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ABSTRACT

Effects of spatial variability of soil properties on
unsaturated flows are analyzed by solving stochastic steady
state infiltration partial differential equations. The unsa-
turéted hydraulic conductivity is assumed to be of the form

K(r)=Kse'“*

where ¥ is the capillary pressure head. The
variability of saturated hydraulic conductivity Ks and
goil-water characteristic variable o are treated as homo-
geneous stochastic processes. Head variance and covariance
functions for one-—and three-dimensional flows are determined
by using isotropic and anisotropic ans and @ covariance
functions as inputs.

The results show that head variance derived from three
dimensional flow analysis 1is less than that of one-
dimensiocnal flow. For large values of the correlation
length scale and the pore-size distribution parameter, the
one and three dimensional results become equivalent, indi-
cating that the flow is predominantly one-dimensional under
this condition. The variance of so0oil moisture content
obtained from the theoretical analysis is found to be in
close agreement with that observed in the (field. In
addition,the results of the study demonstrate the importance
of the variance of ans and «, mean capiliary pressure head,
and mean pore-size distribution parameter in determining the

effective unsaturated hydraulic conductivity.
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Steady-state infiltration iﬂ a helerogeneous medium
with arbitrarily oriented stratifications was also analyzed.
The résults of the analysis demonstrate that effective unsa-
turated hydraulic conductivity of the medium is a symmebric
tenscr of ;ank two, and the anélysis derives the complete
tensor components of the unsaturated hydraulic conductivity.
In general, the principal unsaturated hydraulic conductivi-
ties are bounded by the harmonic and arithmetic means of the
conductivity. The effective hydraulic conductivity Ctensor
is affected by the magnitude and direction of the gradient,
the orientation of stratification, degree of sakuration, and
saome statistical properties of the medium. As a resultbt of
the stratification and the pore-size distribution variation,
the anigsotropy 6f the lunsaturated hydraulic conductivity
depends on the degree of saturation. AL low saturations
horizontal hydraulic conductivity can be several orders of
magnitude greater than the vertical. A lateral flow effect

in the unsaturated zone is suggested.

Possible applications of such anisotropy in 1liquid
waste isolation problems, and design of shallow underground

waste storage facilities are discussed.
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CHAPTER 1
INTRODUCTION

1.1 General Literature Review

Recently, there has been increasing interest in prob-
lemg involving the movement of groundwater in unsaturated
porous media. Flow in the unsaturated zone plays an impor-
tant role in many practical problems. Examples of such prob-
lems include: estimation of groundwater recharge, determina-
tion of moisture distribution and groundwakter quality,
selection of waste depository sites, prediction of stream-
flow, and evaluation of slope stability.

Traditional analyses of water movement in the unsa-
turated zone assume that individual soil series are gen-
erally homogeneous and isotropic. In general, hydrologists
and s0il scientists accept and use this simplistic assump-
tion. Field heterogeneity has been considered only in ﬁhe
problems associated with large scale areas where several
distinct soil types or geologic formations exist. However
several field studies (Nielsen et al., 1973; Coelho, 1Y74;
Carvallo et al., 1976) do not support this simplistic
assumption for natural soil formations, even for a single
soil type or geologic unit. These studies reveal a large
degree of spatial variability of soil hydrologic properties.
Staockton and Warrick (1971) found that a 20 to 30 percent
variation in the unsaturated hydraulic conductivity value
could result from one standard deviation to either side of

the average socil water characteristic curve in estimating



the unsaturated hydraulic conductivity in an area of 40 hec-
tares of Pima clay loam. Furthermore, it has been found that
the variation of the hydraulic conductivity poésesses corre-
lation structures in space (Bakr, 1976; Smith, 1980; Russo
and Bresler, 1981; and Vieira et al, 1982). Thus, the effect
of such variability on the predictive capabilities of unsa-
turated flow models needs to be evaluated. More specifi-
cally, the effective or mean properties of a spatially vari-
able system and some measure of the variation of the pro-
perty about the mean has to be determined.

A number of studies that attempted to account for
agquifer heterogeneity in saturated flow or soil hetero-
geneity in unsaturated flow were carried out during the past
few years. Freeze (1975), using Monte Carlo simulation,
treated the hydraulic conductivity as an uncorrelated random
Variable, and indicated that °Variation of saturated
hydraulic conductivity has significant effects on the magni-
tude of the variation of predicted hydraulic head. 1In addi-
tian, he found that the standard deviation of predicted head
increases with the block size used to discretize the flow
domain. These findings led him to raise doubts about the
accuracy of traditional deterministic groundwater flow
models,

Recent studies for saturated flow (Bakr et al., 1978;
Gelhar, 1976; and Smith and Freeze, 1979) have demonstrated
that the spatial variability of the hydroleogic properties of

aquifer material can be most appropriately represented by



the concept of a statistically homogeneous random field. A
Monte Carle simulation, which takes the spatially correlated
structure of the random field into account by a nearest-
neighbor model, was carried out by Smith and Freeze (1979).
The results of their study show that the predicted head
variance is directly proportional to the length scale of the
correlatiaon structure, but they do nat provide any c¢lear
relationship between these paraméte:s. The numerical exper-
iments are based on both finite difference and finite ele-
ment analog of the flow system which most iikely involves
some discretizatian errors and pre-~filtering of the random-
ness of the hydraulic conductivity field. -

A gimilar type of analysis based on conditicnal simula-
tion was conducted by Delhomme (1979). Conditional simula-
tion is a technique of the Monte Carlo type. It assures that
the simulated random field agreeg with measurements at any
points of observation.

Gelhar (1976), and Bakr, et al., (1978) used speckral
analysis, which takes into account the stochastic structure
of porous media, and allows flaw analysis without parameterx
discretization. With this approach they found that a more
realistic and complicated mecdel { three-dimensicnal model )
would produce lezs head variance than a one-dimensional flow
model. Eguaions relating the output head variance and the
input variance of hydraulic conductivity were derived.

The effective hydraulic conductivity of saturated

heterogeneous porous media was evaluated by Gutijahr et al.,



(1978), using the spectral method. For one-dimensional flow,
they found the effective hydraulic conductivity to be
equivalent to the harmonic mean used to describe the
pehavior cof flow normal to the layers in deterministic stra-
tified media. The effective hydraulic conductivity in the
two-dimensional case 1is egqual to the geometric mean. How-
ever, it is slightly greater than the geometric¢ mean in ‘the
three-dimensional case.

Dagan (1979) develaped a self-consistent model to
analyze the effect of field heterogeneity on saturated flow.
The results obtained by the model are in agreement with
. those obtained by spectral analysis.

Gelhar and Axness (1981) used the spectral method to
determine the effective hydraulic conductivity of saturated
flow in three-dimensional statistically anisotropic media;
in that case the effective conductivity was found to be a
second rank tensor.

Several investigations on the uncertainties involved in
modeling unsaturated flow due to the spatially variable soil
properties have been undertaken in the past few years. The
studies by Warrick et al., (1977a) treated the effects of
variability, but considered hydraulic conductivity as a spa-
tially uncorrelated random variable. Moreover, a simplified
drainage equation was used to conduct a Monte Carlo simula-
tion to obtain soil water flux, water content distribution,
and to estimate an optimal number of sanples required to

obtain the mean flux. The simplified drainage equation is



derived from a one-dimensicnal flow equation, which already
averages the variability over the other two dimensions. The
one—-dimensional flow equation is further integrated over a
certain depth to obtain the flux. Thus, the simplified
equation is merely a lumped parameter model. This implies
that the results of the analysis may not provide the effects
of spatial variability, but may provide the sensitivity of
the equatiaon tao changes of parameters.

In the field of watershed hydrology, Smith and Hebbert
(1979) conducted Monte Carle analyses of the effects of spa-
tially varied hydraulic conductivity on infiltratien rate.
Similar to their work, Freeze's study (1980) includes con-
sideration of spatial correlation structure of hydraulic
conductivity and stochastic rainfall patterns. 1t also
places emphasis on the statistical distribution of runoff
resulting from such a heterogeneous watershed. Both studies
consider that the infiltration process can be adequately
described by a simple, spatially averaged algebraic equation
instead of a more realistic Spatially dependent partial dif-
ferential equation.

Due to the significant variation in hydrologic proper-
ties of wunsaturated porous media, Warrick et al (1977b)
developed a method based on the concept of similar media to
scale field data faor soil water characteristic relationships
and unsaturated hydraulic conductivity. Although this may
provide a means to obtain the average coil water charac-

teristic relationship and unsaturated hydraulic conduc-



tivity, this approach does not consider the possible aniso-
tropy in the hydrauiic conductivity due to layering of soil
formatians. 7

Dagan and Bresler (1979) apply the scale concept to
der ive equatiaons for solute coﬁcentration distribution in an
unsaturated heterogeneous field under randomly distributed
recharge. In addition to the similar media concept, one of
the basic assumption employed in their analysis is to regard
an actual field as a collection of homogenecus vertical soil
columns. The influence between columns is neglected. This
implies statistical independence of soil hydrologic proper-
ties in the horizontal plane. In fact, this assumption may
not. necessarily hecld for natural soil formations where soil
tends tc exhibit ﬁarizontal,stratification- The variation of
s0il properties in the vertical plane is evidently c¢loser to
statistical independence than that in the horizontal.

Philip (1980) uses a random walk to analyze the wvaria-
tiaon of sorptivity, and points out some of the difficulty in
the investigation of unsaturated flow through heterogeneous
media. He also discusses the inaccuracy of representing the
unsaturated heterogeneous system by the similar media con-
cept.. The importance of recognizing the threefdimensionality
of field heterogeneity is emphasized as well.

To be more realistic, the hydraulic conductivity should
be regarded as a spatially correlated variable random field.
The usual continuum f£flow equations shculd be employed in the

analysis. Then the resulting flow is described by a stochas-
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tic differential equation. By solving the stochastic equa-
tion, one can therefore obtain realistic statistical proper-

ties of the flow in heterogeneous field.

1.2 Objective and Scope of This Study

The general goal of this study 1is to use spectral
analysis to analyze the effect of the spatial Variabili;Y of
s0il properties on unsaturated flow. The logarithm of the
saturated hydraulic conductivity, ans, and the pore-size
distribution parameter, «, which are generally used to
chafacterize unsaturated porous media, are represented by
statistically homogeneous stochastic processes. In order to
describe the fléw system in such a random field, the sto-
chastic properties of the processes are input into the gen-
eral steady state unsaturated flow equation. A stochastic
partial differential equation is formed and is solved by
utilizing the Fourier-Stieltjes representation theorem to
obtain statistical properties of the output processes.

The specific objectives of this analysis are outlined

as follows:

(1) To obtain one-dimensicnal head variances and
covariances, which result from different input
covariance functicns to evaluate the sensitivity of
the model to the input covariance functions.

(2) To derive three-dimensional head variances and
covariance functions for comparison with one-
dimensional results.



(3) To determine the effective unsaturated hydraulic
conductivities and their variances in one- and
three-dimensional flow systems.

(4) To determine the anisotropy of the effective
hydraulic conductivity in large scale unsaturated

media.

The results of the analysis are applied to some practi-
cal situations, and compared with observation of variability
in the field. Overall, it is expected that this stochastic
analysis will provide more informatioﬁ pertaining to the
influence imposed by the spatial.variability-bn unsaturated
flow. Furthermore, the theory may allaw us to assess to some

degree the confidence with which predictions can be made.



CHAPTER 2

ENTATION OF LARGE SCALE HETEROGENEOUS

1C REPRES
HAST UNSATURATED PCROUS MEDIA

sTOC

trOduction

2.1 pEE=m

rhe pr imary purpose of this chapter is to unravel the

jen behind the stachastic analysis of field hetero-

motivat

geneitY of

ity

unsaturated flow, or more specifically, the

ccess of representing the scil hydrologic properties as
n

stochastic processes. Since flows in unsaturated porous
nedia 2 far more complex than in saturated media, this

Ler. will start with a review of the properties of

chap

hydraulic conductivity of unsaturated media. Then statisti-
cal distributions of some hydroleogical properties of unsa-
turated soils observed in the field will be examined.
FinallYs the representation of the .large scale heterogeneous
unsaturated field emplayed in the sequel analyses is dis-
cugsed-

2.2 ﬁxi;éﬂllﬁ conductivity of Unsaturated Porous Medium

TO understand unsaturated hydraulic conductivity, one
must start with saturated hydraulic conductivity. Hydraulic

copductivity is the ability of the porous material to con-

duct water through it under hydraulic gradients and is a

compined property of porous media and the f1uid flowing

through it (Bear, 197Z). A more concise definition can be

given as the volume of water at the existing kinematic
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viscosity that will move in a unit time under a unit
hydraulic gradient through a unit area measured at right
angles Lo the direction of flow (U. S. Geolbgical Survey,
1972, p- 4).

. In general, the saturated hydraulic conductivity
depends on pore size, porosity, and structure of the media,
as well as fluid properties. The main difference between
saturated and unsaturated hydraulic conductivity is the
dependence of unsaturated conductivity on éapillary pressure
or moisture content. Since all of the pores of the porous
media are filled with water when it is saturated, the c¢on-
ductivity of the porous material is maximal. Once the
material is desaturated, a portion of the pore space of the
media 1is airfilled. As a result, there is a corresponding
reduction of the hydraulic conductivity. Under drainage
conditions, the large pores that h;ve lower capillary force
and higher conductance are emptied first. Thus, water must
flow in the smaller pores which are less effective conduc—
tors. 1In addition, airfilled pores become an obstacle.
Water has to deflect around them and the the flow paths
become more tortuous and longer. Furthermore, a reduction
of moisture content causes the water in some pores tc be no
longer connected with the rest of the continuocus flow net-
work, the waker phase is no longer continuous and hence
there is no flow under such a circumstance. This combined
effect causes a rather drastic reduction in the hydraulic

c¢onductivity as the soil moisture content decreases. The
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amount of water drained is also related to the capillary
pressure present in the pores. Hence, the unsaturated
hydraulic conductivity can be regarded as a function of
capillary pressure. This pressure is the  pressure differ-
ence at interfaces of water and air at each individual pore.
In unsaturated soils, the air phase is usually assumed to be
continuous and at atmospheric pressure; the amount that
pressure in the water phase is bélow atmospheric pressure 1is
then the capillary pressure (a positive quantity). When
expressed in terms of the height of a watei column, the
terms capillary pressure head (¥) or tension head are used.
The general trend of reduction in conductivity of a
particular soil 1is associabted with its pore-size distribu-
tion. BSoils with different pore-size distributions behave
differently in the reduction of their hydraulic conductivity
as the capillary pressure incz;ases. For instance, a
coarse-textured scil such as sandy soil generally has a
large percent of large pores. Once the soil is desaturabted,
the large pores empty first and become nonconductive. Thus,
the hydraulic conductivity decreases steeply, as capillary
pressure increases. on the other hand, in a clayey soil,
the pore-size distribution is more uniform. The reduction
in hydraulic conductivity is more gradual as soil capillary
Pressure increases. Therefore, the behavior of the unsa-
turated hydraulic conductivity of any soil can usually be
tharacterized by its pore size distribution and saturated

hydraulic conductivity.



12

There have been a number of investigations during the
past few decades attempting to derive a physically based
equation to describe the relation of hydraulic‘ conductivity
to capillary pressure or moisture content. None of those
equations allow the reliable prediction of unsaturated con-
ductivity from basic soil properties (Hillel, 1971). How-
ever, a variety of empirical equations are available. One of

these empirical formulas,

K=X e 7 (2.2.1)

relates unsaturated conductivity, K, to capillary pressure
head, ¥, saturated hydraulic conductivity, Ks’ and the
pore-size distribution parameter, a (Gardner, 1958). This
equation will serve as the fundamental relationgship between
unsaturated hydraulic conductivity and capillary pressure in
this study, because of its convenience for analylical pur-
poses.

One of the most important features of unsaturakbed flow
in heterogencus media, which should be recognized, arises
from the form of the dependence of K on ¢ and «, and their
interdependence of these parameters. One typical situation
is that of a soil formatian consisting of two materials of
different textures, for instance, gsandy and clayey soils.
The saturated hydraulic conductivity of sandy soil usually
is several orders of magnitude higher than that of clavey

80il. As a result of the capillary pressure dependence of
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hydraulic conductivity in unsaturated porous media, sandy
goil is not necessarily more permeable than clayey soil at
certain ranges of capillary pressure. Such é situation is
illustrated in Figure (2.2.1). Note that for ¥»¥  the

coarser—textured medium is the less permeable.

2.3 Statistical Distribution of Hydrological Properties’

Unsakurakted Soils

Hydrolagists and soil scientigtsg have lbng recognized
the natural variability of soil properties. In the past few
decades, numerous field data of physical and chemical soil
properties, such as conductivity, particle size, bulk den-
gity, moisture content, porosity index, pH, and EC, were
collected to characterize their sgpatial variabilities in
large areas. Summaries of these wgrks is given by Coelho
(19743, Bakr (1976), Gajem (1980), and Warrick and Nielsen
(1980). In general, it has been reported that saturated
hydraulic conductivity is log-normally distributed with a
large degree of variability. Magnitudes of wvariation in
saturated hydraulic conductivity found by various authors
are summarized in Table (2.3.1). The bulk density showed a
frequency distribution close to the normal. Frequency dis-
tribution for sand and clay particle-size distribution is
considered normal. The variations of water content increase
with increasing capillary pressures. The coefficient of

variation of unsaturated hydraulic conductivity increases as
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Table 2.3.1: Variation of saturated hydraulic conductivity of some soils.

e
1nK
s
soil type Variance Source
_Soxl LY

Panoche Soil 2.0 Nielsen et al, 1973

Instantaneous profile method.

Adelanto Soil 2.2
Adams Soil 0.9
Houston Black Soil 1.0 -
Cecil Soil 2.4 -

Rogowski, 1972

Dwellingup
Bakers Hill

2.9 Peck et al., 1980
1.6
Collie West 4.1
1.7
2.5

slug test

Collie East
Upper Helena

Hamra Red
Mediterranean Soil 0.2 Russo and Bresler, 1980

Pima clay loam 1.6 Coelho, 1974
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moisture content decreases (Nielsen et al., 1973). Warrick

et al. (1977a) uzed the exponential function,

(B (8 ~096.)]
K=Ky e 0 (2.3.1)

to fit in situ hydraulic conductivity and moisture content
of Panoche clay loam and concluded that the parameter, B, of
the empirical equation has a log-normal frequency distribu-
tion.

Most. earlier studies on the variability of so0il hydro-
1ogi¢ properties treat the observatians of a given soil
property as being statistically independent, regardless of
their spatial location. A recent study by Bakr (1976), how-
ever, shows that variation of the permeability of core sam-
ples of the Mt. Simon Sandstone aquifer, Illinois, are not
spatially independent. He reports that variations in the
vertical direction are correlated for a distance of about 1
meter. Smith (1978) analyzes saturated hydraulic conduc-
tivity data for samples from the Quadra Sand unit, a late
Wisconsin stratified glacial outwash deposit in Vancouver,
B;C.. He reports that the estimated correlation length of
the conductivity is about 38 cm and 400 cm in the vertical
and horizontal directions, respectively. However, a rela-
tive small value of the variance of log hydraulic éonduc-
Livity, ©0.71, 1is calculated from his data. Russo and

Bresler (1980) investigate the measurements of saturated
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hydraulic conductivity, Ks, the water entry value, hw'
saturated water content, es, residual water content, Br,
sorptivity, S, and a pore-size distributionlparameter, 8,
from samples collected in a 0.8 hectare plot of Hamra Red
Mediterranean soil at Beta Dagon, Israel. They conclude
that the spatial variability of each of the six parameters
has a structure characterized by an integral scale, indicat-

ing the variability of the parameters are not disordered in

space. The integral scales for the six parameters, KS, hw’
es' ar, S, and B8 are 15, 31, 39, 18, 25, ahd 1l meters,
respectively. Gajem (1980) examines the spatial structure

of soil properties at the University of Arizona Experiment
Station at Marana, Arizona. He also finds the spatial vari-
ation of soil properties is correlated in space. In addi-
tion, the anisotropy in the correlation scale is evident in
some of the data as well (see hi; table 9). Sisson and
Wierenga (198l1) report data showing spatial correlation of
steady-state infiltration rates. Vieira et al (1981) deter-
mine the correlation scale of steady infiltration rakte at
1280 sites by using a semi-variogram. 1t is shown that the
length scale is approximately 40 meters. Fritton {1981)
investigates the spatial variability of soil capillary pres-
sure in a corn field. A large degree of variation of the
Capillary pressure head is observed. The variation of the
head 1is found to increase with the dryness of the soil. A
varjogram (Figure 2.3.1) <calculated from the Fritton's

(1981) data reveals a correlation structure of the random
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capillary pressure field.of which the correlation scale is
approximately 50 feet. A similar field observation carried
out by the writer in an alfalfa field near San Acacia, New
Mexico, also demonstrates the correlated spatial variations

ot soil capillary pressures (see appendix Aj.

2.4 Stochastic Representation of Heterogeneous Unsaturated

Porous Media

As has been discussed in the previous sections of this
chapter, parameters such as saturated hydraulic conduc-
tivity, Ks’ and pore-size distribution parameter, o, con-
trolling the flow process in unsaturated media could vary
significantly. Theii'variations are not totally disordered
in space but characterized by spatial correlaktion length
scales. How can such a heterogeneous natural system be
representced in a quantitative fashion? One of the
approaches is to conduct a large number of measurements of
these so0il hydraulic parameters so that their variabilities
can be depicted in a deterministic sense. However, the
effortt and expense involved in performing such a formidable
task make it practically impossible. The only alternative
is to treat the spatially varied soil property as a stochas-
Lic process in space. One can, therefore, use its statisti-
cal properties derived from a reasonable number of data
Points to characterize the spatial variability of soil pro-~

pPerties,
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A stochastic process, by definition, is an ordered set
of random variableé with its associated probability distri-
bution (Jenkinsvand Watts, 1968). More precisely, v(x) is a
gstochastic process if for each fixed x, for instance, Xg v (
X, ). is a random variable with a probability distribution.
A space series of hydraulic éonductivity measurements, then,
is merely one of the many realizations that might have
arisen from an ensemble . Thus, a complete description of
the heterogenous porous media, in contrast to a single ran-
dom variable, would require the probability distribution
functions for all the random variables and joint probability
density functions between the random variables at all points
in space. However, such a complete specificatien generally
requires evaluatian of all statistical moments. Sufficient
data for this calculation rarely exist. A more practical
approach is to resort to a description of the process by

using the mean and the covariance function.

In order to apply the mean and the covariance funcktion
to describe a stachastic process, an assumption of the sta-
tistical stationarity of the process is required. A sta-
tistically stationary (or homogeneous ) process is defined
48 a procegs that has a constant mean and é covariance func-
tion depending only upon the separation distance in space or
time. 1t is not a function of location in gspace or time.
Physically, this implies that the process has some form of

Steady state ot equilibrium in the sense that the statisti-
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cal properties of the process érg independent of absolute
pesition in space or time domain. (Jenkins and Watts,
1968) .

The covariance function often can be characterized by a
correlation lengkh scale and a vgriance. This length scale
is generally deﬁined as the distance beyond which the auto-
correlatian of ﬁhe process no longer exists. Occasionally,
it is referred ta as the integral scale (Lumley and Panosky,
1968), which 1is precisely defined as the area under the

autocorrelation function.

However, one has ta recognize that the mean and covari-
ance function mentioned above are the statistical properties
of an ensemble coﬁsisting pf an infinite number of realiza-
tions. A series of hydraulic conductivity measurements in
space merely is one possible realization in an ensembie. In
fact, we can only collect data of one realization. Now a
question arises: how can we make use of the gpace average of
data from one realization of finite length to obtain the
ensemble mean? The hypothesis most commonly used is ergodli-
city. The ergodic hypothesis states: if we form an average
of a realization of a process over a finite _length, then
this average must approach the mean value of the process as
the averaging record length grows. In other words, the
average must approach a stable value, and this value must be
the ensemble mean (Lumley and Panofsky, 1964}: The same

argument. can be applied to the covariance if the integral
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scale exists. Thus, the stationagity assumption about the
variability of soil properties and the ergodic hypothesis
allows us to apply stachastic Fourier-sStieltjes representa-
tion (Lumley and Paﬁosky, 1968) to the fluctuation of the

soil properties in the flow equations used in this analysis.

Since vertical infiltration is of most interést in all
the practical fields of hydrolegy and soil rhysics, the
theoretical analysis in the following chapters will concen-
trate on the effects of field heterogeneity on steady-state
infiltratian process. The analyses assume that the rela-
tionship between unsaturated hydraulic conductivity and
capillary pressure of all the soils can be portrayed by a
simple exponentiél. funct;on (equation 2.2.1). Thus, a
saturated hydraulic conductivity and a pore-size distribu-
tion parameter define the characteristics of an unsaturated
medium. In chapters 3 and 4, heterogeneous media are
assumed to be characterized by a statistically homogeneous,
isotropic saturated hydraulic conductivity and a constant
pore-size distribution parameter. To illustrate the physi-
cal meaning behind this assumption, the log of the unsa-
turated hydraulic conductivity of this hypothetical porous
medium is shown in Figure (2.4.la) as a ‘function of the
Ccapillary pressure head. Since the pore-size distribution
Parameter is a constant, variation of unsaturated hydraulic
conductivity is affected only by the variation of saturated

hydraulic conductivity. The variance of 1nK will remain the
b
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game for the whole range of the capillary pressure head.
statistical anisatropy in the saturated hydréulic conduc-—
tivity will be introduced in chapter 4 to analyze its
effects on head varianée. In chapter 5, the analysis deals
with flow in a more realistic medium where both Ks and a are

treated as statistically homogeneous and anisotropic sto-

chastic Pprocesses. Schematic representation of such a ran-
dom field is demonstrated in Figure 2.4.2b by the 1Ink - ¢
relation curves. As shown in the figure, the variation of

the conductivity is influenced not only by the spatial vari-
ability of .Ks but alsa by the capillary pressure head due to
the additional consideration of the variability of the

pore-size distribution parameter.
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CHAFTER 3

FLOW THROUGH STATISTICALLY ISOTROPIC MEDIA

3.1 Iintroduction

. gaturated hydraulic c¢onductivity of soil may vary
drastically from peint to point throughout the natural flow
gystem. Variations in this soil property are complex and
are not practically depictable by any deterministic
mathematical function in detail. Additionally, these pro-
perties generally exhibit spatially correlated struchtures.
Hence, the saturated hydraulic conductivity _ is most
appropriately thought of as a stochastic process. Complex-
ity in unsaturated hydraulic conductivity is further inten-
gified Dby its depéndence on the pore-size distribution of
porous media. A recent field study (Warrick,1977a) has
shown that an unsaturated flow property ( the slope of 1InkK -
6 curve ), also varies from place to place in porous media,
and generally is log-normally distributed. To obtain a moxre
realistic and complete description of effects of field
heterogeneity on the flow, it is necessary to take the vari-
ébility of pore-size distribution into account. However,
for convenience, it is assumed to be a deterministic con-
stant in the analyses in this chapter.

In the following analyses, we will regard the loga-—
rithnic saturated hydraulic conductivity as a stochastic
process instead of saturated hydraulic conductivity itself,

that is,
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In[ K (x) ] = log K_(x),

where sti) is a saturated hydraulic conductivity stochastic
process. The use of logarithmic saturated hydraulic conduc-
tivity is simply a convenience in the analysis. ln{K(ﬁ)] is
assﬁmed to be statistically homogeneous and isotropic. Sta-
tistical isotropic implies that the covariance function is
independent of direction. Based on these assumptions, the
effects of spatial variability on unsaturated flow are
investigated by evaluating the statistics of flow properties
resuiting from such a heterogeneous medium. More precisely,
head variance and covariance, effective hydraulic conduc-
tivity, variance of hydraulic conducﬁivity, and variance of
specific discharge of one- and three-dimensional flows are

examined in this chapter.
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3.2 Head Variances and Covariances of One-dimensional Flow

Consider one-dimensional, steady-state, infiltration
through a heterogeneous medium. The governing equation is

expressed as follows:

d do
-az{ K(z,.¥) dz = 0 (3-2-1)
where ® = — z —¢¥ is the piezometric head, 2z ié the vertical

position measured downward from the ground surface, and ¥ is
the capillary pressure head; ¥ 2 0. K(z,¥y ) in (3.2.1) is
the unsaturated hydraulic conductivity that varies with
location and capillary pressure head. For convenience,

K(z,¥) may be expressed as follows (Gardner, 1958):

K(z,¥) = K _(z2) ¢ “¥ | (3.2.2)

in which Ks(z) is the saturated hydraulic conductivity at
any point z. The saturated hydraulic conductivity is con-
éidered as a statistically homogeneous and isotropic sto-
chastic process. a is the pore-size distribution paramebter,

a deterministic constant.

Applying a logarithmic linearization on X(z,¥), equa-

tion (3.2.1) can be written in the form of
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2
a“y dlnX dy .
=5+ —EE“[HE + 1] = 0 (3.2.3)

dz

I1f we express the variables in terms of mean and per-

turbation,

¥y=H + h E(y¥]=H E(h] = 0 (3.2.4a)

Ink_ = F + f E[InK] =F E[f] = 0 (3.2.4nb)

then (3.2.2) can be written as

P

Ink = F + £ - a( H+ h ) ; (In = loge ) 3.2.5a)

anm = E[ 1lnK ]- F —-aH (2.2.5b)

After substituting (3.2.5) into (3.2-3), and assuming ggf o,

we obtain

: 2

df dH dh df dH dH

" Sregmtewm ®ma t olE
) 9 (3.2.6)

g dh d’n  d4°h _ dhdf an, 2 _
gg G gh d7H _dh  GNC 4577 -0

dz dz 2 2 dzdz dz

dz dz

Taking the expected value of (3.2.6) results in the mean

flow equation which takes the form
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2
. 2 - - —
dH dty d"H  dhdf dh 2 _
®az "t afﬁi] gz2 dzdz *oely; - 0

where the overbar indicates the expected value. Subtracting
thel mean flow equation from (3.2.5) and neglecting terms
involving the product of perturbations produces a definition
of the governing flow equation in terms of the perturbations

which have a mean zero. This equation takes the form

2
dfr . dy dHydh d h

dz[1 + dzl - a[l * zdz}EE e =0 (3.2.7)

dz

The mean hydraulic gradient, J , is
do . dH
= - ———— = + LA 2

J Elg ]l =1+ 5 (3.2.8)

so that the flow equation describing the perturbations in

capillary pressure head, (3.2.7), can be written

2
df dh , @“n _
Yoz T @02 T gy g

Note that during a downward flow J is always positive.

We assume that the mean zero perturbed terms are sta-
tistically homogeneous. By using the stochastic Fourier-

Stieltjes integral representation (Lumley and Panofsky,



30

1964) for the perturbed terms

x a0
_ ikz .. _ ikz
£-] e az.(x), h-=[ e dz, (k)  (3.2.10)

-—t o0

wheré de(k) and th(k) represent Lhe complex Fourier ampli-
tudes of the fluctuations of f and h over wave number space
k, respectively. Using these representations in (3.2.9)
leads to the following relationship between the Fourier

anplitudes

1347
dz, = £ (3.2.11)
h - Tk ¥ 1a(zi<iy)

The spectral density function Shh of h ig then related to

the generalized Fourier amplitude by

. k| ’ . ¢

E{ dz, (kyaz, (k)} = 0 k # k
* ’ - 1 . ’
E{ dz, (k)dz, (k)} = 5, (k)dk  k = k

where the asterisk denotes the complex coenjugate (Lumley and
Panofsky, 1964). The spectrum of capillary pressure head
can thus be expressed in terms of the spectrum S of ans

“ff
as
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5 -
I‘s
s = £f . (3.2.12)

e 2 WPz - 2

A simple exponential form for the autocovariance func-

tion of ans is assumed. in order to evaluate (3.3.12)

Ree( € ) = ofexp[-i£1/2] (3-2.13)

where o? is the variance of f , ¢ is the separation distance
or lag, and X is the correlatian length. This function
implies that correlations between neighboring values of the

saturated hydraulic conductivity in a given medium drop off

rapidly with increased spacing. By taking the inverse
Fourier transform of Rff,lone obhtains the spectrum of ans :
a%k 5
S5, (k) = i £3.2.14)
£f 7(1+2%%2)

The spectrum Shh of fluctuations in capillary pressure head
is found by using (3.2.12) and (3.2.14). The Fourier
transform of Shh leads to the autocovariance, th, of head
fluctvations:
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3 ike o i
th(f) = f e shh(k)dk =
Jgaﬁ )2 Bl PN (3.2.15)
x { 55 4 - e ! }}
(1-1“8%)

2

where 8 = a(2J-1). When ¢ is equal to zero, the variance o;

of capillary pressure head fluctuation is obtained as

2 2
o~k _(g) - £ (3.2.16)
h = %hh BCIFAEY

Ancther form of the autocovariance function of 1nk

5
been used to produce a statistically homogeneous

’

which has

solution with finite head wvariance in the stochastic

analysis of one-dimensional, saturated groundwater flow

(Bakr et al., 1978}, takes the form:

Reo(£) = aﬁ(l - i%l ] exp[-itl/nl (3.2.17)

where 7 is the correlation length. The spectrum of fluctua-

tions in anS assocliated with this autocovariance function

(the so-called "hole function™) is:

Zoﬁngkz

7C 1+ 32k )2

- 3.2.13
Sgg (5 ( )
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This spectrum S of the fluctuations in ans results in the

£Ef

autocovariance of head fluctuations:

J202_”2 ~1g1
- £ [ 2 2] 3! n
Ry () 1 - 8%9°1{1 + ==]e 7 (3.2.19)
hh 5 2)2
(1 B n
—:gl}
- Zﬂne_'algl + Zﬁznz e 7

where £ = a(2J-1). This head covariance function and the
hydraulic conductivity covariance functions are graphed in
Figure (3.2.1). Note that the autocorrelation function of
the soil capillary pressure head depends not only con the
ratio of the separation distance to the correlation scale of
anS as in saturated flow case {(Bakr et al., 1978) but also
on the gradient, J, and ax. Thus, the correlation scale of
the head process could vary with the gradient and ax. The

corresponding variance of the head fluctuation is then

222
2 T %" (3.2.29)
6Z = R, (0) = ———t 2.2
h “bh (1+an) 2

The head variances resulting from the exponential and
hole covariance functions are shown in Figure (3.2.2) as a

function of 3g.
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3.3 Head Variance and Covariance of Three-Dimensional Flow

The previous one-dimensional flow analysis is gsomewhat
unrealistic because it oversimplifies the variability of
hydraulic conductivity of natural soil formations, which is
inhérently multidimensional. In addition, a one-dimensional
flow model tends to force water flow through the low permea-
bility layers. 1In reality, flow may move in the lateral
direction to the place where higher conductivity exists so
that it allows the flow to pass around the less permeable
zones. 1t is therefore of importance to investigate the
effects of multi-dimensional soil property variations on a
multi-dimensional flow system. This is carried out as dis-
cussed below.

The governing equation - of steady-state, three-
dimensional flow through an isotropic porous medium is gen-

erally expressed as:
V- (Kv®) = 0 (3.3.1)
where ¢= -z-y.

After carrying out a log transformation for ¥, we

obtain

¥ + vink-v(z + ¥) = 0 (3.3.2)

If we consider an unbounded unsaturated porous medium
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that has a mean hydraulic gradient J in the z direction but
perturbations to both the flaw and the hydraulic conduc-
tivity K in three dimensions, then one cén express the
capillary'pressure head in terms of mean and perturbations

as follows:

-
i

H+h-= (J-1)z + hix,y,2z) ; J-1 = = (3.3.3)

Also following (3.2.5), LnK is represented by.

LnK = F + £ ~a(H + h) (3.2.4

L

Substituting (3.3.4) and (3.3.3) into (3.3.2) and carrying
out the same operations employed in one-dimensional

analysis, one obtains

2 af ah _
V™h + J—a—E a(ZJ - l)*a-z- = 0 (3«3‘5)

This is the governing equation for the output fluctuations
in capillary pressure head in terms of variations in input
ans where both the fluctuations in head and in anS are
treated as spatial stochastic procesases. If f and h are
again taken to be statistically homogeneous preccesses, sto-
Chastic Fourier-Stieltjes integrals can be used to represent

the fluctuations in three dimensions as follows:
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o
ik % -
h(x;,x,,%,) = J e az, (k)
;CD
ik’ x 2l
£(x).%,,%,) = j elk X az (%) (3.3.6)
-0

where X= (xl,xz,x3) is the position vectaor (xlEz) and

X = (kl’kZ'kBJ is the wave number vector. After substitu-
tion and manipulation, an expression relating the complex

Fourier amplitudes of head and f fluctuations resulkts in the

following farm

ik.,Jdz
4z, = 1 f

ho 2y ie(23-1)k,

{(3.3.7)

The spectral relationship associated with the above equation

is given by

shls
shh = - : (3.3.8)

xt + a®20-1) %)

If we consider a simple exponential form for the auto-

Covariance funcktion of f (see Bakr et al., 1978) ,namely,
. - 2 -
Rep(€) = Opexpl-1£1/x] (3.3.9)

2 . . z .
wh =1
ére o, is the variance of InkK , ¢ iy eyt 53} 13
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the length of the separation vector, and \» is the integral

scale

T Repl8)
SR g £ i ]d& (3.3.10)
0 %%

The corresponding spectrum bf 1InK ( Bakr et al., 1978),

then, 1is given by

2.3
ofk
[ = (3.3.11)

£ff ﬂ2(1+k2k2)2

and the spectrum of the head fluctuations is expressed as

2 2.3 2
J afk kl

s =
hh (3.3.12)
ﬂ2(1+k2k2)2(k4+ﬁzki)

where 8 = @(23-1).
The head variance is found by integrating the spectrum
in (3.3.12) over wave number space and is given by (see

Appendix C)

h ) Y] MYV

2 i [ _ 2In(l + A p) 1 ] (3.3.13)
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in order to examine the behavior of the unsaturated flow
gystem 1in the three-dimensional random field, one would have
to evaluakte the head ceovariance function-' The three-
dimensional head covariance function obtained by taking the

Fourier transform of Shh given by (3.3.12), can be expressed

as:

(-]
- ik Ee  pyap 3.3.14
R (%) fff e Sy (KK ( )
—co
where x is the angle between the separation vector § and the
direction of mean flow (see Figure 3.2.1) and £=1E1.

Transforming k into spherical coordinates and using the fol-

lowing relationships (Rakr =t al, 1978)

kl = lﬁ!cosﬁ

kl
a5 = cogsdcosy + sindsinxcosg (2.3.15)
dk = sinddkddde

The integral after integrating over k (see Appendix D)

becomes:

2 r 2gine [ - pge PAlT!
R . (&,x)=C ﬂf I k! 9
hh 2 2 2 2
y=0 6=0 (B g7 -1) {7 g -1)
(3.3.186)
2 2 —-t71i -7l
84 ¢e _ U7ri+)e ] .
+ 33 5 doedo

(B°g"-1)
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’ 2
k £ _ Jzogkz
where 4@ = 4 B = ax, T = Kcos@, and C = N The
2n

remaining integral is evaluated numerically. The result of

the head covariance function is shown in Figure (3.3.2).
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3.4. variance of Log Unsaturated Hydraulic Conductivity

Since the hydraulic conductivity is one éf the impor-~
tant parameters in the flow equation, it is of interest Lo
xnow the variation of the parameter in the randem field

under an unsaturated condition.

1£f the log of the unsaturated hydraulic conductivity is
taken as a stochastic process, it can be expressed in terms

of mean and perturbation as in (3.3.4):

InK = F + £ - a(H + h) (3.4.1)

The corresponding equation describing the fluctuation of 1nk

is given by:

InK - E[InK] = f -~ ah (3.4.2)

The variance of 1nkK, then, can be directly obtained by

2 E[£%] + «®E[nh®] - 2qE(th (3.4.3
- - {
1nK [£7] a"E[h™] 2aE[fh] (3.4.3)
2 2 2
—af + [e” - Z(aH/J)]oh
since, for the one-dimensional case using (3.2.11),

(3.2.13), and (3.2.16),
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E(f h] = [ E[dz.dz]]ak
as 5 (3.4.4)
k2+32 1+x8 Jh

00

This result is also valid for the one-dimensional case with
the hole covariance function as well as the three-
dimensional case as is easily shown by using (3.3.7). Sub—
gtituting (3.2.16) and (3.2.20) for the one-dimensional head
variance in (3.4.4), one can write the variances of one-
dimensional unsaturated flow hydraulic conductivity result-
ing from a simple exponential autocovariance function

(3.2.13) and a hole function (3.2.17) as,

2
2 2[ B I
Tk = O L@ 2 gy (3-4-58)
02 = 02[l+(a2F gg_mgjgl__ (3 5b)
2 5 .4.
InkK f J (l+3 )~

respectively. In the case of J = 1, (3.4.5) can be reduced

to

g 2 - of[(l + ?an)} (3.4.8)

Oink T tanrys 9 9 1 + 2an)

for the simple exponential covariance function and the hole



46

function inputs, respectively. To evaluate the variance of
unsaturated hydraulic conductivity of the three- dimensional
model, one has only to substitute the head variance of a
three—dimensional model (3.3.13) into (3.4.4) for the oﬁ.

This gives:

2.2
2 _ 2 2_ 208, J% 21n(1+)8) 1
T °f[“f“ ERrrerit v+ sv 1 B RS

If J is equal to unity, the variance of the log of the unsa-

turated hydraulic conductivity can be expressed as

2 - 2{ 2ln(l+ar) 1

ink T % P3N 1+ar

(3.4.8;
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3.5 Effective Unsaturated Hydraulic Condugtivity

Hydrologists or soil scientists often encounter tLhe
dilemma of space averaging of hydraulic conductivities in
unsaturated heterogeneous forous media. Little investiga-~
tjoﬁ has been carried out on this subject. In this section,
we will derive the effective hydraulic conductivity in both
one- and. three-dimensional flow systems based on the sto-
chastic analysis.

To determine the effective hydraulic conductivity, the
stochastic solutions obtained in the previous‘sections will

be used. For one-dimensional flow the Darcy equation states

that:
d
g =x [§£+1] (3.5.1)
where q is the specific discharge. Using (3.2.5%a) and

(3.2.5b) this can be written as:

(£-ab)(dv g1

9 = Kme dz

K_(L+f-ah+(f-an)?/z+.-. ) [SH + 22 4 1] (3.5.2)

dz = dz

where K = K. exp(-aH), anG= E[anS]- Taking the expected

Value and neglect the third and higher order terms,
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E[ g ] = Km{ 1 el cg-an)?] o

dh
+ K E[(f-ah)g7] (3.5.3)

where J = 1 + gg'is the mean hydraulic gradient. The first

expected value term on the right hand side of (2.5.3) is
simply the variance of the logarithem of the unsaturated
hydraulic conductivity, gink’ as evaluated in section 3.4.

1f the exponential covariance function is used, the second

expected value term can be determined as:

dhy _ dhy . kq
Ef(f-ah)g;] = Eftg] = f Eldz, (-ik)az, Jdk
-c0
co 2
2 ood
] J ';kz Spgdk = - 1:1ﬁ
k4
since:
dh : . ) * ? —ika? -
E[bgy] = JE[az, (-ik)az, Jdk = | .7 S.pdk = 0,

Similarly, the hole covariance function produces:

o§3(1+2ﬁn)

dh
Ef(f-an)=2] = -
dz (L+am)*

Using these results, (3.5.3) can be written as:
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2
o 2
B f[ 2 208, J° 2 }
-= K S— - - =
Elal/J m{l+2 M =) s 1+i8 ]" Ke,
{(3.5.4)
v 2 )
and E[gl}/J = Km{l+j§[l+(a2—2gﬂ) ' ;- 2(1+2£73}]E %
hd &~ e
(1+87m) (1+87)

for the effective hydraulic conductivities resulting from
the exponential and the hole function covariances, respec—

tively-

The right hand side of (3.5.4) is the effective hydraulic
conductivity for one-dimensional flow, Ke' which when multi—'

plied by the mean hydraulic gradient produces the mean mois-

ture flux or specific discharge. Note, Ke is generally
dependent on the mean hydranlic gradient; i.e., the mean
Darcy equation is nonlinear. When J = 1, (8 = a(2J-1) = a),

(3.5.4) implies a relationship between the mean infiltration

Lt

rate and the mean capillary pressure. Since K _ = Kcexp —oH)

m

and KG=expE[anS] is the geometric mean of the aturated

n
[a]

hydraulic coniductivity. In this case, the effective conduc-

tivity of the unsaturated flow reduces to

2
(8]
K =X e'a”[l —-—-£——l (3.5.5a)

Using the relationships in (3.4.6), (2.5.5a) can be related

2
to
can by



2
o
_ -aH[ _ lnkJ
K.e = KGe 1 > (3.5.5b)
Equation (3.5.5b) represents the mean or cffective

conductivity—capillary pressure relationship for steady
vertical infiltration through a perfectly stratified hetgro—
geneous soil of unbounded vertical extent.

Note that as ag/[2(1+ak)]>l, Ke becpmes negative., ‘This
impossible result can be ascribed to the neglect of higher
order terms in (3.5.2). For the saturated flow case,
Gutjahr et al. (1978) found an 18 percent error in this type
of first order approximation for one-dimensional flow per-—
pendicular to layering with a iog-normally distributed X ang
o§=l. For the unsaturated flow case, the error due to the
approximation depends on G?, @, and A for J=1. Although we
can not quantify the magnitude of 03/[2(l+ak)] in natural
801l formations, it is expected that its value for many
hydrologic media is likely greater than 1. One possible way
to circumvent this difficulty is to consider the guantities
in brackets in (3.5.4) and (3.5.5) as the first two terms of

b'd

the Taylor series expansion for e (Gelhar and axness,

1981). Therefore, for 0?/[2(l+ax)] >1, eguation (3.5.5)

beconmes

2
K, = Keexp{-ak-[o7/2(1+ar) ]} (3.5.6)
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tThe more general formula ( equation (3.5.4) ) in which J is

not restricted to be 1, then, can be expressed as:

2
i (0] 2
~ _ _g{ 2_ 208, 3% 2 J (3.5 7
ke = Xgoxp |t v e Ihate - } (3-5-72)

The same exponential generalization can also apply to the
effective hydraulic conductivity obtained from the hole

covariance function which is given by:

02
£l

2.2
xe = KGexp {—aH + —_ll+(a

2 2a£) Iy _ 2(l+23ﬂ)}} (3.5.7b)
. .
(l+,@n)2 (1+87)"

A similar analysis is carried out for the case of

three-dimensional isotropic variation in saturated hydraulic

conductivity represented by the covariance in (2.3.10). The
procedure is identical to that of the one—-dimensional case
although the integrations are more involved. If we assume

the mean gradient only exists in the Xy direcltion, Darcy’'s

flux in this direction takes the form

Taking the expected value of (3.5.8) and neglecting the

higher ocrder terms, the mean flux in this direction is given
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by:
[1 4 ELE=an)y?) ah
- - . Wl At 1 ..
E{q,] = K_[1 + 13, h[(f—ah) o (3.5.9)
- 2 7 .
where E[(f - ah)”" 1 = ( see (3.4.3)). Since the covari-

an

ance of h and Bh/axl is zero, the last term of the right

hand side of (3.5.9) can be delbermined as follows:

- 3h i
E[fj] = E[f =21 < {{ig ( ')Ak
axl} J; JOf
(3.5.10a)
23w 2.2 3 : ’
=395 jjj(klk +ikig)dk, dk, dic,
nt L aterlst) i tin?

This results in the cross-covariance of f and ahfaxlﬁj, and

it is given as:

~ 2f 2 21nil+y! Ly 1 ‘
E[f]] - chfﬂgjil v + l+y} L+y§{3'5'l”b)

where y is A8. The detailed derivation of (3.5.10)

(9]

an be
found in Appendix E. Thus, the effective hydrauiic conduc-

Livity for the three-dimensional flow case
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2 R
a . .
. -aH Ink | E[fq ]
Elq,]1/7; = K = K.e 1oy Ji] (3.5.11)

when J; = 1, (3.5.11) can be simplified into the form:

- —aH 2rin(Ll+ar) 1 3
K = K.e {1 + o { - o
e G : f Q@A 2 ’ ¥
{ (L+ar) (ar)”
(3.5.12)
_ 1 _ 4ln(drer) | 1 }
x }
« Gy’ Carn) 2 (1+an)

Using the exponential approach given in (3.5.6) and

(3.5.7) to generalize (3.5.12), this results in

- 1 a 2rin(l+xa) 1 3
Ke KGQXP{ aH Uf{ an Z(itary L T3
L . {(an)
(2.5.13)
_ 1 4ln(l+an) 1 |
ax 3 Z, ]
(ra) (an)“c1+aryt]

Figure (3.5.1) shows the effective hydraulic conductivities

(3.5.6) and (3.5.13) of one- and three-dimensional models as

<
a2}

a function of the magnitude of the o%- The dependence

effective hydraulic conductivity on the mean gradient i

53]

demonstrated in Figure (3.5.2)
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—————— 3-D
1-D Hole
2.5+ | -
' al =0.01
ar=0.1 47
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al —l.Q,’f
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m
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NORMALIZED FLUX E(q)/K

1.2

GRADIENT J

Figure 3.5.2. Comparison of the non-lincarity of onc- and three-
dimensional Darcy's fluxes, (3.5.7b) and (3.5.13),
respectively.
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3.6 Flux Variance

KA

Subtracting (3.5.9) from (3.5.8), and neglecting the
higher order terms, the equation describing the fluctuation

of the flux is in the form:

T ah .
ql - Km{J(f -ah} + _5§;} (3.6.1)

If (3.6.1) 1is represented by the stochastic Fourier-
stielt}es 1integral, the relationship among the Fourier

amplitudes of the perturbations qi, f, and h is derived as:

dz ' = Km [JdZ

q;

£ (ad - ikl)dzhl (3.6.2)

Then the corresponding spectral relabionship is

272,
s =K la%s,,
9

p) 2.2 2
~2a3° 142 1+ (@IS, ]
20J Reisth} J Re{5f3,4(a +kl}3th {(3.6.3)
where Re denotes the real part of the spectrum. The wvarli-
ance of qi can be obtained by taking a Fourier transform of
(3.6.3) with the specified covariance function for f pro-
€ess, ( in this case (3.3.9) is used ). The resulting vari-

ance of q) is
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2 _,22 2{ 3 5 2 5
o° =K o J7|1- + + - +
' f 2
a " 2ae? om? o
éﬂi&i@?l[hg + _mﬁwﬁ]+ 2 - 41 (3.6.4)
(r8) (ABYT1 (X8) (1+r8) (AB) " (14 28)
2.2 : )
S @2T3@2) y  20n(ing), ] ]
Oy 2 X8 iTXB j

The details of the derivation of (3.6.4) are given in Appen-
dix F. The variance of flux perpendicular to the mean gra-

dient, J, 1is evaluated as follows:

P (f —ah) ah

9 T Ky 3x,
- ...., dh
K (1+(f —ah)+ 5%

A

(3.6.5)

The corresponding spectral relationship of perturbations of

qé and h is of the form

)
hh’ {3.6.6)

The variance of qé is obtained by integrating (3.6.6) over

the wave number k (see Appendix ).
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2 200t T kik’é
°., Km——_?_-fff 7373 gk, dk,ydiy
95 n (L+k"a7)™ (k +8° k ) =
This results in
2.2 2
K-J
o2 - _m Uf{ 6 3 N S
' 4 3 i 2 ’
aj CV:) R V- R SV S
(3.6.7)
1n(1+kﬁ)[4 _ }}
(r8) (r8)"~
To demonstrate the effects of ek on the results, the ratio
2 . 2
of 02 and ¢~ as well as 02 and ¢~ are evaluated for the
a3 95 a3 9,
case of J = 1 as a function of a) and are displayed in Fig-
ure (3.6.1). Note that for small ax the ratio 02 /o7 is
a; 9
1/8, the saturated flow value. For large o, reflecting
unsaturated flow effects, the ratio 02 /02 decreases; Lhis
a4; 93
trend of decreasing transverse flow variation further shows

the tendency toward one-dimensional flow.
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3.7 Variance of Pressure Gradient
B

In practice, hydrologists or soil scientists often
assume that capillary pressure gradient is negligible (unit
hydraulic gradient), One méy question the validity of this
assﬁmption, especially in soils exhibiting a large degree of
variation. Thus, evaluvation of pressure gradient variation
through fhis theoretical analysis may provide some useful

information on the pressure gradient in the natural socil.

For one-dimensional flow, the Fourier amplitude rela-
tionship between pressure gradient and pressure head is

given as

de = ideh (3.7.1)

Multiplying (3.7.1) by its complex conjugate and then taking

its expected value results in the spectral relationship,

N £ (3.7.2)

To evaluate the variance of 3 process, we integrate its
. 2 . .
Spectrum. The variance Gj' if the exponential covariance

function is used, is
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J2 2
o2 - ¢ (3.7.3)
3 2B (L ¥ X&)
f the hole function is employed, the variance is
2.2
J%o
2 £ (3.7.4)

[s) f O,

7
b+ oam®

Similarly the variance of the pressure gradient resulit-
ing from the three-dimensiocnal model is evaluated in Appen-

dix F and can be expressed as

_X§ - 61n;1+y:}] (3.7.5)

(2.7.1).

Where y = Xx8. These results are shown in Figure
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3.8 summary and Discussion of the Resulks

Oone— and three-dimensional steady-state infiltration
through unbounded media of statistically homogeneous and
jsotropic saturated hydraulic conductivity fields are inves-
tjgéted in this chapter. A simple exponential function is
used to describe the relationship between unsaturated
hydraulic conductivity and capillary pressure head. Assum-
ing that the pore-size distribution parameter, o, is a
deterministic constant, the head variances and covariance
functions, effective hydraulic conductivities, wvariances of
the hydranlic conductivity, flux variances, and variance of
pressure gradient are determined by utiliziﬁg the spectral
method. The resul;s and their physical significance are
discussed below.

Figure (3.2.2) shows the normalized head variance at
J=1 as a function of the product of the pore-size distribu-
tion parameter and the correlation length scale, 1i.e., «ax.
To determine the effect of input covariance functions on the
outputs, the length scale of the hole functien in one-
dimensional case is assumed to be 2.5 times that of the sim-

rle exponential covariance function in three—-dimensional

[

case, i.e. 7 2.5\ (Bakr, et al 1978). Physically, awl can
be considered as the thickness of capillary fringe of soil(
Bouwer, 1958). Typical ranges for a’l and x (see Bouwer,
1975, and Bakr, 1976) are 0.2 to 2 m for both parameters;

therefore the practical range of aix would be from 0.1 to 10.

Within that range, Figure (3.2.2) shows that the two one-
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dimensional input. covariance functions, the exponential and
the hole functions, produce practically the same head vari-
ance . For a small value of a), the head variance resulting
from the exponential function approaches infinity as indi-
cated by the one to one slope of the curve, whereas the
hole function produces a finite head variance. In addition,
the head variances obtained from the two input functions at
the limit‘( a = 0 ) are consistent with that of saturated
flow (see Bakr et al., 1978). In fact,in this case, the
flow equation (3.2.9) is equivalent to the saturated flow
case of Bakr et al (1978). However, it is not appropriate to
conclude that the head variance in the steady infiltration
process should result in the same head variance as the
saturated flow case. This is shown by (3.2.4a), where the
product of « and head perturbation h doces not necessarily
vanish even though the mean capillary pressure head is zero.
It means that the porous medium is not completely saturated
due to the presence of the perturbation of the capillary
pressure head. The assumption that « = 0 bears no physical
significance in practice. It simply brings about the
rathematical eguivalence of the equations at this particularx
Case. It is also of interest to know that the governing
one-dimensional steady state infiltration‘equation (3.2.7),
in terms of capillary pressure head and log saturated con-

ductivity perturbations, can be rearranged to:
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h , dH df _ _  dH dh df dh 1 _
@@ Paatlm gl 68D

a’n :
dz dz
and can be compared to the horizontai absorption case:

2
d"h dH 4f
=212 2 EE Banlell el L2
dz2 t 4z dz 2 dz dz ¢ (3.8.2)

The additional term on the left hand side of (3.8.1), then
can be thought of the gravity term, which consists of the
effects of the hydraulic conductivity and the capillary
pressure head perturbation gradients, namely, gg and gg,
respectively. The relationship between head variance and a
becomes evident. When a becomes large, the resistance due
to the variation in saturated conductivity is significantly
reduced by the.head perturbation gradient, which is ampli-
fied by the magnitude of «. In other words, the gravity
term becomes dominant and the head variance is reduced.

The reduction of head variance at large wvalues of a)
can be further elaborated through a "conditional analysis?® .
Assume that soil formation is composed of a collection of
s0il columns: interaction between columns is neglected.

Each individual column is assumed to be homegeneous.

Darcy's law for each column, thus, can be written as:

g =k G+ b
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If dy/dz is equal to 0, the above expression can be further

gimplified to:

q = K(¥) Bid

It
=

e
°

This equation yields the expression for the soil capillary

pressure head:

Since the flux is constant, the variance of‘capillary pres-—

sure head is of the form:

Q
"
]

Note that the head variance 1in the above equation is a
result of variation in saturated hydraulic conductivity
among soil column. Since each columns is hemogeneous, and
fhe correlation scale of the saturated hydraulic conduc-
tivity of each column is infinite.

This same result is found from the spatially variable
stochastic anaylsis, (3.2.16), when gix=ar>>1 with J=1; how-
ever this case could also be interpreted as one with fixed A
much smaller than the overall scale of the problem and a)

large because of the soil type. Both interpretations
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demonstrated the head variance reduction when e is large.
Note that when ol >>1 the stochastic result, (3.2.16), shows
the head variance to be independent of the correlation
scale. This behavior is in contrast to the saturated flow
case when the head variance increase as xz {Bakr et al.,
1978} -

Figure (3.2.2) also shows that the head variance
derived from the three- dimensional model approaches the
saturated flow result as al becomes zero. For large values
of ai, the one- and three- dimensional results are identi-
cal, indicating that the flow is predoninantly one-—
dimensional under this condition. Comparing the one- and
three—- dimensional flow equations (3.2.9) and (3.3.5), it is
clear that under this circumstance the gradient of the head
perturbation terms in the z direction turns out to be more
important in the flow system. Therefore, we may expect bthat
the one-dimensicnal result may be appropriate for some field
applications, espeéially for coarse texture soils which gen-
erally are associated with large values of «. Furthermore,
s0ils are often horizontally stratified. However, for fine
texture material, such as clay and silt, often characterized
by small values of a, one-dimensional results may not be
appropriate. The three-dimensional analysis préduces a
Smaller head variance in this type of soil. Hence, for fine
textured soils, significant errors could be introduced if
fesults from a one-dimensional model are used to draw a con-

€lusion on the effect of field heterogeneity on the flow
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properties. The system, in fact, isrinherently three-— dimen-
sional.

The head covariance functions resulting from one-
dimensional analysis are illustrated in Figure (3.2.1) along
with the dimensionless separation distance. It demonstrates
that the mathematical filtering effect is directly related
to the magnitude of aA. When its value is small, the head
perturbations tend to correlate for a large distance. Con-
versely, the outpubt covariance function tends to have the
same correlation length scale as that of the input covari-
ance when ap is large, although the magnitude of the wvari-
ance is reduced. The hole effect ( negative correlation ) on
the output also becomes evident. In Figure (3.3.2) the head
covariance function of the three-dimensional model given by
(3.3.16) is evaluated for several different wvalues of the
angle x and @\. One should notice that the head perturba-
tion in kthis case is anisct;opic, even though the input log
saturated hydraulic conductivity perturbation is isotropic.
The perturbations of the head process in the direction per-
pendicular to the mean flow ( x = w/2 ) have consistently
higher correlation values than in the direction parallel to
the mean flow, particularly for small values of ar. Yet
the difference in thé correlation values in bhoth directions
diminishes as ai becomes large. Furthermore the fluctua-
tions in head in the direction parallel to the mean flow
direction tend to exhibit the hole effect at large ax

Values, when the exponential covariance function (3.3.9) is
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used. This further confirms the finding that the infiltra-
tion process in coarse texture soils 1is simply a one-
dimensional phenomenon. Conversely, in fine texture soils,
water will dissipate léterally in response to the lateral
head perturbation gradient and the process becomes three-

dimensional.

The variance of log-unsaturated hydraulic conductivity
as indicated by (3.4.5) and (3.4.7) is found to decrease
with A8. This is consistent with the previous finding on
head variance in unsaturated flow.

The effective hydraulic conductivities determined from
the one-and three-dimensional models are shown graphically
in Figure (3.5.1); It is seen that the effective hydraulic
conductivities approach the one- and three- dimensional
saturated flow limits found by Gutjahr et al. (1978), as ai
becomes small. In addition, they are bounded by hoth the

harmonic and arithmetic mean of saturated hydraulic conduc-

tivities. Note also that for large ax both one- and three-

dimensional effective hydraulic conductivities approach
~aH . . .

KGe o One of the interesting features of Lhe effective

hydraulic conductivity of unsaturated flow is‘its dependence
on  the magnitude of ai. This situation is not true in the
saturated flow case. From (3.5.5), one can see that the
increase of a\ reduces the value of oinx.

In the case of flow perpendicular to the bedding,

Gutjahr et ail. (1978) have found that the effective
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hydraulic conductivity for the saturated flow situation is
the harmonic mean of the saturated hydraulic conductivity.
gimilarly, equation (3.5.5) tells us in an unséturated flow
situation) the harmonic mean of the unsaturated hydraulic
conductivity of layers is the equivalent effective hydraulic
conductivity. However, the analog is not clear for three-
dimensional unsaturated hydraulic conductivity.

The non—linear nature of unsaturated Darcy's flow is
shown in Figure (3.5.2). The dependence of flux on the gra—
dient in the three-dimensional case is insignificant as com-
pared to that in the one-dimensional case. The non-
linearity in the one-dimensional flux grows with a\. At
large aA values, the behavior of the Darcy's flux in both
cases becomes erratic near J=1. This erratic behavior might
be attributed to the neglect of product of perturbations in
the analysis.

As expected, the wvariance of flux in the lateral direc-
tion diminishes relative to ‘that in the direction of flow as
the pore-size distribution parameter becomes large (Figure
3.6.1). This is also an indication of the dominance of grav-—
itational flow in coarse-textured soil.

The variation of pressure gradient also can be related
to ex as illustrakted in Figure (3.7.1). One-dimensional
analysis produces a variance of the magnitude of Jzog, and
three-dimensional analysis results in a smaller capillary
Pressure gradient variation, which is about 2/5 of the one-

dimensional result. As the value of ax increases, the vari-

e
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ance resulting from one-dimensional analysis is reduced
rapidly as indicated by a two to one slope in the figure.
However, the reduction rate of pressure variance in the
three-dimensional result is _linearly proportional to the
magnitude of aki.

The results discussed above lead to a definitive con-
clusion that the variance of log-saturated hydrauiic conduc-
tivity, 1its correlation scale, &, the hydraulic gradient,
and the pore-size distribution parameter are the essential
elements controlling the effect of spatial wvariability of
saturated hydraulic conductivity on the infiltration pro-
cess. In addition, for large ax the flow becomes essen-

tially one-dimensional.
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CHAPTER 4

FLOW IN STATISTICALLY ANISOTROPIC MEDIA WITH
A DETERMINISTIC PORE-SIZE DISTRIBUTION PARAMETER

4.1 Introduction

In the previous chapter, we have analyzed unsaturated
flow in statistically isotropic media. However, natural
soils or geologic formations tend to exhibit bedding. It is
therefore more realistic to assume Lthe media are statisti-
cally anisotropic, especially the large scale media dealt
with in this study.

In general, statistical anisotropy means that the
correlation scales of-a stochastic process are not equal in
all directions. Hydraulic conductivity, for example, usually
correlates abt a longer distance in the direction parallel to
bedding than in the direction perpehdicular to bedding.
Presently available data are adequate to quantify the aniso--
tropy in natural sbil formations. Smith (1980) measured the
hydraulic conductivity of samples collected from both hor-
lzontal and vertical profiles of the Quadra Sand outcrop in
Vancouver, B.C.. These data indicate that the correlation
scale of hydraulic conductivity in the horizontal profile is
an  order of magnitude larger than that of vertical. Corre-
lation scales of the mean diameter of Torrifluvent are exam—-
ined by Gajem, (1980). He reports correlation scales
Obtained from two perpendicular transects in the horizontatl

Plane to be 182 and 2 meters. Thus, these findings indicate
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the necessity to extend the analysis to statistically aniso-
tropic media. |

This chaptér deals mainly with the evaluation of head
variance and effectiﬁe hydraulic conductivity in statisti-
cally anisotropic media. The anisotropy is defined by the
aspect ratio of the aorfélation scales of log-saturated
hydraulic® conductivity of the medium. Effects of the aspect
ratio of the medium, which is the ratio of horizontal to
vertical correlation scales, on the head wvariance and the
effective hydraulic conductivity are determined for the case
where the mean gradient is normal to stratification. The
last section of this chapter examines the head variance and
effective hydraulic conductivity of anisotropic media with

arbitrarily oriented stratification.

4.2 Flow in Anisotropic Media with Flow Perpvendicular ko

Bedding..

The general three-dimensional gsteady flow equation can

be written as:

35 ( K 37 =0, i=1,2,3"° (4.2.1)
1 1

where K is the hydraulic conductivity (assumed locally iso-
tropic), and & = —xl~w- Here, the Einstein summation conven-

tion is used. Expanding and dividing by the nonzero conduc-
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pivity, we can rewrite (4.2.1) as

d
d

2

P dInkK a¢

2 + °x . B8x. 0 (4.2.2)
xi i i

BY substituting “Xl‘V for ®, one can obtain

2]
d

2
4 d1nk a1nK dy
2 oxs tex e = O (4.2.3)

1

Then, the mean flow equation is derived by following the

procedure used in the previous analysis (section 3.3).

VZH + gﬁg#:ngﬁl + V(F — eH)VH + Vv(f —ah}).vh>0 (4.2.4)

1

where the overbar denotes the expected value.

If we let

a3l 8H . aH
Jl = 1+ ==, J, = 5:— , and J3 FT | (4.2.58)

ax i ax

and neglect terms involving the product of perturbations,
the equation describing the relationship between head and

Saturated hydraulic conductivity perturbations is given as



2 af dh dh
v h + J o ZaJiEE— + aaiz g (4.2.6)
By using the Fourier-Stieltjes representation, one can

obtain the relationship between capillary pressure head and

hydraulic conductivity Fourier amplitudes:

iJ.k.dZ
dzh = 3 * I e d
kT o+ i 2J . k. ~- k
{ af 155 1

(4.2.7)
)]

To simplify the analysis, the mean hydrauvlic gradient is

assumed to exist in the vertical direction Xl

only. { Jl # J2 = J3 =0 ). (4.2.7) thus can be transformed
to the following expression in terms of the spectra of head

and hydraulic conductivity perturbations:

2.2,
Jlle

x* + g

f
kZ
1)

S =

hh (4.2.8)

£
2

where g = a(2J, ~ 1).

1

A three-dimensional anisotropic covariance function isg

<

selected for the saturated hydraulic conductivity random

field to evaluate (4.2.8). This covariance function takes

the form:



76

1/2

Ree(€) = exp| - {_.- + (4.2.9)

> |
IAEN FREN

where Al' xz, and x3 are the correlation scales in the Xy

Xy and X3 respectively. Figure (4.3.1) illustrates the
ellipsoid resulting from such anisotropic correlation
gcales.

The corresponding spectrum Sff of ans is obtained by

taking the inverse Fourier transform of R i.e_,

£t

This results in

EEPY
2 2--2 2
Tl o+ Ayky o+ ASk

o

Hh o

See =

P

N N

+ aZx2 }2

The spectrum Shh of fluctuations in capililary pressure head,

therefore is:

2 2
Jlofx k3k
S?ﬂl B
+

(4.2.10)

[EW]

2
1
A

Ll SR o8

ll
2 z
Tr(k4 + ﬁzki)(l + Xik kK, + xJk

L
N

2
3

[SENS]

2
2

Further assoame that the hydraulic conductivity
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yar iation is isotropic in the horizontal plane,

# kz = k3 = X, for convenience. The capillary pres-

i,e-rll
gure head variance oi is obtained by integrating the spec-
grum (4-2.10), (details are given in Appendix H). The gen-

eral form of the head variance is:

1
2
“i = Ji”%*ipé / ) 2 y  (4-2-11)
g (7 — 1)t™ + pZgt + 1}
where p = {L; aspect ratio, g = le; and 8 = a(ZJl - 1). By

integrating the right hand side of equation (4.2.11), the

capillary pressure head wariance is derived:

) .
@) it (pte? -4 - 1)1 20
2 2
of - Jig%kip‘l [ . (ng + 2) 7 I
[p g™ — 4(p”™ - D 1(p° + p g)
2

tote? - 4(p? - 11372 (3 11m)

]
2 2 2
] 207 - 1) + 0%+ [p%® ~ ap? - 111/

2

| ‘
1200 - 1) + p%g - [p%e? - a(p? - 1)71/2;

2
[p%g ~ (p%g? - 4(p? - 1);1/2

i
X
1
i
H

(p%9 + [p%9? - a(p? - 1)1%/2)
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@) it [p%9® - 4(p® - 1] <0

2
2
o - Ji”é*ipé 3 e e T S
' fa(p™ - 1) - p g 1 {p” + p7qg)
4
2
ap? - 1) - ptg%13/2 (4.2.11b)
2 2
tan-l 2p” - 2 + p g _ tan_l 0g
2 4 2.1/2 2 2,172
[(4(p™ — 1) - p g7} / [4(p” - 1) - p4g g i

The effects of aspect ratio, p, on the variance of the
capillary pressure head are shown in Figure (4.2.1).

To determine the effective hydraulic conductivity, it
is necessary to evaluate E{fh], and E[fah/axl} {see
(3.5.9)). The previous analyses show that E{fh}=(ﬁ/J)oi

(see (3.4.4)). Using (4.2.9) for the hydravlic conductivity
covariance function and following the procedure used in the

previous chapter,

2
20 1
2 2
E[£3] = E[fgg—] = ch;p“{ NN T | e.zi12)
"1 kiJiaEp e (g+1)

Details of the derivation of (4.2.12) are given in Appendix
H. From (3.5.9), the effective hydraulic conductivity can

be written in the form:
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= = o2 2am(s 2,2 Effj}] 4.2.13
K,=E[3,1/3, Km[l + 5log-20E(th] + a’oyy + ELD } (4.2.13)

t 1

substituting ciﬁ/J and (4.2.12) for E[fh] and E[fj}, respec-—
tively, the effective hydraulic conductivity in the direc-
tion perpendicular to the bedding can be expressed as fol-

lows:

_ 1} 2¢g-1 2 2ap 4 1.2 4.2.14)

Ke = Kpjt + 2{%[5471} * {" S 2}% ( ’
1*3P ]
If the exponential generalization is used, the effective
hydraulic conductivity is given by:
- _ | 27g-1 2 2ag 4 2 I
Ke=Kiexpl-ah + 3[ f{g;i] + e 3, oy Z’G‘n} (4.2.15)
thlp

The result of (4.2.15) is illustrated in Figure (4.2.2)
together with several aspect ratios. Discﬁssion of the sig-
Nificance of the resnlt is given at the end of this chapter.
Note that the principal effective hydraulic conductivity in
the herizontal direction can not be evaluated ‘directly in

this case because of the uni-directional flow assumption.



—
cO

- £31ATIONPUOD

STINRIPAY 9ATIDSIF2 oYyl Lo ‘d ‘oriex 109dsSe O S$1093JY :Z°7'F SANITY

H&a
‘gezyl ‘eget ‘egl ‘&1l "1 1 (g lga” lgea”
ILEA A RIS u:--— L} —:-u- L ] m—m—uqd\— ¥ w—:—ﬂd T F IH:HN-A T 7T —uuumu— 1 3R 8 ﬁ.—w—ﬁ-d T ¥ m m
-~ -S'Q
L . 00T=0 i
01=d
- n
—+g°1
-5 1
=l

ALLA L 8 lasasy o & Leanasn 3 3 Laaias o 3 lesgna i3 Lpavgs s 2 HTIVE TSR N Y Q-N

ALTATLONCGNOD J3ZTITVHYUON



82

4.3 Flow ;Q'Anigotropic Media with Arbitrarv Orientation of
stratification

The main objective of the analysis in thié section 1is
to define the properties of the effective hydraulic conduc-
tivity in statistically anisotropic porous media. As has
peen mentioned previously, the analysis in section 4.2 does
not provide information about the effective hydraulic con-—
ductivity in the direction parallel to stratification,
pecause the mean gradient exists only in the direction nor-
mal to the stratification. To allow us to carry oubt the
analysis, we will examine the case where the principal
directions of the hydraulic conductivity do not coincide

with the coordinate axes. Only the special case where the

soil formatien is perfectly stratified (or the aspect
ratio, %w, is infinite.), will be investigated here to avoid
1

complicated mathematics. A more general situation will be

explored in a later secticn of this chapter.

Assuming local isotropy of the hydraulic conductivity,
the Darcy's equation for a three-dimensional flow takes the

form:

ad
9 T T Ky
1
r 2 (4.3.1)
_ Grahy® o] ey 2P
Km[ll + (£-ah) + S + I+ (f ah)axi}
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Taking expected values of (4.3.1), dropping terms that are
peyond the second-order and noting that E{hah/axi]

-(1/2)8E(h) % /8% =0,

2
_ E[(f - ah)*) } _ah
Elq;] Km[(l + 5 T+ E{tgif}}
2 (4.3.2)
{ ( 0f - 20E[fh] + o )]
=k |{1 + h J _
la} . F
m 2 i3 i3] 73
= ¥. . J.
13 1
a ¥ ho - T 3 .
where E[fan/dxi} riij, and 6ij ig the Kronecker delta.

Thus even though local isotropy is assumed in the derivation
of (4.3.2), the resulting equation produces a tensorial form
of the mean Darcy's equation where Rij is the effective
hydraulic conductivity tensor.

Assume the direction of the stratification of the soil

formation ,xé, is at an angle 6 bto the coordinakte avis x. as

2

<

shown in Figure (4.3.1). The unprimed (xl,xj,xq ) system is

aligned in the direction of mean gradient so Lhat
= == == j 4 ' ! \ { i

Jl J # 0, and J2 _J3 0. Primed (xl,xz,x3, system is

Ooriented with the positive xé axis in the direction of stra-
tification. Since the two coordinate systems are not identi-
cal, the mean hydraulic gradient vector mav not coincide

With the direction of the mean flow. The mean Darcy's equa-

Lion (4.3.2) becones
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v
S

stratification

Figure 4.3.1: Coordinate system for the case of flow in anisotropic InKg
media with arbitrarily oriented stratification.



9; = Kll Jl (4.3.3a)

d, = ¥y 9y (4.3.3b)

correspondingly, the components of the mean hydraulic con-
guctivity  tensor, Kll' and 221 can be assessed by
al/Jl and aZ/JZ' respectively. If the unsaturated hydraulic
conductivity tensor is symmetric, the principal hydraulic

conductivibty can be calculated from these components. From

(4.3.2), one can express 52 as:

Elg,] = Km{{l ) E[(f?fh)ZI]Jz * E{fggz] }

-~
o
)

.4}

since J., = 0.
2

In order to evaluate the components of the hydraulic
conductivity tensor, namely, Ell' and 221’ it is necessary

2
to determine og and Fij terms in (4.3.2). Since the strahbif-

ication is at an angle 6 to the X, axis of the unprimed
Coordinate system, the application of a coordinate transfor -

hation te (4.2.8), from unprimed to primed system, gives

Jia .k‘a .k’ .
s . 1" nl" " n ml™m S (k") (4.3.5)
bh = d o kra keg? y LE
nl n ml m




86

where a, . and aml are the directional cosines, and Sff(k )

is defined as

2
. [+ o) U U |
SeeK') = — yi fll 2'? 3 ) (4.3.6)
no (1 + kl xl + k2 XZ + k3 13}
supstituting (4.3.6) into (4.3.5), assuming Ay, = 13 = R,
p = A/kl, and g = xlﬁ, and integrating over the wave number

vector (see Appendix 1 )}, the head wvariance of a perfectly

stratified soil formation takes the form

JZOZXZ 2
2 Y1% %1% (4.3.7)
%h a, (L +ga )
9 2311 i1/
Using Fourier-Stieljes representaion, the FilJl Lerm
becomes
dh
Fiid1 = E[ Lo }
i
[ . *]
= | E] az,(~ix)az
k
- E{ -| ixaz, az, ]
k
J.k.k,
_ 17171
- - Spe(B)
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after the coordinate transformation, F,y may be further

expressed as

2
Fi1 = %% i2%m1Emn

where ani = Ccos (xn, xi) and
l kl:‘lkr'l o o
I o Spe(¥) aB  3=1 and 2. (4.3.8)
K™ - ia.. k!
. ( j1 jﬂ)
kl
and where Emn = 0, for m#n. The integral (4.3.7) is

evaluated in Appendix 1 for the pertectly stratified case,

p~~. The results of the integration show

2 2
Fiy9y = E{fggl] - ;JiggZii ) (4.3.8a)
and
_J705a11a1?
Fyydy = E{fgiz] = T1E ga;l‘g (4.3.8b)

Therefore, the components of the effective hydraulic conduc -

tivity tensor in the primed coordinate system are
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2 2

2 2
_ ~ of_ N Jl(2—3Jl)all 3311 ;
Kyp = Kpd * 2+ e L (4.3.9a)
9aj, (4 +9ay, MELEEE
K = — 2¢ 1 q
and K,y Kmallalzafl I_;WEEEE‘ (4.3.9b)

where N = ak,; g = af; 8 = ai,(2J-1).
Assuming the unsaturated hydraulic conductivity is a
symmetric tensor, the hydraulic conductivity in the X,

direction can be determined via the application of the Mohr

Circle principle. From this principle, one can obtain the

relationships among Kyyo Ell’ and E?l'
— L _ o
Kzz Kll _K21c0t29
2 a2 4.2.9
v = 1%117%12 (4.3.3¢c)
= Ky 72Ky aTaT
11%12°
where a4 = cosh, and a5, = sin®. Using the above relation-
ship, K22 ig given as
2 NZJ (2-37.) 2 2 2
o/ -3J.)a a
v - f 1 1711 12
K22 = K 11 t =11+ = (4.3.18)

gall(l + gall) 1 + gall
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The principal hydraulic conductivities aligned with the
pzimed coordinate system are determined by using the follow-

ing relaticnships:

172

(4.3.11)

=
l'-' -
'-.J
o}
ia
=i
o~
)
0
N’ i
|
j-——-—l
+.
I
o
l-_l

The resultant principal hydraulic conductivities in the x!

ll
xé, and xé directions are
{ 2 2 2
o N3, (2-37,)a7, 1]
f 1 17711 2
X! =K {1 + hw{l + A — = bra 212
11 - {4.2.12a)
m{ 2 gall(i + gall) 1 4 galljj
and
2 2 2
~ ~ oF N Jl(2~-331)a‘i1”
K, =K., = K {1 + =11 + - - {(4.2_12b)
22 3 : it 23,12
3 m™ 2 gall(i + gall)Jj

Yespectively. The exponential generalization of {(4.3.12a)
and (4.3.12b) leads to the general expressions of the prin-

Cipal hydraulic conductivities which are
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2 2 5
o N“J,(2-3J.)a’
'K’Il = K exp[_zg[l + 1 — 1 11 _ _‘%——’“ (4-3-1361)
1 [ CET ga ) T T ¥ ga;;
and
2 2
7 ¢ N3 (2-33 )a®
E,, = K34 = = 1 14711
22 = Kaz 7 Kpe¥pio-il o+ (4.2.13b)

gall(i + gall)

To simplify the above expressions, the gradient is assumed
to be unity. Thus, the corresponding principal hydraulic

conductivities become

2
_ - o 1
Kll“Kmexp[Z(l + gall)J
(4.3.14a)
)
-o7 72
= K e InkK and
2
— Or
Kyp = K33 - KmexP{Z(l 7 gall)J
(4.3.14b)
2
/
- K eo'an’
m
Fro 2 _ 2 . -
m (3.4.6), one can show that OinK cf/(lfgall}- There
fore, Ril’ and Eéz correspond respectivily te the harmonic

and arithematic means of unsaturated hydraulic conductivi-
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ries. The principal hydraulic conductivities, (4.3.14a) and
(4,3.l4b), are depicted in Figure (4.3.2) to demostrate the
effects of akl and the orientation of the stratification, o,

on the principal effective hydraulic conductivities.

Using (4.3.14a) and (4.3.14b), the hydraulic conduc-

rivity anisotropy of the media, ﬁéz /ﬁil, is given as:
2
X' /!, = exp(o2 ) = eXp |- ig_%w (4.3.14)
22711 1nK oF (T¥ga ) T

The effects of akl and ¢ on the anisotropy ratio are shown

in Figure (4.3.3).
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4.4 Multidirectional Flow Analysis
2 X

In this section, we investigate the effective hydraulic
conductivity in a more generalized case where the gradient
ie not restricted to be unidirectional as assumed in the
preéious analysis. In other words, the mean gradient vector
J inclines to the axes of the original coordinate system (

unprimed system) xl, X5 and x, with angles v and v

2 3 1r Yo 3’

respectively. The stratification is aligned in the horizon-
tal axis of the primed coordinate system. fThe angle between
the direction of stratification and the ordinate of the
unprimed system, X, is 6. Thus, the mean gradient vector 1is
27 and J3 in the
17 X, and X3y respectively (see Figure

4.4.1). Since Jl, J,, and J3 are not zero, the flow becomes

L

composed of three gradient components; Jl' J

direction of x

multi-directional. The objective is to derive a more gen-
eralized tensorial form for the effective hydrauvlic conduc-
tivity of this type of porous media.

To achieve this goal, the assumptions described in sec-

tion (4.3) are again used. They are

(1) The soil formation is perfectly stratified;

the aspect ratio —%~4 o
1

(2) The hydraulic conductivity of the media is isotro-
pic at the local scale.
(3) The log-hydraulic conductivity covariance

function is assumed exponential (4.3.6).
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Stratificatidh /

Figure 4.4.1: Coordinate systems for the case of flow in anisotropic
InKg media with arbitrarily oriented stratification and
mean gradient.
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From the relationship of capillary pressure head and
hydraulic conductivity Fourier amplitudes (4.2.7), the head

gpectrum can he related to the hydraulic conductivity spec-

trum by

I kK
5 = S (4.4.1)
Bh oty 4e%e p ok ok, ) S

i73%1%y

where Pi=Ji—(Oil/2)’ and aij is the Kronecker delta. Appli-
cation of the transformation rule, ki = anikﬂ' and substitu-
tion of the hydraulic conductivity covariance function

{(4.3.6}, the head spectrum in the primed system takes the

form
GZJ J.a .a kA n_ )
, f i )J  miny mn 17273
Spn (7} = =y ) 373 (4.4.2)
AER" T + 4e¢”P . P.a _.a _k'k'I(L + k2TND 3

1“3 " minimn 3

Lok

Integration over the wave number vector, ﬁ, (see Appen-

dix J), results in the capillary pressure head variance.

2.2 2
G2 %Mt it t 9y ) (4.4.3)
h e(l + e)
Wh = ’ — i o "
gre e akl[(le l)all + ZJZalz]- Again the term

E[fah/axi] has to be evaluated in order to determine the

effective hydraulic conductivity. For this generalized
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case, the cross-spectrum of £ and j .is

*

! L. —1 1
Sfji E[ lkidzfdzh’
_ 2 (4.4.4)
) ijjki[k + 12aknPn}Sff :
4 ‘ )
kKW + (2eJ. k. - ak,)”
i (2 %5 1271
where n,m = 1 and 2. Using the exponential covariance func-

tion (4.3.6), and transforming (4.4.4) to the primed coordi-

nate system, the generalized spectrum relation becomes:

2 . [ ’ » 2 \
Uf[Jjamianjkmknk ]xjx11213

S.. (k)= - (4.4.5)
f:] 2 14 2 Y] ;2 2
i T [k + 4 Pinamianjkmkn}(l + kj xj }
The integration of (4.4.5) is given in the appendix E. It
results in
-a,.a,.Jd 02
ah 1i71379°f .
E[faxi] - — S (4.4.86)

Therefore the mean fluxes in the xl and x2 directions can be

obtained by substituting (4.4.3) and (4.4-6} into (4.3.2).
The term E{fh] is evaluated by the relatiénship provided in
(3.4.4). Conseqguently, the mean fluxes in the Xl and x2
directioﬁs in the unprimed coordinate system are:
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2 2 '
a’ N“(2a,.-3J')a" 2a ]
_ f[ 11 11
E[qlJ— Km 1+ 2 1+ e{e + 1) i+ e)]al
. [“ofallalz}J |
1 + e 2}
4.4.7)
[naza a
. £f711 iZj
Blay)= 5], +
2 2
o N2{2a -3F3'YJ’ 2ay ! }
1+ L1 11 - 120
2 ele + 1) 1+ e zj
where J’ = Jlall+J2alz; and N = akl- 1t beccomes obvious

that the hydraulic conductivity tensor in the unprimed sye-

tem can be written as follow:

Y, 2 2
3 GE[ N (2a,,-3J)J ¢ail}}
Kll = Kﬁll +—§—l + ele + 1) s j(4.4-8a)
[ 02 N2(2a -33)3' ”az }
= £l . 11 R
Kya = Kmll Al E e(e + 1) 1+ e }(4'4’8b)
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2
-0 a,.a
_—_— £331 12}
R, Km{—ml = 12 (4.4.8¢)
2
-ota..a
T _ [ f711 12}
Ko1 = %pl—T1F%— (4.4.8d)

This result demenstrates that Kij is a symmetric tensor of

rank two. 1t should be recognized that ﬁll and ??7 are
functions of Jl and J2, respectively. The principal effec-
tive hydraulic conductivities become:
_ aé[ NZ(Zall—EJ’)J' ;5 }}
! F= —_ — = (4 _ 4.9
S R e Ch ey I8 1 (4-4.9a;
3
and
5
_ a;( N (2a;,-33" 30" ]
o= K= — 4 )
K22 7 Bap® Mt Y b ey (4.4.5b)
After the exponential generalization, the principal

hydraulic conductivities take the form:
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- | "%{ N (2a),-337)3" 2 } (4.4.10a)
' o= K _exp| —— -2 (4.4.10a
Kll merl 2 1+ e(e + I 1+ e
2
_, = o N°(2a,,-33" )3 1
K22 = K33 = Kpexp ‘?"ll * e(e 7L o

The above hydraulic conductivities yield an anisotropy

ratio:

X! o2
22 f A .
K11
Note that (4.4.11) is similar to (4.3.14) with the

exception that emakl[(2J1~l)all+2J2a12]- Consider the case

where Jl#O, and J2=J3=0, then (4.4.11) is the smae as
(4.3.14). In addition, (4.4.11) shows that the anisctropy
ratio of the hydraulic condﬁctivity depends on not only Ué,
ah, and 6, but also the magnitue and orientation of the mean

hydrauvlic gradient vector, J.
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A}; summary and Discussion of Resulks

The head variance and effective hydraulic conductivity
of heterogeneous unsaturated media are investigated in this
chapter. A statistically anisotropic saturated hydraulic
conauctivity field and a uniform pore-size distribution
paramete; portray the heterogeneous nature of the medium.

Results from the analysis of Section 4.2 reveal that
the head variance resulting from a steady-state infiltration
in anisotropic media is proportional to the statistical pro-
perties of the media: o%, klf kz, and mean gradient, J. The
effect of the aspect ratio of the mediuﬁ on the head vari-
ance 1s shown in Figure (4.2.1). For flow normal to the
bedding of a perfectly stratified soil formatiocn of which
the aspect ratio is infinite, the head variance grows infin-
itely. This result agrees with the result of one--
dimensional flow where the exponential covariance function
is used. Conversely, head variance vanishes at a =zero
aspect ratio, which represents the situation where flow is
parallel to the bedding of a perfectly stratified scil for.-
matior.

Effective hydraulic conductivity in the direction of
the mean gradient is derived in Section 4.2. Figure (4.2.2)
illustrates the relationship between unsaturated hydraulic
conductivity and the aspect ratio. Generally, the effective
nsaturated cenductivity follows the well-known behavior of
saturated fiew in a deterministic medium. The hydraulic

Conductivity tends to be the arithmetic mean, 1f the medium
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has a small aspect ratio, which represents the case of flow
parallel to the stratification. In a medium with a large
aspect ratio representing the case of flow normal to the
gtratification, the effective hydraulic conductivity becomes
the harmonic mean. However, the effective hydraulic conduc-
tivity becomes less sensitive to the aspect ratio as the
correlation scale and pore-size distribution paramekter of
the medium increase. In this case, it approaches the
geometric mean.

The principal unsaturated hydraulic conductivities in a
perfectly stratified medium of arbitrary orientation are
depicted in Figure (4.3.2) as a function of aA. The effec-
tive unsaturated hydraulic conductivities in the directions
parallel and normal to the stratification are found to be
the arithmetic mean and harmonic mean, respectively. They
converge to the geometric mean as ék becomes large.

The effect of orientation of stratification on the
anisotropy ratio of unsaturated hydraulic conductivity is
illustrated in Figure (4.3.3). As indicated in this figure,
the orientation effect is significant at intermediate values
of @\, and it is irrelevant at other possible ranges of @i,
Overall, the anisotropy ratio of unsaturated hydraulic con-
ductivity is smaller than that of saturated hydrauwvlic con-
ductivity. This can be ascribed to the assumption of a uni-
form pore-size distribution and the effect of the non-linear
hature of unsaturated flow. This theoretical anisotropy

fatio may not represent the anisotropy ratio of the natural
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soils, because the parameter @ may vary significantly.

The multidirectional flow analysis in Section 4.4 sub-
stantiates unsaturated hydraulic conductivity as a symmetric
tensor of rank two and derives the full tensor of the effec-—
tive hydraulic conductivity. The analysis also shows the
degree of anisotropy to be dependent on o%, @k, the magni-
tude and the direction of the gradient, and orientation of
the stratification. A large gradient, pore-size distribu-

tion parameter, and correlation scale catl reduce the anisc-

tropy ratio.
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CHAPTER 5
FLOW IN AN ANISOTROPIC MEDIUM WITH A RANDOM

PORE-SIZE DISTRIBUTION PARAMETER

5.1 Introduction

As expected, the results of the analyses based on the
assumption that the heterogeneity of the medium can be
represented by a random saturated hydraulic conductivity
field and a deterministic pbre—size barameter does not
necessarily provide realistic information on‘the behavior of
unsaturated flow in any natural porous media. As a resulb of
this assumption, the previous analyses have demonstrated
both the head variance and the anisotropy of the effective
hydraulic conductivity are iﬁdependent of the mean capillary
pressure head. This outcome however c¢an be easily conceived
if one compares the K-y relation c;rves illustrated in both
figure (2.4.1) and (2.4.2). To be more pragmatic, cone has
to extend the analysis to the case where the saturated
hydraulic conductivity and pore-size distribution parameter

are considered random.

This chapter begins with the analysis of head variance
and effective hydraulic conductivity resulting from one-
dimensional flow in a porous medium of isotropic random-~
saturated hydraulic conductivity and pore-size distribution
barameter. This section 1is followed by the analysis of

three-dimensional flow in an anisotropic random field.
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Subsquently, the head variance and the effective hydraulic
conductivity of the porous medium of such anisotropic media

ig exploredq.

5.2 One-Dimensional Flow With Random Saturated Hydraulic

Conductivity and Pore-size Distribution Parameter.

If the pore-size distribution parameter o is assumed to
be a statistically homcgeneous stochastic process, it then

can be decomposed to mean and perturbation components,

a = A + a (5.2.1)

where E[ « ]= A and E[ a ] =0. Substituting (5.2.1) into
(3.2.5a), and neglecting the products of the perturbations,
the logarithmatic unsaturated hydraulic conductivity can be

expressed in terms of means and perturbations as follows:

InK = F + £ -~ AH - Ah - aH (5.2.2)

Replacing the 1nkK in the (3-2.3) with the above expression
(5.2.2), and assuming the mean saturated hydraulic conduc-
tivity and the pore-size distribution parameter are indepen-
dent of 2z, the mean flow equation, after neglecting the

Second order terms, can be derived as
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2 .
d"H _ . dH at _ ,dh T dH T da dh_ 3
2 Alaz * @z ~ Bgz ~ agz ~ Hgdgs~ O (5.2.3)

where J is 14+dH/dz. The governing flow equation in terms of

the perturbations becomes

gzg ~A(20 - 1}%2 + 3 5 - Da - JHE2 - 0 (5.2.4)
The last two terms are the results of the stochastic
representation of _the pore-size distribution parameter, «.
If it is assumed that the mean capillary preséure head
changes gradually, application of Fourier-Stieltjes

representation for the f, h (see 3.2.10), and a:

a = f elkzdza(k) (5.2.5)

leads to the Fourier amplitude relations of h, f, and a sto-

chastic processes:

=3 - 1)dzZ, + iJk(dZ; - HAZ )
daz, = 5 (5.2.6)
[k® + iA(20 - 1)k ]

Furthermore, the spectral density function of the head pro-

“ess is given by
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Jz[(J - 1)28 + 2(J - L)kQ
] = aa af +
hh [k4 + A2(2J - l)zkz]
2 2
k (Sf £ " ZHCoaf + H"Saa) ]

tx* + a%20 - 1)%K?]

(5.2.7)

where Coaf and Qaf are the cospectrum and quadspectrum con-

ponents of the cross-spectral density function ,Saf , of a

and f processes. For the special case considered below the

quadspectrum is alway zero. Thus, we can rewrite (5.2.7) to

mmd

2 2 2 2
_ J[(J )78, * K75, 2HCo . + H S.a) (5.2.8)

tx? + 2229 - 1)%k%;

Q
“hh

In order to evaluate the head spectrum S knowledge

hh’
of spectra of a and f processes is necessary. The cross-
spectral density function of a and f processes has to be
known beforehand as well. If the cross-covariance of these
two processes is known, ﬁhe cospectrum can be determined.
However, no data and information are available for this pur-
pese. Since a and f are not necessarily perfectly corre-
lated with each other, such a crosg-covariance function
would not rise to the maximum at the origin. Therefore, it

is difficult to assume an arbitrary function for the cross-

Covariance function withecut any definite Justification.

Hydraulic conductivity and capillary pressure head

Ielation curves of several different Lypes of soil obtained
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from Mualem's soil catalog (1976) are plotted in Figure

(5.2.1). These data illustrate that the parameter a varies
among the soils and with capillary pressure. However, no
clear relationship between KS and a is evident. Any conclu-

sion on the behavior of such a correlation requires a signi-

ficant amount of field data.

Since no justifiable cospectrum and the spectrum of a
process are available, the analysis is carried out with the

following assumptions:

(1) The auto-correlation functions of a and f processes are
assumed to be equivalent.

(2) The a and f processes have the same correlaktion length scale
for the sake of simplicity.

(3) The relation of a and f will be considered as either

statistically independent or perfectly correlaked.

In the following analysis, we will refer to the case
where the saturated hydraulic conductivity and pore-size
distribution parameter are perfectly correlated as Case 1,
and where the saturated hydraulic conductivity and pore-size

distribution parameter are independent as Case I1I.
(I) Case I: a and K  are perfectly correlated.

If perfect correlation between ¢ and K, is considered,
by
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one cah express Ks in terms of a as

. o
Ks =7 (56.2.9)

therefore, tf = a

Making use of Fourier-Stieltijes representation theorem,

the spectrum of a process is related to f by

Saa = { Sff (5.2.10)

and the cross-spectrum, consequently, becomes

- 5 )
af £f (5.2.113

whic¢h is real so that Coaf :Saf and Qafﬂo.
As a result of substituting (5.2.10), and (5.2.11) into

(5.2.8), the head spectrum for this particular casze is
2
3% - 1%+ ¥ - wo?ys,

Spn ~ 5 . . £f (5.2.12)

! k2rk? + a%c20 - 1%
From the above expression for S it is evident that

hh'

the exponential covariance function (3.2.13) will result in

an infinite head variance, since the first term of the right

hand side of (5.2.12) will produce a singularity at origin.
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However, if J = 1, this term will vanish. Thus, for a - gen-
eralized situation, J # 1, the hole function (3.2.17) is
used to represent the covariance functions of a and f sto-

chastic processes,
The capillary pressure head covariance function derived

from the exponential function (when J = 1) in terms of the

variance of f and a is given as:

2 2.2 ,
af(l - LHIA {e—Akli:/X

. _ —:gm\J - 5 13
Rpn(£) (1 =& X e (5.2.13)
2 2 2 : . . . :
Note that c, = { 0-. Let & = 0, the head variance is
2.2 2
2 g b H) (5.2.14)

h Ax(]l + A))

When J is not equal to unity, the hole function is used. The
head covariance function of one-dimensional flow is

evaluated in Appendix K as
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3207 (1-ci) %y 2 2. - ~1g1/7
R, (£) - syl (1-62n%) (1+ 1g1/m)e +
(1-8777)
2.2 -lel/n -BlE|
2817 e 28me. I+ (5.2.15)
22,2 4

2
2.2 2 A7
(B 77 -1)

2 -
3870+ 1-8%0%) 121 /0 e 'g'/”}

Correspondingly, the head variance is

J2n202
7 -
of = ——Lla-an? - @122 + )] (5-2.16)
(1+8m)
In the case where J=1, the head variance is
2 2.2
Gh = (5.2.17)

2
(L + An)

The results of the above analysis show the mean capil-

lary pressure head, H, dependence of the head variance.

(I1) Case 1I: a and KS are statistically independent.

IT a and £ are statistically independent, the «cross-
Spectrum of a and f is zero. Thus, the cospectrum term,

Co in (5.2.8) vanishes. The head covariance correspond-

af *
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ing to the exponential covariance function and J-=1 is

(o + 222 —aniein
R, . (£) = —t a’__|e - e“lf'/*] (5.2.18)
hh* =’ (I'=-"3aY) AX
Let ¢ = 0, the head variance is

2 2 2.2
02 ] (of + H ca)x
h AN(L + AX)

(5.2.19)

Similarily, the covariance function of head process result-

ing from the hole function input is given as

22 2 2. 2
Joloy + Hoo i [ 2 2. ~1E1 /7
R, (€) - L (=827 (1 g myeT VT
(1-82777)
2alp2e UM _ o mBIEN]

(5.2.20)

2 2 2 4
JU(J-1
SRR RN
(8B°n°-1)° (A7

~1Ei/m)
- 32n2+(1—£2n2)i£!/n]e !gi/nJ

Correspondingly, the head variance is

2.2 .22 2
J (o, + H o 3)n 5
Uﬁ - : s [(o§+ﬂzo§) - -1 %oin? e + 2)](5.2.21)
(1+87n)~ T

In the case where J=1, the head variance is
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2 22,2
2 (of + H aa)n

o, =

(6.2.22)

(1 + A‘n)2

comparing the head variance derived in this chapter for the
case when J=1, namely; (5.2.14), (5.2.17), (5.2.19), and
(6.2.22) to those obtained in Chpater 3, (3.2.16) and
(3.2.20), the effect of the randomness of a on the head
variance bhecomes clear. The randomness of a simply brings
in the contributions of mean capillary pressure head and the
variance of @ in addition to oé itself as in (3.2.16) and
(3.2.20). Thus, the head variance increases with its mean,
indicating that the pressure head process is a nonstationary
process.

To evaluate the effective hydraulic conductivity, one

can substitute (5.2.2) into Darcy's flow eguation to obtain

(f£-Ah-aH)” | -l e,

q:Km[l + (f-Ah-aH)} +

5 a2 + gz * 1y (5.2.23)
The mean flux thus becomes
Elq]- {(f—Ah—aH)z} - 2y48] .
q]-Km 1 + E 5 J o+ Kmn (f—Ah—aH)EE (5.2.24)

The squared term on the right hand side of (5.2.24),

. 2
L[(f—Ah—~aH)‘], expands to



115

03 + Azai + Hzci — 2A E[fh] - 2H E[af] + 2AH E[ah] (5.2.25)

The remaining term on the right hand side c¢can also be

expanded to

E[fgg} - A E[hgg] - H E[ gg] (5.2-.26)

However, the second term of (5.2.26) is aiways Zero.
Following the procedures employed in therprevious ana-
lyses, the cross—spectra of the c¢ross-covariances in
(5.2.25, and 5.2.26) can be expressed in terms of input
spectra, Sff and Saa’ and the cross-spectrum of the inputs,
saf' The results are summarized in Table (5.2.1). Azsuming
appropriate input spectra for a and f, the integration of
the spectral relationships results in the cross-covariances
for each term. These are also included in Table (5.2.1) fox
the case when J=1, and the exponential and hole function
input covariance functions are used. Most of these results
are similar to those obtained in Chapter 3 with the excep-

2

. : ?
ticn that Uﬁ is replaced by either cﬁ(l—Hg) or (o +oaH}

t+

depending on the relationship between a and ans- There-
fore, details of the derivation of each term in Table
(5.2.1) are omitted.

When J = 1 and the input covariance function is an
€Xponential function, the effective hydraulic conductivity

derived from the assumption that a and £ are statistically
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independent is

—AH[ (oé + oin) )
Ke:KGe Ll (1 AN (5.2.27)

Note that the E[af] term in the (5.2.25) is =zero in this
case.
If a and £ processes are perfectly correlated, the

effective hydraulic conductivity becomes

2 2
| T (RC-D)

K =K, e | - '2“(~1*j’_m§-i—)‘ . (5.2.28)

Since a and f are perfectly correlated, the term Elaf]

e
43

2 .
{0, instead of zero.
These results are a first order approximation. To
avoid obtaining negative hydraulic conductivity values, we

can express (5.2.27) and (5.2.28) in a generalized exponen-—

tial form:

K =K g BH + ¥ (5.2.29)

where ¥ is equal to
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2 22
_ —(of + oaH )
Y (T F Ay

for the case when a and f are statistically independent, and

2 2
—of(Hc - 1)

2(1 + A))

'y:

for the case when a and f are perfectly correlated.

In more generalized situations where J # 1, the hole
covariance function is required to. obtain the effective
hydraulic conductivity. This is achieved by makihg use of
the results in Table (5.2.1) and (5.2.24). However, the
effective hydraulic conductivity for this case will not he

presented due to the complexity of the equation.
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5.3 Three-dimensional Flow in a Perfectly Stratified
" 80il Formation

The results of one-dimensional flow anaiysis in the
previous section have demonstrated the importance of the
stochastic representation of both the saturated hydraulic
conductivity and the pore-size distribution parameter. The
one—dimensional analysis, however does not necessarily pro-
vide realistic information onvflow in natural soil forma-
tions, since flow in natural soil formations is an
inherently three-dimensional phenomenon.

In the following analysis, the natural soil formation
is replaced by three-dimensional statistically anisotropic f
and a fields. The anisotropy of the medium is characterized
by the aspect ratio.

Taking advantage of equations (4.2.3) and (5.2.2), the
governing mean flow equation fér an arbitrarily oriented

nean gradient becomes

3%y + QF-AH) | 3(F-AH) 38 | FER (E-ARSaN-aRian -, .
g H F 28 L0 (531,
axi axl dxi X axl axi 6xi

Then, the corresponding perturbation equation for the flow

is:
%n ah , af CERNR N
o | MO E T G0 g)a F Oy g - g [R0s.3.2)

1
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The above equation éhows that the stochastic represen-
tation of pore-size distribution parameter in the three-
dimensional flow situation also brings in additional terms
in the percurbation equation as in the one-dimensional flow
analysis. One of the additional terms is the preduct of mean
capillary pressure head and the perturbation gradienkt,
aa/axi_ Thus, the effects of the mean capillary pressure
head on the results is perceivable.

Again using Fourier-Stieljes integral representalion
for the random processes, the Fourier amplitude relation of
the capillary pressure head h, saturated hydraulic conduc-
tivity, f, and pore-size distribution parameter a ig given

by:

- _ _ ¢ _
i 1Jnkn(d2f HdZa) ‘Jan Jl}dza

2 .
(k™ + 1A(2Jnkn - kl)}

Multiplying both sides by the complex conjugate of the

Fourier amplitude dzh, taking mean values and using the

spectral representation theorem results in the spectral

relationship:

J2x2

2 2
. - -
n n(bff *H Saa) “Jnkn(Jn Jl)oaf+
hh

f
4 2 2
[k™ + A (2Jnkn kl) ]

-ZHCOa
5

(5.3.4)

A
F
(Jnan"Jl) Saa
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where oaf and Coa.f again are the quadspectrum and cospec-
trum components of the cross-spectral density function, Saf’
reépectively. For the two special cases of perfectly corre-
lated (I) or uncorrelated (11) a and anS, the quadspeckrum
is always zero. The selection of autocovariance functions
or spectra for the saturated hydraulic conductivity and
pore-size distribution parameter fields however requires
additional consideration in this case. This is due to the

presence of the last term, (3.3 - Jl)zsa . in equation

nn a

(5.3.4). 1f the three-dimensicnal anisotro@ic exponential
autocovariance equation (4.2.9) is used for the randem pro-
cess, Lhe resulting head variance is infinite due to singu-
larity of this term at the origin. However, this mathemati-
cal difficulty can be circumvented if a modified exponential
autocovariance function, (Naff, 1978; Gelhar and Axness,

1981)

“ 2 2.2 |
Re ¢ (£) = ool - £7/0s]expl-s] (5.32.5)

where szf52/x2+§2/x2+5zjlz, is used, or the mean gradient is
_ 1771 =272 3773 ,

restricted only in the X4 direction and assumed to be a unit
gradient. The assumption of the wuni-directional unit gra-
dient simply eliminates the singularity. In the following
analysis, results for the head variance and the effective
hydraulic conductivity are obtained with the exponential
autocovariance for both a and f processes with the uni-

directionail unit gradient assumption.
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The resultant head variance is similar Lto that obtained

in section 4.2 with the exception that the oé in eguation

(4.2.11) is replaced by og(l—gﬂ)z and-(a§+c§H2j foer case (1)

and case  (I11), respectively. Therefore, the head variance

for case (1) can be expressed by:

2 dt

3 (5.3.6a)
gt+1]

J (1 HE) AZ 4[

2
n (p>-1yt? 0

Similarly, the head variance for case (II) is’given by

1 2
2 £t“ At
i (o +ciH )A§p4 5 5 {5.3.6b)
pl(P L)t +pTgi+1]

To derive the expression for the effective hydraulic
conductivity tensor, we again aséume the hydraulic conduc-
tivity at local scale is homogeneous and isotropic, and the
medium 1is perfectly stratified. Thus, the mean Darcy's

equation is

Utilizing the expression for 1lnK, (5.2.2):
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2
- (f —aH-Ah) ] ah _
—aH-AR) + oh 5.3.7
qi_Km[l + (£ -aH-Ah) 5 + {Ji + a"i} ( )
where Km = KGe_AH- the mean flux in the X, direction ig
‘ [(f H-Ah) 2 ah
_a —
. - +“ ] —y b PR - -
Elg;] Km[l E 5 }ai + KmE[(f aH Ah)axi} (5.3.8)

Similarly, the expectations on.the right hand side of equa-
tion (5.3.8} can be expanded as those in equations (5.2.25)
and (5.2.26). The spectral or cross-spectral relationships
needed to evaluape the variances or covariances in equation
(5.3.8) for the case where J. = 1, and J. = J. = 0 are Sun-

1 2 3
maried in Table (5.3.1).

Since the mean gradient only exists in Xy direction, to
obtain a complete description of the hydraulic conductivity
tensor we have to examine the case where the stratification
0f the soil formation does not coincide with the principal
direction. Thus, a coordinate Lransformation of the spectal
relationship as that employed in Chapter 4 should be used.
After the transformation and the integration over the wave
humber, the variances and covariances for case (1) and case
(II) are listed in Table (5.3.1).

Substituting the results in Table (5.3.1) into (5.3.8),

the mean flux in the X, direction with lel becnmnes -
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of (1-HO)? 1-2a “
Elgy] = K11+ 2 [Iiga ]]Jl (5-3.9)
11
for case (1), and
f (0§+H20§) 1w2all
Blqy] = Kyl o+ 5 [l+gall}}gl (5.3.10)

for case (II).

Since the mean gradient only exists in the Xy direc~

tion, J2 = 0. The mean flux eguation in the X, direchbion

&

for case (1) becomes:

.. dh
Elg,] = Kmh{t Egz]
(5.3.11)
—J a a
2 2 1711712
= K [0Z(1-H¢) ][_______..__w.,_.wu__ }
m-"f (1L + gall)
, and
a3
Ela,) = KmE[f 32“}
2
(5.3.12)
-J.a. .a
- K (02+02H2){ 1711712 }
mf Ta (1 + gayq)

for case (11).

Correspondingly, the effective hydraulic conductivity tensor

components can be written as follows:
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case (I): a and f are perfectly correlated
_ Eflq,] U (1- Hé)" 1-2a
11~ m'“j'm]:“ =Km{1+ ———'—2—"—“—[I+gall }
1 llJ
(5.32.13)
Elqg,] a,.a
- 2 2, 2 11712
B, = —e2e = K _0%(1-H) {m. ]
21 Jl m £ (1 + gall)
case (II1): a and f are statistically independent
Elq,] (o2+H?0%) 1 - 2a. )
Ry ~ —5— - Km{l+ Lyt { 153 ll”
) 1 1l
(5.2.14)
E[q ] "5 -a.,.,a
= 11712
K., = -——--_---K of+o] H [ }
217 7T ¢ T v gag;)

Since the effective hydraulic conductivity is a sym-

metric second-ranked tensor, the hydraulic conductivity in

the X, direction in the unprimed system, 272, can be
obtained through the relationships between Ell and K) as

shown in (4.3.9c¢). Finally, the effective hydraulic conduc-

tivity tensor, fij in the unprimed coordinate system are:

S

Case (I): a and f are perfectly correlated
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2
a (1 - 2a .)]
= _ f .. 2° 11
: 11

02 (1 - 2a,.)
. = _ f 2 712 (5.3.15)
Ky, = K33 Km{l * (AR T+ga, ]

a,.,a
- 2., 2{ 11712
Kyp = KO (HHO T gaT v
11
Case (II): a and f are statistically independent.
2.2
[ (o2+0?uy(1 - 2a,.)
I—{ - ¥ ‘li f a 11
11 mi 2 l+gall

2 2.2

“4o0°H" - Za..
R, =R, -K {p(“fma“ ¢ “al?—’] (5.3.16)
22 33 m 2 l+gall
= s 2, 2.2 [ "211%12
K1 = Kyp = Kplegto B v 75

The principal effective hydraulic condutivities thus
tan be derived by using eguation (4.3.11). The results are

given as follows:
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{ U%(l-HC)~} [—of(L—Hc)“]
Ky, =K {1 - =5 | "K_exp
11 m 2(l+gall) m 2{l+gall)
(5.3.18a)
B { o?(J—Hc)z} [cz(l—ﬂg)“}
K =K. =K e S G 5 4 o ] e —
22 33 m 2(l+gall) m 2(l+gall)
and
2,22 2
_ { (cpto H )} {—(of+oiﬁz)}
K’ = K 1 - i1 7K @ MP | e
11 m 2( *gag m 2(l+gall)
o (5.2.18b)
[ (0§+02H2)] f(of+02H )}
K!, = K., =K |1 “K_exp
3
22 33 ml 7(l+gall) 2(1 +gall)

for case (1) and case (II), respectively. Therefore, aniso-

tropy ratio of the principal horizontal to the vertical

hydraulic conductivity is

X5, {0“(l*HC)“]
—2Z = R — N A qQ
exp i+ga (5.3.19a)
7 11
11
- y)
%5, [(«2+02H")}
——— " e et et e e earenen - R
and exp 1754 (5.3.19b)
I_(l ll.
11

for case (I) and case (I1), respectively.
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CHAPTER 6 .
RESULTS AND APPLICATIONS

6.1 Summary of Results

In Chapter 3, steady-ctate infiltration in unbounded
1argé scale heterogeneous media is investigated. A simple
exponential model, (2.2.1), defines the relationship between
unsaturated hydraulic conductivity and capillary pressure
head at local scale. The characteristics of the heterogene~
ous porous medium are represented by a stochastic log-
gaturated hydraulic conductivity and a constant pore size
distribution parameter a. The results 6f this analysis show
that variances of capillary pressure head resulting from one
and three-dimensional random media are in a form similar Lo
the head variance of saturated flow (Bakr et al., 1978).
Both head variances of saturated and unsaturated flow depend
on the gradient, the wvariance of log-saturated hydraulic
conductivity, and the correlation scale. Due to the ron-
linear nature of unsaturated flow, the head variance of
unsaturated flcw is generally less than the head variance of
saturated flow. This result is manifested by the presence
of the product term of pore-size distribution parameter,
correlation scale, and gradient in (3.2.16), (3.2.20), and
(3.3.13).

Head variances of one- and three-dimensional flow are
equivalent at large values of o)\, which correspond to either
Coarse-textured material ox perfectly correlated medium.

Reduction of head variance due to higher dimensionality is
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significant only for small ax values.

Generally, the effective hydraulic conductivity of
unsaturated media, unlike saturated media, is dependent on
the . capillary pressure gradient, pore-size distribution
parameter, and correlation length scale of the media. This
association demonstrates the non-linear Darcy flow behavior
of the infiltration process. Effective hydraulic conduc-
tivities of one- and three-dimensional models are bounded by
the harmonic and arithmetic mean, and approach the geometric
mear as «l grows., The variance of log~unsaturated hydraulic
conductivity decreases with ex, and depends on the pressure

gradienkt.

Chapter 4 examines unsaturated flow in more realistic
stratified porous media. Again, the heterogeneity of the
medium 1is represented by a stochastic log-saturated
hydraulic conductivity. However, a three-dimensional aniso-
tropic covariance function defines the spatial correlabion
structure of the medium. The vertical scale, ll' ig assumed
to be less than the horizontal scales: Az, and k3. The hor-
1zontal scales are considered to be isotropic (12 = x3 = A
). The head variance is evaluated as a functicon of the
aspect ratio, prk/kl- As the ratio becomes large,
Corresponding to the case of flow perpendicular to a per-

fectly stratified soil, the head variance apprcocaches infin-

ity. This result is equivalent to the one-dimensional
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result. In contrast, the head variance approaches zero when
the ratio approaches zero. This satisfies the condition for
which flow is parallel to a perfectly stratified soil forma-

tion.

Effective hydraulic conductivity in the vertical direc—
tion in this case strongly depends on the aspect ratio. The
analysis yields a harmonic mean and arithmetic mean for
p = © and p = 0, regpectively. However, the effeckive
hydraulic conductivity of the medium, which is associated
with large a\X values, tends to become the geometric mean

regardless of the magnitude of the aspect ratio.

Flow in an arbitrarily oriented anisotropic¢ random
medium is analyzed in Section 4.3. In this case, the bedding
is at an angle to the mean gradient as illustrated in Figure
(4.3.1). Assumming that the unsaturated hydraulic conduc-
tivity is a second rank symmetric tLensor, effective
hydraulic conductivities in principal directions are
derived. For the special case where p = o« ( perfectly stra-
tified soil formation) and the mean gradient is a unity and
in the vertical direction, the principal effective hydraulic
conductivities . are K, = Kmexp(?oihKf

. 2 )
K = ' ‘hese c >Livities cor 3 t
h Kmexp(oanfz). These conductivities correspond o the

2) and

harmonic and arithmetic means of the unsaturated conductivi-

ties, respechtively.
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Further investigation on the effective hydraulic - con-
ductivity is carried out for a similar case, but the direcc-—
tion of the mean gradient is arbitrary. The arbitrarily
oriented mean gradient vyields a multi~gradient flow situa-
tion as shown in Figure (4.4.1). For a perfectly strabified
soil formation (p-«), the effective hydraulic conductivitky
is substantiated to be a symmetric tensor of rank two
((4.4.8a) to (4.4.8d)). If the mean gradient is fixed only
in the vertical direction, the results are jdentical Eto
those obtained in Section 4.3 where the conductivity is
assumed to be a symmetric tensor of rank two. The result
confirms the assumption of tensorial properties of unsa-
turated hydraulic conductivity. The principal conductivi-

ties of the hydraulic conductivity tensor can be written in

o 2 .
<1 ! = — A -— £
general form as Kll(H) KG exp(—AH aan,“) and
W = 2 )
' - U - - : t >
K22(H) K33(H, KG exp( AH+oan/2) where KG is the
geomeltric mean of saturated hydraulic conductivity, and A

and H are the mean of pore-size distribulLion parameters and

capillary pressure heads, respectively. The anisotropy ratio

Kéz/ﬁil, is given by exp{oé/(l+e)], where
e = akl[(ZJl-l)all+2J2alz]. The degree of anisotropy
depends on the magnitude of e whcih are related to axl,
orientation of the stratification, 8, and the magnitude and
the direction of the gradient. For large values of e, the

medium tends to be isotropic. In contrast, the anisotropy

ratio increases with a decreasing e value. However, when
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¢ = 0, the maximum anisotropy ratio is equal to that of

saturated flow .

In Chapter 5, one dimensional infiltration through a
heterogeneous medium is reinvestigated by considering both
the log-saturated hydraulic conductivity and the pore-size
distribution parameter of the medium as stochastic processes
in space. Exponential and hole‘ ¢ovariance functions are
used in one-dimensional analyses. Since the exponential
covariance function does not yield a finite héad variance in
a general case where J#1 (see (5.2.12)), the hole funchLien
is used. Because of the consideration of o as a stochastic
process, knowledge of the cross-covariance function between
a and f processes 1is necessary in order to evaluate the head
variance. To simplify the analysis, two cases are cop-
sidered; Case (I): a and anS are perfectly correlated, and
Case (I1): a and 1nKS are statistically independent. when
J=1, both cases yield similar forms of head variance as
those derived with the deterministic pore-gize distribution
parameler assumption. However, the head variance under this
circumstance is proportional to c?(l—CH}Z or (GE + oiﬁz),
instead of only o% as in previous chapters; ¢ is the con-
stant of proportionality relating « to ans. Thus, the head
variance can be significantly large depending on the magni-
tude of the mean capillary pressure, especially for soils
with a large variance of the pore-size digtribution parame-

ter, 02.
a
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The e¢ffective hydraulic conductivity resulting from the
one—dimensional analysis with the assumption that anS and a
are stochastic processes is of the same form as that derived

from the analysis based on a deterministic ¢ and random

. 2 ,
lDKS’ i.e., Ke = KG exp (—AH oan/Z). However, the wvariance

cr2
Ink*

pi .
o%(l—Hg)z/[(l+Ak)], instead of UE/[(1+AA)], depending on the

of 1nk, is replaced by either (c§+o§H2)f{(l+AX] or
correlation between @ and ans- The results for the head
variance and effective hydraulic econductivity obtained show
that the wvariation of the pore-size distribution parameter
is the essential element which causes a significant head
variation and a reduction of effective hydraulic conduc-

tivity.

Finally, three-dimensional flow in a perfectly strati-
fied soil formation with an arbitrary angle to a unit gra-
dient is analyzed in section 5.3. Again, similar efferts nn
the head variance and effective hydraulic conductivity as in
one-dimensional flow are evident. The most significant
effect of variation of the pore-size distribution parameter
is on the anisotreopy ratio of hydraulic conductivity. Varia-
tion of this parameter reveals that the ratio can be
strongly dependent on the mean capillary pressure. The ratio
also depends on the magnitude and direction of the mean gra-
dient, the products of correlation scale and the mean pore-
8ize distribution parameter, and the orientation of the

Stratification. In other words, the anisotropy of unsa-
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turated hydraulic conductivity is dependent on moisture con-

tent and hydraulic gradient dependent.
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6.2 Comparison of Observed and Calculated Variance of Soi,

Moisture Conlkent

To illustrate the predictive capability of the theoret-
ical result on the head variance, the theoretica! result,
(S.Q.Gb), is applied to a field situation where some of the
necessary parameters have Dbeen observed. Nielsen et al.
(1973) have observed a large numbey of hydraulic
conductivity-soil moisture relationships and soil-water
retention data over a 150-hectare field in Fresno, Califor-
nia. The soil is generally classified as the Panoche soil
series, which ﬁas uniform profiles but a wide range of kLtex-
tures including: loam, clay loamn, siity clay, and silty clay
loam. Although measurements were taken from 20 plots abt §
different depths (1 foot intervals) over the entire area,
only data collected in the silty .clay 1loam (9 plots, 6
depths) are used in the calculation of soil moisbure varia-
tion. The statistical homogeneity assumption emploved in the
theoretical analysis restricts the use of the enktire data
seb .

In order to apply the model to the field situation,
éstimates of. the parameters, o%, oi, Al’ and A have to be
calculated from the available data seb. Since the hydraulic
conductivity data are measured in terms of soil moisture
Content @, a translation of K-€ to K-y is necessary for this
Calculation. This translation 1is carried out by a direct
Conversion of @ to ¥ according to the soil-water retention

turve observed at each depth of each plot. By fitting the



137

exponential hydraulic conductivity model, (2.2.1), to the
converted InK-y relation data, the «a (slope) and ans
(intercept) of each K-¥ curve are determined. vEstimates of
o%, oi, and mean A of this soil are 2.467, 0.000067 cm 2,
and 0.02%4 cm—l, respectively. The data are not adequate to
estimate the correlation scales of this particular field.
To circumvent fthis difficulty, the horizontal and vertical
scales are assumed to be 40 m and 1.0 m, respectively, based
on information reported by Bakr (1976) and Vieira et al.
(1981}.

Head variance is predicted by utilizing the theory
(5.3.6b) and the estimated parameters. To obtain a direct
comparison of observed data to the calculated result, the
calculated head variance 1is related Lo the variance of
soil-moisture content by considering a simple linear rela-

tionship:

8 = cyr + d +e¢

where €= moisture content, y-= caplllary pressure head, and ¢
is a normally distributed random variable with mean zerc and
var iance Ui- Based on the above linear model, a regression
analysis was carried out for the 54 soil-wabker retention
Curves at pressure ranges, 0.0 to 200.0 c¢m of water. The
value for ¢ is found to be -0.0006. The correlalion coeffi-

cient for the regression line is 0.7022 with 0630.0387-

Therefore, the variance of capillary pressure head, oi, is
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related to the variance of moisture content, og by :

The‘results are illustrated in Figure (6.2.1), where the
standard deviations of calculated moisture contents at dif-
ferent meén capillary pressure heads are plotted along with
the standard deviations of observed moisture data. Results

obtained for other values of the vertical scale i and A, |

1 2
same aspect ratio )} are also illustrated in figure (6.2.1).
The theoretical calculations are subjective,because ll’ kz,
and correlation between a and f processes of thisgs field are
not known. In addition, the exponential model does not accu-
rately describe the K-¢ relation for each observed data set
at the entire range of pressure head. The assumption of g
linear mcdel for capillary pressure head and moisture con-
tent. could further misrepresent actual behavior of the reia-
tion. Since these retention curves vary gpatially, the
linear model merely describes the average behavior of actual

capillary pressure and moisture relation. In fact, the

variation of these retension curves are significant as indi-

cated by O - However, it is interesting that the theory
Predicts the observed magnitudes of 9y with reasonable value
of kl’ and kz- Moreover, the theory predicts the general

trend of variation of moisture contents. The general trend
fcllows the relation that the variation of moisture content

increases with mean capillary pressure. The predicted trend



139

‘ege ‘e8!

‘oanssaxd Azeyrtdes ueow JO UOTIOUNF B SB JUSIUOD

9IN3STOW JO UOTIIBTIASD PIEBPUBLS POIBINOIBD PUB PBALIsSqo To uostizdwon

WO NI ISd

‘891 "erl ezl @Rl ‘s ‘es g ‘gz

(17779 @andry

J T Y T T T T

e

paAI3sqo

e i T

le’
- 28’
v
L
3
H
L
=
o
A
3
.4
Q
bo ]
v
@]
~— S8° N
- v
L
S
=15 B




140

is also in reasonable agreement with the observed trend.

To further illustrate mean dependence of capillary
pressure variation, capillary pressure meaéurements col~
lected by Fritten (1981) in a 2-hectare g¢orn field are
analyzed. Estimated variances of the capillary pressure
head are listed in Table (6.2.1) along wikth its mean values.
Similar information obtained from data collected by the
author (see appendix A ) 1in an alfalfa field is also
included in the table. Both observed variations of capillary
pressure confirm the theoretical result that the head vari-
ance grows with the mean capillary pressure. In other
words, the drier the soil is, the higher the capillary pres-—

sure head variance.
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6.3 Examples of Field Anisotropy of Unsaturated Hydraulic
Conductivity

The theory developed in Chapter 5 predicts that unsa-
turated conductivity anisotropy is a function of mean capil-
lary pressure. What is the magnitude of anisotropy in a
realistic soil formation at low saturation? To answer this
question, the anisotropy ratios of two soils— Panoche silty
clay loam (Nielsen et al. 1974) and Maddock sandy lcam {Car-
vallo et al. 1974})- are evaluated by using the theoretical
model for the special case where gradient J-1. Representa-
tive behavior of the hydraulic conductivity of the two soils
as a function of capillary pressure head is shown in Figures
(6.3.1) and (6.3.2). Note that the variabtion of « {slope)
of the 1nK-y curves of the sandy loam is more drastic as
compared to Panoche silty clay loaﬁ.

The procedure used in estimating the required parame-—
ters of Maddock sandy loam for this analysis is essentially
the same as the previous example for Panoche soil. However,
the number of data points available in this case is much
less (2 plots and 7 depths). Table (6.3.1) includes the
estimated values of the parameters of the two soils needed
to evaluate cChe anisotropy. The variances of ans, a, and
Mean of a for the sandy loam are significantly greater than
those of the silty clay loam. The value of og for Lhe sandy
loam is unusuvally large. This large variation can be attri-

buted to extrapolation of the unsaturated conductivity to
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the saturated condition based on the simple exponential con-
ductivity model. However, the effect of the large variation
of f on the results is not significant for high mean capil-
lary pressures, since the contribution from the mean pres-
sure head 1is much greater than the variance of saturated
hydraulic conductivity. To be more precise, one should con-
gider ag as the variance of conductivity at a reference
capillary pressure head in the range where the exponential
relation holds,

The anisotropy ratios for these two soils with p=40 are
derived by using (5.3.8) in which the Variance and the
cross—covariances terms are evaluated numerically (details
of this numerical evaluation is given in Appendix L). Fig-
ure (6.3.3) illustrates the mean capillary pressure depen-
dence of the anisotropy ratio of these two soilg. The figure
shows the anisotropy of Maddock sandy loam is far more sig-
nificant; as mean capillary pressure increases, than the
anisotropy of the Panoche silty clay loam. This difference
can be conceived easily if one examines the anisotropy for-
mula (5.3.19b) derived from the theory for the special case

where J,=1, JZ=JS=O; =0, and p - . (5.3.19b) indicates

1
that the anisotropy grows exponentially with the exponent
' 2
(0§+G§H2)/(l+Ak).. Ag a result of a large value of U; in

sandy loam {(about 2 orders of magnitude larger than that of
silty «clay loam), the conductivity anisotropy of sandy loam
grows rapidly as mean capillary pressure increases. On the

other hand, the rate of growth of the anisotropy of Panoche
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gilty clay loam is insignificant at this pressure range.
rhis phenomenon is clarified if one considers the sandy loam
as a medium cansisting of soils of twoc distinct textures:
clay and sand. One.of the possible situations is that of
sand overlying clay layer. In such a situation, after a
steady-state infiltration is established, a perched water
table can develop in the sand, just above the boundary with
the less permeable clay layer. Thus, the lateral hydraulic
conductivibty can be greater than the vertical hydraulic con-
ductivity.

The opposite case is infiltration into a profile with a
clay layer over a sand layer. As illustrated in Figure
(2.2.1), at some pressure ranges the unsaburated conduc-
tivity of clay ié always_greater than that of sand. Verti-
cal movement of water from the clay layer can be restricted
because of the infinitesimally small conductivity of sand at
this pressure range. Thus, water is confined to the clay
layer and tends to disperse in the lateral direction instead
of downward direction. As pressure increases, the conduc-
tivity of sand is further reduced, and the conductivity of
the clay may remain relatively constant. Hence, Lhe aniso-
tropy becomes more significant. In contrast, the silty clay
loam has a uniformly textured material throughout the pro-
file which is evident from Figure (6.3.2). The contrast in
Uunsaturated hydraulic conductivity of each layer is rela-
tively small for the whole range of capillary pressure.

Water easily can propagate downward and lateral movement of
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moisture would be limited.

Since similar behavior of the anisotropy can be pro-
duced by any .deterministic model for layered soil, the
importance of considering spatial correlation structure in
determining the effective unsaturated conductivity should be
discussed.

One plausible way to estimate the effective conduc-
tivity anisotropy 1is to take the ratio of arithmetic mean
and harmonic mean of conductivity values. The arithmetic
mean represents effective conductivity in the direction
parallel to the bedding of a composite medium, whereas the
harmonic mean represents that in the direction normal to the
bedding. This has been proved to be valid (Bear, 1972;
Gubtjhar et al., l§78; Gelhar and Axness, 1981) for saturated
flow. By applying this simplistic concept, the hydraulic
conductivities of each soil, reconstructed from the previ-
ously estimated parameters and the exponential conductivity
model, are arithmetically averaged at each pressure Lo
cbtain a mean X-¥ curve that represent the unsaturated con-
ductivity in the directions parallel to the beddings. Simi-
larly, the harmonic mean of the hydraulic conductivities at
each pressure head is used to represent the mean hydraulic
conductivity in the direction normal to the beddings at that
bPerticular pressure. Thus, each soil has two K-# curves Lo
describe the unsaturated hydraulic conductivities in two
Principle directions. We will refer to this method as the

"direct average method". The two curves obtained by this
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method are plotted in Figure (6.3.4) as a function of
capillary pressures. The anisotropy ratio, which is the
ratio of the two curves, is depicted in Figure (6.3.3) along
with the ratio derived from the theory. The anisotropy
ratio obtained by the direct average method behaves in a
similar manner as that by the stochastic theory. Both
results show the dependence of anisotropy ratio on the mean
capillary pressure. But the direct average method yields a
consistently higher anisotropy in the range of interest.

To explain the discrepancy, note that, assuming InkK Lo
be normally distributed, the harmonic mean and the arith-

metic mean can be expressed in general forms as:

2
= : 2
/2) and XK K CXP(G1I‘1'1/H)

. _ 2
Kh - Km.exp( 91nK

in which GinK is the variance of the unsaturated conduc-
tivity, and Km is the geometric mean of the unsaturated
hydraulic conductivity. The theory behind the direct aver-
age method can be unravelled from the evaluabtion of OinK’

From (3.2.4), 1nK can be expressed as

Ink = K+k = F+f —-(At+ta)y (6.3.2)

If ¥ is considered to be non-random. Subtracting the mean
tguation of (6.3.2) from (6.3.2), the perturbation equation

becomes -
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InK-E[1InK] = £ - ay

correspondingly,

il

of o = EL(E —am?]

- g2 - \ 2.2
= of 2cov(a,f ¥ + oa¢

The above expression can be further reduced to

2 2

) 2.2
Cing T % * o ¥

if we assume a and f are uncorrelated. Thus, the anisotropy

ratio is determined as

2. 2 2.2 . -
ing’/ = exp(og + o ¥7) (6.3.3)
By comparing (6.3.3) with (5.3.1%b),

X
Réz = exp[(ag + 0o
11

2
a

H2) / (1+A0) ]

which is the result for the special case where J=1, 8=0, and
p»«, the reason that the direct average method overestimales
the anisotropy ratio becomes clear. This is because the

. 2
Stochastic theory produces a smaller ¢

1nK due to the preg-
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ence of the denominator (1+AX) than the direct average
method. The direct average method assumes that caplllary
pressure head is a deterministic variable. In reality, % is
a stochastic process, as has been observed in field studies
(see Section 2.3). Furthermore, ¥ is directly related to the
flow regime, which is subject to the influence of the corre-
lation scale of the soil property. Therefore, without solv-
ing the governing flow equation, the direct average method
fails to provide a more realistic result. The unsaturated
anisotropy of a heterogeneous medium depends not only on the
mean pressure bubt also on gradient and correlation scales.
Field data for a quantitative comparison on anisotropy
with the theoretical anisotropy results are not available.
However, some field observations of moisture movement in
unsaturated zones do indicate gqualitative confirmation of
the saturation dependence of unsatarated anisotreopy. Crosby
et al. (1968, 197la, and 1971b) reported findings of
comprehensive field observations of pollutant migration in
glacial outwash deposits at Spokane Valley, Washington. One
of the pollutant sources in the area is a septic tank drain
field serving a local nursing home. Results of soil zample
analysis indicate that chemical pollutants travel with mois-—
ture fronts. However, they report that moisture ig limited
to the upper 20 to 25 feet, approximately a quarter of the
thickness of the wunsaturated zone in the area. To explain
the extremely dry condition at the depth below 25 feet, Lhey

State that " the drain field waters quite obviously must be
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dispersing laterally in the finest interbed in response to
capillary gradients exceeding the gravitational potential".
This lateral flow postulation seems consistent with the
anisotropy derived from the theory.

In the loess-loam area north of Beer-Sheba, field
observations (8inail et al, 1974) reveal a sinmilar
phenomenon—- rain infiitrates the soil to a limited depth, so
that. there was no net recharge of the groundwater. A lateral
flow effect within the unsaturated soil was suggested.

Direct evidence of the saturation dependent anisotropy
was reported Dby Corey and Rathjens (1956). In their Figure
4, relative permeability of o0il and gas measurements on the
Berea sandstone core demonstrate that anisotropy is a func-
tion of oil saturaticn. fThey stated that "..... Berea sand-
stone which, when dry or fully saturated, appears to be
homogeneous and isotropic. When the material is partially
desaturated, however, thin and regular spaced straba are
apparent. Moreover, the air permeability of the dry core is
almost twice as great paralled to the bedding planes asg per-
pendicular to them. Evidently the material is quite uni-
form, but it is not isotropic. the effect of the anisotropy
is to increase greatly the critical gas and to make the o0il
relative permeability curve steeper when flow LIs across the
bedding planes™. Although the scale of the core sample is
relatively smaller than the scale the theory considers, the
observation supports the btheoretical resultk.

Zaslavsky and Sinai (1981 IV and V) explore the concept
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of the anisotropy of unsaturated flow in a stratified soil
formation. Based on a theoretical study of steady-stale
infiltration 1in a two-layered soil, they conélude that the
soil actually behaves as an anisotropic medium. The aniso-
tropy is found to increase with the rate of vertical flow.
The horizontal component of the hydraulic conductivity can
be several times the vertical one. To show the similarities
between the stochastic theory and their results on aniso-
tropy, the stochastic result is applied to their study.
Their model considers only a two-layered deterministic sys-
tem, but it does provide a direct comparison of the aniso-
tropy derived from the stochastic analysis.

A medium consisting of two homogeneous $oil layers is
congidered ( Zaslavsky and Sinai, 1981.1IV). The thickness

of these two layers are D and D

1 ~ [ -y ¥ T 3
1 2° respecktively. Their

and Ks respectively.

'Ksl’ 2’

The relationship of unsaturated conductivity and capillary

gsaturated conductivities are

pressure head is also assumed to be exponential. The pore-
size distribution parameters are ay and a, for the upper and
lower soil layers, respectively. The anisobtropy of the
effective unsaturated conductivity of this composite medium
is derived from the analysis of steady-state infiltration to
the medium with an inclination angle of 4. NHo lateral
capillary pressure gradient was assumed. For small values of
alDl oY azchose, the anisotropy coefficient, U=(K22/Kll—l),

as a function of rain intensity P of the layers, in which

K - g = =1 R ] < Y 3 Y ol .
SZ/Ksl 10, a./a.,=6, and DZ/Dl 10/6 is illustrated in Figure

2771
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(6.3.5). Assuming the composite medium has a bimodal distri-
bution, the theoretical result for the case where J=1, and
p = « 1is directly applied to the example. Tﬁe variance of
log-saturated hydraulic conductivity is evaluated to be
a§=l-32- Since mean capillary pressure is zero at saturation

(Pr=2.28), and the correlation scale, A of the situation is

estimated to be 4.0, the mean slope A = 0.05 is obtained via

(5.3.1%a) in which p - =, 8=0, and J=1 are assumed. The

knowledge of A and az/al =6 yields vélues of ay and a,;

0.014 and 0.086, respectively. Correspondingly, the variance
2

of the pore-size distribution parameter 9, ig given as

-

0.0013. The two-layered deterministic system can be thought

of as one with a and anS perfectly correlated, wikth a.xa

1

the K-y curves of these two soil should cross at a specific

2’

capillary pressure H*_ The perfect correlation between a and
f implies that Of“OaH* in the theo;etical model should be
equal Lo =zero at H*. Since O and o, are known, H* is
determined to be 31.9 cm, which is equivalent to Pr=0.632 in

their result. Provided that these estimated parameters are

comparable to their case, the anisotropy ratio is evaluated

‘through the correlated model (5.3.19a). The result is
illustrated in Figure (6.3.5). This figure shows an excel-
lent agreement in the results of the two models. However,

it may not be appropriate to make such a statement since the
¢stimated parameters are not necessarily representative of
the situation. For example, the angle of inclination is unk-

hown in their analysis so that the theoretical analysis
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assumes an angle of zero. However, it does demonstrate that
both models derive the same general behavior of the aniso-

tropy of unsaturabted conductivity.
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6.4 Practical Implication of The Results

The most important result arising from the theoretical
analysis . is the anisotropy of unsaturated hydraulic conduc-
tivity. The unique nature of the anisotropy, which depends
on .the degree of soil saturation, may have been postulated
in the past. However, conclusive results on this aspect of
unsaturated conductivity have @ not been reported in the
literature. The practical implication of the anisotropy is
significant. Such a moisture dependent anisotropy virtually
causes a strong lateral flow component in unsaturated media.
The magnitude of the lateral flow is not immaterial, and it
can not be neglected for practical purposes.

One of the immediate impacts of the lateral flow con-

cépt on hydrology is the groundwater recharge from open

channel. In the classic approach, ‘seepage from open channel
is analyzed either by the "saturalbed approach® (Glover,

1961; Bouwer, 1964; and cothers) or by Green-Ampi's one-
dimensional unsaturated flow approach (Bouwer, 1964 and oth-
ers). Recent studies (Jeppson and Nelson, 1970 and Vaclin
et al., 1979) show that these approaches do not adeguately
describe the actual flow system in the field due to the
Presence of strong lateral capillary pressure gradients.
Multidimensional unsaturated flow analysis is suggested.
Since most soils exhibit bedding, the non-uniformity
and stratification of the soils produce a moisture-dependent
anisobropy in which the horizontal hydraulic conductivity

Can  be many times the vertical, depending on the saturation
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of'the Soils, Thus, the vertical  flow component jg no
longer dominant . A three*dimensional flow situation wilth
large laterg] flow conponents develops. Such  a  three-
dimensional.phenomenonbcan not he adeﬁuately depicted by any
classic threehdimensional.flow model with isotropic conduc-
tivity or anisotropic cohductivities of a constant ratie
(Freeze, - 1971). The latera) flow resulting frop the
moisture-dependent anisotropy may restrijcr vertical movement
of water to the groundwaier . Consequently, wWater ay bpe
confined to a4 ghallow depth go that the net recharge to
greundwater Systems is much legs thanp Lhat Predicated by the
classic approach.

Thusg, application of the classic methods +q estimate
net groundwater %echarge_would be erronecys wWithout a care—
ful consideration of the complexity of the infiltration pro-
tess,

The saturatiaon dependent anisotropy plays an important
role in the study of pPollutant migration. According ko
theoreticai iesults the horizonta] Unsaturateg hydraulic
Conductivity of a pPerfectly Stratifjieqd s0il formation could
be jeveral orders of magnitude greater than Lhe vertijical
Nsaturated hydroulic Conductivity. The vertica) conduc-
UVity decreases considerably a8  mean oapillary Pressure
Increggeg . As  the gqij becomes drier, the horizontal
m@raulic conductivity increaseg relative toqo the vertical
Cwﬂuctivity. The jncrease in the lateral flow componehﬁ

“useg migration of water in the horizontal direction.,

.
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When pollutants escape from a landfill or a waste depo-
sitory site into a geclogic formation where interbedded clay
and sand are dominant, the plume of pollutants can migrate a
gsubstantial horizontal distance in the unsaturated zone
before reaching the water table. Since pollutants migrate a
substantial horizontal distance before reaching the water
table, this new concept of unsaturated anisotropy may shed
gome light on sclving some waste isolation problems.

Field observations confirm the lateral migratery path
of. polluted water in the vadose zone. Croshy et al. (1868)
found that pollutants discharging from a septic tank drain
field in a glacial outwash plain of Spokane Valley, Washing-
ton, tend to travel with moisture. The soil meoisture 1In
this area 1is restricted to a depth of approximately 25 feeft,
and the wabtexr table is about 90 feet to 125 feect bhelow the
land surface. According to Crosby et al. (1968), during the
sumner season, much of the wabter in the upper 2% feet is

ultimately removed by evapotranspiration causing an increa

0
L]

in the concentration of pollutants in this zone. They also
suggested the continuous built-up of pollutante in the upper
25 feet of unsaturated zone could reduce the permeability of
the sail, and restrict the downward migration of wabter.

The theoretical resulbts and field obéervations suggest
a method for wastewater disposal. 7The use of controlled
application rates of wastewater in a stratified unsaturated
80il formation would be an appropriate and iriexpensive way

to isolate wastewater. Since migration of poliutants in
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this type of environment is predém;nantly in lateral direc-
tion, wastewater applied on the surface would be confined to
the ﬁnsaturated zone. Hence, the pollutant plume tends to
spread to a greater extent laterally because of this reduc-—
tionn of vertical movement. Thus, the danger of polluting
groundwater resources may be reduced.

Another practical application of the anisotropy of
unsaturated media can be illustrated in the degign of geolo-
gic environments using the unsaturated hydraulic conduc-
tivity properties of soils for waste storage facilities in
the shallow subsurface. Under unsaturated ceonditions, a
gravel lens will cause lateral flow in a finer-textured
material situated above the gravel. Corey and Horton (1969)

Yoal.

[w]

refer to this pheﬁomenon as the "wick effeck®”. ¥Frind
(1976) revealed the potential usefulness of the wick effect
in the design of a waste storage facility.

The basic design of the storage facility is illustrated
in Figure (6.4.1). The waste container situated above the
water table is enclosed in a gravel Jlayer with a gloping
surface at the top. Finer—grained material overlying the
gravel layer forms the wick layer. Due to drasitic contrasts
in the unsaturated hydraulic conductivity of the two layers,
water is confined in the finer—-textured material. The slop-
ing interface creates lateral hydraulic gradients in finer-
grained material and forms a protective "umbrella® for the
waste container.

A more desirable material for this protective umbrella
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is a medium with a larger conductivity in the horizontal
versus vertical direction. In this way, the vertical flow
of water can be further eliminated. According to the aniso-
tropy ratio formula derived from the theory, a protective
layer having a large conductivity anisotropy car be produced
by an appropriate arrangement of different textured materi-
als.

Consider the case where a perfectly stratified soil is
inclined at an angle 6 to the gradient, j=l, as illustrated
in Figure(6.4.2). The flux parallel to the” stratification

can be expressed as (see (5.3.18a)):

2 2,2
[(Uf + o°H )}
= 5 1 = 34 sing
4 Kstln& Kmexp T TCET TN Jging
11
where N=aA.. Similarly, the flux in the vertical direction,

1
qz parallel to the gradient, is given by (see (5.3.16)):

C o Te? + o%n?y(1-2a% )

g, = K 3 = K exp £ 2 t1 13

Z z moF 2(1+Na, ) N

11
The ratio of dg to q, becomes:

q 4 (o% + 02H2)00529
—2 =« -Z5ing = sindex £ & (6.4.1)
q, Ky ’ ? P (1+Ncog#) T
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A4

Figure 6.4.2: Ccordinate systems for the analysis of fluxes in
the design of the protective layer of the underground
waste storage facility.
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To achieve a maximum contrast in A and q,: (6.4.1) suggests
that the material overlying the gravel layer should be per-
fectly stratified and possess a large variance of ans and
pore-size distribution parameter. This eguation implies
that it is more advantageous to use a composite medium con-
sisting of a mixture of layers of fine- and coarse-textured
material than a single uniform homogeneous fins—-grained
material. If the correlation scale can be regarded as the
average thickness of the layers, the above formula also
indicates that the thickness of each layver in the composite
medium be as small as possible. An optimum slope of the
“interface can be determined from the above analysis as well.
For a demonstratién purpose, the ratios of g  to g or Mad-
dock sandy loam at Qarious interface slopes and mezan capil-
lary pressures are illustrated in Figure (6.4.3). The
results demonstrate that with the proper selection of slope,
a favorable anisotropy can be maintained in all possible
ranges of soill moisture conditions. This information facil-
itates a better design of a waste storage facility.
Comprehensive computer modeling and experimental investiga-
Lion is still needed to verify the adequacy of the design.
Other consequences of the saturation-dependent aniso-
tropy lies  in its implications in surface hydrology.
Zaslvasky and Sinai (1981, 1-VI) have a detailed discussion
on this gsukject. Briefly, they found that the anisotropy of
unsaturated soils and the slope of the land surface can pro-

duce a lateral £flow component. This horizontal flow, in
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turn, causes moisture accumulation in concave parts of the
landscape to the point of saturation. Concentration of
water in concave areas explains some rainfall-runoff and
erosion phenomena thaﬁ were previouély unexplained by clas-—
sical concepts of infiltration. Revision of watershed
hydrology and erosion mechanisms is necessary bto improve the

ability to solve hydrologic problems.
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6.5 Discussion

The key findings of the theoretical analysis are sum-
marized as follows:

(1) In order to obtain more realistic estimates of the
statistical properties of unsaturated flow behavior, one has
to take the correlation structure into account.

(2) As pore-size distribution parameter, @, becomes
large (corresponds to coarse-textured material), the result
of this analysis show that one- and three-dimensional head
variance are equivalent, indicating that the flow is predom-
inantly one-dimensional under this condition.

(3) Capillary pressure head variance grows with the
mean capillary pressure, {i.e. the drier the scil is, the
higher the capillary pressure head variance).

(4) Bnalysis of the effective hydraulic conductivity
demonstrates thal unsaturated hydraulic conductivity is a
symmetric tensor of rank two .

(5) In general, the effective unsaturated hydraulic
conductivikby of one- and three-dimensional models are
bounded by the harmonic and arithmetic mean. However, they
épproach the geometric mean as ol grows.

(6) the anisotropy ratio of horizontal to vertical
unsaturated hydraulic conductivity is found to increase with
mean capillary pressure. This ratio ig also a function of
the magnitude and direction of hydraulic gradient, pore-size
distribution parsmetexr, the correlation scales and the

orientation of the stratification. This 1is mainly
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attributed to the variation of pore-size distribution param-

eter and the anisotropy in the correlation scale.

It ig of importance tu recognize the limitations and

assumplbions employed in this study. The theoretical

. . . , . 2 2
analysis is carried oubt with the zssumpbion Lthat o and o
! P f a

are small. The validity of omitting some terms in develop-
ing the perturbation eguations may be subjected to some cri-
ticism, since no exact solutions are available for compara-
tive purposes. This assumpticn does not lead to any loss of
generality of the results. 'The need islregognized for exact
solutions in order to evaluate the adegquacy of the assump-
Lion. Similar arguments also apply to the exponential gen-
eralization of the effective hydraulic conductivity approxi-
mations. A more detailed discuésion of this aspect is3

offered in Gelhar and Axness (1981).

The exponential relationship between the conductivity
and capillary pressure head assumed in the analysis merely
simplifies the mathematics involved. Other functions can be
adopted to obtain similar results. 1In fact, the exponential
relationship has been widely used in many practical studies
of unsaturated flow. Cne of the diéadvantaqes cf the
exponential relationship is that this relationship does not
correctly describe the behaviors of unsaturated conductivity
of some scils as a function of pressure, especially coarse-

Lextured soils.
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In the development of spectral relationships of capil-
lary pressure head, log-—saturated hydraulic conductivity,
and pore-size distribution parameter (equation (5.3.3)),
stationarity of the head process was assumed in order to use
the ' Fourier~Stieltjes xrepresentation theorem. The sta-
tionarity of head process is often observed in many field
steady-state infiltration studies. However, for a more gen-

eral case, a gradually varied mean gradient is required.

The assumption that both the pore-size  parameter and
log-saturated hydraulic conductivity have the same correla-
tion scale and covariance function is a convenience in the
analysis. Similar analysis can be carried out for more com-
plex problems where the statistical properties of the twc
paraweters are not nhecessarily equal. General behavior of

the results should remains similar:

The cross-covariance function of « and lnxs mayvy be
critical in field application of the stochastic resuits.
Analyses have shown that the difference between the resulté
of case (I) and case (II) are significant only at low capil-

lary pressure ranges. The results ¢f these two cases should

2

provide the upper and lower limits of the results of any

rYealistic problem.

It should be pointed out again that the stochastic
results are in the sense of enscmble average or ensemble
varjance. In order to awpply the results of the stochastic

analysis to a field situation, it is necessary to inveoke the



172

ergodic hypothesis. This hypothesis implies that the scale
of the problem under study has to be many timeg larger than
the correlation scale of the input procesé- Thusg, an
equivalence between ensemble average and space average can

be achieved.

Applications of the theoretical results to field situa-
tions requires information on the statisbtical properties of
the processes, ans and «o. These sgtaltistical parameteis
include o?, ai, ll’ kz, KS’ and their aubtocorrelation func-
tions and cress-caovariance function. Information on the
statistical properties of satuzated hydraulic conductivity
is relatively easy to obtain for any field sites. Gelhar
and Axness (1981) suggested several possible ways to obtain
the estimates of these parameters. Difficulties lie in the
determination of the statistical properties of the pore-size
distribution parameter. Estimabtes of these properbies of «a
can be determined only after a large number of X-3 curves
are obtained. In general, the measurements of K-y relation-
ship is time-consuming and laborious. To obtain reasonable
estimates of the properties may be a formidable task. How-
.ever, the instantaneous profile method (Nielsen ec al.,
1873) may provide a relatively simple solution to this prob-

lem.

Finally, much work relating to unsaturated flow is
still needed, especially work related to careful and sys-

tematic field obscrvations of soil hydrologic properties.
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The results of the present theoretical gtudy leads us to
recognize some important features of unsaturated flow in
heterogeneous media that have been ignored for the past
decades. In order to improve our capability to predict
walter movemenkt in unsaturated scils and geoclogic formations,
more rigorous theoretical analyses are necessary. Research
of unsaturated flow in heterogeneous media deserves much

attention in the future.
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JAPPENDIX A .
FI1ELD OBSERVATION OF SOIL CAPILLARY PRESSURE

SPATIAL VARIATION

A.l Introduction

The_ flow equations employed in this theoretical
analysis are expressed in terms of capillary pressure head.
The capillary pressure head is a stochastic process since it
is a direct product of the stochastic flow eqguation.
Numerous soil scientists have observed the field variability
of a variety of soil hydrologic pxopezties in recent years.
Only a few of them have dealt with the variability of soil
capillary pressure. Therefore, one of the purposes of this
chapter is to demonstrate the stochastic nature of the secil
capillary presgsure. Achievement of this goal reguires a
large number of simultaneous observations of soil capillary
pressure. Conventional capillary pressure monitoring dev-
ices; namely, mercury-water manometer, Jet filled, and
guick-draw type tensiometers, in general, are either slow in
response or inconvenient in installation. TFurthermore, the
éonventional devices, due to their slow responses, may
observe temporal variation in addition to .the spatial varia-
tion of the pressure, if a large number of measurements are
required. Thus, a technique for a “simultaneous” measure-
ment. of soil capillary pressures in a lgzge area 1is

developed to minimize temporal variation of the pressures.



180

A.2 Monitering Device

The measurement device consists of a tensiomeber, a

it

transducer, and a digital readout device (Marthaler, et al.
1982). The tensiometer consists of a porous ceramic cup
glued to a one-foot PVC pipe of 7/8" 0D and a 2.5 inch long
clear plexiglas of 5/8" 0D and 1/2" 1D connected to the
other end of the PVC pipe. The tensiometer is then filled
with water ( up to about 1" below the top ). A serum rubber
stopper which allows insertion of hypodermic needles sgeals

Lhe top of the tensiometer unit.

The transducer and pressure indicator are the produche

nadurcer

)

of Druck Incorporated. The part numbers of the tr
and pressure indicator are DPCRIO/F and DPIZ20OL, reospec-
tivelyv. The transducer has * 0.1 % BSL ron-linearity and

hysteresis with a pressure range of 0.0 to + 1.0 bar in

gauge pressure. Its tewperature crrzor band is about 1+ 0.5
$. The digital readout device (pressure indicator) has =

0.1

e

FS. linearity and hysteresis for a range from 0.0 to
70 bars. Bolth of the two units are powered by a rechargable

battery.

The Lransducer is screwed on a brass housing on which a
hypodermic needle of 0.019" 0D is mounted. fThe housing is
designed in such a way that a minimal clearance (about 0.005

ce of volume) between the bebbtom of the housing and the top

7
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of the diaphragm in the transducer is obtained.

A.3 Principle Involved in Dperabion of This Device

When the tensiometer is placed in scil, water in the
system comes into hydraulic contact with soil-wabter through
the pores in the ceramic wall. Unsaturated soil, being gen-
erally at negative pressure, starts teo draw out a certain
amount of water from the ceramic cup. As water is sucked
from the unit, a partial vacuum is created at the top of the
tensiometer. Water in the unit flows out until the wvacuum
created in the tensiomebter eguilibrates with the capillary
pressure in the surrocunding soil and the weight o¢f water
remaining in the system.‘ This vacuum in the tensiometer is
then measured by inserting the hypodermic needle through the
serum rubber stopper. This hypodermic needle is connected
to a pressure Lransducer. Thusg, the vacuum pressure  ig
directly transmitbted and excites the diaphragm which sends
out signals to the digital readout device. The pressure
displayed on the readout device is expressed in terms of
centimeters of water. Jt is then corrected for the hydros-
tatic pressure of the water column remaining in the tensiom-

eter.

Since a large nunber of btensiomeber are installed in
the ground prior to measurement, they have equilibrated with

the pressuxre in the surrounding soil at the time of measure-
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ment. . The device developed here can debermine the vacuum
pressure in the individual tensiometer in a matter of
seconds. Therefore, a large numbers of goill capillary pres-

sure measurements can be attained in a short period time.

A.4 Some Theoretbical Considerations

The vacuum pressure in the tensiometer, before the
insertion of the hypodermic needle, is equal Lo the sum of
the so0il suction and the hydrostatic pressure of the water
column in the tensiometer. Cnce the-hypoéermic needle is
insexrted into the system, a small amount c¢f air (the amount
of air residing 1in the hypodermic needle and the space
between the housing and the transducer) is introduced into
the tensiometer. This amount of air can cause an increase

]

of the pressure in the unit. As a response Lo the incy

o]

88¢
of pressure, an amount of wabter has to flow out to reach &
new eguilibrium. The volume of water is equal Lo the pro-
duct. of change in pressure head and the area of the tensiom-
etery tube. The response time (time to a new equilibriumj
depenﬂé on the amount of water discharged from the unit, the
conductivity of the ceramic cup, and the permeability of
surrcunding soil. If the change of pressure is large, a
relatively large volume of water has Lo be discharged
through the ceramic wall. Thus, the initial soil condition
is disturbed. The response time of the system can be

geveral hours.
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To determine the magnitude of disturbance caused by the
ingertion the hypodermic needle to the tensiometer, a simple
theoretical analysis based on the ideal gas law is carried

cub.

Assuming the amount of air initially in the tensiometer
is Vi’ the volume of the air at an equilibrium Ve_is deter-—

mined by

Vo= e ' (a.l)

where Pa is the air pressure (1 atmosphere: 1 baxr), and Pe
is the pressure at equilibrium, which consists of the actual
scil capillary pressure and the hydrostatic pressure of

water in the tensiometer.

As the needle is inserted, an amount of air VvV, is added

h
to the system. The new equilibrium pressure Pnn in the svs-
tem after the insertion would become:
PV + PV
P _ e e a h
ne Vv + V
: e h
\
FE + ——l} {(a.2)
e v o
= — T
I+ o
Y,
&

Egquation (a.2) indicates that the difference between

the pressure P and Pe can be negligible, 1if the ratio of

ne

Vh/Vé is small. Since the pressure difference is small, the
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amount of water discharged through the ceramwic wall will be

small. The initial soil condition is preserved.

A direct application of equaticen (a.2) to the tensiome-
ter system wused in this study can serve as a test of the
adeguacy of the design. The initial air volume Vi ‘in the
tensiometer 1is about 3.2 cc. At 0.5 bar of Pe the initial
volume of air increase to Ve is about 6.4 cc, according to
equation (a.l). The volume of air in the transducer unit is
estimated to be 0.05 cc. These conditions result in a value
of 0.504 bar for Pna’ Similarly, at 0.95 bar of soil suc-
tion, the corresponding Pne is 0.9507 bar. The changes of
pressure in these cases are relatively small. Thus, it is

confirmed that the present design

™

]

the tensiomebter systemn.
is adeguake to monitor the spabial variabtion of the soil

capillary pressure.

A.5 Procedures

All the assembled tensiometers are tested for leaks.
The test is carried out by submerging each tensiometer inte
water, and applying positive pressure up to 1.5 bars Lo the
tensiometexr. If any leak cccurs at this pressure range, the
tengiometer is considered as defective. All the intacht ten-
siometers, then, are filled with water up to 1 inch below
the top and are sealed with the rubber stoppers. This
leaves a volume cof air of 0.0 cc¢ in the tensiometer. This

amount. of air is essenhkial because it can. compensate the
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change of pressure due to insertion of the hypedermic nee-

dle.

Hole of 7/8 inches in diameter and ocne~foot depth is
prepared by a coring tool. A slurry made of water and cored

soil is poured into the hole before installing the tensiome-

ter. Thus, a tight contact between the ceramic wall and
surrounding soil can be obtained. This tight contact 1is

important to make a correct seil capillary pressure measure-

ment. .

Before measurements are taken, the transducer and
readout unit are calibrated with air-mercury and waber-
mercury manomebters to compensate for the fluctuation of
atmospheric pressure and temperature effects. However, in
most. cases, the calibration ig not necessary hecause varia-

tion due to temperature is insignificant.

Leaks in the rubber stopper may occur aflter the rubkex
stopper has been punctured several times. Thig kind of
leakage is evident when a significant drep of water level in
the tensicmeter is obse:ved after measurements. To prevent
leaking &ir through the rubber stopper, silicon rubber is

used to seal the punctured rubber stopper.

A.€ Results and Digcugsions

Winety four tensiometers are installed aleng a transect

at an alfalfa field, San Acacia, New Mexico. Location of
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the transect and associated soil permeability map are shown
in PFigure (A.1l). The interval between two tensicmelbers is
tenr feet. FEach tensiometer is inserted into the soil to a

depth of one foot.

Measurements began a week after installation. This
period qﬁ time allows the slurry to dry out and allows the
tensiomebter to equilibrate with the surrounding soil. Four
space series are obtained in a period of two weeks. The
first measurements were carried out on December 2, 1981, two
days after a rain of 1.35 cm { data collected at Socorro
weather station by Dr. Wilkening). The.time span reguired
to complete each series is about thirty minutes. Most of
the measurements are conducted at 3:00 PM. The four space
series are shown in Figurea (A.2) to (A.5), and data of
these series are documented in Table (A.l). These data are
the values registered on he pressure indicator. They are
neither corrected for the hydrostatic pressure in the ben-
siometer nor adjusted according to calibration. It is clear
from Figures (A.2) to (A.5) that the spatial variations of
soil capillary presgure are significant. The variations of
éoil caplillary pressure are also asscociated with strong
trends as illustrated by the figure. The pregsure readings
at the rirst five hundred feet tend to be much higher than
the rest of the presgure readings. Due to the presence of
the trend, the series are separated inte two sections for
estimat.ion of their statistical properties. The first sec-

tion consists of data from the first (ifty measurements.
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L

ocation of the transec

permeability distribution at the farm (after Wicrenga
, 1279)

Map shewing the location of the transect and soil

et al.

Figure A.1:
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collecred aiong the transect in an alfalfa field,

New Mexico.

acia,
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711.0
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541.0
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656.0
504.0
403.0
318.0
299.0
544.0
520.0

422.0
596.0
487.0
427.0
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275.0
217.0
205.0
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212.0
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540.0 165.0 179.0 150.0 174.0
550.0 199.0 164.0 144.0 175.0
560.0 157.0 162.0 149.0 176.0
570.0 181.0 149.0 125.0 146.0
580.G 204.0 203.0 154.,0 195.0
590.0 155.0 163.0 156.0 176.0
600.0 181.0 183.0 153.0 173.0
610.0 177.0 172.0 137.0 160.0
. 620.0 140.0 148.0 144.0 155.0
630.0 171.0 147.0 141.0 163.0
640.0 149.,0 157.0 150.0 164.0
650.0 180.0 191.0 178.0 1297.0
660.0 223.0 202.0 130.0 167.0
670.0 155.0 154.0 134.0 157.0
680.0 261.0 250.0 200.0 244.0
690.0 268.0 244.0 207.,0 244.,0
700.0 272.0 271.0 220.0 251.0
710.0°  236.0 230.0 184.90 214.0
720.0 231.0 103.0 129.0 298.0
730.0 213.0 212.0 185.0 208.0
740.0 243.0 240.0 155.0 194.0
756.0 163.0 166.0 167.0 172.0
760.0 254.0 261.0 201.0 251.0
770.0 230.0 227.0 189.0 207.0
780.0 191.0 190.0 168.,0 186.0
790.0 201.0 204.0 188.0 211.0
800.0 211.0 210.0 164.0 195.0
810.0 154.0 157.0 158.0 160.0
'820.0 156.0 161.0 149.0 162.0
830.0 164.0 169.0 166.0 173.0
840.0 195.0 194.0 171.0 186.0
850.0 169.0 172.0 170.0 177.0
860.0 152.90 157.0 147.0 159.0
676.0C 149.0 152.0 150.0 156.0
880.0 146.0 148.0 149.0 153.0
890.0 148.0 154.0 143.0 151.9
900.0 172.0 176.0 169.0 175.0
810.0 183.0 187.0 i70.0 168.0
820.0 167.0 182.0 158.0 166.0C
830.0 144,90 154.0 149.0 152.0
840.0 204.0 222.0 196.0 203.0
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The second section containg the rest. Estimates of variance
of these series are included in Table (A.2). Note that the
variance of the capillary pressure head increases with its
mean. In other words, the drier the soil is, the larger the
variance of pressure head. This mean-dependent behavior
demonstrates the non-stationary nature of the soil capillary
pressure. Also recognize that the variability of Lhe pres-
sure is correlated in space, although the correlation scale
is not as long as we expected. The estimated auvtocorrela-
tion functions of the two sections of each space series are
shown in Figures (A.6) through (A.9). Since the presence of
the strong trends in the first section of each space serie,
before carrying ocut the gtatistical analvsis, bthe data were
detrended with the assumption of the presence of a linear
trend. Ten lags were used in the estimation of Lhe auto-
correlation functions for the first sections of the series.
Ho trends were removed from bhe second sections of the data

and eight lags were used.

A.7 Conclusion

Some conclusions drewn from the results of this exreri-
ment are as follows:

{1l) The tensiometer—transducer sysbtem used here 1s a
ugeful method for rapidly monitoring spabtial variatiocns of
8011 capillary pressure. 1t alsc can be used in other prac-

tical purposes. The response of the device ig fast, and its
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accuracy is as good as any other conventional devices.
(2) Resultis of this field experiment indicate that
there is a large gpatial variation in soil capillary pres-

sure. This varialtion is spatially correlalkted and exhibits

trends in hoth the mean and the variance ab the tested site.
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APPENDIX B .

SOME INTEGRATION FORMULAS

A list of integration formulas used in the evaluabtion

of variances from spectra are given in this section. These

formulas can be verified by integration by the method of

partial fractions.

Y,
g~ du H
[ - P (81)
O.(U‘Hﬁf Y{UT+a") éa{a.+ b)
= 4. _ .
U du (o + 2b) -
AT IS S I 2 (&2
(Ue+p*y(u“ra’) 4{a + b)

0
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APPENDIX C

EVALUATION OF HEAD VARIANCE af; IN (3.3.13)

Thisragpendix describes the detailed integration pro-
ceéqres used in obtaining the head variance expression given
in (3.3.13).

To obtain the head variance, one can inhtegrake the
spectrum of the head flucturation given in (3.3.12). This

can bhe wiritbten as follows:

? it éﬁf i Zax; d}hzd}\, |
.= (C.1)
ﬁ X (k4+£2ki (k +l/k )

Express ki (i=1,2, and 3) by the following spherical cooxdi-

nates:

k. =kcosd, k.=ksin@siné, and k,-=ksin@coesd {C.2)
1 £ 3

This spherical relationships are illustrated in Figure

(€.1). B&fter this spherical transformation, ((.1) becomes:

2 22w 7 2w

J ¢ [ f kzcosz®sin@dkd®d9 (C-3)
W:EI« J (k2 + l/xz)z('k2 + ﬁzCGﬂZ@)
Or:'o Q= 0 }C':AO

If we let b = cos®, and integrate (C.3) over 8, the result-

ing integrand is:
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? 7lw .
J [, k*t?akde (C.4)
ik Da(k + l/xz)g(kz + ﬁztz)

By letting v= gt, and integrating (C.4) over k with the for-

mula provided in (B.1), (C.4) can be reduced to:

2 28
J aff v dV (C.5)
0(1/% + V)

Therefore, the head variance can be obtained by integrating

C.5) over V. The result is given as:

JZOth
02 - —mmi;mll _2inil + gl . 1 ]
h 2,2 KB 1+ g
LR
k
A L
e
!
- :
!
|
' > k2
|
|

Figure C.1: Spherical coordinate system used in the intcgration.
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APPENDIX D

EVALUATION OF THE THREE-DIMENSIONAL HEAD COVARIANCE FUNCTION
IN SECTION 3.3

From (3.3.12) and (3.2.14), the three-dimensional head

covariance function resulting from the exponential covari-

ance function (3.3.9) is given by

2 D o
e1¥ gkzdk

2 <o
f
R (t.x) - o £ ‘ (D.1)
th r fjj(k % +1) (k iﬁéki)

=

Taking advantage of (3.3.15), one can rewrite (D.1) as:

3267 ® 27 W i 5

2 .
]m SJﬁ’KACd@WiQ ;
Ry (6,X) = — Zf J f f i s (D.2)

TN Ym0 o=0d= o(h +1/2%) (k%4797

Furthermore, the expression within the integral of (D.2) can

be expressed as pertial fractions in the form:

2 o 27 T
- 3‘- —
Rpn (8 X} = PN f P =% PRIy
T A y=go= om o
2 2 2 (D.3)
~b . b _a (b )} 2.
75 t ) 514 sznéd Xddde

(K7+b7 ) (k7+a™) (L +a )]

in which a=1/), and b=gg. Thus, the expression in (3.3.16)

can be obtained by integrating (D.3) over k.



205
APPENDIX E
EVALUATIUN OF E[fj] TERM IN (3.5.10a)

Since the imaginary part of (3.5.10a) is odd on k , it

will wvanish after integration. Therefore, (3.5.10a) can be

rewritten as:

~3oi0? T whelan.arax
} T mm._..z_._....._ ] 4 2 2 2 2 L AP
m ek ES) (k%)

Transforming the above expression to the spherical
coordiantes by using the relationships in (C.2), (E.1) can

be expressed as:

2. 3= 27 7w
—JOfA f ké cos 2@ inddidedo
T
4

(y? +4%cos m;LPZ ZJL}ﬂ

i

W

=0 @=08=0

Integrating over 6 and substituting U for gcoed®, one can

reduce (E.2) to

f f U?d(dﬂ

ﬁﬁﬁ Dq(k +U (k +}/k }

(E.33

By ultilizing the expression in (B.2), one can obtains the
result of integraticn of (E.3) over k which is given as fol-

lows:
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—yg? B g
Jif“ way ¢ oldw (E.4)
(G+1/Xy | R — -

0 U(b+l/;\)

This will yields, after integration, the final expression

for the cross-covariance of f and j in (3.%.10b)
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APPENDIX F

EVALUATION OF U; and 02 TERMS
a3
To determine the variance of qi, the Lerm, kishh’ which

is equal to §.., has to be integrated to obtain its vari-

and S are evaluated

ance. The cross-covariances of S_. , .
£h illy|

previously, and given in (3.4.4) and (3.5.10).

oz 2.3 2 A

SR ki dk, dk, dk
2 _ 2 o £ i R
oy = [ xis,, 4k - "“;i““ffj — Sy (D)
—o0 —o (K 448 k1) (1+k n

Using the relationships in (C.2), the above equation can be
writtern in term of the spherical coordiante system and

takes the form:

Jzu%m 20w ké )
'“5?2 f [ s S08 S — (F.2)
P & avq c .‘}“ _4.&‘.. e
7 =0 80 G- O(h /3 cos @Y (KTH L0
After integrating over €, and letting t=cesd, the above
expression can be reduced to:
J rff k t dkd* (F.3)
*<ﬁh

(k +ﬁ t )(k +L/k )

Integration of k is carried out by taking advantage of

(B.2), it yields:
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1
52 ZI(Jazxﬁt)t at (F.4)
o (L+agL)?

Thus, the variance of this term is determined by integrating

. . : 2 .
over t. The regulting variance of j, aj, can be wricten as:

07: - 3202[:‘2’]“;; _ ___1,2_ + ._,%, _ 5;i + Sl,n.:'é-tmy: - 1 ] (F.5)
: b4 Y Yy Y Y (l+y)

where y= Xx8. The variance of qi is evaluated by summing up
the contributions from all the terms in (3.6.3). fThis

results in the expression given in (2.6.4)
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APPENDIX G .

EVALUATION QF 02 TERM IMN SECTIOH 3.6
92
From (2.6.6.b), the integrant for 02 can be written
a
asg:
2.2 2.3 o 2 2 2,2
K37 <
02 L E—»—[‘J.IJ ; l] 2dﬁ dk? }? (. 1)
g A (k2212 (Ln 212,
2 -0 ﬁ .L)( A JI

-

As in the previous analysis, (6.1} can be transformed o the
spherical coordiantes as defined in (C.2). After integrat-

ing over 0, (G.1) bhecomss:

2 2w
2 2K, ijj‘ e (tiﬂl)dkﬂ{ ©.2)
a4 T L u et fadtes’e )
where tL=cos®. Let tg=b, and 1/r=a. Integration over k is

conducted by employing the formula (B.2). This results in:

k25252 0 4 g 2
22 . iw fff(a:?i)b ab Zj(ci9b)n g .3
o - K
q’ 2057 ‘ﬂ (ath)? y (atb)”

The first integral in (G6.3), after integration, produces:

X = aé + SaSﬁ - Zazﬁz - oaf -5 - Ga Inilt
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Similarly, the second integral in {(G.3) yields:

3
2
Y = 8 (az + 3a8 - ﬂz - 4a21n}l+§l - Eﬁﬁ)

2 . . ;
Thercfore, the o term is delermined by
14

2 KiJz“g
0% % e (X = Y)
a4, 2)p8

This yields the expression in (3.6.4)



EVALUATION OF Gﬁ

A more detailed evaluation of the

equation (4.2.10) is
The variance of
the

by integrating

numbers, that is,

where i=3,2, and 3.
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APPENDIX H

AND E[fjl} TERME IN SECTION 4.2

variance resulting from
given in the following paragraphs.
the head perturbation can be obtained

assume i ﬂx3=k- Egquation (H.1l) can be written as:

2

A
h

2
2 ka

whare p=h/kl, and g=

evaluated as

> 4
<R
i

foliows:

head spectrum (4.2.10) over the wave
2.2, oo 2. - Al
) J thlkzkgrrﬁ kldkldhzékg }
e e I B s (H.1)
b4 e (KB kl}(l+ui}
We now let ui:xikj {no sum on i) and
= z‘u"dn
fff uydu,du,du, o)
22,222, 4 2 2, . 2.2 <
e [(p pruyfug) ep g u1§(lru 3
klﬁ. The remaining integral can be
First, we can express eguabtion (H.2)

in spherical coordinates:

U, =uCosa,

1

Thig results in a

uzﬂusin®sin9, and U, usindcoesd

form:
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, J202l4 Loy 21

2 2 :
= U7 cos d&s indddduds (H.3)
" I1]

4 2
800 [u (sin ¢Tp2COSZQ) ip‘gzcos“@](l+u2)z

o)

After integrating ovex 6, (H.2) becomes:

23202}\2,.147”9 2 2
_MMMEWEWM u cod D3 inE&dddu H.d
( )
” ) 2

Oﬂ‘u (blﬂi®Fp cos @) +p4q2cosz@}(l+u2)2

Taking advantage of the integration formula devolped in
Appendix B to integrate eguation (H.4) over u, equabion

{(H.4) yields:

. 2 ? 2 41
2 d0phg P [ tzdt

h 2

J 2 ) 2 (H->)
0[(p"~l)n +pTgt+l]”
where t = cosd.

Finally, the integration of eqguation (H.5) over t can
be obtained by ulbtilizing the formula provided by Dwight
{150.22, p39). The head variance zresulting from eguation

(H.5) is expressed by equations (4.2.11 a and bh).
Evaluation cf E[fjl} Term

The spectrum Sfj takes the form:
1



2
~3oa A Pxiy?
S 3 g é : TS (H.6)
7 (K HKTATY (L4027
"1 i1
Similarly, we will define new variables as previous
analysgsis, and use spherical coordinate trenzformation.
Equation (H.6) thus becomes:
—Jo? 2 w2 5 2 5 5.
- “”““““j[f U (precos@tsin @) cos s inddudede {(H.7)
2

p [ ] o
000 [(e CD‘£@+sln2ﬂ)" +péqzcos“@}(l+u~)2

Integrating over 6 and substituting t=cosd reduces

egquation (H.7) o the form:

220 oo d
4oge j t2 j u dudt
m 2 02 o -
lu + 5 5 2jtu + 1)
[(p7-13t7+1]
Utilizing the formula (B.2), we write (H.8) asm:
o ,
2BE
2 2 t (AL2+ 2BE %i)j (H.9)
3 (AL JBF4])
wheare pzwl, and B= ng- The above equation can be further

reduce to (sse Dwight 160.28, p35):



214

1

e 22T 2 _
ELE3] = Jogp lj 3 th dtz 7 ""z‘“}“‘“‘“‘" ]
ol =Dt 4p ge+11% % (ge1)
(H.10)
202
2 2 h 1
B L b v il
dUoshp pT(gt+l)

. . ., . ; .
where the head variance On ¢ given by equation (4.2.1la and

4.2.11h).
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APPENDIX I

EVALOATION OF Gi, AND Fij IN SECTION 4.3

From equations (4.3.5 and 4.3.6), the head variance can

be expressed as:

2 i éjfj‘(all 1 %ZallaZlkiké+a

_ 4, 2 a2 2,,2,.2,,2 .2
o R+ 2 (allkl*?cﬁ. 2) ](l*—klkl 'v:)hzf«.z +h., X

. 2 ' ;
K5 TIN N dkaR ARy

o

}Z

e
{a) =

By b D= ot P =/ A rquabior an
By letting uy kikl, )2 LS »oand p )/)l, equabtion (I.1}) can

be reduced to

22,2 2 = 2 .22 2 N
I g i N S N S hr S L G B R b b BN 2
R 2.2, %2, 2.2, 2 Z LIRS

e oo [ {p ui+u2+u3) ip7g (dllﬁu1+g2142] T{l+u™)

Since the aspect ratiec for the perfecbly ostratified medium

is infinite, p=o, eguation (1.2) can be further simplified

g du du

ljjf 7 (1.3}

+v 2 f‘+u
ul 1) )

After transforming the variables tce spherical coordinates,

we may write (1.3) in the form:
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2 2.2 2 o271y
Joo oA a
_legzllj j uzain@ﬁ®dud9 (1.4)
2 5 -
m 00 O(u cos ®+qza 110 +l}

The integration cver 0 and u in equation (I.4) leads to:

1

f (1.5)

O(t+gall)

P‘h\.)

Thus, the head variance of this case can be chtained by

evaluating (I.5) and is given as:

2222
2 T1% 58y, e
°% 7 § T+ (I-6
&, (T+ga, )

EVAULATICON OF Fij TERMS

In order to determine the effective hydraulic condun-

tivity, the tensor F.. has to he evaluated. The results of

il
Fil can be obtained by determining the invariant Emn witich
is expressed in eguation (4.2.8). For m=n=1, Ell is given
by :
- k’2[1’2+iﬁ(a kKilda .k’)jk k k,ﬂ dkiak’
~-1(( 1 ! I A S R 1 !
w o 4. . nz - 2 o Z‘w ‘;‘ 3 2 2 2“! s -
-t [k' i A (Lilki‘* aZléé} }fl'ﬁ'}\lni ?I\z}ii ii\m3h3 }

By changing variables { uimk.k ), and assuming that  A,=h,=h
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and p-e, equation (I.7) is simplified to

02
ldleuﬂﬁus
+g%a’ ) (1+u?

=il

el £

2 2
(ujtgray, )

The integral can be evaluated by emploving

cedures to those used in previous analysis.

(1.8)

similar pro-

The resulbt is

11

given by:
-1
Eyy = (1.9)
il J,+c;alL
Since it is essumed that the aspect ratic is infinite, the
contribution from‘Ej? is always zero. Therefore,
2.2
~I,0.a
2.2 . 17 £711 ‘T T
= g-a® ¥ U St (I.13)
Fi19: = 9*13% 0091 7 Tiven
11
Similarly,
1 2
~d oLa, R,
. . 2 1°f711712 (1.11)
P11 = %211%50%117) 1+ga
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APPENDIX J

EVALUATION OF Oi AND Effj] TERMS IN SECTIOM 4.4

The head variance (4.4.3) can be obtained by integrak-
ing' the spectrum of the capillary pressure perturbations
(4.4.2) over wave numbers. If we letb uizkik;’ and assume
that kznkgux and p-e, the integral of the spectrum can be

writbten as:

2,2 2 o

02=afkl(31all+Jzalz) ffj, dulduzdu3 1
h 2 77 ) Ll
/4 on (ul+e Y (l+u™)

ll+£J

a

where emmkltiéil“l}a '12]'

2 Eguation (J.1) is similar
Lo equation (I1.3). The same integration procedures can be
applied to (J.1) to obtain the head variance which is given

as:

2.2 " 2
2 9pry(dyaytdiay,) (3.2)
“h” c(l ¥ °8)

The procedures to evaluate the covariance of- fjl and
Ej? are the same as those emploved in appendix D wikh the

exception that the gradient component J.a

7y iz replaced by

11

Jlall+J2a12,
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APPENDIX K

EVALUATION OF ONE-DIMENS IONAL HEAD COVARIANCE
FUNCTION IN CHAPTER §
This appendix describes the derivation of the head
covariance functien shown in (5.2.15). Using (5.2.12) and
(3.2.18), the hezad covariance function of one-dimensional

flow model is given by:

42 2 3 :

£ 2J Ie iks (1—14.!_;)2}:2

R(¢) = ———] e = sy
- (K°+8°) (L+x“p")*
(K.1)
. 2.2
(J l) 4 ](ﬁ}f

2.0 2 . 2 aEe

(k +32}(1+k 77}

The resull of Lhe Fourier transform on the first term in
(K.1} is similar Lo the head covariance function in (2.2.19)
- ) 2 ) . .

with the exception that o, in (3.2.19) igs renlaced by

Uﬁ(l—HQ)Z. The second term within (K.1) can be further

expressed asg partial fractions in the form:

(3-1y%¢2 1 1 -t K.2)
e = 5 .
Bttty (Peimty piktiimh?

The Fourier transform of (¥K.2) leads to:
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e n2,20. -BlE
m(I-1)“¢% (26 2.2 gl —-:51/7;»} ,
eyt 428 2+ (-2 (i e (K.3)
Z(anz_l)z B [ n ]

Thus, the contribution from the second term in (K.1} can be
derived by using the expression in (X.3). To obtain the
expression (5.2.15) for one-dimensional head variance in the
case where a and f are perfectly correlated, one can sum up
the contributions from the results of the first and second
terms in (K.1). The head covariance function for the case
where a and f are uncorrelated can also be derived in a

similar manners.
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APPENDIX L .

THE PROCEDURES AND THE COMPUTER CODE FOR THE EFFECTIVE
HYDRAULIC COWDUCTIVITIES IN CHAPTER 6
This appendix describes the proceuder used to evaluate
the‘ anisotropy ratio of the hydraulic conductivity in Sec-
tion 6.3. Since the aspect ratio in this case is finite, it
is diffiﬁult to obtain the closed forms of the variance or
covariance terms involved in the determination of the effec-
Live hydraulic conductivity. Therefore, numerical integra-

tion 'is employed to obtain these Lerms.

The head variance of the unssturabted flow in a forma—

tion with arbitrarily oriented straetification, under J_=}i,
. | 1

and J2,w ?:0 condition is given by (I1.2Z). One can further

express (I.2) in terms of the spherical coordinates {(gas

Appendlix H} as:

T2W™ i ékipz(wl‘QQOS@4d21Sl“@3ln932u o inGdeduna

J.f.[z ) 2y Liple?

. 2 .
00 " fL (p cos ¢tain @) (allpcos®+aplﬁin®31n9} T(i+u

2.2

Taking the advantage of the integration formula (B.1), (L.17

can be gimplified to

J

” p)

e L2
GO [(p res!m+ anﬁ)npqta lpcos@+a2151n%51né}}

T2 2 2.2 2 . AN
+ ndg ind) Tginddadhde
1 fxlp (d11pCObP d2151 1 )
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Then (L.2) is evaluated numerically by using Simpson's rule.

From (I.7), after spherical transformation, the invari-

ant E is iven as:
11 g

270 2
J f ~Jlaf(p2c052®+sin2®)p2c053®uasin@d®dud9
2

Z AN N A . Lo 2 2
DU o [u (p cos grsinTd) wp‘g (allpcos®+a2l31n®51n6) Tl+u™)

Using the integration formula given in (B.2), one can

&

integrate (L.3) over u to obtain

w27

‘ 2 2 2. .
ff Jlﬂfﬁ cos Psing
0u

5
[{Q“0032®+sin2®)+Zpg(allpcos®+aplsin®sina)}d@d@

2 .2 . N 2
Al (p cogz@+81n m)+pqgallpc03®+a sindsing) ]

21

Similarly, the invariant, 322, can hbe e

N
)

, . 2 2. . . 2
with the exception that p“cos™® is replaced by sin“®sin®g.
These equations are then numerically integrated over @ and
6. The effective hydraulic conductivities are evaluated

with these parameters and (5.3.8). The detailed procedurses

2

are given in the following computer code. Note that o is
replaced by gdf+o?h? Lo obtain the zresults for the case

where a and lmKs are considered stochastic processes and

they are statistically indenendent.
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(e e et it e e e o e o 2t e o e
cC PROGRAM APNDL,TOR

C KRAEERRIKTRRRARRRE AR A RRRK

C

C

C PROGRAM TO EVALUATE THE EFFECTIVE HUDRAULIC CONDUCTIVITY
C TENSON OF THE SOIL FORMATTION WITH ARBITRARY STRATIFICATION
C ORIENTATION AND UNDER UNIDIRECTIONAL FLOW CONDITION,

THE POROUS MEDIUM CAN RB¥E STATISTICALLY ISOTROPIC OR
ANISOPROPIC (T.¥. THE RATIO OF HORIZONTAL TO VERTICAL
CORRELATION LENGTHS IS OPTIONAL .\

PROGRAM ALSO DETERMINES THE ANISOTROPY RATIO OF HYDRAULIC
CONDUCTIVITY AS A FUNCTION OF SUCTION PRESSURE HEAD.
FOR J=1 ONLY.

CAPILLARY PRESSURE HEAD VARIANCE IS ALSO EVALUATED AS
A FUNCTION OF MEAN SUCTION HEAD( VALID FOR J=1.0)

ALPHA AND F ARE CCNSIDERED AS STOCHASTIC VARIARLES,

THE SATURATED HYDRAULIC CONDUCTIVITY OF SOIL IS
CONSIDERED AS STATISTICALLY HOMOGENEOUS. THE INTEGRAL
WAS REDUCED TO DOUBLE INTEGRAL FORMS AND THEN EVALUATED

aooOoOOOoaoQaoaoaQanan

C RY THE NUMERICAL MOTHED BASED ON SIMPSTION’S RULE
(0 o e e e e o e o s o 08 e £ S e S o 0 i et 2 e o e o o 8 et o o e 2t e o e 1t s

IMPLICTT DOUBLE PRECISTON (A-H,0-7)
REAL PHI,THETA, THETAL,GAMMA,JL,H(10) ,VAR(L0) ,RATTO (1.0}
DIMENSTON HVAR(10) ,WCVAR(10)
DATA H/0.0,20.0,40.0,60.0,80.0,100.0,120.0,140.0,160.0,
1189.6/

o .
C HEAD VARIANCE FUNCTION 7CG BE INTEGRATLD
C
FN(ALYL,A2Y,C,D,E,F,G,C8,D8,FS,B8,T1) =
LTI (ALTAP*CHARTI*DE|IV*%2 .0/
2(FBFCE+DSHP*GH (2 4 J1=1 V% (AT VT*P*CHADL*D*EY ) %52, 0
C
C E11 IWVARIANT TO BE EVALUATED
C .

EVI(ALY,A21,C,D,E,7,G,CS,D8,FS,88,.J1)=
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IFS*CE* (FS*CE+NS+H2 . 0XF*GH (2. 0% J1-1) % (ATI*F*CHA21*D* )Y /
2{F37CS+DS+F*G* (2. 0*T1-1L V¥ (ALV*F*C+A2T*D*R) ) %%2,0

C
C E22 INVARTANT TC BE INTEGRATED
C
EZ22(A11,AZ21,C,D,E,7,G,C5,D8,FS , B8,J1) =
IDS*ES* (FS*CS+DS+2, 0*¥FAG* (2, 0%J1-1) * (AL1L*FP*C+A21*D*EY ) /
2(FS*CS+DS+F*G* (2,0*TI-1 )V * (ALVFF*CH+A2T*DEE) ) *¥* 2,0
c .
C
C
C

OPEN (UNIT=10,FILE="NPK1] . DAT” ,ACCESS="8SHOOUT” ,DEVICE="DSK")
OPEN (UNIT=11,FILE="NPR2Z2.DAT " ,ACCESS="8SEQUIT" ,DEVICE="DSK ")
OPEN (UNIT=12,FILE="HRATIO.DAT” ,ACCESS="8EQOUT” ,DEVICE="DSK")
WRITE(5,1)
1 FORMAT (© 7,7 QUTPUT OW THE TERMINAL--5, ON LPRT~-~-3")
READ (5, %) NPRNT
WRITE(5,2)
2 FORMAT (7 7 ,5X,” INPUT ROTATION ANGLE, J1, N1, N27)
BAD (5, %) GAMMA,JT N, N2
WRITE (5,201)
201 FORMAT (7 7 ,8%," INPUT VARF, VARA, ALPHA, VECAL, RO™)
READ (5, %) VARFT ,VARA ,ALPHA, SCALY,RO
WRITE (5,3)

3 FORMAT (7 7 ,° INPUT MOTSTURAE-PST CONSTANT )
READ (5, *) CHSTNT
WRITE (NPRNT, 4)

4 FORMAT (T 7 ,//," OUTPUT FROM MLTDRI,.FOR”™,/30(7%")//)
WRITE (NPRNT, 5) ALPHA , VARF1,VARA , SCALT , CHSTHT

5 FORMAT (" 7 ,/20%,7 ALPHA = ~,ri10.4/

121X,” VARIANCE OF LNK = 7,F13.5,/21%,” VARIANCE OF”,
27 ALPHA = 7 ,R12.5, /21X, VERTICAL SCALE = 7,210.4,
3/21X,” MOTSTURE-PST CONSTANT = ~,B123,5//)
WRITE (NPRNT,6)J1,R0O
6 FORMAT (© *,//7 J1=",F5.2,
17 HORIZONTAL CORR. SCALE/VERTICAIL CORR. SCALE=",710.2)
WRITE (NPRNT, 7) GAMMA
7 FORMAT (7 7,/  —ee ROTATION ANGLE = 7 ,F6.2," ——ewe—w=’//,
11,7 H 7,11X,7"XK117,9%, %¥K227,9%, "XK21" 0%, 8K12”
&9X,"PRILT, 0N, "PKR227,9X,7°C7)
DIHE=2.0%3,14159 /FLOAT (I82)
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ALF=ALPHA*SCALL
DU=1.0/FLOAT (N1)
Fv=0.0

GAMMZ IS THE ROTATION ANGLE OF THE STRATIFICATION

Al1l=COSD (GAMMA)
A12=5TWD (GAMMA)
R21=-SIND (GAMMA)
A22=COSD (GAMMA)
A=Al

B=A21

F=RO

FS=F*Fp

AS=A*A

BS=R*R
DUH=0.5*DU

G IS THE PRODUCT OF CCORRELATION LENGTH IN VERTICAIL DIRECTION
AND THE CAPILLARY FRINGE PARAMETER

G=ALF
SMEV=0.0
SMETI=0.0
SME22=0.0
THETA=0.0

THE NUMERICAL INTEGRATION STARTS HERE®®&®Ak%dx

SUMMATTON IN THE THETA DOMAIN
DO 90 I=1,N2
U=0.0
E=SIN (THETA)
ES=E*T

SUMMATION IN THE U DOMATN

SMDE1L1=0.0
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SMIE11=0.0

SMDE22=0.0

SMIE22=0.0

SUMEND=0. 0

SUMID=0.0

DO 100 K=1,N]

U=FLOAT (K-1) *DU

Ul=U+DUH

C=U

D=DSORT (1. 0-U*U)

CS=C*C

DS=D*D

Cl=U1l

D1=DSORT (1.0-U1*U1)

CS1=CL*CL

DS1=D1*D1.

FNE=FN (A11,A21,C,D,E,F,G,CS,DS,FS,RBS,T1)

FNO=FN (A11,A21,C1,D1. 8. F.G,C81.D 51,FS,ES,J1)

SUMEND=SUMEND+FNE

SUMID=SUMID+FNO

SMDE]1=SMDEL1+E11 (A11,A21,C,D,E,F,(
SMIELL=SMIEVI+E11(A11,521,C1 D1 B2,
1DS1,FS,ES,J1 )
SMDE22=8MDE22+E22 (A11,A21,C,D,E,F,G,
SMIE22=SMTR22+E22 (A11 A2 . CL,DL.E F .,
1ES,J1 )

4_:0,;

100 CONTINUE

CsS,Ds,FS,ES,J1 )
G,CS81,DS1,FS,

i
C
C EVALUATION O VARIANCE OF HEAD TERM
C

FNA=FN (AL ,A21L,0.0,1.0,5,F,G,0.0,1.0,FS,B8,J1 )
FNB=FN(A11,A21,1.0,0.0,%,¥,G,1.0,0.0,FS,ES,J1 )
FPV= (2. 0%SUMEND+4 . 0*SUMTD-FNA+FNR) *DIIH /3, 0

C

C EVALUATION OF THE INVARIANTS E11 AND E22 TERMS

C

c
FNAllell(Aml,Azl,o. ,1.0,8,7,G,0.0,1.0,78,¥ OfJT )
FNB11=R11(Al11,A21,1.0,0.0,E,F,G,1.0,0.0,FS,83,JL )

FE11=(2, O*“WDLL]44 o*s&xﬂti—?NA711“WB1i)*: U/;.o

FNA22=E22{(A11,A21,0.0,1.0,%,%,G5,0.0,1.0,75,85,J1 )
FNB22=F22 A11,A71,1 0,0.6,8,7,G,1.0,0.0,F5,88,J1 )
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FE22= (2.0%SMDE22+4, 0*SMIE22-FNA22+FNR22) *DUH /3. 0
SMPV=FV*DTHE+SMEPY
SMEL1=FE11*DTHE+SMET
SME22=FE22%DTHE+SME2D
THETA=THETA+DTHE
90 CONTINUE
SHMEV=FS*SMFV/ (2.0%3.14159)
SME11=~0,5%SME11/(3,14156)
SME22=-0,5%SME22/ (3.14159)

HYDRAULIC CONDUOCTIVITY EVALUATION

GS=G*G

VARF+VARAFH**2 LOCOP (J HAS TO BE 1)
THIS IS BASED ON THE UNCORRELATED MODEL.

OOOnNn oo

DO 500 I=1,10

VARF=VARF1+VARDM*H (I) *H (1)

VAR (1) =VARF

HVAR (I} =VARF*SCAT,L*SCALL*SMFV

WCVAR (T ) =CNSTNT*CNSTNT*HVAR (1)
XK11=1,0+0,5*VARE* (1,0~GS*SMFV+2, 0*SMETLL)
XK12=VARF* (A11#A1 2% 3ME 11 +A22F A TR SMED2)
XK22=¥K11-2.0%VARF* (SMEL1-SMEZ2} * [ALL*A11-A12*A12)
XK21=XK12

C DETERMINE THEE PRINCIPAIL HYDRAULIC CONDUCTIVITIES

AA=1.0
BR=~ (XK 17+ h??)
CC= (XRIT*KK22-XK12¥KKD1)
PK22=(~ PD+oQPT(BB’BBwﬂ D*AA*CC)Y /2.0
PK11l= (-BB~SORT (BB*BB~4 ., 0FAAYCCY) /2.0
IF(XKL1.LE.XK22) GO TO 1000
TEMP11=PK22
TEMP22=PK1]
PK11=TEMP11
PR27=TEMP 22
1000 TA=0 . S*ATAN (2, 0%XK21/ (XKLI-XX22))
TA=TA*180.0/3.141596
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C

THE EXPONENTIAL GENERALIZATION OF
THE EFFECTIVE DYDRAULIC CONDUCTIVITIES

AR

PRLV=EXP (PK11-1.,0)
PK22=E¥XP(PRK22-1.0)
WRITE (NPRNT, 9)H (T) ,XK11,XK22,XK21,XK12,PK11,PK22
FORMAT (© 7 ,8813.5)

G

r

PRINT OUT THE NORMALIZED PRINCIPLE HYDRAULIC CONDUCTIVITY
PK11/KM AND PK22/KM

WRITE (10,10)H(I),PK1L

WRITE (11,1008 (1) ,PK22

FORMAT (© 7,2%,3(E13,5))

RATIO(I)=PR22/PK11

CONTINUE

WRITE (NPRNT, 8) SMFV

FORMAT (© 7, //64, "NORMALIZED HEAD VARIANCE = ~,EL3.5//)
WRITE (NPRNT, 1)

FORMAT (" 7,/7 PSI”,3%, VARF+VARAH2", 22X,

PE22/PK11 VAR VARWC” / /)

DO 600 I=1,10

WRITE(12,12) H(I),RATIO(T)

WRITE (NPRNT , 12) HITY ,VAR(T) ,RATIO(D) ,HVAR(L) ,\WCVAR(I)
FORMAT (7 7 ,F5.1,4813.5)

CONTINUE

STOP

END



