New Mexico Bureau of Geology and Mineral Resources

THE SCALE DEPENDENCE OF DISPERSIVITY IN UNSATURATED MILL TAILINGS

by

Deborah L. McElroy

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Hydrology

New Mexico Institute of Mining and Technology
Socorro, New Mexico

May, 1987

ABSTRACT

The two goals of this experiment were to determine the dispersivity of copper mill tailings under unsaturated flow conditions and to investigate the dependence of dispersivity on the scale of the experiment. A field-scale column, 336 cm in length, was packed with a homogeneous copper mill tailings sand and used to conduct a solute-transport experiment. After unsaturated flow was initiated and steady-state conditions established, a pulse of a bromide-tracer solution was applied. Bromide concentrations were then obtained over time, at four different depths along the column, to determine changes in dispersivity as a function of transport distance. Two smaller-scale (30 cm in length) column experiments were also conducted under similar unsaturated flow conditions, to provide an additional comparison of dispersivity to the scale of the experiment.

The field-scale column yielded dispersivities of 3.1, 4.1 and 1.2 cm for depths of 63, 126 and 252 cm, repectively, and failed to demonstrate a trend in the dispersivity values with transport distance. The mean dispersivity of 2.8 cm for the field-scale column was larger than the 0.47 cm dispersivity for the 30 cm long column, but was within one order of magnitude. This difference was attributed to the difference in the packing procedure for each column. Unlike the smaller column which was packed as one continuous lift, the field-scale column was packed in a series of 5 cm lifts, which imposed a stratification upon This stratification resulted in a heterothe porous medium. geneity of a larger-scale that existed in the smaller column, and consequently yielded a higher dispersivity. Thus, the relationship between dispersivity and the scale of the experiment was closely associated with the scale of the heterogeneities present.

TABLE OF CONTENTS

ABSTRACT	i
TABLE OF CONTENTS	ij
LIST OF FIGURES	iτ
LIST OF TABLES	vii:
LIST OF APPENDICES	ix
ACKNOWLEDGEMENTS	3
I. INTRODUCTION	1
PURPOSE OF INVESTIGATION	2
LITERATURE REVIEW	3
SUMMARY OF OBJECTIVES OF INVESTIGATION	8
II. BACKGROUND IN SOLUTE-TRANSPORT PROCESSES	10
DISPERSION	13
Molecular Diffusion	11
Mechanical Dispersion	14
Hydrodynamic Dispersion Coefficient	17
Dispersion in a Partially Saturated Medium	18
ADSORPTION	23
III. METHODOLOGY AND ANALYSIS OF SOLUTE-TRANSPORT	
EXPERIMENTS	28
SOLUTE-TRANSPORT IN LABORATORY COLUMNS	29
DETERMINING TRANSPORT PARAMETERS	33
Advection-Dispersion Equation	33
Application of Analytical Solutions	35
Other Methods of Determining Transport Parameters.	38
IV. FLOW AND TRANSPORT CHARACTERISTICS OF COPPER MILL	
TAILINGS	41
CHARACTERIZATION OF COPPER MILL TAILINGS	42
TRACER SELECTION	49
UNSATURATED FLOW AND TRANSPORT IN A SHORT COLUMN	53
Methodology	53
Presentation of Results	58
Discussion	71
Summary	75
UNSATURATED FLOW AND TRANSPORT IN A LONG COLUMN	76
Methodology	79
Column description	79
Instrumentation	81
Procedure for infiltration and leaching	91
Procedure for solute-transport experiment	93
Results and Discussion	94
Infiltration	94
Influx and efflux	96
Flow field	102
Unsaturated leaching	111
Solute-transport	TII

٧.	SUMMARY AND CONCLUSIONS	138
VI.	RECOMMENDATIONS FOR FUTURE WORK	140
REFI	ERENCES	142
APPI	ENDICES	147

LIST OF FIGURES

1.	Spreading of a tracer in a two-dimensional uniform flow field	12
2.	Spreading of tracer due to molecular diffusion	13
3	Spreading due to mechanical dispersion	16
4.	Relation between the porous medium Peclet number and the ratio of longitudinal dispersion coefficient and the coefficient of molecular diffusion in sand	19
5.	Variance of the pore size distribution: glass beads	. 22
6.	Dispersion coefficients as a function of saturation, from data of Krupp and Elrick (1968)	22
7.	Dispersivity as a function of the degree of saturation	24
8.	Advance of adsorbed and nonadsorbed solutes through a column of porous materials	27
9.	Longitudinal dispersion of a tracer passing through a column of porous medium	30
10.	General location map of copper mill tailings source	43
11.	Particle size distribution of disturbed tailings collected at the dam crest	45
12.	U.S.D.A. soil textural triangle, showing tailings composition of dam-crest material	46
13.	Actual (known) concentration versus observed (measured) concentration and fitted power curve from batch-shaker experiments	51
14.	Schematic diagram of experimental apparatus for solute-transport experiments in small repacked laboratory columns	55
15.	BTC's for bromide and tritium, distilled water eluent column	59
16.	BTC's for bromide and tritium, Ca(NO ₃) ₂ eluent column	60
17.	Bromide BTC's from distilled and Ca(NO ₃) ₂ eluent columns	61

	18.	Tritium BTC's from distilled and Ca(NO ₃) ₂ eluent columns	62	
	19.	Bromide breakthrough data and CFITM fitted curve (two-parameter optimization), for distilled eluent column	65	
	20.	Tritium breakthrough data and CFITM fitted curve (two-parameter optimization) for distilled eluent column	66	
	21.	Bromide breakthrough data and CFITM fitted curve (two-parameter optimization) for Ca(NO ₃) ₂ eluent column	67	
,	22.	Tritium breakthrough data and CFITM fitted curve (two-parameter optimization) for Ca(NO ₃) ₂ eluent column	68	
	23.	Dispersivities from both repacked laboratory column and in-situ field solute-transport experiments, under unsaturated flow conditions (cited in Table I)	77	
	24.	Long-column diagram	80	
		Flange and ceramic porous plate assemblage at	00	
		the bottom of the column	82	
	26.	Constant head reservoir	84	
	27.	Device used to distribute tracer solution across the soil surface, at the top of the column	85	•
	28.	Vacuum system and apparatus for bottom of the column	86	
	29.	Location of tensiometers and porous cup samplers with depth, for the long column	88	
	30.	Soil-water extraction system	89	
	31.	Inflow and outflow rates, over time	97	
	32.	Comparison of efflux and influx volumes, over time	99	
	33.	Cummulative sampling volume over time, relative to influx and efflux volumes	100	
	34.	Plot of suction versus days since introduction of the tracer, for each tensiometer	103	٠
	35.	Volumetric water content with column depth	107	

36.	water contents of both wetting and drying soil-moisture characteristic curves for mean suction of 18.6 cm of H ₂ O	109
37.	Comparison of input flux to K(0) determined from measured mean water content of long column. Includes projected water content at input flux	110
38.	Electrical conductivity and pH as a function of pore volumes, during unsaturated leaching	112
39.	Relative concentration versus pore volume of sampling depth, at each sampling position	114
40.	Relative concentration versus time, at each sampling position	115
41.	Relative concentration versus volume of effluent, at each sampling position	116
42.	Observed data and CFITM curve fit for 63 cm depth	121
43.	Observed data and CFITM curve fit for 126 cm depth	122
44.	Observed data and CFITM curve fit for 252 cm depth	123
45.	Observed data and CFITM curve fit for 330 cm depth, (effluent)	124
46.	Analytical results showing changes in BTC's with depth, for a constant retardation factor	127
47.	Dispersivity from long-column, unsaturated, solute-transport experiment compared with dispersivities determined from literature cited in Table	135
48.	Mass balance in a cubic element	150
49.	Relative bromide concentration versus depth, from diffusion experiment, Column I. Analytical curves generated for varying values of molecular diffusion coefficients are included	197
50.	Relative bromide concentration versus depth, from diffusion experiment, Column II. Analytical curves generated for varying values of molecular diffusion coefficients are included	198

51.	Relative concentration versus pore volumes from long-column leaching experiment (Cu, Fe, SO ₄) and solute displacement experiment (Br)	201
52.	Electrical conductivity (logarithmic) of effluent versus pore volumes from long-column leaching experiment under saturated flow conditions	202
53.	Relative bromide concentration versus pore volumes from long-column solute transport experiment under saturated conditions	204
54.	Flow net for long-column	207

LIST OF TABLES

Table	1.	Particle Size Analysis	44
Table	2.	Results of Particle Density Analysis	47
Table	3.	Hydraulic Conductivity Results	48
Table	4.	Mass Balance for Small-Column Tracers	63
Table	5.	Results of CFITM Analysis, Small-Columns	64
Table	6.	Dispersivity Results, Small-Columns	69
Table	7.	Fluid Velocity Comparison, Small-Columns	71
Table	8.	Dispersivities from Literature Review	78
Table	9.	Mean Pressure Heads for Long-Column	105
Table	10.	Mass Balance of Bromide, Long-Column 1	L17
Table	11.	Fluid Velocity Comparison, Long-Column 1	L18
Table	12.	Results of CFITM Analysis, Long-Column 1	L25
Table	13.	Dispersivity Results, Long-Column 1	L30
Table	14.	Results of Diffusion Experiment	L95

LIST OF APPENDICES

A.	Adsorption	147
В.	Derivation of the advection-dispersion equation	149
C	Experimental information for short-column experiments	155
D.	CFITM computer program	156
E.	Results of short-column solute-transport experiments	165
F.	CFITM computer program output listing	172
G.	Molecular diffusion experiment	193
н.	Saturated long-column experiment (Lewis, 1986)	200
I.	Influence of extraction suction on flow field in long-column	205
J.	Volumetric inflow and outflow rates, long-column	208
K.	Cumulative outflow volumes, long-column	212
L.	Cumulative sampling volumes	215
М.	Pressure heads from long-column experiment	218
N.	Water contents from long-column experiment	219
0.	Electrical conductivity and pH, long-column	220
P.	Results from long-column, solute-transport experiment	221
Q.	CFITM computer program output, long-column experiment	229

ACKNOWLEDGEMENTS

The progress and completion of this investigation was made possible through the support and assistance of many sources.

I wish to thank my advisor, Dan Stephens, for his guidance and insightful comments and suggestions during the course of this study.

I also wish to acknowledge two principle sources of funding for this research: The United States Bureau of Mines under the Mining and Minerals Resources Research Institute, Generic Center Program and the Department of Energy, under the Master's Thesis Research Program on Nuclear Waste Management.

Dr. Pete Weirenga, of NMSU Dept. of Crop and Soil Sciences, provided invaluable technical advice and the use of his laboratory. Technical assistance from Greg Lewis, Stephen Conrad, Warren Cox, and Joe Vincent helped me through numerous phases of frustration in the laboratory. Mary Stollenwertz risked neck and limbs in packing the column, and Robert Mace provided tireless assistance with the sampling.

Continual encouragement was provided by fellow graduate students, including Peggy Barrol, Ken Harris, Gary Johnson, Julie Mattick, and Cindi Ardito. My officemates Swen Magnuson and Neil Blandford supplied me with dubious role-models, lots of humour, and kept graduate school in its proper perspective. A special thanks to my good friend Swen, for his unflagging support.

A very special thank-you is also extended to my family, who have maintained a strong emotional and sometimes financial support during my college career.

I. INTRODUCTION

PURPOSE OF INVESTIGATION

Seepage from mill tailings impoundments may contaminate both surface and ground-water systems. Tailings are composed of host rock that have been crushed during the milling process to facilitate ore extraction. In general, the mill waste solids are transported as a slurry from the mill area and deposited in a tailings pond. Over the course of time, the solids settle out and impoundments are formed. Precipitation may generate seepage through the tailings, and the subsequent leachate that forms is of environmental concern, especially if the leachate exits the tailings and enters the surface or ground water system.

In semi-arid climates, it is often assumed that dissolution of soluble chemical constituents of the tailings by infiltrating water is negligible, due to low annual precipitation and high However, infiltration may not, in fact, be evaporation rates. negligible even when annual rates of potential evaporation exceed precipitation. a numerical simulation of infiltration into In uranium mill tailings under semi-arid conditions, Klute and indicated that long term recharge to an underlying Herman (1978) aquifer can occur. Moreover, many of the tailings impoundments in semi-arid regions of the United States do not have adequate controls for drainage or surface run-off. Hydrologic characterization of the mill tailings can provide needed information about the transport of leached solutes within the tailings.

Larson (1984) characterized the beach-sand faction of

copper mill tailings by evaluating the saturated hydraulic conductivity, soil moisture characteristic curves, and relative hydraulic conductivity. Lewis (1986) then evaluated water and solute movement in the same tailings fraction, through infiltration and diffusion experiments. He found that diffusion could account for significant solute movement at low water contents, and that definite net downward movement of infiltrating precipitation did occur in unvegetated tailings in a semi-arid climate.

Lewis (1986) also determined the dispersivity of tailings, a property of the medium that influences the distribution of chemical concentrations in fluids which drain from the tailings.

The purposes of the current investigation were:

- to obtain a field-scale dispersivity under unsaturated flow conditions, and
- 2) to investigate the dependence of dispersivity on the scale of the experiment.

LITERATURE REVIEW

In semi-arid climates, unsaturated conditions exist within abandoned tailings impoundments for much of the year. As dissolved chemical species are transported through the tailings (assuming no further chemical interactions with the tailings), their movement is affected by the hydrological characteristics of the medium, such as texture, particle-size distribution, water content, pressure heads, and hydraulic conductivity. These

characteristics influence the processes of dispersion and diffusion, which characterize the mixing and dilution of the solutes percolating through the tailings. The dispersion process can be quantified by determining the coefficient of hydrodynamic dispersion, which embodies dispersivity. The hydrodynamic dispersion coefficient is an important parameter used to describe the physics of the transport of chemicals through the copper mill tailings, for predictive modeling purposes.

Hydrodynamic dispersion is the result of both microscopic and macroscopic effects. At the microscopic scale, fluid velocity variations (in magnitude and direction) within and between pore-water channels cause a spreading of the solute. initially close group of solute 'particles' will spread further apart as different flow paths are taken and as the particles travel at different velocities. For convenience, the flow velocities are averaged at the microscopic scale, because it would prove too complex to define the total flow pattern in Advection describes the detail. mean pore-fluid velocity, whereas hydrodynamic dispersion describes the variation about that mean.

At the macroscopic, or field-scale, heterogeneities within the medium are likely to exist, which result in additional velocity variations. The spread of the solute is no longer controlled by the local microscopic-scale dispersion, but rather by the larger-scale velocity variations. Layering of soils with different hydraulic conductivities and soil textures can change the spreading pattern of a solute. In field-scale studies,

dispersion appears to be the result of the heterogeneity of the profile (Anderson, 1979; Mercado, 1967; Pickens and Grisak, 1981, Sudicky et al., 1983), and the microscopic effects become insignificant.

Schwartz (1977), simulated macroscopic dispersion for a heterogeneous porous medium by using a statistical model of dispersion. He found that the

"magnitude of dispersion is controlled by the contrast in hydraulic conductivity between the inclusions and the mode of aggregation. Generally, dispersivity is found to decrease as the conductivity contrast decreases and the structure of the medium is regularized."

Thus, the characteristics of a porous medium that influence dispersion depend on the scale of the representative elementary volume (REV). At the microscopic scale, pore-size and geometry are the dominating factors. At the macroscopic scale, hydraulic conductivity variations and contrasts within a formation govern the dispersion. At a megascopic scale, inter-formational hydraulic conductivity contrast would be the major factor.

The scale chosen for the REV averaging can influence the value of the dispersivity. Field-scale dispersivities have been observed that are several orders of magnitude larger than the dispersivities obtained from laboratory columns. This has been well-researched for the saturated case (Gelhar et al., 1979; Sauty, 1980; Anderson, 1979). Pickens and Grisak (1981) tabulated dispersivity results from various saturated field tests and obtained dispersivities that ranged from 0.012 to 15.2 m. These were compared to laboratory column results from repacked granular media, which gave a range of dispersivity values from 0.01 to 1.0

cm. The laboratory column dispersivities were several orders of magnitude smaller than the larger-scale field dispersivities.

There is a paucity of data which demonstrates the scale-dependence of dispersivity for unsaturated flow. Unsaturated flow experiments, especially at a field scale, are generally more difficult to run than comparably sized saturated experiments. Because of lower flow velocities, an experiment under unsaturated conditions is more time consuming than under saturated conditions, and the larger-scale experiments magnify the time differ-In addition, the apparatus and methodology used to conduct an unsaturated solute-transport experiment is more complex than saturated experiment. Unsaturated flow is also more complex than saturated flow due to the occurrence of three phases soil, water). Furthermore, the relationship between dispersivity and water content is not well defined for a partially saturated medium.

Van de Pol et al. (1977) studied solute and water movement to a depth of 70 cm, in an unsaturated field soil consisting of clay to silty clay, over a medium sand. They found both pore-water velocity and hydrodynamic dispersion to be log-normally distributed, with mean values of 3.78 cm/day and 36.65 cm²/day, respectively, which yielded a mean dispersivity of 9.7 cm. An approximate averaged water content of 34% was determined from the water content versus depth graph included in the article. The log-normal distriution indicated that extremes in solute displacement could occur in natural, heterogeneous field soils, due to the pore-water velocity distribution and spatial variability

of the soil. For comparison to this field result, unsaturated solute-transport experiments in repacked columns of 20 to 95 cm in length yielded dispersivities ranging from 0.03 to 1.2 cm, for varying water contents and soil types (Yule and Gardner, 1978; Kirda, et al., 1973; Gaudet, et al., 1977; De Smedt and Wierenga, 1984, van Genuchten and Wierenga, 1977).

Warrick, et al. (1971) conducted a solute-transport, field experiment in Panoche clay loam, over a 180 cm depth. This experiment yielded a dispersivity of 2.7 cm for a volumetric water content of 38%. It was observed that the hydrodynamic dispersion coefficient from small times or small distances increased with time or distance traveled.

A field study was conducted by Kies (1981), to measure and simulate solute transport in unsaturated Glendale clay loam, over a 450 cm depth. The dispersion coefficients and solute velocities that were obtained were also log-normally distributed, indicating large spatial variability. The dispersion coefficient and pore-water velocity both increased with depth, but there was no clear trend with depth for the dispersivities. However, the overall dispersivity of 14.3 cm was an order of magnitude larger than the dispersivities reported in the literature from unsaturated, repacked column experiments (Yule and Gardner, 1978; Kirda, et al., 1973; Gaudet, et al., 1977; De Smedt and Wierenga, 1984; van Genuchten and Wierenga, 1977).

Bresler and Dagan (1979) applied a conceptual model of solute transport to an unsaturated, heterogeneous field soil to determine concentration distributions for vertical, steady-state

flow. The spread of solute in a heterogeneous field soil was found to be much larger than the spread caused by using the microscopic, pore-scale hydrodynamic dispersion model. They concluded that advection and heterogeneity of the medium was the main mechanism for the solute spread modeled in the field soil, and that the pore-scale hydrodynamic dispersion could be neglected, in such a case.

SUMMARY OF OBJECTIVES OF INVESTIGATION

From the literature reviewed relevant to the scale-dependence of dispersivity for partially saturated media, two major points were suggested: 1) dispersivity may increase as a function of time or distance traveled, 2) dispersivity may increase as a function of the increasing heterogeneity of the medium. The objectives of this research are to provide insight into the first of those points as well as to obtain a value of dispersivity at a scale approximating that encountered in the field, for the copper mill tailings.

To summarize the scope of work in this study, a column (16.2 cm x 336 cm) was packed with a homogeneous, copper mill tailings sand. After steady-state, unsaturated flow conditions were established, a pulse of a conservative tracer was applied. Tracer (bromide) concentrations were obtained at several depths along the column to determine changes in dispersivity as a

function of travel distance. Two small-scale (30 cm) repacked column experiments were also run under similar unsaturated conditions for an additional comparision of dispersivity to scale of the experiment.

This study will be presented in the following sequence. First the theoretical basis for dispersion will be discussed, especially as it applies to unsaturated flow. Next, methods of determining the appropriate transport parameters will be reveiwed, including problems specific to unsaturated flow conditions. Flow and transport characterization of the mill tailings will follow, which includes results of the short and long-column, solute-transport experiments conducted in the laboratory under unsaturated flow conditions.

II. BACKGROUND IN SOLUTE TRANSPORT PROCESSES

DISPERSION

Dispersion refers to the mixing and spreading of a solute with the soil water during transport. This mixing results in a decrease in solute concentration and a more diffuse solute-soil water interface. As in Figure 1, an injection of a pulse of nonreactive solute into a flow field would show dilution and spreading, with time or distance. Hydrodynamic dispersion is attributed to a combination of processes: mechanical dispersion and molecular diffusion. Mechanical dispersion results from the motion of the fluid whereas molecular diffusion is a consequence of solute concentration gradients.

Molecular Diffusion

Diffusion results in a more uniform spatial distribution of the solute concentration in the soil water. Over time, random thermal motion of the molecules will cause a decrease in concentration gradients (Figure 2a). Because of the need to quantify diffusion, the coefficient of molecular diffusion was developed. Fick's first law states that the rate of diffusion is proportional to the concentration gradient. In bulk water (no soil) at rest, this is represented by

$$J_{d} = -D_{o} (dC/dx)$$
 (1)

where J_d is the diffusive flux, D_o the diffusion coefficient (L^2T^{-1}) and dc/dx the concentration gradient of a solute in the x-direction.

Figure 1. Spreading of a tracer in a two-dimensional uniform flow field in an isotropic sand. (a) Continuous tracer feed (b) instaneous point source. (from Freeze and Cherry, 1979)

Figure 2. Spreading of tracer due to molecular diffusion. (a) in bulk water; (b) in porous medium. (from Wilson, 1985)

However, in the unsaturated zone, diffusion occurs in soil water rather than bulk water (Figure 2b). The molecular diffusion coefficient in soil water, D*, is less than the diffusion coefficient in bulk water, Do. In addition, D* is a function of water content, 0. According to Hillel (1980), as water content decreases in an unsaturated soil, the number of water-connected pores decreases, causing the water channels to become more tortuous or branching. This in turn increases the actual path length over which diffusion must occur. Coupled with soil particle interference at the molecular level, the decreasing water content effectively decreases the molecular diffusion coefficient for soil water. Equation (1) can be rewritten, for unsaturated conditions as

$$J_{d} = -\Theta D * \nabla C \tag{2}$$

where Υ is the tortuosity factor (the straight path length divided by the actual path length for a diffusing molecule). Tortuosity, a dimensionless quantity, commonly ranges from 0.5 to 0.01 for a porous medium (Freeze and Cherry, 1979, p. 104).

Mechanical Dispersion Coefficient

Mechanical dispersion is primarily a function of flow velocity, or more specifically of irregularities in the distribution of pore-water velocities on a microscopic scale. These variations in magnitude and direction of pore-water velocities are caused by differences in the size and geometry of the pores,

as well as frictional effects (Figure 3). Small changes in pore radius will reflect large changes in volumetric discharge (Poiseuille's law), which increases the microscopic-scale velocity variations within the soil water (Figure 3b). Water will move faster at the center of a pore than along the pore walls, due to the viscous drag along the rough surfaces of the 'channel' walls (Figure 3a). Irregularities in grain sizes may cause eddies to occur. Increased tortuousness of pore channels will tend to vary the pore-water velocities even more.

Mechanical dispersion can be described in a manner similar to (1) for diffusion, such that

$$J_{d} = -\theta D_{h} (dC/dx)$$
 (4)

where $\mathrm{D_h}$ is the mechanical dispersion coefficient ($\mathrm{L^2/T}$) and $\mathrm{J_h}$ describes the transport by mechanical dispersion (Baer, 1972). The mechanical dispersion coefficient is a function of fluid velocity and saturation. The relationship of $\mathrm{D_h}$ to velocity for a saturated medium is (Freeze & Cherry, 1979):

$$D_{h} = a_{L}v^{m} \tag{5}$$

where $\mathbf{a_L}$ is the dispersivity in the direction of flow, and \mathbf{v} is the mean pore-water velocity (\mathbf{q}/θ) , where \mathbf{q} is the Darcy velocity, and θ is the volumetric water content. The exponent \mathbf{m} is an empirically determined constant, usually between 1 and 2 for saturated media. The dispersivity, $\mathbf{a_L}$, is an empirical parameter and a property of the porous medium. It is usually treated as a constant for a particular medium. However, dispersivity appears

Figure 3. Spreading due to mechanical dispersion. (a) frictional effects; (b) variations in pore sizes and flow paths. (from Baer, 1979)

to vary with increasing travel distance or heterogeneity of the medium (Sauty, 1980), under saturated flow conditions. The variation of dispersivity with travel distance and the relationship between dispersivity and velocity has not been clearly established for unsaturated soils.

Hydrodynamic Dispersion Coefficient

Molecular diffusion and mechanical dispersion coefficients are combined to form the hydrodynamic dispersion coefficient, D'

$$D' = av^{m} + D*$$
 (6)

The use of different terms for D' found in the literature is a source of confusion. It is referred to as the hydrodynamic dispersion coefficient (Freeze & Cherry, 1979; Baer, 1979), the apparent diffusion coefficient (Gaudet, et al., 1977), and the diffusion-dispersion coefficient (Hillel, 1980). In this study, D' will be referred to as the hydrodynamic dispersion coefficient.

Molecular diffusion and mechanical dispersion occur simultaneously in miscible displacement. However, their significance in the dispersive process varies with velocity. At large flow velocities, the contribution of molecular diffusion to D' is small, compared to mechanical dispersion (Biggar & Nielsen, 1962; Baer, 1979). Conversely, in regions of very small velocities as found in unsaturated flow, the diffusional contribution may be large. The relationship between mechanical dispersion and molecular diffusion can be expressed by the porous medium Peclet

number,

$$P_{e} = vd / D*$$
 (7)

where d is defined as the average particle diameter (Freeze & Cherry, 1979) or a characteristic pore length (Baer, 1979). Laboratory experiments for saturated conditions have established curves for Peclet numbers versus the $D'_{\tau}/D*$ ratio, as shown in Figure 4, (Freeze & Cherry, 1979). D'_T is the longitudinal dispersion coefficient (where longitudinal refers to the direction of flow). The relationship between the Peclet number and $D'_{\tau}/D*$ depends on the particular medium and fluid. pore-water velocity causes the porous medium Peclet number to increase and reach a velocity for which the molecular diffusion coefficient contribution is negligible. For most cases of saturated groundwater movement, diffusion is negligible. For sandy loam samples infiltrated at varying velocities, Kirda et al. (1973) determined that the contribution of molecular diffusion was not significant for pore-water velocities greater than 0.01 cm/min. According to Baer (1979), the general relationships shown by Figure 4 can be extrapolated to unsaturated conditions, and the respective components are recognized as functions of water content as well as pore-water velocities.

Dispersion In a Partially Saturated Medium

Dispersion in a partially saturated medium is influenced by factors beyond those of a saturated medium, which increases the complexity of the mixing process. Under unsaturated flow

Figure 4. Relation between the porous medium Peclet number and the ratio of longitudinal dispersion coefficient and the coefficient of molecular diffusion in a sand of uniform-sized grains. (from Freeze and Cherry, 1979)

conditions, the hydrodynamic dispersion coefficient appears to be a function of the microscopic pore structure, the water content, and the pore-water velocity. Wilson and Gelhar (1974) demonstrated that the hydrodynamic dispersion coefficient determined under unsaturated flow conditions can exceed the dispersion coefficient for saturated flow in the same medium, for a particular range of water contents.

A decrease in water content creates zones of stagnant water which are not a full part of the advective flow (Krupp & Elrick, 1968; Nielsen & Biggar, 1961). Water may be trapped by the air phase, and cut off from the advective flow field; or it may be held to the soil surface by adhesive forces. Decreasing the saturation of the porous medium increases the fraction of immobile water in the pores (Nielsen & Biggar, 1961) and affects the dispersive process.

Krupp and Elrick (1968) describe three phases of the mixing process, under unsaturated flow conditions. At high water contents, most of the water in the system is mobile and participates in the advective flow. This provides a uniform flow field, and solute displacement occurs predominantly within the mobile phase. In contrast, wide velocity distributions (and non-uniform flow) occur at lower water contents which posses significant fractions of both mobile and stagnant water. The water-filled pores will conduct water and solute more quickly than the partially-filled, stagnant pores, thus widening the dispersed concentration zone. At much lower water contents, the immobile fraction dominates, and displacement primarily occurs within the

partially-filled pores. According to Krupp and Elrick (1968), the transport becomes more uniform at the very low water contents.

Wilson and Gelhar (1974) suggested the behavior of the hydrodynamic dispersion coefficient may be influenced by the pore-size distribution of the porous medium. In Figure 5, the variance of the pore-size distribution is shown as a function of the degree of saturation, S_e. When all the pores are water-filled, the variance of the pore-size distribution is small, and the majority of pores contribute equally to flow. As the pores are desaturated, both water-filled and partially-saturated pores exist, and the variance of the pore size distribution increases. As saturation approaches zero, only the smallest pores contain fluid, and the variance decreases.

Wilson and Gelhar (1974) developed an analytical model for unsaturated, solute displacement, which he applied to a statistical analysis of solute transport through a soil with a uniform moisture content. He calculated that, for a constant Peclet number, as the effective saturation decreased, the hydrodynamic dispersion coefficient increased, reached a maximum, and then decreased.

Using the results of Krupp and Elrick's (1968) solute-transport experiments through glass beads, Wilson (1974) then plotted the ratio D'/vl as a function of effective saturation (Figure 6). In a manner similar to the behavior of the pore size distribution, the highest dispersion occurs in the mid-saturation zone, and lowest dispersion at the greatest $S_{\rm e}$. The second

Figure 5. Variance of the pore size distribution: glass beads. (from Wilson and Gelhar, 1974)

Figure 6. Dispersion coefficients as a function of saturation, evaluated with data of Krupp and Elrick (1968). (from Wilson and Gelhar, 1974)

maxima of the Krupp and Elrick (1968) data was not clearly understood, and data for the lower water contents was not available. The theoretical model of Wilson and Gelhar (1974) may be misleading at the lower contents, and the second rise evidenced by Krupp and Elrick's results may be due to a more complex pore geometry than expected.

Dispersivity, at least conceptually, was also shown to be a function of water content for unsaturated media by the model of Wilson and Gelhar (1974). In Figure 7, dispersivity was plotted as a dimensionless quantity ($a_{\rm L}/{\rm L}$) versus effective saturation for three different porous medium Peclet numbers, $P_{\rm e}$. Wilson and Gelhar (1974) found that dispersivity increased to a maximum and then decreased as the effective saturation decreased. Each maxima was a function of the Peclet number (equation 7) and the higher maxima corresponded to the higher porous medium Peclet numbers. The dependence of dispersivity on water content was important at the lower water contents, but less important at higher water contents, closer to saturation (Wilson and Gelhar, 1974).

ADSORPTION

In addition to dispersive processes, solute concentration may be altered due to chemical reactions, biochemical reactions, or radioactive decay. Adsorption (Appendix A) is one chemical reaction that can have a significant effect on the transport of a

Figure 7. Dispersivity as a function of the degree of saturation. (from Wilson and Gelhar, 1974)

tracer.

Adsorption batch experiments can be run in the laboratory to determine the mass of the chemical constituent adsorbed on the the solid per unit mass of solids (S). According to the relationship

$$S = K_{\tilde{\mathbf{d}}} C^{b} \tag{8}$$

where C is the solute concentration and K_d and b are coefficients which depend on the solute species and the porous medium. If b=1, the relationship becomes linear,

$$dS/dC = K_{d}$$
 (9)

and the distribution coefficient, K_d , can be used to describe the ratio of the amount of an adsorbed ion to its concentration in the solution. The use of K_d to describe this process is limited to fast, reversible reactions and the linear S versus C relation. If a solute is affected by adsorption, the solute front may advance more slowly than the bulk mass of water. This retardation of the solute front relative to the movement of the bulk mass of water can be described by

$$v/v_{c} = 1 + (\ell_{b}K_{d}/\theta)$$
 (10)

where v_c is the velocity of the C/C_o = 0.5 point of the concentration profile, and P_b is the bulk density. Without adsorption, $K_d = 0$, and R = 1.

As cations are adsorbed by the solid, the tracer front migrates at a slower rate than the ideal tracer movement (Figure

8) and is characterized by a retardation factor, R, greater than one. If the solute or tracer moves as an ideal substance and does not undergo any adsorption or other chemical reactions, the retardation factor equals one. It is also possible to have a retardation factor of less than one, which occurs when only a portion of the water phase contributes to the solute movement by either anion exclusion or presence of an immobile water phase (van Genuchten, 1980). Anion exclusion is the process in which negatively charged clays may repel anions from water held in the vicinity of the clay surface.

If the adsorption reaction is irreversible, the exchange reaction is slow relative to the velocity, or if the distribution coefficient does not describe a linear process, non-equilibrium conditions exist, and the retardation factor connot be used to accurately describe the movement of the adsorbed front.

Figure 8. Advance of adsorbed and nonadsorbed solutes through a column of porous materials. Partitioning of adsorbed species is described by K_d. (from Freeze and Cherry, 1979)

III. METHODOLOGY AND ANALYSIS OF SOLUTE-TRANSPORT EXPERIMENTS

The dispersivity of porous media can be determined from both laboratory column experiements and in-situ field experiments. The laboratory column experiments, in which effluent is analyzed during solute-displacement, are more convenient than field experiments in terms of time and complexity. However, an increase in dispersivity usually results when methods of analyzing solute-transport in the laboratory are then applied to field experiments (Anderson, 1984). This section discusses methods for determining dispersivity from repacked column experiments and approaches which address the discrepancy in dispersivities between laboratory column results and the results of transport under field conditions.

SOLUTE TRANSPORT IN LABORATORY COLUMNS

Dispersion can be analyzed in the laboratory by means of soil columns, through which a tracer solution is added. For example, a vertical soil column is uniformly packed as a homogeneous medium. A constant flux of water is applied to the column, until steady state flow conditions and a uniform moisture content are established (Figure 9a). Then a continuous supply of a non-reactive tracer is introduced into the flowstream at the top of the column. Effluent samples can be obtained at the bottom of the column over time and these samples are analyzed for tracer concentration. The relation between concentration and time at a fixed point is termed a breakthrough curve (BTC).

Figure 9. Longitudinal dispersion of a tracer passing through a column of porous medium. (a) Column with steady flow and continuous supply of tracer after time t; (b) stepfunction-type tracer input relation; (c) relative tracer concentration in outflow from column (dashed line indeicates piston flow and solid line illustrates effect of mechanical dispersion and molecular diffusion); (d) concentration profile in the column at various times. (from Freeze and Cherry, 1979)

Figure 9c shows a hypothetical breakthrough curve, assuming that the concentration of tracer in the column was zero prior to input. Concentration measured from the effluent is C, and concentration of the introduced tracer is C_0 . Thus C/C_0 gives the relative effluent concentration values, ranging from 0 to 1. When plotting breakthrough curves, concentration is often plotted versus number of pore volumes of effluent (T), which is the dimensionless ratio of the volume of effluent to the total volume of water held in the column,

$$T = Qt/\theta AL \tag{11}$$

where Q is the volumetric flux, and t is time. It is assumed that volumetric flux can be determined from the measured input rates, or it may be computed as the product of the Darcy velocity and cross-sectional area, or 'qA'.

Figure 9b illustrates the tracer input condition as a step function, which describes an instantaneous change in tracer concentration at the input boundary. The tracer concentration in the column, prior to tracer introduction, is zero in this example. Looking at the BTC (Figure 9c), one can see the first appearance, or breakthrough, of the tracer (at t_1) and follow the gradual concentration increase with time until $C/C_0 = 1$, at the tail. Dispersion has created the transition zone, between $C/C_0 = 0$ and $C/C_0 = 1$. The dashed line in Figure 9c shows the tracer movement without dispersional effects and represents a piston-type displacement. In Figure 9d, the spread of the solute front extended as the tracer moved through the column, suggesting

that both time and distance increased the effects of dispersion.

Theoretically, a breakthrough curve which describes a non-reactive, conservative tracer will reach the 50% concentration at one pore volume. At this pore volume, all the original water in the column has been replaced by the tracer solution, and the 50% concentration (which averages the dispersed zone concentrations) has reached the column exit.

Designing and implementing a solute-transport, column experiment under unsaturated conditions presents special problems, such as the non-linearity of flow where hydraulic conductivity, K, is a function of pressure head. For flow through vertical columns of uniform porous material, some of the complexity of unsaturated flow can be circumvented by the establishment of steady-state flow conditions and consequent uniform water contents.

For one-dimensional, vertical flow

$$q = -K(\Psi) \quad (dH/dz) \tag{12}$$

where q is the Darcy flux in the z direction, K the hydraulic conductivity, is the pressure head, H is the hydraulic head, and z the vertical distance coordinate (positive downward). Separating hydraulic head H, into its components of elevation or gravitational head, z, and pressure head, Ψ ,

$$q = -K(\Psi) (d\Psi/dz - 1)$$
 (13)

with a unit gravitational head gradient for one-dimension-

al vertical flow.

If the relationship of pressure head, Ψ , to water content, θ , is known (from experimental $\theta-\Psi$ curves) and the pressure head gradient is expanded by the chain rule,

$$q = -K(\theta) \left(\left(\frac{d^{\Psi}}{d\theta} \frac{d\theta}{dz} \right) - 1 \right)$$
 (14)

If steady-state flow conditions are established in the vertical column, and the inflow rate equals the outflow rate, then the water content should be uniform throughout the column $(d\theta/dz = 0)$. Flow becomes gravity driven, and

$$q = K(\theta) \tag{15}$$

The unsaturated hydraulic conductivity is still a function of water content. However, the constant water content establishes a constant hydraulic conductivity and simplifies the flow and transport analysis.

DETERMINING TRANSPORT PARAMETERS

Advection-Dispersion Equation

The advection-dispersion equation is used to decribe the solute transport process in a porous medium. The derivation of the equation is based on the law of conservation of mass, and assumes a homogeneous and isotropic porous medium. Steady-state, uniform flow conditions exist, and Darcy's law applies. Incompressibility of the medium and the fluid is also assumed, and

there are no sources or sinks.

With the assumption that Darcy's law applies, the transport of a solute is defined on a macroscopic scale, by the average linear velocity. This is a macroscopic parameter which describes the advective path of a solute. But, the dispersion process is based on microscopic parameters (local velocity inhomogeneities and pore size differences) which cause the solute to deviate from the advective path. Hence, the equation for solute transport needs to accounts for advection on a macroscopic scale and dispersion on a microscopic scale.

As derived in Appendix B, the advection-dispersion equation in one dimension is (Freeze and Cherry, 1979, P. 551):

$$D_{L}^{\prime} \frac{\partial^{2} C}{\partial \ell^{2}} - v \frac{\partial C}{\partial \ell} = \frac{\partial C}{\partial t}$$
 (16)

Ion-exchange and subsequent BTC delay can be included in the advection-dispersion equation by the retardation factor, such that

$$D_{L}^{\dagger} \frac{\partial^{2}C}{\partial \ell^{2}} - v \frac{\partial C}{\partial \ell} = R \frac{\partial C}{\partial t}$$
 (17)

The coefficient of dispersion D', is used as a constant in the advection-dispersion equation for a specific pore-water velocity. Under unsaturated flow conditions, there is a further dependency of D' on the water content (Krupp and Elrick, 1968). Therefore, the use of the advection-dispersion equation may be limited to a D' which is valid only for the specific velocity and water content for which it was determined.

The classical advection-dispersion equation (17) has

successfully described solute transport for unsaturated media, with constant water contents and pore-water velocities (Kirda et al., 1973; Bresler & Laufer, 1974; Yule & Gardner, 1978). In these experiments, however, a higher hydrodynamic dispersion coefficient was obtained than for comparible saturated experiments. De Smedt & Wierenga (1984), Krupp & Elrick (1968), Gupta et al. (1973), and Gaudet et al. (1973) obtained BTC's that could not be successfully described by the advection-dispersion equation (17), due to early breakthrough and tailing. A model using mobile-immobile water phases was suggested to explain the divergence, and was incorporated into the advection-dispersion equation to account for the differences observed (De Smedt & Wierenga, 1984; Wilson, 1984, van Genuchten & Wierenga, 1977).

Application of Analytical Solutions

Analytical solutions of the advection-dispersion equation provide a method of determining solute transport parameters such as the hydrodynamic dispersion coefficient and the retardation factor. The type of boundary conditions which best describe an experiment will dictate the choice of the most appropriate analytical solution to be used. Improper use of boundary conditions may generate poor approximations of the transport parameters, especially for column Peclet numbers less than five (van Genuchten and Wierenga, 1986). The column Peclet number, $P_{\rm C}$ (as opposed to the porous medium Peclet number, $P_{\rm e}$), is defined as

$$P_{C} = VL/D'$$
 (18)

Inlet boundary conditions are of two types; the first-or concentration-type and the third- or flux-type. The first-type of input boundary condition is

$$C_{r}(0,t) = C_{o} \tag{19}$$

where C_r is the resident concentration and C_o the input concentration. This assumes the concentration is continuous across the inlet boundary and the input solution is well-mixed (Parker and van Genuchten, 1984). However, in reality a boundary layer may exist in the region contiguous and external to the porous medium, which renders the first type boundary condition inappropriate.

A discontinuity in concentration across the inlet boundary is implied by the third-type or flux-type boundary condition

$$C_{r} - \frac{D}{v} \frac{\partial C}{\partial x} \Big|_{x=0} = C_{in}(t)$$
 (20)

where C_{in}(t) is the concentration of the injection fluid as a function of time. The third-type boundary condition specifies the solute flux at the inlet boundary and accounts for a transition zone in which the dispersivity and concentration vary continuously, at the microscopic scale. Van Genuchten and Parker (1984) describe the third-type boundary condition as most correct in terms of conservation of mass across the inlet boundary.

Subject to the initial and lower boundary conditions of

$$C_{r}(x,0) = 0 (x > 0)$$
 (21)

$$\frac{\partial C}{\partial x}(\infty, t) = 0 \tag{22}$$

and the third-type boundary condition, the solution to the

advection-dispersion equation (17) for a pulse-type injection (Lindstrom et al., 1967), is

$$\frac{C}{C_0} = \frac{1}{2} \operatorname{erfc} \left(\frac{Rx - vt}{2(D^{\dagger}Rt)^{1/2}} \right) + \left(\frac{v^2t}{\pi D^{\dagger}R} \right)^{1/2} \exp\left(-\frac{(Rx - vt)^2}{4D^{\dagger}Rt} \right) \\
- \frac{1}{2} \left(1 + \frac{vx}{D^{\dagger}} + \frac{v^2t}{D^{\dagger}R} \right) \exp\left(\frac{vx}{D^{\dagger}} \right) \operatorname{erfc} \left(\frac{Rx + vt}{2(D^{\dagger}Rt)^{1/2}} \right) \tag{23}$$

where

$$C(x,t) = C(x,t) = 0 < t < t'$$
 $C(x,t) - C(x,t-t') = t > t'$

Van Genuchten and Parker (1984) recommend that the solution of Lapidus and Amundson (1952) be used to calculate effluent BTC's for flux-averaged concentration distributions from finite columns or semi-infinite field profiles, and that the solution of Lindstrom et al. (1967) be reserved to evaluate volume-averaged, in situ concentrations. For the case in which breakthrough curves are obtained by means of porous cup samplers or other extraction systems, the most correct concentration mode is not clear. The observed data are unlikely to be either strictly flux-averaged concentrations or volume-averaged concentrations (van Genuchten & Parker, 1984).

Five different methods for determining transport parameters through the use of analytical solutions are reviewed by van Genuchten and Weirenga (1986). These include graphical techniques as well as a least-squares, non-linear curve fit to the effluent curve. They conclude the computer approach based on a non-linear least-squares curve fit gives the most accurate results and is the most convenient method to use.

Other Methods of Determining Transport Parameters

In equation (4), dispersion is represented by an equation analogous to Fick's law of diffusion and therefore defined as a Fickian process. In order to describe a Fickian process, the concentration-distance distribution curve should approximate a normal or Gaussian distribution, except at early time. The variance of the concentration distribution should increase linearly with time or distance, and dispersivity should remain a constant for the porous medium (Anderson, 1984). The classical Fickian form is not valid for early times, when the dispersion process is not fully developed. Gelhar et al. (1979) propose that the observed dependence of dispersivity on the scale of the field experiment may be a reflection of this early-time behavior, before transport becomes Fickian.

The length of time or distance needed to obtain Fickian transport has not been determined. Gelhar and Axness (1981) suggest such distances as equal to 10 to 100 times the value of dispersivity, for heterogeneous systems in the field. Using this criteria for cases in which dispersivities are on the order of 100 meters, transport may not be Fickian until transport distances are on the order of kilometers. Smith and Schwartz (1980) suggest dispersion may never become Fickian for some cases in which mixing is caused by spatial heterogeneities in hydraulic conductivity.

In the derivation of the advection-dispersion equation the dispersive flux is defined at a microscopic pore-scale. Dispersivities determined from small, repacked columns in the labora-

tory, with short travel distances and homogeneous porous mediums, are more representative of this local scale than dispersivities determined from field experiments. The field tests generally measure equivalent or averaged dispersivities from the injection point to the measuring point, yielding values which are not representative of the local dispersivities. In such cases, transport may not be Fickian.

instances in which dispersion is non-Fickian, classical advection-dispersion equation with a constant dispersivity may not apply (Anderson, 1984). Gelhar et al. (1979) presented a one-dimensional modified form of the advectiondispersion equation which solved for solute transport for initial, non-Fickian times through large, Fickian times. Other investigators use the standard advection-dispersion equation, but with time- or travel-dependent dispersivities (Anderson, 1984).

Another approach to describing the dispersion process is the stochastic approach. Because dispersion describes the deviation from the mean velocities and is influenced by pore geometry, characterizing the porous medium in terms of hydraulic conductivity could help to define the velocity field. Field determination of the velocity field at all points would be inordinately time-consuming, and beyond practical benefit. Therefore, Gelhar et al. (1979), Gelhar and Axness (1981), and Dagan (1981) propose using methods which rely on the statistical properties of hydraulic conductivity to define dispersivity.

Smith and Schwartz (1980) developed an approach which

defined the velocity field in detail by using stochastic methods to describe the spatial heterogeneity in hydraulic conductivity. However, for the realistic quantities of hydraulic conductivity data that would be available to describe a site, considerable uncertainty resulted in the transport modeling (Smith and Schwartz, 1981). Dagan (1982) also found that a high degree of uncertainty was associated with concentration predictions which relied on stochastic modeling of solute transport.

golesch da an ane-Gimensingen internifer und der de gebe

IV. FLOW AND TRANSPORT CHARACTERISTICS OF COPPER MILL TAILINGS

CHARACTERIZATION OF COPPER MILL TAILINGS

The copper mill tailings used in these experiments were obtained from the Phelps Dodge Corporation, Tyrone Branch in Southwestern New Mexico (see location map, Figure 10). Collection was from the beach sand fraction of the dam crest, which yielded a fairly homogeneous medium.

The results of a particle size analysis on the collected tailings, by Lewis (1986) are shown in Table 1. The particle size distributions (Figure 11) exhibit a well-graded distribution and an average uniformity coefficient of 18. The uniformity coefficient is the ratio of the diameter which includes 60% of the particles (d_{60}) to the smaller d_{10} which includes 10% of the particles (by weight). The more uniform the particles are in size, the closer is the uniformity coefficient to unity. The samples classify as a loamy sand or sandy loam, according to the U.S.D.A. textural classification in Figure 12.

A particle density analysis was also carried out by Lewis, the results of which are shown in Table 2 along with corresponding porosities obtained from the relationship

$$n = 1 - (\ell_b/\ell_s) \tag{25}$$

where $\ell_{\rm b}$ is the dry bulk density and $\ell_{\rm s}$ is the particle density.

The dry bulk density used for the porosity analysis, of 1.45 g/cc, was used for disturbed, repacked tailings. Larson (1984) found an average dry bulk density of 1.40 g/cc for undisturbed cores, from the same sampling areas. However, columns

Figure 10. General location map of copper mill tailings source. (from Lewis, 1986)

Table 1. Particle Size Analysis

		Samp	le #			
Parameter	1	2	3	4	Avg	Sample
D ₁₀	0.0063	0.010	0.009	0.008	0.0083	SDEV 0.0016
D ₅₀	0.12	0.12	0.12	0.12	0.12	0.00
D ₆₀	0.15	0.15	0.15	0.15	0.15	0.00
C _C	4.89	3.27	3.84	4.69	4.17	0.75
Cu	23.81	15.00	16.70	18.80	18.58	3.82
% clay	6.0	5.0	7.0	6.0	6.0	0.82
% silt	22.0	15.0	15.0	15.0	16.75	3.50
% sand	72.0	80.0	78.0	79.0	77.25	3 . 59 ·

Particle size distribution of disturbed tailings collected at the dam crest. (from Lewis, 1986) Figure 11.

Figure 12. U.S.D.A. soil textural triangle, showing tailings composition of dam-crest material. (from Lewis, 1986)

Table 2. Results of average particle density analysis.

TINESE V DEDO			3			•				
Sample	-	2	6	4	ស	9	7	ω.	Avg SDEV	SDEV
Particle Density (ρ.)	2.71	2.81	2.66	2.82	2.71 2.81 2.66 2.82 2.77 2.84 2.90 2.85	2.84	2.90	2.85	2.80 0.08	0.08
Porosity (n) $(\rho_b = 1.45g/cc)$	0.465	0.465 0.484 0.455	0.455	0.486	0.486 0.477 0.489 0.500 0.491	0.489	0.500	0.491	0.482 0.015	0.015

packed at the 1.40 g/cc dry bulk density exhibited compaction after saturation and drainage, whereas those packed at 1.45 g/cc did not (Lewis, 1986). In order to prevent consolidation and subsequent particle redistribution during the wet-up or solute transport processes, the repacked dry bulk density of 1.45 g/cc was adopted for all experimental work.

Saturated hydraulic conductivities were determined from disturbed, repacked ring samples, a disturbed, repacked column, and from in-situ field tests. The results are presented in Table 3.

The difference in saturated hydraulic conductivity between the ring and column samples, for disturbed and repacked tailings was attributed to a larger amount of entrapped air in the longer column and the increased effect of preferental flow along sample container walls for the smaller ring samples (Lewis, 1986). The differences in conductivities between the in situ bore-hole

TABLE 3. Hydraulic conductivities from repacked ring samples, repacked columns, and in-situ testing.

· <u>·</u>	Sample	Number Samples	Average
	urbed, repacked is, 1984)		Sat. Hyd. Cond.
Α	Ring Samples (100cc)	3	1.83E-03 cm/sec
В	Column Samples (15 X 15	52cm) 4	5.47E-04 cm/sec
	itu (Larson, 1984)		
С	Bore-hole Infiltration	1	7.00E-04 cm/sec
D	Instantaneous Profile T	est 1	4.20E-03 cm/sec

infiltration and instantaneous profile test were also attributed chiefly to entrapped air by Larson (1984). The packing procedure for the disturbed and repacked column (Sample B) was identical to the procedure to be used for the long-column solute transport experiments, and the REV for the same sample (B) was larger than that of the ring samples. Therefore, the saturated hydraulic conductivity for the disturbed, repacked column of 5.47E-04 cm/sec was the most appropriate value to use in the long-column experiments.

An analysis of the clay-size fraction was carried out for samples obtained from the dam crest of the impoundment, and collected from 10 to 140 cm depths. Of the clay-sized fraction (<2 microns) 60-70% was identified as illite, 30% as kaolinite, and less than 10% as both smectites and mixed-layer illite-smectite. Jarosite, a potassium iron hydrous silicate, was also found in all the samples. The clay fraction composed 5-6% (by weight) of the sample.

TRACER SELECTION

An ideal tracer is one that is not sorbed or attenuated, is conservative (not subject to degradation or alteration during the experiment), and is found at very low background levels in the natural system (Davis, et al., 1980). Hence, the ideal tracer moves entirely with the liquid or traced phase. With these criteria in mind, bromide was chosen as a tracer for the tail-

ings. In addition, it is easily detectable by use of a specific ion electrode and inexpensive.

Lewis (1986) conducted batch-shaker experiments, to test for recovery of bromide in the copper mill tailings. A loss of bromide was discovered, which was attributed to complexation of the bromide with metal ions in the soil solution. The specific ion electrode, which measures free bromide ions in solution, could not detect the bromide ions which had complexed with the metal ions. Adsorption was also considered as a cause of bromide ion depletion, but did not appear to be a significant factor, for several reasons:

- 1. Chloride ions (smaller ionic radius), at a concentration 100 times that of the bromide ion, were added to the solution, with no detectable change in bromide concentration.
- 2. Tailings are composed of only 6% (by weight) clays.
- 3. The tailings soil solution ranged from pH's of 4.1 to 5.0, which was generally lower than the zero point of charge for the clays.
- 4. Bromide is highly soluble, therefore has less tendency to be adsorbed.

With the shaker-batch experiments a relationship was established between the observed bromide concentrations after mixing with the tailings and the actual bromide concentrations of the reference solution (Figure 13). A curve was fit to the

Figure 13. Actual (known) concentration versus observed (measured) concentration and fitted power curve from batch-shaker experiments. (from Lewis, 1986)

data and yielded an equation of the form:

$$c_a = 1.14c_0^{0.93}$$
 (26)

where C_a is the known, actual concentration of the reference solution (moles/liter), and C_o is the observed bromide concentration after mixing with the copper tailings (moles/liter). This equation (1) can be used to correct for the bromide concentration data, obtained in the tailings experiments.

UNSATURATED FLOW AND TRANSPORT IN A SHORT COLUMN

A small-scale (30 cm), unsaturated, solute-transport experiment on a small scale, (30 cm) was conducted for later comparison of dispersivity values with the larger-scale (330 cm), unsaturated column experiment. These experiments were conducted at NMSU (Las Cruces, NM), using the laboratory and equipment of Dr. P. Weirenga, of the Dept. of Crop and Soil Sciences.

Methodology

First, the column packing procedure and design is described. This is followed by a discussion of the experimental procedure and the method of analysis for the transport parameters.

Two plexiglass columns (30 cm X 5.1 cm) were packed with copper mill tailings which had been sieved (16 mm sieve) and air dried. First, a steel porous plate was placed at the bottom of each column. Then, the tailings were funneled through a ~60 cm tube (which contained two offset screens). The 60 cm tube led into the plexiglass column, which was clamped to a shaker that vibrated the column as the tailings were poured into the column. The vibration settled and consolidated the tailings to a bulk density of 1.44 g/cm³. This bulk density (1.44 g/cm³) is slightly less than the desired 1.45 g/cm³. The screens and tube provided a more homogeneous mixing by ensuring consistency in the packing procedure.

The general design of the experimental apparatus is shown in

Figure 14. A syringe pump pulled eluent from a reservoir and discharged it onto the soil surface via a plastic capillary tube. The pump stroked on timed intervals, pushing a specified volume through the capillary tube with each stroke. The discharge tube at the base of each column was connected to a vacuum chamber. Sampling vials were placed in a circular rack within the vacuum chamber for effluent collection. The sample rack rotated on a timed basis, repositioning a new vial under the column discharge tube after each rotation. With this arrangement, samples could be collected without interrupting the vacuum system or experiment. Two tensiometers were placed at the upper and lower sections of the column to monitor the pressure heads.

The columns were wet-up at a flux of 1.43E-04 cm/sec (12.37 cm/day). However, water ponded momentarily at the soil surface, with each stroke. Therefore, the flux was changed to 1.63E-04 cm/sec (14.04 cm/day), which allowed for more strokes per set time interval, but less volume emitted per stroke. This latter flux was used for the duration of the experiment.

One column was administered a 0.01N ${\rm Ca(NO_3)_2}$ eluent and the other was given an eluent of distilled water. Distilled water replicated the large-scale (330 cm) column experiment, which also used a distilled water eluent. The results of the ${\rm Ca(NO_3)_2}$ eluent column were compared with results from the 30 cm length, distilled-water column, since solute-transport laboratory experiments often use eluents other than distilled water (Biggar and Nielsen, 1962; Van de Pol and Weirenga, 1979), in order to more closely approximate the conditions found in nature.

Figure 14. Schematic diagram of experimental apparatus for solutetransport in small repacked laboratory experiments. (from van Genuchten and Wierenga, 1985.)

During the wet-up procedure, shrinkage of the tailings medium was noted in the $\text{Ca(NO}_3)_2$ eluent column. Consequently, this column was repacked. However, shrinkage was again observed during the wet-up, and the column was repacked once again. Although some shrinkage was still noted, this final repacking of the $\text{Ca(NO}_3)_2$ eluent column was used for the duration of the experiment.

Both tritium and bromide were used as tracers in this experiment. Approximately one pore volume of 0.1M bromide and 0.2 $\mu^{\text{Ci/ml}}$ tritium tracer solution was introduced to each column (0.995 pore volume for the distilled, 1.04 pore volume for the Ca(NO₃)₂ eluent). This was followed with the distilled water and Ca(NO₃)₂ eluents, respectively. The tritium was measured with a Beckman LS-100C liquid scintillation system, using the average of three measurements, and the bromide with an Orion specific electrode ion analyzer (Orion Research, Inc., Cambridge, MA).

Establishing a unit gradient for the experiment proved difficult, due primarily to time constraints. The tensiometer revealed pressure-head differences of about 10 cm of water and 4 cm of water for the distilled-water eluent and $\text{Ca(NO}_3)_2$ eluent columns, respectively (Appendix C). Gravimetric water contents of 33% and 32% were determined for the distilled and $\text{Ca(NO}_3)_2$ eluent columns. These water contents were obtained by comparing the dry and wet mass of the columns prior to wet-up and at the end of the experiment.

After effluent samples were obtained and measured, correc-

tions were made to the bromide effluent data to account for measurement error due to complexation (see Tracer Selection section). The possibility of nitrate (from the $\mathrm{Ca(NO_3)_2}$ eluent) interference with the free bromide measurement was also considered. For this reason, a series of bromide concentration comparisons were made between a specified mass of bromide in distilled water with an identical bromide mass in the $\mathrm{Ca(NO_3)_2}$ eluent. There was no measurable difference in bromide concentration for either the $\mathrm{Ca(NO_3)_2}$ or distilled water eluents.

A curve-fitting computer model, CFITM (van Genuchten, 1980) (listed in Appendix D) was used to analyze the effluent tracer concentration data and to determine dispersivity. CFITM performs a non-linear, least-squares fit of an analytical solution to the breakthrough data, by varying three parameters: the column Peclet number (P_C) and retardation factor (R) (equations 19 and 10, respectively), and the dimensionless pulse length (T'), where T' = vt'/L

and t' is the duration of the pulse of tracer added to the column. All three parameters can be obtained by the curve fit; or if one parameter is known, the other two can be optimized. The analytical solution of Lindstrom et al. (1967) (equation 23) was fit to the effluent data. The solution applies a third-type (or flux-type) boundary condition to a semi-infinite system. The CFITM is an equilibrium model which assumes the adsorption reaction is reversible and occurs quickly relative to the flow velocity. The distribution coefficient is also assumed to

describe a linear process.

CFITM was optimized for two parameters, R and P_c . The pulse length, T', was determined by dividing the volume of the tracer pulse introduced into the column (V_p) , by the volume of water held in the column (V_w) , so that:

$$T' = V_p / V_w$$
 (28)

Presentation of Results

The results of the small-scale (30 cm), unsaturated, solute-transport experiment are presented in this section. First, the BTC's associated and mass balance calculations for each column and tracer are presented. Then, the transport parameters T, $P_{\rm C}$ and R are determined along with the pore-water velocity, hydrodynamic dispersion and dispersivity results.

Breakthrough curves for each column, in terms of pore volume versus relative concentration are shown in Figures 15 and 16 and the relevant data is tabulated in Appendix E. The arrival time of the tritium is almost identical to that of the bromide, within each column. However, the bromide curve peaks at a relative concentration greater than that of the tritium peak.

A comparison of BTC's between the distilled-water and $\operatorname{Ca(NO_3)}_2$ eluent columns is shown for each tracer (bromide in Figure 17, tritium in Figure 18). The distilled-water eluent BTC shows a slightly later arrival, less tailing as the tracer concentration decreases, and a narrower peak width for both the tritium and bromide tracers. In addition, the BTC from the

Figure 15. BTC's for bromide and tritium, distilled water eluent column.

Figure 16. BTC's for bromide and tritium, $Ca(NO_3)_2$ eluent column.

Figure 17. Bromide BTC's from distilled and Ca(NO3)2 eluent columns.

Figure 18. Tritium BTC's from distilled and $Ca(NO_3)_2$ eluent columns.

distilled water case is more symmetric than that of the $Ca(NO_3)_2$ eluent column.

A mass balance was calculated for each BTC, by comparing the integrated area under the BTC to the calculated area of 100% bromide or tritium mass retrieval. Thus, if all tracer mass was conserved

$$A_{i} / A_{c} = 1.0 \tag{29}$$

where A is the integrated area under the BTC and $A_{\rm C}$ is the area calculated for 100% bromide or tritium mass return. The mass balance results are shown in Table 4. All mass balance calculations were lower than 100%, however, the bromide yielded a greater percentage of mass recovery than the tritium.

Table 4. Mass balance for each breakthrough curve. Tracer Column Mass Balance Eluent (%) Bromide distilled 88 Tritium distilled 76 Ca (NO₃)₂ Ca (NO₃)₂ Bromide 98 Tritium 87

As described in the methodology section, the curve-fitting computer model, CFITM (Van Genuchten, 1980), was used to describe the breakthrough data from these unsaturated 30 cm column experiments. Since T' was known, CFITM was optimized for the two parameters, R and P_C, and the resulting curve fits are shown in Figures 19, 20, 21 and 22. A three-parameter fit was also tried but the results were not markedly different. The retardation factor, column Peclet number and pulse lengths are presented in Table 5 and the computer outputs are included in Appendix F.

Table 5.	Results of CFITM known, column Pe factor (R) are		Pulse length (T') is P _C) and retardation		
Tracer	Column Eluent	Т'	Pc	R	
Bromide Tritium Bromide Tritium	distilled distilled Ca(NO ₃) ₂ Ca(NO ₃) ₂	0.995 0.995 1.040 1.040	58.43 26.56 21.94 15.97	0.985 1.000 1.000 1.050	

Figure 19. Bromide breakthrough data and CFITM fitted curve (two-parameter optimization), for distilled eluent column.

Figure 20. Tritium breakthrough data and CFITM fitted curve (two-parameter optimization) for distilled eluent column.

Figure 21. Bromide breakthrough data and CFITM fitted curve (two-parameter optimization) for $Ca(NO_3)_2$ eluent column.

Figure 22. Tritium breakthrough data and CFITM fitted curve (two-parameter optimization) for Ca(NO₃)₂ eluent column.

The pore-water velocities, hydrodynamic dispersion coefficients and dispersivities are presented in Table 6. Using the relationship for pulse length in equation (27), the pore-water velocity for each column was calculated with a t' of 691 minutes and L of 27.7 and 26.9 cm for the distilled water and $\text{Ca}(\text{No}_3)_2$ eluent columns, respectively. The hydrodynamic dispersion coefficients and dispersivities were determined from the fitted P_{C} , using equations (5) and (18) and assuming molecular diffusion was insignificant.

Table 6.	Values of pore-water velocities (v), hydrodynamic
	dispersion coefficients (D') and dispersivities (a,).
	[

Tracer	Column	v	D'	a _l
	Eluent	(cm/min)	(cm²/min)	(cm)
Bromide	distilled	0.0399	0.0189	0.47
Tritium	distilled	0.0399	0.0416	1.04
Bromide	Ca(NO ₃) ₂	0.0405	0.0497	1.23
Tritium	Ca(NO ₃) ₂	0.0405	0.0682	1.68

The validity of disregarding the molecular diffusion coefficient can be demonstrated by a comparison of the dispersivity which included the molecular diffusion coefficient to the dispersivity which neglected molecular diffusion. An unsaturated, molecular diffusion coefficient, $D(\theta)*$, of 4.13E-05 cm²/min was calculated for the bromide-tracer, distilled-water eluent column, using the relationship suggested by Wilson and Gelhar (1974)

$$D(\theta) * = 1/3 (\theta/n)^2 D_s^*$$
 (30)

and using a saturated molecular diffusion coefficient (D_s^*) of 5.55E-04 cm²/min (Appendix G), a θ of 33% and n of 44%. A dispersivity of 0.47 cm was obtained from both the addition and the omission of molecular diffusion. Therefore, at these fluxes, the diffusion coefficient was not significant and could be disregarded.

The pore-water velocities in Table 6 were compared to the pore-water velocities of the tracers $(v_{\rm tr})$. The tracer pore-water velocities were determined by dividing the column length by the time of the arrival of the 50% relative concentration of the tracer in the effluent. The results are shown in Table 7.

Table 7. Comparison of input pore-water velocity (v) and the velocity of the tracer (v_{tr}), where 't' is time for 50% tracer concentration to reach effluent.

Tracer	Column Eluent	v (cm/min)	t (min)	v _{tr} (cm/min)
Bromide	distilled	0.0399	694.2	0.0399
Tritium	distilled	0.0399	728.9	0.0380
Bromide	Ca(NO ₂) ₂	0.0405	697.4	0.0386
Tritium	$Ca(NO_3)_2$ $Ca(NO_3)_2$	0.0405	697.4	0.0386

Discussion

This discussion investigates the presence (or absence) of adsorption, the difference in results between the distilled and $\text{Ca(NO}_3)_2$ eluent columns and compares the results from the bromide and tritium tracers to determine the better tracer for these copper mill tailings. A representative dispersivity for these unsaturated copper mill tailings, at a laboratory scale, is chosen.

Adsorption did not appear to be an influential factor for either tracer, in this experiment. In Table 5, the retardation factors were either 1.0 or very close to 1.0, indicating neither adsorption nor ion exclusion was a problem. The low clay content of the copper mill tailings (6%) and pH range of the leachate (3.9 to 4.1) would have severely limited the occurrence of adsorption (see Tracer selection section).

The two columns show distinct differences in BTC shapes and dispersivity values. The greater peak width, earlier tracer

arrival, more extensive tailing and higher dispersivity of the $\operatorname{Ca(NO_3)}_2$ eluent column (for both tritium and bromide tracers) is similar to BTC's observed with dead-end pores, or stagnant water in the flow path (De Smedt and Wierenga, 1984). This might be accounted for by packing differences between the two columns or by the use of different eluents.

The occurrence of chemical reactions that would differ between the two columns is very likely, since a different eluent was used in each column. As a divalent cation, calcium (from the $Ca(NO_3)_2$) eluent) may preferentially adsorb on to the soil surface and allow flocculation of the clays to occur (Hillel, 1980). The flocculation of clays may change the porosity and/or the permeability of the porous medium as the clay double-layer Clay content of the tailings is less than 6% by weight, minimizing the amount of flocculation that could exist. However, as noted in the experimental procedures section, a shrinkage of the porous medium was observed during the initial wet-up of the $Ca(NO_3)_2$ column. This change in the structure of the tailings matrix would undoubtedly have an effect on water movement through the tailings. The more asymmetric shape and higher dispersivity of the Ca(NO3)2 curves, as compared to the distilled-water eluent BTC's, may be from the change in the structure of the tailings matrix.

Had both columns produced similar breakthrough curves, the choice between using a distilled-water eluent or a $\text{Ca(NO}_3)_2$ eluent would be mute. However, there was a distinct difference in BTC's which cannot be addressed in full because of lack of

experimental data. With only one column of each eluent type, it could not be accurately ascertained whether the difference in BTC's between columns was due to packing differences between the columns or to the use of different eluents.

Bromide responded as a more conservative tracer than did the tritium, for both columns. The mass balance of the BTC's yielded a greater percentage of bromide recovery than tritium recovery, for each column. The reason for the lack of full recovery was not clear. Irreversible adsorption was not considered a factor in the tritium or bromide loss. Retardation factors of 1.0 and 1.05 for the distilled and Ca(NO₃)₂ eluent columns indicate no adsorption occurred. Undoubtedly, measurement error played a part in the tritium loss, since scatter was observed in the BTC data at the peaks of the tritium curves. Despite the uncertainty as to the cause of the tracer loss, the results do indicate that bromide acted as the most conservative tracer, for the copper mill tailings.

The pore-water velocity comparisons between v and v_{tr} (Table 7) demonstrated that both tracers closely followed the bulk movement of water, with a 5% difference, at most, between v and v_{tr} . However, the v_{tr} of the bromide in the distilled water column predicted the bulk movement of water most accurately.

Tritium yielded higher dispersivities than the bromidetracer, distilled-water eluent column (0.47 and 1.04cm, for bromide and tritium, respectively) and the $\text{Ca(NO}_3)_2$ column (1.23 and 1.68cm for bromide and tritium, respectively). Another look at the fit of the CFITM curves to the breakthrough data in

Figures 19, 20, 21 and 22 provides some insight. The CFITM tritium curves are poor matches for the actual data; the observed data arrives later and recedes more sharply than the fitted curves. The bromide curves are in better agreement with the observed data, and subsequently yield parameters of less uncertainty.

The poor fit of the CFITM curves to the tritium data may be related to the peak height and mass balance of the breakthrough curves. The tritium BTC's yielded a lower mass balance than their bromide counterparts. The CFITM model had to widen the tritium peak width because of the low BTC peak height, in order to conserve mass under the curve. The fitted curve could not describe the tritium mass lost during the experiment, which was crucial to defining the parameters.

The dispersivity of 0.47 cm for the bromide-tracer, distilled-water eluent column was chosen to describe these unsaturated, copper mill tailings at the laboratory (~30 cm) scale. The dispersivity values of greatest confidence were calculated from the bromide data, for both columns. Furthermore, a distilled-water eluent and bromide tracer were also used in the larger-scale column experiments (336 cm), and therefore, the bromide-tracer, distilled-water column was the most useful for comparitive purposes. This dispersivity value (0.47 cm) was well within the range of magnitude of other dispersivities also obtained in unsaturated, laboratory experiments of a similar scale (Yule and Gardner, 1978; Kirdat, etal., 1973; Gaudet, et al., 1977; De Smedt and Wierenga, 1984; van Genuchten and Wierenga, 1977).

Summary

The short-column (30 cm) experiments provided a reference for comparison of dispersivities with the long-column (336 cm) experiment to follow. A dispersivity of 0.47 cm was obtained, for a 32% volumetric water content and a flux of 1.625E-04 cm/sec using a bromide tracer and distilled-water eluent. This dispersivity was within the range of other unsaturated laboratory experiments. The molecular diffusion coefficient was not significant in the calculation of the dispersion coefficient.

Bromide proved to be an good tracer for the copper tailings, with no adsorption, a larger mass balance return than the tritium, and a pore-water velocity determined from the tracer movement that matched the measured input velocity. In addition, the bromide tracer yielded dispersivities of greater certainty than the dispersivities from the tritium, due to poor agreement between the CFITM curves and the tritium BTC. The Ca(NO₃)₂ column exhibited a different hydrodynamic character than the distilled water column, with earlier tracer arrival, greater tailing, and higher dispersivities than the distilled-water eluent column.

UNSATURATED FLOW AND TRANSPORT IN A LONG COLUMN

The scale chosen for a solute-transport experiment may influence the value of dispersivity. For saturated media, this scale dependence is well documented and is a function of the scale of the heterogeneities present in the media. unsaturated solute-transport case, there is insufficient data from which to draw the same conclusions. Dispersivities determined from various unsaturated, solute-transport experiments found in the literature are shown in Figure 23 and listed in These experiments were conducted at varying vertical Table 8. scales and water contents and with different porous media. Unlike the laboratory experiments which were conducted with homogeneous repacked soils, the field experiments were conducted with in-situ soils. Figure 23 suggests dispersivity may increase with transport distance in the unsaturated case, but additional data, especially at the field scale, is needed for comparison.

A laboratory experiment was conducted to determine the dispersivity for unsaturated copper tailings and to evaluate the dependence of dispersivity on distance of transport, under unsaturated conditions. The porous medium was homogeneous, hopefully eliminating the variable of field-scale heterogeneity from the experiment. The scale dependence of dispersivity was examined by sampling for a tracer at several depths along the column, and determining the dispersivity at each of those depths. The dispersivity values were then compared to the unsaturated, smaller-scale (30 cm in length) column experiment

Figure 23. Dispersivities from both repacked laboratory column and in-situ field solute-transport experiments, under unsaturated flow conditions. Dispersivities determined from literature cited in Table I.

TABLE 8. Dispersivity results from various unsaturated laboratory and field solute-transport experiments; * indicates a field experiment.

Author	Soil	Vertical	Scale	Dispersivity
		(0	⊃m)	a_(cm)
Krupp and Elrick,	glass		10.0	0.02
Mansel, et al.,		r fine	10.0	0.37
(1979)	sand			0.72
				0.15
		·		0.31
Elrick, et al.,	glass	beads	10.7	0.04
(1966)				0.76
(1978)	Plainfiel	d sand	23.0	0.22
De Smedt and Wierenga, (1979)	glass	beads	30.0	0.02
De Smedt and Wierenga,	glass	beads	30.0	0.03
(1984)	•			0.03
				0.03
				0.02
				0.02
			_	0.08
Nielsen and Biggar,	Oakley	sand	30.0	0.22
(1962)	_			0.34
	glass	beads	30.0	0.12
	Aiken	clay loam	30.0	1.57
		_		0.10
van Genuchten, et		le clay	30.0	0.33
al., (1977)	small	aggregates	,	0.73
	large	aggregates		0.67
				0.66
		·	· · · · · · · · · · · · · · · · · · ·	1.31
Gupta, et al., (1973)	glass	beads	54.0	0.007
Van de Pol, et al,	field	soil	75.5	9.40
Hildebrand and	sand	· · · · · · · · · · · · · · · · · · ·	79.0	~0.15
Himmelblau, (1977)				
Gaudet et al.,	sand		94.0	0.14
(1977)				0.10
•				0.11
				0.10
Warrick, et al.,	field	soil,	180.0	2.70
	Panoche	clay loam)		
Biggar and Nielsen, (1976)	Panoch	е	183.0	5.20
Kies, (1981)	field	soil	200.0	16.90
	·			

described in the previous section of this paper, and to dispersivity values from unsaturated experiments found in the literature. An additional comparison was made to the dispersivity determined from a saturated, solute-transport experiment through copper mill tailings at a similar scale by Lewis, (1986) (Appendix H).

Methodology

First this section describes the column set-up, packing procedure, and instrumentation. Experimental procedures are then discussed for saturating the column, leaching under unsaturated conditions, and conducting solute-transport experiments in the long-column.

Column description. One long, plexiglass column (Figure 24), 336 cm in length and 16.2 cm diameter, was composed of three sections which were bolted together at the flanges with neoprene gaskets for seals. A blind flange was affixed to the bottom section. A 1.27 cm hole was drilled and tapped into the blind flange, and a reducer was then fitted to the hole. Tygon tubing was connected to the reducer, and this was used for effluent collection. The entire plexiglass column was supported vertically by a metal tripod, which was bolted to the cement floor.

The set-up of the column was changed to accommodate different stages of the experiment. For the saturated parts of this experiment, a polypropylene felt filter was placed between the flange and the tailings, to prevent loss of tailings through the

Figure 24. Long-column diagram.

outlet. In addition, 30.5 cm plexiglass section was temporarily bolted to the top of the soil column to allow storage for a head of water, during the initial column wet-up and subsequent leaching process. The unsaturated, displacement portion of the experiment required the use of a ceramic porous plate and flange assemblage at the bottom of the column. A hydraulic conductivity of 1.0E-06 cm/sec was obtained for the one-bar porous plate (Lewis, 1986). The blind flange was ground out and the porous plate seated flush with the flange surface, as shown in Figure 25. A space of 5 mm was maintained between the porous plate and the inner seat of the flange, to allow optimum eluent removal across the entire surface area.

The copper tailings were packed into the column in five centimeter increments to a field density of 1.44 g/cm³, slightly less than the optimum bulk density of 1.45 g/cm³. Before packing, the tailings were sieved through a 16 mm sieve to sort out the dried aggregates, and then they were air-dried. Next, the tailings were poured into a funnel connected to a 2.5 cm diameter PVC pipe about 160 cm in length. Each interval was then tamped down to a 5 cm lift by using an aluminum disc, 16 cm in diameter, that was attached to a long metal pipe for handling. The entire column length, 336 cm, was packed in the aforementioned manner.

<u>Instrumentation</u>. In preparation for the unsaturated solutetransport experiment, instrumentation was designed and implemented to handle some of the problems inherent in the unsaturated

Figure 25. Flange and ceramic porous plate assemblage at the bottom of the column.

flow process. Monitoring of pressure heads to ensure a constant water content was necessary. A method of extracting soil-water solution during the experiment, at several depths along the column, was needed. Instrumentation was needed to apply a continuous, long-term vacuum at the bottom of the column to allow for effluent discharge while under negative pressure heads. Finally, the introduction of the tracer solution needed to be considered carefully.

The input system consisted of a pump, reservoir and fluid distribution device. A reciprocating, positive-displacement pump (Model RP-G20, FMI Labs, New York) was used to input the distilled water and tracer solution at a specified flux. A Mariot syphon (Figure 26) was used upstream of the pump, to insure pumping rates would not be affected by the level of the water in the reservoir. The device used to distribute the input fluid uniformly across the soil surface is shown in Figure 27. 0.159 cm (0.0625 in) plastic, capillary tubes distributed water from the pump onto the surface of the tailings. All capillary tubes were equal in diameter and length, and the outflow ends were placed at equal heights above the manifold. Therefore, the volumetric fluxes through each of the tubes were equivalent. This was corroborated by experimental data, which measured equivalent fluxes for the top and the bottom capillary tubes.

A vacuum was established at the bottom of the column, by means of an aquarium pump (Whisper 1000, Willinger Bros., Inc.) housed in a well-sealed desiccator (Figure 28). An air hose was directed from the vacuum pump through the desiccator to

Figure 26. Constant level reservoir, upstream of input pump.

INPUT DEVICE

Figure 27. Device used to distribute tracer solution across the soil surface, at the top of the column.

Figure 28. Vacuum system and apparatus for bottom of the column.

the outside air. A small air-escape valve was placed on the desiccator wall, to allow for vacuum adjustment. The vacuum was measured by a mercury manometer attached to the vacuum-pump and desiccator assemblage. A vacuum tube from the desiccator was connected to the column effluent tube and applied a vacuum across the porous plate. An Erlenmeyer flask was connected to the vacuum line, between the column and the vacuum pump, to collect the effluent.

To monitor the pressure heads during the experiment, tensiometers were placed along the length of the column, as shown in Figure 29. Small porous ceramic cups (3.18 cm or 1 1/4 in length, 0.95 cm or 3/8 cm width), were epoxied on to 0.64 cm (1/4 in) glass tubing. De-aired water was sucked into the tensiometer, through the porous cup, by means of a vacuum pump. A septum stopper was placed at the top of the glass tubing and sealed with silica gel. Holes were drilled into the column wall and hand bored into the tailings for tensiometer placement. The glass tubing of each tensiometer had been inserted through rubber stoppers (#2), which seated the tensiometers firmly to the column wall. To measure the pressure, a hand-held pressure transducer (Tensimeter, SMS, Las Cruces, NM) was used.

To obtain soil-water samples for tracer concentration analyses during the solute transport experiment, five porous cup samplers were installed along the length of the column (Figure 29). These samplers (Figure 30), were constructed with high-flow, porous ceramic cups (6.99 cm or 2 3/4 in length, 2.22 cm or 7/8 in width) of one bar air entry pressure, which were epoxied

Figure 29. Location of tensiometers and porous cup samplers with depth, in the long column.

Figure 30. Soil-water extraction system. Vacuum established by vacuum pump, through manifold and capillary tubes to porous cup samplers. Sampler shown in inset.

onto the ends of 1.27 cm (1/2 in) inside diameter, clear, PVC tubes. A rubber stopper (#0), with 0.32 cm (1/8 in) diameter tubing through the center, was placed at the open end of each PVC tube. The other end of the tubing connected to a vacuum system. At the end of the PVC tube distal to the porous ceramic cup, a hole was drilled, to which 0.32 cm (1/8 in) diameter tubing was fit. This tubing led to a pill bottle with a snap-top lid which was used to collect the soil-water during extraction.

Holes were drilled into the column wall to allow sampler placement and hand-bored into the tailings with an augered drill bit. The porous cup samplers were then inserted into the holes, with the porous cup as close to the middle of the column as possible. They were inserted at an angle, with the porous cup higher than the end of the PVC tube, to facilitate drainage of water down through the tube. Silica gel was packed between the PVC tube and the column wall, to prevent leakage out the column wall.

Pore-fluid was extracted from the tailings with porous cup samplers which were connected to a vacuum manifold. The manifold was constructed from clear, acrylic tube was drilled and plugged with rubber stoppers, one for each sampler. The top of the manifold tube was blocked off, and the bottom was connected to a vacuum pump. Each rubber stopper had a 0.32 cm (1/8 in) tubing through it; one end of the 0.32 cm tubing was connected to the vacuum manifold, and the other end was connected to the porous cup sampler. Each sampler could be connected to the same vacuum system, and one, all, or any combination thereof could be

serviced by the vacuum at one time. The vacuum was initiated by a vacuum pump, which applied a vacuum to the samplers which were connected. The amount of vacuum was measured by a mercury manometer, which was also connected to the vacuum manifold. The soil-water sample was collected at the lower end of the clear PVC tube where it could be easily seen, and it drained into the pill container when the vacuum was removed.

Procedure for infiltration and leaching. The objectives of the initial wet-up were to determine the saturated hydraulic conductivity of the tailings and to leach soluble chemicals from the tailings as much as possible, prior to conducting the tracer To saturate the column, a reservoir of distilled water was connected to a float valve assembly, which in turn fed the distilled water into the column. A constant head of 352 cm of water was maintained, where 'z' is zero at the bottom of the column. The column was saturated, leached with distilled water over a period of 10 days, and then drained for a 3 month During the drainage period, instrumentation for the unsaturated part of the experiment was installed. However, drying occurred to a greater extent than expected during this time, and the column was re-saturated for 6 days and drained again for 5 days.

In preparation for the unsaturated leaching of the tailings, I replaced the filter cloth and flange with the porous plate-flange assemblage after the final 5 day drainage period. Distilled water was then pumped into the column at a flux much less

than the saturated hydraulic conductivity of the tailings. Adjustment of the input flux and the vacuum at the bottom of the column was required to obtain steady-state conditions and uniform water content throughout the column. Ten days after initiation of unsaturated leaching, a stabilized input and effluent flux of 8.09E-05 cm/sec (1.0 ml/min) was obtained for the unsaturated column leaching. This input flux was later decreased (71 days after initiation of unsaturated leaching) to 6.87E-05 cm/sec (0.85 ml/min) in order to equal a decreased effluent flux. The decrease in the effluent flux was due to a loss of vacuum efficiency by the aquarium pump.

At a flux of 1.0 ml/min, ponding developed at the top of the column, even though the sediments were unsaturated. This suggested that a low-permeability clogging layer had developed at the upper surface of the tailings. The upper 39 cm of the column were repacked, and the original tailings were examined for microbes. No evidence of microbial activity was recognized under microscopic scrutiny of soil-water slides. A small hole near the bottom of the column was opened to prevent air pressure build-up ahead of the wetting front. However, ponding again developed after the repacking. This was probably a consequence of using than air-dried, tailings during the repacking wet, rather procedure, which raised the bulk density and lowered the permeability of the medium. The top 43 cm of the column were then repacked with air-dried tailings, in an identical manner as the original packing procedure, and no further ponding at the soil surface was evidenced.

During the unsaturated leaching period (76 days), the electrical conductivity and pH of the eluent was closely monitored, to document chemical changes. Soil water pressure heads were monitored by the tensiometers. Generally, the tensiometers functioned properly for one to two week intervals. Input and discharge fluxes were also measured.

Procedure for solute-transport experiment. After 76 days of unsaturated leaching and steady-state flow conditions were established, a 17.9L pulse of 1.00E-01 M bromide solution was introduced to the column. The bromide solution was prepared by dissolving 196.2 g of CaBr₂.H₂O solid in 18 L of distilled water. At the time of tracer introduction, uniform pressure-heads of -26.0, -27.0 and -26.0 cm of water were recorded for the 31, 165, and 283 cm depths, respectively. The pulse of tracer was introduced at 0.85 ml/min over an 17 day period, followed by a distilled water eluent. The distilled water eluent was continued for 101 more days. Less than ten minutes were required to rinse and refill the reservoir with the appropriate solution.

Extraction of soil water for tracer concentration analysis was initiated 24 hours after the tracer was introduced. To obtain a soil-water sample, an induced suction of 40 cm of water was used. Extraction time varied between 1 to 2.5 hours and sample volumes varied from 2 to 8 ml. The influence of the induced suction on the flow field was considered and is reviewed in Appendix I. Sampling frequency varied according to the peak concentration location. As the solute front moved past a

sampler, up to four measurements were taken over a 24 hour period. Sampling was less frequent (once a day) after the main bulk of the breakthrough curve had passed (1200 hrs after introduction of the tracer) and concentrations were more stable.

Only three of the five porous cup samplers were used. Porous cup sampler #3 (189 cm depth along the column) only transmitted a few drops of soil-water, not enough for concentration analysis. The sampler was replaced, but it still did not extract enough soil-water and was omitted from the experiment. Due to leakage problems at the tube-column junction, the lowest sampler (315 cm depth) was also omitted from the experiment.

Effluent volume was measured at the beginning and end of each soil-water extraction period. Length of sampling time, temperatures and sample volumes were also recorded. The bromide concentration was measured by an Orion Ion Analyzer, as explained in the previous unsaturated, short-column experiment.

Results and Discussion

Infiltration. During the period of saturation, the calculated hydraulic conductivity, $K_{\rm S}$, was 5.40E-04 cm/sec for the packed tailings. $K_{\rm S}$ was determined using the measured volumetric discharge rate (Q) of 0.12 ml/sec obtained from the bottom eluent, a column area (A) of 206.1 cm², a head change of 352 cm over a 330 cm porous medium length for a hydraulic gradient (i) of 1.07, and Darcy's Law

$$K_{s} = Q/Ai \tag{31}$$

The $K_{\rm S}$ of 5.40E-04 cm/sec agrees with the $K_{\rm S}$ of 5.47E-04 cm/sec determined from repacked, laboratory-column permeability experiments of Lewis (1986) for the same copper tailings medium. In addition, the $K_{\rm S}$ of 5.40E-04 cm/sec is very close to the $K_{\rm S}$ of 7.4E-04 cm/sec Lewis (1986) determined from his solute-transport experiment under saturated conditions in which he used similar packing procedures to those in the present investigation.

During the period of saturation, effective porosity (n_e) was estimated by noting the distance, L, the wetting front moved in a specified amount of time, and assuming piston-type displacement. The distance, L, was the change in the depth of the wetting front from 265.8 to 254.0 cm in a 154.5 minute time period. The volume of water, V_w input over the same 154.5 minute period was calculated by multiplying the area of the column (206.1 cm²) by the change in water level at the top of the column (4.3 cm). Using the relationship

$$n_{e} = V_{w} / L A \tag{32}$$

with a $V_{\rm W}$ of 886.2 ml and L of 11.8 cm, an effective porosity of 36% was calculated. The 3.0% residual moisture content (obtained by oven-drying samples of the tailings before packing) of the air-dried tailings increased the porosity to 39%. Entrapped air might cause the actual porosity to be somewhat higher. Therefore, an effective porosity of 40%, as used by Greg Lewis (1986) for the same tailings and packing density, appeared to be a reasonable estimate for porosity.

Influx and efflux. According to Freeze and Cherry (1979), steady-state flow occurs when the magnitude and direction of the flow velocities are constant with time, at any point within the flow field. Under the unsaturated flow conditions of this column experiment, the recharge and discharge rates should be equal as well as constant over time, in order to prevent water storage or loss during the experiment.

From Figure 31, it is obvious that the inflow and outflow rates during 194 days of the experiment were not constant throughout the experiment, nor were they always equal to each other. The time period shown extends from the initiation of unsaturated leaching to the end of the solute-transport experiment. The inflow and outflow rates are listed in Appendix J. There was a widespread variation in flow rates, especially prior to the introduction of the tracer at 1828.2 hrs. After the introduction of the tracer, the outflow rates more closely followed the trend of the inflow rates.

Because the outflow rate was lower than the inflow rate, an increase in water stored in the column occurred. To illustrate, the cumulative volume of water flowing out of the column was plotted versus time in Figure 32, and the data is listed in Appendix K. The solid, straight line represents the cumulative volume into the column at a constant rate of 0.85 ml/min. If the inflow and outflow rates were equal, the slopes of the two lines would parallel each other. It can be seen that the slope of the outflow rate generally paralleled the slope of the inflow rate (shown by the dashed line), with the exception of two events at

Time is 0 at initiation of Inflow and outflow rates, over time. unsaturated leaching. Figure 31.

Time is 0 at Comparison of efflux and influx volumes, over time. initiation of unsaturated leaching. Figure 32.

967 hrs and 2000 hrs.

The first departure of the outflow slope from that of the inflow, at 967 hrs, coincides with the repacking of the top 39 cm of tailings. As suggested in the procedural section, these repacked tailings acted as a clogging layer, and the ponding that resulted decreased the infiltration and outflow rates. After the second repacking event at 1400 hrs, the outflow slope again paralleled the inflow slope. Steady-state conditions were thus established for the initiation of the solute-transport experiment at 1828 hrs, as verified by tensiometric data presented in the following Flow field section.

The second departure of outflow and inflow slopes is shown at about 2000 hrs, during the solute-transport experiment. Two explanations were explored to account for the difference in outflow and inflow rates.

One possible cause for difference was through removal of soil-water from the system via the sampling procedure. Figure 33 compares the cumulative sampling volume obtained over time (listed in Appendix L) to the cumulative volume out of the column as a function of time. The dashed line represents the cumulative volume into the column, at an assumed constant inflow rate of 0.85 ml/min. However, the sampling volume accumulated (1420 ml) cannot account for the total difference between inflow and outflow (10,500 ml; obtained by graphical integration of the shaded area in Figure 31).

The decrease in outflow at 2000 hrs also may have been caused by an increase in storage in the lower part of the column

Cummulative sampling volume over time, relative to influx and efflux volumes. Time at 0 corresponds to introduction of the tracer. Figure 33.

due to the decrease in the efficiency of the vacuum pump (see Procedures section). As the basal sediments saturated, water leaked from a small hole near the base of the column. This leakage was included in the effluent volume measurements and was accounted for in the cumulative effluent volume shown in Figure 38. After this overflow occurred (first noted at 2740 hrs), it can be seen that outflow rate nearly equaled the inflow rate. The hole near the base of the column established a lower boundary condition, which limited the depth of saturation at the base of the column. Leakage occurred whenever the depth of saturation height was sufficient to generate the head necessary to force water through the hole. Thus, an equilibrium was re-established for the duration of the experiment, albeit a different (wetter) condition than at the introduction of the tracer.

The soil-water sampling regime and saturation of the basal portion of the column probably affected the amount and distribution of the increased storage (10,500 ml). The sampling volume (1420 ml) that never reached the effluent was subtracted from the increase in storage (10,500 ml), and a revised storage increase of 9080 ml was calculated.

Some of the 9080 ml of additional storage would be located in the saturated basal portion of the column. The saturated basal portion of the column accounted for 417 ml of the additional storage. This was determined by subracting the volume of water $(A*\theta*L)$ at a water content of 33% from the volume of water held at saturation (40%). The hole through which leakage occurred was located 18 cm above the bottom of the column (L), and the

area of the column (A) was 206.1 cm².

The change in storage at the bottom of the column (417 ml) was subtracted from the total increased storage (9080 ml), and a net storage increase of 8663 ml resulted. The increase in storage was probably distributed along the column length and resulted in a subsequent increase in water content of the copper tailings. As discussed in the following flow field section, the tensiometric data also suggested an increase in water content within the column profile over time.

Flow field. Several aspects of the flow field for the long-column experiment are considered in this section. The uniformity of the pressure heads and water contents and the relationships between pressure heads, water contents and hydraulic conductivity are discussed. Saturated hydraulic conductivity and porosity estimates are also included.

Pressure-head measurements from the time of tracer introduction to the end of the experiment are shown in Figure 34 and included in Appendix M. These measurements were obtained from the tensiometers installed along the column wall, at the depths indicated in Figure 34. Unconnected points indicate tensiometer failure, and subsequent lack of data for that time period. Pressure heads from the top, middle, and bottom tensiometers (31, 165, and 283 cm, respectively) gave the most complete, uninterrupted data sets. Additional data sets for the 96, 120 and 225 cm tensiometers were incomplete, but provided ancillary data.

From Figure 34 it appears that the uniformity of pressure

Figure 34. Suction measured at discrete depths. Time is 0 at the introduction of the tracer.

head measurements, which existed at the time of tracer introduction, began to decrease about 10 days after the introduction of the tracer. During the remainder of the experiment, pressure head differences of up to 23 cm of water occurred on days 39 and 115. The deepest tensiometer at the 283 cm depth generally recorded the lowest suctions, whereas the tensiometers at the 165 and 225 cm depths consistently recorded the highest suctions.

The vacuum used for sample extraction did not appear to strongly affect the suction measurements. The most intensive sampling (up to four times per 24 hour period) occurred from one to 15 days. During that time the suctions showed an overall decrease in value, which indicated an unexpected increase in water contents. An increase in suction would have occurred if the system had responsed to the applied suction and subsequent removal of soil-water from the system.

The tensiometric data exhibited definite trends over time (Figure 34). Ten days after introduction of the tracer, the suction measurements decreased. This decrease coincided with the major increase in storage observed in Figure 32, at 2060 hrs or 10 days after the introduction of the tracer at 1828.2 hrs. The suctions appeared to stabilize at approximately 36 days into the solute-transport experiment, and storage was also stabilized at approximately the same time (2700 hrs in Figure 32, which correlates to 871.8 hrs or 36.3 days in Figure 34). The abrupt change in suctions which occurred at 104 days in Figure 34 was not supported by a related sharp change in storage in Figure 32. In fact, a gradual increase in storage was observed from approxi-

mately 3600 hrs (74 days after introduction of tracer) through to the end of the experiment.

The suction variations and changes that were observed from 104 to 117 days into the solute-transport experiment were probably caused by procedural maintainence problems. The vacuum pump was mistakenly not connected with the outflow tubes on the 102nd day of the experiment, and saturated overflow occurred through the hole near the base of the column. On the 103rd day, the input system was not connected and no inflow occurred for a 24 hour period. By the 119th day, the suctions were re-established at values similar to those of day 103, prior to the inflow and vacuum connection problems.

Mean pressure-heads for each depth in the column were calculated using the following relationship

$$\overline{\Psi}_{\mathbf{d}} = \sum_{i=1}^{n} \Psi_{i}/n \tag{33}$$

where n is the number of observations for each tensiometer and $\overline{\Psi}_d$ is the mean pressure-head at a specific depth. These mean pressure-heads are listed in Table 9.

Table 9. Mean pressure	heads for long-column flow field.
Depth (cm)	Mean Pressure Head (cm of H20), $\overline{\Psi}_d$
49.0	-16.3
114.0	-22.0
138.0	-16.0
182.0	-21. 5
242.0	-24.2
301.0	-13.8

An overall pressure-head average $(\overline{\Psi})$ for the entire column of -18.6 cm of water was then calculated by weighting the mean pressure-head measurements $(\overline{\Psi}_d)$ according to the number of measurements for each depth (n_d) ,

$$\overline{\Psi} = \frac{1}{N} \sum_{\delta=1}^{6} \Psi_{\delta} N_{\delta}$$
 (34)

where d was the number of tensiometers and N was the summed total of tensiometric observations from all depths.

At the completion of the experiment the tailings were sampled for volumetric water content, $\theta_{_{\mathbf{V}}}.$ A hand sampler was used to collect seven 5.1 cm X 5.0 cm ring samples from different depths along the column, over a two-hour period. Compaction of the ring samples occurred during the sampling procedure, especially with the deeper, more inaccessible samples. The metering pump and vacuum system were turned off before sampling. Although redistribution of water with the column probably occurred, the bottom outflow tube was clamped off and no water exited the system as effluent during the destructive sampling. The volumetric water content was calculated using the $\theta_{\rm V} = W \ell_{\rm b} / \ell_{\rm W}$ relation-content, and $\boldsymbol{\rho}_{_{\!\!\boldsymbol{W}}}$ the density of water. The ring samples were weighed before and after oven drying for 24 hours at 105°C, to obtain $M_{\overline{W}}$, the mass of water held by the samples. The gravimetric water content (W = M_W/M_S) was calculated, where M_S is the mass of dried soil. The volumetric water contents (θ_{v}) were then obtained, using a dry bulk density of 1.44 g/cc (the column packing density). These values are shown in Figure 35 and listed

Figure 35. Volumetric water content with column depth, determined by hand-core sampling.

in Appendix N, and yielded a mean volumetric water content $(\overline{\theta}_{_{\mathbf{V}}})$ of 33%.

A drier section existed towards the lower middle portion of the column (140 to 280 cm depths), as evidenced by the decreased water content. This is in good agreement with the pressure-head measurements which were lower for tensiometers at the 165 and 225 cm depths. Saturation at the bottom of the column was not indicated by the water contents. However, redistribution of water within the column during the ring sampling procedure may have affected samples from the bottom of the column, because they were obtained at the end of the two hour sampling period.

The mean water content and pressure head measurements were applied to the soil-moisture characteristic curve (θ/ψ curve) for these copper tailings (Lewis, 1986), shown in Figure 36. The curve shows the relationship between volumetric water content and suction (which is the negative of pressure head). The mean pressure head of -18.6 cm of water (obtained from tensiometers) was applied to this curve, and yielded volumetric water contents in the 33.0 to 38.5% range (wetting and drying curves, respectively). Hysteresis probably occurred during the wet-up and drainage procedure, thus an intermediate θ_V of 35.8% was chosen as representative. This is a good approximation of the $\overline{\theta}_V$ of 33% obtained by the ring samples (an 8% difference).

The flux (6.87E-05 cm/sec) used in this experiment (where $q=K(\theta)$) was compared to the hydraulic conductivity, $K(\theta)$, of the copper tailings at the $\theta_{\rm V}$ of 33%. Figure 37 shows the relationship between hydraulic conductivity and volumetric water content

Figure 36. Water contents of both wetting and drying soil moisture characteristic curves for mean suction of 18.6 cm of H₂O. Characteristic curve for copper mill tailings, beach sand fraction, from Lewis (1986).

Figure 37. Comparison of input flux (q = 6.87E-05 cm/sec) to K(θ) determined from measured mean water content of long column. Projected water content at input flux (30.5%) also included for comparison with measured mean water content (33%). K-θ curve for beach sand fraction of copper mill tailings from Lewis (1986).

for these copper tailings (Lewis, 1986). At a $\overline{\theta}_V$ of 33%, a K(θ) of 1.00E-04 cm/sec results, which is well within an order of magnitude of the 6.87E-05 cm/sec flux used in the experiment. Also, the K- θ curve linked the 6.87E-05 cm/sec flux used in this experiment to a 30.5% water content. The mean water content of 33% actually measured from column samples was quite close to the 30.5% water content determined from the K- θ curve. The K- θ curve yielded a good approximation of the hydraulic conductivity or flux as well as the water contents used in this experiment.

Unsaturated leaching. Figures 38a and 39b show the measured electrical conductivity (EC) and pH values (listed in Appendix 0) obtained during the unsaturated leaching of the column, prior to introduction of the tracer. Due to high initial concentrations of ions in the effluent as indicated by the high relative EC, the tracer was not introduced until decreased EC values of approximately 350 /mhos were demonstrated. This reduced chemical reactions between the tracer with the soil-water, such as complexation.

Solute-transport. From the results of the solute-transport experiment, BTC's were obtained for each sampling position along the column. The mass balance of each BTC was analyzed, seepage velocity comparisons were made, and the transport parameters were determined and analyzed. Comparisons of the dispersivities determined from the long column experiments were then examined in relation to transport distance. They were also compared to

Figure 38. Electrical conductivity (a) and pH (b) as a function of pore volumes, during unsaturated leaching.

saturated long-column dispersivity results, unsaturated short-column dispersivity results, and to dispersivity results from unsaturated solute-transport experiments found in the literature.

Curves of relative concentration versus pore volume, time, and effluent volume at each sampling position along the column (63.0 cm, 126.0 cm, 252 cm, and 330.0 cm) are shown in Figures 39, 40, and 41, and the associated data is tabulated in Appendix P. Pore volumes were calculated as in equation (11), using the volumetric flux of 0.85 ml/min and the overall mean volumetric water content of 33% for each depth. The 330.0 cm BTC is effluent discharged from the bottom of the column, through the porous plate. The other three BTC's were obtained from porous cup sampler extraction system.

Corrections for complexation of the bromide ion, which interfered with measurements for the previous short columns, were not conducted for this experiment. For the long-column experiment, the bromide concentrations for the 63, 126 and 252 cm depths reached 100% of the input concentration, and corrections were therefore not necessary. The long-column experiment involved a long interval of leaching before introduction of the bromide tracer, and low concentrations of metal cations in the leachate prevented complexation with the bromide ions. The diffusion and short-column experiments, however, were conducted with little to no prior leaching. Thus metal ion concentrations in the leachate were sufficiently high to result in complexation of the bromide with the metal ions.

A mass balance was calculated for each BTC, by comparing the

Relative concentration versus pore volume of sampling depth, at each sampling position. Figure 39.

Relative concentration versus time, at each sampling position. Figure 40.

Relative concentration versus volume of effluent, at each sampling position. Figure 41.

integrated area under the BTC to the calculated area of 100% bromide mass retrieval. Thus, if all mass was conserved

$$A_{i} / A_{c} = 1.0$$
 (35)

where A_i is the integrated area under the BTC and A_c is the area calculated for 100% bromide mass return. Mass was conserved at the 63.0 cm, 126.0 cm, and 252.0 cm depths, but not in the effluent BTC at 330.0 cm (See Table 10).

The mass balance calculation reveals that only 94% of the bromide was discharged from the column at the effluent sampling point. As noted in the previous procedural section, water ponded on the porous plate at the base of the column, when the efficiency of the vacuum pump declined. Bromide solution leaking from an opening close to the bottom of the column, resulted in the mass return of only 94%. The zone of saturation which developed at the base of the column also created a mixing reservoir for concentrations of different times. For this reason, the bromide concentration values obtained from this curve should be viewed with caution.

TABLE 10. Mass balance of bromide, for each sampling depth.

Depth (cm)	% Mass Bromide Conserved
63.0	106
126.0	104
252.0	114
330.0	94

A comparison of pore-water velocities (q/θ) obtained from the movement of the bromide front with the experimental pore-water velocity, may indicate the extent to which the bromide traced the movement of water through the system. Average pore-water velocity is calculated from:

$$v = L/t \tag{36}$$

where L is the distance from the tracer input to the sampling point, and t is the time at which $\text{C/C}_{\text{O}} = 0.50$. The pore-water velocity of the bromide front was obtained for each sampling depth and listed in Table 11.

The pore-water velocities are reasonably consistent for the 126, 252, and 330 cm depths, but the shallowest depth of 63 cm exhibits the lowest velocity. This sampler was nearest the tracer input source and consequently may have been affected by pumping variability and by periods of pump shut-off, such as when volumetric pumping rates were measured. The deeper sampling depths, in contrast, may have been sufficiently distal from the source to dampen this input variability.

TABLE	11.	Pore-water velocities, demovement, and $\theta = 33$ %.	etermined	from	tracer

DEPTH (cm)	TIME (min) $@ C/C_{2} = 0.50$	V (cm/min)
63	9577.4	6.58E-03
126	12394.4	1.02E-02
252	22535.2	1.12E-02
330	27887.3	1.18E-02

The pore-water velocities of the bromide front were compared to the experimental pore-water velocity, which was calculated by dividing the input Darcian velocity (4.12E-03 cm/min) by the average water content of 33%, yielding a pore-water velocity of The pore-water velocities for the tracer front 1.25E-02 cm/min. (at each sampling depth) were only 6 to 18% lower than the experimental pore-water velocity of 1.25E-02 cm/min. The difference in velocities indicated the rate of tracer movement was slower than the rate of water movement. An inaccurate assumption of the volumetric water content during the tracer experiment could also cause a difference in pore-water velocities, but could not account for the full difference. A water content of 41% would be required to yield an experimental pore-water velocity in agreement with the averaged tracer-front velocity of 9.95E-03 cm/min. Since the porosity of the tailings was approximately 40%, a water content of 41% would have indicated a degree of saturation in excess of that observed throughout the column.

The input system may have been effective in lowering the pore-water velocity of the tracer front. The tracer was introduced at nine discrete points on the upper boundary of the column. Initially, separate tracer fronts moved down through the column, each emanating from individual injection points. At some point in the flow path these individual tracer fronts would merge, but an irregular tracer concentration front would still be present, in which zones of unequal concentration would exist radially, at the same depth. As the tracer solution moved down through the column and entered the porous cup, it became a

mixture of the higher and lower concentrations found at that depth, due to the irregularity of the front. Moreover, soilwater entered the cup from 360°. The solution below the cup, which was at a lesser concentration, lowered the overall concentration of the sample as it was drawn into the porous cup.

As transport continued, it might be expected that diffusion would smooth concentration gradients, create a more regular front, and yield tracer-front velocities closer to the experimental pore-water velocity. As seen in Table 11, the pore-water velocities of the tracer front did increase with depth and subsequently yielded values in better agreement with the experimental pore-water velocity.

The sustained vacuum used to extract the soil-water solution did not appear to be related to the lower pore-water velocity of the tracer front. If the induced suction had interrupted the flow field, decreased water contents or pressure-heads would have been observed at the time of sampling. However, as described in the flow field section of this paper, there was no evident correlation between pressure-heads (Figure 34) and sampling times or frequencies.

The curve-fitting program CFITM, as described in the short-column analysis section (p. 57), was used for the long-column analysis to determine the transport parameters. Curve-fitted BTC's, optimized for the column Peclet number, P_C (equation 18), dimensionless pulse length, T' (equation 27) and retardation factor, R (equation 5) are shown in Figures 42, 43, 44, and 45 for each column depth. Table 12 lists the parameters that were

Observed data and CFITM curve fit for 63 cm depth. Figure 42.

Figure 43. Observed data and CFITM curve fit for 126 cm depth.

Figure 44. Observed data and CFITM curve fit for 252 cm depth.

Observed data and CFITM curve fit for 330 cm depth (effluent). Figure 45.

TABLE 12. Parameters determined from CFITM analysis for column Peclet number (P_C), retardation factor (R) and dimensionless pulse length (T').

	Depth (cm)	P	R	T '
	63.0	20.49	1.26	$\overline{4.8}5$
-	126.0	30.89	1.40	2.25
	252.0	214.96	1.14	1.21
	330.0	48.20	1.13	0.80

obtained from the curve-fit, for each depth. The trend in T', which decreased with depth, is merely a function of the constant volume of the tracer pulse divided by an increasing depth. The computer outputs are listed in Appendix Q.

The fitted curves followed the general trend of the data, but appeared earlier than the observed data at each depth. The analytical, CFITM curves fit the BTC's better for the 63 and 126 cm depths than for the 252 and 330 cm depths.

There are several problems in the interpretation of the outflow concentration data. The mass balance of 94% for the outflow data (as calculated in a previous section) indicates the loss of tracer, which may have occurred when water and tracer leaked through the hole at the bottom of the column. However, CFITM assumes reversible chemical reactions in which the irreversible loss of tracer does not occur. Consequently, CFITM cannot reliably describe the results for the 330 cm effluent data. In addition, the saturated conditions which developed at the very

bottom of the column created a reservoir for mixing concentrations from different times. The large change in saturation (from 33% to 40%) also violated the assumption of uniform water contents needed for the CFITM analysis. For these reasons, the effluent data was not considered in the retardation factor or dispersivity analysis.

For the unsaturated, long-column experiment, an unexpected shift to the right is exhibited in each BTC for each sampling point. An ideal, conservative tracer reaches a relative concentration of 50% when one pore volume of water in the column is displaced, and yields a retardation factor of 1.0. For these experimental results (Table 12), all retardation factors, R, are greater than 1.0. The value of R may be influenced by several factors.

Adsorption can produce a R greater than 1. However, adsorption was not observed in the previous short-column experiment using bromide as a tracer in the copper mill tailings. In addition, a propogation of delayed tracer arrival with depth is not seen in the BTC's, as would be expected with a R greater than 1 due to adsorption. Figure 46 illustrates this effect. Using identical hydrodynamic dispersion coefficients and retardation factors (0.07 cm²/min and 1.26, respectively), the BTC's in Figure 46 were generated for the 63, 126, 252, and 330 cm depths. It can be seen that the tracer arrival occurs at a greater pore volume for each progressive depth from 63 to 330 cm. The BTC's observed in the long-column solute-transport experiment (Figure 39) do not exhibit that propogation of delayed

Analytical results showing changes in BTC's with depth, for a constant retardation factor. Figure 46.

tracer arrival and thus do not indicate adsorption.

The point injection of the input system, as discussed earlier in this paper, may have contributed to the delayed arrival of the tracer and the retardation of the BTC's. An irregular tracer front, as may be the case with the point injection system, could allow lower concentrations to be measured. A lowered tracer concentration for a particular pore volume would have resulted, and shifted the curve to the right.

The use of ceramic porous cups for soil-water extraction may also be a critical factor in the retardation factors results. Some soil-water is also held in the pores of the porous cups and is extracted with the sample when the vacuum is applied. Thus, the sample that is extracted does not completely represent the soil-water at that time, but rather the soil-water from two different sampling times. This mixture would occur each time sampling was initiated, and the observed tracer concentrations would be lower than the in-situ tracer concentrations. The lower concentrations would increase the retardation factor by shifting the BTC to the right of the BTC for which the retardation factor was one.

In comparison to flow and solute-transport in saturated media, the BTC for unsaturated conditions are commonly shifted to the left. For example, Nielsen and Biggar (1961), compared BTC's for unsaturated flow in 30 cm long columns at several pore velocities. A translation of the BTC to the left for slower flow velocities was observed in each case. This was in part attributed to a stagnant water phase, which did not participate in the

advective flow of water or contribute to the effluent volume measured, even though it represented a significant fraction of the pore volumes. The results of Gaudet et al. (1977), Coats and Smith (1964), and Krupp and Elrick (1968) are similar.

However, a shift of the unsaturated BTC to the left of the saturated BTC is not characteristic of these copper mill tailings, at the water contents investigated. The saturated long-column experiment with mill tailings (Lewis, 1986), exhibited a BTC which reached the 50% concentration at one pore volume. The BTC in the unsaturated (0 of 32%), short-column experiment was not displaced the left of the saturated BTC, although the first appearance of tracer in the unsaturated case was less than 0.1 pore volume earlier than the saturated flow case. Based on previous experiments at water contents similar to those of the long column, the shift of the BTC to the left and early tracer arrival may not be expected in long-column experiments in the copper tailings.

Table 13 lists the hydrodynamic dispersion coefficients and dispersivities calculated from the fitted transport parameters. The hydrodynamic dispersion coefficients, D', were calculated from the column Peclet number (equation 18), and the dispersivities, $\mathbf{a_L}$, were calculated assuming molecular diffusion was not significant (equation 6). The dispersivities and dispersion coefficients did not demonstrate a clear trend with depth, nor did the dispersivities reach an asymptotic value.

In his laboratory experiment, using a tracer for saturated, radial flow, Lau et al. (1959) observed decreasing dispersivity

TABLE	13.	Hydrodynamic dispersion coefficients (D') and
		dispersivities (a _L) determined for each sampling
		depth.

Depth (cm)	D' (cm ₂ /min)	a_(cm)
63.0	0.04	3.1
126.0	0.05	4.1
252.0	0.01	1.2

values with increasing transport distance. He attributed the decrease to his sampling technique, which involved withdrawing pore-water solution with a hypodermic syringe at several depths. However, in the long-column experiment under investigation in this paper, the application of suction for sampling purposes did not appear to strongly influence the flow field. Even when sampling frequency was highest, pressure-heads were not responsive to the applied vacuum (Figure 34).

Gupta et al. (1973) determined hydrodynimic dispersion coefficients for 20 solute-transport experiments under unsaturated flow conditions, through a 54 cm column packed with glass beads. Uniform water contents were established for each experiment and these water contents ranged from 0.370 to 0.201. In situ tracer concentrations were measured with silver-silver chloride electrodes at 10 positions along the column length, and it was observed that the dispersion coefficients increased with

distance of transport.

Three factors were suggested by Gupta et al. (1973) which may have contributed to the observed trend in hydrodynamic dispersion coefficients with depth. The first was a variation in moisture content with depth, perhaps due to a non-uniform pressure head distribution within the porous medium. The second factor was the validity of Darcy's Law for the experiment, and the third factor was erroneous water content measurements.

Darcy's Law was valid for the pore-water velocity used in long-column, unsaturated experiment. the The measured water contents were certainly subject to experimental error such as sample compaction and water redistribution within the column during sampling. However, the values and trends observed in the water content data were well supported by the pressure-head data (see flow field section). The unsaturated flow conditions may have created zones of stagnant water which did not contribute to the advective flow and would have resulted in an effective water content which was lower than the measured water Although the presence of stagnant zones would have increased the hydrodynamic dispersion coefficients by increasing the seepage velocity and creating sinks for diffusion, they could not have accounted for the observed scatter in dispersivities with depth.

The non-uniformity of water content values in the column may have contributed to the variation in dispersivity with

depth. Wilson and Gelhar (1981) suggested:

"nonuniform moisture content in space results in a stretching or contracting of a solute pulse as it propogates through the media. This effect is independent of the presence of mixing phenomenon, such as hydrodynamic dispersion."

They showed (numerically) that increasing moisture content in the direction of flow caused a contraction of the pulse, and a stretching of the pulse resulted when moisture contents decreased. The pulse contraction was measured as a smaller hydrodynamic dispersion coefficient, and the stretching of the pulse as a larger dispersion coefficient.

The dispersivities from the long-column solute-transport experiment appear to be related to the changing water contents within the column profile. In Figure 35, the water contents decreased with depth to at least 180 cm, and then increased again towards the saturated base of the column. Pressure-head data (Figure 34) exhibited a similar trend within the column profile. The lowest dispersivity value of 1.2 cm was determined at the 252 cm depth and was within the portion of the profile which contained the lowest water content and pressure-head values. The highest dispersivity value of 4.1 cm was determined at the 126 cm depth, which correlated with the higher water content and pressure-head portions of the column profile.

In contrast to the results of Wilson and Gelhar (1981), the dispersion coefficient for the mositure regime of the long-column experiment decreased with decreasing water content. However, as suggested by Wilson and Gelhar (1981) and Gupta et al. (1973),

these long-column results did indicate that water content was related to the hydrodynamic dispersion coefficient and dispersivity. The variation of water content within the column profile appeared to be the paramount factor in the variation of dispersivity with column depth.

A mean longitudinal dispersivity (a₁) of 2.8 cm was calculated by averaging the dispersivities at the 63, 126, and 252 cm depths. This mean dispersivity was compared 1) to the dispersivity from a saturated long-column experiment, 2) to the dispersivity of an unsaturated short-column experiment, and 3) to dispersivities from unsaturated solute-transport experiments found in the literature.

The saturated long-column experiment by Lewis (1986) used similar copper mill tailings (see Appendix H), and the dispersivity in the 330 cm long column was 2.2 cm. The unsaturated, long-column dispersivity of 2.8 cm was only slightly larger than dispersivity obtained the saturated for the same medium. Dispersivities from unsaturated, solute-transport laboratory experiments in the literature suggest a trend of increasing dispersivity with decreasing water content (Hildebrand Himmelbaur, 1977; Yule and Gardner, 1978; Kirda et al., 1973; Nielsen and Biggar, 1961, 1962; Bresler and Laufer, 1974; Gupta et al., 1973; Krupp and Elrick, 1978; Gaudet et al., 1975. However, this same trend for the copper tailings cannot be concluded on the basis of this single comparison alone. In fact, these experimental results indicate that for a field-scale column and unsaturated flow conditions, the resulting dispersivity using

the classical hydrodynamic dispersion equation can be very similar to that of the saturated case.

A comparison of dispersivities was made between the unsaturated, short-column experiment and the unsaturated, long-column experiment. The short-column experiment was run at a water content similar to the long-column experiment with a water content of 33% for the long column, and a θ of 32% for the short column. The dispersivity obtained from the short-column experiment, using a bromide tracer and distilled water eluent, was 0.47 cm. The mean dispersivity of 2.8 cm from the long-column experiment was much larger, but by less than an order of magnitude.

The different packing processes involved in the column experiments may have contributed to the larger dispersivity for the long column. The short column was packed by vibrating the column as the tailings were introduced to obtain the specified density. In contrast, the long column was packed in 5 cm increments, and each lift should have been homogeneous and identical to all other lifts. However, stratification appeared to be inherent in this packing process. If the stratification caused heterogeneity of a larger-scale than microscopic pore-size variations, a larger dispersivity for the long column than for the small column may have been the result.

The result of the large-scale solute-transport experiment conducted under unsaturated flow conditions was compared to other experiments conducted at varying vertical scales, water contents, and with different porous mediums (Table 8, Figure 47). Three

Figure 47. Dispersivity from long-column, unsaturated, solutetransport experiment compared with dispersivities determined from literature cited in Table 8.

of the field experiments were conducted at smaller vertical scales than the long-column experiment (Van De Pol, et al., 1977; Biggar and Nielsen, 1976; Kies, 1981) but yielded higher dispersivities than the long-column laboratory experiment. The field experiments were conducted in-situ in heterogeneous field soils, with naturally occurring stratification and hydraulic conductivity differences. The heterogeneity of the field medium appeared to influence the dispersivity to a greater degree than the scale of the experiment.

When compared to the cited laboratory experiments (Table 8) conducted with homogeneous media, the long-column, unsaturated laboratory experiment yielded the largest dispersivity. The difference in dispersivities between the column experiments in Table 8 and the long-column experiment was concluded to be a function of the heterogeneity of the long-column porous medium. The stratification inherent in the long-column packing procedure (packed in lifts) resulted in a heterogeneity and dispersivity of a larger scale than from the more homogeneously-packed small columns.

The 'scale-dependence' of dispersivity appears to be closely related to the scale of the heterogeneities present. Dispersion in the small laboratory column with a homogeneous medium is due to fluid velocity variations at the pore scale whereas dispersion at a field scale is predominantly due to velocity variations caused by stratification and hydraulic conductivity differences. As shown by this long-column experiment, the scale up of an experiment an order of magnitude from a

small column (30 cm in length) to a long column (over 300 cm in length) involved introducing heterogeneities caused by packing differences, although identical porous media were used. Increasing the column length ten times resulted in a increase in the dispersivity by six times amd the difference was concluded to be most strongly influenced by the heterogenieties within the long column.

V. SUMMARY AND CONCLUSIONS

Movement of solutes which originate and travel through mill tailing impoundments pose a potential contaminant threat to both surface and groundwater systems. Even in a semi-arid climate, net downward movement of infiltrating precipitation can occur (Lewis, 1984). Unsaturated conditions commonly exist in abandoned mill tailing impoundments in such climates, which may complicate transport prediction. In this investigation a bromide tracer was used to track solute movement through an unsaturated, copper mill-tailings medium, to obtain a transport parameter, dispersivity.

Two 30 cm laboratory columns, packed with copper mill tailings were used for the solute-transport investigation under unsaturated conditions. A dispersivity unique to that medium and water content was thus obtained, at a small scale.

A larger scale (330 cm) solute transport investigation was then undertaken, again with copper mill tailings as a porous medium and under unsaturated conditions. From this experiment a field-scale dispersivity was obtained for the mill tailings, specific to the water content of the experimental run; and the dependence of dispersivity on the scale of the experiment was also investigated.

From the above experiments, the following conclusions are drawn:

1.) Bromide is a good tracer for the copper mill tailings.

Corrections for complexation must be made when high

- metal ionic concentrations exist in the soil solution.
- 2.) For a large-scale, unsaturated experiment, the dispersivity for 83% of saturation can be similar to the saturated dispersivity, using the classical advectiondispersion equation.
- 3.) The mean dispersivity for the the long-column experiment under unsaturated flow conditions (3.1 cm) was slightly larger than that for the saturated case (2.2 cm). However, due to the lack of data at other water contents, no general trend was recognized for the relationship between saturated and unsaturated dispersivities within the same medium.
- 4.) The results of the field-scale column experiment under unsaturated flow conditions suggest dispersivity is a function of water content.
- 5.) Stratification of the porous medium (as in packing)
 may cause heterogeneity of a larger scale and significance than the microscopic pore-scale variations,
 leading to a larger dispersivity value.
- 6.) For a homogeneous medium, dispersivity does not always increase with time or distance traveled, after the initial developmental period is over.

VI. RECOMMENDATIONS FOR FUTURE WORK

In laboratory columns, undisturbed porous media have been found to yield higher dispersivity values than disturbed porous media (Cassel, 1974). It would be of value to conduct an in-situ solute-transport experiment at the mill tailings impoundment. The dispersivity value thus obtained would encompass heterogeneities not dealt with in the laboratory, and be useful for predictive modeling purposes.

The mill tailings have proved to be a sensitive medium in which to conduct solute-transport experiments, due to the chemical reactivity of the tailings. A less reactive medium, such as the Sevilleta sand which has been well-characterized (McCord, 1986; Byers and Stephens, 1983) would be a more stable, predictable, and convenient medium with which to conduct further experiments designed to examine solute-transport in unsaturated soils. Further long-column experiments, using a less reactive medium, to investigate the relationship between water content and dispersivity and the effect of heterogeneity of the porous medium on dispersivity would augment the sparse research of this nature under unsaturated flow conditions.

Some procedural and equipment changes which would improve the reliability and efficiency of such experiments, include:

1.) the use of in-situ tracer sampling equipment to preclude the sampling problems encountered in this investigation, 2.) the use of a bottom porous plate with a higher hydraulic conductivity than the one used in this investigation, in an effort to prevent

saturation at the exit boundary, and 3.) the use of a gamma-ray instrument for in-situ measurement of water content.

REFERENCES

- Anderson, M.P., 1983. Movement of contaminants of groundwater, Groundwater transport: Advection and dispersion, in Groundwater Contamination: Product of a Technological Society.

 National Research Council, Geophysical Study, National Academy Press, Washington, D.C., 37-45.
- Baer, J., 1979. <u>Hydraulics of Groundwater</u>. McGraw-Hill, Inc., New York, NY, 569pp.
- Biggar, J.W., and Nielsen, D.R., 1962. Miscible displacement: II. Behavior of tracers. Soil Science Society of America Proceedings, 26, 125-128.
- Biggar, J.W., and Nielsen, D.R., 1976. Spatial variability of the leaching characteristics of a field soil. Water Resources Research, 12, 78-84.
- Bresler, E., and Dagan, G., 1979. Solute dispersion in unsaturated heterogeneous soil at field scale: II. Applications. Soil Science Society of America Journal, 43, 467-472.
- Bresler, E., and Laufer, A., 1974. Anion exclusion and coupling effects in nonsteady transport through unsaturated soils: II. Laboratory and numerical experiments. Soil Science Society of America Proceedings, 38(2), 213-222.
- Byers, E. and Stephens, D.B., 1983. Statistical and stochastic analyses of hydraulic conductivity and particle size in a fluvial sand, Soil Science Society of America Proc., 47(6), 1072-1080.
- Coats, K.H., and Smith, B.D., 1964. Dead-end pore volume and dispersion in porous media, Society of Petroleum Engineers Journal, 4, 73-84.
- Dagan, G., 1982. Stochastic modeling of ground water by unconditional and conditional probabilities, 2. The solute transport. Water Resources Research, 18, 835-848.
- Davis, S.N., Thompson, G.M., Bentley, H.W., and Stiles, G., 1980. Ground-water tracers - a short review. Ground Water, 18(1), 14-23.
- De Smedt, F., and Wierenga, P.J., 1979. Mass transfer in porous media with immobile water. Journal of Hydrology, 41, 59-67.
- De Smedt, F., and Wierenga, P.J., 1984. Solute transfer through columns of glass beads. Water Resources Research, 20, 225-232.

- Elrick, D.E., Erh, K.T., and Krupp, H.K., 1966. Applications of miscible displacement techniques to soils. Water Resources Research, 2, 717-724.
- Gaudet, J.P., Jegat, H., Vachaud, G., and Wierenga, P.J., 1977. Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand. Soil Science Society of America Journal, 41(4), 665-671.
- Gelhar, L.W., and Axness, C.L., 1981. Stochastic analysis of macro-dispersion in three-dimensionally heterogeneous aquifers, Geophysical Research Center, Hydrology Research Program, Rep. No. H8, NMIMT, Socorro, NM, 140pp.
- Gelhar, L.W., Gutjahr, A.L., and Naff, R.L., 1979. Stochastic analysis of macrodispersion in a stratified aquifer. Water Resources Research, 15, 1387-1397.
- Gelhar, L.W., Mantoglou, A., Welty, C., and Rehfeldt, K.R., 1985. A review of field-scale physical solute transport processes in saturated and unsaturated porous media. Electric Power Research, Institute Report EA-4190, Palo Alto, CA.
- Gupta, R.K., Millington, R.J., and Klute, A., 1973. Hydrodynamic dispersion in unsaturated porous media II. The stagnant zone concept and the dispersion coefficient. Journal of Indian Society of Soil Science, 21(2), 121-128.
- Hildebrand, M.A., and Himmelbau, D.M., 1977. Transport of nitrate ion in unsteady unsaturated flow in porous media, A.I.Ch. Engineering Journal, 23, 326-335.
- Hillel, D., 1980. <u>Fundamentals of Soil Physics</u>. Academic Press, New York, 413pp.
- Kies, B., 1982. Solute transport in unsaturated field soil and in groundwater. Ph.D. dissertation, Department of Agronomy, New Mexico State University, Las Cruces, New Mexico.
- Kirda, C., Nielsen, D.R., and Biggar, J.W., 1973. Simultaneous transport of chloride and water during infiltration. Soil Science Society of America Proceedings, 37, 339-345.
- Klute, A., and Heermann, D.F., 1978. Water movement in uranium mill tailings profiles. U.S. Environmental Protection Agency Report ORP/LU788: National Technical Information Service Aquisition PB-291688. 98pp.
- Krupp, H.K., and Elrick, D.E., 1968. Miscible displacement in an unsaturated glass bead medium, Water Resources Research, 4, 809-815.

- Lapidus, L., and Amundson, N.R., 1952. Mathematics of adsorption in beds IV. The effect of longitudinal diffusion in ion-exchange chromatographic columns. J. Physical Chemistry, 56, 984-988.
- Larson, M.B., 1984. A comparison of empirical/theoretical, laboratory and field techniques in evaluating unsaturated hydraulic properties of mill tailings. Unpublished Independent Study Paper, NMIMT, Socorro, NM, 183pp.
- Lau, L.K., Kaufmann, W.J., and Todd, D.K., 1959. Dispersion of a water tracer in radial laminar flow through homogeneous porous media. Hydraulic Laboratory and Sanitary Engineering Research Laboratory, Progress Report, Canal Seepage, Univ. of California, Berkeley, 78pp.
- Lewis, G., 1986. An analysis of infiltration and solute transport through abandoned mill tailings profiles. Unpublished Independent Study Paper, NMIMT, Socorro, MN, 262pp.
- Lindstrom, F.T., Hague, R., Freed, V.H., and Boersma, L., 1967. Theory on the movement of some herbicides in soils: linear diffusion and convection of chemicals in soils. Environ. Sci. Technol., 1, 561-565.
- Lloyd, J.W., and Heathcote, J.A., 1985. <u>Natural Inorganic Hydro-geochemistry in Relation to Groundwater</u>. Oxford University Press, New York, 296pp.
- Mansell, R.S., Selim, H.M., Kanchanusut, P, Davidson, J.M., and Fiskell, J.G.A., 1977. Experimental and simulated transport of phosphorous through sandy soils. Water Resources Research, 13, 189-194.
- McCord, J.T., 1986. Topographic controls on ground-water recharge. Unpublished Independent Study Paper, NMIMT, Socorro, NM, 89pp.
- Mercado, A., 1967. The spreading pattern of injected water in a permeability stratified aquifer. Proceedings of Int. Assoc. Science Hydrology Symposium, Publ. No. 72, 23-26, Haifa.
- Nielsen, D.R., and Biggar, J.W., 1961. Miscible displacement in soils: I. Experimental information, 25, 1-4.
- Nielsen, D.R., and Biggar, J.W., 1962. Miscible displacement: III. Theoretical considerations. Soil Science Society Proceedings, 27, 216-221.
- Parker, J.C., and van Genuchten, M.Th., 1984. Determining transport parameters from laboratory and field tracer experiments. Virginia Agricultural Experiment Station, Bulletin 84-3. 96p.

- Pickens, J.F., and Grisak, G.E., 1981. Scale-dependent dispersion in a stratified aquifer, Water Resources Research, 17, 1191-1212.
- Sauty, J.P., 1980. An analysis of hydrodispersive transfer in aquifers. Water Resources Research, 16(1), 145-158.
- Saxena, S.K., Boersma, L, Lindstrom, F.T., and Young, J.L., 1974. Effect of pore-size on diffusion coefficients in porous media. Soil Acience, 117, 80-86.
- Schwartz, F.W., 1977. Macroscopic dispersion in porous media: the controlling factors. Water Resources Research, 13(4), 743-752.
- Smith, L., and Schwartz, F.W., 1980. Mass transport, 1, A stochastic analysis of macroscopic dispersion, Water Resources Research, 16, 303-313.
- Smith, L., and Schwartz, F.W., 1981. Mass transport, 3, Role of hydraulic conductivity data in prediction. Water Resources Research, 17, 1463-1479.
- Sudicky, E.A., 1983. An advection-diffusion theory of contaminant transport for stratified porous media. Ph. D. dissertation, Univ. of Waterloo, Waterloo, Ontario, Canada. 203pp.
- Van de Pol, R.M., Wierenga, P.J., and Nielsen, D.R., 1977. Solute movement in a field soil. Soil Science Society of America Journal, 41, 10-13.
- van Genuchten, M.Th., 1980. Determining transport parameters from solute displacement experiments. Research Report 118, USDA-SEA Salinity Lab, Riverside, CA. 37pp.
- van Genuchten, M.Th., and Parker, J.C., 1984. Boundary conditions for displacement experiments through short laboratory soil columns. Soil Science Society of America Journal, 48, 703-708.
- van Genuchten, M.Th., and Wierenga, P.J., 1977. Mass transfer studies in sorbing porous media, 2, Experimental evaluation with tritium (³H₂O). Soil Science Society of America Journal, 41, 272-278.
- van Genuchten, M.Th., and Wierenga, P.J., 1986. Determination of solute dispersion coefficients and retardation factors. In Press.
- van Genuchten, M.Th., Wierenga, P.J., and O'Connor, G.A., 1977.
 Mass transfer studies in sorbing porous media, 3, Experimental evaluation with 2,4,5-T. Soil Science Society of America Proceedings, 41, 278-285.

- Warrick, A.W., and Amoozegar-Fard A., 1977. Soil water regimes near porous cup water samplers. Water Resources Research, 13(1), 203-207.
- Warrick, A.W., Biggar, J.W., and Nielsen, D.R., 1971. Simultaneous solute and water transfer for an unsaturated soil. Water Resources Research, 7(5), 1216-1225.
- Wilson, J.L., 1985. Class handout. HYD 565, Groundwater Contamination Class, NMIMT, Socorro, NM.
- Wilson, J.L., and Gelhar, L.W., 1974. Dispersive mixing in a partially saturated porous medium. Tech. Report 191, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Mass. Institute of Technology, Cambridge, Mass.
- Wilson, J.L., and Gelhar, L.W., 1981. Analysis of longitudinal dispersion in unsaturated flow, 1, The analytical method. Water Resources Research, 17, 122-130.
- Yule, D.F., and Gardner, W.R., 1978. Longitudinal and transverse dispersion coefficients in unsaturated Plainfield sand. Water Resources Research, 14, 582-588.

APPENDIX A.

ADSORPTION

Ion exchange is the replacement of one ion for another at the solid-solution interface. Adsorption refers to the process of accepting an ion at that surface and does not refer to the replacement of one ion for another. Adsorption and ion exchange describe surface phenomena. Porous media such as clays are often involved because of their large surface area to mass ratios. The specific area of clay minerals is on the order of 10^3 m²/g in contrast to a clean sand, which can have a specific area of 10^{-3} m²/g (Lloyd and Heathcote, 1985). When the effective diameter of a particle becomes small enough (as with most clays), surface effects become significant.

Clay minerals develop surface charges as a result of ionic substitutions within the crystal lattice (isomorphous replacement), and the unsatisfied valencies that exist on the silicate tetrahedron surfaces. The isomorphous replacement (such as Al³⁺ for Si⁴⁺) results in a permanent negative charge to be satisfied. The charges that result from unsatisfied valencies at the surface are subject to change, depending on the PH of the solution. In alkaline solutions, the hydrogen atom (H+) tends to remain in solution, yielding a negative charge at the solid surface. In an acid solution, the hydrogen atoms move to the oxide sites, resulting in positive charges at the surface. The charge will be zero, at some intermediate pH, and this is called the zero point of charge. Each clay type may have a different zero point of charge, and can act differently at an equaivalent

pH.

Characteristics such as ionic radius and valence influence ionic preference for adsorption and the tightness of the molecular bonding that occurs. Generally, ions with a smaller hydrated radius and larger valence are adsorbed preferentially and held more tightly to the surface. However, other considerations such as ionic concentrations within the solution and the amount of adsorbed ions on the soil surface prior to introduction of the solution will have an effect. As a means of quantification, the cation exchange/adsorption capacity (CEC) can be measured for a specific material under chemically neutral conditions. This is a measure of the total number of cation charges available for exchange or adsorption.

As a means of quantification, the cation exchange/adsorption capacity (CEC) can be measured for a specific material, under chemically neutral conditions. This is a measure of the total number of cation charges available for exchange/adsorption.

Appendix B.

Derivation of the Advection-Dispersion Equation

The advection-dispersion equation is used to describe the solute-transport process in a porous medium. The derivation of the equation is based on the law of conservation of mass and assumes a homogeneous and isotropic porous medium. Steady-state, uniform flow conditions exist and Darcy's law applies. Incompressibility of the medium and fluid is also assumed and there are no sources or sinks.

Figure 1 represents an elemental volume of the porous medium, with dimensions Δx , Δy , and Δz . The pore-water velocity, v, is used to describe the advective rate of transport of the solute. The Darcian velocity through a surface perpendicular to the flow direction is q, or θv . Microscopic velocity varations, which deviate from advection, are represented by v*, and the corresponding Darcian velocity is $\theta v*$. The concentration of solute, C, is the mass per unit volume of solution and the mass flux is the mass of solute crossing a unit cross-sectional area per unit time. The advective and dispersive mass fluxes, for the x direction, are

advective mass flux =
$$\theta Cv$$
 (B1)

dispersive mass flux =
$$\theta Cv*$$
 (B2)

As presented in an earlier section, the dispersive mass flux due to mechanical dispersion was defined analogous to Fick's law,

Figure 48. Mass balance in a cubic element.

such that

$$\mathbf{J}_{\mu}^{\mu} = -\Theta D_{\mu} \frac{\partial x}{\partial C} \tag{B3}$$

The rate of diffusion of a solute in a bulk medium,

$$J_d = -\Theta D^* \frac{\partial C}{\partial x} \tag{84}$$

can be added to the dispersive flux, to yield

$$J_h + J_d = -\Theta(D_h + D^*) \frac{\partial C}{\partial x}$$

$$J_h + J_d = -\Theta(D_x') \frac{\partial C}{\partial x}$$
(B5)

where D'_{X} is the summed hydrodynamic dispersion coefficient in the X direction of flow. Since the dispersive mass flux was previously defined by (82), it follows that

$$\Theta \subset V_x^* = -\Theta(D_x') \frac{\partial C}{\partial x} \tag{B6}$$

The total mass flux in the x direction, F_x , is the sum of the advective and dispersive fluxes:

$$F_{x} = \Theta(C V_{x} + C V_{x}^{*}) \tag{B7}$$

Substituting in for the dispersive flux,

$$F_{x} = \Theta(C V_{x} - D_{x}' \frac{\partial C}{\partial x})$$
 (B8)

The negative sign indicates the contaminant is moving towards the lower concentration zone. In a similar fashion, the dispersive fluxes for the y and z direction are

$$F_{y} = \Theta \left(CV_{y} - D_{y}' \frac{\partial C}{\partial y} \right) \tag{B9}$$

and

$$F_z = \Theta(CV_z - D_z' \frac{CC}{D_z})$$
 (B10)

The mass flux across surface A is $F(\Delta \times \Delta z)$. The exit flux, opposite surface A would equal the mass flux across A, plus any changes in mass flux as the solute moves through the elemental volume, $\frac{\partial F_{\gamma}}{\partial \gamma} \triangle \gamma \triangle x \triangle z$. A similar analysis is applied to obtain the net solute amount in the x direction, $\frac{\partial F_{x}}{\partial x} \triangle x \triangle y \triangle z$, and the z direction, $\frac{\partial F_{z}}{\partial z} \triangle z \triangle x \triangle y$. The total difference between the exit and entrance mass fluxes is then

$$\left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}\right) \triangle \times \triangle y \triangle z$$
 (811)

which represents the dissolved solute which accumulated in the elemental volume. Continuity requires that this amount equal the rate of mass change in the elemental volume,

$$-\theta \frac{\partial C}{\partial t} \triangle x \triangle y \triangle z \tag{B12}$$

The complete conservation of mass expression is

$$\frac{\partial F_{x}}{\partial x} + \frac{\partial F_{y}}{\partial y} + \frac{\partial F_{z}}{\partial z} = -\theta \frac{\partial C}{\partial t}$$
 (B13)

Substitution of (88), (89), and (810) into the conservation of mass expression, yields

$$\frac{\partial}{\partial x} \left[\Theta (A' - \Theta D') \frac{\partial}{\partial x} \right] + \frac{\partial}{\partial x} \left[\Theta (A' - \Theta D') \frac{\partial}{\partial x} \right] + \frac{\partial}{\partial x} \left[\Theta (A' - \Theta D') \frac{\partial}{\partial x} \right] = -\Theta \frac{\partial}{\partial x}$$
(BIA)

Water content is assumed uniform and can be taken out of the derivative, and with simplification,

$$\left[\frac{3x}{9}\left(D_{x}^{\prime}\frac{3x}{9C}\right) + \frac{3y}{9}\left(D_{x}^{\prime}\frac{3y}{9C}\right) + \frac{3z}{9}\left(D_{z}^{2}\frac{3z}{9C}\right)\right] - \left[\frac{3x}{9}\left(A^{2} + \frac{3y}{9}\left(A^{2} + \frac{3z}{9}\left(A^{2}\right)\right)\right] = \frac{3z}{9}$$
(B) (B) (B) (B) (B)

The homogeneous medium and steady-state conditions assumed inply v does not vary with space or time, D'_x , D'_y , and D'_z do not vary in space, and can be taken out of the derivative,

$$\left[D_{x}^{x}\frac{\partial^{2}x}{\partial_{z}^{c}}+D_{y}^{x}\frac{\partial^{2}x}{\partial_{z}^{c}}+D_{z}^{z}\frac{\partial^{2}x}{\partial_{z}^{c}}\right]-\left[V_{x}\frac{\partial^{2}x}{\partial_{z}^{c}}+V_{y}\frac{\partial^{2}x}{\partial_{z}^{c}}+V_{z}\frac{\partial^{2}x}{\partial_{z}^{c}}\right]=\frac{\partial^{2}x}{\partial_{z}^{c}}$$
(B16)

This is the advective-dispersive equation for three-dimensional flow, with the above assumptions of a honmogeneous, isostropic medium, steady-state flow and no sources or sinks. For the one-dimensional case, the equation becomes (Freeze and Cherry, 1979):

$$D_{x}^{x} \frac{3x}{3c} - \Lambda^{x} \frac{3x}{3c} = \frac{3x}{3c}$$

$$(814)$$

which is used to describe solute transport in one-dimensional laboratory experiments.

In the previous equation, the advection-dispersion equation contains no sources or sinks. Ion-exchange and subsequent BTC delay can be included in the advection-dispersion equation through the use of the retardation factor, in the following manner (Freeze and Cherry, 1979).

The rate at which the constituent is adsorbed is $\frac{\partial S}{\partial t}$, and the change in concentration in the fluid caused by adsorption or desorption is $\frac{P_b}{\theta} \frac{\partial S}{\partial t}$, where S is the mass of the chemical constituent adsorbed on the solid part of the porous medium per unit mass of solids. The amount of solute adsorbed by the medium is usually a function of the solute concentration in solution,

S = f(C), so that

$$\frac{3f}{92} = -\left[\frac{3c}{32}, \frac{2f}{3c}\right] \tag{(B18)}$$

$$\frac{P_b}{\Theta} \frac{\partial s}{\partial t} = -\left[\frac{P_b}{\Theta} \frac{\partial s}{\partial c}, \frac{\partial c}{\partial t}\right] \tag{819}$$

The right-hand side of equation (β 19) is included as a sink in the advection-dispersion equation,

$$D'\frac{\partial c}{\partial x^2} - V\frac{\partial c}{\partial x} - \left[\frac{P_0}{\Theta}\frac{\partial s}{\partial c}, \frac{\partial c}{\partial t}\right] = \frac{\partial c}{\partial t}$$
(B20)

Moving the adsorption term to the left-hand side, and simplifying

$$D'\frac{\partial^2 C}{\partial x^2} - V\frac{\partial C}{\partial x} = \frac{\partial C}{\partial t} \left[1 + \frac{P_0}{\Theta} \frac{\partial S}{\partial C} \right]$$
 (821)

Since $(1 + \frac{P_s}{\Theta} \frac{\partial S}{\partial C})$ equals the retardation equation,

$$D'\frac{\partial^2 C}{\partial x^2} - V\frac{\partial C}{\partial x} = R\frac{\partial C}{\partial x}$$
(B22)

where R is the retardation factor.

Appendix C. Experimental information for short-column solute-transport experiment.

Column I (distilled eluent):

Pulse duration, t'= 691 min
Length of column, L = 27.7 cm
Pore volume, T = 0.995
Volumetric water content, 0 = 0.33

Date	Time	Applied Suction (cm of water)	Suction (top) (cm_of_water)	Suction (bottom) (cm of water)
4-1	13:05		27.0	26.0
	14:40		32.0	29.0
4-2	7:50	A.,	18.0	30.0
	9:15		21.0	23.0
	10;30	51.0	23.0	36.0
	10:55	52.0	21.0	35.0
	11:35	51.0	23.0	34.0
	13:45	51.0	20.0	35.0
	16:40	50.0	23.0	25.0
	22:25	51.0	21.0	29.0
4-3	7:15	60.0	21.0	30.0
	10:28	48.0	23.0	28.0
	15:23	46.0	19.0	27.0
	16:53	47.0	21.0	29.0
4-4	7:40	45.0	19.0	27.0
	11:30	46.0	20.0	29.0

Column II Ca(NO₂)₃:

Pulse duration, t' = 691 min Length of column, L = 26.9 cm Pore volume = 1.04 Volumetric water content = 0.32

4-1	13:05		20.0	20.0
	14:40		18.0	23.0
4-2	9:15		10.0	21.0
	10:30	51.0	28.0	24.0
	10:55	52.0	23.0	22.0
	11:17	51.0	28.0	15.0
	12:35	51.0	28.0	24.0
	13:45	51.0	28.0	26.0
	16:40	50.0	24.0	20.0
	22:25	51.0	23.0	21.0
4-3	7:15	60.0	22.0	31.0
	10:28	48.0	20.0	29.0
	15:23	46.0	18.0	25.0
	16:53	47.0	20.0	28.0
4-4	7:40	43.0	15.0	23.0
	11:30	46.0	15.0	25.0

```
D - 156
Appendix D.
NON-LINEAR LEAST SOUARES ANALYSIS CFITM
C*
C*
                                                                    *
C*
                            WRITTEN BY
C*
C*
                       M. TH. VAN GENUCHTEN
C*
IMPLICIT REAL*8(A-H,O-Z)
       DIMENSION Y(130), X(130), F(130), R(130), DELZ(130,5), B(10), E(5),
       TH(10), P(5), PHI(5), Q(5), LSORT(130), TB(10), A(5,5), BI(10),
       TITLE(20),D(5,5),INDEX(5),ZAP(130)
       DATA STOPCR/0.0005/
       OPEN(UNIT=21,DEVICE='DSK',FILE='P3LC4.INP',ACCESS='SEQIN')
OPEN(UNIT=22,DEVICE='DSK',FILE='P3LC4.OUT',ACCESS='SEQOUT')
       OPEN(UNIT=44,FILE='OUT.GRF')
  READ NUMBER OF CASES
       READ (21,*) NC
       DO 120 NCASE=1,NC
       WRITE(22,1000)
  READ INPUT PARAMETERS
       READ(21,*) MODE, NDATA, MIT, NOB
       IF (MODE.EQ.O) THEN
       WRITE(22,1021)
       ELSE IF (MODE.EQ.1) THEN
       WRITE(22,1022)
       ELSE IF (MODE.EQ.2) THEN
       WRITE(22,1023)
       ELSE IF (MODE.EQ.3) THEN
       WRITE(22,1024)
       ELSE IF (MODE.EQ.4) THEN
       WRITE(22,1025)
       END IF
       READ(21,1001) TITLE
       WRITE(22,1002) TITLE
       IF (NDATA.EQ.0) GO TO 10
  READ COEFFICIENTS NAMES
       READ(21,1004) (BI(I), I=1,6)
  READ INITIAL ESTIMATES
       READ(21,*) (B(I), I=4,6)
  READ INDICES
       READ(21,*) (INDEX(I), I=1,3)
       WRITE(22, 1007)
```

```
DO 4 I=1,3
        J=2*I-1
        WRITE(22,1008) I,BI(J),BI(J+1),B(I+3)
4
        CONTINUE
   READ AND WRITE EXPERIMENTAL DATA
C
        DO 6 I=1,NOB
        READ(21,*) X(I), Y(I)
6
        CONTINUE
10
        WRITE(22,1009)
        DO 12 I=1,NOB
        WRITE(22,1010) I, X(I), Y(I)
12
        CONTINUE
        NP=0
        DO 14 I=4,6
        TB(I)=B(I)
        IF(INDEX(I-3).EQ.0) GO TO 14
        NP=NP+1
        K=2*NP-1
        J=2*I-7
        BI(K)=BI(J)
        BI(K+1)=BI(J+1)
        B(NP)=B(I)
        TH(NP)=B(NP)
14
        TH(I)=B(I)
        GA=0.02
        NIT=0
        NP2=2*NP
        CALL MODEL (TH, F, NOB, X, INDEX, MODE)
        SSQ=0.
        DO 32 I=1,NOB
        R(I)=Y(I)-F(I)
32
        SSQ=SSQ+R(I)*R(I)
        WRITE(22,1011) (BI(J),BI(J+1),J=1,NP2,2)
        WRITE(22,1012) NIT, SSQ, (B(I), I=1, NP)
   BEGIN ITERATION
C
34
        NIT=NIT+1
        GA=0.1*GA
        DO 38 J=1,NP
        TEMP=TH(J)
        TH(J)=1.01*TH(J)
        Q(J)=0
        CALL MODEL (TH, ZAP, NOB, X, INDEX, MODE)
        DO 36 I=1,NOB
        DELZ(I,J)=ZAP(I)-F(I)
36
        Q(J)=Q(J)+DELZ(I,J)*R(I)
        Q(J)=100.*Q(J)/TH(J)
```

```
C
   Q=XT*R (STEEPEST DESCENT)
38
        TH(J) = TEMP
        DO 44 I=1, NP
        DO 42 J=1,I
        SUM=0
        DO 40 K=1, NOB
40
        SUM=SUM+DELZ(K,I)*DELZ(K,J)
        D(I,J)=10000.*SUM/(TH(I)*TH(J))
42
        D(J,I)=D(I,J)
44
        E(I)=DSQRT(D(I,I))
50
        DO 52 I=1,NP
        DO 52 J=1,NP
52
        A(I,J)=D(I,J)/(E(I)*E(J))
   A IS THE SCALED MATRIX MOMENT
C
        DO 54 I=1,NP
        P(I)=Q(I)/E(I)
        PHI(I)=P(I)
54
        A(I,I)=A(I,I)+GA
        CALL MATINV(A, NP, P)
   P/E IS THE CORRECTION VECTOR
        STEP=1.0
56
        DO 58 I=1,NP
58
        TB(I)=P(I)*STEP/E(I)+TH(I)
        DO 62 I=1,NP
        IF(TH(I)*TB(I))66,66,62
62
        CONTINUE
        SUMB=0
        CALL MODEL(TB, F, NOB, X, INDEX, MODE)
        DO 64 I=1, NOB
        R(I)=Y(I)-F(I)
64
        SUMB=SUMB+R(I)*R(I)
66
        SUMl=0.0
        SUM2=0.0
        SUM3=0.0
        DO 68 I=1,NP
        SUM1=SUM1+P(I)*PHI(I)
        SUM2=SUM2+P(I)*P(I)
68
        SUM3=SUM3+PHI(I)*PHI(I)
        ARG=SUM1/DSQRT(SUM2*SUM3)
        ANGLE=57.29578*DATAN2(DSQRT(1.-ARG*ARG), ARG)
        DO 72 I=1,NP
        IF(TH(I)*TB(I))74,74,72
72
        CONTINUE
```

D - 158

```
IF(SUMB/SSQ-1.0)80,80,74
                                                                          D-159
74
        IF(ANGLE-30.0)76,76,78
76
        STEP=0.5*STEP
        GO TO 56
78
        GA=10.*GA
        GO TO 50
   PRINT COEFFICIENTS AFTER EACH ITERATION
80
        CONTINUE
        DO 82 I=1,NP
82
        TH(I)=TB(I)
        WRITE(22,1012)NIT,SUMB,(TH(I),I=1,NP)
        DO 86 I=1,NP
        IF(DABS(P(I)*STEP/E(I))/(1.0D-20+DABS(TH(I)))-STOPCR)86,86,94
86
        CONTINUE
        GO TO 96
94
        SSQ=SUMB
        IF(NIT.LE.MIT) GO TO 34
   END OF ITERATION LOOP
96
        CONTINUE
        CALL MATINV(D,NP,P)
C
   WRITE CORRELATION MATRIX
        DO 98 I=1,NP
98
        E(I)=DSQRT(D(I,I))
        WRITE(22,1013) (I, I=1, NP)
        DO 102 I=1,NP
        DO 100 J=1,I
100
        A(J,I)=D(J,I)/(E(I)*E(J))
102
        WRITE(22,1014) I,(A(J,I),J=1,I)
  CALCULATE 95% CONFIDENCE INTERVAL
        Z=1./FLOAT(NOB-NP)
        SDEV=DSQRT(Z*SUMB)
        TVAR=1.96+Z*(2.3779+Z*(2.7135+Z*(3.187936+2.466666*Z**2)))
        WRITE(22,1015)
        DO 108 I=1,NP
        SECOEF=E(I)*SDEV
        TVALUE=TH(I)/SECOEF
        TSEC=TVAR*SECOEF
        TMCOE=TH(I)-TSEC
        TPCOE=TH(I)+TSEC
        J=2*I-1
108
       WRITE(22,1016) I,BI(J),BI(J+1),TH(I),SECOEF,TVALUE,TMCOE,TPCOE
  PREPARE FINAL OUTPUT
        LSORT(1)=1
       DO 116 J=2, NOB
        TEMP=R(J)
       K=J-1
       DO 111 L=1,K
       LL=LSORT(L)
```

```
IF(TEMP-R(LL)) 112,112,111
                                                                             D - 160
111
         CONTINUE
         LSORT(J)≃J
         GO TO 116
112
         KK=J
113
         KK=KK-1
        LSORT(KK+1)=LSORT(KK)
         IF(KK-L) 115,115,113
115
        LSORT(L)=J
116
         CONTINUE
        WRITE(22,1017)
        DO 118 I=1, NOB
        J=LSORT(NOB+1-I)
118
        WRITE(22,1018) I,X(I),Y(I),F(I),R(I),J,X(J),Y(J),F(J),R(J)
C
C
        SEND DATA TO PLOT FILE
         DO 334 I=1,NOB
           WRITE(44,333) X(I),Y(I)
333
        FORMAT(3F10.4)
334
        CONTINUE
        WRITE(44,*)
        DO 335 I=1,NOB
           WRITE(44,336) X(I),F(I)
336
        FORMAT(2F10.4)
335
        CONTINUE
        WRITE(44,*)
120
        WRITE(22,1020)
C END OF PROBLEM
1000
        FORMAT(1H1,10X,82(1H*)/11X,1H*,80X,1H*/11X,1H*,10X,'NON-LINEAR
        LEAST SQUARES ANALYSIS', 37X, 1H*/11X, 1H*, 80X, 1H*)
1001
        FORMAT (20A4)
1002
        FORMAT(11X,1H*,20A4,1H*/11X,1H*,80X,1H*/11X,82(1H*))
1004
        FORMAT(5(A4,A2,4X))
1005
        FORMAT(5F10.0)
1006
        FORMAT(515)
1007
        FORMAT(//11x,'INITIAL VALUES OF COEFFFICIENTS'/11x,30(1H=)/12x,
         'NO', 6X, 'NAME', 9X, 'INITIAL VALUE')
1008
        FORMAT(11X, I3, 5X, A4, A2, 4X, F12.3)
1009
        FORMAT(//11X,'OBSERVED DATA',/11X,13(1H=)/11X,'OBS.NO.',5X,'PORE
        VOLUME', 5X, 'CONCENTRATION')
1010
        FORMAT(11X, I5, 5X, F12.4, 4X, F12.4)
1011
        FORMAT(//11X,'ITERATION', 6X, 'SSQ', 4X, 5(7X, A4, A2))
        FORMAT(11X, 15, 5X, F11.7, 2X, 5F13.5)
1012
1013
        FORMAT(///,11X,'CORRELATION MATRIX',/11X,18(1H=)/14X,10(4X,12,
        5X))
1014
        FORMAT(11X, I3, 10(2X, F7.4, 2X))
1015
        FORMAT(1H1,10X,'NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESUL
        TS'/11X,48(1H=)//72X,'95% CONFIDENCE LIMITS'/11X,'VARIABLE',4X,
         'NAME', 8X, 'VALUE', 8X, 'S.E.COEFF.', 3X, 'T-VALUE', 5X, 'LOWER', 10X,
         'UPPER')
1016
        FORMAT(14X, I2, 6X, A4, A2, 2X, F12.5, 5X, F9.4, 4X, F8.2, 2X, F9.4, 6X, F9.4)
1017
        FORMAT(//10X,9(1H-),'ORDERED BY COMPUTER INPUT',10(1H-),7X,
        12(1H-), 'ORDERED BY RESIDUALS', 12(1H-)/18X, 'PORE', 6X, 'CONCENTRA
        TION', 6X, 'RESI-', 18X, 'PORE', 6X, 'CONCENTRATION', 6X, 'RESI-'/10X,
        'NO',4X,'VOLUME',6X,'OBS.',4X,'FITTED',6X,'DUAL',10X,'NO',4X,
         'VOLUME', 6X, 'OBS. '4X, 'FITTED', 6X, 'DUAL')
1018
        FORMAT(10X, I3, 4F10.3, 10X, I3, 4F10.3)
```

```
1020
         FORMAT(///11X,'END OF PROBLEM'/11X,14(1H=))
                                                                                 D - 161
         FORMAT(llx,lh*,lox,'INFINITE PROFILE',54x,lh*)
1021
         FORMAT(11x,1H*,10x,'SEMI-INFINITE PROFILE, 1-TYPE BC',38x,1H*)
1022
         FORMAT(11X,1H*,10X,'SEMI-INFINITE PROFILE, 3-TYPE BC',38X,1H*)
FORMAT(11X,1H*,10X,'FINITE PROFILE, 1-TYPE BC',45X,1H*)
FORMAT(11X,1H*,10X,'FINITE PROFILE, 3-TYPE BC',45X,1H*)
1023
1024
1025
         STOP
         END
         SUBROUTINE EIGEN (G,P,MODE)
   PURPOSE: TO CALCULATE THE EIGEN VALUES
         IMPLICIT REAL*8 (A-H,O-Z)
         DIMENSION G(20)
         BETA=0.1
         S=0.0
         IF(MODE.EQ.4) S=1.0
         DO 4 I=1,20
         J=0
1
         J=J+1
         IF(J.GT.15) GO TO 3
         DELTA=-0.2*(-0.5)**J
2
         BET2=BETA
         BETA-BETA+DELTA
         A=BET2*DCOS(BET2)+(0.25*(2.-S)*P-S*BET2**2/P)*DSIN(BET2)
         B=BETA*DCOS(BETA)+(0.25*(2.-S)*P-S*BETA**2/P)*DSIN(BETA)
         IF(A*B)1,3,2
         G(I)=(BET2*B-BETA*A)/(B-A)
3
         BETA=BETA+0.2
         RETURN
         END
         SUBROUTINE CONC (C,G,P,T,MODE)
   PURPOSE: TO CALCULATE CONCENTRATION C FOR MODE 3,4
         IMPLICIT REAL*8 (A-H,O-Z)
         DIMENSION G(20)
         E=0.0
         TOL=0.00001
         S=DMIN1(1.D02, 5.+40.*T)
         IF(P.GE.S) GO TO 4
         IF (MODE.EQ.3)S=0.5
   SERIES SOLUTION
         EX=0.5*P-0.25*P*T
         SUM=0.0
         DO 2 J=1,10
         DSUM=0.0
         DO 1 K=1,2
         I=2*J+K-2
         A=G(I)*DSIN(G(I))
         IF(DABS(A).LT.1.D-04) A=0.0
         EXP=EX-G(I)**2*T/P
1
         DSUM=DSUM+A*EXF(EXP,E)/(G(I)**2+0.25*P*P+S*P)
         SUM=SUM+DSUM
         IF(DABS(DSUM/SUM).LT.TOL)GO TO 3
```

```
2
        CONTINUE
                                                                            D - 162
        GO TO 4
3
        C=1.-2.*SUM
        RETURN
4
        AM=0.5*(1.-T)*DSQRT(P/T)
        AP=0.5*(1.+T)*DSQRT(P/T)
        A=0.5*EXF(E,AM)
        B=0.5*EXF(P,AP)
        D=DSQRT(.3183099*P*T)*EXF(-AM*AM,E)
        IF(MODE.EQ.3)C=A+(3.+P+P*T)*B-D
        IF(MODE.EQ.4)C=A+(3.+.5*P+.5*P*T)*D-(1.+3.*P+P*T*(4.+2.*AP**2))
        *B
        RETURN
        END
        FUNCTION EXF(A,B)
   PURPOSE: TO CALCULATE EXP(A) ERFC(B)
        IMPLICIT REAL*8(A-H,O-Z)
        EXF=0.0
        IF((DABS(A).GT.170.).AND.(B.LE.O.)) RETURN
        C=A-B*B
        IF((DABS(C).GT.170.).AND.(B.GE.O.)) RETURN
        IF(C.LT.-170.) GO TO 3
        X=DABS(B)
        IF(X.GT.3.0) GO TO 1
        T=1./(1.+.3275911*X)
        Y=T*(.2548296-T*(.2844967-T*(1.421414-T*(1.453152-1.061405*T))))
        GO TO 2
        Y=.5641896/(X+.5/(X+1./(X+1.5/(X+2./(X+2.5/X+1.)))))
1
2
        EXF=Y*DEXP(C)
3
        IF(B.LT.0.0) EXF=2.*DEXP(A)-EXF
        RETURN
        END
        SUBROUTINE MATINV (A, NP, B)
        IMPLICIT REAL*8(A-H,O-Z)
        DIMENSION A(5,5), B(10), INDEX(5,2)
        DO 2 J=1,5
2
        INDEX(J,1)=0
        I=0
4
        AMAX=-1.0
        DO 12 J=1,NP
        IF(INDEX(J,1)) 12,6,12
6
        DO 10 K=1,NP
        IF(INDEX(K,1)) 10,8,10
8
        P=DABS(A(J,K))
        IF(P.LE.AMAX) GO TO 10
        IR=J
        IC=K
        AMAX=P
10
        CONTINUE
12
        CONTINUE
```

```
IF(AMAX) 30,30,14
                                                                           D-163
14
        INDEX(IC,1)=IR
        IF(IR.EQ.IC) GO TO 18
        DO 16 L=1,NP
        P=A(IR,L)
        A(IR,L)=A(IC,L)
16
        A(IC,L)=P
        P=B(IR)
        B(IR)=B(IC)
        B(IC)=P
        I=I+1
        INDEX(I,2)=IC
18
        P=1./A(IC,IC)
        A(IC,IC)=1.0
        DO 20 L=1,NP
20
        A(IC,L)=A(IC,L)*P
        B(IC)=B(IC)*P
        DO 24 K=1,NP
        IF(K.EQ.IC) GO TO 24
        P=A(K,IC)
        A(K,IC)=0.0
        DO 22 L=1,NP
22
        A(K,L)=A(K,L)-A(IC,L)*P
        B(K)=B(K)-B(IC)*P
24
        CONTINUE
        GO TO 4
26
        IC=INDEX(1,2)
        IR=INDEX(IC,1)
        DO 28 K=1,NP
        P=A(K,IR)
        A(K,IR)=A(K,IC)
28
        A(K,IC)=P
        I=I-1
30
        IF(I) 26,32,26
32
        RETURN
        END
        SUBROUTINE MODEL(B,Y,NOB,X,INDEX,MODE)
  PURPOSE: TO CALCULATE CONCENTRATIONS FOR A GIVEN PORE VOLUME
        IMPLICIT REAL*8(A-H,O-Z)
        DIMENSION B(10), Y(90), X(90), INDEX(5), G(20)
        E=0.
        K=0
```

DO 2 I=4,6

K=K+1B(I)=B(K)

CONTINUE

2

IF(INDEX(I-3).EQ.0) GO TO 2

```
P=B(4)
         R=B(5)
         IF((P.LE.100.).AND.(MODE.GE.3)) CALL EIGEN (G,P,MODE)
         DO 6 J=1,NOB
         DO 4 M=1,2
         C = 0.0
         T=(X(J)+(1-M)*B(6))/R
         IF(T.LE.O.) GO TO 6
         AM=0.5*(1.-T)*DSQRT(P/T)
         AP=0.5*(1.+T)*DSQRT(P/T)
         IF(MODE.EQ.0) C=0.5*EXF(E,AM)
         IF(MODE.EQ.1) C=0.5*EXF(E,AM)+0.5*EXF(P,AP)
IF(MODE.EQ.2) C=0.5*EXF(E,AM)+DSQRT(.3183099*P*T)*EXF(-AM*AM,E)-
        0.5*(1.+P+P*T)*EXF(P,AP)
         IF(MODE.GE.3) CALL CONC(C,G,P,T,MODE)
         IF(M.EQ.2) GO TO 6
         Y(J)=C
4
         CONTINUE
6
         Y(J)=Y(J)-C
         RETURN
         END
```

Pore Volume	Concentration (observed, M/L)	Concentration (corrected, M/L)	Relative Conc. (C/Co)
O.060 0.130 0.199 0.411 0.546 0.683 0.752 0.826 0.890 0.958 1.010 1.080 1.150 1.210 1.290 1.360 1.440 1.490 1.560 1.630 1.710 1.770 1.840 1.910 1.980 2.050 2.120 2.120 2.190 2.260 2.330 2.400 2.470 2.530 2.600 2.740 2.530 2.600 2.740 2.800 2.880 2.950 3.020 3.090 3.150 3.220 3.290 3.360 3.430 3.570 3.640			(C/Co) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.80E-04 4.42E-02 2.01E-01 3.39E-01 5.71E-01 6.57E-01 7.29E-01 8.07E-01 8.59E-01 8.59E-01 8.72E-01 9.36E-01 9.61E-01 8.07E-01 8.07E-01 8.07E-01 1.34E-01 7.33E-02 6.09E-02 4.50E-02 2.02E-02 1.71E-02 1.08E-02 2.02E-02 1.71E-02 1.08E-02 2.02E-03 1.57E-03 3.56E-03 2.67E-03 1.62E-03 1.62E-03 1.62E-04 9.20E-04 7.50E-04 7.50E-04
3.710 3.780 3.850 3.920 4.040	2.48E-05 2.31E-05 2.05E-05 1.80E-05 1.63E-05	6.40E-05 6.20E-05 5.80E-05 5.20E-05 4.60E-05 4.20E-05	6.40E-04 6.20E-04 5.80E-04 5.20E-04 4.60E-04 4.20E-04

Pore Volume	Concentration (measure, M/L)	Concentration (corrected, M/L)	Relative Conc. (C/Co)
0.442 0.513 0.588 0.661 0.735 0.810 0.889 0.959 1.030 1.130 1.220 1.300 1.370 1.450 1.530 1.620 1.690 1.760 1.980 2.140 2.210 2.290 2.360 2.140 2.210 2.290 2.360 2.440 2.510 2.590 2.670 2.740 2.810 2.960 3.110 3.180 3.270 3.340 3.120 3.500 3.570 3.640 3.720 3.720 3.790 4.240 4.400 4.400		(corrected, M/L) 0.00E+00 0.00E+00 6.00E-05 4.01E-03 2.04E-02 3.85E-02 5.05E-02 6.11E-02 6.64E-02 7.29E-02 7.81E-02 8.33E-02 8.72E-02 8.59E-02 8.59E-02 8.59E-02 4.68E-02 3.55E-02 2.46E-02 1.79E-02 1.40E-02 1.13E-02 8.87E-03 7.02E-03 5.77E-03 4.82E-03 4.17E-03 3.56E-03 2.10E-03 1.78E-03 1.78E-03 1.47E-03 1.29E-03 1.12E-03 9.74E-04 8.98E-04 6.96E-04 6.41E-04 4.18E-04 3.66E-04 3.01E-04 2.73E-04 2.77E-04	0.00E+00 0.00E+00 0.00E+00 6.00E-04 4.01E-02 2.04E-01 3.85E-01 5.05E-01 6.11E-01 6.64E-01 7.29E-01 8.33E-01 8.72E-01 8.59E-01 8.59E-01 8.59E-01 8.59E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01 2.46E-01 1.13E-01 1.13E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 1.78E-02 1.29E-02 1.12E-02 1.29E-02 1.12E-02 1.12E-03 8.98E-03 6.96E-03 6.41E-03 3.66E-03 3.01E-03 2.73E-03 2.47E-03
4.440 4.520	1.10E-04 1.10E-04	2.13E-04 2.47E-04 2.47E-04	2.13E-03 2.47E-03 2.47E-03

Pore Volume	Tritium Conc. (counts/min)	Relative Conc. (C/Co)
O.060 O.130 O.199 O.270 O.340 O.411 O.477 O.546 O.614 O.683 O.752 O.787 O.826 O.857 O.890 O.958 1.010 1.210 1.210 1.290 1.360 1.440 1.460 1.490 1.600 1.630 1.710 1.770 1.840 1.910 1.980 2.050 2.120 2.120 2.190 2.260 2.330 2.400 2.470 2.530 2.600 2.740 2.800 2.880 2.950 3.020 3.090		
3.150 3.220 3.290 3.360 3.430	62.5 92.9 57.9 54.8 52.5	1.41E-03 2.20E-03 1.29E-03 1.21E-03 1.15E-03

3.500 3.570	45.2 43.7	9.60E-04 9.20E-04
3.640	45.6	9.70E-04
3.710	37.5	7.60E-04
3.780	39.4	8.10E-04
3.850	27.9	5.10E-04
3.990	24.4	4.20E-04
4.040	58.3	1.30E-03
4.110	27.5	5.00E-04

E-169

Pore Volum	Tritium Concent. (Counts/min.)	Relative Conc. (C/Co)
0.053 0.129 0.205 0.281 0.357 0.442 0.513 0.588 0.661 0.698 0.735 0.772 0.810 0.889 0.959 1.030 1.130 1.220 1.300 1.410 1.450 1.450 1.490 1.530 1.620 1.690 1.760 1.840 1.880 1.920 1.980 2.140 2.210 2.210 2.290 2.360 2.140 2.510 2.510 2.590 2.670 2.740 2.810 2.880 2.960 3.030 3.110 3.180 3.270 3.340		
3.420 3.500 3.570 3.640	259.1 204.9 192.2 102.5	6.35E-03 4.94E-03 4.61E-03 2.28E-03

3.720 3.790 3.870 3.940 4.020 4.090 4.170	97.9 95.6 70.5 72.9 57.9 82.1 50.9	2.16E-03 2.10E-03 1.45E-03 1.51E-03 1.12E-03 1.75E-03 9.40E-04
4.240	42.5	7.20E-04
4.320 4.400	35.5 34.5	5.39E-04 5.13E-04
4.440 4.520	33.5 33.5	4.87E-04 4.87E-04 4.87E-04
*		1.0711 01

E-171

```
LEAST SQUARES ANALYSIS
                 NON-LINEAR
* SEMI-INFINITE PROFILE, 3-TYPE BC **distilled case, semi-inf, third bc, short col, br
                                                                                 bulse rixed
INITIAL VALUES OF COEFFFICIENTS
                                  INITIAL VALUE
14.050
1.000
0.995
             NAME
 NO
            Peclet
            PULSE
OBSERVED DATA
                                        CONCENTRATION
                        8-9608
0-1930
                                                 8:8888
                                                 0.0000
                         0.1110
                                                 0.0000
                         0.5460
      67
                         0.6830
0.7520
                                                 0.0000
                                                 0.0010
                                                 0.0442
0.2008
0.3387
0.5712
                        0.3260
0.3260
0.3580
     1 Ó
1 1
                         1.0100
      1
                                                 0.6571
     12
13
                         1.0800
                         1.1500
     14
15
                         1.2900
                                                 0.8458
                         1.3600
     16
17
18
19
                                                 0.8587
                         1.4400
                                                 0.8344
                         1.4900
                            5600
                                                 0.8716
     20
21
22
23
                         1.6300
                                                 0.9013
                         7100
                                                 0.8070
                                                 0.8070
                         1.8400
                         1.9160
                                                 0.5579
0.4236
0.2152
                         1.3900
2.0500
2.1200
2.1900
     25
26
27
                                                 0.1338
     29
29
30
                                                 0.0733
                         2.3600
2.3300
2.4000
                                                 0.0008
                                                 0.0450
     31
                                                 0.0286
                         2.4700
2.5300
2.6000
                                                 0.0202
     32
     33
                                                  0.0108
     34
                         2.6700
2.7400
2.8000
2.8800
                                                  0.0157
     35
                                                  0.0111
     36
                                                 0.0051
     37
     38
```

0.0036

2.9500

7	TERATIUN 0.5970093 14.05000 1.00000 0.97697 1.00000 0.97697 2.001761113 25.09501 0.98615 0.98615 3.0.1722516 49.03729 0.98615 0.98615 0.1772516 55.09501 0.98683 0.177351 58.41213 0.98451 0.98455 0.9	40 0 00027 41 3 - 0400 0 0 00016 42 3 - 2200 0 0 00016 44 45 47 3 - 2500 0 0 00000 48 48 48 48 48 48 6000 0 0 00000 51 52 50 0 0 0000 52 52 52 53 - 2400 0 0 0 0000 53 - 2400 0 0 0 0000 54 55 55 55 55 55 55 55 55 55 55 55 55 5
---	--	---

0 0000000		30000000000	00000000000000000000000000000000000000	
		20000000		
000000	2000000	3333	100-W000-44	
0 000000		0000040000	0000-100000000000000000000000000000000	04400+0W
[30000000	cececee	ecccc
			00000040800 000004040000000000000000000	
0.000000		,000000000	30000000000000000000000000000000000000	N@0@0
	4 - 30 70 C/ - 4 C/ 1	2011 (2) 12 (M. CO. LO C. M.	27544628456 245368888454 200000000000000	ANA. A. A. A. A.
			teoenee	
U 44444466	*NVNNNNNV4	W 24-0	14	211127
	·			
- ruscomeine	301 201 - MOI- N	1000	00000000000000000000000000000000000000	~~~~~
300404466	100000000	000000000	000000000000000000000000000000000000000	2000000
		-		
	ショフゥララスまの こりららりらうます) 	000000000000000000000000000000000000000	2020222
0 0000000	0000000	600000000	cococcoc	0000000
のともなるからもっ	-レレオキでキロー	10 C	~ MC	
		200000000		0000000
			:	000000
are and the contract the	よし た しのいいりいりひ	うりてきり しょうか	00000000000000000000000000000000000000	
- 4 4 4 4 4 4 B DE		<u> </u>	20042244674 20042244674 200436674467	orr∞oro-
	•			. !
ま ままままままごうき なららて ほうりょう	70000000000000000000000000000000000000	CHUMUMUMUM CHUMUMUMUM CHUMUMUM	とりはははなななななな なななな	なららららららら り ひまえきはち

EWD OF PROBLEM

```
LEAST SQUARES ANALYSIS
                  SEMI-INFINITE PROFILE, 3-TYPE BP. SH COL. BC #3, BROWIDE,
*CANO3 CASE. SH COL.
                                                                   dulse fixed
                                                                          1
INITIAL VALUES OF COEFFFICIENTS
                                                                          وي بمحمد أشبيده إ
                                                                             *
NAME
PECLET
RF
PULSE
                                    INITIAL VALUE
26.900
1.000
1.040
 NO
OBSERVED DATA
OBS.NO. PORE . VOLUME
                                               CONCENTRATION
                          0.4420
0.5130
0.5880
0.6619
                                                    8:8883
                                                    0.0000
                                                    0.0006
                                                   0.0401
0.2037
0.3854
      5
      6
                          0.8100
0.8890
                          0.9590
      8
                                                    0.5045
      ÿ
                          1.0309
                                                    0.6110
                          1.1300
     19
                                                    0.6637
    11
                           .3000
                                                    0.7811
    13
14
                                                    0.7811
                          1.3700
                          1.4500
    15
                             5300
                                                    0.8329
    16
                          1.6200
                                                    0.8716
                          1.6900
                                                   0.8587
0.8329
0.8587
    1901234567890
                          1.7600
                          1.8400
                          1.9200
                                                   0.6505
0.5911
0.4682
                         1.7800
2.0600
2.1400
2.2100
2.2600
2.3600
2.5100
2.5700
2.7400
2.7400
                                                   0.4582
0.3552
0.2465
0.1792
0.1397
                                                   0.0887
                                                   Õ
                                                     .0702
                                                   0.0577
    31
                                                   0.0482
                         2.3100
2.3800
2.9600
3.0300
    32
33
34
                                                   0.0417
                                                   0.0356
0.0286
0.0251
    35
    36
37
                                                   0.0210
0.0178
0.0147
                          3.1100
                          3.1800
    38
                          3.2700
    39
                          3.3400
                                                   0.0129
```

TERATION TERATI	000 000 000 7	
TERATION 0 000000 0 000255 0 000225 0 0	00000 00000	
TEKATION 0.550 TEKATION 0.550 1.00056 1.00066	00000000000000000000000000000000000000	The second secon
DEPTH DEPT	0.0025	
The partition Matrix 1	1.94444 1.0027	
CALINEAR LEAST 10000EEE ANALYSIS, FINAL RESUL TS CALINEAR LEAST 10000EEE ANALYSIS, FINAL RESUL TS CALINE BORDERED CALINE BORDERED CONCENTRATION CO		
AKIABLE NAME VALUE S.E.COEFF T.VALUE DIUWER LUWER LUWER LUWER LUWER LUWER LUWER LUWER LUWER LUWER LOSS	NALYSIS, FINAL RESUL T	
UNDER KED BY COMPUTER INPUT. PURE CONCENTRA TION VOLUME UBS. VOLUME	LUE S.E.COEFF. T-VALUE LUWER 94344 1.5217 14.42 18.8882 0.0081 123.93 18.8866	
1.450 0.807 0.893 -0.086 39 3.340 0.01 1.530 0.833 0.918 -0.085 40 3.420 0.01 1.020 0.872 0.919 -0.047 10 1.130 0.66 1.590 0.893 -0.035 41 3.500 0.01 1.750 0.833 0.844 -0.011	R INPUT	000 00 00 00 00 00 00 00 00 00 00 00 00

	COOCOCCC DOCCCCCCCCCCCCCCCCCCCCCCCCCCCC		00000000000000000000000000000000000000
0 0000000	000000400 00000000000 00000000000	O#L-HW#VC 14440LOW 0470@NOWW	00000000000000000000000000000000000000
0 0000000 0 0000000 0 0000000000000000	00000 00000 00000 00000 00000 00000	78000 78000 78000 78000 78000 78000 78000 78000 78000 78000 78000 78000 78000 78000	200404 200404 200404 2004 2004 2004 200
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24400 0000 0000 0000 0000 0000 0000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
な m4v5c65	WC01101080		
प प्रविध्वत्त्र्र्थ	000000 00000	4-604	-0-00
0 0000000 0 4400004W	000000000		00000000000000000000000000000000000000
で も204mm24-			
- 名	-000000000 -37944600	00000000	00000000000000000000000000000000000000
	cccoccco	000000000	0000000000

ま ひひひひひひとことろうろうろうろうろうはみず みはかみ はみからららら ひょうきゅう やてはらい まえるよう サイオリリースをみらい アオリリエスをない サイザリリースを

END OF PROBLEM

NON-LINEAR LEAST SQUARES ANALYSIS

SEMI-INFINITE PROFILE, 1-TYPE BC DISTILLED CASE, SEMI-INF, TRITIUM, SHORT COLUMNS, pulse FIXED

INITIAL VALUES OF COEFFFICIENTS

=====	=======================================	
NO	NAME	INITIAL VALUE
1	PECLET	14.050
2	RF	1-100
	PULSE	

OBSERVED DATA

3 5. N		PORE	VOLUM	E	CONC	CENTI	RATION	
1	•	8:	0602 1300 1990		g	3:88	01	
12 34 56 77 89 10		ο,	1300		,	1 • X X	01	
3			2700				00	
3		ŏ:	3400		ì	0.00	ŭŭ	
6		ŏ.	4110		. (.00	01	
Ť		Ö	2700 3400 4110 4770 5460 6830 7820 88570 885900 9100		(0.00	0 i	
8	1	O.	5460		(0 Ō	
9)	0	6140		9	3.00	0 O	
10)	Q,	6830		9	0.00	ŭ ĝ	
		0	. /520		• }	4 - 20	U 3	
12		0	6260		7	1.00	7 A	
14		ŏ	8570		ì	1.06	55	
. 15		ŏ.	8900		(3.14	55	
13 14 15 16	:)	0	9580		(00026445 00026445 00026445 000266844000 000266844000	06	
17		1.	0100		(369	92	
1.8		1,	0800		9	5.56	40	
19		1.	1500			1.87	<u> </u>	
18	•	. 1	2100			7.02	0 3	
52		1	3600		7) 68	48	
23		i	4400		(3.84	4 Ž	
24		18 m (1)	0800 1500 2100 2900 3600 4400	***** * **		0.64	76	
25		4.1	・サフひひ		(0.80	96	
25	2	ļ,	6000		() • <u>7</u> 0:	58	
2 /			6300		,	7.70	19	
56		<u> </u>	7100		ì	0.69 0.70	7	
30	Ó	ī	8400			3 7 A	70	
. 3i		i	9100		(0.74 0.67 0.33	20	
32	2	ī	9800		(0.33	10	
33		2.	9800		(0.18	22	
34		2.	1200		9	Ų•Ų9!	51	
		2, 2, 2, 2, 2,	1200 1900 2600 3300		(0.67 0.33 0.18 0.05 0.05 0.03	45	
30	7	3.	2000			V • V 3	35 04	
3 2	, }	2	4000			0.02	4 A	
39	á .		4700			0.01		
9 ,	•	Ær :	# * 1 V V			~ • ~ F	∨ ∨	

2.5300 2.6000	0.0077	
2.6700	0.0036	
2.8000	0.0031	
2.9500	0.0028	
3.0200 3.0900		
3.1500	0.0014	
3.2900	0.0013	
3.3600 3.4300	0.0012 0.0012	
3.5000	0.0010	
3.6400	0.0010	
3.7800	0.0008	
3.8500 3.9900	0.005	
4.0400 4.1100	0.0013 0.0005	
SSQ _	PECLET RF	
0.9121380	14.05000 1.1000	00
0.8240184	21.36509 1.0523	38
0.8152644	25.02607 1.0483	7 4 7 6
0.8146228	25.87385 1.0419	91 24
0.8144278	26.37305 1.0408	
0.8144278 0.8143715 0.4143571	26.37305 1.0400 26.66368 1.0400	22
0.8144278 0.8143715 0.8143571 -0.8143547	25.87385 26.37305 26.66368 26.83182 26.92875 26.93572 1.0398	22 36 56
	2.6000 2.6700 2.7400 2.8800 2.8800 2.9500 3.0200 3.1500 3.1500 3.1500 3.1500 3.7100 3.7100 3.7100 3.7100 3.7100 3.7100 3.7100 3.7100	2.6000

_	ı	0	U	
	-			

Name		MO. 3 Challes	»		00000	2000-	⊣ 00041	~~N&C	ര യമ്പ്പ		/ !!
		122000	20000	000000	00000	0000	0000	20030	000000		4 -
Name		000	00000	000000	-	0000	00000		99999		20
Name					, d		* .				
	•	10000	m	0000000	cece	:C4CC	cocc		WW406+	-87~233~4	<i>T</i> (2)
Name	HO40										• •
Colored Colo	エリアよ	HZ									
A		ည်					į.				
A	ഥ	*0%%~	400000 00000	0000000	00000	00700		00000	000000	00000000000000000000000000000000000000	90
A	₩	Δ 00·									• •
A	D E E E E E E E E E E E E E E E E E E E	E K			*		:				!
NAME	₩□ • •	XX:		-		000-	0000	00000	04000		10
NOW NOW		D00	2000L 20440 20440	400/2013 3/049400	10000 10000 10000	1W34-	0040 0040	∞N.ω- - ∞4.04π	10000N	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	290
NALLE IN PART Language Lang		D	O 4 MM M	๚๎๛๎๛๛๛ ๎	70000	20404	nmm0N	0000 -	-00H	-00H-0H0	>
NALE	□ +0										
Note		300 I	24.000 04.000	Ა ᲡᲡᲡᲡᲡᲡᲓᲡ ᲐᲡ 4 ୮ ସମହ	566 54460	4 to 0 to 0	44 4 8 7 8 7 8 7	4 44. No4wo	4 444 700-80	190889PF+	217
NAME PECAST SOURARES PANILYSIS, FINAL RESULT	מ	• 1				i	i				
VARIABLE PECHET SUGARES NALLYSIS, FINAL RESIDENT SUGARES NALLYSIS, FINAL RESIDENT SUGARES SUGARE	i) II •										
NAME LEAST SCUARES NAME LEAST NAME LEAS	り II				*						
NALY	Z 11 000	1H	COCON	-m600m4	wac40:	2-000	380 <u>7</u> 0	0040	o o o o o o o	-M@O@OP-40	7.
NET NET	⊄ II . •	IXDOO	00000	000	42420	24400	14224	4000	47/7HH00		• •
VARIABLE PECLET SCUARES ANALYSIS 2	→ 11 ≥ 11	- 00	00000		20000		0000	00000			11
NAME EAST	2 11		· .								
NON	VII	PG000	$\sim \sim \sim \sim \sim$	_ ~~~~~ ~~~~	ンのー・つの:	クグアー・	4NMN0	W d.d.d.d.d		いりもとともりの	-
NON NON	er it – Diener										
N	404 II A	ei≼e E-X									
	天 II 河 II	Q.Z.				0 = 10 = 10	· • • • • • • • • • • • • • • • • • • •	· ~ ~ ~ - !	N10000-111	നാം വഴിയിൽ അത്രത്ത് അ	~~
N N N N N N N N N N	⊃ #	OSOSO	00000	00000N9;	よちららり (<i>araaa</i> <i>Araaa</i>	84700 84000	10 4 10 mg	-00000		00
N N N N N N N N N N	Ω 	8 00 00	00000	000000	00000	2220	0000	0000	00000	22200000	22
N N N N N N N N N N	All ACIT	ഥ									
N N N N N N N N N N		- 함 - 이번에 이미	20347	04m0r0r	02000	0000	20003	0000	000000	00000000	20
N N O	म् ॥ इ.॥	0000-	よくろみみ	v o o∼r∞∞	3000-c	70m 44	44000	<u></u>	。 • • • • • • • • • • • • • • • • • • •	4.N D D L 20 20 Q	22
		1 000	00000	000000	0 0 H H H	ed ed ed ed e	-	। ज ज ज ज (100000	MANNANNI	دی ا د⊾
5	Z II Z										
			1440.0C	800-CM4	89C36	040m	8-10-05 8-10-05	12 B B B B B B B B B B B B B B B B B B B	100000000 14000	74444444 70-24645	78

7 880	111111 0000000 0000000 00000000 00000000	260
206 184 329	00000000000000000000000000000000000000	443 918
W 41-4	00000000000000000000000000000000000000	872
00-14	00000000000000000000000000000000000000	0-0
980	11700111111111111111111111111111111111	404
ይ ተተር ው ሪያር	2000	WW C 4W4

4 らろらろろろろろろろろりゅうりゅう ひょこうきょうして ほうしょうしょう

END OF PROBLEM

SQUARES ANALYSIS LEAST NON-LINEAR

SEMI-INFINITE PROFILE, 3-TYPE BC DISTILLED CASE, SEMI-INF, TRITIUM, SHORT COLUMNS, pulse FIXED

0.0140 0.0100 0.0077

0.0050

0.0036 0.0031 0.0031 0.0028 0.0026 0.0023

OBSERVED DATA OBS.NO. PORE CONCENTRATION VOLUME VOLUN 0.0602 0.1300 0.1990 0.2700 0.3400 0.4110 0.5760 0.6140 0.6830 0.0001 0.0001 0.0000 45678910 0.0000 0.0001 0.0001 0.0000 0.0000 0.6140 0.6830 0.7520 0.7870 0.8260 0.8570 0.9580 0.9580 1.0800 0.0000 0.0043 0.0043 0.00245 0.02655 0.14506 0.14506 0.43643 0.567263 0.6643 12345 161789 0800 1500 2100 2900 3600 1222234567890 .6645 Ŏ U.6645 0.6848 0.8442 0.8476 0.7019 0.7019 0.7470 0.7470 0.3310 1.4600 1.4900 1.6000 1.7100 1.7700 1.8400 1.9100 1.9800 3333356789012344 4444 4444 0.3310 0.1822 0.0951 0.0525 0.0335 0.0206 1.9800 2.0500 2.1200 2.1200 2.200 2.3300 2.4700

2.4700 2.5300

2.5300 2.6700 2.6700 2.7400 2.8900 2.8800 2.9500 3.0200

46

48 49 50	3.0900 3.1500 3.2200	0.0021 0.0014 0.0022 0.0013	
51 52 53 54	3.2900 3.3600 3.4300 3.5000	0.0012 0.0012 0.0010	
55 56 57 58	3.5700 3.6400 3.7100 3.7800	0.0009 0.0010 0.0008 0.0008	
59 60 61 62	3.8500 3.9900 4.0400 4.1100	0.0005 0.0004 0.0013 0.0005	
ITERATION Q	SSQ 1.0873994	PECLET 14.05000 15.50051	RF 1.10000 0.99374
2 3 4	0.8740356 0.8320760 0.8203205 0.8166384	19.60063 22.27736 24.06618	1.00726 1.00394 1.00294 1.00225
7 8	0.8155017 0.8151583 0.8150596 0.8150344	25.16307 25.81566 26.19670 26.41692	1.00184 1.00161 1.00147
10 11		26.54346 26.56157 26.56157	1.00139 1.00138 1.00138

	ELATION M	ATRIX
1	1.0000	
Ž	0.0887	1.0000

:	1						
ì							
;						このできるようなアファ	
:	1x2000	000000		0000000		00000000	
				0000000			
:					1		į.
	Z						
747	STFR4つ	1000000	cococo	CCCCCC4	00000	00m4c6+87	123514
7-0	ARE		, , , , , , ,				
37	HE HE						
	សកា						
:	αz		l - - - - - - - - - -	000000	HOOOMOOM	440040400	40m-100
	യയയാ	*000000	000000	20000000	0000000	0000000000 000000000000000000000000000	
	<u> </u>				0000000	000000000	000000
400	38						:
. 00 : 00 : 100	E E E E E E E E E E E E E E E E E E E						
100	00000					127138W478	
••						000 ON 440	
	ः । .Öलन्त	54 www.	ว๛๛๛ ๛๛๛	100000 0	mmmennonn	-400H44400	ろももろもの
100 100 100 100 100						ĺ	
က်ထ				•			
, 4,			20000000000000000000000000000000000000			- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						10000000000000000000000000000000000000	
2					こりのしてことです	00000	00000
_		0000000	2220000	222222		220000222	
						÷	
· ~	DZ CCCCCC	2000			77.0000md		M C 10 M . O et
iom mai	ZHHOO	00000mm	174@m@CIA	THOMEOH!	12mm&m444	45000000000000000000000000000000000000	2000
3 0 0	K H00					00000000	
26.	UTE Pra F						
	ΣΩ OZ				:		
	.DU (CC					00000000000000000000000000000000000000	
រីភ្ជ		000000	0000000	,,,,,,,,,,,	20003000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000
50.₹ 50.₹ 51.	RED						
σ sm∝	(L)		1000 0000		00000000		000000
	REE OMO	プフタミフター	i wan wan wari	3185196 4	ロタウューアキュバ	01124440 p	~40mnu
7	0000		• • • • • •	• • • • • • •		CONCONCO	
g → ?>	; >						
T Y	!						
∢ >	2-0	14N 01-30	2-2m401	1-000-Nm	410.00 m d 0.40	ころようらてほうひょ	44445

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESUL TS

3 0,205 -0.17 4 0.184 -0.18 7 0.329 -0.18	8 0 887 • 0 18 1 0 544 • 0 21 2 0 236 • 0 21	13 0 280 0 214 13 0 271 0 219 12 0 930 0 228 10 231	5 0 351 0 25 2 0 443 0 26 8 0 918 0 27
2 2.260 0.0 2 0.787 0.0 5 0.890 0.1	2 1 980 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	14 0 0 857 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22-120 12-050 14-60 0-1-0-0
000	0000	00000	
		00000	
42.0	これならい	24mm	100 OH

4 ららららららららららうらららっちゅう 0123459789012

8

END OF PROBLEM

```
NON-LINEAR
                                               LEAST SQUARES ANALYSIS
                    SEMI-INFINITE PROFILE, 1-TYPE BC PULSE - E. SHORT COLUMN, TR, SI-BC#1, NO COSF. FIXED
 INITIAL VALUES OF COEFFFICIENTS
                                             INITIAL VALUE
14.050
1.130
1.040
                NAME
PECLET
RF
PULSE
  NO
 OBSERVED DATA
CONCENTRATION
                                                                 3:8889
                                                                 0.0000
        4567
                                                                 0.0000
                                                                 0.0000
                                    4420
5130
                                                                 0.0000
                                                                 0.0000
        9
                                0.5880
                                                                 0.0000
                                                                 0.0002
                                0.5980
0.7350
0.7720
0.8100
0.8890
0.9590
      10
11
12
13
14
15
                                                                 0.0030
                                                                0.0216
0.0512
0.1250
0.3455
                                                                0.5116
0.5116
0.5289
0.5626
0.7311
      1178901234567890
                                    0370
                                1.0800
                                    2200
                                     3000
                                                                0.6031
0.6624
                                     3700
                                     4100
                                                                0.6931
0.6129
0.7409
0.7648
                                  4500
4900
5300
                                 1.6200
                                   .6900
                                                                 0.8048
                                  -7600
                                   .8400
                                                                 0.8560
                                1.8400
1.8800
1.9200
1.9800
2.0600
2.1400
2.2100
2.2900
2.3600
2.1400
2.3600
2.3600
2.3600
                                                                0.8609
0.5971
0.5240
      313334
3334
33333
3333
339
```

0.3994 0.3994 0.3375 0.2629 0.1526 0.0867

0.0745

;	· ·	. (. •				
4 4 4 4	670 670 670	000	9 600	•			
<u></u> ቀቀቀቀቀ መቀ≀ን⁄ዕሥ	88801 1888 1900	20000	3000C				
# 4 4 % © Q O		ಾಂ	200		endere vara des la la constituente después es la constituente de la co		
ನಿಸುಳುಗ ⇔ದುಟ್ಟಡ್ಗಗ	47.1.01 40.40	00000	らみゅこう		Constitution and the second se	de constantination of the state	
์ เกษเกร	V 80	0000	(N=++++	And the second s			
700m 0-0-0-0-0	44444						
0 0 0 4.10 0	44% 042	000	000				
ITERATION 0 1	24.0 20.0 20.0 20.0 20.0 20.0 20.0	7 2 3 3 3 4 3 4 3 4 3 4 3 4 4 4 4 4 4 4 4	RF 1.1300 1.1160	*			
ለ ພ4.൛	0.047880 0.047880 0.047880 0.04780 0.04780 0.0472	16.24501 16.35372 16.37832 16.38108	11111111111111111111111111111111111111				· ·
LATION	ATRIX		1				
1 1 000 2 10 316 0N-LINEAR	EAST SQUAR	NALYSIS,	INAL RESUL	: :		den melle den de de de la company de la comp	AMERICAN COMPANY OF THE PROPERTY OF THE PROPER
		18 18 18 18 18 18 18 18 18 18 18 18	18 18 18 18 18 18 18 18 18 18 18 18 18 1		SECONE	TI WI	
-VARIABLE 2	NAME PECLET RF	VALUE 6.38108 1.11238	5. M. C.	T VALUE	12.7304 1.0732	20°02.7 1.1514	·
V CT	RED BY COMPU	TER INP RA TIO FITTED	RESITE DUAL 00.000		LUME LUME	ESIDUALISM REST CENTRATION REST 1 0.698 0.13	F-18
200	CO	999	00	29 15	• • [.512 0.397 0.1	7
	F. B. Sp. of						

7. 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	1.440 1.520	0000.0	000.0	0000.0	22 44	1,370 0,603 0,781 *0.178 1,490 0,613 0,841 *0.228
END (1) 4 11 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15		기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	**************************************		***************************************	
ano3	NON-SEAT	INEAR LE INFINITE rt column	AST SQUAR PROFILE,	S ANALYSI -TYPE BC -tr, no c	fixed	
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	******	**********	******	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	PORE	VOT	CONCEN	7.8		
		00000000000000000000000000000000000000	000000	f-		
		,0000 -0000		0000NW		
				はなまっている。		
		00000000000000000000000000000000000000		よならてすべいほうちょう		
	: ;			2000-		
		10000 10000 10000		14630 104041	7	
		180000 180000		こもりようこうりょうこう		
30000000000000000000000000000000000000		4 ± 0.0 4 ± 0.0000		プロジェの アンジラク4ウ		F-189
		•	:			

				100 N					F -00
									F-190
									100000 100000 1000000
							MIT	19.6471 1.0806	ENTUDIATION FETTING OF 4798
							FIDENCE		0 B C C C C C C C C C C C C C C C C C C
			•				.% .%	12,3000 1,0106	######################################
	•							T≠VALUE Sg.659	N D D D D D D D D D D D D D D D D D D D
		ത്യത്ത	nomo amN⊶	4,0 → レ	# * * * * * * * * * * * * * * * * * * *		NAL RESUL TS	S.E.COEFF.	00000000000000000000000000000000000000
; ; ;	0 000 4 444 0 000	00000	00000000 0000000 0000000 00044000	00000000000000000000000000000000000000	######################################		S ANALYSIS, FI	VALUE 5-97355 1-04557	TRA INPUT TRA TION FITTED 0.000 0.000
	070	00000000000000000000000000000000000000	,w4,0,00,0 ,4,00,400 00000000	wwaaaaaaa *****************************	00000000000000000000000000000000000000	MATRIX Entre	0 0 LEAST SOUARES	NAME PECLET RF	ERED BY COMPI CONCENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•				ಬಾಬಾರಿಕರಾರಿ ರಾಜಕಾರಿಕರಾಡಿದ್ದರು	ERATION 22 23 55 55	LATION HION	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IABLE 1	00000 00000 00000 00000 00000

1000000000000 ち ちらろらまえるもの 044C@NWNL

.

0 MM----0000000000000 よみみちらりょうてつうてんりょう --macma トリのこれのほごねころ

4.440

65 66

APPENDIX G.

MOLECULAR DIFFUSION EXPERIMENT

A diffusion experiment was conducted with the beach sand fraction of the copper mill tailings to determine the molecular diffusion coefficient for bromide in the tailings medium, under saturated conditions.

The copper tailings were screened through a number 16 sieve to remove aggregates and then air-dried to a 1-3% mass wetness. Two 5.0 cm X 30.0 cm columns were packed with a funnel and tube arrangement, through which the tailings were poured. As the tailings were poured, the side of the column was tapped to settle the contents to a dry bulk density of 1.44 g/cc.

The columns were saturated with distilled water by placing them in containers and allowing water to infiltrate through the bottom. After saturation was achieved, the bottom hose was clamped off, and water at the top of the column was siphoned off. Two centimeters of tracer-laden water (1.00E-01 M. bromide from CaBr₂.H₂O solid dissolved in distilled water) was then placed at the top of the soil column and the column was sealed. The tracer solution was replenished once a week, but otherwise the columns were left undisturbed. After a period of approximately seven weeks (52 days for one column, 51 days for the second), the columns were sampled for bromide.

Sampling of the column was accomplished in the following manner. The soil in the column was sampled in increments (generally 2 cm) which were weighed and oven-dried (24 hours at

105°C) to obtain the gravimetric water contents. A measured volume (100 ml) of distilled water was added to each sample, stirred, and allowed to sit for 24 hours. This solution was then analyzed for free bromide concentration by means of a Orion Specific Ion Electrode. The number of moles of bromide were then calculated and divided by the mass of water originally held in the sampled section (determined by the previously mentioned oven drying), in order to calculate the bromide concentration of the sampled section. Corrections were made to the bromide concentration to account for complexation (see Tracer Selection section of this paper). The water content and bromide concentration data are tabulated in Table 14.

Table 14. Gravimetric water content, measured bromide concentration, corrected bromide concentration at each depth, from column diffusion experiment. Original concentration is 1.00E-01 moles/liter.

<u> </u>	Depth (cm)	Water Content (%)	Concentration (meas., M/L)	Concentratn. (Corr.,C/C _o)
COLUMN I:				
	1.0	30.0	1.33E-01	1.20E-02
	3.0	28.0	8.68E-02	6.27E-02
	5.1	29.0	4.95E-02	3.43E-02
	7.1	30.0	3.96E-02	2.70E-02
	9.0	33.0	3.51E-02	2.37E-02
	11.0	32.0	2.39E-02	1.57E-02
	13.0	30.0	1.85E-02	1.19E-02
	15.0	30.0	8.20E-03	4.96E-03
	17.0	29.0	1.02E-02	6.28E-03
	19.2	26.0	4.45E-03	2.60E-03
	21.5	29.0	2.86E-03	1.60E-03
	23.6	28.0	1.84E-03	9.94E-04
	25.7	27.0	1.24E-03	6.52E-04
	27.2	27.0	1.40E-03	7.44E-04
COLUMN II:				
	1.0	31.0	1.08E-01	7.96E-02
	3.0	30.0	8.20E-02	5.91E-02
	4.1	30.0	6.66E-02	4.72E-02
	7.1	30.0	4.30E-02	2.95E-02
	9.0	30.0	3.22E-02	2.16E-02
	11.0	31.0	2.17E-02	1.41E-02
	13.0	29.0	1.49E-02	9.48E-03
	15.0	28.0	1.19E-02	7.41E-03
	17.0	29.0	8.54E-03	5.18E-03
	19.3	29.0	5.47E-03	3.21E-03
	21.6	29.0	3.34E-03	1.89E-03
	23.7	28.0	3.29E-03	1.86E-03
	25.2	27.0	1.97E-03	1.07E-03
	27.2	27.0	3.19E-03	1.80E-03

The moles of bromide were plotted in Figures 49 and 50 in terms of relative concentrations versus depth of the column. Also shown in Figures 49 and 50 are curves generated by an analytical solution for varying the diffusion coefficient values. The analytical solution (Saxena et al., 1974), assuming a semi-infinite column length and a constant-concentration inlet boundary condition was:

$$C/C_{o} = erfc \left(z/2(D*t^{1/2})\right)$$
 (G1)

where z was depth, D was the diffusion coefficient, t was time, C was the measured concentration, and Co was the original input concentration.

It can be seen that no one curve fits the concentration values along the entire column depth. In addition, concentration measurements made at the column bottom show the tracer reached the bottom boundary during the experiment, which was inconsistent with the boundary conditions of the analytical solution.

Figures 49 and 50 each show a curve which was hand fitted to the observed measurements. These fitted curves yielded an approximate diffusion coefficient between 0.80 and 0.90 cm2/day, when fitted to the analytical curves of both columns. A final diffusion coefficient of 0.80 cm²/day was determined by considering the upper half of the column measurements more valid, since these were not as affected by the aforementioned problem with the lower boundary.

In conclusion, the diffusion coefficient obtained for this saturated material ranged between 0.80 and 0.90 cm²/day.

Relative bromide concentration versus depth, from diffusion exper-Analytical curves generated for varying values diffusion coefficient of 0.80 cm2/day was determined. of molecular diffusion coefficient are also shown. iment, Column

Figure 49.

Relative bromide concentration versus depth, from diffusion experiment, Column II. Analytical curves generated for varying values of molecular diffusion coefficients are also shown. A molecular /day was determined. diffusion coefficient of 0.80 ${
m cm}^2,$

Figure 50.

However, the bromide found at the bottom of the column may well have influenced measurements in the lower part of the column, and thus the upper column measurements were given more weight when curve-fitting to the analytical solution. With this in mind, a final diffusion coefficient of 0.80 cm²/day was determined. The experiment could have been improved by keeping the concentration constant at the upper boundary, and by termination of the experiment earlier to insure no bromide reached the lower boundary.

Appendix H.

SATURATED LONG-COLUMN SOLUTE-DISPLACEMENT EXPERIMENT

Lewis (1984) conducted a saturated solute-displacement experiment, using a long soil-column (335cm) and the beach sand fraction of the copper-mill tailings as a porous medium. The packing procedure was identical to that of the long-column unsaturated experiment, discussed in the Procedures section of the long-column experiment under unsaturated flow conditions, with 5 cm increments packed to a 1.45 g/cc dry bulk density. A reservoir and float valve assemblage fed distilled water and the tracer solution into the column, and maintained a constant height of ponding of 24 cm above the tailings surface.

Initially, the column was leached with distilled water. Effluent samples were collected and analyzed for copper, iron and sulfate concentrations as well as pH, temperature and electrical conductivity. One pore volume of a 1.0E-01 M bromide solution was introduced to the column after 10 days of leaching at a flux of 8.0E-04 cm/sec, and the effluent was analyzed during the bromide displacement.

Figure 51 shows the comparitive results of copper, total iron and sulfate, plotted as relative concentration versus pore volumes. The results of the bromide displacement were also included for comparison. All leached ions show a rapid decrease in concentration until a relatively constant concentration is reached at 0.6 pore volumes. Figure 52 shows a plot of electrical conductivity versus pore volumes. The shape of the electrical conductivity decrease is similar to that of the leached ion

leaching experiment (Cu, Fe, SÕ $_4$) and solute displacement experiment (Br). (from Lewis, 1986) Relative concentration versus pore volumes from long-column Figure 51.

concentration decrease, both leveling off at about 0.6 pore volumes.

The bromide breadthrough curve is shown in Figure 53. A dispersivity of 2.17 cm was determined from the breakthrough curve using the CFITM non-linear, least-squares curve-fitting program (van Genuchten, 1980). A three parameter fit was obtained for the retardation factor (R) of 1.06, the column Peclet number (P_C) of 149.08, and a dimensionless pulse length (T') of 1.12. Minimal retardation was observed which suggested that bromide served as an excellent tracer.

Relative bromide concentration versus pore volumes from long-column solute transport experiment under saturated conditions. (from Lewis, 1986) Figure 53.

APPENDIX I.

INFLUENCE OF EXTRACTION SUCTION ON FLOW FIELD IN COLUMN

The influence of induced suction on the flow field was considered, in order to determine the suction used for soil-water extraction by porous cups. Optimal conditions would be achieved by minimizing the portion of the flow field that was affected and decreasing the sampling time as much as possible.

Warrick and Amoozegar-Fard (1977) examined soil-water regimes near porous cup samplers. Analytical solutions were developed to determine Stokes stream potentials and hydraulic heads, as a function of soil-water pressure heads and extraction pressure heads for steady state conditions.

The solutions assume the following unsaturated hydraulic conductivity relationship

$$K(h) = K_{s} \exp(\alpha h)$$
 (I1)

to linearize the unsaturated flow equation, where K_s is the saturated hydraulic conductivity, is the slope of the $ln(K_r)$ versus pressure head plot, h is the pressure head, and K_r is the relative hydraulic conductivity.

The solutions assume an infinite medium, which is not the case for the soil column used in this experiment. The upper and lower boundaries of the column cam be considered infinite, however the side boundaries are not. The solutions, then, are used as indications rather than absolute solutions for this case.

Stokes stream potentials and hydraulic heads within the flow

field were calculated for specific applied extraction suctions. Flow nets were then constructed which graphically depicted the influence of extraction of soil water on the flow field. Figure 54 shows a flow net for an extraction suction of 40 cm of $\rm H_20$ and an initial soil suction of 30 cm of $\rm H_20$. Although this extion suction consumed more sampling time than a higher suction, the influence on the flow field was much less. Actual extraction time was between 1 to 2 1/2 hours for the 40 cm of $\rm H_20$ extraction suction.

Column Flow Field

Figure 54. Flow net for long column.

Extraction Suction is 40cm H2O. Initial Suction is 30cm H2O.

Total Hydraulic Head (cm H2O) ————

Normalized Streamline

APPENDIX J. Volumetric inflow rates (ml/hr) from initiation J-208 of unsaturated leaching to the end of the long-column, solute-transport experiment.

Time (hrs) Inflow Rate (ml/hr)

96. 21. 114.5 23.4 119.2 31.2 190. 33.6 58.8 256.5 812.2 58.8 1445.5 52.8 1829.2 52.2 1840.6 49.8 2112.5 46.2 2376.5 42.6 2400.5 48. 2472.5 52.8 2568.5 40.2 2592.5 45.6 2616.5 51.6 2735.5 53.4 2759.5 51.6 2783.5 52.8 2879.5 48. 3023.5 49.8 3143.5 42.6 3119.5 52.8 3143.5 53.4 3304.0 51.6 3404.8 43.2 3503.5 51. 3664.0 46.8 3762.5 51.6 3815.5 48.6 4100.8 49.8 4314.3 53.4 4444.1 52.8 4576.5 52.8

Time (hrs) Outflow Rate (ml/hr)

ment.

Time (III.2)	Outil
96.6 139.3 151.0 196.0 187.0 196.0 1	3.037438004707148773187640094304348562861804384136691 32298.33341.0.4707148773187640094304348562861804384136691 22288.3334412.7555555555555555555555555555555555555

1104.8 1122.0 1145.8 1173.3 1220.5 1263.5 1291.8 1413.3 1445.5 1479.8 1509.5 1531.7 1553.3 1673.7 1701.3 1746.3 1770.3 1746.3 1770.3 1791.2 1815.3 1828.2 1853.5 1875.4 1897.8 1926.9 1948.3 1974.1 1992.4 2019.9 2045.0 2063.9 2112.6 2135.9 2212.8 2212.8 2213.8	17.3 14.3 18.9 18.3 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
2112.6 2135.9 2160.9 2212.8 2232.0 2258.7 2285.5 2304.1	35.9 38.3 39.6 41.7 45.3 24.2 42.6
2328.5 2354.2 2378.2 2401.2 2426.2 2453.5 2471.8 2495.3 2522.4 2549.7	40.9 41.1 42.5 43.3 40.5 39.2 39.9 30.4 41.8
	41.8 43.2 44.0 41.3 43.8 45.3 43.2 44.5
2549.7 2569.3 2594.4 2616.5 2640.5 2665.2 2690.1 2713.1 2740.3	43.2 44.5 42.4 45.7 57.6

2761.4	48.2 44.2
2791.5	44.2
2761.4 2791.5 2808.2 2824.3	68.0 44.0 48.0
2824.3	44.0
2848.5 2874.1 2897.9 2921.5	48.0
2874.1	46.3 50.8 67.8
2897.9	46.3 50.8
2921.5	67.8
2944.9	46.6
2944.9 2976.0	46.6 44.4
2995.5	46.6 44.4 45.6
2824.3 2848.5 2874.1 2897.9 2921.5 2944.9 2976.0 2995.5 3019.1	45.6 47.5
3045.5	47.2
3019.1 3045.5 3064.3 3088.9	45.2
3088.9	44.2
2944.9 2976.0 2995.5 3019.1 3045.5 3064.3 3088.9 3112.8	45.6
3112.8 3137.1	45.9
3112.8 3137.1 3160.4 3213.5 3258.4	47.2 45.2 44.2 45.6 45.9 47.0
3213.5	39.7
3258 4	45 8
3258.4 3305.1	45.8 54.4
3406.1	36.4
3258.4 3305.1 3406.1 3424.1 3459.8 3500.5 3574.0 3646.2 3665.8 3762.5 3819.3 3836.3 3837.9	45.8 54.4 36.4 44.6
3450 8	45.3
3459.8 3500.5	45.3 76.7 43.6 45.7
3500.5 3574.0 3646.2 3665.8	76.7 43.6 45.7 40.0
35/4.0	45.0
3646.2	45.7
3665.8 3762.5 3819.3 3836.3	40.0
3/62.5	42.4 44.0
3819.3	44.0
3836.3	42.4 44.0 42.5 42.1
3762.5 3819.3 3836.3 3857.9 3929.3 4004.5 4102.1 4175.2	42.1
3929.3 4004.5	37.8 55.2 50.7
4004.5	55.2
4102.1 4175.2	50.7
4175.2	50.7 44.5
4240.5 4266.7	36.8 43.9
4266.7	43.9
4240.5 4266.7 4314.3 4444.1	56.7
4444.1	56.7 42.0
4507.4	48.2
4507.4 4561.0 4649.8	52.2 47.0
3929.3 4004.5 4102.1 4175.2 4240.5 4266.7 4314.3 4444.1 4507.4 4561.0 4649.8	44.0.00.38.8.6.4.6.5.2.2.2.6.9.0.7.8.4.4.6.3.7.6.7.0.4.0.5.1.8.2.7.5.8.9.7.0.2.2.0.4.4.5.7.4.5.4.4.5.7.4.5.4.4.5.7.4.5.4.4.5.7.4.5.4.4.5.7.4.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.4.5.5.4.5.5.4.5.4.5.4.5.5.4.5.4.5.5.5.4.5.5.5.4.5.5.5.4.5

	end of the
Time (hrs)	Volume (ml)
96.0 118.6 139.3 151.3 164.0 187.0 190.0 209.3 216.0 232.5 246.5 256.5 259.4 270.7 292.8 306.1 331.8 340.3 353.5 365.5 378.3 390.6 401.7 412.3 427.4 438.0 460.1 474.5 485.0 506.5 520.5	348.0 852.2 1452.2 1912.2 2416.4 3231.4 3331.4 3618.4 4163.4 4438.4 5468.4 6908.4 7058.4 7703.4 8928.4 9703.4 10264.4 11138.4 11608.4 12348.4 13053.4 13753.4 14511.4 15181.4 15181.4 15181.4 15181.4 17151.4 17306.4 17946.4 18796.4 19378.4 20503.4 21082.4 2267.4 23292.4 24427.4 27507.4 28557.4 29397.4 31407.4 32042.4 33202.4 34352.4 36152.4 3728

1122.0 1145.8 1173.3 1220.5 1263.5 1291.8 1413.3 1445.5 1509.5 1531.7 1553.3 1673.7 1701.3 1746.3 1770.3 1746.3 1770.3 1791.2 1815.3 1828.3 1875.4 18926.9 1948.1 1992.4 2019.9 2045.9 2045.9 2045.9 2112.6 2135.9 2212.8 2258.7 2269.3 2401.2 2426.2 2457.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 2495.3 25471.8 25471.8 25471.8 25471.8 25471.8 2666.2 26	46413.9 46848.9 47423.9 48273.9 50273.9 52173.9 52673.9 52673.9 53648.9 545423.9 545423.9 618388.9 62148.9 632568.9 643188.9 671282.9 7722677.9 774237.9 774237.9 774237.9 774237.9 774255.4 81520.4 84957.4 8896769.4 84957.4 8896769.4 915232.4 9152
2616.5 2640.5 2665.2 2690.1 2713.1 2740.3	104484.4 105521.4 106621.4 107676.4 108727.4 110294.4
2761.4	111312.4

2791.5 2808.2 2824.3 2848.5 2874.1 2897.9 2921.5 2944.9 2976.0 2995.5 3019.1 3045.5 3064.3 3088.9 3112.8 3137.1 3160.4 3213.5 3258.4 3305.1 3424.1 3459.8 3500.5 3574.0	112642.4 113777.4 114486.4 115647.4 116832.4 118042.4 119642.4 120732.4 122112.4 123002.4 124122.4 125367.4 126216.4 127303.4 128394.4 129509.4 130605.4 132711.4 134768.4 134768.4 141783.4 143399.4 146519.4 149727.4
3088.9	127303.4
3160.4	130605.4
	132711.4
3305.1	137307.4
3500.5	146519.4
3574.0	
3646.2 3665.8	153027.4 153811.4
3762.5	157911.4
3819.3 3836.3	160411.4 161133.4
3857.9	161133.4 162043.4
3929.3	164743.4
4004.5 4102.1	168893.4 173840.4
4175.2	177090.4
4240.5	179490.4
4266.7 4314.3	180640.4 183340.4
4444.1	188790.4
4507.4	191840.4
4561.0 4649.8	194640.4 198815.4

Appendix L. Time (hrs) and cumulative sampling volumes (ml) from all the porous cup samplers.

TIME (hrs)	CUMMULATIVE		(ml)
10.2	13.		
25.3	16.	. 1	
36.2	24.	. 3	
47.2	29.	. 9	
55.1	35.	. 5	
60.8	40.		
69.6	45.		
84.3	52.		
90.1	59 .		
98.7	77.		
103.9	88.		
110.1			
120.1	97.		
	105.		
127.3	115.		
133.7	123.		
139.8	134.		
145.9	145.	. 1	
147.4	148.	. 3	
151.8	157.	5	
158.8	169.	. 3	
164.7	180.		
180.8	188.		
192.3	197.		
207.2	207.		
213.3	220.		
216.8	238.		
231.1	253 .		
237.4	266.		
253.8	200. 277.		
264.1			
277.6	286.		
284.4	298.		
	307.		
301.8	321.		
307.7	323.		
314.4	333.		
327.3	350.		
323.7	373.		
351.7	395.	8	
364.0	406.	2	
375.1	424.	4	
384.6	434.	0	
396.5	442.	8	
403.8	455.	0	
421.6	468.		
430.5	479.		
445.0	496.		
457.3	515.		
470.1	535.		
475.9	553.		
3. 	<i>555</i> .	_	

493.1 500.3 518.5 526.0 541.5 5541.5 564.8 573.6 625.3 643.6 667.1 721.5 731.8 741.1 757.0 766.2 781.0 788.6 812.3 8		567.7 580.4 586.8 609.3 625.5 638.9 649.9 703.4 771.0 793.0 821.0 821.0 836.2 915.0 926.4 937.2 954.0 973.4 1020.5 1031.8 1049.4 1067.8 1116.4 1126.1 1134.1
963.3 972.1 979.9 996.1 1021.3 1045.9 1069.7 1093.3		1158.8 1159.8 1173.0 1186.0
1116.7 1147.8 1167.3 1190.9 1217.3 1236.1 1260.7		1224.9 1235.2 1254.1 1265.5 1273.3 1280.9 1288.9

1284.6	1299.3
1308.9	1312.9
1332.2	1328.2
1385.3	1341.2
1430.2	1352.2
1476.9	1358.0
1577.9	1362.2
1631.6	1365.2
1694.1	1374.8
1837.6	1383.4
2008.1	1391.4
2273.9	1407.1
2830.5	1419.6

Appendix M. Pressure heads obtained from tensiometer readings during long-column (330 cm), unsaturated, solute-transport experiment. Time is from introduction of tracer to end of sampling.

DAY	τ	PRESSURE	HEADS (CM	OF WAL	ים מא לסקים	ACH DEPTH	(CM)
1-4-1-A	31	96	120	165	225	ACH DEPTH 283	, ,
	<u> </u>		120	100	225	203	315
2	-21.4	-22.0	-20.0	-15.0	_	_	-20.0
3	-23.4	-25.0	-21.0	-21.0	_	_	-24.0
4	_	-26.0	-21.0	-19.0	_	-	-30.0
5	_	-24.0	-18.0	-19.0	_	-	-43.0
5 · 6	_	-26.0	-21.0	-	_	_	-36.0
7	-25.2	-28.0	-24.0	-27.0	-24.0	· -	_
8	-25.2	-14.0	-23.0	-29.0	-31.0	-	_
11	-11.0	_	-14.0	•	-21.0	_	_
13	-11.0	_	_			_	_
14	-10.0	_	-6.0	_		-20.0	_
15	-6.0	_	-6.0		-	-17.0	-
16	-11.0	-	-11.0	-	-	-19.0	_
17	-11.0	_	-11.0	-	_	-11.0	_
24	-18.0	_	-	-	-	-	_
25	-	_	-11.0	-	_	-25.0	-
26	_	_	-	-	_	-12.0	_
33	-18.0	_	-17.0	-	_	-14.0	_
34	-18.0	_	-	-	_	_	_
39	-19.0	-	-	-29.0	-	-5.0	
40	-23.0	-	-	-19.0	-	-8.0	_
41	-17.0	-	-	-16.0	-	-13.0	_
45	-18.0	-	-	-12.0	_	-14.0	-
46	-13.0	_	-	-21.0	_	-12.0	-
51	-13.0	_	-	-19.0	-	-12.0	
52	-14.0	-	-	-26.0	-	-12.0	-
54	_	-	-	-29.0		-21.0	-
55	-14.0	-	_	-25.0	- '	-21.0	-
56	-13.0	-		-21.0	_	-14.0	-
69	-21.0	_	-	-27.0	-	-	-
103	-21.0	-19.0	· -	-19.0	-23.0	-17.0	-15.0
104	-	-23.0	_	-26.0	-29.0	-11.0	-15.0
105	-10.0	-13.0	_	-18.0	-31.0	-16.0	-14.0
107	-10.0	-19.0	_	-20.0	-23.0	-11.0	0.0
110	-10.0 -12.0	-17.0	_	-14.0	-12.0	-	_
113	-12.0 -12.0	-20.0		-15.0	-	-	-
114 115	-18.0 -12.0	-17.0	_	-21.0	_	_	-
115	-12.0 -22.0	-27.0	-	-28.0	-14.0	-5.0	-
117	-22.0 -22.0	-27.0	_	-22.0	-25.0	-	
117	-22.0 -21.0	-27.0 -21.0	-	-22.0	-27.0	-5.0	_
119	-21.0	-21.0 -22.0	<u>-</u>	-20.0	-27.0	-11.0	-3.0
119	-21.0 -10.0	-23.0 -21.0	<u>-</u>	-24.0	-29.0	-17.0	-5.0
エエコ	-19.0	-21.0	_	-21.0	-23.0	-15.0	-4.0

WATER CONTENTS (VOLUMETRIC), FROM 'RING' HAND-CORED SAMPLES TAKEN UPON COMPLETION OF LONG-COLUMN EXPERIMENT.

DEPTH	(CM)	WATER	CONTENT
33.0		40.	
37.		49.	
35.		108.	
28.		180.	
29.		234.	
32.		290.	
36.		304.	

Appendix O. Electrical conductivity and pH of leachate for long-column, unsaturated leaching. Time equals zero for initiation of unsaturated leaching. At 0 of 27%, L of 330 cm, and area of 206.1 cm², one pore volume was 18363.5 ml.

TIME (HRS)	PORE VOLUME	EC (uMHOS)	рН
246.5	0.34	1900.0	4.0
256.5	0.38	2200.0	4.0
259.4	0.38	2400.0	4.0
292.8	0.49	2000.0	4.1
316.1	0.56	2150.0	4.2
331.8	0.61	2150.0	3.9
340.3	0.63	2300.0	3.9
353.5	0.67	2100.0	4.0
365.5	0.71	2200.0	4.0
390.6	0.79	2200.0	4.2
401.7	0.83	2050.0	3.9
412.3	0.86	2000.0	4.0
427.4	0.90	1850.0	
438.5	0.93	1800.0	4.1
451.0	0.94	1800.0	4.0
460.1	0.98	1800.0	4.2
474.5	1.02	1500.0	3.8
485.0	1.06	1500.0	4.1
556.6	1.21	1400.0	4.0
624.9	1.33	800.0	4.0
718.4	1.60	525.0	4.1
903.9	2.09	350.0	4.0

#	MIN	HOURS	LITERS	PV	MEAS. CONC	REL CONC
12345678901234567890122222222233333333334444466	810.0 1518.0 2170.0 2831.0 3305.0 3650.0 4178.0 5057.0 4686.0 5920.0 6226.0 6607.0 7637.0 8023.0 8755.0 9105.0 9458.0 9105.0 9458.0 9105.0 12399.0 13682.0 13682.0 14141.0 15230.0 15841.0 15230.0 15841.0 15841.0 15841.0 15841.0 15841.0 16646.0 17051.0 18067.0 18067.0 18067.0 18067.0 18067.0 21100.0 21820.0 22505.0 24227.0 25296.0 27440.0 28207.0 28553.0 29586.0	13.5 25.3 26.2 26.3 27.1 84.1 27.3 28.1 27.3 28.1 27.3 21.3	0.70 1.84 2.77 3.52 4.54 5.50 5.66 6.87 7.43 9.82 10.70 11.00 11.70 12.54 13.45 13.45 14.46 15.45 16.38 17.79 18.39 10.21 12.54 13.45 15.38 17.99 18.39 19.00 11.70 12.54 12.54 13.45 15.45 16.38 17.99 18.39 19.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0	u 0.16 0.33 0.43 0.65 0.72 0.83 1.07 1.18 1.24 1.31 1.66 1.73 1.87 1.87 1.87 1.96 2.14 2.28 2.58 2.72 2.81 3.38 3.58 4.33 4.47 4.80 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.6	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.921E-02 0.280E-01 0.410E-01 0.590E-01 0.800E-01 0.800E-01 0.800E-01 0.861E-01 0.861E-01 0.941E-01 0.941E-01 0.500E-01 0.480E-01 0.500E-01 0.540E-01 0.540E-01 0.540E-01 0.100E+00 0.100E+00 0.971E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01 0.100E+00 0.941E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.921E-01 0.280E+00 0.410E+00 0.590E+00 0.800E+00 0.800E+00 0.800E+00 0.800E+00 0.861E+00 0.861E+00 0.941E+00 0.590E+00 0.480E+00 0.590E+00 0.590E+00 0.540E+00 0.590E+00 0.100E+01
45	28553.0	475.9 493.1 500.3 518.5	20.25 20.92 21.25 22.03	5.66 5.87 5.96 6.17	0.100E+00 0.100E+00 0.650E-01 0.400E-01	0.100E+01 0.100E+01 0.650E+00 0.400E+00
50 51 52 53 54	31558.0 32468.0 33027.0 33889.0 34379.0 35315.0	526.0 541.1 550.4 564.8 573.0 588.6	22.34 22.99 23.38 23.99 24.31 24.94	6.26 6.44 6.55 6.72 6.82 7.00	0.220E-01 0.150E-01 0.120E-01 0.601E-02 0.401E-02 0.401E-02	0.220E+00 0.150E+00 0.120E+00 0.601E-01 0.401E-01 0.401E-01

55 56 57 58	36826.0 37519.0 38180.0 38617.0	598.0 613.8 625.3 636.3 643.6 660.2	25.30 25.90 26.38 26.84 26.94	7.12 7.30 7.44 7.57 7.66	0.300E-02 0.200E-02 0.200E-02 0.200E-02 0.501E-03	0.300E-01 0.200E-01 0.200E-01 0.200E-01 0.501E-02
61 62 63 64	40028.0 41082.0 41651.0	667.1 684.7 694.2 711.3	27.63 27.92 28.67 29.09 29.84	7.85 7.94 8.15 8.26 8.47	0.501E-03 0.501E-03 0.200E-03 0.200E-03 0.501E-03	0.501E-02 0.501E-02 0.200E-02 0.200E-02 0.501E-02
65 66 67 68	43947.0 44464.0	721.5 732.4 741.1 756.5	30.29 30.77 31.10 31.82	8.59 8.72 8.82 9.01	0.401E-03 0.300E-03 0.300E-03 0.200E-03	0.401E-02 0.300E-02 0.300E-02
69 70 71 72	46857.0 47300.0	766.2 780.9 788.3 805.6	32.20 32.89 33.20 33.95	9.12 9.29 9.38 9.59	0.200E-03 0.200E-03 0.100E-03 0.500E-04	0.200E-02 0.200E-02 0.200E-02 0.100E-02 0.500E-03
73 74 75 76	49717.0 50221.0	812.3 828.6 837.0 853.9	34.24 34.98 35.34 36.05	9.67 9.86 9.96 10.16	0.400E-04 0.100E-03 0.100E-03 0.200E-03	0.400E-03 0.100E-02 0.100E-02 0.200E-02
77 78 79 80	52576.0 53095.0	861.9 876.3 884.9 901.0	36.39 37.05 37.45 38.54	10.26 10.43 10.53 10.72	0.140E-03 0.140E-03 0.120E-03 0.140E-03	0.140E-02 0.140E-02 0.120E-02 0.140E-02
81 82 83 84	55413.0 55990.0 56958.0	912.1 923.6 933.2 949.3	39.01 39.60 40.03 40.74	10.85 10.99 11.11 11.30	0.110E-03 0.100E-03 0.740E-04 0.740E-04	0.110E-02 0.100E-02 0.740E-03 0.740E-03
85 86 87 88	58765.0 61278.0 62755.0	979.9 979.4 1021.3 1045.9	42.49 43.20 44.36 45.55	11.66 11.66 12.16 12.45	0.750E-04 0.580E-04 0.580E-04 0.750E-04	0.750E-03 0.580E-03 0.580E-03 0.750E-03
89 90 91 92	67000.0 68870.0 70037.0	1069.7 1116.7 1147.8 1167.3	46.76 49.45 50.83 51.72	12.73 13.28 13.66 13.89	0.750E-04 0.260E-03 0.291E-03 0.660E-04	0.750E-03 0.260E-02 0.291E-02 0.660E-03
93 94 95 96	75644.0	1190.9 1217.3 1236.1 1260.7	52.84 54.09 54.93 56.02	14.17 14.49 14.71 15.00	0.730E-04 0.920E-04 0.880E-04 0.680E-04	0.730E-03 0.920E-03 0.880E-03 0.680E-03
97 98 99 100 101	77076.0 78535.0 79930.0 83120.0 85813.0	1284.6 1308.9 1332.2 1385.3	57.11 58.23 59.32 61.43	15.29 15.57 15.85 16.48	0.720E-04 0.720E-04 0.700E-04 0.980E-04	0.720E-03 0.720E-03 0.700E-03 0.980E-03
102 103 104	88545.0 94674.0 100340.0	1430.2 1475.8 1577.9 1672.3 1837.6	63.49 66.02 69.70 75.24 82.53	17.02 17.56 18.77 19.90	0.760E-04 0.100E-03 0.940E-04 0.800E-04	0.760E-03 0.100E-02 0.940E-03 0.800E-03
106	120488.0 136434.0	2008.1 2273.9	82.53 89.85 102.56	21.87 23.89 27.06	0.620E-04 0.440E-04 0.400E-05	0.620E-03 0.440E-03 0.400E-04

Appendix P. Time, volume of effluent, pore volumes and concentrations for the 126 cm depth sampling point, long-column.

#	MIN	HOURS	LITERS	PV	MEAS. CONC	REL CONC
1234567890112345678901123456789012334567890123345678901233456789012334567	6235.0 6607.0 7205.0 7637.0 8023.0 8385.0 9105.0 9458.0 9105.0 9458.0 11504.0 12417.0 12724.0 13006.0 13682.0 14141.0 15230.0 15841.0 16646.0 17051.0 18067.0 18861.0 19615.0 19615.0 21100.0 21820.0 22505.0 23075.0 23791.0 24227.0 25296.0 27400.0 28207.0 28553.0 29586.0	103.9 110.1 127.3 133.7 139.8 147.4 151.8 157.6 164.3 180.0 7207.0 212.1 228.0 235.7 253.8 264.0 277.2 254.2 2301.1 314.3 326.9 332.7 351.7 363.7 375.1 493.1 475.9 493.1	5.21 5.50 5.98 6.63 6.89 7.43 7.69 8.70 9.18 10.07 11.70 11.70 11.70 12.54 12.77 13.42 14.66 15.45 16.83 17.79 18.92 14.66 15.95 16.83 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.99 18.90 17.	0.62 0.77 0.77 0.78 0.88 0.99 0.99 1.14 1.24 1.26 1.36 1.57 1.69 1.79 1.87 1.98 2.29 2.36 2.40 2.55 2.83 2.94	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.170E-03 0.581E-03 0.160E-02 0.451E-02 0.451E-02 0.160E-01 0.280E-01 0.530E-01 0.560E-01 0.560E-01 0.740E-01 0.770E-01 0.690E-01 0.650E-01 0.650E-01 0.650E-01 0.881E-01 0.740E-01 0.580E-01 0.881E-01 0.901E-01 0.881E-01 0.901E-01 0.901E-01 0.901E-01 0.941E-01 0.931E-01 0.931E-01 0.931E-01 0.931E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.170E-02 0.581E-02 0.160E-01 0.451E-01 0.160E+00 0.280E+00 0.280E+00 0.530E+00 0.560E+00 0.560E+00 0.740E+00 0.770E+00 0.650E+00 0.650E+00 0.881E+00 0.881E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00 0.901E+00
34 35 36 37	27400.0 28207.0 28553.0 29586.0	456.7 470.1 475.9 493.1	19.49 20.01 20.25 20.92	2.72 2.80 2.83 2.94	0.931E-01 0.841E-01 0.100E+00 0.921E-01	0.931E+00 0.841E+00 0.100E+01 0.921E+00
38 39 40 41 42 43	31558.0 32468.0 33027.0 33889.0 34379.0 35315.0	526.0 541.1 550.4 564.8 573.0 588.6	22.34 22.99 23.38 23.99 24.31 24.94	3.13 3.22 3.27 3.36 3.41 3.50	0.100E+00 0.100E+00 0.921E-01 0.981E-01 0.961E-01 0.841E-01	0.100E+01 0.100E+01 0.921E+00 0.981E+00 0.961E+00 0.841E+00
44 45 46 47 48 49 50 51 52 53	35880.0 36826.0 37519.0 38180.0 38617.0 39609.0 40028.0 41082.0 41651.0 42675.0	598.0 613.8 625.3 636.3 643.6 660.2 667.1 684.7 694.2 711.3	25.30 25.90 26.38 26.84 26.94 27.63 27.92 28.67 29.09 29.84	3.56 3.65 3.72 3.79 3.83 3.93 3.97 4.07 4.13 4.23	0.620E-01 0.430E-01 0.320E-01 0.260E-01 0.180E-01 0.120E-01 0.901E-02 0.701E-02 0.701E-02	0.620E+00 0.430E+00 0.320E+00 0.260E+00 0.180E+00 0.120E+00 0.901E-01 0.701E-01 0.501E-01

54	43288.0	721.5	30.29	4.29	0.401E-02	0.401E-01
55	43947.0	732.4	30.77	4.36	0.401E-02	0.401E-01
56	44464.0	741.1	31.10	4.41	0.300E-02	0.300E-01
57	45390.0	756.5	31.82	4.50	0.300E-02	0.300E-01
58	45970.0	766.2	32.20	4.56	0.300E-02	0.300E-01
59	46857.0	780.9	32.89	4.65	0.200E-02	0.200E-01
60	47300.0	788.3	33.20	4.69	0.100E-02	0.100E-01
61	48333.0	805.6	33.95	4.79	0.501E-03	0.501E-02
62	48735.0	812.3	34.24	4.83	0.300E-03	0.300E-02
63	49717.0	828.6	34.98	4.93	0.200E-02	0.200E-01
64	50221.0	837.0	35.34	4.98	0.801E-03	0.801E-02
65	51232.0	853.9	36.05	5.08	0.801E-03	0.801E-02
66	51716.0	861.9	36.39	5.13	0.621E-03	0.621E-02
67	52576.0	876.3	37.05	5.21	0.641E-03	0.641E-02
68	53095.0	884.9	37.45	5.27	0.571E-03	0.571E-02
69	54062.0	901.0	38.54	5.36	0.541E-03	0.541E-02
70	54723.0	912.1	39.01	5.42	0.451E-03	0.451E-02
71	55413.0	923.6	39.60	5.50	0.501E-03	0.501E-02
72	55990.0	933.2	40.03	5.55	0.421E-03	0.421E-02
73	56958.0	949.3	40.74	5.64	0.461E-03	0.461E-02
74	58796.0	979.9	42.49	5.83	0.341E-03	0.341E-02
75	59765.0	996.1	43.20	5.93	0.341E-03	0.341E-02
76	61278.0	1021.3	44.36	6.08	0.260E-03	0.260E-02
77	62755.0	1045.9	45.55	6.22	0.240E-03	0.240E-02
78	64182.0	1069.7	46.76	6.36	0.230E-03	0.230E-02
79	65599.0	1093.3	48.36	6.50	0.191E-03	0.191E-02
80	67000.0	1116.7	49.45	6.64	0.220E-02	0.220E-01
81	68870.0	1147.8	50.83	6.83	0.800E-04	0.800E-03
82	70037.0	1167.3	51.72	6.94	0.180E-03	0.180E-02
83	71455.0	1190.9	52.84	7.08	0.250E-03	0.250E-02
84	73040.0	1217.3	54.09	7.24	0.250E-03	0.250E-02
85	75644.0	1260.7	56.02	7.50	0.200E-03	0.200E-02
86	77076.0	1284.6	57.11	7.64	0.210E-03	0.210E-02
87	78535.0	1308.9	58.23	7.79	0.200E-03	0.200E-02
88	79930.0	1332.2	59.32	7.93	0.210E-03	0.210E-02
89	83120.0	1385.3	61.43	8.25	0.130E-03	0.130E-02
90	85813.0	1430.2	63.49	8.51	0.170E-03	0.170E-02
91	97894.0	1631.6	72.12	9.71	0.761E-03	0.761E-02
92	100448.0	1674.1	75.27	9.96	0.291E-03	0.291E-02
93	136434.0	2273.9	102.56	13.53	0.820E-04	0.820E-03
94	169830.0	2830.5	127.88	16.84	0.350E-04	0.350E-03

55	55413.0	923.6	39.60	2.75	0.351E-02	0.351E-01	P-
			40.03		0.370E-02	0.370E-01	•
			40.74	2.82	0.320E-02	0.321E-01	
				2.86	0.331E-02	0.331E-01	
					0.180E-02	0.180E-01	
					0.230E-02	0.230E-01	
				2.96	0.130E-02	0.130E-01	
				3.03	0.170E-02	0.170E-01	
					0.220E-02	0.220E-01	
					0.230E-02	0.230E-01	
					0.110E-02	0.110E-01	
					0.170E-02	0.170E-01	
				3.41	0.862E-03	0.862E-02	
				3.48	0.801E-03	0.801E-02	
			52.84	3.54	0.601E-03	0.601E-02	
	73040.0	1217.3	54.09	3.62	0.601E-03	0.601E-02	
71	74165.0	1236.1	54.93	3.68	0.321E-03	0.321E-02	
72	75644.0	1260.7	56.02	3.75	0.401E-03	0.401E-02	
73	77076.0	1284.6	57.11	3.82	0.401E-03	0.401E-02	
74	78535.0	1308.9	58.23	3.89	0.321E-03	0.321E-02	
75	79930.0	1332.2	59.32	3.96	0.260E-03	0.260E-02	
76	83120.0	1385.3	61.43	4.12	0.120E-03	0.120E-02	
77	85813.0	1430.2	63.49	4.25	0.250E-03	0.250E-02	
78	88545.0	1475.8	66.02	4.39	0.230E-03	0.230E-02	
79	100448.0	1674.1	75.27	4.98	0.250E-03		
80	110259.0	1837.6	82.53	5.46	0.200E-03		
81	120488.0	2008.1	89.85	5.97			
82	136434.0	2273.9	102.56				
83	169830.0	2830.5	127.88	8.42	0.110E-03	0.110E-02	
	567896012345666777777777778882 882	56 55990.0 57 56958.0 58 57795.0 59 58326.0 60 58796.0 61 59765.0 62 61278.0 63 62755.0 64 64182.0 65 65599.0 66 67000.0 67 68870.0 68 70037.0 70 73040.0 71 74165.0 72 75644.0 73 77076.0 74 78535.0 75 79930.0 76 83120.0 77 85813.0 78 88545.0	56 55990.0 933.2 57 56958.0 949.3 58 57795.0 963.3 59 58326.0 972.1 60 58796.0 979.9 61 59765.0 996.1 62 61278.0 1021.3 63 62755.0 1045.9 64 64182.0 1069.7 65 65599.0 1093.3 66 67000.0 1116.7 67 68870.0 1147.8 68 70037.0 1167.3 69 71455.0 1190.9 70 73040.0 1217.3 71 74165.0 1236.1 72 75644.0 1260.7 73 77076.0 1284.6 74 78535.0 1308.9 75 79930.0 1332.2 78 8813.0 1430.2 78 88545.0 1475.8 79 100448.0 1674.1 80 110259.0 1837.6 81 120488.0 2008.1 <td>56 55990.0 933.2 40.03 57 56958.0 949.3 40.74 58 57795.0 963.3 41.36 59 58326.0 972.1 42.16 60 58796.0 979.9 42.49 61 59765.0 996.1 43.20 62 61278.0 1021.3 44.36 63 62755.0 1045.9 45.55 64 64182.0 1069.7 46.76 65 65599.0 1093.3 48.36 66 67000.0 1116.7 49.45 67 68870.0 1147.8 50.83 68 70037.0 1167.3 51.72 69 71455.0 1190.9 52.84 70 73040.0 1217.3 54.09 71 74165.0 1236.1 54.93 72 75644.0 1260.7 56.02 73 77076.0 1284.6 57.11 74 78535.0 1308.9 58.23 75 79930.0 1332.2 5</td> <td>56 55990.0 933.2 40.03 2.77 57 56958.0 949.3 40.74 2.82 58 57795.0 963.3 41.36 2.86 59 58326.0 972.1 42.16 2.90 60 58796.0 979.9 42.49 2.91 61 59765.0 996.1 43.20 2.96 62 61278.0 1021.3 44.36 3.03 63 62755.0 1045.9 45.55 3.11 64 64182.0 1069.7 46.76 3.18 65 65599.0 1093.3 48.36 3.26 66 67000.0 116.7 49.45 3.32 67 68870.0 1147.8 50.83 3.41 68 70037.0 1167.3 51.72 3.48 69 71455.0 1190.9 52.84 3.54 70 73040.0 1217.3 54.09 3.62 71 74165.0 1236.1 54.93 3.68 72 75644.0 1260.7</td> <td>56 55990.0 933.2 40.03 2.77 0.370E-02 57 56958.0 949.3 40.74 2.82 0.320E-02 58 57795.0 963.3 41.36 2.86 0.331E-02 59 58326.0 972.1 42.16 2.90 0.180E-02 60 58796.0 979.9 42.49 2.91 0.230E-02 61 59765.0 996.1 43.20 2.96 0.130E-02 62 61278.0 1021.3 44.36 3.03 0.170E-02 63 62755.0 1045.9 45.55 3.11 0.220E-02 64 64182.0 1069.7 46.76 3.18 0.230E-02 65 65599.0 1093.3 48.36 3.26 0.110E-02 66 67000.0 1116.7 49.45 3.32 0.170E-02 67 68870.0 1147.8 50.83 3.41 0.862E-03 68 70037.0 1167.3 51.72 3.48 0.801E-03 70 73040.0 1217.3 54.09 3.62</td> <td>56 55990.0 933.2 40.03 2.77 0.370E-02 0.370E-01 57 56958.0 949.3 40.74 2.82 0.320E-02 0.321E-01 58 57795.0 963.3 41.36 2.86 0.331E-02 0.331E-01 59 58326.0 972.1 42.16 2.90 0.180E-02 0.180E-01 60 58796.0 979.9 42.49 2.91 0.230E-02 0.230E-01 61 59765.0 996.1 43.20 2.96 0.130E-02 0.170E-01 62 61278.0 1021.3 44.36 3.03 0.170E-02 0.170E-01 63 62755.0 1045.9 45.55 3.11 0.220E-02 0.220E-01 64 64182.0 1069.7 46.76 3.18 0.230E-02 0.230E-01 65 65599.0 1093.3 48.36 3.26 0.110E-02 0.170E-01 67 68870.0 1147.8 50.83 3.41 0.862E-03 0.862E-02</td>	56 55990.0 933.2 40.03 57 56958.0 949.3 40.74 58 57795.0 963.3 41.36 59 58326.0 972.1 42.16 60 58796.0 979.9 42.49 61 59765.0 996.1 43.20 62 61278.0 1021.3 44.36 63 62755.0 1045.9 45.55 64 64182.0 1069.7 46.76 65 65599.0 1093.3 48.36 66 67000.0 1116.7 49.45 67 68870.0 1147.8 50.83 68 70037.0 1167.3 51.72 69 71455.0 1190.9 52.84 70 73040.0 1217.3 54.09 71 74165.0 1236.1 54.93 72 75644.0 1260.7 56.02 73 77076.0 1284.6 57.11 74 78535.0 1308.9 58.23 75 79930.0 1332.2 5	56 55990.0 933.2 40.03 2.77 57 56958.0 949.3 40.74 2.82 58 57795.0 963.3 41.36 2.86 59 58326.0 972.1 42.16 2.90 60 58796.0 979.9 42.49 2.91 61 59765.0 996.1 43.20 2.96 62 61278.0 1021.3 44.36 3.03 63 62755.0 1045.9 45.55 3.11 64 64182.0 1069.7 46.76 3.18 65 65599.0 1093.3 48.36 3.26 66 67000.0 116.7 49.45 3.32 67 68870.0 1147.8 50.83 3.41 68 70037.0 1167.3 51.72 3.48 69 71455.0 1190.9 52.84 3.54 70 73040.0 1217.3 54.09 3.62 71 74165.0 1236.1 54.93 3.68 72 75644.0 1260.7	56 55990.0 933.2 40.03 2.77 0.370E-02 57 56958.0 949.3 40.74 2.82 0.320E-02 58 57795.0 963.3 41.36 2.86 0.331E-02 59 58326.0 972.1 42.16 2.90 0.180E-02 60 58796.0 979.9 42.49 2.91 0.230E-02 61 59765.0 996.1 43.20 2.96 0.130E-02 62 61278.0 1021.3 44.36 3.03 0.170E-02 63 62755.0 1045.9 45.55 3.11 0.220E-02 64 64182.0 1069.7 46.76 3.18 0.230E-02 65 65599.0 1093.3 48.36 3.26 0.110E-02 66 67000.0 1116.7 49.45 3.32 0.170E-02 67 68870.0 1147.8 50.83 3.41 0.862E-03 68 70037.0 1167.3 51.72 3.48 0.801E-03 70 73040.0 1217.3 54.09 3.62	56 55990.0 933.2 40.03 2.77 0.370E-02 0.370E-01 57 56958.0 949.3 40.74 2.82 0.320E-02 0.321E-01 58 57795.0 963.3 41.36 2.86 0.331E-02 0.331E-01 59 58326.0 972.1 42.16 2.90 0.180E-02 0.180E-01 60 58796.0 979.9 42.49 2.91 0.230E-02 0.230E-01 61 59765.0 996.1 43.20 2.96 0.130E-02 0.170E-01 62 61278.0 1021.3 44.36 3.03 0.170E-02 0.170E-01 63 62755.0 1045.9 45.55 3.11 0.220E-02 0.220E-01 64 64182.0 1069.7 46.76 3.18 0.230E-02 0.230E-01 65 65599.0 1093.3 48.36 3.26 0.110E-02 0.170E-01 67 68870.0 1147.8 50.83 3.41 0.862E-03 0.862E-02

Appendix P. Time, volume of effluent, pore volumes, and concentrations for 330 cm sampling depth, long-column.

#	MIN	HOURS	LITERS	PV	MEAS. CONC	REL CONC
1	21100.0	351.7	15.45	0.80	0.150E-04	0.150E-03
2	21840.0	364.0	15.96	0.83	0.200E-04	0.200E-03
3	22505.0	375.1	16.38	0.85	0.200E-04	0.200E-03
.: 4	23075.0	384.6	16.83	0.88	0.300E-04	0.300E-03
5	23791.0	396.5	17.38	0.90	0.300E-04	0.300E-03
6	24227.0	403.8	17.70	0.92	0.130E-03	0.130E-02
7	25296.0	421.6	17.99	0.96	0.340E-02	0.340E-01
8	25828.0	430.5	18.34	0.98	0.701E-02	0.701E-01
9 10	26700.0 27440.0	445.0	18.96	1.01	0.230E-01	0.230E+00
11	28207.0	457.3 470.1	19.49 20.01	1.04 1.07	0.330E-01 0.480E-01	0.330E+00
12	28553.0	475.9	20.25	1.08	0.480E-01 0.680E-01	0.480E+00 0.680E+00
13	29586.0	493.1	20.92	1.12	0.600E-01	0.600E+00
14	30015.0	500.3	21.25	1.14	0.640E-01	0.640E+00
15	31112.0	518.5	22.03	1.18	0.740E-01	0.740E+00
16	31558.0	526.0	22.34	1.19	0.720E-01	0.720E+00
17	32468.0	541.1	22.99	1.23	0.720E-01	0.720E+00
18	33027.0	550.4	23.38	1.25	0.760E-01	0.760E+00
19	33889.0	564.8	23.99	1.28	0.650E-01	0.650E+00
20	34379.0	573.0	24.31	1.30	0.740E-01	0.740E+00
21 22	35315.0	588.6	24.94	1.33	0.851E-01	0.851E+00
23	35880.0 36826.0	598.0 613.8	25.30 25.90	1.36 1.39	0.780E-01	0.781E+00
24	37519.0	625.3	26.38	1.42	0.901E-01 0.720E-01	0.901E+00 0.720E+00
25	38180.0	636.3	26.84	1.45	0.720E-01 0.720E-01	0.720E+00 0.720E+00
26	38617.0	643.6	26.94	1.46	0.780E-01	0.720E+00 0.781E+00
27	39609.0	660.2	27.63	1.50	0.780E-01	0.781E+00
28	40028.0	667.1	27.92	1.51	0.760E-01	0.760E+00
29	41082.0	684.7	28.67	1.55	0.650E-01	0.650E+00
30	41651.0	694.2	29.09	1.58	0.690E-01	0.690E+00
31	42675.0	711.3	29.84	1.62	0.790E-01	0.791E+00
32	43288.0	721.5	30.29	1.64	0.720E-01	0.720E+00
33	43947.0	732.4	30.77	1.66	0.720E-01	0.720E+00
34	44464.0	741.1	31.10	1.69	0.720E-01	0.720E+00
35	45390.0	756.5	31.82	1.72	0.780E-01	0.781E+00
36	45970.0	766.2	32.20	1.74	0.740E-01	0.740E+00
37	46857.0	780.9	32.89	1.78	0.700E-01	0.700E+00
38	47300.0	788.3	33.20	1.79	0.780E-01	0.781E+00
39 40	48333.0	805.6	33.95	1.83	0.800E-01	0.800E+00
41	48735.0 49717.0	812.3 828.6	34.24 34.98	1.85 1.88	0.921E-01 0.740E-01	0.921E+00
42	50221.0	837.0	35.34	1.90	0.760E-01	0.740E+00 0.760E+00
43	51232.0	853.9	36.05	1.94	0.700E-01	0.700E+00 0.720E+00
44	51716.0	861.9	36.39	1.96	0.540E-01	0.720E+00 0.540E+00
45	52576.0	876.3	37.05	1.99	0.440E-01	0.440E+00
46	53095.0	884.9	37.45	2.01	0.380E-01	0.380E+00
47	54062.0	901.0	38.54	2.05	0.240E-01	0.240E+00
48	54723.0	912.1	39.01	2.07	0.170E-01	0.170E+00
49	55413.0	923.6	39.60	2.09	0.100E-01	0.100E+00
50	55990.0	933.2	40.03	2.12	0.951E-02	0.951E-01
51	56958.0	949.3	40.74	2.16	0.741E-02	0.741E-01
. 52	57795.0	963.3	41.36	2.19	0.521E-02	0.521E-01
53	58326.0	972.1	42.16	2.21	0.340E-02	0.340E-01

54	58796.0	979.9	42.49	2.22	0.300E-02	0.300E-01
55	59765.0	996.1	43.20	2.27	0.170E-02	0.170E-01
56	61278.0	1021.3	44.36	2.32	0.901E-03	0.901E-02
57	62755.0	1045.9	45.55	2.37	0.701E-03	0.701E-02
58	64182.0	1069.7	46.76	2.43	0.451E-03	0.451E-02
59	65599.0	1093.3	48.36	2.49	0.320E-02	0.321E-01
60	67000.0	1116.7	49.45	2.54	0.441E-02	0.441E-01
61	68870.0	1147.8	50.83	2.61	0.281E-03	0.281E-02
62	70037.0	1167.3	51.72	2.65	0.350E-03	0.350E-02
63	71455.0	1190.9	52.84	2.71	0.260E-03	0.260E-02
64	73040.0	1217.3	54.09	2.76	0.200E-03	0.200E-02
65	74165.0	1236.1	54.93	2.81	0.130E-03	0.130E-02
66	75644.0	1260.7	56.02	2.86	0.150E-03	0.150E-02
67	77076.0	1284.6	57.11	2.92	0.180E-03	0.180E-02
68	78535.0	1308.9	58.23	2.98	0.150E-03	0.150E-02
69	79930.0	1332.2	59.32	3.03	0.150E-03	0.150E-02
70	83120.0	1385.3	61.43	3.15	0.110E-03	0.110E-02
71	85813.0	1430.2	63.49	3.25	0.120E-03	0.120E-02
72	88545.0	1475.8	66.02	3.35	0.110E-03	0.110E-02
73	94674.0	1577.9	69.70	3.58	0.820E-04	0.820E-03
74	95757.0	1595.9	70.50	3.62	0.940E-04	0.940E-03
75	100448.0	1674.1	75.27	3.80	0.740E-04	0.740E-03
76	110259.0	1837.6	82.53	4.17	0.620E-04	0.620E-03
77	120488.0	2008.1	89.85	4.56	0.550E-04	0.550E-03
78	136434.0	2273.9	102.56	5.17	0.390E-04	0.390E-03
.79	169830.0	2830.5	127.88	6.43	0.170E-04	0.170E-03

```
LEAST SOURES AUGUSTS
SEMI-INFINITE PROFILE, 3-Tipe BC *long column, bottom effluent plate, promide, v=1.25e-u2cm/min
INITIAL VALUES OF COEFFFICIERTS
RO NAME IN
                                INITIAL VALUE
                                 165.000
1.100
0.920
           peclet
           KF
           pulse
DESERVED DATA
#=========
085.WO. P
                 FORE
                          VOLUME
                                          CHACESTRATION
                       0.8000
     1
                                              0.0001
                       0.8300
0.8300
                                              0.0002
   2345679901234567890123
                      0.8800
0.8800
0.9000
0.9500
0.9800
                                              0.0003
                                              0.0013
                                              0.0340
                                              0.0701
                                              9.2302
                       1.0100
                                              0.3303
                       1.0400
                        .0760
                        .0800
                                              0.0804
                          1200
                                              0.5004
                        .1400
                                              0.8404
                        .1800
                                              0.7405
0.7205
0.7205
                        .1900
.2300
.2500
.3000
                                              2.7605
                                              0.5504
                        .3300
                                              Ö. 8505
                        .3660
.3900
.4200
                                              0.7805
                                              0.9505
   256789
                                              0.7205
                        . 4500
                                              0.7265
                                              9.7855
                         4600
                       5000
                                             9.7805
                         5500
                                             0.6504
   Š٥
                        5,800
                                             0.0905
   3 j
                                             0.7905
                            00
   32
33
                         64oc
                        .6600
                                             0.7205
                       .7200
.7400
.7800
   34
35
36
                                             0.7205
0.7805
                                             0.7405
0.7005
   37
   38
39
                       .7900
                                             0.7805
                                             o.8005
                         8300
```

40	1.8500	0.9205			
41	1.8800	0.7405			
42	1-9000	9.7605 0.7265			
44	1.9400 1.9600	3.5404			
45	1.9900	0.4403			
46	2 0100	0.3403			
47	2.0500	0.2402 0.1702			
18 49	2.0700	0.1001			
50	2.1200	0.0951			
<u>51</u>	2.1900	0.6741			
52 53 55 55 55 57	2.0500 2.0700 2.0700 2.1200 2.1200 2.1200 2.1200	0.9521 0.0340			
33 51	2.2200	0.0330			•
55	2,2260 2,2790 2,3790 2,3790	0.0170			
56	2.3200	0.0050			
57	2.3700	0.0070			•
्र. 5वे. 59	2.4300 2.4900	0.0045 0.0320			
59 60	2.5400	0.0441			
őĬ	2.5400 2.6100	0.0028	1 *. *		
52	2.5500	∂. 0035			
63	2.7100	0.0026			
04 05	2.7600 2.8100 2.8600 2.9200 2.9600 3.0300	0.0020 0.0013			
့ စက်	2.8600	3.0015		•	
67	2.9200	0.0018			
68	2.9200 2.9800	9.6015			
59	3.0300	0.0015			
70 71	3.1500	0.0011 0.0012	,		
75	3.2500 3.3500	ŏ.ĕŏiī		•	
72 73	3.5890	0.0008			
74	3.6200	0.0009			
15 76	3.8000 4.1700	0.0007 0.0006			
77	4.5600	0.0006	Magazina (1995), and a significant construction of the second of the sec	Light Comment of Traffic Co.	The second contract of
78	5.1700	0.0004			
79	6.4300	0.0002			
			7.		
regation -	သည်မ • မန်တို့မှသက	peclet .165.0000	81 1 10000	palse a azaan	
9	1.5582838 1.1488940	89.67846	1.10000 1.10318	9.92000 9.86525	
	1.0522065	72.22524	1.11803	U_83385	
3	1.0013688	72.22524 58.56924	1.12515	0.81933	
4	0-9830856	52.99063	1.13117	0.80750	
5	0.9761766	50.26592 49.10888	1.13377	0.80195	
7	0.9767762	48.58963	1.13554	0.79 <u>7</u> 96	
7 8 9	5.9767119	48.36510	1.13578	0.79741	
9	0.9767762 0.9767119 0.9766937 0.9766876 0.9766853	48.25014	1.13588	0.79717 	
	0.9766876	48.22303	1.13592	0.79707 0.79702	
0		AU /(A -4	1.13594	u . /4/u/	
10	0.9766853	48.20413	1010011	4,73736	

CORRELATION MATRIX

62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	### ### ### ### ### ### ### ### ### ##
FIDENCE	######################################
958 3.4.00 1.1058 1.058 1.051	10
T = VAR.UE 0 - 02 5 - 03 5 - 03	い はまなはまなままま よみまるまる まみらならな マファファ マファファ まち かららららい ひこう こうこう はっちょう はい
S.E.COEPF.	50000000000000000000000000000000000000
VALUE ####################################	# H H H H H H H H H H H H H H H H H H H
11	
48 LE BERT 1	TOWNS TO TOWN TOWNS TO THE TAWNS TOWNS TOW

 $\begin{array}{c} \texttt{conspaces} = \texttt{sossesee} \\ \texttt{conspaces} = \texttt{sossesee} \\ \texttt{conspaces} \\ \texttt$

ストラン ちょう ちょう ちょうちゅう こうろう スキ スラ きろくしょう しょう ちょう ちょう ちょうしょうしゅんしゅう しょうしょくしゅう しょうしょくしゅう しょうしょくしゅう しょうしょくしゅう しょうしょくしゅう

-1

ままは、ままちらろろうちらうちら ゆうむ ゆうじ やっとううアアファアファファン・体内 ジェルラのよるきょう ゆうきゅうきょうもう ゆうきょう ひて そうはい プログラル ログログ

IND OF PROBLEM

P31C4.00T

LEAST SQUARES ANALYSIS NOW-LINEAR

SEMI-INFINITE PROFILE, 3-1192 EC #Long column, porous cup #4, promide, v=1.25E-02mc/min

INITIAL VALUES OF CORFFFICIENTS ********* INITIAL VALUE 120.000 1.100 1.200 HAME Peclet RF 123 Pulse

URSERVED DATA 368.90. P VOLUME CONCENTRATION 1234557890 6.8370 0.0003 0.8400 0.9000 0.9200 0.0004 0.0054 9.930n 9.970u 0.0190 0.9900 1100 0.4203 11213 500 0.6204 1800 0.0604 2000 2500 2800 3200 14 15 15 17 18 19 12 21 22 22 0.3305 3600 .0006 0.8405 0006 9065 22222223 .9305 9806 7500 9.9305 0.9205 7800 9.9806 0.9800 31 32 33 .9005 9100 0.9406 9600 1.9900 2.0400 2.1200 2.1400 2.1500 3536 . 9900

0.8405 .0006

1.2006

0.8605

400 00

```
2.2190
2.2590
2.2590
2.3209
2.3599
                                                                                        9.9406
                                                                                        0.8005
                                          22.44900
44900
4561900
22.4561900
22.4561900
                                                                                        0.2802
9.2202
0.1702
0.0200
     45555555555555
                                                                                           .0621
                                          2.5300
2.7200
2.7500
2.7700
2.8800
                                                                                        0.0521
                                                                                       0.0340
0.0351
0.70
                                                                                           .0320
                                                                                           .0331
                                                8600
                                                9000
                                                                                        0.0180
                                                                                        0.0130
9.0170
9.0220
9.9230
     0123005
                                                0300
                                                                                        0.0110
                                                2600
3200
                                                                                        0.0170
     Ċń
                                             . 41óŏ
                                                                                        0.0086
     67
                                                                                        0.0030
     δŘ
                                                4800
                                                                                        3.3060
3.2032
     777777777777777
                                                                                        0.0040
                                                                                        0.0040
                                            8900
                                                                                        0.0032
                                                                                        0.0020
                                          3 9600
4 1200
4 2500
4 3900
                                                                                       0.0025
0.0025
0.0025
0.0020
0.0001
                                         4.3990
4.9800
5.4600
5.9700
6.7600
5.4200
                                                                                        3.9009
3.3011
     03
                             $50
0.5210072
0.2590206
0.2486382
0.2466268
0.2461545
0.2461400
0.2461367
0.2461358
0.2461358
                                                                          peclet
126.00000
164.70780
189.66557
                                                                                                                                                          Pulse
TERATION
                                                                                                                       .10000
        0123
                                                                          203.82070
210.24138
213.01815
                                                                                                                             3915
       5
                                                                                                                    1.13963
1.13958
1.13956
                                                                         214.18561
214.67147
214.87278
214.95605
                                                                                                                                                         1.21037
1.21042
1.21044
1.21045
       67
       ģ
                                                                                                                          13956
```

	C
11	NR
TUERCE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
58 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	### ODGCOOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
⊠αnn an a	DUCHANAUANANANANAMANAMANAMANAMAMAMAMAMAMAMAM
1 1 7 7 1 1 3 3 . 2 2 3 . 2 2 3 . 2 2 3 . 2 2 3 . 2 2 3 . 2	の できません!いらいいいらいちらんましゅう ひんまい ひ らっしゅう でって ファファファファ ようまん ちょうさい さんさい ひ らっとう でって ファファファ よっち こうまん うちゅう うらい アクログ しゅう こう しょう こう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ
28 8000 28 8000 28 8000 18 9	
N IIN S IIN	
00 11 00 11 00 00 11 00 00 11 00 00 11 00 00	Dでごうごうーー4となるなる4つと4をあるなるなるのうこうのものもののののなるない。DS コートライン・カンカー4のとうともからとういうこうのううつうのうまます。E
S ANALX VALUE 14.9550 11.12395	### #################################
# # # # # # # # # # # # # # # # # # #	λ 000000000000000000000000000000000000
PACE HERE	# 333563656565656565656565656565656565656
111 2-08 111 2-08 111 2-08 112 2-08 113 2-08 113 2-08	TO DOOD OO CHUMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
7000	D managementations/coloredati

RUGLE

- アスカルウラららりてりらうのしまえららら のくじにもりのつびじのいじょうるのスタタタりひのスタタタタラウタタア888888 のいらいてらのひひつついりうろころと88441804m32200mgらら442 1110181100mm~りにこめいまするかつの11180mmょりますます ひとらうて ときはではししろきらみょうり らりひりでんろうちゅうきょうきょうしょうちょう WAL SABUMMA S Sicion $\begin{array}{c} \texttt{cassing} \ \texttt{cassing}$

```
P3LC2.0UT
                                    LEAST SQUIRES AMALYSIS
                 SEMI-INFINITE PROFILE, 3-TYPE 60
                PULSE NUT FIXED, por. cup #2, br, v=1.25e-92cm/min
INITIAL VALUES OF CORFFEICIENTS
WAdE
 NU
                                   INITIAL VALUE
            peclet
                                     63.000
1.100
2.410
            pulse
OBSERVED DATA
PORE
035.NO.
                            SMUJGV
                                             CONCEUTRATION
                        0.6200
0.6500
0.7100
0.7000
0.7900
0.8300
                                                 0.0000
                                                  0.0000
      4 5
                                                 7.0000
      7
                                                  0.0000
                        0.3800
0.9000
0.9400
0.9800
                                                 0.0017
      8
                                                  ว • ตอริส
                                                 0.0160
                                                 0.0451
                        1.0700
                                                 0.1602
0.2802
0.4804
0.5304
0.5604
    1123455
                        1.1400
1.2400
1.2600
                         . 2900
3600
    1781901
                         4000
                                                 0.2903
                        1.5100
1.5700
1.6500
                                                 0.6905
0.7405
0.7705
                                                 9.6804
                        1.7960
   2222222
                                                 9.6504
                                                 0.8805
0.7405
                        1.9500
                        1.9800
                                                 0.5804
                        2.0900
2.1700
2.2300
2.2900
2.3500
                                                 0.8805
                                                0.9005
   29
                                                 1.0000
   36
                                                0.8805
                       2.3600
2.4000
2.5100
2.65200
2.65200
2.8300
2.9400
2.9300
3.1300
                                                 1.0006
   33
                                                 1.0006
   34
35
                                                0.9305
                                                0.8405
   36
37
38
                                                 1.0006
                                                0.9205
   39
                                                1.0006
```

43. 30.

¥,

*1. .

000 S -- S 0000

eclet 000000 86172 മ്ഹഗ

> 4295 3751 24.0 44.0 MOD . . 20

TIOU ITER

 $\frac{2}{2} \frac{1}{2} \frac{1}$ すみぐん みょうはん みららららららららららららららららって アファファ おおりりきゅう

TARTHER BE BE THE STEET THE STEET OF STATES OF STATES OF THE STATES OF T

		H
		######################################
· 		
	LINITA UPPER 19477	THEOCOCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	эсияст	######################################
22 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	95% LUAER 22.9229	10 11 12
NONNON	: 	○
######################################	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	••••••••••••••••••••••••••••••••••••••
22.22.22.22.22.22.22.22.22.22.22.22.22.	3 ANALISIS, FIHA E====================================	24
0.000 0.000	X	######################################
™ ™™©►∞	CUSREDATION 1	С — — — — — — — — — — — — — — — — — — —

まてらきすりらうらうらうらうらうとしてすららんしかををとすりのすすすこでごととこととことにともももなっているともののっちっとしてもらえんりっちょうしょう よわららら ひえじて じょうててて しんちょう やいじょすじゅう はくりゅうりょう ひとん ススタイプラー ろろうろうかましょう ちょうしゅう しゅうりょう ファイン しゅうしょう しょうしょう しょうしょう **らい ぶちょうひらみまててょりゅすらうこうりき** ようごほうじちん ルアりょうりょ スプ しゅうまアア しんりゅうきんちょう シーントー ラー・カロー・ファ カロ・メー カリ カメカウ よりななるみなりゅうなのみのなるとす 10 0 0 CC ON A PHO A MANON A - アフジャリュー マダブ アーミジャ 手で タリ タスミン マアキティ マーチ クリリサ りりり りゅうり りょうしゅう ゆうりょう ファイフ ジャリュー ウリ りゅう りゅう しゅう しゅう しゅう

0.837 0.499 0.917

0.650 0.290 0.580

27.5°

0.000 0.000 0.001 0.000

0.000 0.000 0.000

EAD OF PROBLEM

```
LEAST SOUTHES AMALYSIS
                                                            SEMI-INFIGURE PROFILE, 3-TYPE BC
POROUS CUP#1, BR-, PULSE NOT FIXED, V=1.25e-02cm/min
  INTETAL VALUES OF CORFFFICIENTS
 PECHET
      \Theta
                                                                                                                             SUJAV JAITIAL
            123
                                                                                                                                       31.500
1.100
4.820
                                             RF
PULSE
HESERVEU DATA
TERRETERE PORE
                                                                                                   VOLUME
                                                                                                                                                                  CONCENTRATION
                                                                                        9.1500
0.3000
0.3000
0.5500
0.7200
0.7200
                     1234567
                                                                                                                                                                                    J. JOGO
                                                                                                                                                                                  1.0050
q.9050
                                                                                                                                                                                  0.0000
                                                                                                                                                                                  0.0000
                                                                                                                                                                                  0.0000
                                                                                                                                                                                 0.0000
                    89
                                                                                          1.0100
                                                                                         1.0700
                                                                                                                                                                                 0.2862
          0123456789012345678901234
1111111111222222222233333
                                                                                             .1800
                                                                                                                                                                                 0.4103
                                                                                             .2400
                                                                                       1.3100
                                                                                                                                                                                 0.6204
                                                                                                                                                                                 0.8005
                                                                                            .5100
                                                                                                                                                                                 0.8005
                                                                                            .6000
                                                                                                                                                                                0.8005
                                                                                           7300
                                                                                                                                                                                 0.8005
                                                                                                                                                                                9.8305
                                                                                     1.8100
1.8700
1.9600
2.1400
                                                                                                                                                                                0.8605
                                                                                                                                                                               0.8605
                                                                                                                                                                               7.5004
                                                                                   2.1400
2.4500
2.4500
2.4500
2.7500
2.73100
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3.1400
3
                                                                                                                                                                               0.4804
0.9600
                                                                                                                                                                               0.5964
                                                                                                                                                                              9.0504
                                                                                                                                                                             0.5404
                                                                                                                                                                                    9400
                                                                                    3.1400
3.300
3.300
                                                                                                                                                                              1.0000
                                                                                                                                                                            1.0006
                                                                                   3.5800
3.7400
3.8900
3.9600
                                                                                                                                                                            1.0006
          35
                                                                                                                                                                            1.0000
          36
                                                                                 4.1900
4.3370
4.4770
                                                                                                                                                                             0.9406
                                                                                                                                                                            1.0006
          38
                                                                                                                                                                            1.0006
                                                                                   4.8000
                                                                                                                                                                            1.0006
```

4 1 W

				i
				2 2
•				AUD!
			H-32-MM-32	AAF HFFC
			HD HHITH	ひまより
			. ⊷im	HZ WG
			ည အ	S S C
•		La contraction of the contractio	₹	
		ŧ		2 . ±:
		•		3) C
			Carono	r X
	-		10 - C	ျောမ်း ၁
	ぼりょう ゆみろう ストー ファックル 中国 ラスシンストー いとりり られ こうましょし ひお ひき はっちょう まっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ		₹ 0 → 0 ← 0	55.7.2 5.4.7.2
	000000000000000000000000000000000000000			ີ່ຕົວເບ ຕິສົ
•	\mathbb{R}^{n}			0.0
	D क्रांचा के मंद्र से क्रांचा क्रांचा क्रांचा के क्रांचा के क्रांचा क्रांच		STV3	>
			27mmm	• 'a
			2 MM	
•	CAMOIDING NON AMORPHIA	Ø	<u>.</u>	.
•	いる。ままなられては、おきままののなって、からかいましょうという。ロエフェルでは、はは、ちょうないない。これでは、これは、いいない。これは、これは、これは、これは、これは、これは、これは、これは、これは、	F		1
	Danier of Consister of Management of the Constitution of the Const		•	;
	The second of th	211	# ∞ ω⊙	
	🔀 का जान कार्य का	ଲ ॥ ଓ ॥	CV40 EW40	
		≃ () □		S. 100
30000000000000000000000000000000000000		1 N	3000 F	MAD.
99999999	343844000000000000000000000000000000000	2 II H II	v 3	ာင
0500000	とうこうのうとしてようからない。 はいいらう ウィオキカイトラー	之.H		
	いつつでもつがらなった。	1		
	は C D D の で カンシュー	0 0 0 m	ž ž	
	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	K.e. L.e.	<u>्रे</u> ठ्य	H 10 500
		दः॥	ವಿ≎ಬಌ	7.7.0
		A ii		AP.
92333300		11 0	. >○+4 D	<u>~</u>
00000000	てのみないないはは、日本でのようでいりなったちゃんしおうさままままりちゃろんのようでいる。	うの な !!	<u>α</u> ω:	
ರೆಯೆಯ ಇಗು ಗುರ್ಗಿ	のこうまではないかのは、日本のでは、日本でのようの	1000 L		2 • O
としまりはなる	O D D D D D D D D D D D D D D D D D D D	XII -0.0 II		on .
	C. det det det entre ent	34 H H H H	E on	
	• • • • • • • • • • • • • • • • • • •	A H	437 172 173 173	
		11 0H0H1 21 0H0H1	7×7 200 0	_
	¥	21 CMD 11		7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	7	# II - 0 - 0 0 II	್ನ ಧಾನ	হেল ১০ •
ひょう とうしゅう	いいしょうきょうできない上できれるいて800123名で		2	10 0
	(1)		interiorm is	→
	िम् मर्	10 - AW2		
		- 511 - 311 -	∀	~ ~ .

これりころりちみらりらりかれききききききろうころころとまます。 . ℮⅃℮ℨ℮℈℮℧℄℔℗℄℀℞℁℞ℬ℞⅋℧℧Åⅅ℧ⅆ℧Å℧℄℮℣ഺ℮℧℄℧℧℧℧℧℧℧℧℧℧℧ ℔Å℧ℸℸℸℂℷ ⅁ⅆⅆ℧ⅆⅅ⅁ ℄ℨ℄ℨ℮⅁℧℁Ⅎ℧℧℧℮ℂℷℍⅇⅈ℄℄℧ℼ⅊℧℧℄ℙ℄℄℮℮ℙ⅋⅁Å℄Å℮ⅅⅆⅆÅ℮℮ℿ⅌℧℧℧℞ℋ℧Å℄Å**ℍ℧℧℧**℮ⅅ ℮℮℮℄℮ℋⅆⅆ℮℮℈Ωⅅ℗℮ℸℸ℄ℍ℮℮ℍⅆ℮ℬ℮ℸℸℸℸ℮℮ℸℸ℄ℼℸℸℸℸℸℸℸℸℸℸℸ℧℺℈℮℮℮℗ⅆ℧℣ⅅ℧ © C.C. T.D. THE THE HEATH HEAT AND MONON WAND WAND AND A DEPTITION TO THE TOTAL TOTAL TOTAL TOTAL AND WAND ADD A DEPTITION TO THE TOTAL AND TH こってもりりしょうけい りてもりしょうする ウアシタリュクライクタウク さんこう かんきりりょうきゅうりょうしょうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう

EMD OF PROBLEM BENEFITHER