A SPECTRAL-PERTURBATION MODEL
OF WATER-DRIVEN OIL FLOW 1IN

POROUS MEDIA

Peter T. Kallay .

New Mexico Institute of Mining and Technology

‘This independent study
. has been submitted
in partial fulfillment of the
requirements for the degree
Master of Science in Hydrology.



ABSTRACT

The flow of two immiscible fluids through porous media occurs in
many physical situations, in particular during waterflood oil recovery.
Perturbation of governing equations followed by application of the
Spectral Representation Theorem allows stochastic modeling of two-phase
flow in heterogeneous porous media. The spectral-perturbation method is
“applied to both two-dimensional and three-dimensional flow, as well as
to the effective velocity of water. The application of the 'spectral—
perturbation method to two phases is a new deyelopnent, and thu's. many
simplifying assumptions are made; however, the method shows prgm_ise of
developing into an effective tool for stochastic modeling of heteroge-
neous reservoirs. Further work to reduce the restrictiveness of some of
the assmnpf.ions is recommended. '

Compufer programs were writteﬁ to compute spectral densities and
covarianoes for two-dimensiona.l pressure and log saturation, variances
of three-dimensional pressure and log saturation, and the effective
velocity of water. Sensitivity analyses for the variances and effective
velocity to various parameters were carried out. The variances of
pressure and log saf;xn‘ation are lower for three dimensions than for two

dimensions .' The variance of log saturation increases toward‘ an asymp—
totic value , while the variance of pressure decreases substantially as
f,he log-saturation gradient increéses. The sensitivity of log satura-
tion and pressure to correlation léngth is not very great‘, but variance
of log saturation decreases and variance of pressure increases with
increasing correlation length. Effective velocity showed little sensi-
tivity to correlation length, but increased as the absolute value of the

log saturation gradient increased.
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1. INTRODUCTION

NATURE OF PROBLEM

The flow of two immiscible fluids through porous media occurs in a
wide variety of physical situations. Among the most common in the
subsurface environment are waterflooding of an oil reservoir, water
flow through the vadose zone, and organic liquids flowing in an aquifer.

Human activities often create or alter these flows, resulting in
substantial changes from the original flow regimes. To aid in our
understanding of the physical processes involved, understand flow be-
havior in regions where no daﬁa is available, and predict future
behavior, it is generally desirable to model these fluid flows in some
manner. In fact, modeling is almost always used before large-scale
activities designed to modify fluid flows are undertaken.

Modeling of the subsurface flow, in general, consists of represent-
ing the fluid phases in the heterogeneous environment in some simplified
manner while still allowing a reasonably accurate representation of
fluid behavior. Most commonly, a mathematical model is used. To be
useful, a mathematical‘model must be amenable fo some sort of a solution
technique.

Because the different situations involving flow of two fluid phases
can differ greatly depending on relative importance of gravity, phase
changes, compressibility, chemical changes, adsorption, and numerous
other factors, this model will be developed in the context of a parti—‘
cular physical situation - the horizontal flow of oil and water. More
specifically, the situatioh of interest generally involves water pushihg
oil ahead of it and within it. In this study, the term "two-phase flow"

will always refer to two distinct, immiscible fluid phases being present
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in the system. While the solid-phase matrix is always preéent, the two
phases being referred to are not to be construed as including this
phase. -

While the topic of this study may appear to be of interest
primarily to petroleum engineers, it, in fact, presents a situation of
interest to a number of disciplines dealing with flow in porous media.
For example, a someﬁhat similar situation is faced by hydrologists
investigating immiscible fluids displacing groundwater, which often
occurs in refined oil product spills. An even more similar situation
occurs if flushing of this oil product with water is used as a cleanup
strategy after such a spill.

This chapter introduces the fundamental physical relationships
which govern two-phase flow. It is shown that stochastic ﬁodels, and in
particular the spectral-perturbation approach, are appropriate for
modeling two-phase flow when it is desired to model the heterogeneity of

the reservoir.

PURPOSE OF THIS WORK

This study seeks to show that stochastic methods are suitable for
modeling fluid behavior in heterogeneous porous media when it is desired
to include such heterogeneity in the model. More specifically, the
spectral-perturbation approach is developed as a useful technique for
increasing our understanding of fluid behavior in the framework of
waterflooding of an oil reservoir. Within this context, the purpose is
twofold: to demonstrate the applicability and usefulness of the
spectral-perturbétion approach for modeling two-phase flow,vand to draw

conclusions from the application of this model to such flows.
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This paper presents a ney.vly—developed extension of the spectral-
perturbation technique to two-phase flow from its former use only for
singlg—phase flow. This being a new development, the simplifying
assumptions aré restrictive in some instances. Thi‘s study does not
intend to show a highly refined, perfected model. In this type of work,
it is suggested that the attention be focused on the validity of the
method being developed, and possibilities in its application to two-
phase flow. Once this approach is recognized as be1ng valid, further
résearc’h to extend this method to more aocurate. models with less

restrictive assumptions will make the model more useful.

 WATERFLOODING OF AN OIIl. RESERVOIR

Waterfloodingb most c§m0n1y takes place during oil production. In
oil prodﬁction, 0il is usually pumped from a reservoir, which is an oil-
bearing geologic formation, té the surface. In order to maintain a high
rate of oil flow to the production wells, ‘waterflooding is very often
used. Water serves the dual purposes of maintaining high oil pressures
while physically pushing oil toward production wells‘ [Ewing, 19831. The
term "waterflooding" is usually applied to cases in which water is |
artificially forced into reservoirs, usually via injection wells. A
similar situation may also occur naturally. If there is. sufficient
watei' adjacent to a reservoir and permeability is high enouéh to allow a
good flow rate, water may move into the reservoir fast enough without
the need for pumping it.

In most real oil reservoirs at least two, and often three_, fluid

phases are present. In many cases, oil and water predominate, this
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usually being the case in reservoirs while waterflooding is being
carried out.

Crude oil generally contains volatile components which will
vaporize when fluid pressure drops below the bubble-point pressﬁre;
Bubbie—pqint pressure is the pressure, at a given temperature, ‘_belqvli )
which a significant portion of an oil’s components vaporize. Any drop
of pressure below this point allows formation of gases. It has been
shown that the amount of oii recovered during a waterflood is at a
maximum when the preséure is maintained at the bubble-point pressure
[Singh, 1982]. Therefore, waterfloods are often designed so as to
maintain pressure just above bubble-point, to preclude formation of
gases [Morel-;SéytoiD{, 1969.].‘« As long as ‘oil and water are the only two
significant fluid phases pi:'esent, "these ‘_fluids can be modeled as slight-
ly com;;ressible [Huyakorn and Pinder, 1983]. When such flow is
principally horizontal » pressure ranges are usually small relative to

average reservoir pressure, making compressibility relatively

unimportant.

SIMPLIFICATIONS FOR MODELING

Any model for describing fluid behavior in natural geologic
materials requires simpiifications for it to be usable. While such
simplificatibns are necessary, it is still a desirable goal to include
enough physical information for the model to be reasopably realistic and
accurate. ’

A highly simplified approach to modeling oil displacement by water
is to use single-phase flow equations. In this approach, the media is

assumed to be originally completely saturated with oil s and then the oil
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is assumed to be completely displaced by water in a piston-flow type
model [Scheidegger, 1960]. However, -this is an ovérsimplif;fed model
which bears little relation to reality.

More realistic models may incorporate more than one fluid phase,
different properties for each fluid, various rock propertieg, hetefo—
geneities, and other complicating factors [Scheidegger, 1960]. Each of
these extensions makes the mathematical representation more complex and
the solution more difficult to obtain. |

While virtually all multiphase fluid flows involve some dissolution
of compounds from one fluid into f.he other fluid, the term "immiscible"
m that the:re is a pfesénce‘ of two clearly distinct fluids having a
sharp interface at their common boundaries. When the quantity pf one
fluid dissolved in the other is much less than the quantity of each
separate fluid, such dissolution ig usually considered negligil;le for
purpoées of modeling bulk fluid flow and hence is neglected. in thls
work. Of course, in many cases, such dissolution may be important for
other reasons.

Another simplification made in this model is to neglect capillary
pressure. Capillary pressure is usually of substantial importance in
laboratory-scale ‘experiments, but can sometimes be neglected in field-
scale flow modeling [Wélge, 1952]. Therefore, the capillary pressure
(and hence the capillary pressure gradient) are taken to be zero in this
field—sc:ale model. A more complete list of simplifying assumptions is

given in Chapter 3, where the relations are derived in detail.



THE GOVERNING EQUATIONS

The basic relation governing flov;z in porous media at velocities
"normally enooxmtergd in nature is Darcy’s law, discovered by Henry
D’Arcy, a French hydiaulic engineer, _in.1856. This principle is appli-
cable to water, oil, and most other fluids normally encountered in the
subsurface. | | |

The simplest statement of Darcy’s laﬁ is for single-phase flow.

The following equation is in a form commonly used in petroleum reservoir

engineering.’
vs= 'Tk 7 [P + pgzl A | (1.1)
_whéfe- V = Darcy veloéity vector
k = Intrinsic permeability
o= Dynam10 viscosity of fluid
P_.: ‘Pressure of fluid

p = Density of the fluid

g = Acceleration of gravity

Distance in the vertical direction

z

We wish to develop a model for two-dimensional, essentially hori-
zontal flow. For such a model, Darcy’s law is first written separately
for each of the two phases, these being o0il and water in the context of
ﬁaterflood oil production. The following equations are statements of
Darcy’s law for each phase [Morel-Seytoux, 1969].

— + v
v, = Lli 2 (1.2a)

w

Kk,
v, —ﬁ:2 VP, | ~ (1.2b)
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where V, k, it and P have the same meanings as in (1.1), except
the subscript w refers to water only and the sub-

script o refers to oil only.

Ht

Ky

k, = k,(S) = Relative permeability to oil

k.. (S) = Relative permeability to water

S £ §, = Water saturation
Conservation of mass can be expressed in continuity equations
written for each phase, dissolution of one fluid in the other being
considered negligible. These forms are valid for incompressible fluids
[Collins, 1976].

as

dJa—t+V°y_w_=0 (1.3a)
a5 s V. = :
-.-(Dat +V -V, = 0 (1.3b)

Now, equations (11.2) are substituted into (1.3) to give:

a8 kg, R o .
] - i, _
-oﬁ-v[uov%]_o (1.4b)

RELATIVE PERMEABILITIES AND MOBILITY

Relative pexmeabilij:y\is a fundamental concept in immiscible multi-
phase fluid flow. The need for this concept arises because each fluid
occupies only a fractional portion of the total pore space. Thus, each
fluid behaves in some sen_sé like a single fluid phase in a similar
porous medium, but with a lowér porosity. Relative permeability for a
fluid phase i 1s defined as:

k; (S)
k;(8) = —& (1.5)

where k; = k;(S) is the effective permeability of phase i

k is the iﬁtrinsic permeability of the medium
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Note that the use of the word "effective” in cpnneotion with per-
meability, which is in accordance with the petroleum literature, may
differ from the use of this term in hydrologic usage, where it is most
often used tg mean an equivalent average value.

Intrinsic permeability is a function of porous medium properties
only. Effective permeability is a function prinxafily of saturation.
while several factors affect it to some degree, numerous experimental
results indicate that treating effective permeability as a function of
saturation only is a good approximation [Scheidegger, 1966] .

While the nﬁmerical values of relative permeabilities at a given
saturatioh differ for fluids in different medié, thexbésic shapes of
 these .curves .ge’nerally follow Similar patterns. For some examples,
compare Bear [1979], Huyakorn and Pinder [19831, and Amyx, et al [1960].

The ratio of the relative permeability of a fiuid to its viscosity
is defined as the mobility of that fluid. Thus, for a fluid i, the
mobility is:

M = 1:1_1-‘1 . (1.6)
Mobi_lity is a functioh of the saturation, temperature, and pressure of a
fluid. Total mobility is defined as the sum of the mobilities of the
fluids which are present. A

:The viscosities and relative permeabilities of. oi} and water vary
over a substantia.l range @er reservoir conditions, dﬁe to a nmr of
factors. Consequently, mobilities vary .over a wide range. We have
assumed a constant oil-water viscosity ratio of 30:1 for this study,
this being a commonly occurring value. At this visbosity ratio, watér

mobility is several times fhat of oil [Craig, 1971]. Total mobility
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equals oil mobility plus water mobility for our two—phase system. At

the oil-water viscosity ratio being used, the total mobility curve does

not differ greatly in shape or magnitude from the water mobility curve.

HETEROGENEITIES

All real petroleum reservoirs exhibit ‘some degree of heterogeneity,
of both permeability and porosity. Furthermore, each of these hetero-
| geneities occur on various scalés a.nd to various degrees [Dagan, -1986].
In the above equations, k is a function of x for a heterogeneous |
reservoir, and also of direction if the reservoir is anisotropic. The
heterogeneity of porosity is not treated in this work.

Heterogeneity is generally a difficult phenomenon to treat satis-
factorlly in most models. Many models ignore heterogeneltles
completely, treatlng an entire reservoir as 1f it were homogeneous
This may be necessary if only one exploratory well is drilled into a
reservoir, since the fluid and rock properties determined there may have
to be extrapolated to the whole feservoir. In other cases, various pro-
cedures are used to obtaln "representative", mean, average, or effective
parameter values —- single pa.rameter values whlch are used to replace
the entire range of values which actually exist, and yet supposedly
allow reasonably accurate modeling of reservoir behavior. However, no
matter how accurately these siogle parameter values are determined, a
model which neglects heterogeneities cannot accurately represent certain
phenomena which are known to occur épecifically because of the presence
of hetérogeneities. |

One of the motivations for the development of different approaches

to solving multlphase flow equations is to deal more adequately with



- 10 -

heterogeneities. In fact, this is the primary motivation for the

development of stochastic models.

APPROACHES TO SOLVING 'IWO—PHASE FLOW EQUATIONS

The history i modeling has shown that all techniques involve
trade—of fs between accuracy and éolvability. Simple models are easily
solved, but represent reservoir behavior too simplistiéally. More com—
plex models may be more accurate,. but solutions fo them may be difficult
to obtain, or else they may require more data than can practically be
obtainefi to make their use worthwhile. . |

Analytic: Practical analytic é;,a.lutions are currently available
only for the single-phase flow model, equation (1.1). While obtaining
an anAlyticzl solution _is alwaYs desirable, such solutions have not yet
been found for two—-phase, mult.l—d_unenSJ.onal flows. Therefore, for real
011 reservoir modeling problems, analy‘tlcal solutions are not presently
available, particularly if heterogeneities are to be considered.

Numerical: In numerical modeling, the governing equations are
discretized and then usually solved for each block on a digital
computer. This allows the solution of eqlJa.tions for which énalytic
solutions are not available. Such models can even incorporate crude
modeling of large—-scz.ale heterogéneities. Numerical models have the
folloﬁing advanfages and disadvantages: .

Advantages: ‘

X PhxltipﬁaSe, multidjmensiona;l fléw equations can be solved
¥ Large-scale heterogeneities can be modeled approximately

¥ Anisotropy can be modeled to some extent
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Disadvantages:
‘% Solutions are only approximate
¥ Small-scale heterogeneities can only be ﬁodeled poorly, if
| at all

% Finding solutions may require much time and powerful
Comppters

¥ Varying of conditions and parameters is difficult because
each change requires a completely new solution

¥ Tt is virtually impossible and certainly impractial to
obtain sufficient data to take full advantage of the
heﬁerogeneity modeling capabilities of numerical
models

With.their adyantages,;ngmeriéal models have enjoyed widespread use
in the oil ihduStfy.v ﬁﬁlaCk'oil codes" model two énd.tﬁree—phase flow
without taking account ofvphase changes. More sophisticated numerical
| codes even incorporate ﬁodeling of phase changes.

Stochastic: Stochastic models attempt to overcome somevof the
disadvantages of analytic and numerical models, particularly thosev
relating to modelihg of heterogeneities. Clear advantages bf stochastic
models include:

X Heterogeneities on various scales can be modeled quite

éccurately

¥ It is not necessary to obtain parameter valueé at all points in

the reservoir which is to be modeled. Only encugh data to
establish the statistical behavior of parameter values

needs to be gathered.
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Stochastic models are the subject of the nexﬂ chapter, where they are

more fully discussed.
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2. THE STOCHASTIC MODEL: SPECTRAL-PERTURBATION APPROACH

This chapter begins wiéh the introduction of probability concepts,
reasons for using the spectral-perturbation approach, and details of
application of this approach. Then, the perturbation approach is intro-
duced, and relative permeabilities and total mobility are represented by _
approximating functions suitable for incorporation .into 0u£ hathematicai

model.

WHY USE A STOCHASTIC MODEL?

Geologic formations are made up of réndomly diétributed geologic
_materials, and ﬂheir various properties are'also-raﬁdomli'distributed.
Intuitively} it makes sense to use a model-which takés the statistical
distribution of parameter values inﬁq,account;_

As discuséed iﬁ the previdus chéptér, deterministic models have
serious limitations in modeling heterogeneities. For instance, it is
not_practical to obtain as many reservoir property measurements as there
are nodes in'a humerical_modell ‘Even if this were possible, all heterqf'
geneities Qould not be aécounted for, sincé’heterogeneitiés occur on
many scales [Dagan, 1986].

Another very’impértant point is that a realistic model of the true
nature of heterogeneities is needed in order to model certain types of
phenomena. ‘Probably the most impértant of these is fingering‘of one
fluid within another which is specifically due to heterogeneities in
permeabiiity of the reservoir matrix. Fingering consists of the
formation of long, narrow zones of the displacing fluid moving forward

along certain pathways into the bulk of the fluid being displaced.
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Cldsely related to fingering is the fact that when water is used to dis-
place oil, some oil remains virtually unmoved while water flows around
it along certain pathways. Since this phenomenon has a direct bearing
on the amount of o0il that can be produced economically, it is of funda-

mental concern to the petroleum reservoir engineer.

BASIC PROBABILITY CONCEPTS

when a property is said to be randomly distributed in space, it
means that the value of that property cannot be represented by an
algebraic function or other simple deterministic relation. Rather, its
value is represented by the laws of probability, and the associated
distribution of these values ié called a random field.

The most basic properties of a random field are its mean and
variance. Another important property is that random fields of concern
to us possess covariance structure. That indicates how closely the
value of a property at one location is related to its value at another

location, as a function of distance and possibly direction. The auto-

covariance. Cpg, 3&], of a property V is a function of two locations

x, and X,:

1
Oz %) = B[ Vi) - BV} J[Viz) - BV} ]} (2.1)

where E( ) represents expected value.
The autocovariance will be simply referred to hereafter as the covari-

ance.

Expected value is the first-order moment, or mean, of a random

function at a particular point:
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E {(V(x)} = m(x) (2.2)

An important property associated with the spatial random fields we
consider is stationarity.  This is the property of random fields which
states that the statistical parameters (such as mean and varianée) do
not vary from one location to another, and covariance depends only on
the separation vector, x, - X,. Strict stationarity involves all joint
distpibutions in a fiel_ld, "which is very difficult to prove. In most
-practical work, second-order stationarity is uéed, and is usually suffi-
cient for most aﬁplications {Journel and Huijbregts, 1978]. More
precisely, a random field is seoorid;order stationary, or statistically
" homogeneous, if [Journel and Huijbregts, 1978]1:

| (1) The mat;hemtical expectation, E(V{x)) exists and is a

constant for all x,
| ' | (2.3)
(2) The covariance exists and only depends on the separation
vector x, - X,.
i.e.
cov( V(x)s VX)) = O X)) | (2.4)

Another concept often invoked in applied stat_.istics is ergodicity,
which states that averéging over an ensemble is equivalent to averaging
4ov<‘ar‘ one realization. An ensemble is a group of realizations { o'fteh
hypothetical) which are related by having been formed by similar random
processes.

The ergodic assumption implies that the ensemble probabilistic

parameters can be estimated from a single realization or reservoir. In
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addition, it is often used to justify the application of ensemble

results to averaged results connected with particular reservoirs.

STOCHASTIC APPROACHES

An early attempt to incorporate probability inté models was by use
of parameter variation. This method suffers by not incorporating cor-
relation of parameters.

The most important stochastic approaches used today for fluid flows
in geologic formations are geostatistics, Monte Carlo simulation, and
the spéctral—perturbation approach. These approaches are neither
mutually exclusive nor directly comparable. Ratﬁer, they may often be
used in conjunction wif;h each other, each serving a different purpose.
| G’eostatistics,' in the sense of regionalized variables developed by
Matheron and others, vis particularly useful for working with actual
field data. It is» employed to pr‘édict values over a field based on
known values at some locations. Values must, in general, be either
known or must be generated in order to make good use of geostatistics.
Its greatest value is as an operational technique rather than being of -
great importance for theoretical studies [Journel and Huijbregts, 19781].

Monte Carlo simuiation is particularly suitable for studies which
involve the generation of numerous realizations of a statistical field
[Smith and Brown, 1982]1. It is often applied to problems for which
other methods of determining means and variances of output variables are
not readily available or are not practical. It generally is computa-

tionally expensive - in some cases, prohibitively so.
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The spectral-perturbation approach affords some unique advantages
which make it very useful for scientific study of the behavior of random
variables:

¥ Since the perturbed equations are solved analytically, actual data
is not used. Consequently, the various problems associated
with data collection or generation are initially avoided
[Bakr, et al, 1978]. |
¥ The variables are related through stochastic differential
equations. Such equations act as a smoothing mechanism which
filters out much of the noise present in model parameters
[Neumann, 1982].
¥  Given an input covariance for the permeability field, the
coQariance fields of related parameters may be found [Bakr,
et al, 1978].
¥ The spectral approach can be applied in an& number of dimensions
[Bakr, et al, 1978].
Because of these reasons, the épectral—perturbation approach was con-
sidered to be the most appropriate as an initial step for modeling

relations between parameters in two-phase flow.

APPLYING THE SPECTRAL-PERTURBATION METHOD
The spectral-perturbation approach is carried out via the following
steps:
1) Develop relations among variables of interest using applicable
' governing equations and mathematical operations.
2) Perturb random variables as in equations (2.9), shown later.

Perform indicated multiplications, dropping products of
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perturbations, as appropriate, by assuming that they are
negligible. This giveé us the perturbation eéuation.

Take the expected values of all terms in the eqﬁation result-
ing from perturbation. Subtract this equaﬁion from the
perturbation equation. This results in the mean-removed
equation.

Use the Spectral Reﬁresentation Theorem td represent each
random field in the mean-removed eqﬁation as a unique complex
stochastic process.

Perform all indicated differentiations under the integral
signs. Drop all integrals based on the uniqueness implied in
the Spectral Representation Theorem.

Solve for the Qomplex representations of the random fields of
interest.

Obtain the spectral densities of these‘random fields by taking

_the absolute value of the complex processes, squaring them and

taking expected values.

The covariaﬁce of the random field is obtained by taking the
inverse Fourier transform of the corresponding spectral
density. This may be done analytically, if possible, or by
using a numerical Fast Fourier Transfogm‘(FFT) algorithm. If
only the variance is désired, this is obﬁained by simply inte—
grating the spectral density expression.

Sensitivity analyses may now be performed. If analytical
relations are developed, this can be done by étudying the ex-

pressions. If numerical solutions are used, sensitivities
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can be studied by varying input parameter values in steps 7

and 8 above.

SETTING UP THE EQUATIONS FOR PERTURBATION
First, (1.4a) and (l.4b) can be incorporated inte a single equa-
tion. This is done by adding thé two equations and noting that P, = P,

because of our assumption of zero capillary pressure. . Thus

_v[k(l—}:— + %) v PQ] =0 , (2.5)

We define total mobility as:

S S
M(S) = k’“’u“f )y k”u( i (2.6)

]

which when substituted into (2.5) gives:

| v - (RMTP) = V(RM) - VB, + KMV’P, = 0. T(2.7)
Dividing through by kM gives us:

| Vén (kM) « VP, + V2P, = O (2.8)

Here, we have used the fact that Vin V = %

THE PERTURBATION APPROACH

In this approach, a random field which is assumed to be stationary
is represented in two parts:- its mean, and a zero-mean term which con- .
tains all of the random fluctuations of the original variable. We make

use of these perturbations in this work:
mlkix)] =F + f (2.92)

where E{¢n[k(x)]} = F and E{f} = 0

. mIs(x)] =EY=F+7Y (2.9b)
where E{Y} = ¥ and E{Y’} = 0
P,(x) = B, + P, (2.9¢)
where E(P,} = P, and E(P,’} = 0 '
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Additionally, the following notations are used for convenience:

G = E{VY}
(2.10)

_ J = E{VP,}
The next step is to substitute the perturbation representations intc the

equations. Multiplications are performed and it is then usual to assume

that the products of perturbations are small enough to be negligible.
Before we perturb, we need to expréss relative permeabilities and

total mobility in forms suitable for inclusion into an equation. This

means that we need to represent them as functions of S.

FUNCTIONS FOR RELATIVE PERMEABIi.ITIES AND MOBILITY
Relative permeabilities are different for each porous medium and
cannot be répresented exactly by any function. However, ekpressions of
the form (2.11) ’ .below, have been shown to represent experimental data
well in many casés [Scheidegger, 1960]. n krW can be approximately
represented by a function of the form:
| | | nk,)=C, +A, Y ' (2.11)
or, in exponential form, recalling that Y = n(s):
k., = ew,.SW : | (2.11a)
An expressionrof a different form was found to better fit the oil rela-

tive pemxeé.bility curve:

|

+ C,S (2.12)

ko = 0
As stated in Chapter 1, with our assumption of an oil-water viscosity
ratio of 30 , the total mobility curve does not differ greatly in form or
values from the water relative -permeability curve; Consequently; we

will fit an expression similar to (2.11) to total mobility:
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M) =B, + A Y (2.13)
v'qhere M = total mobility.
In exponential form, we have:
M=ec g (2.13a)

Relative permeability values for a number of formationS', different
oil-water viscosity ratios, and as determined by various techniques are
shown in Amyx, et al [19601; compare also curves shown in Bear [1979]
and Huyakorn and Pinder [1983].

For our purposes, reasonable values for the parameters in equa-
tiens (2.11), (2.12), and (2.13) were determined as follows. Three
graphs of oil.—water relative pexmeability curves‘ were obtained, one each
from Amyx, et al [1960]1, Bear [1979], and Huyakorn and Pinder [1983]. |
Velues of the water and oil relative permeabilities at several aiffex'ent
values of saturation were estimated from these graphs. Then these
values were averaged at each value of saturation. Values for the total
nbbility curve at these saturations were computed from these averaged
values using tl_xe sum of 0il and water mobilities as defined in equation
(1.6). Then, best least-squares fits of equations of the forms {(2.11),
(2.12), and (2.13) were fitted to the averaged values of water relative
permeab_ility, oil relative permeability, and totai mobility.' The shapes
of these fitted curves were compared to curves in the references cited »
above to ensui'e that they had similar shapes and comparable values over
the entire lengthe of the curves which were of interest. Only the
ﬁortions of the curves representing water saturations between 0.25 and
0.8 were considered because it is assumed that water is always present

within this range of saturation values. These fitted curves are shown
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in Figure 2.1. The values found for the parameters were C, = 0.0,

A, = 3.0, A, = 0.162, C, = -0.253, B, = -0.17, and A = 2.6.
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3. DEVELOPMENT OF THE TWO-DIMENSIONAL MODEL

In this chapter, the ‘spectral relations for the log penﬁeability
and pressure are developed. The preliminaries introduced in the two
previous chapters are used in deriving the relationships. Perturbation
and the assumption that products of perturbations are negligible are
used repeatedly. The development of the equations is presented in full
detail.

‘ Perturbation is the representation of é random variable as the sum
of its mean and its fluctuations. By using perturbation, a random
qua.nti.t;.y is decomposed into its deterministic mean and purely random,

mean-zero parts.

ASSUMPTIONS
A number of assumptions are made for this model. The most jimpor-
tant ones are listed here for convenience.

Physical Assumptions

* Capillary pressure, P.(S) = P, - P = 0" Thus, P, = P,, and
thus VP, = VP,. i

X .The only fluids present in significant qtmntit;ies ai'e oil and
water.

¥ Water saturation remains between 0.25 and 0.8 at all times.

¥ 0il and water are incompressible.

¥ The oil/water viscosity ratio remains constant.

* No t.emperatufe gradient exists. InJected water is at the same
temperature as fluids’already in the reservoir.

¥ Dissolution of one fluid into the other is negligible.
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¥ Flow is strictly horizontal. Gravity can be neglected.

¥ Flow conditions are at steady state.

* k,, and kr\; are functions of saturation only.

* Exponential functions of S are valid approximations of water
relative permeability and total mobility.

* The saturation and pressure gradient vectors are parallel.

Statistical Assunrptions

x {n(k(x)) is statistically homogeneous.
* P, is a random field such that P,/ = P,(x) - E[P(x)] is statistically
homogeneous.

% {n(S) is a random field such that Y = n(s) - E[in(S)] is statis-

- tically _homogene_ous .

*
jeat
1]

E[V P,(x)] = VE[P,(x)] is a constant vector.

*
o]
i

E[VinS] is a constant.

¥+ The initial saturation profile in the reservoir is nonrandom.

PERTURBATION OF THE CONTINUITY EQUATION FOR WATER
Equation (1.4a) can be rewritten as follows after using the chain
rule. P, has been substituted for P,, as these are equal by our

assumption of zero capillary pressure.

K -E '—%ﬂ [ v tnk,,) « 7B, + ¥°R, ] (3.1)

Now, looking at the first term in (2.8), perturbations as shown in (2.9)
and expression (2.13) are substituted as follows:

WUn(M) = Yn(k) + Vin(M) = VF + Uf + VB, + V(AY) (3.2)
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The mean of permeability, F, is assumed to be a constant and hence the
gradient is also zero. Using notation defined in (2.10) and introducing
the perturbation’ of Y as defined in (2.9), (3.2) becomes:

FUn(M) = VE + ATY + ATY = Uf + AG + ATY (3.3)
We next multiply (3.1) by -1, and expand the first gradiént. By the |

laws of logs, fn(kk.,) = (k) + {n(k,).

-, 0 82 = we, [9(nto) + tnjky)) 0 IR 4 ”?r, ] (3.4)
Using relations (2.9) a.nd (2.11), the following are obtained:

k = exp {F + f} : (3.5a)

k, = exp {C, + A, Y} (3.5b)

Substituting perturbations (2.9) and (3.5) into (‘3.4) yvields the fdllow—_

ing, after moving some exponential terms to the left-hand side: o
35 _
-u, ¢ exp {-F - Cy AWY} It =

! [(9F + 9 + VG, + ATY) © VP, + V°B, ] (3.6)

By (2.9b) and the properties of derivatives of exponentials, we have:

-3 , '
3¢ exp [ —(A,~1)Y] _ (—e_A“’YeY a_Y] AW 8 v LAWY 38
A1 = atJ) ~

ke e (3.1
Substituting (3.7) into (3.6) and dropping the gradients of constants,
gives:
n, exp (-F - Cy) 5
T 5 (e[~ (A1) =

(3.8)
ef ([ + A7Y] « TRy + 7Ry )
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Introducing perturbations of additional variables we have:

0, b

Aty & (F - &) ¢ (o[- A-DEN)]] =

| - (3.9)
([ vE + AT(THY)] - V(BRy ) + V(By#Ry’) )

Separating exponential terms and using the associative law to regroup

terms:

2 expl ¥ - G 3 { e[ A1) ep[ - (A2Y ]} -
| | (3.10)
#([o8 + a7t + AT ] o(m, v )+ (B 4 7))

The three-term Taylor series approximation of e is substituted and

ce VP, is a constant, Vz = 0.

exp{ -F - at {exp lAw'l]-Y] exp[ ~{A,-1])Y ]} =
. : (3.11)
2
. (l+f+ 2] {[Vf+Aw\7Y+AWVY] . 9(p, + ) + v°p, )
Introducing the convenient notations shown in (2.10), rearranging the
left-hand side and expanding the right-hand side:
B, - ) a : _ e
a2y o (F - G, & {ew[4A-07] e[ 4A-1Y ]} =
(1+f+§22—]e{Vfog+Vf°VP0'+Awgog+ o (3.12)
AG - VP, + ATY - J + AVY ¢ P, + VP, )
The last factor on the left-hand side is moved to the right.
ay f2
i, exp[-F - G, +(1—A~)} = exp| (4, ]1+f+2 .

(76 - 3 + V£ - TR, + AGI + AGVR, + S (3.13)

ATY I +AVY - TR + V) | s
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Multiply through by the Taylor Series approximation of ef. Terms
higher than second-order are dropped:

Wy exp[-F -C, t [l—AW)Y] %lt = exp[[%—l]Y’] . ’

(3.14)
{Vf e J + Uf - VPO' + AGJ + Awg"VPo' + AWVY' o J + AWVY' . VPO’ +

’ N 2 7 2 I\
VD + £ UF - J+ £ AGT+ £ AGTR, + fATY I + 5 A G + £77R, J
Now, replace exp[ (A, - l]Y'] by its three-term Taylor Series approxi-
mation. We multibly through and drop terms higher than second-order.
This is the perturbation equation. V
, o1 Y
u, exp[-F - G, + (1-AJT] 5E =

[Vf°g_+ VE - VP, + AGI + AGTP, + AVY - J + ATY * VP, +

VP, + £ VUE - J+ £ AGI+E AGIR, + FATY T + —f;- AGd + £9°P, +
' (3.15)

VEJAALY + AGIA-LY + AGTR (ALY + ATY JALY +

;o2
’ . . ’ _l Y ’
VP, (ALY + fAGJ(A,-1)Y + A,GJ La 2] ] -

Now, we take the expected value of (3.15) to get the mean equation:

o - e o8] -

E[V£-3] + E[9E-9P, | + ABIGI] + AE[GVR, | + AE[vY 3] + |
' ' (3.16)
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AE[YR, ] + E[v?p, ] + BLEv£-31+ AE[fG-I] + AE[£GVP, | +

ALfov-g] + 5[£9%p) ] + AWE[% g»g] + (A-1E[veaY ] +

(AUAELEaY ] + A ALE[GUR, Y ] + A A L[ ]+

| . (A1) ,
(A-LE[ 7R, Y ] + A (A1 E[fGJY] + A“LAg L glear)?]

After dropping terms which are zero, the mean equation becomes: '
0 = E[vE-7p, ] + AGT + AE[Y-UR, ] + JRL£92] + AGE[£VP, ] +

AWJE[f VY ] +E szP = g = gle?]s A1) e E[VfY] +
(3.17)

AGAAL) - B[R, Y] ¢ AA-1I EOYTY) +(a,-LE(Y R, ) +

Aw@J(Aw—l

AGIA,-1) E[£Y] + ely]’

Now, (3.17) is subtracted from (3.15) to give the mean-removed equation:
<1 oY
u, exp[-F - G, + (1-,)¥] 3¢ =
VEJ + V9P, - E[VEVR, | + AGVP, + AVY I + AYVP, -

AE[Y-vp, ] + v%P, + £ V£-J - JRIEVE] + FAGJ + fAG

aGE[£vp, ] + £A VY3 - AJE[£VY ] + 9%, - E[£V%P, | +
. (3.18)
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A“’z el 2] + vegA,-1)Y - (A,-LFE[7£Y ] +

2
G A -
AGIALY + AGTR, (ALY - AGALE[TR,Y | + AIY JA-L)Y -

AI(ALELTYY ] + 778 (A1 - (ALE[7R,Y ] + fAGIALY -

AG (Aw—lE[fY]+A“__[ —1Y] AEda A1) 21y’

Finally, the second—-orderi terms are dropped, leaving the following

approximate relation:

u, exp[-F - CW+Y(1—AW) 3Y =

(3.19)

.

g=[vf + ALY | + AGVP, + vzpo' + AGIE + AGIA,-1)Y
This completes the development of the perturbation equations. Note that

the second order perturbations were carried along in order to get

consistent results. Namely, if only 1 + f is used to approximate ef,
one actually loses terms from the final expression and obtains an

inconsistent result.

SPECTRAL REPRESENTATTON

The next step is to represent the random fields by Fourier-
S,tie],tjes_ integrals u51ng the Spectral Representation Theorem. Although
we are dealing with purely random quantitites, use of spectral repre-
sentation allows us. to work with these quantities mathematically in wave
number space as if we were dealing with deterministic quantities [Lumley

and Panofsky, 1964].
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The assumptions necessary to allow spectral representation are
stationarity of the field, and contihuity and absolute integrability of
the covariance. These are relatively weak assumptions which are suffi-
ciently mrestrictive to be _pemissible in many physical situations
[Lumley and Panofsky, 1864].

The Spectral Representation Theorem states that with the assump-
tions given above, a complex stochastic process exists with probability
of one whi_ch uniquely represents a random function. [Lumléy and
Panofsky, 1964].

» For a random i)rocésé V(x), the Spectral Representation Theorem
can be formally stated as:

If: |

* V(x) is secomi—oxﬂer stationary

Tk .'E[V‘(E_C)] =0 o o

* C(s) = Covi(xts), Vix))

% C(§)- is continuous at 8 = 07

Then there exists a 1m1que (with probability one) complex stochastic
process sﬁch that:
| & .
Vix) = j e™* dz,(r)

o .

Also,
o(s) = | s, (par

il o]

is the covariance fumction, where

Sy (r) = E[dz,(r) - dZy(r) ]
is the spectral density function.
Based on these statements, all of thq random fields in (3.19) are

now represented by stochastic Fourier-Stieltjes integrals. We make the



- 32 -

necessary assumptions for use of the Spectral Representation Theorem.

a 7 i
H'a_t[ el[x_dZY:

x® @

J - [v j et Az, + AV f et dzy] + A G [ e az, +

halli « o i ==} = o

(3.20)

@© e}

AGIAL) | T azy 00| Sz, + V[ o az

-® - > o}

P

where N

H = 4, exp[-F - C, + ¥[1-A,]]
Now, differentiation under the integral signs is performed. The
integrals may be dropped since the Spectral Representation Theorem

implies that the spectral components are unique [Lumley and Panofsky,

19641.
d . : .
-H 3¢ dzZy = J[ir-dZ; + ir-A,dZy] + ir-A,G +
(3.21)
AGd dZ; + AGI(A,-1) dzy + () az,
Regrouping terms of the complex representations, we have:
-H & dzy = (AGd + idT) dz; +
[AGri - ©?] dz, + [iAJT + AGIA-L)] dzy (3.22)

PERTURBATION OF THE TOTAL MOBILITY EQUATION

Now, to reduce the number of different complex increments in
(3.22), we develop an expression for de using an eduation for total
mobility. This is dohe by adding equations (1.4), which results, as

shown in the previous chapter, in (2.8):

V In [kM] - VB, + V?P, = 0 . (2.8)



e
Introduce perturbations (2.9) into (2.8):
[7F + 9£ + B + A7Y] - 9(F, + B, ) + P*(B, + P, ) =0 (3.23)
Drop the products of perturbations and the gradients of constants, and
introduce J = E[VP,] and G = E[V¥]:
UEd + AGT + AYYJ + AGVR, + 7°B, = 0 (3.24)

Finally, taking the expected value of (3.24) gives us the mean equation.

Subtracting this from (3.24) yields the mean—removed equation:

VE-J + AVY-J + AGYP, + 9B, = 0 (3.25)
Again, the spectral representation theorem is used to allow Fourier-
Stieltjes integral i‘epresentations of each random variable in equation
(3.25): |
JoV ] e az, +

(3.26)

o]

AJY I et dz, + AGY ] e az, + V2 j ez, = 0
w©

‘o < ‘o
After taking the indicated derivatives, the integrals are dropped oﬁ the
basis of uniqueness, as mentioned previously: |
i[dZ, + AdZy]r-d + [iAGT - ] d7, = 0 (3.27)
We thus have two equations, (3.21) and (3.727), m ‘two unknowns, dZy
and de, which are soived for de. |

' _ipJ[dzZy +AdZy] .
a2 = e (3.28)

Expression (3.28) is now substituted into (3.22) to reduce the number of

different complex increments by one:

H & [dZ] = (A + iTr) az; + |
‘ . (3.29)
idr + iJr

[Awf_}zi-rz][ , 3‘%’ AGTL ‘]ﬂr [iAdz + AGIA-]4Z
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Collecting terms:

3 . . ' J°r(AwG»r1—r2]
-H 3t dz; = { AGJ + iJr + 2 - AGTL de
{3.30)
. ' Ac(AwGrl—rz) .
{14: [Aw e | *AGIAAL) (o
The followipg notations are mtroduced for convenience:
[iJr[A,-ABy(r) ] + A,GJ(A,-1) -
B (x) = o r[A,-Ad; rH] AGIA) ) (3.31a)
(AT + iTr - iJ .
B,(r) = (AGd + l_EH iz By(r)) ~ (3.31b)
1'2 - A,Gri '
By(r) = m : (3.31c)
With these substitutions, (3.30) becomes:
3@; dz, + B.(z)dzY = B,(r)dz, | (3.32)

SPECTRUM AND (X)VARIANCE OF LOG SATURATION AND H{ESSURE

The dlfferentlal equatlon (3 32) can be solved for dZY

dzy = ilzfr; [1 - exp(-B{r) t)] dZ; + dZ(r: 0) exp{-B/(r) t} (3.33)

Here, we will study the be_ha.vior_ of saturation and, later, pressure
under the assumption that the initial saturation profile is nonrandom.
This makes the initial condition dZY(r:O) = 0 and simplifies our solu-~
tion. Since the saturation profile will change as flow occurs, the
particular initial state may not be of great importance. This is parti-
cularly true for the steady state case, whlch is only approached after a
long time period. Thus, for our steady state model, we are talknlg of a
long time after the initial state, which makes the particular initial

state rather unimportant.
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The spectral density of Y = % S is given by:

) |
Syy(r) = E{ |dz,,]2} = ;—% | 1 - exp{-B () t}[zs“@) (3.34)

The permeability spectral.density model chosen was Mizell's spec-
tral density B [Mizell, et al, 1982]. This is based on the Whittle
spectrum for tm—dihemional spatial processes. From this, spectral
density B is a modification designed to yield a finite variance [Mizell,
et al, 1982]. The Mizéu spectral density B model is:

30262(12 + 13)
Si(r) = S(r) = 3 (3.35)

n(x? + 3 + o)

where o = - a parameter related to the integral scale
0° = the variance of the permeability process
T, Ty = spatial distance vector components in wave number

. space

To evaluate Syy(r) and, later, Sp(r), we make the assumption that
G and J are parallel. This is a reasonable assumption, particularly for
horizontal displacement of o0il by water in a reservoir which was essen-
tially at equilibrium before pumping began. We orient the axes so that
r, is pointing in the direction of flow. Thus, rj, G, and J are
mutuaily parallel and G = (G),0), J = {J;,0}.

From the spectral density, the covariance may be obtained using an
inversé Fourier Transfém [ILamley and Panofsky, 1964]:

Cy(xp» %) = I: !: "™ Syy(r) drydr, (3.36)

While this type of integral could be analytically integrated in the case
of a simple spectrum, the expressioh obtained for Syy did not appear |

amenable to direct integra.tion.v Thus, the covariance field was
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obtained using a two-dimensional Fast Fourier Transform algorithm on a
digital computer. Fourier transformation techniques and applications
are descriB_ed in Weaver (1983), for example. This code was written in
FORTRAN 77 and is listed in Appendix I. The behavior of the correlation
function associated with Mizell’s spectral density B is shown in Figure
3.1..

This particular study is concerned with the steady-state ca;se,

which is approached as t—w. Thus, for this case, (3.34) becomes

2
Spy(x) = %T*%) Sg(x) (3.37)

The spectfal density of pressure is obtained using relation (3.28).

' _ir-J r)
Spp (L) = l v, | l + A B(r) l Sye(r) (3.38)

where we incorporate the steady-state version of SYY(E)’ {(3.37).

Again, Cov (P(x), P(x + y)) is evaluated using the numerical

FFT algorithm mentioned above.

Cpp (%45 Xp) = !: !: e's,, (r)drydr, (3.39)

The results of computer code runs were verified by several means.
The code was written in FORTRAN 77 and is listed in Appendix I. The
following methods of verification were used:
* Set G = 0 and execute the code. This results in a variance for P
equal to the variance corresponding to Mizell’s spectral density B.

* Set A; = 0 and run the code. This results in a variance for P equal

to that corresponding to Mizell’s spectral density B.
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* Sy and Spp were hand-calculated at a few values of 1, and r; to

see that each term was being correctly computed by the code.
The results of these computer runs, discussion and figures are presented

in Chapter 5.
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4. THE THREE-DIMENSIONAL CASE AND EFFECTIVE VELOCITY

THE THREE-DIMENSIONAL MODEL

The two—djménsional spectral density model is easily extended to
the three-dimensional case, since (3.34) and (3.35) are expressed in
vector form. Now, r is a three—diménsional instead of a two-dimensional
wave number vector. |

Lgyering is very common in natural geologic formations. Reser-
voirs are a]mos£ always made up of sedimentary rocks, most often
sandstone, limestone, or shale, generally of moderate relief, and
typically quite extensive [Amyx, et al, 1960]. Due to horizontal
layering at the time of fonna_tion of sedimentary rocks, lpw to moderate
| felief means that, in general, layefs remain predomi.nahtiy horizontal,
or much closer to being horizontal than vertical. Therefore, starting
from a given poi__nt, traveling a given distance in any of t.hree
coordinate directions (2 horizontal, 1 vertical), one would, on the
average, cross more layers in the vertical direction than in either of
the horizontal directions. From an elementary knowledge of geology, we
know that correlation of rock properties along one layer is greater than
correlation between different layers. Therefore, correlation lengths
traveiing within one layer are larger than correlation lengths going
across layers.

Because of the ia.rge differences in wﬁelation lengths across
layers vs. within layers, it was deemed appropriate to incorporate this
‘difference into the model. In most geological formations, the permea-—

bilitieé of various layers aiffer considerably. Typically, some layers

have very low perxﬂeabilities, meaning that flow rates across such a
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layer would be quite low. Thus, in most cases, flow occurs much more
readily in the horizontal directions than in the vertical. Therefore,
vgravity ijs less important. By neglecting gravity, we are able to use a
model very similar to the two-dimensional case.

All assumptions are identical to the assumptions made for the two-
dimensional case, except that some vertical flow occurs. However,
vertical flow is considered to be small enough for gravity to be
negligible.

Because the spectral density model previously used for permeability
m proposed for two-dimensional processes, as well as the fact that it
is an isotropic model, the following speétral density model for permea-
bi'lit)f ln three dimensions was used.. | o

Sy = - 5 (4.1)
o[ 0202 40702 0]

This represents a three-dimensional anisotropic exponential process and

has been used by Yeh, et al. [1985]. Our general forms of the models

are still jdentical to the two-dimensional versions. They are repro— |

duced here for convenience.

Syy(r) = I 228 I 8i(x) (3.37)
2 2
Splr) = l rz__lA%gJ; l | 1+ A Efi; l S¢(x) (3.38)

However, these differences exist:
For the two—dimensional case:
* r is a two—dimensional vector

* Si; is Mizell’s spectral density B, equation (3.35)
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For the three-dimensional case:
¥ r is a three—d:men810nal vector
* S;; is the spectral density model shown above in (4.1)

In full detail, Sy(r) is:

" }*17*2}‘3‘%2
Swlz) = ol 22 22 2212
ﬂ[l+}\,rl+)\2r2 +)\3r3]

(4.2)
AT + (A-A,)G + (AAG)’r]

[A.(A-DG]r? + 12 [ (Ay-A)>-ch, (8,16 ]

where we have assumed that G and J are in the r, direction. This means

that G = /G and J = |Ji.

For the three-dimensional case, only the variance was computed.
Slmple nunerical mtegratlon was used to compute the variances since
an a.nalytlcal expre551on for the variance was not a.vallable. A fmely— ‘
discretized numerical integration of (4.2) in three dimensions requires A
a large amount of computer time. It was observed that if {4.2) was
suitably transformed, it could be analytically integrated with respect
to one variable, and, thus only two-dimensional numerical integration
would be required.

A suitable transformation is to a cylindrical coordinate system,
but orieﬁted so that the z axis of the cylindrical system corresponds to
r; in our Cartesian system. The transformation was déne in this
manner because this pa.fticular orientation of the z axis was required
for the analytical integration, and it was desired to retain the stan-
dard coordinate designations in the cylindrical system. A description
of the cylindrical corrdinate system can be found in most standard
algebra or calculus texts. For our transform, the following correspon-—

dences are used:
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r =z
r, = p cos ) . ((4.3)
r3=ps'1n9

Substitution of {(4.3) into (4.2) yields:

N NoXa02
- 17243°¢
Sw(c) = 2 2 2.2 2 22201
n[l+klz2+}\zpcose+x3psin8]

(4.4)

_ GA, (02 + 22) + Ac - A,)GZ + (AAG)°Z ;

{ [A,(A-DG] (02422 ] + 22[ (A,-Ac) (0%427) - ACAW(AW-l)G"’f}

Because of the reorientation of the cylindrical coordinate system,
it shoﬁld be kept in mind that the "z" does not refer to vertical
d:Lstance, but rather is a horizontal distance in what would normally be
the r;, or "x" dlrectlon. The letter "z" was used in order to maintain
the almost universal convention of using the letters o, B, and z as
the three variables in the cylindrical coordinate system. -

It will be assumed that the correlation lengths in the two horizon-
tal directions are equal, that is, \, = \,. The correlation length
in the vertical direction will vary, generally being much smaller than,
but never greater than, the correlation lengths in the horizontal direc-
tions. The anisotropy ratio is defined as:

_7\1_*2

< = 2 ' | (4.5)
“Clearly, 6 appears in much fewer terms in (4.4) than either o or z.
Consequently, analytical integration will be performed with respect to B.
- Substituting )\, = x; and 1 - cos?8 = sin®8 into the first factor
of (4.4): | |
| N rg02

w2[ 1+ 222 + 23%2 + (3223? JoPcos?0 |

Sff = 3 (4.6)
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For convenience, the following terms are defined:

2 2
A= )\.,l ;gOf ’
(4.7a)
GA, (p? + z%) + (A; - A,)GZ% + (ACAWG2)222 )

2

[An(A1)G ]2 [02422] + 22[ (Ay-Ag) ($%42%) - A, (A,~1)G]
= 1+ 222 4 \%? (4.7b)
Ay = (07 =27 )02 (4.7¢)

We will only consider the case where \; > A3, both \; and A; positive.
Therefore A, and A; will always be positive for p > 0. Using (4.7) in
(4.6) and (4.4):

@ ,0 2n
0y = [ [ [ 4, 9 (4.8)
0%e 0 [A2 + A, cosZB]

Multiplying by (4.8) by [ -5 / -1.:
Az Az

A del
-2

® ,® 2n
oy’ = J ] j % 5 ( dzdp (4.9)
0 0 0 [Az/A3 + cosze]

Again, for convenience, the following terms are defined:

D = _A32 (4.102)
Ay
D, = A, (4.10b)

Because A, and 'A3 are always positive, D, is always positive. Note

. A, 1+23%22+02% ,
also that as ¢ — 0, A, approaches N which is always posi-
2 T A3

btive and nonzero. To avoid A3 in the denominator being zero, we must .

exclude the origin from the evaluation of the integral, and so p is

always positive. This allows us to render (4.9) in its canonical form:

I:Im{ Izn D,d8 29]2} dzdp | .}(4.11)

‘w [Dz + cos
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The following relation appears in a table of definite integrals [see
e.g. Formula 2.5.18.2, Prudnikov, et al., 1984}:

Fie
df T
= 4,12
Additionally,
7 bie
ds I .ds
—_———— = ——— . 4,13
jo a + sin’f o & + cos?8 ( )

Therefore, by relations (4.12) and (4.13):

]2" Dd8 27D, (1.14)
g Dy + cos?8 «lDzz + D,
Differentiating both sides of (4.14) with respect to D,:
2n
Dd8 TD,{2D, + 1
I : 2 = 3/]2 (4.15)
¢ [p, + cos’8]  [D)? + ;]
Thus the variance is now:
©r® 1D2D, + 1
oy? = f j | 3,)2 dzdp (4.16)
0

*o (D, + D,)
After re-introducing the expressions for the D’s and A’s and simplifying,
(4.16) becomes:

0Y2 i [m[m .).121303 .
0% ”[(Nz _ st)pzj
G, (0% + ) + (A - A)GZ2 + (AAGH’Z )
, .
[A,(A,-1)G] [0%+22] + 2[ (A,-Ac) (0%427) - AA, (8,-1)G]
o (4.17)
21+ 222 + ,%%) + (7 - 22 )o?
372

[[1 + 322+ }\3202)2 (1222 222 (22 - a2 )2 ] ]

A listing of the code written to compute these is shown in Appendix

II. In this code, the numerical integration is performed analytically.
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The outpuf. of this code was verified By the followi_hg means

¥ Sensitivity analysis behavior was compared to that for the two-
dimensional case. In particular, as the correlatioh in the
vertical direction became very small, behavior approached that for
two dimensions.

X Numerical integration over three variables in Cartesian coordinates
was carried out in a separately-written code.

* Numerical inteération over three variables in cylindrical coordi-

nates was carried out in a separately-written code.

TWO-DIMENSIONAL: EFFECTIVE VELOCITY OF WA’fER

Velocities vary over a large range in flow through porous media -
in fact, over many orders of magnitude [Freeze and Cherry, 1979]. Here,
we are concerned with velocity variations due to specific features of
real porous media flow, as well as our model. One type of velocity
variation is due to reservoir heterogeneities, which generally means
that there are differences in pemeabilitiés in different parts of the
formation. | Another very important source of velocity differences is the
fact that velocity is.a. function of saturation. For‘practical computa-—
tion of flow velocities, it is desirable to use an effective veloéity.
Here, effective water velocity will be derived.

r.All assmptions'are the same as those stated in Chapter 3 for two—
dimensional flow. However, products of perturbations are retained in
this derivation and only third-order and higher order terms are being
dropped.

The formulation for effective velocity can be derived from equa-

tion (1.2a). Here, P, is shown substituted for P,. Less detail is
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shown here than was shown in earlier derivations. The steps are similar
to the derivation of two-phase pressure and saturation relations.

V. = —lflk’“’ VP, (1.2a")
w

—-wW

Introducing perturbatibns (2.9) and (3.5), and rearranging factors:

V = - ﬁl\; eFec.weAw? [efeAwY ][51 + VPO'] (4.18)

v,
Effective velocity is defined as the .expected value of velocity.

Note that the use of the word "effective" here may differ in meaning

from its use in connection with permeability as customarily used in the

petroléum literature. Using a second-order Taylor series approximation
of exp(f + A,Y ), substituting in (4.18), expanding, taking expected

values, and dropping terms with expected values equal to zero and terms
of order higher than two:

—Hy qyw} ‘ s |
e 3+ E[£vp, ]| + AE[YVR, ] +
\ ) (4.19)
. JAC ,
3 R[] + AJRIFY ] + =¥A2W— El (v)?2]
The following integral is a representation of two terms in (4.19):
B[ (£+ay)vp, |-
‘ . (4.20)
By(r)
!°° o [P RBE | Ty, 2O T o e
I Jerin) | 7T ir, GA * A B (D) Si(r)dr
where * represents complex conjugate.
- é_(:g)_ de . (4 21&)
dZy - B](E) '
(r)
Jry [1‘ + Ac Bzﬁl___(z) _
de = r2 _ irl G Ac 4 de (4.21b)

Noting that E(£2) = o2, E[(Y)?] = 0,2 and E(fY) = Cov (£,Y), (4.20) can
be rewritten as:
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~exp(F + C, + A, Y)
EY,)=— @ .

J- °
w

iy (4;22)
[1+I+%E+é—w—2—0£+%00v (f,Y)
where I is the integral in (4.20) with J factored out.
Cov(f,Y) is obtained by Fourier transformation of the cross-
spectral density.
The cross-spectral density is defined analogously to the auto-spectral
density [Lumley énd'Panofsky, 1964] and by an extension of the spectral

representation theorem.

; 0, r, # 1, : ,
E[97, (1) 44 (5] = | (4.23)

SwiE)y ry=1r,=r

Then, the cross—covariance is related to the cross-spectral densit? in
the same way as for the autocovariance, as shown in the statalxenf. of the
Spectral Represént.ationi'lheora'n in Chapter 3. j | ' _ |
Gy (@) = [ &S, (mar - (4.24)
The integral I and the other terms in (4.5) were evaluated by using
a numerical integration scheme. Results obtained using this code, dis-
cussion and figures are presented in Chapter 5. V
A listing of the code to compute effective velocity is shown in
Appendix III. Verificatioﬁ of this code was done using the following
methods:
* | Approximate comparison with hand calculaf.ions
* Setting G =0 results in some terms being zero.
An expression for effective velocity of oil can also be developéd,
using equation (1.2b). However, the functional form used to represent

k,, equation (2.12), results in a very lengthy and unwieldy expression.
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A more concise result would require that a different representation of

k, be developed.
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5. DISCUSSION AND CONCLUSIONS

DISCUSSION OF RESULTS

In this chapter, a discussion of the results obtained using the
models derived in the last two chapters is presented. Conclusions are
then drawn from this discussion, and, finally, directioﬁs for future

research are suggested.

Spectral Densities '

The spectral density of a process is simply the Fourier transform
of the process. Basically, the spectral density shows how variability
is distributed along various frequencies. In a sense, it is the
inverse to the covariance in that frequencies are highest where corre-
lation is zero between regions ‘o:t; positivé and negative correlation. . -
Figure 5.1 shows the spectral densities of Y, the log-saturation field,
at two different values of the log-saturation gradient. The spectral
&ensities of Y were calculated using relaf.ions (3.34) and (3.35).

Figure 5.2 shows the correlation fields of Y, calculated from (3.36) ~
using a Fast Fourier Transform of (3.34), which corresponds to these
spectral denéities. Correlation is siﬁlply a normalized covariance,
obtained by dividing all covariance values by the variance. Figures 5.3
and 5.4 display the spectx‘al density and covariance fields of pressure

" in a fashion similar to that for log saturation. Note that the
spectral/covariance results for Y = {nS are normalized by o and
independent of J, while the results for p are normalized by 0/J°.

In practice, the spectral density serves as a mathematical tool

which enables us to calculate covariances. Although we utilize spectral
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I‘I = 271'111, r2 - 271;112

Figure 5.1b. Contours of Spectral Density for Y = ¢ns
: ~ 2-D Model: Normalized by 0;2, Independent of J
A, = 3.0, A, = 2.6, A =1, G = E(VY) = -.10
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Figure 5.2a.‘ Contours of Correlation Function for Y = (1S
2-D Model: Independent of J
A, =3.0, Ac=2.6, A =1, G= E(VY) = -.01
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Figure 5.2b. Contours of Correlation Function for Y = insS
' 2-D Model: Independent of J
A, = 3.0, A = 2.6, A\ =1, G = E(VY) = -.1
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A, = 3.0, A; = 2.6, A = 1, G = E(V{nS) = -.01
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Figure 5.3b. Contours of Spectral Density for P
2-D Model: Normalized by 023
AW = 3-0, AC = 206’ k = 1’ G = E(V&ILS) = _.l
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G =-0.01l |
Variance of P = 0.64857

X1 — FLOW DIRECTION

Figure 5.4a. Contours of Correlation Function for Pressure
2-D Model
A, = 3.0, A = 2.6, \ = 1.0, G = E(VY) = -.01
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G=-0.10 | 2
Variance of P= 0.17302 \
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Figure 5.4b. Contours of Correlation Function for Pressure
2-D Model
A, = 3.0, A, = 2.6, \ = 1.0, G = B(VY) = -.1
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‘analysis to achieve our results, our goal is to obtain the covariance
fields. Covariances are more easily and naturally related to real
physical processes. Therefore, Figufes 5.1 and 5.3 have been included
simply to illustrat,e the relationship of spectral deénsity fields to

covariance fields.

Two-Dimensional Flow

Covériances of Pressure and Satl_n-ation

Figure 5.2 shows that the correlation length of the saturation
field is much larger in the direction of flow than transverse to it.
Corre]atlon length is the distance from (0 0) in the correlatlon field
in which there is an e-fold drop in oorrelatlon, i.e. the distance
between the locmtlon in the fleld at whlch correlatlon equals one and a
: pomt at whlch correlatlon equals l/e. Thls d_lstance is e function of
direction. Figure 5.2 indicates t.hat_ correlation length anisotropy is
more pronounced at low M®s of the saturation gradient than at higher
values.

This anisotropy can be explained by the presence of zones of dif-
fering saturations being elongated in the direction of flow. Tﬁis
" occurs because the direction of | flow plays a role in causing zbnes of
differing saturations to be elongated in this way. Now, as the
satui;ation gradient increases, correlation length decreases in the
direction of flow, and, thus, the ratio of correlation length parallel
to flow to correlation length transverse to flow decreases. | Conse-~
quently, anisotropy decreases.

Heterogeneities in permeability tend to increase the prevalence and

importance of zones of different saturations for at least two reasons.



- 59 -

First, zones of d;iffering permeabilities will tend to retain different
propoi'tions of the original fluid (oil) when a second fluid (water) is
flowing through. Second, the changing permeabilities mean that flow
velocities are also changing. This also has a bearing on the propor-
tion of the original fluid that is dislodged from the pofe spaces.
During imbibition (the initial movement of a wetting fluid into a for-
mation containing @stly nonwetting fluid), the velocity of the
displacing fluid may be higher in low-permeability media. Later during
the flow, as steady state is approachéd, low-permeability media will
tend to have lower flow velocities than high—pemeability media. Lower |
flow velocitiés may tend to leave a higher pxl"oportion of the original
fluid (oil) in place. |

The eloﬁgated ﬁature of zones of differ:'mg velocities (and thus
differing saturations) can be illustrated by a éimple schematic drawing
of one single circular 'zon'e\of low pexmeébility, shown in Figure 5.5.
Tmmediately upstream and downstream of this zone, flow velocities are
lower because flow through the zone is impeded, and diverging and con-
verging of flows occur well upstream and downstream of the low-
permeability zone. On the other hand, immediately transverse to the
zone, there are higher than average velocities as flow is constricted
and concentrated, and thus the flow is at a higher velocity through a
relatively narrow space.‘ ‘

Fingering is of sérious concern in ﬁaterflood oil recovery. In
most oil reservoirs in the real world, .oil recovery isrgreatly reduced
due to water flowing to recovery wells along preferential flowpaths,

while the bulk of the oil is left behind [Ewing, 1983]. Once water
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reaches the production well, steady state is approached and oil pro-
duction deciines .substantially. It is this situation that we are
modeling. 0il production is generally halted before true steady state
is reached. However, near the injection wells, the situation will be
very nearly steady state while closer to the production weils it will be
farther from it when the wells are shut down.

The corrélation length of pressure perpendicular to flow is much
larger than parallei to flow, as shown in Figure 5.4. This is expected,
since equal pressure lines are perpendicular to flow in homogeneous
media)t,‘ and nearly so in most real media. 7

The correlation length of preésure perpendlcular to flow appears to
trer_ld lower as the saturation gradient increases. It can be surmised
that large saturation gradients may tend to occur more when substantial
differences in pressuré occur, perhaps in a complex pattern such that
pressures in a straight line do not correlate over as long a distance.

Variance of Log Saturation and Saturation

Figure 5.6 shows that the variance of log saturation increases
rapidly toward an asymptotic value, 0.25, with an increase in the log-
saturation gradient. A large éaturation gradient means that water
saturation would tend to decrease rapidly over a short disf,ance, most
likely in the direction of flow, and, thus, it is reasonable to believe
that its variance woﬁldv be substantial. That is, there is almost cer-
tainly a large variation in the values of saturation in a direction
parallel to flow. However, saturation is a phyéical process having

possible values only between 0 and 1.
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| For Y = 1n(S), the possible range of values is from - to O.
However, since we are assuming that water saturation remains between
0.25 and 0.8, the possible range of values for Y is from -1.386 to
-0.223. From the defipition of variance, it is clear that there must be
an upper bound to the possible variance values, and, thus, it is not
surprising that an asymptotic value is approached.

Now, suppose we consider the case of the mean of § = 0":50, and
assume that S is loé—normally distributed. We also know that the
v-‘;riance of Y approaches 0.25 asymptotically. The logarithm of
caturation was used throughout this study because it allowed simplifi-
cation of | the mathematical relationships developed. We want to know the
@imce of saturation, Gg, mther than the variance of the log
of saturation. From Chapter 2, we have the folléwing definition:

Y=InS (2.9b)
From this, we have: ‘ v ‘
e =8 | (5.1)
The mean of Y is the expected value:
| E(Y) = E(1n S) (5.2)
Now, having the values of oy and iig, the variance of S can be computed
using the following relationship, which is derived from the probability
density function for a normal distribution:
052 = equeGY2 (eoyz—l] , (5.3a)
while
b = epYeGYz/z. (5.3b)

‘Hence

0s% = usz[ eGYz—l:l

and U = .5, 0Y2 = .25 jmplies o5 = .25(e?5-1) = .071
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Variance of Pressure with Log Saturation Gradient

Figure 5.7 shows that the variance of pressure decreases dramati-
cally with an increasing log-saturation gradient, particuiarly if the
preséure gradient is large. With a small saturation gradient, the dis-
tribution of.saturation and pressure values is likely to be irregular,
and thus subject to considerable variability. A large saturation
gradient would most likely occur with a well defined oil-water front
moving through. In this case, the pressure distribution would be almost
deterministic, exhibiting little variability. Also, with a small
pressure gradient, the range of pressures encountered would be small,
making the variance small. Conversely, a higher pressure gradient means
that pressures occur over a larger range, maeking the variance larger.

Distances Over Which Significant Variability Ocecurs

Another way to compare and contrast the variances of pressure and
saturation is to consider the distances over which substantial differ-
ences in pressure and saturation values exist. With a small saturation
gradient, zones of varying saturations will exist over considerable
distances parallel to flow. Pressure is subject to some variation as we
cross these zones of differing saturation, which are likely to be zones
of differing pérmeabilities. As the saturation gradient increases, the
range of saturations encountered over a short distance in the direction
of flow will tend to increase. Because pressures are easily. trans-
mitted over short distances, pressure variance decreaseé as the
saturation gradient increases. It must be kept in mind, however, that
we are working under the assumption of a zero capillary pressure. Thus,

these interpretations must be taken with caution, particularly where
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capillary preSSures are likely to be large or otherwise of importance

because of the situation we are dealing with.

/

Variability of Saturation and Pressure with Correlation Length

The variance of log saturation‘appears to decrease very slightly
and then levels off with increasing correlation length, as shown in
" Figure 5.8. The very small magnitude of change'iﬂ its value casts doubt
on whether this is significant or not. Pressure, on the other hand,
exhibits an increase and then leveling off with increasing correlation
length. Larger correlation length implies that there are fewer and
larger zones of éimilér properties and values present. Since saturation
physically takes on only a limited range of values, fewer zones within a
‘region. of inferest~may result in slightly lower variance (imagine two
rolls of a die compared to a hundred - two rolls will not cover all
possible values, but a hundred almost certainly will). Pressure, being .
a quantity with unbounded values, will tend to have more widely differ-
ing values if we have fewer, more widely-separated zones of differing
permeabilities, velocities, saturations, and preséurés. Figufe 5.9
indicates that the variability of pressure increases with correlation
length and then levels off. As correlation lengths continue to increase
to the length of our model and beyond, we will.eventually tend to be
withiﬁ one transition zone between regions of differing pressure, and,
thus, pressufe variaﬁility increasé with increasing correlation length
levels off.

Sensitivity to Relative Permeability and Mobility Parameters

Other sensitivity analysis runs show that the variances of both

saturation and pressure are rather sensitive to choices of values of -
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A; and A,. These are parameters in the approximating functions for
relative permeability of water and total mobility, respectively. This
finding indicates that determining the most suitable functional forms
for approximating these relations as well as finding appropfiate
values for the function parameters may be worthﬁhile topics for
additional research.

The variance of log saturation is much more sensitive to the value

of A, than to values of A;, as shown in Figure 5.10. However,
Figure 5.11 reveals that the variance of pressure is quite sensitive to
values of both A; and A,. Since A; and A, are not fundamental physical
quantitites, but rather are parameters in somewhat arbitrary approxima—
ting functions, the specific nature of the variances’ sensitivities to
their values will not be further discussed.

The shape of the water relative permeabilitybcurve does not vary
greatly from one medium to another. Furtbermore, the exponential
function which was fit to this curve provided quite a good fit. There-
fore, it is likely that the value of A, used was a good approximation
which is not likely td vary much. However, oil viscosities vary widely,
which means that oil relative permeability values will vary widely, and,
consequently, total mobility values will differ considerably under
different reservoir conditions. Furthermore, the fit of an exponential
function to this curve was not as good a fit as it was for the water
relative permeability curve. A substantially different total mobility
curve may make an exponential function a very poor fit. Thus, values of
Ac'may vary over quite a large range, and a more realistic model may

actually require a function of a different/;;}m.



 VAR({nS)/0

0.2¢ 0.26 0.28 0.30 0.32

0.22

0.18 0.20

- 70 -

AVV=Z'8 . N o —
" A, = 3.0
T A, = 3.2
T"l’l"‘l"l"rT"Ul"""‘TI'I'I"IU]"""I’II‘

2122 23 24 25 226 27 2.8 289 3
N v _

Figure 5.10. Sensitivity of Variance of (7S to A; and A,
2-D Model: Normalized by sz, Independent of J
“EB(7inS) = -1



- 71 =

0p2/J20f2

'l’"""l'll'lITTYlI'Il'IlIYII'IIl'll'(itv'l'

2.1 2.2 23 2.4 25 2.6 2.7 2.8 2.8
Ag

Figure 5.11. Sensitivity of Variance of P to A 'and A,
2-D Model: Normalized by Jzof2
E(7ins) = -1



- 72 -

1t éan be concluded that the variance of log saturation was
probably not seriously affected if our choices of functions or their
parameter values for water relative permeability and total mobility were
rather poor.. However, the pressure variance’s sensitivity to Ag, in
particular, casts some uncertainty on our observations of the behavior
of this variance.

The Three-Dimensional Model

The sensitivity of the variance of log saturation to the log-
safuration gradient was quite similar to the tﬁo—dimensional case, as
shown in Figure 5.12. This was not surprising, as the anisotropic model
used describes a situation in which flow is likely to be predominantly
horizontal, and, thus, flow does not differ greatly from the two-
"dimensional case.

The variance of log saturation approaches the two-dimensional
variance for a large anisotropy ratio, as expected. A large anisotropy
ratio means that the vertical correlation length is much smaller than
that in the horizontal directions. This is caused by layers of sub-
stantially differing permeabilities, which, as discussed earlier,
generally results in little vertical flow. Thus, as the anisotropy'
ratio increases, the flow approaches the two-dimensional case.

As the anisotropy ratio approaches one, the variaﬁce of log
saturation approaches its limiting value much moré slowly with
increasing correlation length. This is so because the freer vertical
movement implied by the lower anisotropy ratio (meaning a relatively
larger vertical correlation length) allows saturation differences to
more effectively reach equilibrium in the vertical direction in

addition to the horizontal directions, thereby reducing its variability.



- 73 ~

0.212 0.214

T S |

0.210

- 0.208
NP |

| BT W Y

VAR({nS)/os?
0.206

0.204

U U W ¥

0.200 0.202

o

Figure 5.12.

13 L4

—T —
0.2 0.4 0.6 : 0.8 1

G = E(VinS)
Variance of Y = {nS vs E(VnS)

3-D Isotropic Model: Normalized by 0;2, Independent of J
Aw=3.0,Ac=2.6,,\=l_



- 74 -

However, results for a small anisotropy ratio should be interpreted with
caution, as our model did not incorporéte gravity effects. A small
anisotropy ratio imi)lies that vertical flow may be relatively important,
which means that the role of gravity is more important.

The beﬁavior of the variance of pressure with varying log-satura-
tion gradient is almost identical to that for the two-dimensional case,
at first falling rapidly and then more slowly as the log-saturation
gradient increases’.A This is shown in Figure 5.13. Because pressures
reach equilibrium over distances more quickiy than do differing satura—~
tions, the net effect of a third dimension being present does not
influence pressures much. |

The variahce of saturation increases with increasing correlation,
length, approaching an asymptotic value, as shown in Figure 5.14. This
can be ei:plained by the likelihood of longer correlation lengths to
jmply the presence of fewer and larger zones of differing pgrmeabilities
{(and, thus, differing séturations). This, in turn, means that prefer-
ential flowpaths exhibiting higher flow velocities will tend to be of
more substantial length, and thus of greater importanc'e.‘ Therefore ,
zones of substantially different satm"ations will exist, which means
that the variance bf Sa.tumtion is larger. As explained previouSly,
because of the limited range of possible values fof saturation, the
variance approaches a‘limiting value.

The variance of pressm‘e‘increases without bound as correlation
length increases kFigure 5.15). Increasing correlation length implies
fewer, larger zones of differing pressures. Substantial differences in

pressure are more likely to be maintained over larger distances than
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over short distances. Therefore, variance increases with increasing
correlation length. Since there is no upper bound for pressure values,
its variance also increases without bound.

The variance of log of saturation decreases almost lineai‘ly with an
increase in the anisotropy ratio (Figﬁre 5.16). The variance of
_pressure also decreases substantially w1th increasing anisotropy ratio
(Figure 5.17). Basucally, these curves reflect a transition from sub-
stantially three-dimensional flow to essentially two-dimensional,
horizontal flow. ‘ In three-dimensional flow, these properties are likely
to vary oonsiderably as one moves transverse to the flow direction.

Effective Velocity of Water

' Effective water velocity was found to increase slightly with in-
creasing correlation lengt.h, as. seen mFlgure 5.18. Low correlation
lengths imply that many small Zones of varylng permeabilities exist.
Chances are that .there would not be enough small high permeability zones
interconnected to allow a significantly long flowpath to develop. At
higher correlation lengths, these zones will generally be larger. Even
a few such zones interconnected may be sufficiently long enough to allow
significantly increased flow rates. A significant increase in flow
velocities along certain pathways would result in some fise in effective
velocity.

Effective velocity also exhibited a small increase with increasing
saturation gradient (Figure'5.19) . One possible explanation for this is
that where saturation gradienfs are large, there is likely to be a full
range of saturations ranging from predominantly oil-saturated to

predominantly water-saturated. Furthermore, the predominantly water-
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saturated zones are lii(ely to occur in higher—permeability zones because
in waterflooding of an oil reservoir, the higher_-—pei'meability pathways
| will be the main pathways where water will preferentlally flow. Now, a
medium with a hlgh water saturation w111 have a higher effectlve water
velocity at a given pressure gradient than will the same medium with
lower water saturation (this is for a case such as in our modei where
‘the other fluid has higher viscosity). -As mentioned earlier, this
higher velocity aloﬁg certain pathways will cause some rise in the
‘overall effective velocity. |
. It is importanﬁ to rea.lize that, in general, oil and water effec-

tlve ve1001t1es will dlffer, often greatly With our assumption of an
; 01l-water viscosity ratio of 30: l water veleocities will be greater
than for oil for most values of saturation.

Effective Velocity of 0Oil

In this study, eqwa.tibns were not vdevel.oped for effective oil
velocity. The form of the appfoximating function for oil relative
permeability was chosen for a good fit, but that form (Equation 2.12)
would result in a very lenéthy and cumbersome expréssion for effective
oil velocity. Thus, it would be highlyﬁdesirable to develop a differ-
ent functional form.for oil relative permeability. However, some
general observations about effective oil vvelocity can be Me.

In a medium with 50% water saturation and 50% oil saturation, each
fluid behaves in some sense roughly as ez;.ch fluid would in a similar
porous medium, but with one-half the porosity. Thus, by Darcy’s law,
our much-higher-viscosity oil will have a substantially lower flow

velocity than water. In fact, this oil velocity is so much lower that
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it remains lower than for water over most of the saturation ranges
expected to be encountered in real oil reservoirs. Therefore, effective
water velocity is higher than effective oil velocity during virtually
the entire time period of operation of a waterflooding process. The
relative difference between these two effective velocities depends both
on saturation and the oil-water viscosity ratio.

Strategies for Enhanced Recovery of 0il

An examination of the velocity equations (1;2) gives an insight
into some strategies used in enhanced oil recovery methods. The goal,
if waterflood oil recovery is being used, is to increase effective oil
velocity relative to effective water velocity. The following are some
astrategies which have been employed in the search for more efficient oil
recovery methods (Taber and Martin, 1983):

+ Reduce oil viscosity to make the viséosity ratio uO/uw smaller,

and thué make the velocity ratio, Vg /Vy» larger. This is

done by addition of heat to-o0il, as in fireflooding or steam

flooding.

x+ Increase water viscosity to make the velocity ratio, Vo/ Vs larger.
This is accomplished by the addition of polymers to the injected
water. |

x Moke water miscible with oil. This has as its goal.the formation
of a single fluid so that oil and water would flow together at the
same velocities. Additives such as detergents and alcohol are uséd
to achieve miscibility.

* Increase the permeability of a reservoir using fracturing

methods., With larger passageways for fluids through fractures, the
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'viscosity difference between oil and water is relatively less

important and effective velocities of oil and water are more nearly .

equal.

CONCLUSIONS ‘ _

It is demonstrated f-.hat the spectral-perturbation method provides a
useful tool fof studying two-phase flow. The conclusions drawn from
this model appear to correléte with findings u51ng ot'._herk methods Thus,
this method is submitted as being another valid and useful approach to
two-phase flow .modeling.

Variances for pressures and satm‘ation are smaller for three dimen-
sions than for two dimensions, this being in accord with the findings
of previous researchers. In general, variance is reduced with each
additional dimension. Variance of pressure is substantially reduced
with an additional dimension, while the variance of saturation is also
reduced, but to a much smaller exteﬁt. The degree of covariance aniso-
tropy for_ pressure in the two-phase case can differ substantially from
the single-phase saturated case.

The effect of the saturation gradient on the variances and covari-
ance anisotropies of pressure and saturation is substantial. The
pressure gradient only has a scaling effec’; on the variance and
covariance values. |

Because this wofk is an initial application of the spectral-
perturbation method to two-phase flow, many simplifying assumptions have
been made. There is much further research which should be done to make
the model more nearly approximate real-world situations, as discussed in

the next section.
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The development of an expression for effective water velocity is an
aid to judging the effectiveness of various enhanced oil recovery stra-
tegies. Subsequent development of an expression for effective oil
velocity will further this effort. -

In conclusion, the major contribution of this wdrk is the intro-
duction of a new technique, the spectral-perturbation method, to the
modeling of two-phase flow. Further refinement of the conclusions re-
sulting from applicétion of the models can be expectea after research
which leads to eliminating or reducing some of the moré restrictive

assumptions made in this work.

RECOMMENDATIONS FOR FUTURE RESEARCH

The models developed in this work have made use of a number of
-simplifyflng assumptions. Many of; these proﬁde avenues for future
research to develop mode]_.s which reduce .o'r eliminate the restrictive-
ness of some of the assumptions.

One major assumption was that capillary pressure was zero. How-
ever, capillary pressure is very important in many cases. It would be
highly desirable to develop a model which takes capillary pressure into

| account. Also, the situations in which it is reasonable to neglect
capillary pressure can be better determined. In a model which includes

_ capillary pressure, one may also want _to consider the possibility of a
nonzero capillary pressure gra.dlent

The form of the approximating function for total mobility is worth

- in?estigating, particularly since the exponential form> would be a very
poor form fbr some viscosity rétios which may be encoxmtered.r For ex-

ample, a constant plus an exponential expression would provide a better
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fit than an exponential expression alone. Associated with this issue is
the consideration of a different form for oil relative permeability.

While the form used, Equation (2.12), provides a good fit, it results in
a very long and cumbersome expression for the efféétive velocity of oil.

The inclusion of a gravity term should be considered for models in
which vertical flow is expected to be significant. This includes the
cases vof three-dimensional flow, two-dimensional flow down an inclined
plané‘,..and two—dimensional flow in a vertiéa;l ‘plane. Inclusioﬁ of a
gravit& term would facilitate comparisoh of modeling results to find
ingé made in vadose zone flow studies. - ,

Another extension to this work could be the‘ study} of éompr-essible
flow. Tlﬁs would allow modeling of two-phase flow where gas was one of
the f1u1ds Applications inéiude modeling of gases 1n an oil reserv'oibr
and air in the vadose zone. |

All of these ideas would involve changes in the governing
‘:'equations , which would require re-deriving f.he perturbation and spectral
" relations. Howevér, each .of these improvements wbuld allow the model to‘ ’
| bef.ter represent real-world conditions. Related to the inclusion of
these factors is a study under what circumstances it would be reasonable
to neglect each of these considerations. |

Another major exténsion would be transient modeling of two-phase
flow. This would involve retaining the transient terms, inol\ﬂjxxg that
in the boundary condition, in the solution of equation (3.32).

~ Yet another major area for future research is the extension 6fﬂ the

spectral-perturbation method to other fluid flow modeling problems.
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These oouid include three-phase flow and solute transport modeling, as

well as other applications.
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APPENDIX 1

. TWO-DIMENSIONAL COVARIANCE PROGRAM LISTING



OGRAM SDFFT3.FOR "SPECTRAL DENSITY FAST FOURIER TRANSFORM CODE #3"
INCORPORATE EXPONENTIALS TO ACCOUNT FOR OFFSET OF 0.5*DELU
SET UP A SERIES OF SUMS TO FACILITATE FFT OF ISOTROPIC, AND ANISOTROPIC
SPECTRAL DENSITIES
SET UP TO COMPUTE COVARIANCES FROM SPECTRAL DENSITIES OF LOG OF
SATURATION AND PRESSURE .
USING A NEW COMPLEX-VALUED FUNCTION FOR RATIO OF B2/Bl
USING AC AND AW VALUES DETERMINED FROM EXPONENTIAL REPRESENTATION
OF RELATIVE PERMEABILITY CURVES
INCLUDES SUBROUTINE WHICH CREATES CONTOUR PLOT FILES FOR COCARIANCES
INCLUDES OPTION TO NORMALIZE COVARIANCE PLOTS (i.e., SET VAR = 1.0)
HEADINGS WITH PARAMETER VALUES FOR CONTOUR PLOTS HAVE BEEN IMPLEMENTED
INCLUDES OPTION TO AUTOMATICALLY PLOT SPECTRAL DENSITIES
COMPLEX RATIO CALCULATION HAS BEEN CORRECTED AND SIMPLIFIED
==>> IMPLEMENT PRINTOUT OF LOCATION OF MAX VALUE ON SPECTRAL DENSITY
PLOT AND MIN VALUE ON COVARIANCE PLOT
=>> TEST OUTPUT BY COMPARISON TO VARIANCE OF MIZELL'S S.D. "B"
(COMPARISON CAN-BE MADE IF AC = 0, OR G IS VERY SMALL)
THIS CODE PERFORMS TWO FAST FOURIER TRANSFORMS ON TWO-DIMENSIONAL
PUT DATA. SPECIFICALLY, IT TRANSFORMS SPECTRAL DENSITIES OF
(LN OF SATURATION, S), AND PRESSURE, P. THIS RESULTS IN THE
VARIANCE FUNCTIONS OF THE GIVEN PROCESSES.
RESULTS HAVE BEEN CHECKED BY:
) COMPARING SPECTRAL DENSITY EVALUATIONS WITH HAND CALCULATIONS OF SAME
) COMPARING NUMERICAL INTEGRATION WITH RCOV(0,0) TO CHECK VARIANCE CALC. .

VARIABLES USED:
LECT- FILENAME OF COVARIANCE OF "T" UNFORMATTED DATA
LECP- FILENAME OF COVARIANCE OF "P" UNFORMATTED DATA
LEST- FILENAME OF SPECTRAL DENSITY OF "T" UNFORMATTED DATA
‘LESP- FILENAME OF SPECTRAL DENSITY OF "P" UNFORMATTED DATA
'IM - PARAMETER INDICATING DIMENSIONED ARRAY SIZES
IZE - VARIABLE USED TO PASS VALUE "IDIM" TO SUBROUTINE
- THE ROW AND COLUMN DIMENSION OF THE DISCRETIZED SPECTRAL DENSITY
1 = THE VALUE OF N MINUS 1
I1 - ARRAY OF SPECTRAL DENSITY VALUES IN 1ST QUADRANT (M1, M2 BOTH +)
I2 - ARRAY OF SPECTRAL DENSITY VALUES IN 2ND QUADRANT (+M1, -M2)
I - A COMPLEX ARRAY SUITABLY DIMENSIONED FOR PASSING TO FFT3D SUBROUTINE
M1 - SIGN OF M1 INDEX

M2 - SIGN OF M2 INDEX .

,M2 - INDICES REPRESENTING DISCRETIZED SPACING IN FREQUENCY DOMAIN
J1 - SIGN OF J1 INDEX

J2 - SIGN OF J2 INDEX

;32 - INDICES REPRESENTING DISCRETIZED SPACING IN COVARIANCE FIELD
LU - SPACING IN FREQUENCY DOMAIN

AX - MAXIMUM VALUE OF U IN EITHER DIRECTION (I.E., EITHER U1 OR U2)

- VALUE OF FIRST SPATIAL VARIABLE IN SPECTRAL DOMAIN
- VALUE OF SECOND SPATIAL VARIABLE IN SPECTRAL DOMAIN
LX - SPACING IN COVARIANCE FIELD



[l - COMPLEX RESULTS OF FFT TRANSFORM OF 1ST QUAD OF S.D. ARRAY:
| CORRESPONDS TO SUM1 ON P.12 OF ALLAN'S NOTES OF 8/12/87
[3 - COMPLEX RESULTS OF FFT TRANSFORM OF 4TH QUAD OF S.D. ARRAY:
CORRESPONDS TO SUM3 ON P.12 OF ALLAN'S NOTES OF 8/12/87

W - REAL COVARIANCE VALUES RESULTING FROM TRANSFORM
! - VARIANCES OF T AND P
[AX - MAX VALUES IN SPECTRAL DENSITY FIELDS OF T AND P
[XUl- Ul VALUE AT MAX S.D. VALUE
[XU2- U2 VALUE AT MAX S.D. VALUE
! -  SPECTRAL DENSITY RANGE FOR PLOTTING
)R - INDEX RANGE CORRESPONDING TO SPECTRAL DENSITY RANGE FOR PLOTTING
'PLT- FLAG TO INDICATE COVARIANCE PLOT TO BE PREPARED
' IZE- DIMENSIONS OF COVARIANCE PLOT
N - MINIMUM VALUE ON COV P PLOT .
'NX1- X1 COORDINATE VALUE CORRESPONDING TO MINIMUM VALUE ON COV P PLOT
'NX2- X2 COORDINATE VALUE CORRESPONDING TO MINIMUM VALUE ON COV P PLOT
X - VARIANCE OF P
‘N - MINIMUM VALUE ON COV T PLOT
'NX1- X1 COORDINATE VALUE CORRESPONDING TO MINIMUM VALUE ON COV T PLOT
'NX2- X2 COORDINATE VALUE CORRESPONDING TO MINIMUM VALUE ON COV T PLOT
X - VARIANCE OF T |
' - CHARACTER VARIABLE TO HOLD A DOLLAR SIGN
\D - CHARACTER STRING TO HOLD TITLE OF PLOT

-  NUMBER OF CHARACTERS IN STRING -

. .H4-CHARACTER STRINGS USED TO FORM HEADINGS

.LH4 - CHARACTER STRINGS (TYPE INTEGER) WHICH ARE THE HEADING LINES
SUBROUTINES USED:

P - EVALUATES SPECTRAL DENSITIES OF LOG OF SATURATION AND PRESSURE
0T - PREPARES COVARIANCE PLOTS FOR HP PLOTTER

PARAMETER IDIM = 128

COMPLEX ~ AX(IDIM,IDIM), CEXPON, CWK(IDIM)

COMPLEX SUM1(0:IDIM-1,0:IDIM-1), SUM3(0:IDIM-1,0:IDIM-1)
INTEGER I, J, K, N, ISIZE :

INTEGER IAl, IA2, N1, N2, N3, ISIGN, IWK(6*IDIM+150)

INTEGER NM1, ISJ1, ISJ2, J1, J2, ISM1, ISM2, M1, M2

INTEGER J1P1, J2P1, M1P1, M2P1

INTEGER LH1(20), LH2(20), LH3(20), LH4(20)

REAL RCOV(0:IDIM-1,0:IDIM-1), IMAG, RWK(6*IDIM+150), Ul, U2
REAL PI, DELU, UMAX, TEMP, TOL, A, DELX, X1, X2, XI

REAL PHI1(0:IDIM-1,0:IDIM-1,2), PHI2(0:IDIM-1,0:IDIM-1,2)
REAL LAMBDA, G, JJJ, TMIN, TMAX, PMIN, PMAX

REAL AC, AW, SIGSQ, CPSIZE, VAR(2), SDMAX(2)

REAL SDMXU1(2), SDMXU2(2), TMINX1, TMINX2, PMINX1, PMINX2
CHARACTER FILEST#9, FILESP*9, FILECT*9, FILECP*9, COVQ*1l, DS*1
CHARACTER COVPLT*1, NORMQ*1, H1%6, H2*6, H3*6, H4*6, HEAD*39
CHARACTER H5%10, H6%9, H7*8, H8*8, HO*12, H10*7, SDQ*1



FILEST

= 'STUNF.DAT'
FILESP = 'SPUNF.DAT'
FILECT = 'CTUNF.DAT'
FILECP = 'CPUNF.DAT'

OPEN (UNIT=26,FILE="'SUNT.DAT"®,STATUS="NEW', CARRIAGECONTROL~'LIST')
OPEN (UNIT=27,FILE='SUNP.DAT',STATUS='NEW', CARRTAGECONTROL~='LIST"')
OPEN (UNIT=38,FILE='SDT.DAT',STATUS='NEW', CARRTAGECONTROL='LIST')
OPEN (UNIT=39,FILE='SDP.DAT',STATUS='NEW', CARRIAGECONTROL="'LIST')
OPEN (UNIT=42,FILE=FILEST, FORM='UNFORMATTED' ,STATUS="'NEW')

OPEN (UNIT=43,FILE=FILESP, FORM='UNFORMATTED',STATUS='NEW')

OPEN (UNIT=40,FILE=FILECT, FORM='UNFORMATTED', STATUS='NEW')

OPEN (UNIT=41,FILE=FILECP,FORM='UNFORMATTED',STATUS="'NEW')

PI = 3.1415927 .

AW = 3.0 -
AC = 2.6 ' :

WRITE (5,*) ' AW SET AT ',AW,' AC = ',AC

SIGSQ = 1.0

TOL = 10.0 ** =10

ISIZE = IDIM

WRITE - (5,*) ' ENTER DELU '
READ (5,*) DELU

WRITE (5,*) ' ENTER U MAX '
READ (5,%*) UMAX

N = IFIX(UMAX/DELU)

NM1 =N - 1

A = DELU * FLOAT(N)

INPUT PARAMETER VALUES AND ANSWER QUESTIONS REGARDING OUTPUT % .

WRITE (5,%*) ' ENTER G '
READ (5,*) G
WRITE (5,*) 'ENTER J '
READ (5,*) JJJ
WRITE (5,*) ' ENTER LAMBDA '
READ (5,*) LAMBDA
WRITE (5,*) ' RANGE OF COV PLOT? <CR>=10x10; "N"=NO ==>DIFF.RANGE'
READ (5,'(A)') covQ .
IF (COVQ .EQ. 'n') COVQ = 'N!'
IF (COVQ .EQ. 'N') THEN .
WRITE (5,*) ' ENTER RANGE DESIRED '
READ (5,%*) CPSIZE
ELSE :
CPSIZE = 10.0
ENDIF o
WRITE (5,*) ' NORMALIZE COVARIANCE VALUES ? "Y"=YES; <CR>=NO '
IF (NORMQ .EQ. 'y') NORMQ = 'Y
READ (5,'(A)') NORMQ
IF (NORMQ .EQ. 'y') NORMQ = 'Y!



WRITE. (5,*) ' WANT PLOTS OF SPECTRAL DENSITIES? "Y"=YES; <CR>=NO'
READ (5,'(A)') SDQ

IF (SDQ .EQ. 'y') SDQ
IF (SDQ .NE. 'Y') SDQ
IF (SDQ .EQ. 'Y') THEN

|Yl
lNl

WRITE (5,*) ' ENTER RANGE OF S.D. FIELD TO BE PLOTTED'
SDR = 100.0 * DELU ‘ :

SDR = MIN (SDR,UMAX)

WRITE (5,*) ' RANGE MUST BE <= TO ',SDR,' (IN TERMS OF U)'
READ (5,*) SDR ‘
ISDR = IFIX (SDR / DELU)

ENDIF

SET UP CHARACTER CONSTANTS TO FORM HEADING LINES FOR CONTOUR PLOTS

DS = '§¢
Hl = ' Aw = !
H2 = ' Ac ="
H3 ="' JT =1
H4 ="' G =1
NC = 45

ENCODE (NC,500,LH2) H1, AW, H2, AC, H3, JJJ, H4, G, DS
FORMAT (4 (A6,F5.2) ,A) - :

H5 = ' LAMBDA = !
H6 = ' SIGSQ = '
H7 = ' DELU = !
H8 = ' UMAX = '
NC = 56

ENCODE (NC,510,LH3) HS, LAMBDA, H6, SIGSQ, H7, DELU, H8, UMAX, DS
FORMAT (A10,F5.2,A9,F4.1,A8,F6.4,A8,F5.2,3)
H10 = ' MIN = '

PRINT HEADINGS AND PARAMETER VALUES FOR NUMERICAL ARRAY OUTPUTS #*%%*

WRITE (38,211) _

FORMAT (10X, 'LOG OF SATURATION (T) SPECTRAL DENSITY FIELD ',/)
WRITE (39,212) '

FORMAT (//,10X,'PRESSURE (P) SPECTRAL DENSITY FIELD ',/)

WRITE (38,213) DELU, UMAX, N

WRITE (39,213) DELU, UMAX, N

FORMAT (5X, 'DELU = ',F6.3,' UMAX = ',F6.2,' N = ',I3,/)

WRITE (38,214) G, JJJ, LAMBDA

FORMAT (5X,'G = ',F7.4,' J = ',F7.4,' 1AMBDA = ',F6.2,/)
WRITE (38,216) AW, AC, SIGSQ :

FORMAT (5X,'AW = ',F6.2,' AC = ',F6.2,' SIGSQ = ',F6.2,/)

FORMAT (100F9.6)



¢ EVALUATE SPECTRAL DENSITY FUNCTION TO BE USED; PLACE IN ARRAY FOR FFT3D;
PRINT OUT VALUES OF THIS ARRAY; COMPUTE PARAMETERS FOR FFT3D *%**

ISM2 = 1 :
CALL SDTP (PHI1,N,DELU,ISM2,ISIZE,G,JJJ,LAMBDA,AC,AW,SIGSQ)

THIS NEEDED ONLY FOR CASES WHERE S(U1,U2) IS NOT EQUAL TO S(Ul,-U2) +++
IsM2 = -1 '

CALL SDTP (PHI2,N,DELU,ISM2,ISIZE,G,JJJ,LAMBDA,AC,AW,SIGSQ)

IAl = IDIM
IA2 = IDIM
Nl = N

N2 =N

N3 =1
ISIGN =1

SDMAX(K) = 0.0 |
DO 10 M2 = NM1, 0, -1

M2P1 = M2 + 1
DO 15 M1 = 0, NM1

PHI1(M1,M2,K) = 4.0 * PI * PI * PHI1(Ml1,M2,K)
IF (PHI1(M1,M2,K) .GT. SDMAX(K)) THEN

SDMAX (K) = PHI1(M1,M2,K)
SDMXU1(K) = (FLOAT(M1) + 0.5) * DELU
SDMXU2 (K) = (FLOAT(M2) + 0.5) * DELU

ENDIF L
AX(M1+1,M2P1) = CMPLX(PHI1(M1,M2,K),0.0)

CONTINUE
IF (X .EQ. 1) THEN

IF (M2 .LT. 11) WRITE (38,210) (PHI1(M1,M2,K),M1=0,11)
ELSE IF(K .EQ. 2) THEN

IF (M2 .LT;‘ll) WRiTE (39,210) (PHI1(M1,M2,K),M1=0,11)
ENDIF

CONTINUE



CREATE,PLOT FILES FOR SPECTRAL DENSITY.CONTOUR PLOTS ***

IF (SDQ .EQ. 'N') GO TO 410
DO 399 M2 = 0, ISDR

IF (K .EQ .1) WRITE (42) (PHI1(M1,M2,1),M1=0,ISDR)
IF (K .EQ. 2) WRITE (43) (PHI1(M1,M2,2),M1=0,ISDR)

CONTINUE
FORMAT (4X,12F6.3,/)

* TAKE FFT OF "A" FIELD AND PLACE RESULTS BACK INTO SUM1 ARRAY *%*

CALL FFT3D(AX,IAl,IA2,N1,N2,N3,ISIGN,IWK,RWK,CWK)
DO 22 J1 = 0, NM1

J1P1 = J1 + 1
DO 23 J2 = 0, NM1

SUM1(J1,J2) = AX(J1P1,J2+1)
CONTINUE
CONTINUE

+ THIS NEEDED ONLY IF S(Ul1,U2) IS NOT EQUAL TO S(Ul -U2) ++++
* NOW COMPUTE S.D. ARRAY FOR 4TH QUADRANT; PLACE IN AX ARRAY FOR FFT3D;
CALL FFT3D TO TRANSFORM S.D.;  *k&%#*
DO 28 Ml = 0, NM1 :
M1P1 = M1 + 1
DO 29 M2 = 0, NM1

PHI2(M1,M2,K) = 4.0 * PI * PI * PHI2(M1,M2 K)
AX (M1P1,M2+1) = CMPLX(PHI2(M1,M2 K) 0.0)
CONTINUE
CONTINUE

CALL FFT3D(AX, IAl IA2,N1,N2,N3,ISIGN, IWK,RWK, CWK)



¢ PLACE TRANSFORMED ARRAY INTO SUM3 -- REARRANGING TO FORM CORRECT SUM **%*
DO 30 J1 = 0, NM1l

J1P1 = J1 + 1
bo 31 J2 = 0, NM1

IF (J2 .EQ. 0) THEN

SUM3(J1,0) = AX(JlPl 1)
ELSE

SUM3 (J1,J2) = AX(J1P1,N-J2+1)
ENDIF '

CONTINUE
CONTINUE

MULTIPLY EACH SUM TIMES THE APPROPRIATE IMAGINARY EXPONENTIAL FACTOR;
ADD THE TWO SUMS; MULTIPLY BY APPROPRIATE CONSTANTS; OUTPUT RESULTS

DELX = 1.0 / A

IF (K .EQ. 1) WRITE (38,221)

FORMAT (/,10X,'COVARIANCE FIELD FOR LOG OF SATURATION (T)',/
IF (K .EQ. 2) WRITE (39,222) , _
FORMAT (/,10X,'COVARIANCE FIELD FOR PRESSURE (P)',/)

IF (K .EQ. 1) WRITE (38,223) DELX

IF (K .EQ. 2) WRITE (39,223) DELX

FORMAT (' DELX = ',F7.4,/)

COMPUTE PARAMETERS FOR CONTOUR PLOTTING %%
IF (K .EQ. 1) THEN
TMIN
TMAX

PMIN
PMAX

ENDIF

MAXJ = IFIX(CPSIZE/DELX)

DELR = DELU * 2.0 * PI

IF (MAXJ .GT. NM1) MAXJ = NM1

IF (K .EQ. 1) WRITE(5,*) ' PLOT N = ', MAXJ+1
DO 33 J2 = NM1, 0, -1

DO 35 J1 = 0, NM1



TIPLY TERMS BY IMAGINARY EXPONENTIAL FACTOR REFLECTING OFFSET FROM AXES

JJ = J1 + J2 :

IMAG = FLOAT(ISIGN) * PI * FLOAT(JJ) / FLOAT(N)
SUM1(J1,J2) = CEXP(CMPLX(0.0,IMAG)) * SUM1(J1,J2)

JJ = J1 - J2 _

IMAG = FLOAT(ISIGN) * PI * FLOAT(JJ) / FLOAT(N)

SUM3 (J1,J2) = CEXP(CMPLX(0.0,IMAG)) * SUM3(J1,J2)
RCOV(J1,J2) = 2.0 * (SUM1(J1,J2) + SUM3(J1,J2))*DELU*DELU
TMAX = RCOV(0,0)

PMAX = RCOV(O0,0)

IF ((J1 .LE. MAXJ) .AND. (J2 .LE. MAXJ)) THEN

IF ((K .EQ. 1) .AND. (RCOV(J1,J2) .LT. TMIN)) THEN
TMIN = RCOV(J1,J2)

TMINX1 FLOAT(J1) * DELX
TMINX2 FLOAT(J2) * DELX

o

ELSE IF ((K .EQ. 2) .AND. (RCOV(J1,J2) .LT. PMIN)) THEN

PMIN = RCOV(J1,J2)

PMINX1 = FLOAT(J1) * DELX
PMINX2 = FLOAT(J2) * DELX . |
ENDIF
ENDIF
CONTINUE

IF (K .EQ. 1) THEN | |
IF (J2 .LE. 11) WRITE (38,210) (RCOV(J1,J2),J1=0,11)
ELSE IF(K .EQ. 2) THEN |
IF (J2 .LE. 11) WRITE (39,210) (RCOV(J1,J2),J1=0,11)
ENDIF | |
CONTINUE

¢ WRITE OUT UNFORMATTED COVARIANCE DATA FOR CONTOUR PLOTTING **%*
¢ WRITE OUT DATA FOR SHADE PLOTTING ON SUN COMPUTERS #**%*

IF (K. EQ. 1) WRITE (26,240) TMIN, TMAX
IF (K .EQ. 2) WRITE (27,240) PMIN, PMAX
VAR(K) = RCOV(0,0)



DO 40 J2 = 0, NM1
DO 45 J1 = 0, NM1

IF (K .EQ. 1) WRITE (26,260) RCOV(J1,J2).
IF (K .EQ. 2) WRITE (27,260) RCOV(J1,J2)

CONTINUE _
IF (NORMQ .EQ. 'Y') THEN

DO 47 J1 = 0, MAXJ .

RCOV (J1,J2) = RCOV(J1,J2) / VAR(K)

CONTINUE . o
ENDIF _ :
IF ((K.EQ.1).AND. (J2.LE.MAXJ))WRITE(40) (RCOV(J1,J2),J1=0,MAXJ)
IF ((K.EQ.2).AND. (J2.LE.MAXJ))WRITE(41) (RCOV(J1,J2),J1=0,MAXT)

CONTINUE

CONTINUE : o _
WRITE(5,*) ' G = ',G,' VAR T = ',VAR(1),' VAR P = ',VAR(2)
FORMAT (2F9.6) S :
FORMAT (1X,F9.6) ' .

VARB = (8.0/(3.0%PI))**2 * JJJ*JJJ * SIGSQ * LAMBDA*LAMBDA

WRITE(5,*) ' VARIANCE OF MIZELL"S FIELD "B" = ',KVARB
CLOSE (UNIT = 26)

CLOSE (UNIT = 27)

CLOSE (UNIT = 38)

CLOSE (UNIT = 39)

CLOSE (UNIT = 40)

CLOSE (UNIT = 41) -

CLOSE (UNIT = 42)

CLOSE (UNIT = 43)

CREATE HEADINGS; PLOT SPECTRAL DENSITY FIELDS #***
IF (SsDQ .EQ. 'Y') THEN

HEAD = ' CONTOURS OF THE SPECTRAL DENSITY OF Y !

NC = 40

ENCODE (NC,540,LH1) HEAD, DS
H9 = ' S.D. MAX = !

‘NC = 39"

ENCODE (NC,520,I1H4) H9, SDMAX(1l), SDMXU1(1l), SDMXU2(1), DS
. COVPLT = 'S _ ,
CALL CPLOT (FILEST,COVPLT,ISDR+1,SDR,LH1,LH2,LH3,LH4)



HEAD = ' CONTOURS OF THE SPECTRAL DENSITY OF P '

NC = 40
ENCODE (NC,540,LH1) HEAD, DS
NC = 39

ENCODE (NC,520,LH4) H9, SDMAX(2), SDMXU2(1), SDMXU2(2), DS
COVPLT = 'R' |
CALL CPLOT (FILESP,COVPLT,ISDR+1,SDR,LH1,LH2,LH3,LH4)

ENDIF %
FORMAT (A12,F8.4,' @ (',F6.4,',',F6.4,')',A)

CREATE HEADINGS; PLOT COVARIANCE FIELDS ##*#%

MAXJ = MAXJ + 1

COVPLT = 'T!

NC = 40

HEAD = ' CONTOURS OF COVARIANCE FUNCTION OF Y ‘!

IF(NORMQ .EQ. 'Y')HEAD ='CONTOURS OF CORRELATION FUNCTION OF Y '
ENCODE (NC,540,LH1) HEAD, DS '

H9 = ' VAR OF Y = '

NC = 54

ENCODE (NC,550,LH4) H9, VAR(1), H10, TMIN, TMINX1, TMINX2, DS
CALL CPLOT (FILECT,COVPLT,MAXJ,CPSIZE,LH1,LH2,LH3,LH4) :

IF (NORMQ .EQ. 'Y') WRITE (5,295) COVPLT, VAR(1)

FORMAT(5X,' VAR OF !',A,' = ',F10.7)
COVPLT = 'pP! ’
HEAD = ' CONTOURS OF COVARIANCE FUNCTION:OF P!

IF (NORMQ .EQ. 'Y')HEAD ='CONTOURS OF CORRELATION FUNCTION OF P '
NC = 40

ENCODE (NC,540,LH1) HEAD, DS

HO = ' VAR OF P = !

NC = 54

ENCODE (NC,550,LH4) H9, VAR(2), H10, PMIN, PMINX1, PMINX2, DS
FORMAT (A39,A)

FORMAT (A12,F8.5,A7,F8.5,' @ (',F6.3,',',F6.3,"')'A)

CALL CPLOT (FILECP,COVPLT MAXJ,CPSIZE,LHI,LHZ,LH3,LH4)

IF (NORMQ .EQ. 'Y') WRITE (5,295) COVPLT, VAR(2)

IF (SDQ .EQ. 'Y') WRITE (5,*) 'S.D. PLOT FILES: CSDT.POP;CSDP.POP'

STOP ' PROGRAM SDFFT3 FIN"D: TO PLOT: “PLOTA CCOVT.POP; CCOVP.POP'
END



SUBROUTINE SDTP(SDTPAR,N,DELU,ISR2,IDIM,G,J,LAMBDA,AC,AW,SIGSQ)
THIS SUBROUTINE EVALUATES THE SPECTRAL DENSITIES OF LOG OF
'URATION (T) AND PRESSURE (P).

COMPLEX CFACT, I, RATIO, VRATB, DZP

REAL SFF, SPP, STT, H1, H, J, PI, TOL2, RDEN

REAL READIN, R, R1l, R2, SIGSQ, LAMBDA, RATSD,- INTEGR

REAL AC, AW, G, TOL, STPI2, SBF, SBFV, PORS, FACTSQ

REAL DELU, INTT, INTP, VARP, VART, SDTPAR(0:IDIM-1,0:IDIM-1,2)
REAL MUW, TBAR, F, CW, SDOFT, PINT, HDELR

INTEGER II, III, JJ, K, N, ISR2, NM1

TOL = 1.0 / 10000.0
I = CMPLX (0.0, 1.0)
PI = 3.141592654

VALUES FOR USE IN TIME-VARYING CALCULATIONS #%%*
MUW = 1.0; TBAR = -.693; CW = —-.22; PORS = .3; F = 4.605
H = MUW * PORS * EXP(~(F + CW + (AW - 1) * TBAR))

t* LOOPS TO VARY R1l, R1l: CALCULATE SPACE-DEPENDENT-ONLY TERMS *%k%%%
ALPHA = 3.0 * PI / (16.0 * LAMBDA)

NM1 =N -1 '

WRITE (5,*) ' NM1 = !',6NM1

RDEN = AW * G * (AW - 1.0)

DO 10 II = 0, NM1

Rl = (FLOAT(II) + O. 5) * DELU * 2.0 * PI
DO 20 JJ = 0, NM1

R2 = FLOAT(ISR2) * (FLOAT(JJ) + 0.5) * DELU * 2.0 * PI
COMPUTE THE VALUE OF SPECTRAL DENSITY "B" *#%

SFF
RSQ

SB (ALPHA, Rl, R2, SIGSQ)
Rl1 #* Rl + R2 * R2



COMPUTE THE VALUE OF THE SPECTRAL DENSITY OF LOG OF SATURATION (T) *#%%
IF (RSQ .GT. TOL) THEN
VRATB = RATIO (AC,AW,G,RSQ,R1,RDEN)
RATV = REAL(VRATB * CONJG(VRATB))
SDTPAR(II,JJ,1) = SFF * RATV :
CFACT = I * R1 * J / (RSQ - AC * G * Rl * I)
ELSE

SDTPAR(II,JJ,1). = 0.0

VRATB = CMPLX(0.0,0.0)
CFACT = CMPLX (0.0, 0.0)
ENDIF

COMPUTE THE VALUE OF THE SPECTRAL DENSITY OF PRESSURE (P) *%*
FACTSQ = REAL(CFACT * CONJG(CFACT))
CFACT = CMPLX(1.0,0.0) + AC * VRATB
FACTSQ = FACTSQ * REAL(CFACT * CONJG(CFACT))
SDTPAR(II,JJ,2) = FACTSQ * SFF
CONTINUE
CONTINUE

RETURN-
END



REAL FUNCTION SB (ALPHA, K1, K2, SIGSQ)

THIS FUNCTION COMPUTES THE SPECTRAL DENSITY B IN MIZELL'S PAPER
R 18 (4), pp. 1053-2067) FORMULA 13.

REAL ALPHA, K1, K2, SIGSQ
PI = 3.141592654

3.0 * ALPHA * ALPHA * SIGSQ * (K1 * K1 + K2 * KZ) *% 2

SB =

SB =SB,/ (PI * (KL * KI + K2 * K2 + ALPHA * ALPHA) ** 4)
RETURN

END

COMPLEX FUNCTION RATIO(AC, AW, G, RSQ, R1l, RDEN)

—— I G ———— —— —— — — — . T T T D T D A G GNS G S G = = ————

REAL AC, AW, G, R1l, RSQ, RDEN
COMPLEX I, RTNEW, B3, DEN

I = CMPLX(0.0,1.0)

B3 = CMPLX(RSQ,-AW*G*R1) / CMPLX(RSQ,-AC*G*R1)
RTNEW = CMPLX(AW*G,R1) - R1 * B3 * I

DEN = I*R1* (AW - AC*B3) + CMPLX(RDEN,0.0)
RATIO = -RTNEW / DEN

RETURN
END



SUBROUTINE CPLOT(FILE,COVPLT,NX,PLTSIZ,LH1,LH2,LH3,1LH4)

SUBROUTINE TO PREPARE DATA FOR PLOTTING ON HP PLOTTER
REAL P(10000), PLTSIZ, XMAX, YMAX, INC, TEMP, RANGE
CHARACTER FILE*9,ANS*3, COVPLT*1, COVFIL*10
INTEGER NX, NY, IINC, I, J, LH1(20), LH2(20), LH3(20), LH4(20)
COMMON WORK(50000) '
COMMON /CNTURP/ ZMIN,ZINC,NLBC

OPEN (UNIT=97,FILE=FILE, FORM='UNFORMATTED' ,STATUS="'0LD')
OPEN (UNIT=99,NAME='DISPLAY.MSG',STATUS='NEW')

CALL COMPRS
CALL SETDEV(99,99)
CALL NOBRDR
CALL SETCPR(2,0,0,0)
IF (COVPLT .EQ. 'T') THEN
- COVFIL = 'CCOVT.POP!
ELSE IF (COVPLT .EQ. 'P') THEN
COVFIL = 'CCOVP.POP'
ELSE IF (COVPLT .EQ. 'S') THEN
COVFIL = !'CSDT.POP'
ELSE IF (COVPLT .EQ. 'R') THEN
COVFIL = 'CSDP.POP' '
ENDIF R ' _
OPEN (UNIT=2,NAME=COVFIL,STATUS='NEW', FORM='UNFORMATTED')
WRITE (5,%*) ' OUTPUT DISK PLOT FILE: ',COVFIL
NY = NX S " : » '
CALL PAGE(8.5,11.)
CALL INTAXS
IXTIX = 10
IYTIX = 10
CALL XTICKS (IXTIX)
CALL YTICKS (IYTIX)
IF ((COVPLT .EQ. 'S') .OR. (COVPLT .EQ. 'R')) THEN

CALL XNAME(' U —m=————m > $',100)
CALL YNAME(' U =—==———=- > $',100)
ELSE IF ((COVPLT .EQ. 'T') .OR. (COVPLT .EQ. 'P')) THEN
call xname(' X =————— > $',100) '
call yname(' X === > $',100)
ENDIF :

CALL AREA2D(5.5,5.5)
CALL COMPLX

XMAX = PLTSIZ

YMAX = PLTSIZ
CALL GRAF(0.,XMAX,XMAX, 0.,YMAX,YMAX)
CALL GRACE(0.0)



CALL HEADIN(LH1,100,-1.25,4)
CALL HEADIN(LH2,100,1.0,4)
CALL HEADIN(LH3,100,1.0,4)
CALL HEADIN(LH4,100,1.0,4)
- CALL THKFRM(0.015)

CALL FRAME

DO 10 IX =1, NX
ibeg=(ix-1) *NX+1

iend=ibeg+NX-1 ,
read(97) (p(iy),iy=ibeg,iend)

CONTINUE

NXNY = NX * NY
PMIN = P(1)
PMAX = P(1)
SUM = 0.0

DO 20 I = 1, NXNY

PMIN = MIN(PMIN,P(I))
. PMAX = MAX(PMAX,P(I))
SUM = SUM + P(I)

CONTINUE S

AVE = SUM / NXNY

WRITE(5,290) COVPLT, PMAX

FORMAT (5X,Al, '"MAX = ',F8.4)

WRITE(5,291) COVPLT, PMIN

FORMAT (5X,Al1, 'MIN = ',F8.4)

write(5,*) 'ave="',ave

RANGE = PMAX - PMIN ‘ ‘

IF (RANGE .LT. .001) WRITE(5,*)' *%%%%¥ WARNING: RANGE < .001 **U'
IF (RANGE .GT. 10.0) WRITE(5,*)' #*#%%%* WARNING: RANGE > 10 *%%%!
INC = RANGE / 20.0 ’ o '
Jd =20

TEMP = INC

IF (TEMP .LE. 2.0) THEN

DO 30 I =1, 10

TEMP = TEMP * 10.0

J=J+ 1

IF (TEMP .GT. 2.0) GO TO 400
CONTINUE

ENDIF



IINC = IFIX(TEMP)

IF (IINC .GT. 5) IINC
IF (IINC .EQ. 3) IINC = 2

IF (IINC .EQ. 4) IINC = 5

INC = FLOAT(IINC) / (10.0 ** J)
IF (PMIN .LT. 0.0) ISIGN = -1
IF (PMIN .GE. 0.0) ISIGN = 1
ZMIN = 0.0

DO 40 I = 1, 40

IINC - MOD(IINC,5)

IF ((ZMIN .GE. PMIN).AND. (ABS(ZMIN-PMIN) .LT. INC)) GO TO 410
ZMIN = ZMIN + FLOAT(ISIGN) * INC :

CONTINUE

ZINC = INC

nlbc=0 :

- WRITE (5,%*) ' ZMIN = ',ZMIN,' INC = ',INC

CALL HEIGHT(.06)
CALL CONMIN(1.5)
CALL CONANG(90.)
CALL CONTHN(0.0)
CALL BCOMON(50000) -

CALL ZBASE (ZMIN)

CALL CONMAK(P,NX,NY,ZINC) ,

CALL CONLIN(O, 'SOLID','LABELS',1,10)

DO 50 I=1,NLBC :

CALL CONLIN(I, 'DASH','NOLABELS',1,9) ‘

NCON = NLBC + 1 - L e B e e L
CALL CONTUR(NCON, *LABELS', 'DRAW') _ BRI
CALL ENDPL(0)

CALL DONEPL

CLOSE (UNIT=1)

CLOSE (UNIT=2)

RETURN
END



APPENDIX 1II

THREE-DIMENSIONAL VARIANCE PROGRAM LISTING



JGRAM INT3D.FOR "NUMERICAL INTEGRATION OF 3-D SPECTRAL DENSITY OF T"

THIS PROGRAM PERFORMS A NUMERICAL INTEGRATION OF THE SPECTRAL DENSITY
T IN THREE DIMENSIONS. THE VALUE OF THIS INTEGRAL REPRESENTS THE
Z VARIANCE OF T IN THREE DIMENSIONS.:  THIS SPECTRAL DENSITY. IS FOR
i CASE WHERE CORRELATION LENGTHS IN THE TWO HORIZONTAL DIRECTIONS ARE
JAL, WHILE THE CORRELATION LENGTH IN THE VERTICAL DIRECTION IS
VSIDERABLY SHORTER. GRAVITY IS NEGLECTED. :
SINCE THE NUMBER OF VARIABLES CAN BE REDUCED. TO TWO. BY TRANSFORMING '
CYLINDRICAL COORDINATES AND INTEGRATING WITH RESPECT TO THETA, THIS
5 BEEN DONE. IN PARTICULAR, THE CHANGE OF COORDINATES IS PERFORMED
TH THE Z AXIS CORRESPONDING TO THE R1 AXIS, AND THE THETA = 0 AXIS
RRESPONDING TO THE R2 AXIS..
VARIABLES USED:
LRHO - INCREMENTS OF RADIAL DISTANCE (i.e., THE VARIABLE RHO)
LZ - INCREMENTS IN THE Z DIRECTION
i0 - NUMBER OF INCREMENTS OF RHO TAKEN
- NUMBER OF INCREMENTS OF Z TAKEN
J,K - LOOP INDICES
- EXPONENT IN FUNCTION REPRESENTING MOBILITY .
- EXPONENT IN FUNCTION REPRESENTING RELATIVE PERMEABILITY OF WATER.
- SATURATION GRADIENT
3MSQ - VARIANCE OF 3-D SPECTRAL DENSITY FUNCTION USED.

L&,

YBl - CORRELATION LENGTH IN R1 DIRECTION .

IB2 - CORRELATION LENGTH IN R2 DIRECTION

YB3 - CORRELATION LENGTH IN R3 DIRECTION

> - RADIAL DISTANCE VARIABLE (FROM Z-AXIS = R1-AXIS)
- Z-AXIS DISTANCE VARIABLE (CORRESPONDS TO R1l AXIS)

FV = VALUE OF 3-D SPECTRAL DENSITY FN USED

ISDV - VALUE OF RATIO OF B2(R)/B1(R) AFTER ABSOLUTE VALUE TAKEN' & SQUARED .
XVR — MAX VALUE OF SPECTRAL DENSITY AT MAXIMUM RADIAL DISTANCE USED
KVZ - MAX VALUE OF SPECTRAL DENSITY FN AT MAXIMUM Z DISTANCE USED

R - VARIANCE COMPUTED
SUBPROGRAMS USED: _
Fo- FUNCTION TO COMPUTE SPECTRAL DENSITY USED

ISD - FUNCTION TO COMPUTE THE RATIO B2(R)/B1(R), ABS VALUE & SQUARED

REAL DELRHO, DELZ, AC, AW, G, SIGSQ, LAMB1, LAMB2, LAMB3
REAL RHO, 2, SFFV, RATSDV, HDELZ, MAXVR, MAXVZ, VAR, PI, SUM
REAL SFF, RATSD

INTEGER I, J, K, NRHO, NZ

PI = 3.1415927
DELRHO = 0.2

DELZ = 0.2
HDELZ = DELZ/2.0
NRHO = 100

Nz = 25
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DO 5 II = 1, NTH
THETA = FLOAT(II) * DELTH
DO 10 I = 0, NRHO

RHO = FLOAT(I) * DELRHO
% = -HDELZ
DO 20 J = 1, NZ

Z = 7 + DELZ

SFFV = SFF (SIGSQ, THETA, RHO, Z, LAMBl1, LAMB2, LAMB3)
RATSDV = RATSD (RHO, Z, AC, AW G)

VALUE = SFFV * RATSDV

SUM = SUM + VALUE

IF (I .EQ. NRHO) THEN

IF (VALUE .GT. MAXVR) MAXVR = VALUE
ENDIF ,
IF (J .EQ. NZ) THEN ' .
IF (VALUE .GT. MAXVZ) MAXVZ = VALUE
ENDIF
CONTINUE
CONTINUE
CONTINUE
VAR = 2.0 * SUM * DELRHO * DELZ * DELTH
WRITE (5,%*) ' VAR = ',VAR
WRITE (5,*) ' MAXVR = ',MAXVR,' MAXVZ = ',MAXV3Z
STOP

END



REAL FUNCTION SFF(SIGSQ, THETA, RHO, Z, LAMBl LAMB2, LAMB3)
| THIS FUNCTION 'EVALUATES THE THREE- DIMENSIONAL SPECTRAL DENSITY
iD AS A BASIS FOR OUR SPECTRAL DENSITY. REFERENCE:
VARIABLES USED: »
35Q - VARIANCE OF FIELD

b -~ RADIAL DISTANCE VARIABLE
- AXIAL DISTANCE VARIABLE
Bl - CORRELATION LENGTH IN Rl DIRECTION (Z-DIRECTION HERE)
B2 - CORRELATION LENGTH IN R2 DIRECTION
IB3 - CORRELATION LENGTH IN R3 DIRECTION
v - DENOMINATOR
i - NUMERATOR

REAL SIGSQ, RHO, Z, LAMB1l, LAMB2, LAMB3, DEN, NUM, THETA

PI = 3.1415927 :
SIGSQ * LAMB1 * LAMB2 * LAMB3.

NUM =

DEN = 1.0 + Z * Z * LAMB1 * LAMB1 ,

DEN = DEN + RHO*RHO* ( (LAMB2*COS (THETA) ) **2+ (LAMB3*SIN(THETA) ) *%2)
DEN = DEN * DEN * PI * PI

SFF = NUM / DEN

RETURN

END

REAL FUNCTION RATSD(RHO, Z, AC, AW, G)
THIS FUNCTION EVALUATES THE RATIO B2(R)/Bl(R), IN ITS
JARED FORM AFTER TAKING ITS ABSOLUTE VALUE. THIS RATIO IS COMPUTED
A THREE-DIMENSIONAL SPACE. ' '
VARIABLES USED:
35Q - VARIANCE OF FIELD
D - RADIAL DISTANCE VARIABLE
-  EXPONENT IN FUNCTION REPRESENTING MOBILITY :
-  EXPONENT IN FUNCTION REPRESENTING RELATIVE PERMEABILITY OF WATER.
-~  SATURATION GRADIENT :
N -  DENOMINATOR
M -  NUMERATOR

REAL RHO, Z, AW, AC, G, DEN, NUM

R1SQ = 2 * Z

RSQ = RHO * RHO + RlSQ

NUM = (G * AW * RSQ + (AC - AW) * G * R1SQ) ** 2

NUM = (NUM + (AC # AW * G * G) ** 2 * R1SQ) * RHO

DEN = (AW * (AW - 1.0) * G) #* 2 * RSQ * RSQ

DEN = DEN + R1SQ * ((AW - AC)*RSQ - AC * AW * (AW - 1. 0)*G*G)**2-

RATSD = NUM / DEN
RETURN
END



APPENDIX III

EFFECTIVE VELOCITY PROGRAM LISTING



JGRAM EFFV6.FOR "EFFECTIVE VELOCITY PROGRAM #6"
\DD SOME CONVENIENCE I/O, COMPUTATION FEATURES
=> IMPLEMENT LOOPING TO VARY PARAMETERS
=> DIVIDE THRU BY H (EXPONENTIAL DIV BY MUW) 11/22
=> IMPLEMENT GRID SPACING AS A FUNCTION OF LAMBDA - 12/1

THIS PROGRAM NUMERICALLY COMPUTES EFFECTIVE WATER VELOCITY IN THE
J-PHASE FLOW CASE IN TWO HORIZONTAL DIMENSIONS. THE EQUATIONS ARE THE
5>ULT OF PERTURBATIONS, SPECTRAL REPRESENTATION OF RANDOM VARIABLES, AND
AYLOR SERIES APPROXIMATION OF EXPONENTIALS REPRESENTING VARIABILITIES
PERMEABILITY AND SATURATION. SINCE EFFECTIVE VELOCITY IS THE EXPECTED
JUE OF VELOCITY, TAKING THE EXPECTED VALUE RESULTS IN SEVERAL STOCHASTIC
CEGRALS. EVALUATING THESE INTEGRALS RESULTS IN VARTIANCES AND CROSS-
/ARTANCES. THESE INTEGRALS ARE NUMRICALLY EVALUATED IN THIS CODE.

VARIABLES USED:
- INPUT: EXPONENT IN FUNCTION REPRESENTING MOBILITY
- INPUT: EXPONENT IN FUNCTION REPRESENTING RELATIVE PERM. OF WATER.
- INPUT: A CONSTANT IN EXPONENTIAL REPRES. OF REL PERM. OF WATER
- INPUT: SATURATION GRADIENT
r .- INPUT: PRESSURE GRADIENT ‘ _
;FSQ - INPUT: VARIANCE OF HYDRAULIC HEAD (MODELED BY MIZELL'S S.D. "B")
1BDA - INPUT: CORRELATION LENGTH IN ANY HORIZONTAL DIRECTION ' :
v - INPUT: THE DYNAMIC VISCOSITY OF WATER
- INPUT: THE MEAN OF THE NATURAL LOG OF INTRINSIC PERMEABILITY
\R -  INPUT: THE MEAN OF THE LOG OF WATER SATURATION
HA - A TERM WHICH IS A SCALED INVERSE OF CORREIATION LENGTH, LAMBDA
- SPATIAL VARIABLE IN FREQUENCY DOMAIN :
- SPATIAL VARIABLE IN FREQUENCY DOMAIN
R - INCREMENTS IN Rl AND R2
IR - HALF OF DELR
- NUMBER OF INCREMENTS TAKEN IN R1 AND R2 ON EITHER SIDE OF AXES.
,K = LOOP INDICES

L~

VG - A CONSTANT TERM WHICH IS A FUNCTION OF AW AND G _
*V - VALUE OF 3-D SPECTRAL DENSITY FN USED :
iRl - SUM OF COMPUTATIONS IN INTEGRATION W.R.T. R1

ATIO - VALUE OF RATIO B2(R)/B1(R) EVALUATED AT. SOME PARTICULAR R1l AND R2
[R1 - VALUE OF INTEGRATION OF E[f del Po'] + Aw E[T' del Po'] in R1l dir.
ICMB - VALUE OF INTEGRATION GIVING THE CROSS-COVARIANCE COV(f,T')

§TI - VALUE OF PART OF INTEGRAL "I" EVALUATED AT A PARTICULAR R1 AND R2
[R1 - VALUE OF INTEGRAL "I" IN R1 DIRECTION EVAL AT A PARTIC. R1 AND R2
MVF - VALUE OF TERM OF WHICH THE PRINCIPAL COMPONENT IS VAR OF f

MVT - VALUE OF TERM OF WHICH THE PRINCIPAL COMPONENT IS VAR OF T'

RF - VARIANCE OF HEAD PROCESS -

RT - VARIANCE OF LOG OF SATURATION PROCESS

CFT - VALUE OF TERM IN CROSS-COV OF f, T' INTEGRAL AT A PARTIC. R1 AND R2
-FT - §SUM OF INDIVIDUAL EVALUATIONS OF CROSS-COV OF f, T' INTEGRAL

SFT - VALUE OF INTEGRAL OF CROSS-COV OF £, T!

MINT - SUM OF INTEGRATIONS PERFORMED AS PART OF COMPUTATION OF EFF VEL



FVEL - OUTPUT: THE EFFECTIVE VELOCITY .
AIN - INPUT: USER'S RESPONSE TO "DO YOU WANT ANOTHER RUN 2"
ODNE - INOUT: USER'S RESPONSE TO "SET SIGMA F EQUAL TO ONE 2"
SUBPROGRAMS USED:
- FUNCTION TO COMPUTE SPECTRAL DENSITY OF HEAD (MIZELL'S "B“)
I'TO - FUNCTION TO COMPUTE THE COMPLEX RATIO B2(R)/B1l(R)
rT - FUNCTION TO COMPUTE THE MAJOR CALCULATIONS FOR INTEGRAL "In

REAL AC, ALPHA, AW, CW, DELR, EFFVEL, F, G, ICCFT, INTR1

REAL JJJ, LAMBDA, MUW, PI, R1l, R2, RSQ, SB, SFFV, SIGFSQ.

REAL SUMINT, TAWG, TBAR, TERMVF TERMVT, VARF, VART

INTEGER I, J, K, NR

COMPLEX INTI, RATIO, SCCFT, SUMR1, .VCCFT, VINTI, VIIRL, VRATIO
CHARACTER AGAIN*l SFONE*1

WRITE (5 %) ' SET SIGMA F EQUAL TO ONE AGAIN7 <CR>—YES:“N" =NO'
READ (5,'(Al)') SFONE

IF (SFONE .NE. 'N' .OR:. 'n') SFONE = 'Y!

AGAIN = 'N! '

PI = 3.1415927

DELR = 0.10

DELRO = DELR

HDELR = DELR / 2.0

HDELRO = HDELR

F=1.0

CW = 0.0

TBAR = -0.693

MUW = 1.0

NR 0
AC
AW . , : : _
WRITE (5,*) ' ENTER G ' 7 (
READ " (5,*) G :

WRITE (5,*) ' ENTER J

READ (5,%*) JJJT ’

SIGFSQ = 1.0

DO 2 III =1, 4

i

100
2.6
3.0

IF (III .EQ. 1) G = 0.0
IF (III .EQ. 2) G = -0.01
IF (III .EQ. 3) G = -0.1
IF (III .EQ. 4) G = -1.0

DO 3 JJ =1, 10 -

LAMBDA = FLOAT(JJ)
DELR = DELRO/IAMBDA
HDELR = HDELRO/LAMBDA



ALPHA = 3.0 * PI / (16.0 * LAMBDA)
TAWG = AW * (AW - 1.0) * G

SUMR1 = CMPLX(0.0,0.0) .

SCCFT = CMPLX(0.0,0.0)

TERMVF = 0.0

TERMVT = 0.0

DO 10 I = -NR, NR-1

Rl = FLOAT(I) * DELR + HDELR
DO 20 J = =-NR, NR-1

R2 = FLOAT(J) * DELR + HDELR
RSQ = R1 * R1 + R2 * R2
SFFV = SB (ALPHA, R1, R2, SIGFSQ)

TERMVF = TERMVF + SFFV
VRATIO = RATIO (AC, AW, G, RSQ, R1l, TAWG) |
TERMVT = TERMVT + REAL(VRATIO * CONJG(VRATIO)) * SFFV
VINTI = INTI (AC, AW, VRATIO)
VIIR1 = CMPLX(SFFV,0.0) * VINTI / CMPLX(RSQ,-Rl*G*AC)
'SUMR1 = SUMR1 + CMPLX(-R1*R1,0.0) * VIIR1
SCCFT = SCCFT + VRATIO * SFFV

CONTINUE
CONTINUE

INTR1l = REAL(SUMRl) * DELR * DELR
VARF = TERMVF * DELR * DELR
IF (SFONE .EQ. 'Y') VARF = 1.0
. TERMVF = VARF / 2.0 :
VART = TERMVT * DELR * DELR
TERMVT = AW * AW * VART / 2.0
ICCFT = AW * REAL(SCCFT) * DELR * DELR
SUMINT = REAL(INTR1) + TERMVF + TERMVT + ICCFT

IDE THRU BY H

EFFVEL = - JJJ * (1.0 + SUMINT)
WRITE (5,%) ' EFFVEL = ',EFFVEL,' G = ',G,' LAMBDA=',LAMBDA
WRITE (20,290) LAMBDA, EFFVEL

CONTINUE
WRITE (20,%) '

CONTINUE

FORMAT (F7.2,2X,F9.5)

WRITE (5,*) ' DO YOU WANT ANOTHER RUN ? <CR> = NO; "Y" = YES
READ (5,'(A1l)') AGAIN _

IF (AGAIN .EQ. 'Y' .OR. 'y') GO TO 400

STOP ' PROGRAM EFFV6.FOR COMPLETED '
END '



REAL FUNCTION SB (ALPHA, K1, K2, SIGFSQ)
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THIS FUNCTION COMPUTES THE SPECTRAL DENSITY B IN MIZELL'S PAPER
R 18 (4), pp. 1053-2067, FORMULA 13).

REAL ALPHA, K1, K2, SIGFSQ %
PI = 3.141592654 ‘

3.0 * ALPHA * ALPHA * SIGFSQ * (KL * K1 + K2 * K2) *% 2

SB =

SB =SB/ (PL * (KL * KI + K2 * K2 + ALPHA * ALPHA) ** 4)
RETURN

END

COMPLEX FUNCTION INTI(AC, AW, VRATIO)

THIS FUNCTION CALCULATES THE RATIO OF B2(R)/B1(R), THEN COMPUTES
RESULT WHICH IS A PRODUCT OF FUNCTIONS OF THIS RATIO.

REAL, AC, AW
COMPLEX VRATIO, RATIOl, RATIO2

RATIO1l = 1.0 + AC * VRATIO
RATIO2 = 1.0 + AW * VRATIO
RATIO2 = CONJG(RATIOZ2)

INTI = RATIO1l * RATIO2
RETURN

END

COMPLEX FUNCTION RATIO(AC, AW, G, RSQ, R1l, TAWG)
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REAL AC, AW, G, R1, RSQ, TAWG
COMPLEX I, RTNEW, B3, DEN

I = CMPLX(0.0,1.0)

B3 = CMPLX(RSQ,-AW*G*R1) / CMPLX(RSQ,-AC*G*R1)
RTNEW = CMPLX(AW*G,R1) - Rl * B3 * I

DEN = I*R1* (AW - AC*B3) + CMPLX(TAWG,0.0)
RATIO = -RTNEW / DEN :

RETURN
END



