. The magnitude of the
mass balance error is scaled arbitrarily and is therefore not associated with the or-
dinate values on the plot; only the relative errors betwgen locations are important.

However, the same scale factor was used on each of the three plots in Figures 11-13.

As demonstrated by the deterministic solutions (thick dark curves), the one-
dimensional steady flow head solution must be a monotonically decreasing function

in the direction of flow, otherwise local flow reversals will occur and continuity can not
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be maintained. The cogenerated solutions shown in Figures 11 and 13 have gradients
going in both directions at several places throughout the field; this is indicated by the
darker shades of the mass balance curves and corresponds to the areas of greatest mass
imbalance. In Figure 12, where 6% = 0.25, no flow reversals occur (for this particular
realization) and the m.agnitudes of these local mass balance errors is generally much
lower than the high variance cases throughout the field. The standard deviation of
the local Darcy flux errors for this realization is 4.8%. (these are the local flux errors
plotted in Figure 10). Thus, even for smaller input variances, there is some difficulty
in achieving an acceptable local mass balance.

Note that the flux errors occur where the gradients of the deterministic and
cosimulated head fields differ. There is no constraint on the cogeneration algorithm
to prevent reverse head gradients from occuring, since the algorithm involves only
perturbed quantities. To impose such a constraint would be so costly computationally
that no benefit would be derived from implementing the cosimulation procedure.

In the next section, we develop the theory for conditioning the cosimulations to

preserve specified values of the head and InT processes.
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CONDITIONING

Over the past 10 years there have been an increasing number of papers dealing
with the treatment of flow systems in terms of random fields and the development
of variance/uncertainty reduction techniques; this has led a variety of approaches
for solving the inverse problem [Wilson et al, 1978; Delhomme, 1979; Neuman and
Yakowitz, 1979; Neuman et al, 1980; Dagan, 1982; Clifton and Neuman, 1982; Ki-
tanidis and Vomvoris, 1983; Townley and Wilson, 1983; Hoeksema and Kitanidis,
1984,1985 Dagan, 1985; Jacobson, 1983]. Here, we incorporate knowledge about the
head and InT processes and develop the theory for conditionally cosimulating the
head and InT fields.

The linearized equation for the one-dimensional perturbations in flow is given
by (7) where the spectral components of A and f are related by (11). The f(z)
and h{z) processes are unconditionally simulated using the spectral representations
(20) and (21). To see how conditioning can be incorporated into the algorithm, we
write the representations in real form and change to matrix notationl. The discrete

representations {20) and (21) can be written in real form as

S/—\

fi = fjaz) = 2" [urcos(wrjAz) — vpsin(wrjAz)] /Sg{wr)Aw  (38)

e
1l
o

wrcos(wrAT) + ugsin(wirjAT)] /Se{wr)Aw  (39)

hj = h(jAz) = 2

ME
£ |~

n-
il
[=]

where j=0,1... M-1. In vector/matrix notation (38) and (39) become
< (% 4
F=a(Y (40)
/% "
(3) | (1)
where fand £ are the random field column vectors

F= (forfr-- fum)t
E == (ho,hl...hM_]_)t,

>4
|
ty

T The convention used here is lower case for vectors and upper case for matrices; both vectors and matrices are
bold-faced with an arrow accent. Hopefully, this will avoid confusion with the convention of using capital letters for
random processes and lower case letters for the values of the processes.
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4 and ¥ are column vectors of uncorrelated normally distributed random numbers
= t
1 = (uo,U1...UM=1)

v = (Uo,Ul . ’UM_l)t,

A is an M x 2M matrix with elements

ajx = 2cos(wrj Az)\/SH{wr)Aw k=0,1... M-1

(42)
ajp+m = —2sin(wrjAz)\/Se{wr)Adw k=0,1... M-1
and Bis an M x 2M matrix with elements
J
birx = 2—sin{wrjAz)/Sg{wr)Aw k=0,1... M-1
e = 2sin(oriAz)y/Sxn) -

J .
bik+M = ZEcos(wm Az)y/S{wr)Aw k=0,1... M-1.

For conditioning, the values of certain elements of the F and k vectors must be
preserved; it is convenient to rearrange the rows of the fand & matrix equations (40)

and (41) to put the observed values first as

= (7 = éo u

e
= EO —_ ?0 'l:-;' -
- (hl) (Bl)(v) (45)

where f; and hg are vectors of the observations (conditioning points) containing ny

B!

and nj elements respectively, and 3‘1 and h; are vectors of the unconditioned values
of fand & having M —n 5 and M — nj, elements respectively. Our objective is to find
the (%) that satisfy (44) and (45) and have the proper probabilistic structure. This is
accomplished using standard conditional simulation techniques to obtain conditioned
vectors (g’:) such that (44) and (45) hold and then to transform these as in (20) and
(21) to obtain 7, and k;. The procedure is as follows:

(1) Generate unconditionally simulated vectors ts and .

(2) Form kriged estimates of % and %, denoted as tx and ¥,
based on the objective of preserving observations f, and hq.

(3) Form kriged estimates of %, and ¥, denoted as U,k and v,x,
for the same observation locations as in step 2.

(4) generate the conditionally simulated vectors . and o, via
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(%)= () +1(3)-(&9)] (46)

Then the conditionally cosimulated random fields ;‘1 and k, are obtained by substi-
tuting the (%:) vectors from (46) into (44) and (45). Each of these steps will be
discussed in more detail later. To better understand how this technique is carried
out, particularly steps (2) and (3) above, it is helpful to briefly review some of the

theory behind the geostatistical technique of kriging.

Review of Kriging Concepts (known mean case)

Kriging is a local estimation or interpolation technique that attempts to find the
best estimator of the mean value of a regionalized variable over some domain. Here
we’ll consider only onve-dimensional stationary processes, ¥(z), with mean equal to
zero. The kriging estimator, }A/'(a:), is defined as a linear combination of n known or

observed values Y,(z;) as

Y() = _z";A,-m,-) (47)
where the n A;’s are unknown kﬁging weights which are unique to each point z for
which Y(z) is to be estimated. This estimator is unbiased (E[Y (z)] = E[Y(z)]) and
is called the Best Linear Unbiased Estimator (BLUE). It is “best” in the mean-square
sense in that it finds the A;’s which minimize the mean of the squared differences

between the predicted and known values, ie.
BLUE minimizes E[(¥(z) — ¥(2))*]. (48)

By substituting (47) into (48) and reducing [see eg, Journel and Huijbregts, 1978], a

system of n linear equations in n unknowns (the A;’s) is obtained for each zy,

> XC(zi—zj) = Clei—=zx) J=12...n (49)
i=1
where C(z; — z;) is the covariance between Y,(z;) and Y,(z;), and C(z; — &) is the

covariance between Y,(z;), and ?(wk) Knowledge of the covariance behavior of the
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process is assumed known. Using vector/matrix notation, (49) is written as
Yodr = &

where the vector of kriging weights, X = (A1, A2... AL, is subscripted to indicate
its association with the point zj. fjg is an n X n covariance matrix of the observation
values, and € is an n x 1 vector of covariances between the observation points and
the kriged point zk. If the same set of observations are used for all prediction points,

then the B¢ matrix need be inverted only once and the X are found for any zx by
e = &SN (50)

The kriged estimate for point z is found by writing (47) in matrix form, §x = X ,: Yo
(the superscript ! represents a transpose), where Y(ziz) = &, and using (50) to
obtain

e = &'[Z0]7 % (51)
where ¥, is the vector of observation values, §, = (y1,¥2 - - - ¥n )}, with y; corresponding
to Yo(z;) in (47). The X for all points zz, ¥ = 1,2...m can be written in matrix

form as

—

A = [E7'E, (52)

where A is an n X m matrix of kriging weights and 5 is an n X m matrix of covariances
between the prediction points and the observation points. The kriged estimates for

all zg, which we denote here as g; for analogy later on, are given by
- L .
= I (% T (53)

To summarize the preceding results, let 7 represent a discrete, one-dimensional,

mean-zero random field composed of observed values g, and kriged values yy,

5 = (?.0) (54)

K1

We can write the covariance matrix for ¥ as

— Y Y ! = 211 E].2
ov(Y) E[ ! ) . v (55)

4
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where the submatrices in (53) are defined as

£ = Zo = Cov(dy, ¥5) (56)
— — t - —_ — -
Y12 =3, = Ei= COU(ZJO:!!D (37)
izz = ﬁk = CO’U(gla'jl:)

where X0 is an m by m unconditional covariance matrix of the prediction points,
zx, k =1,2...m. Then from (53), (56) and (57), we can write the kriged estimates

of g, based on the observations 7, in terms of the submatrices in (55) as

5 = EalZu] ™ 5. (58)
The kriging covariance matrix, ) K, (the covariance matrix of the prediction points

conditioned on the observations ¥,) can be shown to be

— b —~1 . -
T = Sp — X, [Bo] 'S, (59)

x

Implementation Procedure

We now return to the four steps necessary for conditionally cosimulating the 3"

and h fields in (44) and (45).

Step 1: We begin by generating unconditioned vectors 4, and %,. The ux’s and vi's

(the subscript k¥ now refers to the running index in (38) and (39), not to a prediction

point) are mean-zero, variance % uncorrelated normal random variables which are

obtained via a random number generator. In this work, we used the algorithm of

Marsaglia and Bray [Dudewicz and Rally, 1981].

Step 2: To form the kriged estimates fix and g that will preserve the observations

?0 and hg, we first consider only the observations of Ffand R (the conditioning points)

and write .
5 4o
Ro | = | Bo (?) (60)
u I v
B I,
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where the left hand side is a vector with ny+n;+2M components, Ag is an nyx 2M
matrix, E’O is an np X 2M matrix, and I and I, are each M x 2M matrices defined

as

I = (I,0)
L = (0, 1)

where T and 0 are both M x M matrices with I = the idendity matrix and 0 =
null matrix. Here we include the % and ¥ vectors in the left hand side of (60) and
consider that vector to be a “field” composed of known observations, , and ko, and
a collection of random variables 4 and o. The idea is to look at these as a joint set of
random variables in which we wish to predict some (the % and %) given others (the £,
and Eg) There is nothing in the theory that says the field to be kriged must actually
represent some physical reality; the “field” on the left hand side of (60) is a mixture
of random variables from the space domain and the frequency domain.

The f;’s and h;’s are linear combinations of the ug’s and vy's (equatio‘ils (38) and

(39)) which are multivariate normal random variables, therefore the vector

is also multivariate normal (MVN). (61)

el FTISH!

From MVN theory [Barr and Zehna, 1971], if a random variableY = g is MVN with

mean [ and covariance matrix X, denoted as

g= (% g = !zu) T = 5:311 212 69
s (B) fe () fte(BE) @

then the conditional distribution of %; given 7, is MVN with

—
e

conditional mean = [; + S [E1] ™ [Fo — Ho] (63)

— — —

and covariance matrix = Xagp — 221[211]—1 ilg. (64)

The MVN results above correspond to the kriging results (53)-(57) with respect to
the means and covariances. Thus, the conditional mean (%) in (61) correspond to

the kriged estimates of (%) based on the observations (;‘0, 77:0)t
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Substituting (f,, ko) for ¥, and (%) for y; above and using the results from
(54)-(58) and (61)—(64) enables us to write the kriged estimates Zx and vx that

preserve the observations (f,, ko)’ (the conditioning points) as
g\ _ s -1 _? =
(BK) = £ 5] (’.{%) (65)

Step 3: To find the kriged estimates of 4@, and v, at the locations corresponding to
the observation points, we use the kriging weights fi [£0]™" from (65) to obtain he
kriged estimates % and B,k for a field (%) defined by

77'30

Bs0 1 (66)

1_{'.91('
vSK 7/

N

Qe

N’
I

-

- . as}'\’ . agﬂ uSD ~
Here we predict (krige) the (531{) based on observations (1—530) where the ( ’L:ao) are

the unconditioned (%"“"

) values at the points corresponding to (F, ko).
3

Step 4: Finally, we generate (%2) from the simulated and kriged (g’) fields using (46)
and substitute that result into (44) and (45) to obtain conditionally cosimulated f
and k fields.

Although this conditioning algorithm has not been implemented in this work, it
appears to be a relatively straight forward procedure. The development of the theory

is the same for two- and three-dimensions, the only difference being the form of (38)

and (39) and the dimensions of (40) and (41).
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COGENERATION AND ANALYSIS OF DISCRETE
Two—-DiMENSIONAL RanpoMm FieLDs

In this section we develop the theory and algorithms for the cosimulation of
two-dimensional random fields of head and log-transmissivity. Implementing and
analysing the two-dimensional problem is considerably more complicated than the
one-dimensional case and many problems have been and continue to be encountered
as this work is being developed. Consequently, as of this writing, the work is still in
progress, therefore the results presented here must be viewed as preliminary only.

We begin with the governing partial differential equation for steady, confined,

2 (T52) *+ () ~ © @

which is transformed into the equation governing the perturbations in flow,
9%h F*h of
5 + 75 —
Ox3 Oz3 Oy

in exactly the same fashion as in the one-dimensional case. The details of this de-

two-dimensional flow,

= 0, (68)

velopment are presented in Mizell et al, [1982]. Substituting the Fourier-Stieltjes
representations (8) and (9) into (68) and differentiating leads to

leul

dZy(@) = = dZ(@) (69)

7+ wh
which relates the complex Fourier amplitudes of the fluctuations between the f(Z)

and h(Z) processes. The vectors Tand & are defined as = (z1,72) and & = (w1, ws).
Here the mean hydraulic gradient J is subscripted to indicate that the mean gradient
is in the z;-direction; w; and ws refer to spatial frequencies in the £ and y directions.
Applying the result (14) to both sides of (69) leads to the spectral relationship between

the head and InT perturbations in two-dimensions,

A5 3). (70)

(“"' w3 )?

We chose to use the Telis spectrum for the [nT" process, an isotropic spectral density
given by [Mantoglou and Wilson, 1981,1982]

Ss(w) = —3 s (71)

Sw(@) =




2 = w? + w? and b is a correlation parameter. In Appendix B we show that

where w
the Telis spectrum leads to a stationary head process. To cogenerate two-dimensional

fields we make repeated use of (20) and (21) with

—Ji . —Jitw
Pl (21) replaced by c_uf—l—ij

where now, the integration is carried out over two-dimensional frequency space. The
one-dimensional cosimulation algorithm described previously is relatively straight-
forward and easy to implement. The two-dimensional algorithm, on the other hand,
is significantly more complicated and care must be taken to insure that the arrays

are filled in the proper manner.

The Two-Dimensional Algorithm

To understand how this is implemented on the computer, we write the two-
dimensional form of the spectral representation theorem (13) as
+oc +too .
1@ = [ [Faza) (72)
—_—00 —0 )
where £ = (z1,z2)! and & = (w1,w2)?, and the superscript ! represents a vector-
matrix transpose. We begin by discretizing the two-dimensional frequency domain
into 231 intervals along each frequency axis and writing (72) as

M-1

M-=1
flz1,22) = ) > e:cp{i [(ml—}-%)wal-:-»(mz—é--‘—é-)sz'g]} ‘

mi=—M mo=-M

(73)
).L\.w, (m-2+

3 i

- dZ((ma+ JAw)

™

where each frequency, wm; = (m;+31)Aw with Aw = Q/2M and Q is the maximum
frequency at which the spectrum is truncated. Next, we-discretize space by setting
zi=7;Az, i=1,2 7=0,1... M-1. Then we define the relationship between frequency
and space as Az = 3F = <2E~ N = 2M, whence (73) becomes

fUiAz,jrAz) =
M-1 M-1

~ . . 1y - (74)
erps 127 [(my+1 ma+5)72| /N dZ¢{my,m
;Mm;zw P{ 2 [( +3)j1 + (ma+3)J }/ } Zf( 1 2)

ml
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where the discrete frequencies inside the dZ¢( ) term are referenced by the indices
m1 and moy for convenience. Also, we let Az = 1 so that the discrete points
f(j1Az,j2Az) can be referenced simply as f(ji,j2). We will see that the condi-
tions which allow us to use “twice the real part” of a Fourier transformed sequence as
in the one-dimensional case, arise from the symmetry between quadrants over which
the integration is carried out in two-dimensional frequency space. To show this, we

break (74) into four sums as

f(51,72) =

M-1 M-1

Z e:z:p{z27r [(ml—i- 21+ (ma+3 /7\/ } dZ¢(my,m2) +

mi=0 mo=0

-1 M-1

5 eap{i2n [(m1+3)j1 + (ma+ i /N} dZ4(m1,m2) +
mi=—M mo=0 ~

> > e:cp{i27r[(m1+ )71 + (ma+3)72 /N}d f(my,my) +
mi=—M mo=—M '

M-1 -1 1

> X exp{ifh [(mr!-%)jl + (ma+3)j2] /]V} dZs(my,ma) +

mi=0 mo=~M

Here, we will refer to each of the double sums in (75) as £1, £2, ¥3, and £4 corre-
sponding to the quadrants over which the summations apply and the order in which

the terms appear in the equation. Thus, we write (75) as
fU1,72) = Z1 + ¥2 + 3 + T4 (76)

We now change the indices in £3 by substituting m{ = —(m1+1) and m}, = —(ma+1)

so that £3 becomes

0
Y3 = Z exp{i?w [-—-(m’l-i-%)jl —(m’2+-i;)jg}/N}
mi=M-—

Q[_"Jc

- de(—m'l, —m'2>.

The dZ; process is constructed such that
de(—ml,——mz) = dZ}(ml,mg), (78)
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hence, (77) becomes
M-1 M-1
25 = % 3 eop{—i2n [(mit 4+ (ms 1)) /N }Z3mt mb)  (79)

 — f
my=0m,{=0

o3 = $1* (79b)

The symmetry between the first and third quadrants is such that one is the complex
conjugate of the other. In a similar manner as that for quadrants 2 and 4, we let
mi = —(m1 + 1) in 2 to give

M~-1 M-1

T2 = Z Z ea:p{i.?ﬂ' [—(m'l-i-%)jl+(m2+%)j2]/N}de(—m;vm2)

m;_=0 mae=0 "~
and mj = —(mgy + 1) in £4 giving
M-1 M-1
T4 = E Z cxp{iZﬂ' [(ml-{—%)jl - (m'2+-é-)jg] /N} dZ f(my, —my).

m1=0 m4=0

Writing (78) as dZ¢(—mq,ma) = dZ%(my, ~m2) shows that

M-1 M~-1

T4 = Z Zezp{—i%r {—(ml-’.—%)jl—!—(m’z—i—%)jg}/]\/'}dZ}(—ml,m'z) (80a)
m1=0m’2:O

T4 = 12* (80b)

Thus, using the results (79b) and (80b) we can write (76) as

fJ1,72) = T14+¥2 + 11"+ ¥2°

(Z14+32) + (Z14+X2)"

= 2Re{T1+T2}. (81)

In order to combine the results into one expression (énd consequently one FFT) as
indicated in (81), we write £1 + X2 as the sum of the first two terms on the right-
hand side of (75); we then change the m; index in £2 to run from M to 2M — 1 by
multiplying the second sum in (75) by e!?72M71/N =1 giving

M-1

32 > e:cp{i?w [(ml—l--;-—f-,‘ZM)jl + (mz-%-%)jz]/N}de(ml, mg), (82)
m2=0

m;=-—
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and letting m{ = my + 2M so that (82) becomes

2M-1 M-1 .
2=>3 3 e:rp{z'?ﬂ' [(m’1+%)j1+(m2+-§—)j2]/N}de(m'1—2M,mz)- (83)

mi=M my=0

We can now combine (83) with the first term in (75) to write (£1 + ¥2) as

2M-1 M=~1
Ti+E2 = 3 N ea:p{z'277 [(ml-i-%)jl+(mz+%)j2]/N}dZ;(m1,m2) (84a)

mi1=0 m=0

where
dZ(my, ma 0<m; <M-1
dZj(m1,ma) = sl ma) S (84b)
de(ml—Q.?\/f, mz) M S mi S 2M-1.
The discrete dZ;( ) process is constructed in a manner analogous to (19) as
dZs(my,m2) = dZf(Wm,,wWm,) = dZs ((m.1+%)Aw, (mg—{—%)Aw)
(85)

= \/Sﬁ((ml—}-%)Aw, (m2+1)80) A (Unyma + iVimayms )-

Finally, recall that the anti-periodic behavior of the one-dimensional finite Fourier
Transform (see appendix A) allows us to use only half the output sequence when
transforming each row or column of the two-dimensional matrix. In general this does
not pose any problems, but in two-dimensions it means that 3/4ths of the transformed
field must be thrown away. Thus, two-dimensional simulations may require very large
input arrays of size equal to quadruple the number of generation points in the output
field. For example, the representation (84) is comprised of an 2M x M matrix of
dZ¢( ) terms which are to be transformed; due to the anti-periodicity, the output
field should be no larger than M x M/2. In order to make full use of information
contained in (84) and obtain a field of size M x M, we must augment the d.Z ¢ matrix

with zeros as

- 1 2
dZ; = - _.) 86
¥ ( 5@ (86)
where
0 0
0 = :
0 0
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and

dZs(0,0) ... dZs(M1,0)
51 =
dZs(0,Mm1) ... dZj(M-1,M1)
dZs(-m,0) ... dZg(-1,0)
22 =
dZ¢(-My M1y ... dZg(-1, M-1)

Each of these sub-matrices is of size M x M. We then transform the dZ ¢ matrix, take
twice the real part of the transformed matrix, and use one-quarter of the resulting
matrix as the M x M random field. The discrete M x M random field, f(j1,j2), can
thus be represented in summation notation as

2M—-12M—1

fG1,32) = > > ezp{i2n[(m1+—§;)j1+(m2+§)j2]/N}dZ}(m1,m2) (87a)

my=0 my=0

where
dZ ¢(my,ms) 0<my £ M-1, me <M-1
dZ3(m1,ma) = {dzf(mrzM,mz) M <m; <2M-1, mp < M-1 (87b)
0 ma 2 M

To cogenerate the head field along with the InT field, we generate the correspond-
ing dZx( ) process by multiplying the dZ3( ) in (87) by the transfer function shown
in (69) as the coefficient to dZ¢(%), and use the same random numbers Up,, m, and

Vin,,m, as that used for the InT process in (85).

2D Implementation

For our problem, the cosimulated head field has an anisotropic correlation struc-
ture, therefore, we cogenerate the fields onto a rectangular shaped region with the
long dimension corresponding with the direction of greater correlation persistence.
Since a constant frequency spacing is used, the m1 and mg indices in (87) run from
0 to 2M;-1 and 0 to 2M,~1 respectively, where M; 7 M,. In the Fortran code, the

my and mg indices run from 1 to 2M; and 1 to 20, by factoring out an ein(ir+ia)/N
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from the argument of the ezxp{ } term in (87a). Also, the dZ; matrix is Fourier
transformed via a series of one-dimensional FFT’s along the rows and columns of the
matrix (M2 row transforms each of length 2M;, and M; column transforms each of

length 2M5). Both of these coding strategies result in some computational savings.

The discrete two-dimensional random fields are generated on grids of varying
size: A rather large grid of size nodes-x by nodes-y equal to 512 x 1024 is used
for the statistical analyses; this large size is needed for the head field in order to
Insure it contains a sufficient number of relatively independent samples upon which
to compute its statistics. This i1s because the heads are correlated over much greater
distances than the InT process. A smaller grid of size 128 x 256 is used for the mass
balance analysis and for the plots that illustrate the spatial variability of the head

and InT processes.

The spectral and space parameters used for the two-dimensional cosimulations
were chosen such that 0% = 1 and resolution equals 7 points per correlation length
for the large grid, while dfe = (.25 and resolution equals 10 points per correlation
length for the smaller grid. Once generated, the fields are plotted using a pseudo-gray
shade contouring algorithm where each shade represents an interval between contours
of the field. Eight shading patterns are used to represent values ranging from -3 to +3
standard deviations about the mean with dark shades representing values below the
mean and light shades representing values above the mean (If six shading levels were
used, then each level would represent one standard deviation in the data, however
eight shades are used to capture and illustrate more of the variablity of the process.).
This method of presenting the data is particularly well suited for large data sets and
has the advantage of displaying the detailed patterns of spatial vanability in a way
that is often easier to interpret than standard contouring methods. Additionally, some

head fields are represented as surfaces in three dimensions for comparitive purposes.

The two-dimensional discrete random fields are analysed in the following way:
Variogram/covariance analysis is used to analyse the statistical structure of the in-

dividual fields and cross-covariance analysis is used to estimate their joint statistical
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behavior. The spatial “character” of the fields is examined through visual inspection
to determine if they exhibit the proper spatial patterns relating to correlation scale,
isotropy, etc. A “quasi-true” head solution is then obtained through deterministic
modeling and the head patterns are compared with the cogenerated solution. Finally,
the mass conservation issue is addressed by examining the mass balance residuals
and by calculating local percent mass balance errors. Details of each of these analysis

steps are discussed in the following sections.

Variogram/Covariance Analvses

Variogram analysis is a commonly used method of estimating the statistical pa-
rameters that characterize the probability behavior of random fields. The variogram,

v(€), (technically the semi-variogram) is defined [Journel and Huijbregts, 1978] by
16 = s [(f@+8H - f@)]

where f(Z) is the random field and £ is a separation vector. The variogram can be

expressed in terms of covariances for a stationary field as

¥() = R(0) — R(£); (88)

since v(£) is the covariance function subtracted from the variance, R(0), it resembles
an upside-down covariance function. The discrete isotropic variogram analysis is
carried out for the cogenerated InT field using a computationally expensive method
involving a series of one-dimensional variogram calculations oriented at various angles
in space. More efficient variogram estimates can be made on full matrix data sets
using Fast Fourier Transform techniques in a manner similar to that for covariances
[McKay, 1988]. The head field exhibits an anisotropic covariance structure where the
principle axes of anisotropy are alligned with the grid; hence we examine the head
covariance structure in directions parallel and normal to the mean flow via a series
of one-dimensional covariance calculations along the rows and columns of the head
matrix. These variogram estimates are then converted to covariances via (88) and

plotted against the theoretical covariance functions.
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The theoretical InT covariance function corresponding to the Telis spectrum (71)
was derived by Mantoglou and Wilson, [1981] and is given by (B1) in Appendix B.
The deviation of the discrete InT field mean from the theoretical mean was small
relative to its sample standard deviation. The variance of the cogenerated InT field
matched the theoretical value to within 5%; this is considered to be a reasonably
good match given that the sample statistics are based on a single realization and
that the computer generated field represents only a small portion of the underlying
theoretical random field. Figure 14 shows the results of the covariance analysis of
the cogenerated InT field; the solid line represents the theoretical covariance while
the dots represent the covariance estimates for the cogenerated field. The discrete
field does a poor job of preserving the theoretical covariance behavior, an indication
that there may be a coding error or some other problem (The theoretical covariance
function is evaluated for ‘plotting purposes using equation 12.2.3 of Abramowitz and
Stegun, [1964] where the Longman method [Longman, 1956] was used to evaluate the
infinite integral in that equation.).

The head covariance function is derived by first substituting (71) into (70) to
obtain the two-dimensional head spectrum

20’%1121) w%

Sm(@) =
hh(“") 2 w3(62 —i—uﬂ)z

(89)

where w? = w? + wZ, The theoretical head covariance corresponding to the head

spectrum (89) is derived in Appendix C and is given by

2]2 2b& a o .
Ru(£,X) = gimln{—‘I{?’-cos‘}( + (1 —3cos*X) [Lo(bf) - Io(b;;)] +
(90)

: (Coszx[bH%] - ;’_E)[Ll(bf)—fl(bf)}}

where £ and X are radial coordinates with X representing the angle between the mean
flow direction and £. Ij( ) and L;( ) are modified Bessel functions and modified
Struve functions respectively, of order j. As for the cogenerated InT process, the
deviation of the discrete head field mean from its theoretical mean was small relative

to its sample standard deviation. The variance of the head field, however, usually
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turned out to be off by approximately a factor of 2, being about one-half the theoret-
ical variance. Initially, it was felt that the 128 x 256 grid was too small to contain a
sufficient number of independent samples upon which to calculate the head variance
statistics, thus a larger 512 x 1024 grid was used. Even on this larger grid, however,
the discrete head variance falls far short of its theoretical value. Covariance estimates
are made in directions parallel (X = 0) and normal (X = 7/2) to the mean flow and
compared with the theoretical behavior; those results (see Figure 15) show good corre-
spondence between theoretical and experimental behavior at large lags, but very poor
correspondence at short lags. This size grid is plenty large enough to “capture” the
covariance structure of the process [see eg, Zimmerman and Wilson, 1988] given the
correlaﬁion parameters used here (see section on 2D Implementation), therefore, these

rather disappointing results are attributed to an error or errors of unknown origin.

In spite of this, some of these two-dimensional results are encouraging in the sense
that the general character of the cosimulated fields appears to behave in the right way.
For example, the anisotropic nature of the head field is illustrated in Figure 16 where
the head perturbations are plotted (together with the InT field) using the pseudo-gray
shade technique to illustrate the spatial variability patterns. The head field exhibits
the proper character in that the head variations are much smoother (correlated over
greater distances) than the InT variations and the anisotropic behavior of the head
field is clearly observable and consistent with the expected correlation behavior in the
directions normal and parallel to the mean flow (The mean flow direction is normal
to the long dimension of the plot). Also the head field shows steeper gradients where
the InT plot is dark (low transmissivity areas) and flat gradients in the lighter areas

(high transmissivity zones).

Cross-Covariance Analvsis

The joint statistical behavior of the cosimulated fields is examined in directions
parallel and normal to the mean flow direction by comparing discrete cross-covariance

estimates with the theoretical cross-covariance functions in each of those directions.
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Figure 14. Theoretical (solid curve) and experimental (dots) covariances for
the two-dimensional InT process (Telis covariance, o7 = 1).
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We begin our analysis by deriving the cross-spectral density function of the head and

InT fields by multiplying both sides of (69) by dZ}(&) and using (14) to obtain

Su(@) = 2 543). (91)

wi+wk
Substituting the InT spectral density (71) into (91) gives

—J]_'iwl 20’%5 w

WO = Frd T @y
—20%J1b w
_ fe1 1
- w2 w(b2 +Ld2)2 (92)
—-20%J,b 4
Sl a) = o3J1b  icosa (93)

w2 (b2 + w2)2

where w?

= w? + w? and w; = wcosa, with a representing the angle between w
and the mean flow direction. It is immediately obvious that, at an angle of & = 7,
the direction normal to the mean flow, the cross-spectrum is zero for all frequen-
cies, therefore the heads and InT are uncorrelated in that direction. The theoretical

cross-covariance function is derived from the cross-spectral density function (92) in

appendix D and is given by

Ral€,X) = Ja;cosx{fo(bg)_j:o(bg) _ %[Il(bg)_Ll(bg)] } (94)

Cross-covariance estimates were made on the output fields in directions parallel and
normal to the mean flow directions which correponds with the rows and columns of
the output matrices. The discrete cross-covariance estimates are plotted against the
theoretical curves in Figure 17. The theoretical curves corresponding to Ry (&, X)
in (94) and Ru(€,X) in (90) were calculated as described earlier for the theoretical
InT covariance function. One would hope to achieve a better match between theo-
retical and experimental results than that shown in Figures 14, 15 and 17, however,
the discrete auto and cross-covariances do exhibit the correct type of behavior. Also,
it should be noted that these covariance calculations are based on single realiza-
tions and may therefore lack a sufficient number of independent samples for accurate

statistical estimates.
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Global Mass Balance Analysis

The mass conservation principle must be satisfied both locally and globally in
order to use this technique to obtain stochastic predictions of flow, travel paths,
travel times, etc. One way of assessing the magnitude of the mass balance errors is
to calculate the residuals from the numerical representation

Ah-b = #

where A is the cofficient matrix of numerical transmissibilities, k is the vector of
cosimulated heads, b is a vector of source/sink terms, and #is the residual vector. If
the media were homogeneous, then the local mass balance errors (as measured by the
difference between the influx and outflux in a particular node) would be small relative
to the mean flux. However, the system is heterogeneous, and the actual flow passing
through any grid block of a finite difference grid may be large or small relative to the
mean flux; therefore it does not make sense to compare the magnitude of the local
mass imbalances with the mean flux. However, the total (or global) mass imbalance,
calculated by summing up the local mass imbalances, should be small relative to the
mean system flux; ie. the total amount of mass gained or lost within the system,
however distributed, should be small relative to the average flow passing through
the system. This is a scalar measure of how well the cosimulated fields satisfy the
continuity principle.

The flux imbalance at each node is calculated by summing the volumetric Darcy
flux across the four edges of each grid block or node. The flux calculations are made
using two-dimensional versions of (38) and (39). In two-dimensions, the mean flux,
gm, is given by [Gelhar, 1986]

gm = Ky J1 | (95)
where K is an effective hydraulic conductivity equal to the geometric mean or log-
arithmically averaged hydraulic conductivity. The total or global volumetric system
flux, Q,, is given by Q, = NygmAz; Ars where Ny is the number nodes in the
z2-direction (normal to the mean flow) and Az; and Az are the horizontal and

vertical grid block dimensions in directions normal to the mean flow.
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Unfortunately, this residual analysis does not yield very encouraging results: The
global mass imbalance for the cogenerated fields is about 10% of the mean system
flux whereas the total residual for the deterministic solution amounts to 0.0001% of
the system flux. For comparison, we perform the same residual analysis for fields
in which ¢) the heads and transmissivities are unrelated (ie. no connection either
through cogeneration or deterministic modeling) and ¢7) a case in which there is no
randomness in the head field (ie. no perturbations, simply a uniform sloping water
table). Results from the residual analyses for these two cases are virtually identical
to that from the cogenerated case. Furthermore, we examined the flux just around
the boundary of the gridded domain and found that the sum of the boundary fluxes
alone equaled 10% of the mean system flux for the cogenerated case and for cases 1)
and z:) described above (the boundary fluxes should sum to zero; the deterministic
boundary fluxes summed to 0.0001% of the system flux). These global mass balance

results are not too surprising, given the results from the statistical analyses.

Local Mass Balance Analvsis

A more rigorous analysis involves an examination of the local mass balance errors;
the magnitude of these errors can only be determined if the true solution to the system
is known and the fluxes through individual grid blocks can be calculated. In order to
obtain a solution which conserves mass, boundary conditions must be specified and
the system must be solved deterministically. Although the introduction of boundary
conditions is clearly not consistent with the manner in which the cosimulated heads
are generated (ie. without boundary conditions), the deterministic solution provides

a reasonable basis for comparison of the head patterns.

We experimented with a number of different types of boundary conditions but
found that only the Dirichlet boundary conditions proved interesting. At first, Neu-
mann boundary conditions were specified around the exterior of the grid (using the
outer-two layers of cogenerated heads and transmissivities to calculate the fluxes)

while holding one head in the center of the grid to “tie down” the solution. But since
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the boundary fluxes do not sum to zero, the deterministic solution does not resemble
the cogenerated solution. This is because the deterministic model is required to pre-
serve mass and therefore will find the solution that balances mass by passing all the
boundary flux imbalances through the one held node in the center of the grid. This
results in a “groundwater mound or trough” arcund the held node and therefore the

solution does not resemble the cogenerated head field.

Specifying Dirichlet boundary conditions around the perimeter of the grid nat-
urally ties down the shape of the solution better and yields more interesting re-
sults. The cogenerated perturbed heads are added to the mean head to yield a
total hydraulic head field which is used to set the boundary head values. A pre-
conditioned conjugate-gradient matrix solver [Golub and Van Loan, 1983; Gill, Mur-
ray and Wright,1981]is used to obtain the solution. After obtaining the deterministic
solution, the mean head field is subtracted off to yield a “deterministic perturbed head
field.” This perturbed field is plotted together with the cosimulated heads in Fig-
ure 18. The spatial variability pa,t;uerns of the two fields are very similar indicating
that the cogenerated solution has, in general, “the right shape.” Thus, flow through
the cosimulated field would resemble the flow through the deterministic solution; one
way of checking this would be to compare pathlines of particles traveling through
each system (it is our intention to look at these kinds of comparative measures in

future research).

Although the patterns of the cogenerated and deterministic perturbed head fields
are similar, the variance of the deterministic heads is approximately an order of
magnitude greater than the cogenerated heads; this is probably due to the relationship
of the deterministic heads with transmissivities whereas the 7cogenerated heads are
generated in conjunction with the logarithm of transmissivity. A three-dimensional
perspective plot of the “pseudo-true” and cogenerated head fields is shown in Figure 19

illustrating the difference in the total amount of variability in these fields.

Having a “pseudo-true” solution available (the deterministic solution) allows us to

calculate local mass balance errors by comparing the residuals in each grid block with
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the actual local flux passing through the block as determined by the deterministic
solution. For the cogenerated fields plotted in Figure 16, these errors range from
—25% to +25%; the errors are normally distributed with a mean of less than 1% and
standard deviation of 6%. The meaning of the magnitude of these percentage figures
is rather dubious, given the disparity in the variance of the two head fields and the

fact that the cogenerated fields lack the proper statistical structure.
% ok % k& k ok ok ok koK

It is obvious, from results of the preceding analyses, that there is an unresolved
problem associated with the computer implementation of the two-dimensional al-
gorithms, or possibly with the theoretical development, although the latter is less
likely. Hopefully, in future work, the “bugs” in these two-dimensional experiments

will be worked out.
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tom) perturbed head fields illustrating the disparity in the variance
between these two solutions.
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SuMMARY AND CONCLUSIONS

The theory for generating correlated random fields of head and log-transmissivity
has been presented in a one-dimensional framework. The method is based on spectral-
perturbation theory which is restricted to processes with low input variance and
assumes that the cogenerated fields can both be represented as statistically homoge-
neous or stationary processes. Numerical algorithms for cogenerating discrete random
fields are developed for one- and two-dimensions. A theoretical one-dimensional anal-
ysis of the discrete random field representations shows that the statistical properties
are preserved and the governing differential equation is satisfied. The numerical al-
gorithms are coded and discrete random fields of head and InT are cogenerated and
analysed. The theory and procedural steps for conditionally cogenerating head and

InT fields is also presented but is not implemented.

In one-dimension, the covariance properties of the discrete processes are well pre-
served. The perturbation analysis demonstrated the importance of carefully analysing
the properties of the assumed form of the input (In7 ) process. The InT hole-
covariance function, while satisfying the requirements for stationary {n7T and head
fields, is non-differentiable for continuous processes and yields a noisy InT field for
the discrete case making it difficult to obtain accurate numerical derivatives. The
bell-covariance function, which is continuously differentiable, satisfies the stationarity
requirements and results in a much smoother more differentiable discrete InT" process.
The bell fields also do a much better job of satisfying the governing differential equa-
tion than the hole fields even at relatively coarse discretization levels and high input
variances. An analysis to determine if the technique produces results which conserve
mass is carried out via Darcy flux calculations in a finite difference framework. The
results show that mass is conserved only for the low variance cases. Increasing the
grid resolution improves the numerical derivative estimates and, consequently, also

improves the mass balance. The results suggest that the linearized version of the
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flow equation (1), obtained via the perturbation technique, is valid provided o% <« 1.
A comparison with a deterministic solution shows that the spatial character of the .
cogenerated fields is correct except for localized areas where reverse head gradients

appear in the high variance cases,

The two-dimensional results are, as of this writing, preliminary and of marginal
value because the numerical algorithms have not yet been successfully implemented
on the computer. Although we believe the theoretical development for the two-
dimensional case to be correct, the results from numerical cosimulations so far have
been somewhat disappointing. The discrete auto- and cross-covariance estimates do
not accﬁrately mimic the theoretical behavior, the global mass balance measures yield
less than encouraging results, and interpretation of the local mass balance errors
in quantitative terms is made difficult due to the disparity in the variances of the
deterministic and cogenerated head solutions. Although the quantitative analyses fall
far short of our expectations, the cogenerated fields, viewed qualitatively, do behave
as expected. The auto- and cross-covariances have the right shape, and the fields

exhibit the correct spatial character with respect to correlation scale, isotropy etc.

Results from these numerical analyses seem to suggest that higher order dis-
cretization may be necessary [see eg. Dettinger-and Wilson, 1981]. The restriction
of the perturbation approach to low input variances may mean that the governing
equation needs to be solved exactly (ie. including the perturbation products) via
convolution operations [see eg, Emery, 1988] in order to accomodate larger input
variances. For the types of modeling problems envisioned for application of this tech-
nique (groundwater flow modeling, petroleum reservoir simulation), the stationarity

requirement is not too restrictive.

The one-dimensional model is, in general, not a very good representation of any
real (three-dimensional) process. The artificial complications it introduces (eg, no
avenue for flow around low permeable zones, monotonic head gradient functions for

steady state cases, etc.) must be given special consideration. The two-dimensional
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framework, on the other hand, is more realistic but is also significantly more com-
plicated and difficult to deal with, both in terms of developing and implementing
the algorithms and in analysing the results. If the two-dimensional cosimulations
had been more successful, additional performance measures, such as travel paths and
travel times, would have been examined.

Under the assumption that the technique may yet be successful, the next step
might be to cogenerate velocities directly. Even if mass will never be conserved
with this method to the degree that it is in finite difference and finite element flow
simulators, the technique may still be of practical value. For example, it might
be used to generate an initial guess for a very large problem that will be solved
deterministically via some iterative solution technique.

What is clear from the partial success of this work is that the method has tremen-

dous potential and deserves further consideration.
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ApPPENDIX A

In this appendix, we show why only half the output sequence from a finite Fourier
Transform should be used in the computations. We begin with the discrete form of
the spectal representation of f(z) given in (13) as

M-1
flzj) = 3 €“rdZi(wm) (A1)
m=—M
where both space and frequency are discretized; wp, = (m+3)Aw (giving M positive
and M negative frequencies), Aw = Q/N where  is the maximum frequency and

N=2M, and z; = jAz, j=—-M,M-1. Standard finite Fourier Transform algorithms

use the form e2™“m%i for the Fourier kernel. With the relationship between space

and frequency defined as Az = 2% = £2F— (A1) becomes
. M-1 o 2mi
fGAz) = _ZM e (MHDAYNAG 47 (m+D)Aw). (A2)

We now look at the covariance between f(z;) and f(z) by substituting (A2) into

the definition of the covariance as

Cov(f(z), fzr)) = Elf(z)f(as)]

M-1 M-1 ;
. ; _2_7"1.. . 2rk
= El: Z Z e‘(mlT%)A“’ NAw cz(mg—é—lz-)Aw NAw
mi=

-M mg:—zM
de((ml-i-%)Aw) de((mz-i—%)Aw)]

M-1 M-1 omi -
= Z Z e:(mﬁ-%)Aw‘ﬂ% i (mz+1)Aw I\QIAkw
mi=—M m,=—M i (A3)
E!.de((m1+%).Aw)de((m2+%)Aw)] .

Using the result (14) from the spectral representation theorem, we find that (A3)

is non-zero only when _de((ml.;.%)Aw) = dZ;((mz-p%)Aw) with m; = ms; in other
words, when (m;+3)Aw = —(m+3)Aw. In this case, (A3) reduces to
M-—1

E[f(:l,‘))f(a:k)] = Z eﬂmﬁ-%)dw(i—’:)% Sﬁ((m-i-%)Aw)Aw (A4)
m=—-M
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If we define z;_ = (j-k)Az = z; — 2% = ( j-k) 5 and w,, = ((m+3)Aw), then we

can write (A4) as

E(f(:cj)f(:ck)] = Z ei“"‘(j_k)AISg(wm)Aw

m=—M
Q/2
= / e“Ti-* S(w)dw = Rglzj—r) = Rglz;—zi) (A35)
—0/2

where Ry{z; — z1) is the covariance of f(z) at a lag or separation distance of z; —
rx. Recall that the 7 and k indices range from -M to M-1, ie. there are 2M=N
discrete values in the f(z) sequence. Assume for the moment that j,k < M so that
Eif(x,)f(xk)] = Rg{z; — o) is the covariance between two points separated by a
distance |z; — k| denoted as |j — k|. Since |j — k| < M, the separation distance is less
than or equal to half the length of the output sequence from the FFT. Now consider

covariances between points spanning greater than half the sequence by calculating

M-1

E [f(IN_j)f(.’Ek.)] = ;M ei(m+‘1£)Aw(N-j—k) NAw Sﬂ((m+%)Aw)Aw
(A6)
M-1 . 1 - 1 . 2
— Zw gt (m+d)2r —i(m+)Aw(G+E) K ag Sg((m+%)Aw)Aw .
m=—/
Noting that e (™+2)2% = _1 and using the result (A5), (A6) becomes
E[f(l'j)f(xk)] = —Ry(~@j+zp) = — Rglz;+zk). (AT)

In other words, the covariance behavior of the output from a finite Fourier Transform

what might be described as “anti-periodic” where
- Rfan—j— k) = — Rglz;+ z), (A8)

ie. covariances over large lags (greater than half the length of the sequence) are equal
but opposite in sign to covariances at small lags. For example, suppose Az = 1 so that
z; = jAz = j andlet N = 100, j = 10, k = 0. Then via (A8) Rg{zn—-;) = —Rs(z;)
or Rg(90) = —R#10). Because of this anti-periodicity, we should only use half the
output sequence from the finite Fourier Transform.
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AprPENDIX B

In the following analysis, we show that the Telis InT covariance model will give
rise to stationary heads for the two-dimensional flow problem described herein. Sub-

stituting the Telis spectrum, (71), into (12) gives the Telis covariance function,

Rp(§) = oF {Io(b&) — Lo(b€) + b€ [1u(b€) ~ La(bE)] }, (B1)

where Iy, I; are modified Bessel functions of the first kind of order zero and one,
respectively, and Ly, L_; are modified Struve functions of order zero and minus one,
respectively [Abramowitz and Stegun, 1964]. It may be of interest, in light of the
peculiar form of this covariance function, to understand how the Telis spectrum-~
covariance pair came to be considered for this purpose:

In their papers on the Turning Bands method of random field generation, Man-
toglouw and Wilson, [1981,1982] describe mathematical relationships between the co-
variance functions of two or three-dimensional random fields and the covariance func-
tion of one-dimensional processes generated along the Turning Band lines. The Turn-
ing Bands method is an efficient random field generation algorithm in which the two
or three-dimensional field is generated by projecting the values of one-dimensional
processes (generated along lines radiating from an arbitrary origin in space) into the
two or three-dimensional domain. In this theory, the relationship between one and

three dimensional isotropic covariances is given by

Ri€) = %[eRa(©)] - (B2)

In Bakr’s three dimensional analysis of flow [Bakr et al, 1978}, the exponential

covariance function,

Ry(¢) = ofe /A, (B3)

was used to model the [nT covariance behavior and gave rise to stationary heads.

Substituting (B3) into (B2) and differentiating gives
Ri(€) = o3(1—[él/n) e 8/ (B4)
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which is the InT covariance model Bakr used in his one-dimensional analysis and it
also gave rise to stationary heads. Mantoglou and Wilson derived the relationship
between one-dimensional covariances along the Turning Band lines and the isotropic
covariance of the two-dimensional field,

Rl(f) _ 7
[ eyt = 3Rl (B5)

where £ and r are the lag distances in one and two-dimensions respectively. They
reasoned that if R1(¢) given by (B4) yields stationary heads in one-dimension, and
R3(€) given by (B3) yields stationary heads in three-dimensions, it is possible that
Ry (€), given by substituting (B4) into (B5) and integrating, will yield stationary
heads in two-dimensions. They derived R;(¢) and labeled it the Telis covariance
function. Here we prove that this function does indeed lead to a stationary head field
in two-dimensions.

Mizell et al, [1982] showed that in order to obtain a stationary head process for

the two-dimensional flow problem described herein,
J3ZGEER (B6)
0

must be true. Here, Rg{£) is the isotropic InT covariance function. Substituting (B1)
into (B6) leads to formidable mathematical difficulties in evaluating the integral in
that equation. An easier approach is to examine the head process and show that it
has a finite variance and is therefore stationary. The variance of the heads can be cal-

culated by integrating the head spectrum over all frequencies; we must therefore show

+o0
o = j’ Sw(@)dd < oo (B7)

to prove that the head process is stationary. The isotropic InT spectrum correspond-

ing to the Telis covariance is given by

(B8)
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where b is a correlation parameter which is related to the A in equation (B3) by
b = 1/A. Substituting (B8) into (70) and writing w; = wecos(§), and w? = w? + w3,
leads to the directionally dependent head spectrum

20'?:]12[) 6032(9)

Suln®) = = e (B
Substituting (B9) into (B7) and integrating gives
oo 21
or = Swl{w, ) wdwdd
[
., 20303 T da F
ol = 07’:_21 / - du2 5 /cosz(ﬁ)dG
g (¥ +u?)
o J?
O'h = 2fb215 (B].O)

which shows that ¢} < oo, therefore the head process is stationary. We note the sim-
ilarity of (B10) with the two-dimensional result of Mizell et al, [1982] (equation (19)

combined with equation (10) in that paper),

2037}
2 _ f
Uh - 2 bl
a

where the head variance was calculated using the Whittle spectrum A as a model for

the {nT process covariance.
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AprPENDIX C

In this appendix, we make use of some results from Mizell et al, [1982] to derive the
theoretical anisotropic head covariance function corresponding to the head spectrum

given by equation (89),
203J3b w?
72 w3(B? + w?)?

Sw(@) = (C1)

2

where w? = w} + w?. The two-dimensional head covariance function, Rg{(£), is ob-

tained by taking the Fourier Transform of the head spectrum as
+co

RH(E) = / € S (3) d3 . (C2)

had e o]

Using (A9) of Mizell et al, [1982] (with & replaced by w), the head covariance function

can be written as
400 400

Rg¢1,862) = f /ei(w1£1+wz$z) w? g(w) dw;dws (C3)
oo 2w
RF£,X) = (2cos® X—l)// twcosd sg(w)c0329d9dw
(C4)

+ 2nsin X/Jg(uf)u g(m)dw

where wig(w) = Su(&) in (C3), and £2 = €7 + £2. Jo( ) is a Bessel function of the
first kind of order zero, and X = cos™1(£;/€) is the angle between the mean flow
direction and ¢ (We note a typographical error in (A9) of that paper in which the
exponent on the cosd term is 3 instead of 2). Substituting (C1) into (C2) and using

(C3), then coverting to polar coordinates as in (C4) gives

co 2w

202 J2h 29 ~
Ru(,X) = =% {(‘7003 x—1)// iwgeosd 050 g,

(8% + w?) (C5)

+ 27'.sm2X/ ;To(wf)) 2 }

5 (0% +w?)
The integration on 8 in (C5) is evaluated as follows:
27

ot 1= feseen__8___ IO gy

3 uﬂ(b2 + w?)? w2(b? + w?)
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where the eqality on the right is taken from equation (A1) of Mizell et al, [1982].
Differentiating I twice with respect to ¢ and negating gives

2m

d*I : cos*d =27 J§ (w€)
_ — twfcosd __ “7° Y dg = ——_*0°\75/ C7
= ey (8 +?)? e

where J{'(wé) = d€2'] (w&). Substituting (C7) into (C5) gives

4 J I
Ru(Ex) = ZL2 (1= 200s) / G
(bQ !
( ) (C8)
Jo(wé
+ sin X/(b2+w2) dw]
The following equalities, taken from Abramowitz and Stegun, [1964],
Jy(z) = — Ji(z) eqn 9.1.28 p.361
Ji(z) = Jo(z) — L Ji(z) eqn 9.1.27 p.361
enable us to write
" d ] d
3@ = 2 [5@)] = [-hE@)] = 25 - I,
so that (C8) becomes
403 J2b T J(wé)
Ru(€,X) = —L2- (1 —2cos?x) [ —22 g,
w(6,X) T [( « )!wg(b2+w2)2
o (C9)
+ cosQX/TJO(-w—ila-dw] .
5 (B +w?)
Using equation 11.4.45 of Abramowitz and Stegun, (1964, p.488] we write
[es]
Jo(wf) Y
) e = — - L C10
[ G o & = 5 [0 - La(eg) (C10)

where Iy( ) and Lo( ) are modified Bessel functions and modified Struve functions

respectively, of order 0. Taking the derivative of (C10) with respect to b gives

T Jolwé) x
p [ ) 40 - T
) (0 +w?)? 2 db

X [I,,(bbg) ~ Logbf)],
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which, after carrying out the differentiation on the right hand side, simplifying, and

dividing through by ~2b, leads to

o0

J
U)o = 2L e - 1o
(52 4+ w?) 4156
0 (C11)
1
7 [1o(b€) = Lo(5¢) ] } .
Use of the following equalities from Abramowitz and Stegun, [1964],
Ii(z) = Ii(z) eqn 9.6.27 p.376
2L4(z) =2 + L_4(z) + Li(x) eqn 12.2.25 p.498
L_y(z) =2 + Ly(z) eqn 12.2.24 p.498
enables us to write (C11) as
[ _Jow§) fitd {
[ = + [Lube) - B(ee)] +
2 4+ w2)? 452
o (F+ef) (C12)

= [60¢) - Zo09)] } .

Using equation 11.4.45 of Abramouwitz and Stegun, [1964] again, we write the first -

integral in (C9) as

T Ji(we) ~
o/ B+t 9b2§ [R() - L.(39)] - (C13)

Taking the derivative of (C13) with respect to b and reducing in the same fashion as
that shown in equations (C10) — (C11) leads to

Jl w ,
]wg(b;_;_ézzf de = 453 {{ 1(b§) I (bf)]
0

2 [n(66) - Ll(bf)] b

e v

(C14)

Using the following identities from Abramowitz and Stegun, [1964],

Ii(z) = L(z) — lIl(:c) eqn 9.6.26 p.376

2L(z) = $ 577 + Lo(z) + La() eqn 12.2.5 p.498
/2

Ly(z) = Lo(z) — 2L1(z) - 257 eqn 12.2.4 p.498

C3
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enables us to write L (z) = Lo(z) — L L1(z) so that (C14) becomes

7 Ji(wé) o =
Ofwé(b'z TP T { |Zo(b) = Io(b6) -

2 (1606~ 1129)] } -

Finally, the two-dimensional head covariance function is obtained by substituting

(C15) and (C12) into (C9) yielding

o2 ]2
Ru(€,x) = ’;—2]1 {%?écoszx + (1 = 3cos?x) [Lg(b{) — Ig(bf)]

6 3 (C16)
(coSZX[H 5] bg)[’ (’f)—Il(bé)]}.
The variance of the head process is 0,0) as
Ru(0,0) = Uzb Ji {2 + hm (-bg—) Ll(bf) —Il(bﬁ)] } (C17)

where we have used Figure 9.7 and Figure 12.4 of Abramowitz and Stegun, [1964]
to evaluate Lo(0) and Io(0). Using the power series expansions for Li(z) and I;(z)
given by equations 9.6.10 and 12.2.1 of Abramowitz and Stegun, [1964], we examine
the behavior of L1(z) — I1(z) for z <« 1 and find that

z%/2 z/2

Li(z) — I(z) = T(3/2)T(5/2)  T(2)

so that

lim (g) [Li(2) - B(=)] =

r—0

(SR

Hence, (C17) becomes

(C18)

Note that this&fesult is consistent with equation (B10) where o} was derived simply
by integrating the spectral density function of the head process.

It appears, from (C16), that Ru(£,X) is linear in &, so we must check to see if
Ru(€,X) — 0 as € — cc. The & term that twice appears in the numerator position

of (C16) as the coefficient to cos?X results from its being factored algebraically, but

C4




originates in the expression (C12). Thus, using (C12), we examine the behavior of

Ru(€,X) as £ — oo by evaluating

Jim b [% + Ly(b€) — Iy (¢)]. (C19)

Using the asymptotic expansion for large arguments of L, (2)—I,(2) given by equation

12.2.6 of Abramowitz and Stegun, {1964, p.498], we find that for v =1

(=1)T(1/2) 2

lim Ly(z) - L(z) = EnO (C20)
therefore,
Jim Ru(6,%) = 0. (C21)
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AppENDIX D

In this appendix, we derive the theoretical cross-covariance function between the
head and InT fields for the two-dimensional case. We begin by writing the two-

dimensional version of (12} for the cross-covariance as

+o0 +oo o
Ru(f) = _/ /ei”'esfh(ﬁ)d@- (D1)

Next we use X to represent the angle between E and the mean flow direction, £;, and
write (D1) as

4o 4+

Bag,x) = [ [ et g wydondey (D)

where & = Ecosy, &2 = Esiny, and € = |£]. It is perhaps easiest to evaluate (D2)
by changing to polar coordinates, whereby we let w; = weosa, wy = wsina, where
w = |@|, and « is the angle between & and wi; the w; and ws frequency directions
correspond with the £; and £, spatial directions respectively (see Figure D.1). With

these substitutions, (D2) becomes

co 27
Ryu(é,x) = _/[ /65“5°°3(X—a) Spw cosa, wsina) wdwda. (D3)
0 0

We now let 8 be the angle between £ and @, ie. § = x-o, and write

co 3w

Ra(6,x) = / /ei“’sc””& Sp (w cos(x—4), w sin(x—é)) wdwod8. (D4)
00

The cross-spectrum can be expressed via (91) in the form Su(&) = =82 S¢(w) and
substituted into (D4) giving
oo 2m

Ra(¢,X) = —Ji [ [ €40 cos(x-6) Sgfw) dodf.
0 0

oo 27
= —Ji / f #6029 [cosX cosh + sinX sinb| Sy{w) dwdd.  (D5)
0

0
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where we have used w; = wcos(x-6) = w[cosXco.sG + sz'nX.sz'nH] . We now do the

. G-integration by writing two integrals, each of the form

27 27

/eiwfcose 9(9) de = /eiuscosa 9(9) dg + /eincosG g(G) dé (DG)
0 0

where g(f) = cosXcosf or g(8) = sinXsinf. By substituting ¢ = 2= — 8 in the
right-most integral in (D6), we obtain

2w

]eiufcosﬂ g(8)df = /efw5005(27’_¢) g(2% — @) d¢. (D7)
0

T

Since the sin(2w — ¢) = —sing, the 4 integrals in (D6) cancel when ¢g(8) = sinXsiné.
Similarly, since cos(27 — @) = cosg, the 6 integralsin (D6) add when g(8) = cosXcosé

L
giving 2 [ e4°°3%cosX cos § df; thus, (D5) becomes
9

xR T
Ru(,x) = —2J1 COSX//eiWSC”o cos Sp(w) dfdw. (D8)
00
Using equation 9.1.21 of Abramowitz and Stegun, [1964, p.360], we write
/ €000 0030 df = L Jy(wE) (D9)
¢
0

where Ji( ) is a Bessel function of the first kind of order 1 (not to be confused with

the mean hydraulic gradient, J). Thus, (D8) becomes

Ru(6,X) = —2aJcosX / T (wE)SHw) duw. (D10)
0
Substituting the InT spectrum (71) into (D10) gives
—4Jo%b T
Ru(€,X) = f cosX/Jl(wﬁ)—qgu—ﬁ dw. (D11)
R A G
From equations 9.1.5 and 11.4.45 of Abramouwitz and Stegun, [1964, p.358 and 488],
we have
J..](al‘) f 11
— " it = — t) ———=< dt. D12
J =10 + 1) dt / Jl(a)(zz ) (D12)
%
= 3 [I_l(az) — L_l(az)] (D13)
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where I_4( )and L_1( ) are modified Bessel functions and modified Struve functions
of order —1 respectively. Taking the derivative of (D12) with respect to z and using

that result in (D11) with a—¢, teow, and zeb, gives

Jhwaagfg?¢u==—g%%pqw@-Lﬂwa} (D14)
Using the following relations from Abramowitz and Stegun, [1964],
I_n(z) = I.(z) eqn 9.6.6  p.375
Ii(z) = I(z) — LL(=z) eqn 9.6.26 p.376
2L y(z) = Log(z) + Lo(z) + 12 eqn 12.2.5 p.498
L o(z)=—-2L_y(z)+ Lo(z) + 12 eqn 12.2.4  p.498
Li(z) =L 4(z) -2 eqn 12.2.4 p.498

enables us to evaluate the derivatives on the right-hand side of (D14) and obtain

: |
Gl - 2200 = ¢{ n0e) - 2o0) -

1 ) (D15)

b [Il(bf) - Ll(bf)j }
Combining the constant terms in (D11) and (D14) with the result (D15) finally leads
to the cross-covariance function,

Ralf,x) = Ja?scosX{Ig(bé’)—Lg(bf) _ b%[ll(bf)—.Ll(bf)] } (D16)

At £ =0 Lo(0) = L1(0) = I;(0) = 0, Ip(0) = 1 so that Ru(0,X) = 0, indicating that
the heads and InT are uncorrelated at zero lag. For large separation distances we
find, using the asymptotic expansion for large arguments of L,(z) — I_,{z), equation

12.2.6 of Abramowitz and Stegun, [1964, p.498], that

2
Elin;; Ii(z)— Li(z) =~ - (D17)
while
. 12
E}E—Igo Io(I)—Lo(.’r) ~ ;"; (D18>
Therefore,
Elim Rp(€,x) = 0. (D19)

ie. the cross-covariance dies out at large lag distances as expected.
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Figure D.1. Coordinate transformation definition sketch; schematic of frequency
(w) and spatial (£) coordinate systems superimposed.
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ArPENDIX E

Only the cogeneration codes and ancillary numerical analysis programs are listed
here. The plotting programs are not listed except where they are imbedded within
a “number crunching” code. Almost all of these routines take advantage of Fortran

enhancements available on the VAX VMS Fortran version 4.1 compiler.

Appendix E Table of Contents

COGEN_1DP Cosimulation code for one-dimensional case.................... E.2

COSM2DDP  Cosimulation code for two-dimensional case........ocvvvun.nn. E.10
RESIDUALS Calculate residuals to governing equation ..................... E.14
MAK_FBC Extract Dirichlet heads and calculate boundary fluxes......... E.16
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PROGRAM CCGEN_10P

Crererceessirecesaconnonnnnanan B e T
c SUFFIX "P¥ --> DOUBLE PRECISION FFT
c COSIMULATION OF 1D RANDOM FIELDS - HOLE AND BELL-HOLE FUNCTIONS FOR LN(T)
PARAMETER  (MXX=252150)
REAL SF(MXX),  SH(MXX), RX(0:MXX), CP(D:MXX)
REAL ZFMXX), ZHCMXX3, RF(O:MXX), RH(O:MXX)
REAL SMF(MXX), SMHCMXX), SMX(MXX), ER{MXX)

CCMPLEX*16 DZF(MXX), DZH(MXX)

COMMCN /PARAMS/ VLNT,GRAD,DELX, FMAX,DELK, NHAR,NMAX, CMAX , APAR
COMMON FIFLAGS/ NBCN,IDIF, IHOL

c READ INPUT PARAMETERS
CALL RDINPT(NSIM, NPTS,MLAG)

£ BEGIN THE SIMULATIONS ...
DO 1SIM=1,NSIM
COMT  CALL PROGSS(ISIM,NSIM, ‘RANDOM FIELD SIMULATION NUMSER')

c GOGENERATE RANDCM FIELDS
CALL FFTCOG(ZF,ZH,DZF,DZH)

COMT INTERMEDIATE COVARIANCE CALCULATIONS
COMT CALL COVFHX(ZF,ZH,SMF,SMH, RF RH,SMX,RX,CP,NPTS, HLAG)

c CALCULATE MEAN AND VARIANCE GF RANODCM FIELDS
CALL BARVAR(ZF,NMAX,FBAR, FVAR)
CALL BARVAR(ZH,NMAX,HBAR,HVAR)
WRITE( *,10) FBAR,HBAR,FVAR,HVAR
WRITE(S0,10) FBAR,HBAR, FVAR,HVAR

10 FORMAT(!  =-e-emoomm e PR ',
1 /' F3AR =,F8.2,1 HBAR =1,F8.2,
1 /' FVAR =',F8.2,1 HVAR =*,F8.2)

¢ CHECK PERTURBATION EQTN AND MASS BALANCE

CALL CHKPTB(ZF,ZH)
COMT WRITE(SO, '(1H1Y*)
CALL CHKMAS(ZF,ZH)
END DO

COMT CALCULATE AND PRINT THE AUTO AND CROSS COVARIANCES
COMT  CALL RRRFHX(SMF,SMH,SMX,RF,RH,RX,CP,MLAG)
COMT  CALL PNTCOV(RF,RH,RX)

sToP
END

SUBROUTINE PRCGSS(K,KMAX MSG)
c REPCRT DO-LOQP COMPUTATION PROGRESS

CHARACTER MSG*({*)

PCT = 100 * FLOAT(K)/FLOAT{KMAX)
IPC = INT(PCT)
PCD = PCT - PCL

IF(MOD(IPC,5).EQ.0 .AND, PCD.GT.2) THEN
PCT = AMINT(PCT,99.9)
PCL = PCT
WRITE(S,10) MSG,INT(PCT)
10 FCRMAT(THS,A,' ... (',13,' %) ... ")
1F(PCT.EQ.99.9) PCL = 0.0
END IF

RETURN
END

E.2
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SUBROUTINE RDINPT(NSIM,NPTS,MLAG)
READ INPUT PARAMETERS FOR 1D COGENERATICN MODEL

PARAMETER (PI=3.141552454)

CHARACTER OFILE*S0,CFCR™12,COVF(2)*4 LTINSF(2)*12

COMMON /PARAMS/ VLNT GRAD,DELX, FMAX,DELK,NHAR , NMAX , CMAX, AFAR
COMMON /1FLAGS/ NSCN,IDIF, IHOL

COMMON /ALGDLX/ NFRIM X'OK

DATA COVF /'HOLE?,*BELL'/, VLNT,GRAD,APAR /1. g, 1.0, 1.0/
DATA TNSF /! (CONTINUGUS)' ¢ DlSuR‘lE Y/

WRITE(*,*)'(1) - THE HOLE FUNCTICN FOR LN(T)'
WRITE(*,*}1(2) - BELL-HOLE FUNCTICN FOR LN(T)*
READ (*,*) IHOL

WRITE(*,*)VENTER THE LN(T) VARIANCE, THE HEAD GRADIENT, AND mAw¢
READ(™, ') VLNT,GRAD ,APAR

HRITE(* *)'ENTER THE LN(T) VARIANCE!

READ (™,*) VLNT

WRETE{*,*) *ENTER MAX FREGUENCY, NHAR AND N-PRIME'
REABC*,*)  FMAX,NHAR,NPRIM

WRITE(*,*31(1) - i*J/k (continucus case)!
WRITE(*,*)*(2) - cos etc. (discrete case)!
READ(*,™) 1JOK

DELX, DELK AND NMAX PARAMETERS FOR FFT METHCD

DELX = 2.0*PI/FMAX

DELK = FMAX/FLOAT{NHAR)

BELX = 2.0%PI / (FLOAT(NPRIM)*DELX)

NMAX = NHAR/2

NSIM = 1§ { MAKE PLURAL FOR COVARIANCE CALCULATIONS

IDIF = 0 ! O=CENTRAL DIFFERENCES, 1=FORWARD DIFFERENCES

WRITE(*,*)'ENTER RANDOM NUMBER GENERATOR SEED’
READ(*,*) 1SEED

WRITE(*,*)'ENTER THE NAME OF THE QUTPUT DATA FILE!
READ(*,*(A)*) OFILE

OPEN(UNIT=95 NAME=QFILE, STATUS='NEW', FCRM='LUNFORMATTED *)
WRITE(YS) NMAX 2,VINT ,GRAD,APAR,DELX

1007 = INDEX(OFZLE,'.')

CFILE = OFILE(1:IDOT) // ‘LST!

OPEN(UNIT=50, NAME=OFILE, STATUS='NEW')

CALCULATE INTERNAL PARAMETERS

CALL URNIT(ISEED) INITIALIZE RANDOM NUMBER GENERATOR

]
NPPC = APAR/DELX + 0.5 ! NBR PTS/CL (B=1)
DELK = FMAX/FLOAT(NHAR) ! FREQUENCY SPACING
CMAX = 6.25%APAR I MAXIMUM NUMBER OF CORRELATION LENGTHS
MLAG = CMAX/DELX + 1 ! MAXIMUM LAG CORRESPONDING TO CMAX
NCOR = NMAX/NPPC | NUMBER CF CORRELATION LENGTHS / REALIZATION
NBCN = 50 I NUMBER OF "CHECK™ NCOES FCR LOCAL MASS BALANCE
FLUX = EXP(-11.51+VLNT/2.)*GRAD | MEAN FLUX
NPTS = NMAX
CFCN = COVF(IHOL) // ' CCV FCN!

WRITE( *710) .ISEED,CFCN +APAR, TNSF(TJOK) , FMAX,DELK DELX,HPPC  VLNT,
GRAD, FLUX NHAR NMAX, NPRIM, NCOR

WRITE{SQ,10) ISE;D CFCN, APAR TNSF(XJCK) FMAX,DELK,DELX NPPC,VLNT,
1

10

- ed ekl b o

GRAD, FLUX NHAR NMAX NPRIM, NCOR

FORMAT(' SEED =} I10, 24X,A /' APAR =!,F8.2, 28X,A,

/' FMAX =',F8.2 /' DELK =',F10.4,
/' DELX =%,F10.4,'  (NPPC =',17,1H),
/' VLNT =',F3.2, /' GRAD =t F8.2,
/' MFLX =',TPEI2.2,* (MLAT = -11.51)1,
/' NHAR =',18,2X,'  (NPTS =1,17,1) (NPRIM =',17,1H),
/' NCOR =!,18)
RETURN
END

E.3
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SUBRQUTIN

E FFTCOG(ZF,2H,DPZF,0PZH)

CO-GENERATION OF HEAD AND LOG(T) FIELDS FOR 1D FLOW MODEL
CORRELATION PARAMETER L=1 (SEE BAKR, WRR 14(2) 1978)
PARAMETER  (P1=3,141592454)
REAL ZF{*), ZH(™)
COMPLEX DZF,DZH, i, RNBS, CMPC, CNGL
COMPLEX*16 DTOP, DPZF(™),DPZH(*™)
REAL*8 DARG,DBOT
COMMON SPARAMS/ VLNT,GRAD , DELX, FMAX,DELK, NHAR , NMAX , CHAX , APAR
COMMON /IFLAGS/ NBCN,IDIF,IHCL
COMMON JALGDLX/ NPRIM,IJOK
i = (0.,1.) I FOR CCOMPLEX ARITHMETIC
ASQD = APAR™APAR ! CORR PARAMETZR SQUARED
CNST = 2.0*VLNT*APAR/PI ! CONSTANT TERM
CHPC = -i*PI/FLOAT(NHAR) ! COMPLEX CCNSTANT
C2 = GRAD*DELX/2.0 ! TRNSFR FCN CONSTANT TERM
IF{IHOL.EQ.2) THEN ! BELL-HOLE FUNCTION
RZPI = SQRT(2.0*PI) ! SQRT OF 2 PI
ACUB = APAR*ASQD { CORR PARAMETER CUBED
CNST = VLNT*ACUB/R2PI I CONSTANT TERM
END IF
DO M=1,NHAR
OMEGA = (FLOAT(M)-0.5)*DELK b FREQUENCY
OMSCD = OMEGA*OMEGA ! FREQUENCY SQUARED
OMSTF = OMSQD/(ASQD+OMSQD)**2 | OMEGA STUFF
IF(IHOL.EQ.2) THEN I BELL-HOLE FUNCTION
ARG = 0.5*ASQD*OMSQD ! EXP ARGUMENT
OMSTF = OMSQD*EXP{-ARG) ! OMEGA STUFF
END IF
SQDF = SQRT(CNST*OMSTF*DELK) P SGRT(DF)
RNBS = URNV2() + *URNVZ() ! RANDOM NUMBERS
DZF = CEXP(M*CMPC) * SQDF*RNBS ! DZF PROCESS
!

CPZF{M) = DCMPLX(DZF)
IF(IJOK.EQ.1) THEN
DZH =(GRAD*i/CMEGA)* DZF

ELSE
SSS = SIN(OMEGA™DELX)
CLC = COS(OMEGA*DELX)
DZH = DIF * (C2*i*SSS) / (CCC-1.)
DARG = DBLE(DMEGA) * DBLE(DELX)
DTCP = DCMPLX( C2*i*sSSS )
D80T = DCOS(DARG) - 1.0D0
DZH = DZF * DTOP / DBOT
END IF

DPZH(M) = DCMPLX(LZH)
CALL PROGSS{M, NHAR,'FFT FIELD GENERATION')
END DO

P

DOUBLE PRECISICN DZF
DZH PROCESS (CONTINUOUS)
DISCRETE CASE

CCC-1. NO GOCOD IN
SINGLE PRECISION, SO

LR

DZH PROCESS (DISCRETE)

DOUBLE PRECISION DZH

PAD OUT THE SEQUENCE WITH 2EROS, THEN TRANSFORM

DO M=NHAR+1,NPRIM

DPZF(M) = DCMPLX(0.D0,0.D0)
OPZH(M) = DCMPLX(0.DO,0.00)
END DO

CALL DFFT(DPZF,NPRIM,-1)
CALL DFFT(DPZH,NPRIM,-1)

DG M=1,NHAR
ZF(M) = 2.0 * REAL(DPZF(M))
ZH(M) = 2.0 * REAL(DPZH(M))
[FCIJOK.EQ.1) ZH(M) = -ZH(M)
END DO

RETURN
END

E4
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SUBROUTINE CHKPTB(ZF,ZH)

............................................................................

CHECK MASS BALANCE CHECK FOR 1D FLOW MODEL (PERTURBATION ZaTN CHECK)

REAL ZF(*), ZHC*),  PF(-1:1), PHC-1:1)

INTEGER  LOC(1000)

COMMON  /PARAMS/ VLNT,GRAD,DELX, FMAX,DELK, NHAR,NMAX, CMAX, APAR
COMMON  /IFLAGS/ NBCN,IDIF, IHOL

PICK OUT ARBITRARY NODES FUR LOCAL MASS BALANCE CHECK
CALL PRNODS(LOC,NMAX,NBCN)
NXT = 1
WRITE(50,12)
FORMAT(/30X, 'Perturbaticn Eguation Check!,
//' Node d2h/dx2 + J*df/dx = PRTB EQTN!,
' + Df*Dh = D(TDH) PR/DH PP/DF!,

[ PN Y

TUDX
DXxsc

2.0%0ELX
DELX*DELX

DO 1=2,NMAX- 1
DO I1CON=-1,1
PF(ICON) =
PHCICON) =
END DO

FCI+ICON)
H{I+ICON)

NN

IFCIDIF.EQ.Q) THEN
DELF = ( PF(+1) - PF(-1) ) / TUDX ! CENTRAL DIFFERENCES
DELH = ( PR(+1) - PH(-1) ) / TUDX
ELSE
DELF
DELH
END IF
DSQH = ( PH(-1) - 2.0%PH(O) + PH(+1) ) / DXxsa

( PF(+1) - PF{ 0) ) / DELX . | FORWARD DIFFERENCES
( PR{+1) - PHC O) ) /7 DELX

o

GDLF
PERR
DHOF
TERR
HRAT
FRAT
HSSQ
Fs3Q
ESSQ
pgsa
TS3Q

GRAD*DELF

DSQH + GDLF
DELH*OELF

PERR + DHDF
DHDF/DSGH
DHOF/GOLF

HSSQ + DSQH*DSSH
FSSQ@ + GDLF*GOLF
ESSQ + PERR*PERR
PSSQ + DHOF*DKDF
TSSQ + TERR*TERR

[T T T T T O T IO T O '}

THIS PARAGRAPH IS TO GET READY FOR THE NEXT "MARBITRARY CHEZX NODE®
IF(LOCCNXT).EQ.1) THEN
WRITE{50,25) 1,DSUH,GOLF,PERR,DHDF, TERR,HRAT, FRAT
FCRMAT(16,1PE12.3,4E812.3,0PF8.2,F8.2)
NXT =-NXT + 1%
LOTNXT) = MAX(LOC(NXT),I+1)
TF(NXT.EQ.NBCN+1) NXT =1

ENS IF
END DO
WRITE(50,30)
FORMAT(! -<-s  ~-veccene  oo- eemee mmmeenenn ',
1 1 meaeevenes  eermwmssca  ceeme ...-.I)
PNTS = NMAX-2
RMSE = SGRT(ESSQ/PNTS)
RMSH = SQRT(HSSQ/PNTS)
RMSF = SORT(FSSQ/PNTS)
RMSP = SQRT(PSSQ/PNTS)
RMST = SQRT(TSSC/PNTS)
PRCT = 100*RMSE/SGRT(RMSH*RMSF)

WRITE(50,35) RMSH RMSF,RMSE,RMSP,RMST,PRCT
FORMAT('  RMS',1PE12.3,4E12.3,
1 //9X,"100*RMSE/SQRT(D2H*JDF) =!,0PF6.1,! X')

RETURN
END
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SUBROUTINE CHKMAS{ZF,ZH)

...........................................................................

MASS BALANCE CHECK FCR 1D FLOW MODEL

REAL ZF(*), ZHC®)

INTEGER  LOC(1008) °

COMMON  /PARAMS/ VLNT,GRAD,DELX,FMAX,DELK,NHAR NMAX, CMAX , APAR
COMMON  /1FLAGS/ NBCN,IDIF,IHOL

STATEMENT FUNCTIONS FOR HARMCNIC MEAN T AND HYDRAULIC GRADIENT
HARM(TR,T1) = 2. / (1./70 + 1./71)
DHOX(PG,P1) = (P1-P0) / DELX

PICX QUT ARBITRARY NCOES FCR LOCAL MASS BALANCE CHECK
CALL PKNODS(LOC,NMAX,NECN)

HXT =1

Loce1y = 1

WRITE(S5Q,12)

FORMAT(
1 /' Node N Qour ERROR PCT ERR !,
L A e I LT T TR Y
F=-11,51 MEAN LM(T) = -11.51

GKM = EXP(F+VLNT/2.)
GDLX = GRAD*DELX
FLX = GKM*GRAD*(1-VLNT/2)

MEAN TRANSMISSIVITY
GRADIENT * DELTA-X
MEAN FLUX (Gutjahr et. al, [19781)

A S s e eme ot

TO = EXP(F+ZF(2)) THIS PARAGRAPH IS FOR
T1 = EXP(F+ZF(1}) CALCULATING THE FIRST
PO = GOLX + ZH(2) FLUX (IN AT THE LEFT)
PY = 0.00 + ZH(1)

QL = HARM(TO,T1) * DHOX(P1,PO)

SMFLX = 0.0 ! SUM OF FLUX ERRORS
SMPCT = 0.0 { SUM OF PCT ERRCRS
sMpPsa = 0.0

SMESS = 0.0

DC 1=2,NMAX-1

T1 = EXP(F+ZF(I+1))

Pt = I*GDLX + ZH(I+1)

GR = HARM(TO,T1) * DHOX(PQ,P1)

ER = QR - QL

PE = 100.*ER/FLX

SMFLX = SMFLX + ER ! SUM UP THE FLUX ERRCRS
SMPCT = SMPLT + PE I AND THE PERCENT ERRORS
SMESS = $MESQ + ER*ER I 8UM UP THE ERRORS**2
SMPSQ = SMPSQ + PE*PE ! SUM UP PCT ERRORS*2
CDIST = FLOAT(I)*DELX/APAR ! CORRELATION DISTARCE

WRITE STUFF OUT FOR LATER PLOTTING AND DETERMINISTIC SOLUTION
WRITE(9S) I,CDIST,ZF{1),PO,PE,¥0,THCI)
CALL PROGSS(I,NMAX, 'MASS BALANCE CALCULATIONS')

THIS PARAGRAPH IS TO GET READY FQR THE NEXT “AR3ITRARY CHECK NODEM

IFCLOCT{NXT).EQ.T) THEN
WRITE{5Q,25) I,QL,QR,ER,PE
FORMAT(16,1PE12.3,2E12.3,0pF9.,2,! %'}
NXT = NXT + 1
LOC{NXT) = MAX(LOC{NXT),I+1)
[F(NXT.EQ.NBCN+1} NXT = 1

END IF

m

P1

CR

TQ
PG
QL

ftowou

z
(]
o
[w]

PTS = NMAX-2

E_RMSE = SQORT(SMESQ/PTS)

P_RMSE = SQRT(SMPSQ/PTS)

WRITE(50,30) SMFLX,SMPCT,E_RMSE,P_RMSZ

FORMAT(! --==  =--omooos coseceecs aceeniies eaieoceos '
1/ SUMS -->*, 1PE12.3,0pF9.2,' %',

1 N RMSE -->! 1PE12.3,0pF9.2,' %')

RETURN

END

E.6




SUBROUTINE C"VFHX(ZF ZH,SMF,SMH,RF,RH, SMX,RX,CPL, NPTS,MLAG)

CALCULATE ONE DIMENSIONAL AUTO AND CROSS COVARIANCES
2ZF AND 2H = THE TWO 1D INPUT FIELDS

SMF, SMH, SMX = SUMMATION ARRAYS FCR EXPECTED VALUES
CPL ARRAY = TOQ ACCUMULATE THE NUMSER OF COUPLES

NPTS = LENGTH OF THE ZF AND ZH ARRAYS
MLAG = MAXIMUM LAG
RF, RH, RX = AUTO AND CROSS COVARJANCE ARRAYS

OO0OO0OO0DOOO000O00000

C >>> NOTE - THIS ASSUMES BOTH FIELDS ARE MEAN ZERD FiELDS <<«

REAL ZF(*),ZH(*) RF(0:*) ,RH(O2%) ,RX(0:*)
REAL SMF(0:*),SMH(O:*), SHX{0:*),LPL(D:*)

DO J=0,MLAG
NPTS-J
8.0
0.9
0.0

=
= -4
LI T |

SUMX

c REPGRT CCMPUTATION PROGRESS
CALL PROGSS(J,MLAG, 'COVARIANCE CALCULATICNS!)

DO 1=1,CPLS
SUMF = SUMF + ZF(I)*ZF(I+J4)
SUMH = SUMH + ZH(I)*ZH(I+J}
SUMX = SUMX + ZF(1)*ZH(I+J)
END DO

N

SMF(d)
SMH(J)
SMX{Jd)
cPLCS)
END DO

SHMF(J) + SUMF
SMH{J) + SUMH
SMX{J) + SUMX
CPL(J) + CPLS

H# #hH

RETURN

ENTRY RRRFHX{SMF,SMH,SMX,RF,RH,RX, CPL MLAG)

c.....-.- ............ T Tt e R E R ANt ATt E e R Aacaa s A r et e e e AN
c FINAL COVARIANCE CALULATIONS (OVER th ENSEMBLE)
DO J=0 MLAG

RF(J) = SMF(J) / CPL(J)

RH(J) = SMH{J) / CPL(JY

RX(J) = SMX{J) / CPL(JY
END DO

RETURN
END

ET

CALL COVFHX REPEATEDLY AFTER EACH SIMULATION, THEX CALL RRRFHX TO
RETURN THE COVARIANCES CALCULATED OVER THE ENSEMBLE CF RANDOM FIELDS
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SUBROUTINE DFFT(X,N,IFB)

..............................................................................

..............................................................................

THIS ROUTINE, MOQ(FIED 8Y D. A. (TONY) ZIMMERMAN AT NEW MEXICQ TECH
IN 1987 AND VERIFIED WITH IMSL ROUTINES, WAS TAKEN FROM PAGE 108 OF:

RAFAEL .C GONZALEZ AND PAUL WINTZ, 1987.
"'DIGITAL IMAGE PRCCESSING'?
ADDISON-WESLEY PUBLISHING COMPANY

COMPLEX SEQUENCE TO BE TRANSFORMED (INPUT)
COMPLEX TRANSFCORMED ARRAY ON OUTPUT

NUMBER POINTS IN F TO BE TRANSFCRMED

= -1 FOR FCRWARD TRANSFCRM  { EXP(-i*2PIux/N) )
= +1 FOR INVERSE TRANSFORM  ( EXP(+i*2P[wux/N) )

..............................................................................

PARAMETER  (PI=3.14159255400)
REAL*Z A
COMPLEX*1&6  X(*),U,W,T

LN = LN + 1
IF(HMCS.GT.2.) GO TO 199

IF(HMCS.NE.2,) THEN

WRITE(® *)tewwr* SUBRCUTINE FFT, ARRAY TO BE TRANSFORMED!
WRITE(®, *)! MUST BE OF LENGTH = 2**N FOR SOME N*

STCP
END IF

IF(IFB.GT.0) THEN

DO 10 K=1,N

X(K} = DCONJG( X{(K) )
END IF

Jd=1

Do 3 I=1,N-1
IF(L.GE.J) GQ TO 1
T =X

X

i

»
~
-~
~r
[ 1]

IF(X.GE.J) GO TO 3
d = J-K

Do
=L
1= LE/2
= DCMPLX{1.D0,0.50)
= PI/DFLOAT(LEY)
= DCMPLX(DCCS(A),-DSIN(A))
DO 5§ J=1,LE1
DO 4 [=J,N,LE
1P s [+LE1
T o= X{IPY*U
X(IP) = X(I)-T
X(1) = X(I)+T
U= un

[ e

IF(IFB.GT.0) THEN
po. 20 K=1,4
X(K) = BCONJGL X(X) )
END IF

RETURN

-END

E.8
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SUBROUTINE PKNODS(LOC,NMAX,NBCN)

PICK OUT NBCX ARBITRARY NODE LOCATIONS FCR LOOKING AT LOCAL MASS BALANCE

INTEGER LoC(™)

DO I=1,NBCN
LOC(I) = 1 + URNOT(Y*(NMAX-2)
IF(LOC(I}.EQ.1) LOC(I) = 2
END DO

SCRT THEM INTG INCRZASING ORDER
DO I=1,NBCN-1
DO J=I+1,NBCN
IF(LOC(JY .LT. LOCCI)) THEN

LOCTHP = LOC(JS)
LoC(J) = LoceD)
LOCLI) = LOCTMP
END 1IF
END DO
END DO
RETURN

END

SUBRCUTINE PNTCOV(RF,RH,RX)

COMPUTE THEORETICAL CCVARIANCES AND PRINT ALONG WITH DISCRETE ONES

REAL RFCO:*) ,RH{O: %), RX(G:*)

COMMON  /PARAMS/ VLNT,GRAD,DELX,FMAX,DELK,NHAR, NMAX,CMAX,APAR

WRITE(50,30)

FORMAT{/* LAG THEORY-F SAMPLE-F
' SAMPLE-H
/l Svee  caamrrmas  Amemee

GRAD™GRAD
APAR*APAR

59
ALOG10(CMAX/DELX)
ALOGIOCFLOAT(MX))
Al/AZ

=
Fod
LU L I T |

D0 L=0,MX

M = FLOAT(L)**PWR
* DELX
X*X / (2.0%ASTD)
EXP(-ARG)
VLHT*(1.-2.0%ARG)*EMA
VLNT*GRSQ*ASGD*EMA
VENT*GRAD*X*EMA
“RX(M)

>
"
x

ARG
EMA
TRF
TRH
TRX
RXM

L I I (I T

THECRY-H 1,

THEGRY-XC SAMPLE-XCT',

— e aa e

HEAD GRADIENT SQUARED
A PARAMETER SQUARED
MX+1 QUTPUT PCINTS

OTHER STUFF FUR COVARTANCE QUTPUT

THEQRETICAL F COVARIANCE
THEORETICAL H COVARIANCE
THEORSTICAL X-COVARIANCE
SIGN CHAKCE ON CROSS-COVARIANCE

WRITE(50,40) X, TRF,RF(M), TRH,RH(M),'TRX,RXH
FORMAT(F6.2, 2X, 2F10.4, 1X, 2(F12.4), 3x, 2F10.4)

END DO

RETURN
END

E.9
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PROGRAM CCSM2D_OP

SINCE THIS IS A RESEARCH CODE, IT IS WRITTEN USING SCME ENHANCED
FORTRAN FEATURES (VAX-VMS FCRTRAN VERSICN 4.1) WHICH ARE NCT PART
OF THE CURRENT ANSI STANDARD FORTRAN-77 LIBRARY.

PROGRAMMED TO USE THE TELIS COVARIANCE FUNCTION FOR LN(T) PROCESS.
URNIT = INITIALIZZ RANDCM NUMBER GENERATOR

URNV2 = GENERATE MEAN-ZERO, VARIANCE 1/2 UNIFORM RANDCH NUMSERS
FFT = ONE-DIMENSIONAL FAST FQURIER TRANSFORM RCUTINE

BARVAR = CALCULATE MEAN AND VARIANCE OF AN ARRAY

PARAMETER (P1=3.141592654, MX1=54,MX2=128, LF=30,14=31)
CHARACTER FILE*4Q,SEED™12

COMPLEX DZFP, DZHP, CARG

COMPLEX*16 TEMPF(2*HX2), TEMPH(2*MX2), DARG

COMPLEX*16 DZF(2"MX1,2*MX2), DZH(2*MX1,2*MX2)

REAL F(MXT,MX2), H{MXT MX2)

COMMCN /STUFF/ M1,M2,GRAD,DELK,3SCD, SGRC,VLNT, VHDS

WRITE(*,*)'ENTER THE LNCT) VARIANCE!
READ (*,*) VLNT

WRITE(*,*)*ENTER THE MAXIMUM FRECUENCY'
READ (*,*) FMAX

WRITE(*,*}VENTER NHAR-X AND NHAR-Y!
READ (*,*) M1, M2

WRITE(*,*)'ENTER RANDCM NBR GEN SEZED°
READ (*,*) ISEEh

REQUIRED FMAX=10 FOR Ln(T) PROCESS (CAPTURES 99% OF TELIS SPECTRUM)
BUT FMAX=44 YIELDS 10 POINTS/CLEN WHEN CLEN= 1

AND FMAX=44 YI:LDS 7 POINTS/CLEN WHEN CLEN=

OUMMY = URNIT(ISEZ ! OINITIALIZE RANUC% NUMBZR GEZNERATCR

S$QRT2 = SQRT(Z.U) I NAMED CONSTANT

pOV2 = PI/2.0 } NAMED CONSTANT

GRAD = 1,0 | MEAN HYDRAULIC GRADIENT

CLEN = 1.0 ! CORRELATION LENGTH

FMAX = &4, 1 MAXIMUM FREQUENCY

BELK = FMAX/MIN(MI, M2} | FREQUENCY s=Ac:vG

DELX = 2.0*PI/FMAX ! SPACE DISCRETIZATICN

PPCL = CLEN/DELX I N3R PDINT;/CﬁQQ LENGTH

BSQD = 1.0/(CLEN*CLEN) I NEESDED FOR SPECTRAL DENSITY FUNCTION
CNST = 2,0*VLNT/(CLENTPI*PI) ! CONSTANT TERM IN SPSCTRAL DENSITY FCN
SQRC = SURT(CNST) ! NEEDED [N SQDF FCRMULA

VHDS = VINT*GRAD™*2/(2*BS3D) | THECREITICAL HEAD VARIANCES

REFLECT INPUT DATA AND INTERNAL PARAMETERS TO SCREEN AND LIST FILEZ
= ALOGTO(FLOAT({ISEED)) + 1

WRITE{SEED,2) ISEED

FORMAT( I <NC>)

FILE = #T_' // SEED(1:NC) // *.CSM_LST!

DPEN(UNIT=1,NAME=FILE,STATUSS'NEW!')

WRITE(1,5) ISEED,GRAD,CLEN,DELX,PPTL, VLNT, FMAX,DELK,M1,M2

WRITE(&,5) ISEZD,GRAD,CLEN,DELX,PPCL,VLNT, FMAX,DELK, %1 ,M2

FORMAT(/* TELIS.FOR INPUT:'/,

1 /' SEED =*,19 /' GRAD =',F8.1,/' CLEN =1,F8.%,

1 /' DELX =*,F12.5/" NPPC =1,F8.1,

1 /7 VLNT =',F9.2/' FMAX =',F9.2 /' DELK =4 F12.5,

1/ A1 =, L8/ M2 =1,16)

E.10




WRITE(,™)
DO K2=21,M2
CALL LPLST(K2,M2,'BUILDING DZF AND DZH MATICES!)
0O X1=1,M1
CALL DZPCSS(X1,K2,DZFP,D2HP)
LOAD QUADRANT I

DZF(K1,K2)
DZH(K1,K2)

o

DCMPLX( OBLE(DZFPY, 0.D0 )
DCMPLX( DBLE(DZHP), 0.02Q )

LOAD QUADRANT 11

K1PM1 = K1+M1

KINEG =-M1+K1-1

CALL D2ZPCSS(KINEG,K2,DZFP,DZHP)
DZF(K1PM1,K2) = DCMPLX( DSBLE(DZFP), 0.D0 )
DZH(X1PM1,K2) = DCMPLX( DBLE(DZHP), 0.00 1}

LOAD QUADRANTS [I1 AND 1V
DZF( K1, K2+M2) = DCMPLX{ 0.DG, 0.00 )
D2ZH(KIPMT,K2+M2) = DCMPLX( 0.00Q, 0.D0 )
END DO
END DO

WRITE(™,*)
FIRST DO THE ROW TRANSFORMS ...
DO K2=1,M2

CALL LPLST(KZ,2*M2, 'DOING THE ROW FFT TRANSFORMS')

CALL DFFT(DZF(1,K2),2"M1,-1)
CALL DFFT(DZH(1,K2),2*M1,-1)
END DO

WRITE(*,*)

NOW DO THE COLUMN TRANSFORMS ...

DO K1=1,M1
CALL LPLST(K1,M1,'DOING THE COL FFT TRANSFOR
DO K2=1,2*M2

TEMPF(K2) = DZF(K1,K2)
TEMPH(KZ) = DZH(K1,K2)
END DO

CALL DFFT(TEMPF,2*M2,-1)
CALL DFFT(TEMPH,2*M2,-1)
DO K2=1,2*M2
DZF(K1,X2) = TEMPF(K2)
DZH(K1,K2) = TEMPH(KZ)
END DO
END DO

WRITE(*,*)
DO K2=1,M2

CALL LPLST(KZ,M2,'TAKING 2 TIMES THE REAL ET

BO K1=1,M1

CARG = DCMPLX( 0.0, -POV2*{FLOAT(K1)/M1+FLOAT(K2)/M2) )

DARG = DBLE(CARG)
DZF(X1,K2) = DZF(K1,K2)*2.D0*COEXP(DARG)
DZH{K1,K2) = DZR(X1,K2)*2.DO*CDEXP(DARG)

F(K1,K2) = REAL( DZF(X1,K2) )
H(X1,K2) = REAL DZH(K1,K2) 2
EXD DO
END DO

MS1}
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NOW WRITE THE FIELDS TO QUTPUT FILES AND CALCULATE STATS
FILE = FILE(1:NC+2) // '.LNT_1*

OFEN(UNIT=LF NAME=FILE, STATUS= 'NEW' , FORM="UNFCRMATTED!)
FILE = FILE(1:NC+2) // '.PHD_1! .
CPEN(UNIT=LH NAME=FILE,STATUS='NEW! , FORM="UNFORMATTED')
WRITECLF) ((F(K1,K2),K1=1,M1),K2=1,M2)

WRITE(LH) ((H(KT,K2),K1=1,41),K2=1, M2}

CALL STATS{LF,LH,F, H, M1, M2)

CLOSE(UNIT=LF)
CLOSE(UNIT=LH)

FILE = FILEC1:NC+2) // f.LNT_2!

OPEN(UNIT=LF NAME=FILE,STATUS='NEW! , FORM=UNFCRMATTED )
FILE = FILECI:NC+2) // '.PHD_2
OPENCUNIT=LH, NAME=FILE, STATUS=*NEW' , FORM= 'UNFCRMATTED ')
WRITE(",*

0O K2=1,M2

CALL LPLST(K2,M2,'2ND FIELD VIA IMAGINARY PART')

DO X1=1,M1
F(K1,K2)
H(K1,K2)

END DO

END DO.
WRITE(LF) ((F(X1,X2),K1=1,M1),K2=1,42)
WRITECLH) ((H(K1,K2),K1=1,M1),K2=1,M2)
CALL STATS(LF,LH,F H,M1,M2)

DIMAG{ DZF(K1,K2) )
DIMAG( DZH(K1,X2) )

CALL EXIT
END

E.12




c---

c

10

c---

c

10

SUBROUTINE DZPCSS(K1,K2,DZFP,DZHP)

werswrrEaaa A mdmeeecer e eararE s rtE ATt A e A A s m s et e E A A AT ... .. amrer e

GENERATE THE 2D DZF AND DZH PRCCISSES

COMPLEX DZFP,D24YP,TFCN
COMMON  /STUFF/ M1,M2,GRAD,DELK,3SQD, SQRE, VINT,VHOS

CMGAT = KI1*DELK

OMISQ = OMGA1 * OMGA1

OMGAZ = K2*DELK

OM25Q = OMGAZ*CMGA2

COMSUM = OM1SQ + CM2sa

CMATH = CMSUM**(0.25)

SGCF = SQRC * OMATH/(BSQD+CMSUM) * DELXK
UA = URNVZC()

UB = URNVZ()

DZFP = CHPLX( SQDF*UA, SQDF*UB )

TFCN = CMPLX( 0.0, -GRAD*OMGAT/CHMSUM )
DZHP = TFCN*DZFP

RETURN

END

SUBROUTINE STATS(LF,LH,F,H,N1,N2)

CALCULATE STATS OF QUTPUT FIELDS

REAL F(*), H(™)
COMMON  /STUFF/ M1,M2,GRAD,DELK,2SQD,SQRC,VLNT,VHDS

REWIND LF
READCLF) (F(I),I=1,N1*N2)
CALL BARVAR(F,N1*NZ,FBAR,FVAR)

REWIND LH
READ(LH)Y (H(I},I=1,N1*N2)
CALL BARVAR(H,N1*N2,6HBAR, HVAR}

WRITE(S,10) FBAR,FVAR,VLNT,HBAR, HVAR, VHDS
WRITE(1,10) FBAR,FVAR,VLNT,HBAR, HVAR, VHDS

FORMAT(/* QUTPUT STATISTICS:*,

1 /7' FBAR =¢,F10.4/' FVAR =',F8,2,/' VLNT =',£8.2,
1 //* HBAR =',F10.4/' HVAR =' FB.2,/' VHDS =',58.2)

RETURN
END

SUBROUTINE LPLST(K,KMAX,MSG)

...................................................... “eseec e

"LOOP-LIST¥  REPCRT DO-LOOP CUMPUTATION PROGR!

[11]
n
o)

CHARACTER MSG*(*}

ICHK = MAX(KMAX/20,1)

IF(MCO (X, ICHK) .EQ.0) THEN
IPCT = 100 * FLOAT(K)/FLOAT(KMAX)
WRITE(&,10) MSG,IPCT
FORMATCTHS A, Y ... (',13,' %) ... %)

END IF

RETURN
END
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10

20

PROGRAM RESIDUALS

CALCULATE RESIDUALS AND GENERATE RESIDUAL MAP

PARAMETER (MXX=512*1024)

REAL TCMXX), HOMXX) , E{MXX)
CHARACTER*40 TFILE,PFILE,OFILE
CCMMON FPROMPT/ NX,NY

CALL SPRMPT{'ENTZR INPUT .TRN FILE >
CALL SPRMPT{'ENTER [INPUT .PHI FILE > !,
CALL [PRMPT('ENTEZR NODES-X, NODES-Y > ¥, N
CALL RPRMPT{'SNTER THE DELTA-X VALU >
WRITE(*,*)!1(1) - Standard residual calecutation’
WRITE(*,*)!(2) - Scale resicdual by conductivity!
READ (™,*) ISCAL

ISCAL = 1

OPENCUNIT=1, NAME=TFILE,STATUS='OLD',FORM='UNFOR
CPEN(UNIT=2, NAME=PFILE,STATUS='OLD',FCRM='UNFOR

READCTY (TCI),I=1,NX*NY)
READ(2) (HCI),I1=1,NX*NY)

CALL BARVAR(T,NX*NY,TBAR, TVAR)
CALL BARVARCH,NX*NY,HSAR,HVAR)

WRITE(*,10) TEAR,TVAR,HBAR, HVAR

FORMAT(/' THE TRN MEAN =',1PE12.5,
/' TRN VARIANCE =', E12.5,
/7' THE PHI MEAN =', E32.5,
/1 PHI VARIANCE =', E12.5/)

ALL CHKMAS(T,H,E,NX,NY,DELX, ISCAL)
WRITEC99) (ECI),I=1,NX*NY)
CALL BARVAR(E,NX*NY,SAR,VAR)

SME = BAR™NX*NY

WRITE(*,20) SME,BAR,VAR

FORMAT{(/' SUM RESIDUAL =7,1PS12.5,
/' THE ERR MZAN =', E12.5,
/' ERR VARIANCE =, E£12.5)

STOP YERROR MAP IMN FCROS9.DAT!
END

HAT
MATTZD!

TED!
12
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SUSRCUTINE CHKMAS{T,H,E,NX,NY,DELX, ISCAL)

...............................................................................

MAS BAL CHECK ALGORITHM

REAL  TUNX NYJ HCHX,NY), E(NX,NY), PT(-1:1),PHC-1:1)

STATEMENT FUNCTION FOR HARMONIC MEAN T
HARMT(TO,T1) = 2.0/¢1./T0 « 1./T1

DO J=2,NY-1
CALL LPLST(J,NY,'MASS BALANCE CHEZK')
0C I=2,8NX-1
SUMM = 0.0
DO lAXs=1,2
FILL THE ARRAYS FOR THIS DIRECTION
DO ICON = -1,+1
CALL INCRMT(I,J,IAXS,ICON,II,Jdd)
PT(ICON) = T(IL,d)
PHCICON)Y = H(II,Jd)
END 0O
NOW CALCULATE THE FLUXES
DO ICON = -1,+1,2

DELH = ( PHCICON) - PH{G) ) / DELX
HARM = HARMT{ PT(ICCN),PT(0) )
SUMM = SUMM + HARM*DELH
END DO
END DO

SCALING IS ACTUALLY 100%* [SUMM*{Tmean/T(i,j)]1/(Tmean*Grad}
WHICH IS PERCENT OF MEAN FLOW (Grad=1)
IFCISCAL.EQ.2) SUMM = 100.*SUMM/T{I,d)
E{I,J) = SUMM
END DO
END DO

RETURN
END

SUBROUTINE INCRMT(I,J,1AXS,IADD,I1,4J)

...............................................................................

INCREMENT INDEX ALONG [AXS BY AMOUNT [ADD

Ir=1
Jd = J
IF{IAXS.EQ.7) II
IF(IAXS.EQ.2) JJ

11 + lADD
Jd + 1ADD

RETURN
END




c

PROGRAM MAK_FBC
C¢. ....................................... 4 assrsamacananes s s A seemmananesana

MAKE FOM MODEL BOUNDARY CONDITIONS AMD CALCULATE BCUNDARY FLUXES

PARAMETER (MXX=512*1024)

REAL TLMXXS, HIMXX) , B(MXX)
CHARACTER™40 RECZ(34),TFILE,PFILE,QFILE
CCMMON FINCATA/ REC

CCMMCN /PRCMPT/ NX NY,GRAD,DELX

CALL SPRMPT('ENTER INPUT .TRN FILE
CALL SPRMPT('ENTER INPUT .PHIL FILS
CALL IPRMPT('ENTER NODES-X, NCDES-Y
CALL RPRMPT('ENTER GRAD AND DELX
CALL SPRMPT('ENTER CUTPUT FILENAME

', TFILE,NC,1,IER)
¢, PFILE,NC,T, [ER)

l'l

Tt

x
',NX,Z,V,O,!:R)
', 0R

l‘l

V ¥ V VvV

CPEN(UNIT=1, NAME=TFILE, STATUS=/CLD',FORM='UNFORMATTED ')
OPEN(UNIT=2, NAME=PFILE,STATUS='QLD',FCRM=*UNFQRMATTED")
OPEN(UNIT=30, NAME=CFILE,STATUS=!NEW! ,CARRIAGSCONTRGL=TLIST )

CALL READU(1,T,NX,NY)
CALL READUC2,H,NX,NY)

CALL BND_SUB(T,H,B8,NX,NY)

COMT  WRITE(*,20)
20

FORMAT(/' TRN IN FORO33.DAT, HEACS IN FORC4S.DAT!,
1 /' BOTH DIMENSIONED AT NX-Z BY NY-2%)

END
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SUBROUTINE 8ND_SUS(T,H,B,NX,NY)

c ...........................................................................
c CALCULATE AND WRITE QUT BOUNDARY CONCITICNS
REAL TCNX,ONY ), HONX, NY ), BONX,NY), LFTFLX
DATA . IFACE,X,IVM /0,1,1/
COMMON JPROMPT/ MX,MY,GRAD,DELX
c NOW CALCULATE AND WRITE OUT THE SOUNDARY CONOITIONS
Cre*x WRITE{5G, ™) BCUNDARY FLUXES?
Crxx NEFLX = 2*(NX-2) + 2*(NY-4)
Cx > WRITE(S0,5) NBFLX
5 FORMAT(SIS,1PE12.3)
6 FORMAT(4IS,1PE12.3)
NBFLX = 2*(NY-2-2)
COMT WRITE(SQ,7) NBFLX
7 FORMAT(16,2X,'; numcer of prescribed fluxes')
8 FORMAT(315/1PE12.5)}
c LOWER BOUNDARY
J =2

DO 10 1=2,NX-1

BFLX = FLUX(T,H,NX,NY,I,J,X)

B(I,d) = BFLX

BOTFLX = BOTFLX + BELX
C***10  WRITE(S53,5) I-1,d-1,K,IFACE,IVM,8FLX
10 CONTINUE

c UPPER BCUNDARY
J = NY-1
DC 20 [=2,NX-1 =
BFLX = FLUX(T,H,NX,NY,1,J,K)
B(1,J) = BFL
TOPFLX = TOPELX + BFLX
C***20  WRITE(S0,5) I-1,J-1,K,1FACE,IVM,BFLX
20 CONTINUE

¢ LEFT BOUNDARY
1=2
bo 30 J=3,NY-2
BFLX = FLUXCT,H,NX,NY,I,d,K)
B(l,J) = 8FiX
LETFLX = LETFLX +
C**30  WRITE(50,5) I-
CONT WRITE(50,8) I~
30 CONTINUE

BFLX
1,4-1,K,IFACE, 1VM,BFLX
1,d-1,K,BFLX
o RIGHT BOUNDARY

I = NX-1

DO 48 J=3,NY-2

BFLX = FLUXIT, H, NX,NY,I,4,K)

B(1,J) = 8FLX

RHTFLX = RHTFLX + 3FLX
cr=r 4 WRITE(SQ,3) [-1,3-1,K,1FACE, IVM,BFLX
COMT WRITE{S0,8) I-1,4-1,K,BFLX
40 CONTINUE

E.l
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18
19

C NQT
C usd

100

11

c*ii

200

bk i b

THIS PARAGRAPH LISTS OUT THE BOUNDARY FLUX IMBALANCE
SUMFLX = TOPFLX + BOTFLX + RHTFLX + LFTFLX
WRITE(*,45) TOPFLX,30TFLX,RHTFLX,LFTFLX, SUMFLX

FORMAT(/* TOPFLX = ',1PE12.5,
/' BOTFLX = !, E12.5,
/' RHTELX = ', E12.5,
/Y LETELX = 1, E12.5,
/' SUMFLX = ', E12.5/)

OPEN(UNIT=%9,NAME=TEDG_FLX . MAP*,STATUS='NEW' , FORM='UNFORMATTED ')

WRITE({99) ((B(I,Jd),I=2,NX-1),J=2,NY-1)

CALCULATE AND WRITE QUT THE DIRICHLET BOUNDARY CONDITIONS

WRITE{SD,18) 2*{NY-2)

WRITE(50,19) 2*NX + 2*(NY-2)

FORMAT(I6)

FCRMAT(16,2X,'; number of prescribed heads?)

HMAX
HMIN

NX*DELX*GRAD / 2.0
= HMAX

non

WRITE(™,*)' TOP DIRICHLET BCUNDARY CONDITIONS'
DO 100 I=1,NX
WRITE(S0,8) I,NY,1,H(I,NY)

WRITE{*,*)* BOT DIRICHLET BCUNBARY CONDITIONS®
Do 101 I=1,NX
WRITE(5G,8) I, 1, 1, H(I, 1)

WRITE(™,*3' RGHT BOUNDARY CONDITIONS ...!
DO 200 J=2,NY-1
BCRHT = H(NX,))
WRITE(50,50) NX-2,J-1,1, 2, 1,3CRHT, 0.0
WRITE(SD,51) NX,J,1,BCRRT
CONTINUE

WRITE(*,*)! LEFT BOUNDARY CONDITIONS ...!
Do 360 J=2,NY-1
BCLFT = H{1,d)

WRITE(S0,50) 1,d-1,1, 1, 1,BCLFT, 0.0
WRITE(50,51) 1,J,1,BCLFT
CONTINUE

FORMAT(314,2X,2(2X, 12),4X,F6.2,F4.0)
FORMAT(315/1PE12.5)

WRITE OUT THE TRANSMISSIVITY FILZ

WRITE(33) ((T(I,4),1=2,NX-1),J=2,NY-1)
WRITE(43) ((H(I,d),1=2,NX-T},4=2,NY-1)
RETURN
END

SUBRGUTINE INCRMT(I,J,K, [AXS, IADD,11,JJ,KQ)
INCREMENT INDEX ALONG IAXS BY AMCUNT IADD
1

JJ
KX

unau
[

”~

IF(IAXS.EQ.T) I
IF(IAXS.EQ.2) JJ
IF(IAXS.EQ.3) KK

11 + IADD
Jd + [ADD
KX + lADD

RETURN
END
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FUNCTION FLUX(T,P NX,NY,1,J,K)

...........................................................................

CALCULATE SOUNDARY FLUX

REAL TENX,NY), PCNX,NY)
COMMON /PROMPT/ MX,MY,GRAD,DELX

STATEMENT FUNCTION FOR HARMONIC MEAN T
HARMT(TG,T1) = 2.0/(1.0/TC + 1.0/T%)
SPECIAL CORNER FLAG

ICCRN = 0

LOWER BCUNDARY
IF(J.2Q. 2 .) THEN

I[CONT = +1

[CONZ2 = -1

IAXS1 = 2

IAxs2 = 2

IF{1.EQ. 2) lAXST1 =1}

IF(I.EQ.NX-1) ICCRN = 1 ! LOWER RIGHT CORNER
END IF

UPPER BOUNDARY
1F{J.EQ.NY-1) THEN

[CONT = 1

IconNeg = 1

Iaxst = 2

IAXS2 = 2

IF(T.EQ.NX-1) IAXST1 = 1

IF(I.EQ.2) ICORN = 2 ! UPPER LEFT CCRNER
END IF

LEFT AND RIGHT BGUNDARIES
IF(J.GT.2 .AND. J.LT.NY-1) THEN
IAxst = 1
IAXs2 = 1
IF(1.8Q.2) THEN
ICoNT -1
ICON2 = -1
LSE IF{I.EQ.NX-1) THEN
ICCNY 1
1CoN2 1
END IF
END IF

W~ nn

T0 = T¢1,4)
PO = P(I, D)
= 0.0

F3
[
=

DO IAXS={AXS1,1AXS2
DG ICON=ICON1T,IC0N2,2
CALL INCRMT(I,d,K,]AXS,ICON,II,d4,KK)
T = T(11,40
Pt = PCIL,dd)
HMT = HARMT(TOQ,T1)
DLP =(P1-PO)/DELX
FLUX = FLUX + HMT*DLP
END DC™
END DO

ADD FLUXES FROM THESE NASTY CORNERS SEPARATELY ...
IFCICORN.EQ.1) CALL INCRMT(I,J,K,1, 1,11,44,KK)
TF(ICORN.EG.2) CALL INCRMT(I,d,K,1,-1,11,0d,%K)
IFCICORN.GT.0) THEN

T1 = TCIL, 4
P1 = P(II,dd)

HMT = HARMT(TO,T1)

DLP =(P1-P0)/DELX

FLUX = FLUX + HMT*DLP
END IF

RETURN
END
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Covevomoanan D R A temearamireraaaas

CALCULATED MASS BALANCE ERRORS FOR COGENERATED FIELDS (IN 2D)
USING DETERMINISTIC SCLUTION FOR REFERENCE

10

20

[ S Y

PARAMETER (MXX=512*1024)

CHARACTZR*40  TFILE,CFILE,DFILE,EFILE

REAL TRN(MXX), COG(MXX ), DET (MXX) ,PCT{MXX)
CCMMON NX, NY,DELX

CALL SPRMPT('ENTER THE TRN FILENAME > vLLTFILE RC Y, IERY
CALL SPRMPT{'ENTER THE COG FILENAME > ' 'L, CFILE NG, O, IER)
CALL SPRMPT('ENTER THE JET FILENAME > v 1,DFILE,NC, 0, [ER)
CALL SPRMPT(ENTER THE PCT FILENAME > 'Ot EFILELNC,O,IER)
CALL IPRMPT('ENTER NMBR NCDSS NX,NY > ', HX,2,N,0,IER)

CALL RPRMPT('ENTER THE DELTAX VALUE > *,DELX,1,N,0,1ER)

CPEN(UNIT=1, NAMESTFILE, STATUS='0LD ', FCRM="UNFQRMATTED!
CALL READU(1, TRN NX,NY)
CLOSE(UNIT=1)

CPEN(UNIT=1, NAME=CFILE,STATUS='0LD, FORM='UNFCRMATTED *)
CALL READU(1,C0G,NX,NY)
CLOSECUNIT=1)

OPEN(UNIT=1, NAME=DFILE,STATUS='0LD ', FORM='UNFORMATTED ')
CALL READU(1,DET,NX,NY)
CLOSE(UNIT=1)

OPEN(UNIT=9 NAME=EFILE,STATUS='NEW'  FORM='"UNFCRMATTED ")

DO 10 I=1,NX=NY

PCT(1) = 0.0

CALL MASCHK(TRN,CCG,DET,PCT,NX,NY)
CALL WRITU(P,PCT,NX,NY)

CALL STATS(PCT,NX*NY,NEX,BAR,SDV,PMN,PMX)
WRITE(*,20) NEX,BAR,SDV,PMN,PMX
FORMAT(/! NBR. ZEROS =',17,

/' MEAN VALUE =7, F12.4,

/% SDEV VALUE =', F12.4,

/t MIN, VALUE =',F12.4,

/' MAX. VALUE =',F12.4)
END
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INCREMENT INDEX [ OR J ALONG [AXS BY AMCUNT IACD; RETURN IN II AND JJ

c

SUBROUTINE MASCHK(TRM,COG,DET,PCT,NX,NY)

CALCULATE MASS BALANCE ERRCRS IN PERCENT

REAL

TRNCNX, NY), COGINX, NY),DETCNX, NY), PTT (X, NY)
COMMON  MX,MY,3ELX

STATEMENT FUNCTION FOR HARMONIC MEAN T
HARMT(TG,T1) = 2.0/¢1.0/T0 + $1.0/T1)

DO J=2,NY-1
CALL PROGSS{'PCT MASS BAL ERR CALCULATIONS',J,NY)
DO I=2,NX-1

TO = TRNLI, )
€0 = COG(I, )
D0 = DETCI,J)
DPOS = 0.0
DNEG = 0.0
suMa = 0.0
DO 1AXS=1,2
DO ICON=-1,1,2
CALL INCRMT(I,J,IAXS,ICON,IT,4d)

[

[

T1 = TRNCIL, )
€1 = COG(I{, )
D1 = DET(IIL,Jd)

HMT = HARMT(TQ,T1)
CFLX = -HMT * (C1-CO)/DELX
DFLX = -HMT * (D1-DO)/DELX
IF(DFLX.G7.0) DPOS = DPQS + DFLX
IF(DFLX.LT.0) DNEG = DNEG - DFLX
SUMQ = SUMQ + CFLX
END DO
END DO
GFLX = SQRT{DPOS*DNEG)

CHECX DETERMINISTIC STUFF JUST TQ BE SURE ...

DIFF = DPOS - DNEG
DPCT = 100. * DIFF/DPCS
ONCT = 100. * DIFF/DNEG

[F(DPCT.GT.1 .OR. DNCT.GT.1) THEN
WRITE(99,199) I,J,DPCT,ONCT

FORMAT( ' =**=* DET MASS ERR I!1 (1,4) =,2i5,

5X, 'POS PCT, NEG PCT =*,2F12.4)
END IF

PERR = 100. * SUMQ/GFLX
PET(1,J) = PERR

END DQ
EXD DO

RETURN

END

SUBROUTINE INCRMT{I,J,1AXS,[ADD,[I,Jd)

13

1 -

Jd

IF{IAXS.EQ.1) II = I1 + IADD
IF(JAXS.EQ.2) JJ = JJ + [ADD
RETURN

END
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C---

c

PROGRAM XY_XCOR

......................... I T T T T ey P

CRCSS-CCRRELATION IN X OR Y DIRECTICN BETWEEN TWQ RANODCM FIELDS

PARAMETER (MXX=512%1024 ,MXY=1024 ,MXL=512)

REAL A{MXX), B(MXX), R(O:MXL),S{0:MXL)

REAL TA{MXY ), TB(HXY)

REAL SMF(Q:MXL), SMH(O:MXL), SMX¢OMXL), CPLS (D1 MXL)
REAL RFCOMXLY, RH(O:MXL), RXCO:MXL)

CHARACTER*®4Q0  FIL1,FIL2,0FIL

CCMMCN /PROMPT/ NX,NY,DX, ML

CALL SPRMPT{'ENTER INPUT FILENAME 1 > ',' ', FiL1,6NC,1,IER)
CALL SPRMPT('ENTER INPUT FILENAME 2 > ', 1 FIL2 .NC,0,[ER)
CALL IPRMPT('ENTER NOOES-X, NODES-Y > ',NX,Z,N,G,IER)

CALL RPRMPY('ENTER THE DELTA-X VALY > *,BX,1,N,7,IER

CALL IPRMPT('ENTER MAXIMUM NBR LAGS > ' ML,1,N,0Q,IER)

CALL SPRMPT{'ENTER OUTPUT FILENAME > ' ! ' QFIL,NC,3,1ER)

WRITE(™,™)!(1} - X DIRECTION CRGSS-CDVARIANCE‘
WRITE(™,*)>*(2) - Y DIRECTICN CROSS-COVARIANGCE?
WRITZ(*,*)'(3) - DO BOTH DIRECTIONS SE AJENTIALLY!
READ (*,*) IDIR

OPEN(UNIT=1,NAME=FIL1,STATUS='QLD', FORM=tUNFORMATTED )
CALL READU(1, A NX,NY)
CLOSE(UNIT=1)

OPEN(UNIT=1,NAME=F[L2,STATUS='0LD ", FORM='UNFORMATTED )
CALL R”ADU(T B, NX,NY)
CLOSE(UNIT= 1)

OPEN(UNIT=30,NAME=OFIL ,STATUS="NEW' ,CARRIAGECONTROL=LISTY)

IFCIDIR.EQ.1 .OR. IDIR.EG.3) THEN

DO J=1,NY
CALL LPLST(J,NY,'CROSS-COVARIANGE, X-DIRECTION')
TADR = (J-1)*XX + 1
CALL COVFHX(A(IADR),B(IADR),SMF, SMH, SMX,RE, RH,RX,

1 CPLS, NX, ML)

END DO

CALL RRRFHX(SMF,SMH,SMX,RF,RH,RX,CPLE, ML)

CALL PNTCOV(RF,RH,RX)

END IF
{F(IDIR.5Q.2 .CR, ID{R.EQ.3) THEN
DG I=1,NX
CALL LPLST(I,NX,'CHOSS-COVARIANCE, Y-SIRECTION')
DO J=1,NY
1A0R = CJ-1)*NX + 1
TACJ) = ACIADR)
TB(J) = B(IAGR)
END DO

CALL COVFHX(TA,TB,SMF, SMH, SMX, RF,RH,RX,CPLS, XY ML)
END DO
CALL RRRFHX(SMF,SMH,SMX,RF,RH,RX,CPLS, ML)
CALL PNTCOY(RF,RH,RX)
END IF

END -




OOOO00a00000O000

CALCULATE ONE DIMENSIONAL AUTO AND CROSS COVARIANCES

IF AND ZH = THE TWO 1D INPUT FIELDS
SMF ,SMH,SMX = SUMMATION ARRAYS FCR EXPECTED VALUES -
CPL  ARRAY = TO ACCUMULATE THE NUMBER OF COUPLES

NPTS = LENGTH OF THE ZF AND ZH ARRAYS
MLAG = MAXIMUM LAG
RF, RH, RX = AUTO AND CROSS COVARIANCE ARRAYS

CALL COVFHX REPEATEDLY AFTER ZACH SIMULATION, THEN CALL RRRFHX TO
RETURN THE COVARIANCES CALCULATED OVER THE ENSEMSLE OF RANDCM FIELDS

.................... R I g

NOTE - THIS ASSUMES BOTH FIELDS ARE MEAN 2ERQ FIELDS <<«

REAL ZF(*), ZHC*) ,RE(Q:%) ,RH(O: "), RX(Q:*)

REAL SME(Q:*), SMH(O:*),SMX(0:*},CPL(0:*)
DO J=0Q,MLAG

CPLS = NPTS-J

SUMF = 0.0

SUMH = 0.0

SUMX = 0.0

DO 1=1,CPLS

SUMF = SUMF + ZF(I)*ZF({I+J)
SUMH = SUMH + ZH(I)*ZH(I+J)
SUMX = SUMX + ZF(L)*ZH(I+J)
END DO
SMF{J} = SMF(J} + SUMF
SMH(J) = SMH(J) + SUMH
SMX{Jd) = SMX(J) + SUMX
CPLLJ) = CPL{J) + CPLS
END DO
RETURN

ENTRY RRRFHX(SMF,SMH,SMX,RF, RH,RX,CPL,MLAG)
FINAL COVARIANCE CALULATIONS (CVER THE ENSEMBLE)

DO J=0,MLAG
RF(J) = SMF(J) / CPLL:

RH(J) = SMH(J) / CPLUJ)
RX(JY = sMX(d) /7 CPL(D)
END DQ
RETURN
END
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SUBROUTIHE PNTCOV(RF,RH,RX)
c COMPUTE THEQRETICAL COVARIANCES AND PRINT ALONG WITH DISCRETE ONES
REAL RF(D:*),RE(0:%),RX(0: ™)

COMMON /PRCMPT/ NX NY,DX, ML

¢ WRITE(50,30)
30 FORMAT(/' LAG THEQRY-F SAMPLE-F THEQRY-H ',

1 ' SAMPLE-H THECRY-XC SAMPLE-XC",

1 R A LI PP PP P LIRS PPPP P PR ‘,

1 I  cecccececus wasssassss semccwoan H)

CMAX = DX*(ML-1) t MAX NSR OF CORRELATION LENGTHS

MX = 3% ! MX+1 OUTPUT PGINTS

Al = ALCGT0(CMAX/CX) ! QTHER STUFF FOR COVARIANCE QUTPUT

A2 = ALOGIO(FLCAT(MX))

PWR = Al/AZ

WRITE(50,49)

49 FORMAT(/"' X AUTOC(1) AUTOC2) CRCSS(1,2)¢,

1 A e I LT ')

DO L=0,MX
M = FLCAT(L)**PWR
X =M * DX

WRITE(50,50) X,RF(M), RH{M), -RX(M)

50 FORMAT(4F12.4)
c ARG = X*X / (2.0%AsCD)
C EMA = EXP{-ARG)
C TRF = YLNT*(1.-2.0%ARG)*EMA ! THEORETICAL F COVARIANCE
c TRH = VLNT*GRSQ"ASCD*EMA ! THEORETICAL H COVARIANCE
c TRX = VLNT*GRAD*X*EMA I THEQRETICAL X-COVARIANCE
c RXM = -RX(M) ! SIGN CHANGE CON CRCSS-COVARIANCE
c WRITE(50,40) X, TRF,RF(M), TRH,RH{M), TRX,RXM
(WA ] FORMAT(Fé.2, 2X, 2F10.4, 1X, 2(F12.4), 3X, 2F10.4)

END DO

RETURN.

END
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PROGRAM RFF_PLOT

PLOT THEQRETICAL AND EXPERIMENTAL TELIS COVARIANCE FUNCTICN
LINK RFF_PLOT,OLD-IMSLD/LIB

IMPLICIT DOUBLE PRECISION (A-4,0-2)

OIMENSION - GMA(O:1),B8MS¢0: 1)

REAL*4 XE(99)Y,CE(F9), XT(99),CT{99), XINC,XMAX
CHARACTER REC*80,FILE*40, COMT*40

EXTERNAL F

COMMON  /PASS/ X,CRDER

I0=4 ! QUTPUT CHANNEL FCR ERROR MESSAGES
A = 0.0 I LOWER LIMIT OF INTEGEZRATICN
GMA(QY = 1.772453851D0 I GAMMA OF (+1/2)

GMA(1) = -3,54490770200 GAMMA OF (-1/2}

]
TRTPI = 1.128379147DQ ¢ 2.0/SART{PI)
TCVPI = 0.636615977200Q ' 2.0/P1

WRITE{®,*) 'ENTER VARGRM QUTPUT FILZNAME!
READ (*,1) FILE

FORMAT (A)
CPEN(UNIT=1,NAME=FILE,STATUS='0LO ")

WRITE(*,*)'ENTER DELTA-X'
READ (*,*) DELX

VLNT = 1.0
GRAD = 1.0
ZERC = 0.0

WRITE(™,")'ENTER COMMENTS!
READ (*,1) COMT

NC = NCHR(COMT)
COMT(NC+1:NC+1) = 'S?

READ AWAY VARGRM PRINTER PLOT ETC TG GET TG DATA ...
ALSO CONVERT XE UNITS FROM NODES TG X-SPACING ...
DO WHILE{INDEX(REC,'I LAG').£Q.0)
READ(1,1) REC
END DO
READ(1,*)
Do I=1,99
READ(1,*,END=2) TOSS,XE(I),TOSS,CECI)
XE(I) = DELX=XE{I}
END DO
NPTS = -1
WRITE(*,10) XE(NPTS)
FORMAT(! MAX X =*,F5.1,' ENTER XINC AND XMAX FOR BLCT')
READ (*,*) XINC,XMAX

CALCULATE THE THEORETICAL CURVE OVER NP+1 PQINTS

_ NP =50

DX = XE(NPTS)/FLOAT(NP)
XT¢1y = 0.0
cT(1) = 1.0
DO 1=2,NP
CALL LPLST(I,NP, 'CALCULATING THESRETICAL CURVE!)
X =(1-1)*0X
B0 K=0,1
ORDER & -GFLOAT(K)
GAMMA = GMA(K)
CNST = TRTPI®(X/2.DUI**ORDER/GAMMA
CALL LONGMN(IO,F,A,N,SUM)
BMS(K) = CNST * SUM
IF(K.EG.1) BMS(K) = BMS(X) + TOVP!
ENG 00
R11 = 8MS(1) - TOVPI
RFF = VLNT * ( BMS(0) + X*R11 )

XT(I) = SNGL(X)
CT(I) = SNGL(RFF)
END DO
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C ......................................................... B L Lk T R R

c

DISSPLA PLOT SETUP AND CURVE DRAW PREPARATICH

CALL PSETUP(IDEV,XINC,XMAX,CCMT)
CALL GRACE(C.0)

CALL THKCRV(D.024)

CALL CURVE(XT,CT,NP,0)
CALL GRACE(0.2)

CALL SCLPIC(0.9)

CALL MARKER(15)

CALL CURVE(XE,CE,NPTS,-1)
CALL ENDPL(O)

CALL DONEPL

IF(IDEV.NE.2) GO TO 11
sTOP

END

SUBROUTINE PSETUP(IDEV,XINC,XMAX,CCHMT)
DISSPLA PLOT SET UP
CHARACTER COMT*40

WRITE(™,*)'(1) - VAX STATION!'
WRITE(*,*)'(2) - DISK FILE®
READ(*,* END=99) IDEV
[F(IDEV.EQ.1) CALL UIS
[F(IOEV.EQ.2) CALL COMPRS

OPEN(UNIT=99, NAME='TOSS.MSG',STATUS='NEW!
CALL SETDEV(99,9%)

CALL PAGE(8.5,11.)

CALL NCBRDR

CALL AREA2D(7.0,4.5)

CALL BANGLE(90.)

CALL BSHIFT(5.75,-0.75)

CALL AREAZD(4.5,6.0)

CALL TRIPLX

CALL HEIGHT(.16)

CALL HEADIN(XREF(COMT),100,0.75,3)

CALL HEADIN(' %',100,1.0,3)

CALL HEADIN('2D Ln(T) Covariance Function$!,100,1.,3)
CALL XNAME('Lag3', 100)

CALL YNAME({'Covariance3*, 100)

CALL GRAF(0.0,XINC,XMAX, -0.2,0.2,1.0)
CALL THKFRM(0.015)

CALL FRAME

CALL DOT

CALL RLVEC(O.,0.,XMAX,0.,0)

CALL RESET('DASH')

RETURN

STOP
END

FUNCTION F(T)
MONOTONICALLY DECREASING SIGN-ALTERNATING FUNCTICN

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON  /PASS/ X,ORDER ! FUNCTICN SPECIFIC
F = SIN(X*T) * (1+T*T)**(ORDER-0.500) ! FUNCTICN SPECIFIC
RETURN

END
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100

200

220

250

250

270

271
300
310

SUBROUTINE LONGMN(IQ,F,A,N,SUM)

..........................................................................

PAUL HSIEH'S VERSION OF LONGMAN'S METHCD FOR INTEGRATING A MONOTONICALLY
DECREASING ALTERNATING SERIES FROM X=A TQ X=INFINITY

[0 = OUTPUT CHANNEL FOR ERROR MESSAGES

F = NAME OF SIGN-ALTERNATING FUNCTION

A = LOWER LIMIT OF INTEGRATION

N = NUMBER OF HALF CYCLES INTZGRATED OVER FOR CONVERGENCE

SUM = THE INTEGRAL OF F FROM A TO INFINITY
ERR,EPST = CONVERGENCE CRITERIA FOR LONGMAN SUM OR DIRECT SUM
DCADRE = IMSL ROUTINE FOR CAUTIOUS ADAPTIVE RCMBERG INTEGRATICN

IMPLICIT DOUSLE PRECISION (A-H,2-2)

PARAMETER NMAX=100
EXTERNAL F

DIMENSION D1{NMAX) , B2 (NMAX)

DATA AERR,RERR,EPS1,ZRR /0.D0, 1.D-04, 1.D-04, 1.0-08/
N=20

X1 = A

SUMD = 0.D0

SUML = 0.D0

CALL LIMITS(IO,F,X0,X1,N)

UUO = BCADRE(F,X0,X1,AERR,RERR,EXROR, [ERR}
CALL IERCHK(CIO, IERR)

SUMD = UUO

CALL LIMITSCIO,F,X0,X1,¥)

UU = DCADRE(F,X0,X1,AERR,RERR, SRROR, [ERR)
CALL IERCHK(10, [ERR)

IFCUU.LT.0.00) 6o 7o 110
IF(DABS(UU).LT,DABS(ULO)) GO TO 200

SUMD = SUMD + LU

uuo =

G TO 100 P GO TO 100

WU = uuo*LU

IFCUUL.GE,0.00) 6o TO 270

D1ty = W

SUML = SUMD + D1¢1)/2.D0

SUMD = SUMD + LU

D =
DENCM. = -4.D0

-~ H H

LALL LIMITS(IO,F, X0, X1,N)

Ul = DCADRE(F,XO,X1,AERR,RERR, ERRER, [ERR)
CALL IERCHK(IC,IERR;

SUMD = SUMD + Uu

B2(1) = DABS{LY)

Do 23¢ 1=1,ID

D2(1+1) = D2(13-D1(1)

iDP1 = ID + 1

VV = D2(IDP1)/DENOM

SUML = SUML + VvV

1F(DABS(UU) .LT.ERR) 7 GQ 7O 300
IF(DABS(2.DO*VV).LT.ERR) GO T3 310
IF(N.EQ.NMAX) GO TC 250

DO 250 [=1,1DP1
B1CIy = D2CI)

ID = IDP1

DENCM = DENGM * (-2.D0)

G0 TO 220 1 GO TO 220
SUM = SUMD

WRITECID,261) KMAX

FORMAT(/' #w#r# NMAX CYCLES REACHED IN LONGMN',IS)
RETURN

SUMD = SOMD + LU

DIFF = SUMD - LUQ

IF(DIFF.LE.EPST) GO TO 271
o = SUMD

G0 TO 100 1 GO TO 100
SUM = SUMD

RETURN

SUM = SUMD

RETURN

SUM = SUML

RETURN

END




SUSRCUTINE TERCHK(!O,IERR)
c ................. R e e it T T S U I

c CHECK I1ERR FLAG FRCM IMSL ROUTINE DCADRE

IF(IERR.NE.O .AND. TERR.NE.S3) THEN
WRITE(IO,10) IERR
10 FCRMAT(/' ****= DCADRE FAILED, IERR =',14)
ST0P
END IF

RETURN
END

SUBRCUTINE LIMITS(IO,F,XG,X1,N)

C .......................... At e rs s A s R R R R T .= -
c RETURN LIMITS OF INTERVAL BOUNDING A HALF CYCLE OF ALTERNATING SERIZS
c I0 = QUTPUT CHANNEL FOR ERRCR MESSAGE \
C F = NAME OF SIGN-ALTERNATING FUNCTICN
o X0 = CURRENT ZERC OF FUNCTICN F (INPUT)
c X1 = NEXT ZERO FQR FUNCTICN F (QUTPRUT)
c N = NUMBER QF ZERQS COMPUTED SO FAR
IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER P1=23.14159265400 ! FUNCTION SPECIFIC
EXTERNAL F
COMMON  /PASS/ X,CORDER ! FUNCTION SPECIFIC
N =N+ ! THESE TWO STATEMENTS MUST
X0 = X1 ! REMAIN IN THIS CRDER
X1 = PI*N/X ! FUNCTION SPECIFIC
C CALL NXTZRC(IG,F,X0,DX, X1} ! WHEN THE NEXT ZERD CANNOT
| BE COMPUTED ANALYTICALLY
! DX WILL NEZD TG BE PASSED
RETURN
END
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