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ABSTRACT

Decontamination of polluted aquifers is an important environmental concern. Pumping
from withdrawal wells or french drains to extract dissolved solutes is a possible remedi-
ation technique. Two mathematical models for aquifer decontamination using a single
withdrawal well with radially converging flow and a french drain with one dimensional
flow are developed. In the radial model, the well is taken into account as a mathematical
'sink located at the center of the plume which is assumed to be radially symmetric. The
plume is incorporated into the model as an initial condition capable of representing a
wide range of plume geometries. For the one dimensional model, two simple initial
conditions of a uniform concentration given by a step function and a sloping straight line
are used with a constant dispersion coefficient. Both models assume advection and longi-
tudinal mechanical dispersion as the transport mechanisms. Solutions for the one dimen-
sional model are obtained using the Green’s function approach and LaPlace transform
following the same methodology as Chen and Woodside (1988) used in deriving the solu-
tion for the radial model. The radial solution agrees well with the approximate solution
of Gelhar and Collins (1971). Using the field data of Pickens and Grisak (1981), the
radial model also accurately reproduces the concentration history at the withdrawal well
of the single well injection-withdrawal tracer test. When the initial conditions in the two
models are formulated with large concentration gradients at the plume boundary, adverse
dispersion against the converging groundwater flow causes spreading of solutes beyond
the original plume boundary. If the initial conditions gradually decrease to zero concen-
tration at the plume boundary, solutes do not extend beyond the region of original con-
tamination during the withdrawal process. Graphical relationships are developed for esti-
mating the time required to decrease the concentration to 1% of the initial maximum
concentration. In general, neglecting dispersion underestimates the total cleanup time.
Comparisons between the two models for decontamination efficiency are made using the
criteria of decontaminating in equivalent time or withdrawing water at equivalent rates
from the single pumping well and the drain. The radial and one dimensional models yield
different results over the range of Peclet numbers tested and the use of the correct model
is thus important.
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INTRODUCTION
STATEMENT OF THE PROBLEM

In the past few decades, groundwater pollution problems have become an important envi-
ronmental concern. Approximately fifty percent of the United States drinking water
needs are supplied by groundwater. A number of pollutant sources can create
groundwater contamination problems. These include underground storage tanks, surface
impoundments, landfills, waste piles, and a muititude of sources due to improperly stored
wastes. The U. S. Environmental Protection Agency estimates that of the 3.5 million or
more underground storage tanks in the United States, 10-30% may be leaking (Dowd,
1984). Comprehensive data regarding the overall extent of groundwater pollution is not
available. Estimates range from 1-2% but the true extent may be much higher due to the
complexity of quantifying groundwater pollution on a nationwide scale (Office of Tech.
Assessment, 1984). Even if the percentage of contaminated groundwater is small, the
hazard it poses is significant because much of the contamination occurs in heavily popu-
lated regions where the consumption of groundwater is high.

Much attention has been devoted to understanding and quantifying the behavior of con-
taminants in the subsurface. This effort includes studying the chemical, biological and
physical mechanisms by which pollutants are transformed and transported in
groundwater. Most of the attention to date has been devoted to how these mechanisms
affect a pollutant already in the subsurface and have not considered how a contarninated
aquifer may be rehabilitated. The same physical processes which govern how a contami-
nant is transported in the subsurface away from an pollution source also govern how the
contaminant travels toward a region where it is removed. Present theories of contaminant
transport can thus be modified and applied to quantify the transport of polluted
groundwater to withdrawal systems. :

Mechanical remediation by pumping is one of the numerous methodologies that exist for
rehabilitating contaminated aquifers. Contaminated groundwater can be removed by
pumping from withdrawal welis, french drains, or infiltration galleries. A hypothetical
remediation scheme is depicted in Figure 1 where a single pumping well is constructed to
cleanup a contamination site. The plume shown in Figure 1 is idealized because it is
shown as raddially symmetric and as having a uniform decline in the concentration away
from the maximum where the well is located. Note that groundwater flow would be radial
to the well and the velocity profile which is important for predicting contaminant transport
can be approximated with present theories of well hydraulics. A french drain is a with-
drawal system in which a perforated pipe is placed in an excavated trench and backfilled
with permeable material. The pipe thus acts as a groundwater collector and the water
flowing into the pipe can be removed. This is depicted in Figure 2 with a hypothetical
contaminant plume. Note that flow can generally be assumed to be one dimensional to
the drain except near the ends of the system. An alternative to the french drain is an
infiltration gallery where a trench is dug below the water table and water then flows into
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Figure 1 Generalized plume profile with withdrawal well at maximum concen-
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Figure 2 Decontamination of aquifer poliuted by waste pond in one dimen-
sional flow using french drain



the trench from which it is then pumped. Depending on the depth of the trench and the
stability of the trench walls, it may be backfilled with permeable material or simply left
open. Groundwater flow will again be approximately one dimensional to the infiltration
gallery as in Figure 2 except near the ends of the trench. The usefulness of the french
drain and infiltration gallery is that both are limited 1o shallow groundwater contamina-
tion problems since both withdrawal systems cannot be extended to large depths. In a
natural groundwater flow system, one dimensional flow can also occur to constant head
boundaries such as rivers or lakes. Figure 3 depicts a contaminant plume in this situ-
ation.

WASTE PILE

Figure 3 Transport of polluted groundwater in one dimensional flow to river

PREVIOUS WORK

By neglecting dispersion, Kirkham and Affleck (1977) determined travel times o wells for
solute transport by advection for three cases. These were a withdrawal well in a homoge-
neous aquifer, a withdrawal well with a region of low conductivity near the well. and a
well fed by a river. Gelhar and Collins (1971) presented solutions for solute transport
due to0 cyclic injection and withdrawal at a single well. Their solution was derived using
perturbation methods and does not impose a boundary condition at the well. It is not
formally valid unless the solute front has travelled on the order of fifty times the dispe-
rsivity. Using the method of inner and outer expansions, Eldor and Dagan {1972) also
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developed approximate solutions for dispersion in two dimensional flow. The specific
cases were for diverging radial flow from a recharging well, a recharging well in a uni-
form flow field, and soil leaching due to uniform recharge. Phillips and Gelhar (1978)
studied the transport to a partially penetrating well of a solute released from an upper
aquitard. Through numerical techniques, travel time formula derived by neglecting dis-
persion, and the use of Gelthar and Collins (1971) solution, they studied aquifers in Long
Island, New York with and without lower impervious boundaries where the solute released
from the upper aquitard posed pollution hazards to water supply wells. To study the
transport of a solute toward a withdrawal well due to an input at a finite distance from the
well, Al-Niami and Rushton (1978) assumed a constant dispersion coefficient in develop-
ing two analytical solutions. The solutions are for a step change and an exponential
increase at the boundary and can only be evaluated for certain nondimensional discharge
rates. Guvanesen and Guvanesen (1987) developed approximate solutions for withdraw-
ing tracers from a tracer ring created by an injection well. Using time-moment analysis,
Valocchi (1986) analysed the validity of the local equilibrium assumption for radial dis-
persion problems. He presented a solution in the LaPlace domain for the concentration in
a radial flow field due a uniform initial condition but did not present closed form, real
time domain solutions. Ahfield et al (1988a) developed methodologies for optimizing
aquifer decontamination by pumping using finite element methods for the flow and trans-
port equations and nonlinear optimization. The two formulations were for maximizing
the amount of contaminant removed or for decontaminating the aquifer to specified levels
in a fixed time period at least cost. Ahfield et al (1988b) applied the two optimization
formulations to a field site in Woburn, Massachusetts and discuss the competing factors
of remediation effectiveness and operating cost.

Solutions for injection of solutes cannot be applied to the problem of aquifer decontami-
nation by pumping because in the injection models the concentration of the solute input
into the system is known. The injection is thus modeled as a mathematical source in
which the concentration or the mass flux is specified by a known function. However, in
remediation models, the initial condition is known but the concentration at the outlet is
unknown. Solutions for injection of solutes in radial and one dimensional flow fields are
reviewed below.

Solutions to radial dispersion problems for injection wells that were developed prior to
1985 are reviewed by Chen (1985) and those after 1985 include Chen (1986,1987) and
Hsieh (1986). Lapidus and Amundson (1952) present two solutions for the one dimen-
sional uniform dispersion problem in an infinite column with adsorption onto the solid
phase. One solution assumes adsorption oceurs under the local equilibrium assumption
while the other assumes nonequilibrium adsorption with a first order rate law. Bastian
and Lapidus (1956) derived the solution for a finite column with local equilibrium adsorp-
tion. For a semi-infinite column, Ogata and Banks (1961) developed the solution for a
constant concentration boundary condition at the inlet. Gershon and Nir (1969) gave
~ solutions for a semi-infinite column with a Cauchy boundary condition at the inlet; this
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boundary condition preserves mass balance at the boundary by considering dispersion
across the inlet. Their transient solution accounts for adsorption under local equilibrium
conditions but neglects radioactive decay while their steady state solution considers radio-
active decay. Van Genuchten and Wierenga (1976) developed solution accounting for
adsorption under equilibrium conditions and partitioning of the solute between mobile
and immobile liquid phases. Transfer between the two liquid regions was considered by
assuming diffusional transfer as proportional to the concentration difference between the
mobile and immobile regions. Al-Niami and Rushton (1977) studied dispersion in the
direction opposite to flow in a one dimensional finite system. They present solutions for a
step change in concentration at the source of dispersion in a constant velocity flow field
and discuss the conditions under which dispersion is contained by the groundwater flow.
Kumar (1983) studied a similar problem to Al-Niami and Rushton (1977) but with an
exponential change in concentration at the source of dispersion and an unsteady, one
dimensional flow field. Solutions to the one dimensional uniform dispersion problem are
systematically compiled by Van Genuchten and Alves (1982). All these works are differ-
ent from the one studied here.

PURPOSE AND SCOPE

Mathematical solutions to the contamination scenarios depicted in Figures 1 through 3 are
clearly relevant to address the environmental concerns of groundwater pollution. The
purpose of this study is thus to develop new analytical solutions for the rehabilitation of
polluted aquifers in one dimensional flow fields and to compare these solutions with the
solutions for the radial flow model as developed by Chen and Woodside (1988). These
solutions yield the spatial and temporal variation of the concentration in the aquifer for
various withdrawal systems with which sensitivity analysis of the transport parameters and
an analysis of the boundary conditions can be performed. Also, the methodology by
which the solution of Chen and Woodside (1988) is numerically evaluated will be de-
tailed.

MODEL DEVELOPMENT AND SOLUTION DETERMINATION

In order to determine closed—form solutions to the aquifer remediation problems in Fig-
ures 1 through 3, the physical problem must be simplified for the mathematical model to
be tractable. For this study, the primary simplifying assumptions are that the contami-
nants are not biologically or chemically transformed in the subsurface and behave as ideal
tracers and that the aquifer is homogeneous and isotropic. Other assumptions will be
noted as necessary. The two principal models in this study are for radial and one dimen-
sional uniform flow. For both flow domains, the model formulation and solution tech-
nique are similar, the primary difference being the greater complexity of the radial model
solution methodology.



AQUIFER REHABILITATION MODEL IN 1D UNIFORM FLOW

Two simple initial conditions are used to model the contaminated groundwater as it exists
when the remediation operation begins. These are a nonuniform initial condition which
decreases from a maximum concentration to zero at some finite distance with a constant
slope, and a uniform initial condition of unit concentration over some finite distance
(Figure 4). All concentrations are normalized by dividing by the maximum concentration
and thus vary between zero and one. The withdrawal system (french drain or infiltration
gallery) should be located at the region of maximum concentration to minimize the decon-
tamination time. Note that in Figure 4(b) the uniform initial condition must terminate at
some finite distance for there to be a nontrivial solution. If x1 tends to infinity, there will
be no ‘clean’ groundwater to displace the contaminated water and the concentration in the
entire aquifer for all time will be unity.

a.) b.)
14 1
C/Co C/Co
0 — X 0 > X
X0 X1 X0 X1
fx)=1-mx-xg) x0<x<Xx9 f(x) =1 x0< x=<x
=0 X 2 X1 =0 X > Xj

where = 1/(x1 - xp)

F1gure 4 Nonuniform initial condition (a.} and umform initial condition (b.) for
one dimensional model.

When using the initial conditions in Figure 4 to approximate a plume geometry, the maxi-
mum concentration profile in the plume shouid be used if the plume profile varies in the
direction normal to the flow induced by the withdrawal system (Flgure 5). This will give
the most conservative estimate for the concentration.

Using the initial conditions from Figure 4 and assuming the groundwater velocity is con-
stant, the mathematical model is



2
0C | y9¢ _ ¢ 1)

ax* ox ot
Initial condition C(x,t=0) = f(x) )
= 3
Boundary conditions % = 0 arx = xg (3
Cx,H) = 0 as x —»o 4)

The governing equation (1) describes the movement of a conservative, nonreactive tracer
in a uniform velocity flow field of a constant seepage velocity V. The dispersion coeffi-
cient, D, is assumed to be constant. In (2), the initial condition is given by one of the
known functions in Figure 4. If a plume does not have a uniform initial condition in the
direction normal to the groundwater flow, the maximum concentration profile should be
chosen as shown in Figure 5. For a plume as in Figure 5, the one dimensional model
does not incorporate the transverse dispersion that would occur but assuming the profile
is uniform and using the maximum concentrations would produce a useful first approxi-
mation for the cleanup operation. For the boundary condition at the outlet, (3) indicates
that the concentration just inside the withdrawal system is the same as the concentration
just outside the withdrawal system. This boundary condition is applied because the con-
centration at the outlet is not known; it is determined by the solution and thus cannot be
prescribed as a priori at the boundary. Thus, prescribed concentration or mass flux
(Cauchy) boundary conditions are not applicable at the outlet. As indicated by (4) the
concentration must tend to zero at large distances. As discussed earlier, this is necessary
for there to be sufficient clean groundwater to displace the contaminated water and reha-
bilitate the aquifer. This formulation is in terms of dimensional units and any consistent
set of units is acceptable.
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Figure 5 Plan view of isoconcentration contours of C/Co and conservative
plume profile in one dimensional flow

SOLUTION TECHNIQUE FOR 1D MODEL

By applying a change of variable as shown below, the governing equation (1) is trans-
formed to the diffusion equation. The change of variable is

Gx,t) = C(x,0)exp(Vx/2D + V2 t/4D) )

Application of (5) to (1) through (4) yields



D—— = =
ox? ot
Initial condition G(x,t=0) = flx)exp(Vx/2D)
. oG
Boundary conditions i (Vi2D)G = 0
x
Gix,t) = 0

To remove the time derivative in (6), the LaPlace transform is applied to (6) as

G = eP' G(x,dt

T3

Application of (10) to (6) yields

d*G = =
D .dx—z = pG - G(X,l‘ = O)
PG =
D—— - pG = -—f(x)exp(Vx/2D)

dx?

atx = Xxg

(6)

™)

(8)

®)

(10)

(11a)

(11b)



fi—G - (V2D)G = 0 at x
X

X0 (12)

E(x,t) = 0 as x -»o (13)

Note that the relationship (7) has been used in (11b). Equation (11b) is a non-
homogeneous ordinary differential equation and the Green’s function technique will be
used to solve it. The theory and application of Green’s functions in determining solutions
for nonhomogeneous differential equations can be found in Wylie and Barrett (1982). By
letting the variable s be the Green'’s function parameter, the two Green’s functions for this
problem are

81(x,p,s) = AI e + A2 g~ax § <X <o (14)

(15)

ga(x,p,8) = Aze™ + Aze™ X<X<S

where a =1 /p/D

where A1, A2, A3, and A4 are four coefficients which can be uniquely determined by the
four properties of the Green's function: the two boundary conditions given in (12), and
(13) and the two properties

g1(x,p,s) = g(x,p,s) atx = § (16)
dgq dg>

= _ 22 _ _1/D = 17)
Tx ! 1/ , atrx = s

The condition in (16) indicates that the Green’s function are continuous at x = s and (17)
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that at this point the first derivatives of the Green’s function have a step discontinuity of
magnitude 1/D. The use of these four conditions to determine the unknown coefficients
A1 through A4 is shown in Appendix A and yields (14) and (15) as

gilx,p,s) = (1/2\/13_5){exp[a(s—x)] + exp[a(2xg-s-x)]/X} S<X<e  (18)
g2(x,p,s) = (1/2VpD){exp[a(x-s)] + exp[a(2xp-s-x)]/X} Xo<x<s (19
where X=+p+ V/Z\/f)

Vp - Vi\D

With the Green's functions defined, the solution of (11b) is thus

X1

G = [ g(x,p, 5)F(s)ds 20)

Xp

where F(s) = f(s)exp(Vs/2D)

where g represents the Green’s function in (18) and (19). Substituting (18) and (19) into
(20) yields the solution in the LaPlace domain as

G = fgl F(s)ds + fng(s)ds (21)

The useful feature of the Green's function technique is that the Green’s functions given by
(18) and (19) are independent of the nonhomogeneous term F(s) in (20). Thus, the
solution (21) is valid for a wide range of initial conditions, provided that the initial condi-
tion tends to zero as x approaches infinity for the reasons discussed earlier.

If the initial condition f(x) is specified by a simple function, the integration in (21) can be
performed analytically. Then, the solution in the LaPlace domain can be inverted to give
the real time domain solution to the problem. The integration in (21) is performed for
two forms of the initial condition. The first is using the uniform initial condition as given
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by Figure (4b) and results in

G = exp(Vx/2D) + exp(Vxy 2D){exp(a(x—x1)) - exp(@(@xp — x~x1))} 22)

P - V2/4D 2\]13_ B—\{P— B“*\/I?

where B = Vi2yD

The LaPlace inversion of the terms in (22) is straightforward and can be found in most
tables of LaPlace inversions (see for example Abramowitz and Stegun (1972), pp.
1022-1027). Evaluation of the LaPlace inversion and application of (5) yields thc solu-
tion to (1) for the uniform initial condition as

Cx,t) = 1 - 0.5{erfc() + exp(V(x1-x0)/D)*erfc(k)} (23)

where j= —B\/_t+ (xy - x)/Z\]IT)_t

k=8Yt+ (x+x - 2x0)/2yDt

For the nonuniform initial condition in Figure (4a) where f(x) = 1 — m(x-xg), the integra-
tion and inversion of (11) is given in detail in Appendix B. The solution is

Cx,t) = 1 - m(x - xp) -mvt + myDt/m {exp(-j2) ~-exp(-12)} +
0.5m(vt + x ~ xp + D/V)erfc(l) + 0.5m(vt ~ x1 + x)erfc(j) +

0.5mD/V{-exp(V(x1 - xg)/D)erfc(k) -~ exp(V(xg - x)/D)erfc(m) +

exp(V(so - Dherfe®} - o0

- 12—



where I= B\/T + (x - x0)/2y Dt
= gyt - (x +x1 - 2x0)/2y Dt
h= gyt - (x - x)/2y Dt

AQUIFER REHABILITATION MODEL IN RADIAL FLOW

For radial flow to a withdrawal weil, the model for the transport of a conservative tracer

by advection and longitudinal mechanical dispersion is (Chen and Woodside, 1988)

a2C oC oC
a°p ap ot
oC
— =0
ap
C(p,7)=0

C(p,7=0) =f(p)

where o = dispersivity
p=rlx

T = At/a2

atp = pg

p—m

(25)

(26)

27)

(28)

In the derivation of (25) the velocity is assumed to be described by V = Afr, where A is
equal to Q/27bn with Q as the pumping rate, b as the uniform aquifer thickness, and n is
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the porosity. The primary physical difference between the two models is that the radial
model accounts for a velocity dependent dispersion coefficient while the one dimensional
model assumes a constant dispersion coefficient. This causes (25) to be a partial differ-
ential equation with variable coefficients while (1) has constant coefficients. The bound-
ary condition at the outlet for the radial model as given by (26) is the same as for the one
dimensional model in (3) and indicates there is no concentration gradient across the well
bore. The initial condition in (28) is for an arbitrary function f(p) which can be a wide
range of functions provided that it tends to zero as p approaches infinity. Chen and
Woodside (1988) determine the solution for the model given by (25), (26), (27), and (28)
as

(=] 001
C(p,7) = 0.5exp(—p/2) [F(s) x/jexp(—xi"r)[fs -
po O
fifafs + fiGfif: - fzfz))] dxds 29)
fift + fof2 —
' %,/ .
where fi = x Ai(¢p) + 0.54i(dg)
= x%BiE¢g) + 0.5Bi( ¢p)
f = Ai($)Bi(¥) + Ai(¥)Bi(¢)
fo = Ai($)Ai(¥) - Bi(4)Bi(¥)

fs = 3Ai(¢)AiI(Y) + Bi(d)Bi(¥)
o= (1 - 4px?)/ax"
$¢o=(1 - 4pgx2)/4x%

v= (1~ 45;::2)/-43:‘}3
F(s) = £(s)*s™exp(s/2)
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Equation (29) involves a double integral which must be evaluated numerically. Chen and
Woodside (1988) briefly discuss its evaluation. A detailed ‘discussion of the numerical
integration and a computer program for evaluating (29) are given in Appendix C.

ANALYSIS OF RESULTS

Using the radial and one dimensional solutions for the uniform and nonuniform initial
conditions, the effect of varying the dispersivity can be analyzed. First, the variation in
concentration over distance is analyzed as the dispersivity is changed. The results for the
one dimensional model will be analyzed using a dimensionless time Tr = Vt/xq which
represents the number of pore volumes withdrawn. As can be seen in Figure 6a for the
nonuniform initial condition, the areas beneath the two curves are not equal. This is
because for a withdrawal problem, the mass balance is between the amount of mass
initially in the aquifer and the mass remaining in the aquifer plus the mass already re-

-

C/Co
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¥
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L
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@ 1 : T 1 : L
0 ) 10 1
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Figure 6 Concentration for one dimensional model for different dispersivities;

nonuniform initial condition (a) and uniform initial condition (b)
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moved. For two different dispersivities, the mass flux at the outlet is different when the
concentration decreases below one and mass will be removed at different rates. Thus, the
area under the two curves in Figure 6a are not equal. In Figure 6b, the concentration at
the outlet is still one for the time used so mass is removed at the same rate. At a later
time as is shown in Figure 7, the concentration at the outlet is less than one and mass is
removed at different rates, causing the area under the two curves to not be equal. An-

L]

T, = 1.0

o 5 10 15 20
DISTANCE (METERS)

Figure 7 Concentration for uniform initial condition for different dispersivities

other method of analyzing the effect of dispersivity is to consider how the concentration at
the outlet varies in time as the dispersivity is changed. As shown in Figure 8, the area
under the two curves are approximately equal. The initial condition in Figure 8 is of the
form given in (30) |

fp) =1 Po < p <Py

£(p)

exp(-w(p - p1 )?) p = P

where w is an empirical coefficient determined by trial-and-error procedure when (30) is
used to approximate a known curve. By varying w and p1, (30) can describe a wide range
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of initial conditions. It produces a smooth and continuous curve of which the gradient
tends to zero as p is large. The area under the curve refers to the zeroeth time moment
defined as

o0

mgo = JC(X(), 1)dt (31)
0

In (31) the time moment represents the total amount of mass passing the outlet (i.e. at
xp). According to the mass balance principle, it should be equal for different disper-
sivities. Figure 8 supports this fact as the areas under the two curves are approximately
equal.

‘/.x= 4 met

o 200 400 800 800 - 1000
TIME (HOURS)

Figure 8 Mass balance in radial model for different dispersivities:
initial condition given by (30) with w = 0.005 and p1 = pg

In the radial model, the nonuniform initial condition as in Figure 4a is f(p) = 1-m(p - pp)
and the uniform initial condition as in Figure 4b is simply f(p) = 1 between the well and
the edge of the plume. The radial solution for these two initial conditions is shown in
Figure 9a and 9b respectively.
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Figure 9 Radial solution for nonuniform initial condition (2) and uniform initial
condition (b)

For these two simple initial conditions, the solute spreads beyond the original region of
contamination as can be seen in Figures 9a and 9b. When the withdrawal process first
begins the concentration gradient at the plume boundary is infinite for the uniform initial
condition, due to the discontinuity in concentration at the edge of the plume. Thus,
backwards or adverse dispersion is expected due to the large concentration gradient
against the converging groundwater flow direction and this causes the plume to spread
beyond the original contaminated region. If the nonuniform initial condition is used, the
concentration gradient is finite at the plume boundary and less backward dispersion oc-
curs as can be seen by comparing Figure 9a to Figure 9b. If the mechanism causing the
backward dispersion is the large concentration gradient at the boundary, then the use of
the smooth initial condition given by (30) should result in little or no adverse dispersion.
Figure 10 indicates this to be the case where it is noted that during the withdrawal process
the contamination never extends beyond the original plume boundary. Consequently, the
use of 2 more realistic initial condition as in (30) leads to smaller gradients at the plume
boundary .and backwards dispersion does not occur. If the initial condition is formulated
as a step
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Figure 10 Radial solution with smooth initial condition

function as in Figure 4b for the one dimensional model, backwards dispersion will occur
even if the dispersivity is small. This will be analyzed using the one dimensional model.
Figure 11 represents the same initial condition as in Figure 9b except that Figure 11 is for
the one dimensional model. It is noted that backwards dispersion occurs in Figure 11 as
expected. With the same initial condition as used in Figure 11, when the dispersivity is
decreased by a factor of ten, Figure 12 shows that less backwards dispersion has oc-
curred. For example, by letting the dispersivity be equal to one meter n rgure 11, 1 can
be seen that the plume has extended beyond the original plume boundary by about four
meters. Then in Figure 12 the dispersivity is one-tenth of a meter and backwards disper-
sion has spread the plume about one-half of a meter beyond the initial edge of the plume.
Thus, 1ess backwards dispersion has occurred in Figure' 12 where the dispersivity*isione=
two hundredth of the size of the plume than in Figure 11 where the dispersivity is one—
twentieth of the plume length. However, even with this much smaller dispersivity, back-
wards dispersion still occurs as expected. .As being hardly conceivable under field condi-
tions, this backwards dispersion appears to be just a mathematical artifact due to the
initial conditions selected. -
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While the graphs that have been presented all behave as the physics of solute transport
would indicate, other methods of validating the solutions are desired. For the one dimen-
sional solutions as given by (23) and (24), the solutions can be put back into the mathe-
matical model to determine if the governing equation, boundary conditions, and initial
condition are satisfied. By setting t equal to zero it can be readily seen that (24) and (25)
satisfy the initial condition and through the use of the Liebnitz rule it can be shown that
they satisfy the boundary condition (3) and the governing equation (1). However, for the
radial solution as given by (29), the solution cannot be directly put back into the mathe-
matical model due to the difficulty of taking the derivatives of (29). Other methods of
verifying the radial solution are thus important.

One method of verifying (29) is by comparison to Gelhar and Collins (1971) approximate
solution for cyclic injection and withdrawal of a conservative tracer in a radial flow field.
This is not a rigorous verification but a simple comparison using a special case of (29)
when the initial condition is generated by injecting a given amount of solute as in a single
well tracer test. Thus, the hypothetical injection of constant concentration solute for a
specific time interval is modeled under given hydrogeological conditions using available
analytical solutions. The analytical solution is that of Chen (1987) for resident concentra-
tions and will be used to generate the initial condition for use in (29). For a hypothetical
injection, a dimensionless time of T = 200 and pg = 0.1 were chosen. When plotted in
dimensionless variables C/Co and p the use of Chen’s (1987) solution yields the solid line
in Figure 13. Since this initial condition cannot be directly incorporated into (29), it is
approximated with the dashed curve in Figure 13 which is developed by (30) as

fp) =1 po<p <122
(32)
f(p) = exp(-0.015(p - 12.2)2) p=12.2

Using the initial condition (32), the results of the radial solution (29) evaluated at the well
bore are compared with those of Gelhar and Collins (1971) in Figure 14. The comparison
is good for the degree of approximation in the initial condition in Figure 13. This sup-
ports the validity of (29).
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Figure 14 Comparison between radial solution (solid line) and Gelhar and
Collins (1971) (boxes)
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Another method of verifying (29) is by comparison to field data. Pickens and Grisak
(1981) published results from their test SW2 for a single well tracer test using radioactive
iodide injected for 3.93 days. The injection rate was 0.719 liters per second and the
withdrawal rate was 0.606 liters per second and lasted for 16.9 days from the end of the
injection period. The average aquifer thickness was estimated to be 8.2 meters with a
porosity of 0.38. A dispersivity of 0.09 meters was determined from the withdrawal data
using the Mercado method (1966). Pickens and Grisak (1981) did not publish enough
observation well data to describe the concentration at the end of the injection period such
that the initial condition in (29) can be formulated. Thus, the initial condition is approxi-
mated as in the comparison to Gelhar and Collins approximate solution by using (30),
where the analytical solution of Chen (1987) is used to generate the initial condition. As
shown in Figure 15 the initial condition is approximated by

flp) = 1 po<p<42

f(p) = exp(-0.005(p - 42)2) p > 42

1.0
0.8 Analytical solution
from Chen (1287)
0.6 /ﬂ
C | Approximated initia! condifion\\.
C=1; Po =p= 42 |
0.4 —
C=exp [-0.0045 (p-427]; 425,
0.2
O 1 l 1 I 1 1 \"-. |
/% =0833 1|6 32 48 64 80

Y2

Figure 15 Chen (1987) analytical solution (solid line) and approximated
initial condition given by (33) (dashed line)
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Figure 16 Radial solution for smooth initial condition (dashed line) and step
function initial condition (dashed line) for Pickens and Grisak (1981)
test SW2

Using the initial condition (33), the results of (29) evaluated at the well are shown as the
solid line in Figure 16 and compared with the reported withdrawal phase concentration
history of Pickens and Grisak (1981). Also shown in Figure 16 is the resuits of (29) if the
initial condition is simply a step function of normalized concentration equal to one from
the well to a dimensionless distance of 55.4, which refers to an average solute frontal
distance of 4.99 m as reported by Pickens and Grisak (1981). Using the step function
initial condition the analytical solution underestimates the concentration after one pore
volume has been removed and does not have a long enough tail as expected. When the
smoothed initia] condition given by (33) is used, the concentration history at the well is
reproduced very accurately, with the only error between when 0.6 and 0.8 pore volumes
have been removed. This also supports the validity of (29).

For the decontamination of a polluted aquifer by a withdrawal well in which the initial
condition may be represented by simple initial conditions, a decontamination rate curve -
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may be developed. The two initial conditions used here are the zero slope initial condi-
tion given by a step function and the nonzero slope initial condition represented by a
sloping straight line. An arbitrary level of decontamination of one percent of the initial
maximum concentration is chosen here. This level of decontamination may not be appro-
priate for some polluted aquifers and is simply proposed as a representative decontamina-
tion index of aquifer restoration. Figure 17 shows the dimensionless time required to
reach a one percent decontamination level using a single pumping well for a specified
distance to the edge of the plume given by p1 . The concentrations plotted are accurate to
four decimal places and approximately straight line relationships are present. For the
initial condition given be the step function (zero slope), the time required to reach one
percent decontamination is always longer than for the nonzero slope straight line because
there is more mass initially in the system for the step function initial condition for the
same py . In Figure 17 the time required to reach one percent decontamination if advec-
tion is the only transport mechanism is also shown. This time is given by

mxfbn e
Q

it =

In the dimensionless units of the radial model, this line is given by 7 = (py * p1 )/2 where
the well radius is neglected by considering that the well radius is usually small compared
to the initial plume size. The one dimensional model can also be used to develop a one
percent decontamination rate curve. Dimensionless variables of X1 = X1 /ov and T = Vt/o
are used in Figure 18 which shows the time required to reach a one percent decontamina-
tion level for a specified distance to the edge of the plume given by X4. The straight line
for the time to reach one percent decontamination if dispersion is neglected is given by T
= X1 . As in Figure 17, approximate straight line relationships are present except for
small X1 . In Figure 18, the effect of changing xg is negligible as in Figure 17, indicating
that the divergence from straight line relationships for small x1 is not due to the value of
xp that is chosen. The divergence from approximate straight line relationships in Figure
18 may be due to the assumption of a constant velocity in the one dimensional model.
Both Figures 17 and 18 indicate that neglecting dispersion- underestimates the total
cleanup time as is also inferred from the prior analysis of dispersivity as in Figure 9
where a smaller dispersivity is associated with a more rapid removal of the plume.
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As an example of the use of Figure 17, consider a circular plume with a uniform concen-
tration to a radius of 50 m in an aquifer 5 m thick with a porosity of 0.2 and a dispersivity
of 1 m. If a single well pumping at 10 m3/hr is used to decontaminate the plume, the time
required to reach one percent decontamination can be determined as follows. The dim-
ensionless distance p for this plume is 50/1 = 50 and the dimensionless time correspond-
ing to this plume size from Figure 17 is 7 = 2100. Noting the definition of dimensionless
time as 7 = At/a2, the time to reach one percent decontamination can be determined as

2100 = 10t
21(0.2)(5)12

or

t = 1319.5 hrs ~ 55 days

Thus, approximately 55 days would be required to decontaminate the aquifer for the
specified conditions. If advection was assumed to be the only transport mechanism, the
cleanup time would be estimated as approximately 33 days, indicating the underestima-
tion that occurs by neglecting dispersion.

As an illustration of the use of Figure 18, consider the same 50 m radius plume that was
studied with the radial model. If a 100 m drain is located as shown in Figure 19, the
radial and one dimensional models can be compared to determine which most efficiently

decontaminates the aquifer. The flow into the drain can be modeled using the Dupuit-
Forchheimer discharge formula as

Ox = K - hj) 3

2L

where Q. = flow rate per unit length of drain

he = head in contaminated region

hy = head in drain
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K = hydraulic conductivity

L = distance from the drain to the edge of the plume

= X1 - X0
drain
/
2L =100 m
groundwater flow 0 groundwater flow
—_— PA—
edge of plume

Figure 19 Restoration of polluted aquifer with plume of radius 50 m using
one dimensional flow to a drain

Equation (35) gives the flow into one side of the drain in an unconfined aquifer and
neglects the seepage face in the drain. For this model of flow into the drain, it is as-
sumed that the head in the contaminated region he is the head at the edge of the plume
(at x = xq) and it remains constant. Vertical or lateral recharge into the contaminated
region could maintain he as constant. The seepage velocity is determined as

V = gin - (36)

where g

]

specific discharge

= flow rate per unit area

To determine q, it is noted that
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q = Qx
(he + hg)/2

Using (35) and (37), V is determined as

V = K - hg)
nL

For the plume under consideration, assume that K = 0.0001 m/s and hc = 5 m. The
seepage velocity for the groundwater flowing to the drain is then

V = 0.864(5 - hy) (met/day)

Equation (39) gives the seepage velocity as a function of the head in the drain. From
Figure 18, the dimensionless time to reach 1% decontamination using the drain is T = 78.
Noting the definition of the dimensionless time as T = Vt/w, (39) can be used to determine
the velocity and then the time to reach 1% decontamination can be determined. For
comparing the efficiency of the radial and one dimensional models, two different design
criteria can be used. The two criteria are maintaining the head in the drain such that the
radial and one dimensional models reach 1% decontamination at the same time or such
that water is removed at the same rate from the drain as is pumped by the well. If the
criteria is to decontaminate with both models in the same amount of time, the velocity
required for the one dimensional model is determined as follows by recalling that the time
for the radial model was 55 days and the dispersivity was 1 m: ‘

T =78 = Vila
or
V = 1.42mid

Using this velocity of 1.42 m/d, (39) can be used to determine the head in the drain as
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3.36 m. Thus, for the drain to decontaminate the aquifer to 1% of the original concentra-
tion the head in the drain should be maintained at 3.36 m. Given this value of hq, the
amount of water flowing into the drain can be calculated using (35) as

Q' = 2(100)Q,
= 236 m®/day

For the criteria to remove the water from the drain at the same rate as the well pumps in
the radial model, it is recalled that the pumping rate for the single well was 10 m3/hr
which for the drain corresponds to a flow rate per unit length Qx of 1.2 m2/d. Using this
value of Qx, (35) can be used to determine the required ha as 3.33 m. The head in the
drain should thus be maintained at 3.33 m for 10 m3/hr of water to flow into the drain.
The seepage velocity with this value of he can be determined and then the time to reach
1% decontamination is found to be 54.2 days. In this example, both models yield ap-
proximately equal decontamination times and pumping rates. It is noted that the velocity
and flow rate to the drain are both a function of the hydraulic conductivity in the one
dimensional model, while the calculations in the radial model are independent of K.
Thus, if a different value of K was assumed, the decontamination times and pumping
rates for the two models would have been different.

Due to the simplicity of the one dimensional uniform dispersion solutions, any relation-
ship that could be developed between the one dimensional and radial solutions would be
of value. If some relationship could be derived or the two solutions could be shown to
converge to each other under certain conditions, then the difficulties encountered in evalu-
ating the radial solution under certain conditions as discussed in Appendix C may be
avoidable. Thus, the radial and one dimensional solutions are compared for different
Peclet numbers for the nonuniform and uniform initial conditions as in Figure 4a and
Figure 4b. The Peclet number represents a ratio of advective to dispersive forces and is
equal to the dimensionless distance p for the radial model and the dimensionless distance
X = %/ in the one dimensional model. Figure 20a shows the comparison for the non-
uniform initial condition and Figure 20b for uniform initial condition. It is clearly seen
that the two models yield very different results for the range of Peclet numbers shown in
these figures. Also there is no apparent trend that would indicate the solutions are con-
verging as the Peclet number becomes larger. When the Peclet number is 45, large
differences are still present between the two solutions. This has been tested for Peclet
numbers up to 75 and no trend is still detected. Using numerical methods, Sauty (1981)
reported that the one dimensional and radial solutions converge for large Peclet numbers
for the injection and withdrawal probiems in his study. These included pulse and continu-
ous injection problems and the withdrawal of a slug injected in an adjacent well. For the
radial and one dimensional uniform dispersion models in this study, Figures 20a and 20b
indicate that for the Peclet numbers analyzed here, convergence does not occur and no
other trends are apparent. The use of the correct model which corresponds to the flow
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field in the aquifer remediation operation is thus important. If the decontamination is
performed with a pumping well, the one dimensional uniform dispersion solution cannot
be substituted for the radial solution.

SUMMARY AND CONCLUSIONS

Two mathernatical models for aquifer remediation by pumping are proposed. Both as-
sume that advection and longitudinal mechanical dispersion are the transport mecha-
nisms. The model for decontamination by a withdrawal well accounts for a velocity
dependent dispersion coefficient in the radially converging flow field. For simple one
dimensional flow, the one dimensional model assumes a constant dispersion coefficient in
the constant velocity flow field which may occur due to withdrawal using french drains or
infiltration galleries. The radial dispersion model is solved for an arbitrary initial condi-
tion which can be formulated in a wide range of flexible, useful forms. The uniform
dispersion model is solved for two simple initial conditions, resulting in solutions which
are easily evaluated. Solutions for both models are derived through the use of Green’s
functions and the LaPlace transform.

When the initial conditions input into the models have large concentration gradients at the
plume boundary, adverse backward dispersion occurs causing the solute to spread beyond
the initial plume boundary. Adverse dispersion does not occur when the initial conditions
are formulated such that gradients near the outer plume boundary gradually decrease to
zero. The occurrence of adverse dispersion thus may be a mathematical artifact that
occurs when the initial condition is formulated with large gradients near the plume bound-
ary. As a special case of the radial model, the solution is compared to the approximate
solution of Gelhar and Collins (1971) for the injection and withdrawal of solute from a
single well and good agreement is found between the two solutions. Using the field data
of Pickens and Grisak (1981), the radial solution also accurately models the concentration
history of the single well tracer test. Graphical relationships giving the time required to
reach one percent of the maximum initial concentration are developed for two simple
initial conditions. It is determined that neglecting dispersion underestimates the total
cleanup time for aquifer decontamination. A comparison of the two models at equivalent
Peclet numbers shows that the two models do not converge over the range of Peclet
numbers tested and that the use of the incorrect model would tause large error.
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NOMENCLATURE

as= \[pﬁ (s /m)

A = Q27wbn (m2/s)

b = aquifer thickness (m)

D = dispersion coefficient = ¢V (m2/s)

K = hydraulic conductivity (m/s)

L = distance from drain to edge of plume in 1D model (m)
n = porosity (dimensionless)

q = specific discharge = flow rate per unit area (m/s)
Q = pumping rate of well (m3/s)

Q’ = flow rate into drain in radial model (m3/s)

r = radial distance (m)

t = time (s)

Tr = Vt/x, (m/m)

T = dimensionless time in 1D model = Vi/o

V = seepage velocity (mv/s)

x = distance (m)

X = dimensionless distance in 1D model = X/

xp = outlet distance (m)

x4y = distance to edge of plume (m)

o = dispersivity (m)

8=Vvi2yD (s )

p = dimensionless distance in radial model = r/a
po = dimensionless well radius

7 = dimensionless time in radial model = At/o2

-33 -



REFERENCES

Abramowitz, M. and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Applied
Math Series, 55, National Bureau of Standards, Washington, D. C., 1970.

Ahlfeld, D. P., J. M. Mulvey, G. F. Pinder, and E. F. Wood, Contaminated groundwater

remediation design using simulation, optimization and sensitivity theory, 1, Model
Development, Water Resources Research, 24(3), 431-441, 1988.

Ahlfeld, D. P., J. M. Mulvey, and G. F. Pinder, Contaminated groundwater remedlatnon

design using simulation, optimization and sensitivity theory, 2, Analysis of a field
site, Water Resources Research, 24(3), 443-452, 1988.

Al-Niami, A. N. §., and K. R. Rushton, Analysis of flow against dispersion in porous
media, Jour. Hvdrology, 33, 87-97, 1977.

Al-Niami, A. N. S., and K. R. Rushton, Radial dispersion to an abstraction well, Jour,

Hyvdrology, 39, 287-300, 1978.

Bastian, W. C., and L. Lapidus, Longitudinal diffusion in ion exchange and chromato—
graphic columns. Finite columns., Jour. Phys. Chem., 60:816-817, 1956.

Chen, C. S., Analytical and approximate solutions to radial dispersion from an injection
well to a geological unit with simultaneous diffusion into adjacent strata, Water

Resources Research, 21(8), 1069-1076, 1985.

Chen, C. S., Solutions for radionuclide transport from an injection well into a single
fracture in a porous formation, Water Resources Research, 22(4), 508-518, 1986.

Chen, C. S., Analytical solutions for radial dispersion with Cauchy boundary at injection

well, Water Resources Research, 23(7), 1217-1224, 1987.

Chen, C. S., and Greg D. Woodside, Analytical solution for aquifer decontamination by
pumping, Water Resources Research, in press, 1988.

Dowd, R. M., Leaking underground storage tanks, Environ. Sci. Technol., 18:309A, 1984.

Eldor, M., and G. Dagan, Solutions of hydrodynamic dispersion in porous media,

Water Resources Research, 7(1), 135-142, 1971.
Gelhar, L. W., and M. A. Collins, General analysis of longitudinal dispersion in
nonuniform flow, Water Resources Research, 7(6), 1511-1521, 1971.
Gershon, N. D., and A. Nir, Effects of boundary conditions of models on tracer dist-
ribution in flow through porous mediums, Water Resources Research, 5(4):830~839,
1965.
Guvanasen, V., and V. M. Guvanasen, An approximate semianalytical solution for
tracer injection tests in a confined aquifer with a radially converging flow field
and finite volume of tracer and chase fluid, Water Resources Research, 23(8), 1607-
1619, 1987.
Hsieh, P. A., A new formula for the analytical solution of the radial dispersion problem,
Water Resources Research, 22(11), 1597-1605, 1986.

Kirkham, D., and S. B. Affleck, Solute travel time to wells, Groundwater, 15(3), 231~
242, 1977.

Kumar, N., Unsteady flow against dispersion in finite porous media, -Jour. Hydrology,

- 34 -



63, 345-358, 1983.
Lapidus, L., and N. R. Amundson, Mathematics of adsorption in beds. The effect of

longitudinal diffusion in ion exchange and chromatographic columns, Jour. Phys.
Chem., 56:984-988, 1952.

Mercado, A., Recharge and mixing tests at Yavne 20 well field, Underground Water
Storage Study Tech. Rep. 12. Publ. 611, TAHAT ~Water Planning for Israel, Ltd.,
Tel Aviv, 1966.

Oberhettinger, F., and L. Badii, Tables of LaPlace Transforms, Springer-Verlag, 1973.

Ogata, A., and R. B. Banks, A solution of the differential equation of longitudinal

dispersion in porous media, U.S.G.S. Prof. Paper 411-A, 1961.
Office of Technology Assessment, Protecting the Nation’s Groundwater from Contamina—
tion, OTA-0-233, U. S, Government Printing Office, Washington, D. C., 1984.

Philips, K. J., and L. W. Gelhar, Contaminant transport to deep wells, Jour. Hydraulics
Div., ASCE, 104, HY6, 807-812, 1978.

Pickens, J. F., and G. E. Grisak, Scale-dependent dispersion in a stratified granular
aquifer, Water Resources Research, 17(4), 1191-1211, 1981.

Sauty, J. P., An analysis of hydrodispersive transfer in aquifers, Water Resources
Research, 16(1), 145-158, 1980. ‘

Valocchi, A. J., Effect of radial flow on deviations from local equilibrium during sorbing
solute transport through homogeneous soils, Water Resources Research, 22(12),
1693-1701. -

Van Genuchten, M. Th., and P. J. Wierenga, Mass transfer studies in sorbing porous
media I, Analytical solutions, Soil Sci. Soc. of America, 40(4):473~480, 1976.
Wrylie, C. R,, and L. C. Barrett, Advanced Engineering Mathematics, 5th Ed., McGraw

Hill, New York, 1982.

- 35 -



APPENDIX A

In this appendix, the four unknown coefficients in (14) and (15) are derived using the
conditions (12), (13), (16), and (17). Condition (13) indicates that the Green’s functions

must be bounded and thus A4 must be zero and

g1 = Azexp(-ax)

Using (12), .

d
282 _ (vi2D)g, = 0

dx

which yields
Az = Ay X exp(-2axq)

where X = (VP + B)/(WPp - B)

Using (A3), go becomes

82 = Aglexp(a(x-2x0))X + exp(-ax)]

Application of (16) to (Al) and (A4) yields

Asexp(—as) = Aglexp(a(s -2x))X + exp(-as)]

Application of (17) to (A1) and (A4) yields
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atx = xg (A2)

(A3)

(A4)

(A5)



-Ayaexp(-as) - Aglaexpla(s-2x0))X - aexp(-as)] = -1/D (A6)

(AS) and (A6) can now be solved simultaneously to determine As and A4 as

Ay = exp(a(2xo-5))/(2VpD X) (A7)
Ay = lexp(as) + exp(a(2xo-5))/X]/(2 VpD) (A8)

Substituting (A7) into (A3) yields

Ay = exp(-as)/ (2\/;)3) ' . (A9)

After substituting (A7), (A8), and (A9) into (14) and (15), the Greens’ function are found
to be (18) and (19).
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APPENDIX B

In this appendix the integration and LaPlace inversion of (21) is outlined for the initial
condition f(X) = 1 — m(x - xp). The integral to be evaluated is

G = 1G; + IG, ®B1)

'Gy = (1/2\6:5) J fexp(a(s - x) + exp(a(2xg - 5 - x) /X][1 ~ m(s - xo)]exp(Vs/2D)ds (B2)
X0

Ty = (1/2\{93) f [exp(a(x - 5) + exp(a(@xo -5 - x) /X][1 - m(s — x¢)]exp(Vs/2D)ds (B3)

X

Note that (B2) and (B3) are derived by substituting the expressions (18) and (19) in for g1

and gz in (21). The integrations in (B2) and (B3) are similar so only the details for (B2)
will be outlined. (B2) can be rearranged as

Gy = (1+mxp)/2 \ﬁff [exp(a(s ~x) + Vs/2D) + exp(a(Rxg-s5s-Xx) + Vs/2D)/X]dsr

X xD
- (m/Z\GE) f s{exp(a(s ~x) + Vs/2D) + exp(a(@x9-5-x) + Vs/2D)/X]ds (B4)

X0 :

In (B4) the first integral is a simple exponential integration and is easily performed. The
second integral is slightly more detailed but is done with a simple integration by parts.
Without showing the lengthy algebraic details, the integration of (B1) can be found to be
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_.G_=11+12+13+I4+15+“16

where | | _ (BS)
I = (1 - m(x - xp))exp(Vx/2D) (B6)
p - V?/4D
I, = —mVexp(Vx/2D) (B7)
(@ - V/4D)?

~ 0.5 mDY2exp(Vxo/2D)exp(a(xo - x)) (B8)

I, = p1/2( B+ p1/2)2
I, = - 0.5 le/zexp(on/ZD)eJ_cp(a(xo - X)) (B9)

p(@ ~ V?/4D)

5o 0.5mD2exp(Vx1/2D)exp(a(x - x1) (B10)
57 pi2( g - pi/2)?
I = 0.SmDI/Zexp(VxI/ZD)exp(a(2x0 -X—X1) (B11)

p*p - V2/4D)

(BS) is the solution to (6) in the LaPlace domain for the initial condition in Figure (4a).
The inversion of the terms 14, I, I3, and I5 are all published. For the inversion of I and
I, see for example Abramowitz and Stegun (1970; p.1022). The inversions of I3 and I5
are given by Oberhettinger and Badii (1973; p. 260, Eq. 5.103). Published inversions of
14 and Ig could not be found. I and Ig are both of the form

£(p) = b exp(-kvp)/(¥p(c + p) (B12)
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where b, ¢, and k are constants independent of p. The inversion of (B12) is through the
use of the Convolution Theorem which gives the inversion of (B12) in integral form (see
for example Wylie and Barrett (1982), pp. 451-452). For (B12) the Convolution Theorem
is used by factoring (B12) as

f(p) = [b/(c + p)][exp(-kVp)/ Vp] (B13)

The inversions for each term in square brackets in (B13) are all simple exponentials and
after application of the Convolution Theorem the inversion of (B12) is found to be

t

L)) = bJ [exp(c(t — w)exp(~ k2/4u)/\/1r—d"‘}du (B14)

0

To carry out the integration in (B14) it is rearranged as
t
L) = bexp(ct)/ﬁf [exp(- cu - k*/4u) Nu]du (B15)
0 .

Using the variable change u = z2, (B15) is transformed to

Vi
L Yf(p)) = 2bexp(ct)/\/?f exp(~ ¢z - k*/42%)dz (B16)
0

The integral in (B16) can be found in Abramowitz and Stegun (1970; p. 304, Eqg. 7.4.33).
After appropriately substituting the constants in (B9) and (B11) in for b, ¢, and k in (B16)
and making algebraic manipulations, the inversions of I3 and Ig are found to be
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L4 + Ig) = exp(Vxi2D + V?t/4DYmD/2V [~ exp(V(xy — x0)/D)erfc(k) -

exp(V(xo - x)/D)erfe(m) + erfe() + exp(V(xo-x)/D)erfe(h)] (B17)

The outline of the integration and LaPlace inversion of (21) for the initial condition f(x) =
1 - m(x - xg) is thus complete.

APPENDIX C

In this appendix the numerical evaluation of the radial solution given by (29) is discussed.
In the numerical evaluation, the order of integration in (29) is interchanged as in equation
(36) of Chen and Woodside (1988). This is done because the terms which depend on the
variable s can be easily integrated first. Also, the oscillation of the integrand as a func-
tion of x is more regular and thus easier to handle when s is integrated first. The integra-
tion is not performed on the complete integrand at once; instead the integrand is factored
as shown below to allow for the terms which depend on s to be grouped in the most
efficient manner. The integration is thus performed on five different terms and these
terms are added up to give the complete answer. The terms used to designate the fac-
tored integrand are shown below. Also all input variables, all the important variables
used in the program, and the integration technique are explained in the program. The
program was written on a MicroVax I with Fortran 77.

Some of the variables in (29) are renamed in the program as follows:

Variable in (29) Variable in program
s csi
) si
203 phi
dbo phiw
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Terms used to indicate factors in the integrand:

H1l = F(csi)Ai(si)
H2 = F(csi)Bi(si)
where F(csi) = csi*exp(csi/2)*f(csi) f(csi) = initial condition

Note that H1 and H2 are the only terms which depend on csi; two integrations for
csi are thus performed. They are:

JHldcsi
PO

ZINTH1

ZINTH2 = jHchsi
Po

The five terms which the integration with respect to x is carried out on are:

H3 = 3x**(1/3)exp(—x2r) Ai(phi)

H4A = x**(1/3)exp(~x27)[1 + (3f1f1 - faf2)/(f1f1 + f2f2)]Bi(phi)
HS = x**(1/3)exp(—x27) [4f1f2/(f1f1 + f2f2)] Ai(phi)
H6 = x**(1/3)exp(—x27)[4f1f2/(f1f1 + f2f2))Bi(phi)

H7 = x**(1/3)exp(~x2r) [3f1f1 - f2f2/(F1f1 + f2f2)] Ai(phi)
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The five integrations are thus referred to as follows. Note that since ZINTH1 and
ZINTH2 are functions of x, these two integrations must be carried out for each x in the
integration with respect to x.

ZINTL = |H3*ZINTHldx

ZINT2 = | H4A* ZINTH2dx
0
o0

ZINT3 = [ H5* ZiNTH20x
0

ZINT4 = JHG * ZINTH1dx
co

ZINTS =

J'H7 *ZINTH1dx
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PROGRAM CLN17A
CURRENT VERSION AS OF MAY 2, 1988

THIS PROGRAM PERFORMS THE DOUBLE INTEGRATION FOR THE AQUIFER
RESTORATION MODEL FOR RADIAT, FLOW TO A WITHDRAWAL WELL;

INTEGRATION IS WITH RESPECT TO CSI FIRST AND THEN IN TERMS OF X;
TWENTY POINT GAUSSIAN QUADRATURE IS USED FOR BOTH INTEGRATIONS.

THE INNER INTEGRATION WITH RESPECT TO CSI IS PERFORMED BY USING

20 POINT GAUSSIAN QUADRATURE FROM ROOT TO ROOT (THE ROOTS ARE FOUND
USING THE BRENT ALGORITHM). THE OUTER INTEGRATION WITH RESPECT TO X
CAN BE PERFORMED WITH 2 OPTIONS. ONE OPTICN IS TCO CHOOSE A SPACING
CALLED AN 'INTEGRATION DISTANCE' AND CALCULATE THE INTEGRAL OVER EACH
INTEGRATION DISTANCE UNTIL THE CONTRIBUTION DECREASES BELOW A
CONVERGENCE CRITERIA. IF THIS OPTION IS USED THEN THE PROGRAM CHOOSES
THE VALUE OF THE INTEGRATION DISTANCE (IT IS THE VARIABLE 'INTDIS' IN
THE PROGRAM. THE OTHER OPTION IS FCOR THE

USER TO INPUT A SET OF INTEGRATION DISTANCES WHICH DECREASE IN VALUE
AND THEN THE PROGRAM CALCULATES THE INTEGRALS FOR EACH INTEGRATION
DISTANCE UNTIL THE DIFFERENCE FOR TWO DIFFERENT INTEGRATION DISTANCES
IS LESS THAN A CONVERGENCE CRITERIA. THIS SECCOND OPTION IS THUS MORE
COMPUTATIONALLY BURDENSOME BECAUSE THE INTEGRALS ARE CALCULATED MORE
THAN ONE TIME TO COMPARE THE RESULTS FOR DIFFERENT INTEGRATION
DISTANCES.,

THE PROGRAM WILL WORK FOR R1{DEFINED BELOW) LESS THAN ARQUND 80; IF R1
IS > 55 OR SO THE PROGRAM WILL TAKE A LONG TIME TO RUN SO DONT BE
SURPRISED., THIS IS BECAUSE THE LARGER R1 IS THE MQORE THE INTEGRAND
OSCILLATES AND THUS THE SMALLER THE VALUE OF 'INTDIS' MUST BE.

INPUT VARIABLES DESCRIPTION
RW DIMENSIONLESS WELL RADIUS
R DIMENSIONLESS RADIAT, DISTANCE
Rl DIMENSTIONLESS DISTANCE TO

EDGE OF PLUME

R1A USED IF IFLOW = 2
DISTANCE TO CHANGE IN INITIAL
CONDITION FROM F = 1 TO F =
EXP(—COEF1* (R—R1A)**2)

ISLOPE INDICATOR FOR THE
INITIAL PLUME CONCEN
0==> SLOPE = 0
SO THAT F(R) = 1 RW<R<R1
1==> SLOPE = 1/(R1 — RW)
SO THAT F(R) = 1 —
SLOPE(R — RW)

==> F(R)= EXP(-A(R-RW)**2)
A = COEFl IN THIS PROGRAM
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TIME

NINTDS

INTDIS

EPS2

IFLOW

ISKIP

IPRINT1

3==> F(R) = 1 FOR R <= R1A,
EXP(—COEF1*(R-R1A)#*%2) FOR
R >=R1A

DIMENSTONLESS TIME

THE NUMBER OF INTEGRATION
INTERVALS THAT CAN BE USED
FOR THE DX INTEGRATION

IF IFLOW = 1

ARRAY FOR THE INTEGRATION
DISTANCES; USED

IF IFLOW 1; SET TQ ZERQ
IF TFLOW 2

CONV. CRITERIA FOR CHANGING
THE INTERVAL SPACING (WHEN
DIFFERENCE BETWEEN INTEGRATIONS
FOR 2 INTERVAL SPACINGS ARE
LESS THEN EPS2 THEN STOF);

USED IF IFLOW = 1; SET TQO ZERQ
IF IFLOW = 2

FLAG TO DETERMINE INTEGRATION
METHOD

1 = INTEGR. FOR EACH INTDIS
VALUE UNTIL EPS2 IS SATISFIED
2 = INTEGR. FOR ONE VALUE OF
INTDIS ONLY; NOTE THAT INTDIS
FOR THIS OPTION IS CHOSEN BY
THE PROGRAM

FLAG TO DETERMINE IF ANY
TERMS IN THE INTEGRATICN ARE
TO BE SKIPPED
1 SKIP ZIN2
2 = SKIP ZINT2 AND ZINT3
3 SKIP ZINT2, ZINT3,

AND ZINT4
BE CAREFUL IF YOU DO THIS AND
DOUBLE CHECK THAT
THE ANSWER IS QOKAY
BY INTEGRATING THE WHOLE THING
ONCE AND COMPARING THE RESULTS.
NO GENERAL RULE HAS BEEN FQOUND
FOR SKIPPING TERMS IN THE INTE-
GRATION EXCEPT THAT ZINT2 CAN
BE SKIPPED IF R1 < BO.

FLAG FOR PRINT OPTION
1 = PRINT INTERMEDIATE
RESULTS; ELSE NO INTEM. RESULTS
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OTHER IMPORTANT VARIABLES

TOBIGL

XSTART

EPS1

OUTPUT OPTIONS

1 = CONC VS DIMENSIONLESS RAD.

FOR GIVEN TIME

2 = CONC VS VOLUME WITHDRAWN

OVER VOLUME INJECTED =
2*TAU/(R1*R1)

THIS VALUE IS EQUAL TO THE

NUMBER OF PORE VOLUMES

WITHDRAWN.

ONLY USE IOUT = 2 IF ISLOPE

IS EQUAL TO O OR 1

FOR PHIW > TOBIGl, THE
INTEGRANDS ARE SIMPLIFIED
USING ASYMPTOTIC VALUES

LOWER LIMIT FOR THE DX
INTEGRATION

CONVERGENCE CRITERIA FOR
STOPPING INTERVAL BY INTERVAL
INTEGRATION (WHEN CONTRIBUTION
IS LESS THAN EPS1 THEN STOP)

lhkkkkhkhkhhhkhhhhkhkhhhkhhhhkhhhhhdhhhhkhhhhhhohhkhhrhhkhhhhhhhkhhkhhohrhhhhhkhkhhhkhhkhhkkhxk

IMPLICIT DOUBLE PRECISION (A-H,0-%)

REAT*8 INTDIS

DIMENSION INTDIS(5)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE,
COMMON /TERMS / NINTDS, INTDIS, EPS2
IPRINTL, NOUT

COMMON /PRINT / IFLOW, ISKIP,
COMMON /SCALE / TOBIGL
COMMON /ZINITL,/ ISLOPE, COEF1

DATA NIN, NOUT/ 30, 31/

TIME

OPEN (UNIT=NIN,FILE='clnl7a.in',STATUS='0LD')
OPEN (UNIT=NOUT,FILE='clnl7a.out',K STATUS='NEW')

READ(NIN,*) RW, R1, R1A, ISLOPE

READ(NIN, *) COEF1
READ(NIN, *) NOT, TSTART, DT
READ(NIN,*) NOR, RSTART, DR
READ(NIN,*) NINTDS, EPS2
READ(NIN,*) INTDIS

READ(NIN,*) IFLOW, ISKIP, IPRINTI1

READ(NIN,*) IQUT

WRITE (NOUT, 900)
WRITE(NOUT, 902)

IF({IFLOW.EQ.2) WRITE(NOUT,825)
IF(ISKIP.EQ.1) WRITE(NOUT, 880)



10

3180
382
383
3191
392
395
398
3199
200

TF(ISKIP.EQ.2) WRITE(NOUT,882)
IF(ISKIP.EQ.3) WRITE(NOUT,883)
IF( ISLOPE.EQ. 1) THEN

SIOPE = 1.D0/(Rl — RW)
ELSETF(ISLOPE.EQ. 0)THEN

SIOPE = 0.D0
ELSEIF(ISLOPE.EQ.2) THEN

WRITE (NOUT, 898)

WRITE(NOUT, 899) COEF1

WRITE(*,898)

WRITE(*,899) COEFL
ELSEIF(ISLOPE.EQ.3) THEN

WRITE({NOUT, 891)

WRITE(NOUT,892) R1A, COEF1

WRITE(*,891)

WRITE(*,892) R1A, COEF1

ENDIF
WRITE(NOUT,*) 'RW = ', RW,' Rl = ',Rl
WRITE(*,*) 'RW = ',RW,' Rl = ',R1
WRITE(NOUT, *) 'SLOPE = ',SLOPE
WRITE(*,*) 'SLOPE = ',SLOPE
WRITE(NOUT,*) ' EPS2 = ',EPS2

IF(IOUT.EQ.1) THEN
WRITE (NOUT, 908)
TIME = TSTART
DO 10 I=1, NOT
WRITE(NOUT,920) TIME
R = RSTART
DO 20 J=1, NOR
CALL DINTEGR( CONCEN)
WRITE(NOUT,930) R, CONCEN
R =R + DR
TIME = TIME + DT

ELSEIF(IOUT.EQ.2) THEN
WRITE(NOUT, 910)
R = RSTART
DO 30 I=1, NOR
TIME = TSTART
WRITE(NOUT,915) R
DO 40 J=1, NOT
CALL DINTEGR(CONCEN)
TR = 2.DO*TIME/(R1*R1)
WRITE(NOUT,930) TR, CONCEN
TIME = TIME + DT
R = R + DR
ENDIF
STOP

FORMAT (1X, 'SKIPPING INTEGRATION OF G2A',/)

FORMAT(1X, 'SKIPPING INTEGRATION OF G2A AND G3',/)

FORMAT(1X, 'SKIPPING INTEG. OF G2A, G3, AND G4',/)

FORMAT(/,1X, 'INITIAL COND, F = 1 OR EXP(-COEF1(R-R1A)**2) IF ')
FORMAT(1X, 'R > R1A=',6F9.4,' WITH COEFl = ',F11.5,/)
FORMAT(1X, ' INTEGRATING WITH ONE INTDIS ONLY',/)
FORMAT(/,1X, ' INITIAL COND. F = EXP(—-COEF1(R-RW)**2) WHERE')
FORMAT(1X, 'COEF1 = ',1PE13.6,/)

FORMAT(1X, 'AQUIFER REST. MODEL FOR RADIAL FLOW; PROGRAM TO')



202
208
310
315
320
330

FORMAT(1X, 'PERFORM THE DBL INTEG.; MARCH/APRIL 1988',/)
FORMAT(/,6X,' R ',11X, 'CONCEN',/)
FORMAT(/,3X, 'TR', 9%, 'CONCEN', /)

FORMAT(/,4X, ' PECLET NUMBER = ',Fl11.4,/)

FORMAT(/,5X, 'TIME = ',F10.3,/)

FORMAT ( 2X,F11.4,5X,1PE13.6)

END

SUBROUTINE DINTEGR(CONCEN)
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THIS SUBROUTINE PERFORMS THE DOUBLE INTEGRATION

IMPORTANT VARIABLES:

L1 VARTABLE USED FOR THE LOWER LIMIT OF INTEGRATION
IN THE INTEGRATION WITH RESPECT TO X

L2 VARIABLE USED FOR THE UPPER LIMIT OF INTEGRATION
IN THE INTEGRATION WITH RESPECT TO X

S VARIABLE USED IN CALCULATING THE NUMERICAL INTE-
GRATICON VALUE FOR EACH INTERVAL GAUSSIAN QUADRATURE
IS USED IN

SUM VARIABLE WHICH IS INCREMENTED SEQUENTIALILY FOR EACH

INTERVAL GAUSSIAN QUAD. IS USED IN AND IS EQUAL TO
THE VALUE OF THE CUTER INTEGRAL

DINTGL,2,3,4,5
EACH QF THESE VARTABRLES IS THE VALUE OF THE OUTER
INTEGRAL: IN ONE INTERVAL OF SPACING INTDIS AND IS
THUS CALCULATED ONCE FOR EACH INTERVAL; EACH ONE
CORRESPONDS TQ A DIFFERENT PART OF THE INTEGRAL DUE
TO THE WAY THE INTEGRAND IS FACTORED: DINTGl CORRE-
SPONDS WITH ZINT1l, DINTGZ2 WITH ZINT2, DINTG3 WITH
ZINT3, DINTG4 WITH ZINT4 AND DINTG5 GOES WITH ZINT5

7INTL,2,3,4,5
EACH VARTABLE REPRESENTS THE VALUE OF THE INTEGRATION
FOR A SPECIFIED TERM IN THE INTEGRAND.
IF IFLOW = 1, THEN WHEN THE DIFFERENCE
BETWEEN TWO SUCCESSIVE VALUES OF ZINT1(OR ZINT2, 3 ETC)
ARE LESS THAN EPS2, THEN THE INTEGRATION FOR THAT TERM
IS COMPLETE. IF IFLOW = 2, THEN CALCULATE ONLY ONE
VALUE FOR ZINTL THROUGH ZINTS5.

THE VARIABLES AND FUNCTIONS WHICH CALCULATE THE INTEGRAND VALUES WERE
GIVEN AT THE BEGINNING OF THIS APPENDIX. H1 THRCUGH H7 ARE SET UP AS
FUNCTIONS. THE SUBROUTINE 'INTEGH1' INTEGRATES H1 AND THE SUBROUTINE
'INTEGH2' INTEGRATES H2. SUBROUTINE 'FROOT1l' DETERMINES THE ROOTS OF
INTEGRAND H1 AND SUBROUTINE 'FROOT2' DETERMINES THE ROOTS OF H2.
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
REAL*8 INTDIS, L1, L2

DIMENSION %(10), WT'(10), INTDIS(5)



DIMENSION ZINT1(5), ZINT2(5), ZINT3(5), ZINT4(5), ZINT5(5)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME
COMMON /TERMS/ NINTDS, INTDIS, EPS2

COMMON /PRINT/ IFLOW, ISKIP, IPRINTL, NOUT
COMMON /SCALE / TOBIGL

DATA TOBIGl, XSTART, EPS1l/ 10.D0O, 0.05D0, 1.D-10/

DATA Z /0.076526521133497D0,0,22778585114165D0,
.37370608871542D0 ,0.51086700195083D0,
.63605368072652D0 ,0.74633190646015D0,
.83911697182222D0 ,0.91223442825133D0,
.96397192727791D0 ,0.99312859918509D0/
.15275338713073D0 ,0.14917298647260D0,
0.14209610931838D0 ,0.13168863844918D0,
0.11819453196152D0 ,0.10193011981724D0,
0.083276741576705D0,0.062672048334109D0,
0.040601429800387D0,0.017614007139152D0/

WO R W
=)
5
b=
~
OO0

IF(R1.GT.(65.D0)) XSTART = 0.04DO
—————e IF USING ONLY ONE INTEGRATION DISTANCE FOR THE DX INTEGRATION
2 THEN CHOOSE THE INTDIS
IF(IFLOW.EQ.2) THEN
ZINDIS = 0,3D0

IF(R1.GT.12.D0) ZINDIS = 0.2D0
IF(R1.GT.19.D0) ZINDIS = 0.1DO
IF(R1.GT.29.D0) ZINDIS = 0.03DO
IF(R1.GT.39.D0) ZINDIS = 0.02D0
IF(R1.GT.49.D0) ZINDIS = 0.01D0
IF(RL1.GT.54.D0) ZINDIS = 0.005D0
IF(R1.GT.64.D0) ZINDIS = 0.002D0
IF(R1.GT.74.D0) ZINDIS = 0.001DO
INTDIS(1l) = ZINDIS

ENDIF
IF(IPRINT1.NE.1) GOTO 2
WRITE(NOUT, 906)

2 CONTINUE

:*'k*'k********‘k‘k************************'k*'k'k'k'k****************** kkkkkkkhkkhkhk

e INTEGRATION OF ZINT1

WRITE(*,*) 'INTEGRATING ZINTL'
WRITE(NOUT,*) 'INTEGRATING ZINT1'
WRITE (NOUT, *)

S =0.D0

CONCEN = 0.DO0

TOTAL = (.DO

DO 100 JJ = 1, NINTDS
Ll = XSTART

NUMINT = 0
SUM = 0.DO
.05 L2 = L1 + INTDIS(JJ)

NUMINT = NUMINT + 1

-

- PERFORM THE INTEGRATION

DO 1203 =1, 2
DO 130 I =1, 10
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.20

112

L8O

L88

LOO

L90

L)

IF(J.EQ.2) ZAZA = -%(I)
IF(J.EQ.1) ZAZA = Z(I)
ZZI = (L2 - L1)*ZAZA/2.D0 + (L2 + L1)/2.D0

CALL INTEGHI(ZZI,ZINTHL)

S = 8 + WI(I)*H3(ZZI)*ZINTH1
CONTINUE
CONTINUE

DINTGLl = (L2 - L1)*S/2.D0
S = 0.D0

SUM = SUM + DINTG1
IF(IPRINT1.NE.1) GOTO 112
WRITE(NOUT,920) L2, DINTG1
CONTINUE

IF( (DABS(DINTG1) .LT.EPS1l).AND. (NUMINT.GT.8))
GOTO 180

L1 = L2

GOTO 105

CONTINUE
ZINT1(JJ) = SUM

IF(IPRINTL.NE.1) GOTO 188
WRITE(NOUT,930) ZINTL(JJ)

IF(JJ.EQ.1)THEN
IF(IFLOW.EQ.2) GOTO 190
GOTO 100
ELSE
IF(DABS(ZINTL(JJ) — ZINT1(JJ-1)).LT.EPS2) GOTO 190
ENDIF
CONTINUE
WRITE(*,*) 'FAILED FOR EPS2 WHILE INTEG. ZINT1'
WRITE(NOUT,*) 'FAILED FOR EPS2 WHILE INTEG. ZINTL'
TOTAL = TQOTAL + ZINTI(JJ)

Tkkkkkkk
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IF(ISKIP.EQ.1) GOTO 291
IF (ISKIP.EQ.2) GOTO 291
IF(ISKIP.EQ.3) GOTO 291
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INTEGRATION OF ZINT2
WRITE(*,*) 'INTEGRATING ZINT2'
WRITE(NOUT,*) 'INTEGRATING ZINT2'
WRITE (NOUT, *)
DO 200 JJ = 1, NINTDS

L1l = XSTART

NUMINT = 0

SUM = 0.D0

L2 = L1 + INTDIS(JJ)
NUMINT = NUMINT + 1

PERFORM THE INTEGRATION

DO 220 J = 1, 2
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220

112

80

88

100

190
191

DO 230 I =1, 10

IF(J.EQ.2) ZAZA = —Z(I)
IF(J.EQ.1) ZAZA 7(I)
zZI = (L2 — L1)*ZAZA/2.D0 + (L2 + L1)/2.D0

CALL INTEGH2(ZZI,ZINTH2)
S = S + WI(I)*HAA(ZZI)*ZINTH2

CONTINUE
CONTINUE

DINTG2 = (L2 — L1)*S/2.DO0
S = 0.D0

SUM = SUM + DINTG2
IF(IPRINT1.NE.1) GOTO 212
WRITE(NOUT, 920) L2, DINTG2
CONTINUE

IF( (DABS(DINTG2).LT.EPS]l) .AND. (NUMINT.GT.8))
GOTO 280

Ll = T2

GOTO 205

CONTINUE

ZINT2(JJ) = SUM
IF(IPRINT1.NE.1) GOTO 288
WRITE(NOUT, 930) ZINT2(JJ)

IF(JJ.EQ.1)THEN
IF(IFLOW.EQ.2) GOTO 290
GOTO 200
ELSE
IF(DABS(ZINT2(JJ) — ZINT2(JJ-1)).LT.EPS2) GOTO 290
ENDIF
CONTINUE
WRITE(*,*) 'FAILED FOR EPS2 WHILE INTEGRATING ZINT2'
WRITE(NOUT,*) 'FAILED FOR EPS2 WHILE INTEGRATING ZINT2'
TOTAL = TOTAL + ZINT2(JJ)
CONTINUE
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IF(ISKIP.EQ.2) GOTO 391

IF(ISKIP.EQ.3) GOTO 391

AR AR AR AR AT AR R R AR KR AR AR EAARAARAREALARAKRA AR AR RAERAR RN A A AT AX R A h A, dxFxkhkkhk*d%xk
INTEGRATION OF ZINT3

WRITE(*,*) 'INTEGRATING ZINT3'

WRITE(NOUT,*) 'INTEGRATING ZINT3'

WRITE (NOUT, *)

DO 300 JJ = 1, NINTDS
L1l = XSTART
NUMINT = O
SUM = 0.D0

L2 = L1 + INTDIS(JJd)
NUMINT = NUMINT + 1

PERFORM THE INTEGRATION
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312
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300

390
391
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DO 320 J =1, 2
DO 330 I = 1, 10

IF(J.EQ.2) ZAZA = —Z(I)
IF(J.EQ.1) ZAZA Z(I)
771 = (L2 — L1)*2ZAZA/2.D0 + (L2 + L1)/2.DO

CALL INTEGH2(ZZI,ZINTH2)
S =S + WI(I)*H5(Z2ZI)*ZINTH2

CONTINUE
CONTINUE

DINTG3 = (L2 — L1)*S/2.D0
S = 0.D0

SUM = SUM + DINTG3
IF(IPRINT1.NE.1) GOTO 312
WRITE(NOUT, 920) L2, DINTG3
CONTINUE

IF( (DABS (DINTG3) .LT.EPS1) .AND. (NUMINT.GT.8))
GOTO 380

Ll = L2

GOTO 305

CONTINUE

ZINT3(JT) = SUM
IF(IPRINT1.NE.1) GOTO 388
WRITE(NOUT, 930) ZINT3(JJ)

IF(JJ.EQ.1)THEN
IF(IFLOW.EQ.2) GOTO 390
GOTO 300
ELSE
IF(DABS (ZINT3(JJ) ~ ZINT3(JJ-1)).LT.EPS2) GOTO 390
ENDIF
CONTINUE
WRITE(*,*) 'FAILED FOR EPS2 WHILE INTEGRATING ZINT3'
WRITE(NOUT, *) 'FAILED FOR EPS2 WHILE INTEGRATING ZINT3'
TOTAL = TOTAL — ZINT3(JJ)
CONTINUE

IF(ISKIP.EQ.3) GOTO 491
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INTEGRATION OF ZINT4

WRITE(*,*) 'INTEGRATING ZINT4'
WRITE(NOUT,*) 'INTEGRATING ZINT4'
WRITE (NOUT, *)

bPO 400 JJ = 1, NINTDS
Ll = XSTART
NUMINT = 0
SUM = 0.D0

L2 = L1l + INTDIS(JJ)
NUMINT = NUMINT + 1



(2

430
120

112

{80

188

100

190
191

SRR R e L e et
——INTEGRATION OF ZINT5

505

L2

PERFORM THE INTEGRATION

DO 420 0 =1, 2
DO 43¢ I =1, 10

IF(J.EQ.2) ZAZA = —Z(I)
IF(J.EQ.1) ZAZA = Z(I)
721 = (L2 — L1)*ZAZA/2.D0 + (L2 + L1)/2.D0

|

CALIL INTEGHL1(ZZI,ZINTH1)
S = S + WI(I)*H6(ZZI)*ZINTH1

CONTINUE
CONTINUE

DINTG4 = (L2 - L1)*S/2.D0
S = 0.D0

SUM = SUM + DINTG4
IF(IPRINT1.NE.1) GOTO 412
WRITE(NOUT, 920) L2, DINTG4
CONTINUE

IF( (DABS (DINTG4) .L.T.EPS1) . AND. (NUMINT.GT. 8))
GOTO 480

Ll = L2

GOTO 405

CONTINUE
ZINT4(JJT) = SUM

IF (IPRINT1.NE.1) GOTO 488
WRITE(NOUT, 930) ZINT4(JJ)

IF(JJ.EQ.1)THEN
IF(IFLOW.EQ.2) GOTO 490
GOTO 400
ELSE
IF{DABS(ZINT4(JJ) — ZINT4(JJ-1)).LT.EPS2) GOTO 490
ENDIF
CONTINUE
WRITE(*,*) 'FAILED FOR EPS2 WHILE INTEGR. ZINT4'
WRITE(NOUT,*) 'FAILED FOR EPS2 WHILE INTEGR. ZINT4'
TOTAL = TOTAL — ZINT4(JJ)
CONTINUE

WRITE(*,*) 'INTEGRATING ZINT5'
WRITE(NOUT,*) 'INTEGRATING ZINTS'
WRITE(NQUT, *)

DO 500 JJ = 1, NINTDS
L1 = XSTART
NUMINT = 0O
SUM = 0.D0

L2 = L1 + INTDIS(JJ)
NUMINT = NUMINT + 1

PERFORM THE INTEGRATION



530
520

512

580

588

500

290

306
320
330

DO 520 0 =1, 2
DO 530 I =1, 10

IF(J.EQ.2) ZAZA = -%Z(I)
IF(J.EQ.1) ZAZA = Z(I)
ZZI = (L2 - L1)*ZAZA/2.D0 + (L2 + L1)/2.D0

CALL INTEGHL(%ZZI,ZINTH1)
S = S + WI(I)*H7(ZZI)*ZINTHL

CONTINUE
CONTINUE

DINTG5 = (L2 — L1)*S/2.D0
S = 0.D0

SUM = SUM + DINTGS
IF(IPRINT1.NE.1) GOTO 512
WRITE(NOUT,920) L2, DINTGS
CONTINUE

IF( (DABS(DINTG5).LT.EPS1) .AND. (NUMINT.GT.8))
GOTO 580

L1 = L2

GOTO 505

CONTINUE

ZINTS(JJ) = SUM
IF(IPRINT1.NE.1) GOTO 588
WRITE (NOUT, 930) ZINTS(JJ)

IF(JJ.EQ.1)THEN
IF(IFLOW.EQ.2) GOTO 590
GOTO 500
ELSE
IF(DABS(ZINT5(JJ) — BINTS5(JJ-1)).LT.EPS2) GOTO 590
ENDIF
CONTINUE
WRITE(*,*) 'FAILED FOR EPS2 WHILE INTEGR. ZINT5'
WRITE(NOUT, *) 'FAILED FOR EPS2 WHILE INTEGR. ZINTS'
TOTAL = TOTAL ~ ZINTS5(JJ)

CONCEN = 0.5DO*DEXP(—R/2.D0)*TOTAL

WRITE(*,*) 'R = ',R,' TIME = ', TIME

WRITE(*,*) 'CONCEN = ',CONCEN

RETURN

FORMAT(/,8X, ' INTEG. LIMIT',14X,'DINTG1',18X,'ZINT1',/)
FORMAT(6X,1PE13.6,11X,1PE13.6)

FORMAT(50X, 1PE13.6)

END



SUBRQUTINE INTEGH1(V,ZINTHI1)
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JOMMENT :

.00

300

00

THIS SUBRCUTINE INTEGRATES H1 FROM RW TO R1 FROM ROOT TO ROOT
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
REAL*8 LL

COMMON /VALUES/ R, RW, R1l, R1lA, SLOPE, TIME

SUM = 0.D0
ROOTP = RW + 0.0001D0

CALL FROOT1(V,ROOTP,ROCT, IEND)
IF(IEND.EQ.1l) GOTO 600

UU = GAUSS1(V,RW,RO0T)

SUM = SUM + UU

NOW INTEGRATE FROM ROOT TO ROOT UNTIL R1 IS REACHED.

LI, = ROOT
ROOTP = ROOT + 0.0001D0
CALL FROOTL(V,ROOTP,ROOT, TEND)
IF(IEND.EQ.1) GOTO 500
UU = GAUSS1(V,IL,ROOT)
SUM = SUM + UU

GOTO 100

UULAST
ZINTH1

GAUSSL(V,LL,R1)
SUM + UULAST

RETURN

R1D2 = R1/2.DO
ZINTH1 = GAUSS1(V,RW,R1D2) + GAUSSL(V,RLD2,R1)

RETURN

END



SUBROUTINE INTEGH2{V,ZINTH2)
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THIS SUBROUTINE INTEGRATES H2 FROM RW TO R1 FROM ROOT TO ROOQOT
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IMPLICIT DOQUBLE PRECISION (A-H,0-%Z)
REAT*8 LL

[P O I O [ 9

COMMON /VALUES/ R, RW, R1l, R1A, SLOPE, TIME

SUM = 0.D0
RCOTP = RW + 0.0001D0

CALL FROOT2(V,ROOTP,ROOT, IEND)
IF(IEND.EQ.1) GOTO 600

UU = GAUSS2(V,RW,ROOT)

SUM = SUM + UU

OMMENT : NOW INTEGRATE FROM ROOT TO ROOT UNTIL R1 IS REACHED.

L00 LL, = RCOT
RCOTP = ROOT + 0.0001DO
CALL FROOT2(V,ROOTP,ROOT,IEND)
IF(IEND.EQ.1) GOTO 500
UU = GAUSS2(V,LL,RO0T)
SUM = SUM + UU

GOTO 100
500 UULAST = GAUSS2(V,LL,R1)
ZINTH2 = SUM + UULAST
RETURN
500 R1D2 = R1/2.DO

ZINTH2 = GAUSS2(V,RW,R1D2) + GAUSS2(V,R1D2,R1)
RETURN

END
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DOUBLE PRECISION FUNCTION H1(V,CSI)
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FUNCTION H1 EVALUATES H1 = F(CSI)*AT(SI)
WHERE
F(CSI) = CSI*EXP(CSI/2)*(£(CSI))

WHERE f(CSI) IS THE INITIAL CONDITION
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME
COMMON /ZINITL/ ISLOPE, COEF1

COMMON /SCALE/ TOBIG1

PARAMETER (TWOTH = 2.D0/3.DO, THRHF = 3.D0/2.D0)
PARAMETER (ONEFR = 1.D0/4.D0)

DEN = 4,DO*V**(4.D0/3.D0)
SI = (1.D0 - 4.DO*CSI*V**2)/DEN

SELECT THE INITIAL CONDITION

IF(ISLOPE.EQ.2) THEN
F = CSI*DEXP(CSI/2.DO0)*DEXP (—COEFLl*(CSI-RW)**2)
ELSEIF(ISLOPE.EQ.3) THEN
IF(CSI.LE.R1A) THEN
F = CSI*DEXP(CSI/2.D0)
ELSE
F = CSI*DEXP(CSI/2.D0)*DEXP(—COEF1*(CSI-R1A)**2)
ENDIF
ELSE
F = CSI*DEXP(CSI/2.D0)*(1.D0 — SLOPE#*(CSI~RW))
ENDIF

IF(SI.GT.TOBIGl) GOTO 100
H1 = F*AI(SI,1)
RETURN

H1AA = F*DEXP(-TWOTH*SI**THRHF)/SI**ONEFR
H1 = H1AA*AT(SI,2)
RETURN

END



DOUBLE PRECISION FUNCTION H2(V,CSI)
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FUNCTION H2 EVALUATES H2 = F(CSI)*BI(SI)
WHERE

F(CSI) = CSI*EXP(CSI/2)*(f(csi))
WHERE f(csi) is the initial condition

KhEEAERRKRR KRR IR R KRR I A KAk kR kAR R R AT Ah kR Rk AR R AR ARk hhdhhhhhhhhhhkhkhAdxhhhhrkhhkrik

IMPLICIT DOUBLE PRECISION (A-H,0-%)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME
COMMON /%INITI,/ ISLOPE, COEF1

COMMON /SCALE/ TOBIG1

PARAMETER (TWOTH = 2.D0/3.D0, THRHF = 3.D0/2.D0)
PARAMETER (ONEFR = 1.D0/4.D0)

Prw2 {aeae20a021q20202

DEN = 4.D0*V#%(4.D0/3.D0)
SI = (1.D0 — 4.DO*CSI*V**2)/DEN

L2

SELECT THE INITIAT CONDITION

IF(ISLOPE.EQ.2) THEN
F = CSI*DEXP(CSI/2.D0)*DEXP(—COEF1*(CSI-RW)**2)
ELSEIF(ISLOPE.EQ.3) THEN
IF(CSI.LE.R1A) THEN
F = CSI*DEXP(CSI/2.D0)

ELSE
F = CSI*DEXP(CSI/2.D0)*DEXP(—COEFL*(CSI-R1A)**2)
ENDIF
ELSE
F = CSI*DEXP(CSI/2.D0)*(1.D0 — SLOPE*(CSI-RW))
ENDIF

IF({SI.GT.TOBIG1l) GOTO 100
H2 = F*BI(SI,1)
RETURN

l00  H2AA = F*DEXP(TWOTH*SI**THRHF)/ST**ONEFR
H2 = H2AA*BI(SI,2)
RETURN

END



DOUBLE PRECISION FUNCTION H3(V)
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FUNCTION H3 EVALUATES H3 =
(V**QONETH ) *DEXP (~V*V*TIME) *3*AI ( PHI)
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /VALUES/ R, RW, Rl, R1A, SLOPE, TIME

Vd Vd Vd AL E AT A

PARAMETER (ONETH = 1.D0/3.D0)

DEN
PHI

4 ,DO*V**(4,D0/3.D0)
(1.D0 — 4.DO*R*V**2)/DEN

T1
H3

(V**ONETH ) *DEXP (—~V*V*TIME)
3.DO*T1*AI(PHT,1)

noau

RETURN
END



DOUBLE PRECISION FUNCTION H4A(V)
C***********************************************************************

FUNCTION H4A EVALUATES H4A =

(V**ONETH) *DEXP (—V*V*TIME)* (1 + (3*J*J — K*K)/(J*J + K*K))BI(PHI)

Fl

li
]

J V**2/3*AIP(PHIW) + 0.5*AI(PHIW)

K = F2 = V&*2/3*BIP(PHIW) + 0.5*BI(PHIW)

THESE VARIABLES ARE USED IN FUNCTIONS H5 THROUGH H7 ALSO
Fhhkkhkdhdhhddhhhhhhhhhhdhhhhkdkdhhhhhrdhhdthkdhhhkhhhhhhhhkrrrkdokhddhdrdtdriithikx

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME

COMMON /SCALE / TOBIG1

c
c
c
c
c
c
C
c
C
c
C
C

PARAMETER (ONETH
PARAMETER (THRHF

1.00/3.D0, TWOTH
3.00/2.D0, ONEFR

2.D0/3.D0)
1.D0/4.D0)

i
('l

DEN = 4.DO*V*x(4.D0/3.D0)
PHI (1.DO — 4.DO*R*V#%2)/DEN
PHIW = (1.D0 - 4.DO*RW*V**2)/DEN

T1 = (V**ONETH) *DEXP (~V*V+*TIME)
IF (PHIW.GT.10.D0) GOTO 100

Fl = (V**TWOTH)*AIP(PHIW,1) + O.S5DO*AI(PHIW,1)
F2 = (V**TWOTH)*BIP(PHIW,1) + O.S5DO*BI(PHIW,1)
T2 = (3.DO*F1*F1 — F2*F2)/(F1*Fl + F2*F2)
H4A = T1*(T2 + 1.DO)*BI(PHI,1)
RETURN

100 H4A = 0.DO
RETURN

END



DOUBLE PRECISION FUNCTION H5(V)
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100

H5 =

(V**ONETH ) *EXP (—V*V+*TIME) * (4 *J*K/(J*J + K*K))*AIL(PHI)
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME
COMMON /SCALE / TOBIG1

PARAMETER ( TWOTH=2.D0,/3.D0, ONETH=1.D0/3.D0, ONEFR=1.D0/4 .DO)
PARAMETER (FOURTH = 4.D0/3.D0, THRHF = 3.D0/2.DO0)

DEN = 4.DO*V#*(4.D0/3.D0)
PHI = (1.D0O — 4.DO*R*V*V)/DEN
PHIW = (1.D0 — 4.DO*RW*V*V)/DEN

IHu

T1 = (V**ONETH)*DEXP (~V*V+TIME)
IF(PHIW.GT.TOBIGl) GOTO 100

F1 = (V**TWOTH)*AIP(PHIW,1) + O.S5DO*ATI(PHIW,1)
F2 = (V**TWOTH)*BIP(PHIW,1) + 0.5DO*BI(PHIW,1)
T2 = 4.DO*F1*F2/(FL*F1 + F2%F2)

H5 = T1*T2*AT(PHT,1)

RETURN

ARGl = —-FOURTH*PHIW**THRHF
S1 = (V**TWOTH)*AIP(PHIW,2)*DSQRT(PHIW) + O.S5DO*AI(PHIW,2)

S2 = (V**TWOTH)*BIP(PHIW,2)*DSQRT(PHIW) + 0.5DO*BI(PHIW,?2)
S3 = 4,D0*S1*DEXP(ARG1)/S2

IF({PHI.GT.TOBIG1l) GOTO 200

H5 = T1*S3*AL(PHI,1)

RETURN

H5 = (T1*S3*DEXP(-~TWOTH*PHI**THRHF)/PHI**0ONEFR)*AI(PHI,2)
RETURN

END



DOUBLE PRECISION FUNCTION H6(V)
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Hé =

(V**ONETH ) *EXP (—V*V*TIME) * (4*J*K/(J*J + K*K))*BI(PHI)

Ldrvdrvdrvanvdnd
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME
COMMON /SCALE / TOBIG1

PARAMETER ( TWOTH=2.D0/3.D0, ONETH=1.D0/3.D0,ONEFR=1.D0/4 .D0)
PARAMETER (FOURTH = 4.D0/3.D0, THRHF = 3.D0/2.DO0)

DEN = 4.DO*V**(4.D0/3.D0)
PHI = (1.DO — 4.DO*R*V*V)/DEN
PHIW = (1.D0 — 4.DO*RW*V*V)/DEN

o

Tl = (V**ONETH)*DEXP(-V*V*TIME)
IF(PHIW.GT.TOBIG1) GOTO 100

Fl = (V**TWOTH)*AIP(PHIW,1) + 0.5DO*ATI(PHIW,1)
F2 = (V**TWOTH)*BIP(PHIW,1) + 0.5D0*BI(PHIW,1)
T2 = 4.DO*F1*F2/(F1*F1 + F2*%F2)
H6 = T1*T2*BI(PHI,1)
RETURN

LOO ARGl = -FOURTH*PHIW**THRHF

S1 = (V**TWOTH)*AIP(PHIW,2)*DSQRT{PHIW) + O.5DO*AI(PHIW,2)

S2

It

(V**TWOTH) *BIP (PHIW, 2) *DSQRT({PHIW) + 0.S5DO*BI(PHIW,2)
S3 = 4.DO*S1*DEXP(ARG1)/S2

IF(PHI.GT.TOBIG1l) GOTO 200

H6 = T1*S3*BI(PHI,1)

RETURN

200 H6 = (T1*S3*DEXP(TWOTH*PHI**THRHF)/PHI**ONEFR)*BI{(PHI, 2)
RETURN

END



DQUBLE PRECISION FUNCTION H7(V)
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H7 =

(V**ONETH ) *EXP (-VAV*TIME) * ( (3*J*J — K*K)/(J*J + K*K))*AI(PHI)

FhhkhkhkhkhhkkihhhhhdhhhdhhhdhhhhhXxXhhhhhhhdhkkhdhhhhhdhhhhixhkrhhhkhkhhhhkhhhhrkhkhik

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /VALUES/ R, RW, R1l, R1A, SLOPE, TIME
COMMON /SCALE / TOBIG1

PARAMETER ( TWOTH=2.D0/3.D0,ONETH=1.D0,/3 .D0,ONEFR=1.D0/4 .D0)
PARAMETER (FOURTH = 4.D0/3.D0, THRHF = 3.D0/2.D0)

DEN = 4,D0*V%*(4,D0/3.D0)
PHI = (1.D0 — 4.DO*R*V*V)/DEN
PHIW = (1.D0 — 4.DO*RW*V*V)/DEN

([

Tl = (V**ONETH)*DEXP(—-V*V*TIME)
IF{PHIW.GT.TOBIG1) GOTO 100

F1 = (V**TWOTH)*AIP(PHIW,1) + 0.5DO*AI(PHIW,1)

F2 = (V**TWOTH)*BIP(PHIW,1) + 0.5DO*BI(PHIW,1)
T2 = (3.DO*F1*F1l — F2+F2)/(F1*Fl + F2*F2)

H7 = T1*T2*AI(PHI,1)

RETURN

IF(PHI.GT.TOBIGl) GOTO 200
H7 = —-T1*AI(PHI,1)
RETURN

H7 = —(T1*DEXP{—TWOTH*PHI**THRHF) /PHI**ONEFR)*AI(PHI,2)
RETURN

END
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200

SUBROUTINE FROQTI1(V,START,ROOT, IEND)
R L L L R 3 d kL L A L L ]

THIS SUBROUTINE DETERMINES THE ROOTS OF THE INTEGRAND H1;
IT FINDS THE INTERVAL IN WHICH THE INTEGRAND CHANGES SIGN AND

THEN USES THE FUNCTION 'ZERO’

TO DETERMINE THE ROOT.

L e R e b R R R R R R R R R R

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /VALUES/ R, RW, R1, R1lA, SLOPE, TIME

IEND = 0

DCSI = 0.01D0
IF(V.LT.1.5D0) DCSI =
IF(V.LT.0.75D0) DCSI =

IF(V.LT.0.3D0) DCST

CSIL = START
FL = H1(V,CSIL)

CSIR = CSIL + DCSI
IF(CSIR.GT.R1) GOTO 900

FR = H1(V,CSIR)

SIGN = FL*FR
IF(SIGN.LT.0.D0) GOTO 800
CSIL = CSIR

FL = FR

GOTO 600

ROOT

ZEROL(V,CSIL,CSIR)
RETURN

IEND
ROOT

[l
=)
]_I

RETURN

END

0.05D0
0.1D0
0.2D0



DOUBLE PRECISION FUNCTION ZERO1(V,A,B)
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FUNCTION SUBROUTINE ZERO. THIS IS A FORTRAN TRANSLATION

OF THE ALGORITHM OF BRENT FCOR FINDING THE ZERO QOF A FUNCTION

WHICH CHANGES SIGN IN A GIVEN INTERVAL. REFERENCE IS

'"ATLGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES' BY RICHARD

P. BRENT, 1973, PRENTICE-HALL.

THE ALGORITHM USED HERE IS ON PAGE 188 OF THIS BOOK (IN THE APPENDIX)
IT IS WRITTEN SEPARATELY IN THE 'CHIA' SUBDIRECTORY AS 'BRENT.FOR'.

NOTE: TO CHANGE TO ANOTHER FUNCTION, THERE ARE 3 FCT EVALUATIONS IN
THIS ROUTINE (2 AT THE START, 1 AT THE END)

(2020202020201 0101121a0kr02142a
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IMPLICIT DOUBLE PRECISION (A-H,Q0-%)

REAT*8 MACHEP, M

DATA MACHEP, T/1.D-17, 1.D-17/

SA = A
SB = B
FA = H1(V,SA)
FB = H1(V,SB)
LO C = SA
FC = FA
E = SB ~ SA
D==E
20 IF(DABS(FC) .GE.DABS(FB)) GOTO 30
SA = SB
SB =C
C = SA
FA = FB
FB = FC
FC = FA
30 TOL = 2.DO*MACHEP*DABS(SB) + T

M = 0.5D0*(C — SB)
IF( (DABS(M).LE.TOL).OR. (FB.EQ.0.D0)) GOTO 140
IF( (DABS(E).GE.TOL).AND. (DABS(FA).GT.DABS(FB))) GOTO 40

E=M

D=E

GOTO 100
10 S = FB/FA

IF(SA.NE.C) GOTO 50
P = 2.D0*M*S

Q0 =1.D0 - S
GOTO 60
50 Q = FA/FC
R = FB/FC
P = S*(2.DO*M*Q*(Q — R) — (SB — SA)*(R - 1.D0))
Q0 = (Q - 1.D0)*(R — 1.D0)*(S — 1.DO0)



60 IF(P.LE.0.DO) GOTO 70

70 P=-pP
80 S =E

IF((2.D0*P.GE.3.D0*M*0Q-DABS(TOL*Q)).OR. (P.GE.DABS(0.5D0*3*Q))) GOTO 90
D = P/Q
GOTO 100

90

100 SA = SB
FA = FB
IF(DABS(D).LE.TOL) GOTO 110
SB = SB + D
GOTO 130

110 IF(M.LE.0.D0O) GOTO 120
SB = 8B + TOL
GOTO 130

120 SB = 8B - TOL

130 FB = H1(V,SB)
IF((FB.GT.0.D0).AND. (FC.GT.0.D0)) GOTO 10
IF((FB.LE.0.D0O).AND. (FC.LE.0.D0)) GOTO 10
GOTO 20

140 ZEROL = SB

RETURN
END
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COMPUTES THE INTEGRAL OF F(X)DX FROM X=XA TO X=XB USING A
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DOUBLE PRECISION FUNCTION GAUSS1(V,XA,XB)

20—POINT GAUSSIAN QUADRATURE METHOD

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION Z(10),WT(10)

DATA Z /0.076526521133497D0,0.
0.37370608871542D0 ,0
0.63605368072652D0 ,0
0.83911697182222D0 ,0
0.96397192727791D0 ,0

DATA WT/0.15275338713073D0 ,0
0.14209610931838D0 ,0
0.11819453196152D0 ,0.
0.083276741576705D0,0.
0.040601429800387D0,0.

NN = 10

Cl = (XB-XA)/2.0D0

C2 = (XB+XA)/2.0D0

SUM = 0.0D0

DO 1 I=1, NN

2771
27272

Z(I)*Cl + C2

[I']

—Z(I)*Cl + C2

SUM = SUM + WT(I)*(HL(V,ZZZ1)

GAUSS1 = Cl*SUM

RETURN
END

22778585114165D0,

.51086700195083D0,
.74633190646015D0,
.91223442825133D0,
.99312859918509D0/
.14917298647260D0,
.13168863844918D0,

10193011981724D0,
062672048334109D0,
017614007139152D0/

+ H1(V,ZZZ2))



SUBROUTINE FRQOOTZ2(V,START,ROOT, TEND)
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THIS SUBROUTINE DETERMINES THE ROOCTS OF THE INTEGRAND H2;
IT FINDS THE INTERVAL IN WHICH THE INTEGRAND CHANGES SIGN AND
THEN USES THE FUNCTION 'ZERO' TO DETERMINE THE ROOT.
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IMPLICIT DOUBLE PRECISION (A-H,0-%)
CCMMON /VALUES/ R, RW, R1, R1A, SLOPE, TIME

IEND = 0

DCSI = 0.01D0

IF(V.LT.1.5D0) DCSI = 0.05D0
IF(V.LT.0.75D0) DCST = 0.1D0
IF(V.LT.0.3D0) DCSI = 0.2D0

CSIL = START
FL = H2(V,CSIL)

CSIR = CSIL + DCSI
IF(CSIR.GT.R1) GOTQO 900
FR = H2(V,CSIR)

SIGN = FL*FR
IF(SIGN.LT.0.D0) GOTO 800
CSIL = CSIR

FL = FR

GOTO 600

ROOT

ZERO2(V,CSIL,CSIR)
RETURN

IEND
ROOT

b
[

RETURN

END



DOUBLE PRECISION FUNCTION ZERO2(V,A,B)
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FUNCTION SUBROUTINE ZERQ. THIS IS A FORTRAN TRANSLATION

OF THE ALGORITHM OF BRENT FOR FINDING THE ZERO OF A FUNCTION

WHICH CHANGES SIGN IN A GIVEN INTERVAL. REFERENCE IS

'ATGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES' BY RICHARD

P. BRENT, 1973, PRENTICE-HALL.

THE ALGORITHM USED HERE IS ON PAGE 188 OF THIS BOOK (IN THE APPENDIX)
IT IS WRITTEN SEPARATELY IN THE 'CHIA' SUBDIRECTORY AS 'BRENT.FOR'.

NOTE: TO CHANGE TO ANOTHER FUNCTION, THERE ARE 3 FCT EVALUATIONS IN
THIS ROUTINE (2 AT THE START, 1 AT THE END)

L R R b R R R R N S e L,

IMPLICIT DOUBLE PRECISION (A-H,0-%2)
REAL*8 MACHEP, M

DATA MACHEP, T/1.D-17, 1.D-17/

SA = A
SB = B

FA = H2(V,SA)

FB = H2(V,SB)

C = SA

FC = FA

E =SB - SA

D=E
IF(DABS(FC).GE.DABS(FB)) GOTO 30
SA = SB

SB = C

C = 8A

FA = FB

FB = FC

FC = FA

TOL = 2.DO*MACHEP*DABS(SB) + T

M = 0.5D0*(C — SB)

IF((DABS(M).LE.TOL).OR. (FB.EQ.0.D0)) GOTO 140

IF( (DABS(E).GE.TOL) .AND. (DABS(FA) .GT.DABS(FB))) GOTO 40

E=M
D=E
GOTO 100
S = FB/FA

IF(SA.NE.C) GOTO 50
P = 2.D0*M*S

Q=1.D0 - 8

GOTO 60

Q = FA/FC

R = FB/FC

P = S*(2.DO*M*Q*(Q — R) - (SB - SA)*(R — 1.D0))
Q= (Q - 1L.DO)*(R — 1.D0O)*(S — 1.D0)



60

70

80

90

100

110

120
130

140

IF(P.LE.0.D0O) GOTO 70

Q= -9
GOTO 80

P = -P

S = E

E=D

IF((2.DO*P.GE.3.DO*M*Q-DABS(TOL*Q) ).OR. (P.GE.DABS(0.5D0*S*Q)}) GOTO 90
D =P/Q

GOTO 100

E=M

D=E

SA = SB

FA = FB

IF(DABS(D).LE.TOL) GOTO 110

SB = SB + D

GOTO 130

IF(M.LE.0.D0) GOTO 120
SB = SB + TOL
GOTO 130

SB = SB - TOL
FB = H2(V,SB)

IF((FB.GT.0.D0).AND. (FC.GT.0.D0)) GOTO 10
IF((FB.LE.0.DO).AND. (FC.LE.0.D0)) GOTO 10
GOTO 20

ZERO2 = SB

RETURN
END
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DOUBLE PRECISION FUNCTION GAUSS2({V,XA,6XB)

S T R e SR Rt R ARSI ST
COMPUTES THE INTEGRAL OF F(X)DX FROM X=X& TQO X=XB USING A

20—POINT GAUSSIAN QUADRATURE METHCD

ef e e R L g R L L R e S L LL %

IMPLICIT DOUBLE PRECISIQON (A-H,0-Z)

DIMENSION Z(10),WT(10)

DATA Z /0.076526521133497D0,0.
0.37370608871542D0 ,0.
0.63605368072652D0 ,0.
0.83911697182222D0 ,0.
0.96397192727791D0C ,0.

DATA WT/0.15275338713073D0 ,0.

r

0.14209610931838D0 ,0.
0.11819453196152D0 ,0.
0.083276741576705D0,0.
0.040601429800387D0,0.

NN = 10

Cl = (XB-XA)/2.0D0

C2 = (XB+XA)/2.0D0

SUM = 0.0D0

DO 1 I=1, NN
ZZZ1 = Z(I)*Cl + C2
Z7%2 = —Z(I)*Cl + C2

SUM = SUM + WT(I)*(H2(V,Z2Z1)
GAUSS2 = Cl*SUM

RETURN
END

22778585114165D0,
51086700195083D0,
74633190646015D0,
91223442825133D0,
99312859918509D0/
14917298647260D0,
13168863844918D0,
10193011981724D0,
062672048334109D0,
017614007139152D0/

+ H2(V,ZZZ2))



DOUBLE PRECISION FUNCTION AI(Z,IOPT)
(M R L R L L e AT,

THIS FUNCTION SUBROUTINE COMPUTES THE AIRY FUNCTION AI(Z).

C
C
C FOR POSITIVE ARGEMENTS, A SCALING OPTION IS AVAILABRLE.

o IF IOPT=1, THE RESULT IS NOT SCALED.

C IF IOPT=2, THE RESULT IS THE FUNCTION VALUE MULTIPLIED BY
C (Z**0,25)*EXP(U), WHERE U=(2./3.)*(Z**1,5)

C

C

C

C

FOR NON-POSITIVE ARGUMENTS, NO SCALING OPTION IS AVAILABLE., IF

IOPT IS SET TO 2, IT IS IGNORED, AND A WARNING IS PRINTED.
R R £ 2.2 L Lt N T T

IMPLICIT DOUBLE PRECISION (A-H,0-%)

DATA C1,C2,PI/.35502 80538 878D0,.25881 94037 928D0,
1  3.14159 26535 90D0/

DATA COEF1,COEF2,COEF3,COEF4,COEF5, COEF6,/9.555526226877D-29,
1 4.235605597020D~32,1.661021802753D-35 1. 013578212294D-29,
2 4.309431174718D-33,1.624974047782D-36/

PID4=PI/4.DO0

PIRT2=DSQRT(PI)*2.D0

TWTHRD=2.D0 /3. D0

IF (%.GT.4.8D0) GOTO 100

IF (Z.LT.-5.D0) GOTO 200

S COMPUTE AI(Z) FOR -5.0 < Z < 4.8

P=Z**3

F=1.DO+P*{ 1.666666666667D~01+P*( 5.555555555556D-03+

1 P*( 7.716049382716D-05+P*( 5.845491956603D~07+

2 P*( 2.783567598382D-09+P*( 9.096626138505D-12+

3 P*( 2.165863366311D-14+P*( 3.923665518679D-17+

4 P*( 5.589267120625D—20+P*( 6.424444966235D-23+

5 P*( 6.083754702874D-26+P*( 4.828376748313D-29+

6 P*( 3.258014000211D-32+P*( 1.891994192922D-35+

7 P*( 1.0D-10*COEF1+P*( 1.0D-10*COEF2+

8 P*( 1.0D-10* COEF3)))))))))))))))))
=Z*()..DO+P*( 8.333333333333D-02+P*( 1.984126984127D-03+

1 P*( 2.204585537919D-05+P*{ 1.413195857640D-07+

2 Px( 5.888316073501D-10+P*( 1.,721729846053D-12+

3 P*( 3.726687978470D-15+P*( 6.211146630783D-18+

4 P*( 8.215802421670D-21+P*( 8.834196152333D-24+

5 P*( 7.873615109032D-27+P*( 5.911122454228D-30+

6 P*( 3.789181060403D-33+P*( 2,098106899448D~36+

7 P*( 1.0D-10*COEF4+P* ( 1.0D-10*COEF5+

8 Px( 1.0D-10*COEF6)))))))N)INNIMNN

AT=Cl*F-C2*G

IF (IOPT.EQ.2) GOTO 20

RETURN

20 IF (%Z.GT.0.D0) GOTO 30
WRITE (30,900)
RETURN

30 U=TWTHRD*Z**1, 5D0
AT=(Z**0.25D0)*DEXP (U) *AT
RETURN

—————e COMPUTE AI(Z) FOR Z > 4.8

00  U=TWTHRD*Z**1.5D0

P=1.D0/U

A=1.DO+P*(—6.944444444444D-02+P*( 3.713348765432D-02+
1 P*(—3.799305912780D-02+P*( 5.764919041267D~02+



P*(—1.160990640255D-01+P*( 2.915913992307D-01+
P*(~8.776669695100D-01+P*( 3.079453030173D+00+
P*(-1.234157333235D+01+P*( 5.562278536591D+01+
P*(—2.784650807776D+02+P*( 1.533169432013D+03+
P*(~9.207206599726D+03)))))))))))))
IF (IOPT.EQ.2) GOTO 130
AT=A*DEXP(-U)/PIRT2/(Z**0.25D0)
RETURN
130  AT=A/PIRT2
RETURN
C—————- COMPUTE AI(Z) FOR Z < -5.0
200 ZN=-%
UN=TWTHRD*ZN**1 . 5D0
W=UN+PID4
P=1.D0/(UN**2)
A=1.DO+P*(—3.713348765432D-02+P*( 5.764919041267D-02+
1 P*(—2.915913992307D-01+P*( 3.079453030173D+00+
2 P#(—5.562278536591D+01+P*( 1.533169432013D+03+
3 P*(~5.989251356587D+04+P*( 3.148257417867D+06))))))))
B=(1.DO/UN)*( 6.944444444444D-02+P*(-3,799305912780D-02+
1 P*({ 1.160990640255D-01+P*(-8.776669695100D-01+
2
3

YU W

P*( 1.234157333235D+01+P*(—2.784650807776D+02+
P*( 9,207206599726D+03+P*(—4.195248751165D+05))})))))
AI=(DSIN(W)*A-DCOS(W)*B)/DSQRT(PI*DSQRT( ZN))
IF (IOPT.EQ.2) WRITE (30,900)

RETURN

900 FORMAT ('***WARNING*** IOPT=2 IS IGNORED FOR A NON-POSITIVE ',
1 'ARGUMENT OF AI(Z).')
END

(20202

DOUBLE PRECISION FUNCTION BI(Z,IOPT)
S Ly  E  E R e e N I e I

THIS FUNCTION SUBROUTINE COMPUTES THE AIRY FUNCTION BI(Z).

FOR POSITIVE ARGEMENTS, A SCALING OPTION IS AVAILABLE.

IF IOPT=1, THE RESULT IS NOT SCALED.

IF IOPT=2, THE RESULT IS THE FUNCTION VALUE MULTTIPLIED BY
(Z2**0.25)*EXP(-U), WHERE U=(2,/3.)*(Z**1.5)

FOR NON-POSITIVE ARGEMENTS, NO SCALING OPTION IS AVAILABLE. IF
IOPT IS SET TO 2, IT IS IGNORED, BUT A WARNING IS PRINTED.
***********************************************************************
IMPLICIT DOUBLE PRECISION (A-H,0-%)
DATA D1,D2,PI/.61492 66274 460D0,.44828 83573 538DO0,
1 3.14159 26535 90D0/
DATA COEF1,COEF2,COEF3,COEF4,COEFS,COEF6,/9.555526226877D—29,
1 4.235605597020D-32,1.661021802753D-35,1.013578212294D—29,
2 4.309431174718D-33,1.624974047782D-36/
PID4=PI/4.D0
PIRT=DSQRT(PI)
TWTHRD=2.D0/3.DO0
IF (Z.GT.4.8D0) GOTO 100
IF (Z.LT.—5.D0) GOTO 200
S COMPUTE BI(Z) FOR -5.0 < % < 4.8
P=Z%%3

C202020202C0202C0202¢(2



F=1.DO+P*( 1.666666666667D-01+P*( 5.555555555556D—03+
Px{ 7.716049382716D-05+P*( 5.845491956603D-07+
P*({ 2.783567598382D~09+P*( 9.096626138505D—12+
P*({ 2.165863366311D-14+P*( 3.923665518679D—17+
P*({ 5.589267120625D-20+P*( 6.424444966235D-23+
P*( 6.083754702874D-26+P*( 4.828376748313D~29+
P*( 3.258014000211D-32+P*( 1.891994192922D—35+
P*( 1.0D-10*COEF1+P* ( 1.0D-10*COEF2+
P*( 1.0D-10*COEF3) )N NN1nnn

G=Z*(1.DO+P*(

8.333333333333D-02+P*(

.984126984127D-03+

P*( 2.204585537919D-05+P*( 1.413195857640D-07+
P*( 5.888316073501D-10+P*( 1.721729846053D-12+
P*( 3.726687978470D-15+P*( 6.211146630783D-18+
P*( 8.215802421670D-21+P*( 8.834196152333D-24+

MU’!COO\I—‘F—']—'

P*( 7.873615109032D—27+P*{ 5.911122454228D-30+
P*( 3,789181060403D-33+P*{ 2.098106899448D-36+
P*( 1.0D~10*COEF4+P* 1.0D-10#*COEF5+

X~ WP O-ITN Ut W

P*( 1.0D—10*COEF6))))))})))NNINN
BI=D1*F+D2*G
IF (IOPT.EQ.2) GOTO 20
RETURN
20 IF (%Z.GT.0.D0) GOTO 30
WRITE (30,900)
RETURN
30 U=TWTHRD*Z**1, 5D0
BI=(Z**0,25D0)*DEXP(-U)*BI
RETURN
e COMPUTE BI(Z) FOR Z > 4.8
U=TWTHRD*Z**1 . 5D0
P=1.D0/U
A=1.DO+P*(
P
P (
P (
P*(

.944444444444D-02+P*
.799305912780D—02+P* (
.160990640255D-01+P*
.776669695100D—01+P* (
.234157333235D+01+P*( 5.562278536591D+01+

P*( 2.784650807776D+02+P*( 1.533169432013D+03+

P*( 9.207206599726D+03)))))))))))))
IF (IOPT.EQ.2) GOTO 130
BI=A*DEXP(U)/PIRT/(Z**0.25D0)
RETURN
BI=A/PIRT
RETURN
- COMPUTE BI(Z) FOR Z < —5.0
ZN=—7%
UN=TWTHRD*ZN**1 . 5D0
W=UN+PID4
P=1.D0/(UN**2)
A=1.DO+P*(—3.713348765432D-02+P*( 5.764919041267D~02+
1 P*(-2.915913992307D-01+P*( 3.079453030173D+00+
2 P*(-5.562278536591D+01+P*( 1.533169432013D+03+
3 P*(~-5.989251356587D+04+P*( 3.148257417867D+06))))))))
B=(1.DO/UN)*( 6.944444444444D-02+P*(-3,799305912780D-02+
1 Px( 1.160990640255D-01+P*(-8.776669695100D—01+
2
3

.713348765432D-02+
.764919041267D—-02+
.915913992307D-01+
.079453030173D+00+

AU W
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P*({ 1.234157333235D+01+P*(—2.784650807776D+02+
P*( 9.207206599726D+03+P*(—4,195248751165D+05))))))))
BI=(DCOS(W)*A+DSIN(W)*B)/DSQRT(PI*DSQRT(ZN) )
IF (IOPT.EQ.2) WRITE (30,900)
RETURN
FORMAT ('***WARNING*** IQPT=2 IS IGNORED FOR A NON-POSITIVE ',
1 'ARGUMENT OF BI(Z).')

300



END
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DOUBLE PRECISION FUNCTION AIP(Z,IOPT)
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THIS FUNCTION SUBROUTINE COMPUTES AIP(Z), THE FIRST DERIVATIVE OF
THE AIRY FUNCTION AI(Z).

FOR POSITIVE ARGEMENTS, A SCALING QPTION IS AVAILABLE.

IF IOPT=1, THE RESULT IS NOT SCALED.

IF IOPT=2, THE RESULT IS THE FUNCTION VALUE MULTIPLIED BY
EXP(U)/(2**0.25), WHERE U=(2./3.)*(Z**1.5)

FOR NON-POSITIVE ARGUMENTS, NO SCALING OPTION IS AVAILABLE. IF
IOPT IS SET TO 2, IT IS IGNORED, AND A WARNING IS PRINTED.
LR SR SRRt R Rt o R R R R R R g R e R L
IMPLICIT DOUBLE PRECISION (A-H,0-%)
DATA C1,C2,PI/.35502 80538 878D0,.25881 94037 928DO0,
1 3.14159 26535 90DO0/
DATA COEF1,COEF2,COEF3,COEF4,COEF5,COEF6/4.066181373139D-30,
1 1.694242238808D-33,6.268006802841D-37,4.662459776551D-28,
2 2.111621275612D-31,8.449865048466D-35/
PID4=PI/4.D0
PIRT2=DSQRT(PI)*2.D0
TWTHRD=2.D0/3.DO0
IF (Z.GT.4.8D0) GOTO 100
IF (Z.LT.-5.D0) GOTO 200
S COMPUTE AIP(Z) FOR —5.0 > Z > 4.8
P=7%%3
ZZD2=Z*%2/2.D0

[P IO A O I O 6 N OF AP R OF RO R O]

F=22D2* (1.DO+P*( 6.666666666667D—02+P*( 1.388888888889D—03+
1 Px( 1.402918069585D-05+P*( 8.350702795147D-08+
2 Px( 3.274785409862D-10+P*( 9.096626138505D-13+
3 P*( 1.883359448966D-15+P*( 3.018204245137D-18+
4 P*( 3.854666979741D-21+P*( 4.015278103897D—24+
5 Px( 3.476431258785D~27+P*{ 2.541250920165D—30+
6 P*( 1.589275122054D-33+P*( 8.599973604190D-37+
7 P ( 1.0D-10*COEFL1+P* 1.0D-10*COEF2+
8 P*( 1.0D-10*%COEF3))))))))) 1))
G=1.DO+P*( 3.333333333333D-01+P*( 1.388888888889D-02+

1 Px( 2,204585537919D-04+P*( 1.837154614932D-06+

2 Px( 9.421305717602D-09+P*( 3.271286707501D-11+

3 P*( 8.198713552633D-14+P*{ 1.552786657696D—16+

4 P*( 2.300424678068D-19+P*( 2.738600807224D-22+

5 P*( 2.677029137071D-25+P*( 2.187115308064D—28+

6 Px( 1.515672424161D-31+P*( 9.021859667626D~35+

7 P* ( 1.0D~10*COEF4+P* ( 1.0D-10*COEF5+

8 P 1.0D-10*COEF6)))))))))) 1))

AIP=C1*F-C2*G
IF (IOPT.EQ.2) GOTO 20
RETURN

10 IF (Z.GT.0.D0) GOTO 30
WRITE (30,900)
RETURN

10 U=TWTHRD*Z**1 . 5D0



200
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ATP=DEXP (U)*AIP/(%**0.25D0)

RETURN

———COMPUTE AIP(Z) FOR Z > 4.8

U=TWTHRD*Z**1 . 5D0

P=1.D0/U

A=1.DO+P*( 9.722222222222D-02+P*(—4.388503086420D-02+
P*( 4.246283078989D-02+P*(—6.266216349203D-02+
P*( 1.241058960273D-01+P*(—3.082537649011D-01+
P*({ 9.204799924129D-01+P*(—3.210493584649D+00+
P*( 1.280729308074D+01+P*(—5.750830351391D+01+
P*( 2.870332371092D+02+P*(—1.576357303337D+03+
P*( 9.446354823095D+03)))))))))))))

IF (IOPT.EQ.2) GOTO 130

ATIP=—A*DEXP(-U)*(Z**0,25D0) /PIRT2

RETURN

AIP=—A/PIRT2

RETURN

O Ul b

————COMPUTE AIP(Z) FOR Z < -5.0

ZN=-7%
UN=TWTHRD*ZN**1 . 5D0
W=UN+PID4
P=1.D0/(UN**2)
A=1.DO+P*( 4.388503086420D-02+P*(—6.266216349203D~02+
P*( 3.082537649011D-01+P*{—3.210493584649D+00+
Px( 5.750830351391D+014P*(-1.576357303337D+03+
P*( 6.133570666385D+04+P*(—3,214536521401D+06))))))))
B=(1.D0/UN)*(—9.722222222222D—02+P*( 4,246283078989D-02+
P*(—1.241058960273D-01+P*{ 9.204799924129D-01+
P*(—1.280729308074D+01+P*( 2.870332371092D+02+
P*(—9.446354823095D+03+P*( 4,289524004000D+05))))))))
AIP=—(DCOS (W) *A+DSIN(W)*B)*DSQRT (DSQRT( ZN) /PI)
IF (IOPT.EQ.2) WRITE (30,900)

WP W=

RETURN

FORMAT ('***WARNING*** IOPT=2 IS IGNORED FOR A NON-POSITIVE ',
i 'ARGUMENT OF AIP(Z).')

END

DOUBLE PRECISION FUNCTION BIP(Z, IOPT)
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THIS FUNCTION SUBROUTINE COMPUTES BIP(Z),THE FIRST DERIVATIVE OF
THE AIRY FUNCTION BI(Z).

POR POSITIVE ARGEMENTS, A SCALING OPTION IS AVATIABLE.

IF IOPT=1, THE RESULT IS NOT SCALED.

IF IOPT-2, THE RESULT IS THE FUNCTION VALUE MULTIPLIED BY
EXP(-U)/(Z**0.25), WHERE U=(2./3.)*(Z**1.5)

FOR NON—-POSITIVE ARGEMENTS, NO SCALING OPTION IS AVAIILABLE. IF
IOPT IS SET TO 2, IT IS IGNORED, BUT A WARNING IS PRINTED.

L e RS R R R RS e S R T R R R R R Rl L L L A Ay

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DATA D1,D2,PI/.61492 66274 460D0,.44828 83573 538D0,

1 3.14159 26535 90D0/

DATA COEF1,COEF2,COEF3,COEF4,COEF5,COEF6/4.066181373139D-30,



2 1.694242238808D-33,6.268006802841D-37,4.662459776551D-28,
3 2.111621275612D-31,8.449865048466D—35/

PID4=PI/4.D0

PIRT=DSQRT(PI)

TWTHRD=2.D0/3.D0

IF (Z.GT.4.8D0) GOTO 100

IF (Z.LT.-5.D0) GOTO 200

C—————mmm COMPUTE BIP(Z) FOR -5.0 < Z < 4.8
P=Z%%3
ZZD2=7*%2/2.D0

F=ZZD2*(1.DO+P*( 6.666666666667D—02+P*( 1.388888888889D-03+
1 P*( 1.402918069585D-05+P*( 8.350702795147D-08+
2 P*( 3.274785409862D-10+P*( 9.096626138505D-13+
3 P*( 1.883359448966D-15+P*( 3.018204245137D-18+
4 P*( 3.854666979741D-21+P*( 4.015278103897D-24+
5 P*( 3.476431258785D-27+P*( 2.541250920165D-30+
6 P*( 1.589275122054D-33+P*( 8.599973604190D~37+
7 P ( 1.0D-10*COEF1+P*( 1.0D-10*COEF2+
8 P*( 1.0D-10*COEF3))))))))))))))))))

G=1.DO+P*( 3.333333333333D-01+P*( 1.388888888889D-02+
1 P*( 2.204585537919D-04+P*( 1.837154614932D-06+
2 P*( 9.421305717602D-09+P*( 3.271286707501D-11+
3 P*( 8.198713552633D-14+P*( 1.552786657696D-16+
4 P*( 2.300424678068D-19+P*( 2.738600807224D-22+
5 P*( 2.677029137071D-25+P*( 2.187115308064D~28+
6 P*( 1.515672424161D-31+P*( 9.021859667626D-35+
7 P*( 1.0D-10*COEF4+P* ( 1.0D-10*COEF5+
8 P*( 1.0D-10*COEF6))}))))))))))))))

BIP=D1#*F+D2*G

IF (IOPT.EQ.2) GOTO 20

RETURN

IF (Z.GT.0.D0) GOTO 30
WRITE (30,900)

RETURN

U=TWTHRD*Z**1 . 5D0

BIP=BIP*DEXP(—U)/(Z**0.25D0)

RETURN
S COMPUTE BIP(Z) FOR Z > 4.8

U=TWTHRD*Z**1 , 5D0

P=1.D0/U
A=1.D0+P*(~9,722222222222D-02+P* (~4 . 3885030864 20D-02+
.246283078989D-02+P* (—6.266216349203D-02+
.241058960273D-01+P* (—3.082537649011D-01+
.204799924129D-01+P* (—3.210493584649D+00+
.280729308074D+01+P* (-5.750830351.391D+01+
.870332371092D+02+P* (-1.576357303337D+03+
.446354823095D+03)))))))))))))

IF (IOPT.EQ.2) GOTO 130
BIP=A*DEXP(U)*(Z**0, 25D0) /PIRT
RETURN

BIP=A/PIRT

RETURN
T COMPUTE BIP(%Z) FOR Z < —-5.0

ZN=—7%

UN=TWTHRD*ZN**1 . 5D0

W=UN+PID4

P=1.D0/(UN**2)

A=1.DO+P*( 4.388503086420D-02+P*(~6.266216349203D—-02+
1 P*( 3.082537649011D—01+P*(—3.210493584649D+00+
2 P*( 5.750830351391D+01+P*(-1.576357303337D+03+
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3 P*( 6.133570666385D+04+P*(~3,214536521401D+06))))))))

B=(1.DO/UN)*(—9.722222222222D-02+P*( 4.246283078989D-02+
Px(-1,241058960273D-01+P*( 9.204799924129D-01+
P*(—1.280729308074D+01+P*( 2.870332371092D+02+
P*(—9.446354823095D+03+P*{ 4.289524004000D+05))))})))

BIP=(DSIN(W)*A-DCOS(W)*B)*DSORT(DSORT(ZN) /PI)

IF (IOPT.EQ.2) WRITE (30,900)

RETURN

900  FORMAT ('***WARNING*+* IOPT=2 IS IGNORED FOR A NON-POSITIVE ',

1 'ARGUMENT OF BIP(Z).')

Wb =

END



