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ABSTRACT

The current controversy over problems of contamination of our
groundwater environment has led to the development of new techniques
for aquifer analysis and pollution control. The difficulty encountered -
in most studies of solute transport involve the complex spatial and
temporal variations of field measured hydrogeologic and hydrochemical
variables. Spectral analysis and stochastic differential equations
has recently been shown to be a useful approach to problems of spatial
and temporal variability. This research is concerned with (1) the
analysis of continuous water quality time series of groundwater con-

| tamination or tracers subject to a time varying source, and (2) the
analysis of spatial variations in water quality produced by a
stochastic, nonuniform flow field. 1In the first case of water quality
time series; solutions are found for.three widely applied transport
models subject to a stochastic source of contaminétion or tracer:
(1) the lumped parameter or linear reservoir model, (2) a convection
modeliapplied to a curvilinear flow field and (3) a one-dimensional
convection-dispersion model in a uniform flow field. Application of
the stochastic theory is illustrated with anrexamp1e§for each model.
The results of the time series ana1ysi$ demonstrate the utility of
spectral analysis and stochastic differential equations for evaluating
stationary time series of water quality via the frequency domain
approach. The method also indicates that the unique frequency 7
characteristics of water quality time series may be used as a'diagnostic
tool for determining the appropriate transport model to apply in each

case (ie. curvilinear flow, uniform flow, dispersive effects, etc.).
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The effects. of a nonuniform f]ow_fie]d on the depth—averaged
equation of solute transport is evaluated for the case of a spatially
variable and stochastic velocity fie1d; The velocity field is shown to
produce spatial variations in the solute concentration as well. A |
perturbation technique divides the transport process into a mean and
fluctuating condition. Stochastic theory and spectral analysis is
used to evaluate the significance of additional cdnvective and
dispersive flux terms in the mean equation. The ana]ysis indicates
that an overall reduction in the convective velocity of a solute,
relative to the mean fluid velocity, may result when flow nonuniformity
is significant. A corresponding increase in the effective-dispersion.
coefficient is also observed. The stochasticvtheory provides a means
of estimating the concentratioh variance due to a nonuniform flow

field.
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GENERAL INTRODUCTION

Objectives and scope of the research

In recent years the public has become increasingly aware of the sus-
ceptibility of groundwater to contamination from domestic, agricultural
and jndustrial sources. As a result, a more realistic priority has been
given to groundwater protection, and how groundwater fits into the over-
all strategy of environmental management. Concern over potential and

“existing contamination has stimulated researcﬁers to devé]op a variety
of new techniques and models to analyze and prediét the transport of
contaminants in groundwater systems. A fundamental difficulty encount-
ered in these studies is how to ‘incorporate within the methodology, the
complex natural variations in the porous medium, as well as the time
variable nature of the source of contaminant.

Recentvdeveiopments in stochastic hydrology (Gelhar et al., 1979;
Kisiel, 1969; Freeze, 1980; Gelhar, 1974) héve demonstrated the merits
of a stochastic approach for characterizing the random element of
natural proceéses. The use of stochastic methods implies an element 6f
uncertainty, in that variability is only distinguished in a pkobabi;
.1istic sense. If we view this variability as providing real information
about the system, as‘opposed to ”noise','thén the~stochastic method. (in
this case stochastic differential equations) can provide an interpretive‘
analytical tbo].

| In this research a variety of relative]y simple models of mass
transport are solved via stochastic differential equations and the
theory of linear filters. The equations to.be examined are deemed

stochastic as a result of a time variable source of contamination (or
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E: tracer), or as a result of a spatially variable ye1ocity field effecting
| the average solute concentration. The procedure will point out that a
random process need not have a complete probabi]ity definition (i.e. joint

probability density function is not required), and that StatisticalTy

stationary - (in time) and homogeneous (in space) processes are adequately

represented by the first two probability moments, the mean and the
variance. Besides the mean and the variance it will be neceseary to
define an additional statistical measure - the correlation scale. The

correlation scale is shown to be an especially important consideration

for describing spatial and temporal variability in groundwater quality

studies.

Application of the spectral theory is attempted for each case under

investigation in order to demonstrate the éuitabi]ity of the stochastic

method to a variety of fier.prob1ems,'and to illustrate the diagnostic

capability of the spectral analysis method in frequency response studies.

of water quality.

‘Review of literature

oo In the last two decades stochastic hydfo]ogy}has been widely
exploited for the study of random or partially random processes in
hydrology and hydrogeology. It is not difficult fo understand why
stochastic methods have beeo accepted by earth scientists}and engineers,
since a]most‘a11 natural prooesses contain.some element of random |
behavior. However it is interesting that so many different methodologies
for stochastic analysis have been adopted by hydrological scientists.

In general these methodologies rahge from the purely descriptive aspeets
of random variables, to complex mathematical modelsdof physica1 pro-

cesses with multidimensional random components.
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This review of literature is intended as a partial acﬁount of the
significant developments in stbchastic hydrology as itrpertains to both
theory and data analysis for the following topics:

(1) temporal vériabi1ity of water quality (time series),

(2) spatial variability of the hydrogeologic media and its =

| effect on water quality, | |

(3) a review of some water quality studies displaying spatially

or temporally variable data.

As is the case in any scientific endeavor, research in stochastic
hydrology has proceeded along two fronts. The first stage is‘the des-
criptive approach where data is simply evaluated without regard for the
physical nature of the system, say for the purposevof detecting the
maximum or minimum. The second stage might be called the interpretive
~approach which would include some form of physical model. Although this
| research is primarily concerned with the interpretive or modeling'aspect,
the former is of course essential to determinihg the problem itself, and
will be included in this brief review. Since stochastic methods have |
évo]ved}from a variety of scientific fields it will be nécessary to
" survey devéiopments from an interdisciplinary range'of_literature for
pertinent material. _ |

Time series: With the recent emphasis on pollution detection by .
regulatory agencies has come the need for efficient design of continuous
monitoring networks. Gunnerson (1975) has demonstrated the use of
stochastic methods for‘design of these networks for the pufpose of
pol]ution detection. The probabilistic-stochastic methods which he
uses include empirical frequency distributions, range analysis,

covariance-spectral techniques and regression methods for bivariate data



sets. Wastler (1969) aiso i1lustrates the use of spectral-covariance
analysis for rivers and esturaries as a descriptive tool. In»terms of
groundwater qua]ity,.Gelhar et al., (1980) haQe used spectral-covariance
techniques to describe the stochastic element of groundwater salinity
Vtime series. The report also points out how highly variable time series
may display little visual similarity but are comparéble in their prob-
ability moments.and correlation scales. |

The interpretation of water quality time series is generally viewed
in a systems context!_'Researchers in‘wétershed hydrology and river
hydraulics have made extensive use of the input-cutput or systems method
for both stochastic and deterministic problems. Dooge (1973) presents
a general treatment of Tinear systems as applied to autocorrelated and
cross-correlated hydrologic time series. Thomman (1974) uses a systems
approach to examine a varietylof detérministic surface water quality
systems. Both Thohman and Dooge make use of the transfer function and
phase as the principal tobis of frequency response studies. Texts by
Jenkins and Nafts (1967) and Koopmans'(1974) provide‘the detailed
mathematical background necéssary'for‘linear filter theory and spegtrai
analysis applications. Yevjevich (1972) treats a}wide raﬁge of stochastic
‘methods in hydrology including covériance-spectral_analysis, surplus—:
: deffcit-range,.the theory 6f runs, as well as app]icationé of these
methods. |

A concise'treatmeht of "Time Séries Analysis of Hydrologic'Data" is
gfven by Kisiel (1969). The manuscript outlines hany practical féatures f
of covariance-spectral analysis as well as how tﬁese relate to linear
systems in hydrdlogy. A series of papers from Colorado State University

: have dealt extensively with stochastic methods in hydrology (Jeng and



Yevjevich, 1966); Rodriguez-Iturbe, 1967; and Hendrick, 1973).

A]thdugh stochastic methods have been applied to the hydraulics of
groundwater flow, 1ittle has been done with fegard to water quality time
$eries in groundwater. Erikson (1970) has presented two papers on the'
spectral and cross-spectral analysis of groundwater levels when the
variable is treated as an auto-regressive process. .Solutions to sto-
chastic differential equations describing phreatic aquifer flow were |
first developed in a paper by Gelhar (1974). This research utilizes
frequenéy domain solutions io several aquifer flow equations in terms
of the input-output spectral densities. This paper can be considered

| the basic reference for the time series méthods to be presented in
Chapter 1. »Evaluation and interpretation of recharge mechanisms using
the spectral method has been demonstrated and app1ied:to the Roswe11

~ Basin, New Mexico by Duffy et al. (1978) and Gelhar et al (1979).
Ge1dner (1981) has applied the spectral approach to a stream-aqu1fer
51tuat1on in the Rhine R1ver Valley between France and Germany.

Spatial Variability: In most appl1cat1ons of water qua11ty model—
ing it is assumed that the general theory for mass transport in ground—.
water -(as developed by Bachmat and Bear, 1964 for example)'will apply,
~ and can simply be 'taken off the shelf' in each éése.r In a mathematical
sense this may of course be true, however, as has beén pointed out by
Anderson (1978), the parameters of the macro-dispersion process (thé
dispersivity or.dispersion coefficient) do not have a precise physical
meaning.. Efforts to remedy this gap in our knowledge are currently‘
being made. It is worthwhile then to review thekprogress wﬁich'has
-been made towards the development of an encompassihg theory of mass

“transport, as well as some problems facing those who wish to apply the
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theory to field problems. Comprehensive reviews on parts of this topic

can be found elsewhere (Bear, 1972; Anderson, 1979; Naff 1978) and thus

only the highlights are discussed here.

In terms of porous media flow, Taylor (1954) and Aris (1956) have
provided a quantitative description of the dispersion process in small
pores using capillary tubes; In each case they were ébTe'to devise an
exact mathematical formulation to describe the dispersion coefficient in
terms of the geometrical and hydraulic properties of the tube or tubes.
Statistical methods have been more commonly used for studying dispersion

in porous media, largely due to the complexity of the local pore structure

and the 1afger scale heterogeneities of the aquifer itself. Randomly

oriented tube models have provided a basis for physical interpretation

of dispersion and diffusion on a local scale (or REV scale). Proponents

of the statistical approach suggest that it is not possible to give a

- precise mathematical. description for the particle (tracer) path or

velocity and thus its location can only be determined in a prob-

abilistic sense. The work of Scheidegger (1954), de Josselin de Jong

(1958) and Saffman (1960) are the most notable in this area of research.

In order to describe the larger scale heterogeneities of aquifer

variability, Monte Carlo techniques have been employed. Warren and

Skiba (1964)vuse a Monte Carlo scheme to study the macroscopic (large
scale) dispersion which results from three-dimensional permeability

variations of a porous medium. The effect of porosity variations on

dispersion was considered and found to be a second order influence.

Their study indicates that the scale of heterogeneity usually examined

in the laboratory is not the same as the reservoir scale. Heller (1972)

uses a Monte Carlo scheme to arrive at an effective dispersion co-
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efficient which is the result of two-dimensional random permeability

variations. His conclusions poiht to the significance of both local and

global (large scale) heterogeneity as influencing the dispersion process.

More recently Schwartz (1977) and Smith and Schwartz (1980) have used a
Monte Carlo approach for»simu]ation'of.macro—dispersion.‘ The latter
report includes the influence of autocorrelated permeability fields

using a 'nearest-neighbor' stochastic process, The use of Monte Carlo

methods appear to be a very powerful tool for studying random fields

in groundwater simulation, and the applications thus far have been far

from exhaustive.
Analytical methods have been especiaTTy useful for studying the
- problem of macrodispersion in stationary, or more correctly, homo-
geneous random fields. For example Mercado (1967) demonstrates the
- role of a horizontally stratified permeability fier on the magnitude

of the dispersion coefficient. His model clearly demonstrates the

effect of convection during the early stages of_the_dispersion process.

‘Local dispersion was not considered in his work. ‘Marle et al. (1967)

'make use of an analytical procedure advanced by Aris (1956), called the

method of moments. Marle's contribution was in deriving an expression

for the longitudinal dispersion coefficiént, Their results also suggest

that after large time or displacement the macrodispersion process is

Fickian. Buyevich et al. (1969) have examined both the large and small

- scale heterogeneity of porosity in a porous medium and their influence

on the dispersion process. The authors obtain correlation expressions

between the flow and transport variables which are given in terms of

ah effective coefficient of diffusion and porosity fluctuations. This

method is particularly interesting to the present study since it makes
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.use of stochastic differential equations sélved via the}spectra1
method.

Stochastic methods have 6150 been applied to the solution of
groundwater fTow.prob1ems (Freeze, 1975; Gelhar, 1976; Bakr et al., 1978;
Gutjahr et al., 1978 and Miie]l, 1980). The emphasis of these st&dies
has been to devise expressions relating the variance of hydraulic head
in one, two or thfee—dimensioné to the length scales and variance of
InK or InT (K = hydraulic conductivity, T = transmissivity). Naff (1978)
has examined the nature of the dispefsion coefficient produced by one -
and three-dimensional variations in permeabi]ity. In this work solutions
to stochastic differential equations are used to express the relation
between ﬁermeabi1ity variations, local dispersivities, the length scales
of the medium, and cohcenffation. His analysis also demonstrates.that
porosity variations tend to have a secondsofder effect on the magnitude
of the disbersion coefficient. Subsequently Gelhar et al. (1979) have
furthered the work of'Naff by’describing the transient development of
the dispersion process, which takes into account the non-Fickian beQ
‘havior observed in fie]d experiments such as thosé performed by Sudicky
and Cherry (1979) and Pickens et al. (1978).

Water Quality Data: The purpose of this segment of the Literature
Review is to survey a limited number of field studies whefe Qater quality
data have been compiled and evé1uated. In most‘cases the water quality
variable constitutes a pollution hazard or potential hazard. The
similarity among the wéter.qua1ity data examined in the following
reports is that each display significant variébi]ity‘in space and/or
time, and that interpretation of this variability may be important for

understanding the mechanisms of transport in groundwater and soils. The
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emphasis of the present research is to suggest a method for interpréting
this variability. 4

The leaching of pollutants through the soil zone has received con-
siderable attention in recent years. Biggar and Nielson {1976) examined
the spatial distribution of chlorides and nitrates at twenty sites
within a 150 hectare field. The pore water velocities and dispersion
coefficients were found using chloride ion concentration, and both were
determined to be approximated by é Tog-normal distribution. Toler et
al. (1974) examined the distribution of chloride from highway deicing
~salts in the unsaturated zone. A percentage of the annual amount of
infiltrated salts was retained ih the soil zone, and this retention was
found to be correlated with grain size distribution, depth to water
table and precipitation. Childs et al. (1974) examined the infiltration
of septic tank wastes fo_the groundwater. Their results indicate that
both spatiai and temporal distribution of theAcontamination'are neces-
sary to describe the pollution problem. Feedlot operations and their
pollution potential were studied by Crosby et al. (1971) in Washington
state, where nitrate and chloride concentrations were determined for
the soil zone and the groundwater beneath them. A]tﬁqugh eXtenSive
contamination was evident in the uppér sof] Tayers, little evidence Qf
contamination wasvfound~ih the groundwater.

Subsurface.discharge to Stream or drains from agricultural water-
sheds can be a‘source of contamination'to surface supplies. Deviit?ét
al. (1976) havélexamined the contribution 6f agricultural practices to
‘po11ution of ground and surface waters at several sites in southern
California. An attempt was made to correfate fertilizer input, soi1‘

concentration and drainage effluent. However no explicit accounting
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of the groundwater flow system was made, Four watersheds in Iowa were
the subject of a study.by Burweil et aT. (1976), which was conducted to
determine the impact of fertilizers. They foﬁnd that over application
of nitrate fertilizers were a significant source of pollution of surface
water leaving the area. Large temporal variability of hitrates was
- observed in the watershed output.

Regional groundwater studies have recently been performed to
assess the impact of diverse land use pract1ces on groundwater qua11ty,
as well as to determine the natural or geochem1ca1 characteristics of
regional aquifers. The natural spatial and temporal variations in water
quality of an aquifer in Saskatchewan, Canada were studied by Davison
and Vonhof (1978). Spatial changes in major ion concentration were
correlated with geologic-geochemical properties of the aquifer. Temporal
variation of selected ions indicate that 1argé'variations were cor- |
rolated with rainfall and recharge, whjle the smaller séale time
variations.were explained in 1ight of geochemical reactions. Rozkowski
_(1967) investigated the chemical groundwater quality of a hummocky
moraine in southern Saskatchewah. Spatial groundwater quality patterns
were explafned based'on chemiéa1 reactions which obcur in the un-
saturated and saturated zoneé. Perlemutter and Koch (1972) studied
; nitratevpo]IUtion“from fertilizers and septic tank sewage in Nassau
County, Long Island. More than 3000 chemical analyses were performed
on wells ranging in depth from'20—1000 feet. Typical vertical and
horizontal distributidns‘of nitrate were given in several figures.

The regional distribution of éh1oride, nitrate and electrical
conductivity is examined over a 27 county area in west Texas in.a reportr

by Reeves and Miller (1978). The regional water quality patterns are
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suggested to be partially the result of long term migration of ground-
water in fhe Ogallala aquifer; but local veftica1 migration at the
chemica] parameters is also suggested. Nearly 1600 samples distributed
on an approximate three mile grid were analyzed in this unique study.
Young et al. (1976) examinéd the twenty-two sites in the United
Kingdom for the presence of nitrate in thé'soif zone and groundwater,
The sites were representative of three typfcal land use patterns: (1)
fertilized arable (2) unfertilized grasﬁ]and and (3) fertilized grass-
land. Land use patterns were shown to have a significant impact on
nitrate levels in the unsafurated-saﬁurated zone. 'The.spatial dis-
tribution of nitrate>in several deep soil profiles (25-70 meters) was
given in the report, illustrating significant vertical variation.
Nightingale (1970) compared the time trends of Qroundwater salinity and
nitrate concentration in an‘urban zone and adjacent irrigated area in
Fresno, California. A strong time trend in hitrate QaS'evident in the
urban area, while no trends and large variationsin nitrate were found
beneath the agricultrual area,-during the 17 yéar ﬁaﬁﬁling program.
Schmidt (1977) analyzed the short term and Iohg term fluctuations
of water quality from a pumping well. ConSiderab]e differences between
ambient watér quality (unpumped) and the quality of;a pumping well were
-obsérvéd. Permeabi]ity'and‘ﬂatér‘quality stratification were suggested
to influence the long and short term quality in a pumped well. A study
of the impact of irrigated agriculture on waterIQUaiity in the Rio
Grande was carried out by Wierenga et al. (1979). The study included
an extensive monitoring network for flow and chemical quality of tﬁe
irkigation diveréion, groundwater and drain flow or irrigation return

flow.
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Large variations in the salinity of irrigation return flow were
associated with the seasonal application of irrigation water.v However
a significant fraction Qf the total dissolved solids in the outflow were
actually derived from the'regioha] groundwater system. - The spatial
variability of E.C., chloride and nitraté was examined by sampling along
a transect at 25 foot intervals (100 sample points). A later report
for this same study aréa (Gelhar et al., 1980) demonstrates the use of
the spectral technique for characterising spatial and temporal variabil-

ity in this irrigated field site.
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1. ANALYSIS OF CONTINUOUS WATER QUALITY TIME SERIES

Introduction

This first chapter is devoted to the development of a series of
water quality models using the theory of linear filters and spéctraT
analysis of time series.,  The method provides a theory and technique for
frequency doméin analysis of stationary water quality time series in
groundwater;' Three types of solute transpori models are examined: (11
the lumped parameter or Tinear reservoir model, (2) a convection or
advection model and (3) a one~dimensional convection—dispersion hode].

- Solutions to stochaStic differentia] equations are given which describe
the filtering ot amplitude characteristic as well as the phase charac-
teristic of each grouhdwater system. = Dimensionless graphs illustrate
how the theory can be used to determine thé ihportant parameters of mass
transbort'for individual groundwater systems when suitable water quality
records are available. | |

The theory presented here is intended to provide a physical inter-
.pretationAoﬁ the random component of groundwater_qﬁa1ity reéords dnd to
_11]ustrate-the distinction betwéen the fféquency response of solutes in

different groundwater flow systems.

Linear filters in time series analysis

Before examining particular models of mass transpoft,in groundwater -
it will be useful to review the basic prbperties of Tinear filters and
their general application to frequency response studies. We assume that
the physical system of interest is described by a Tinear differential

equation where the variables are random functions of time. The analysis
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will make use of a frequency domain version of the convolution integral
which converts stationary input time series into stationary output. The
term stationary in time means that a particular process’is adequately |
characterized'by.its first two probability moments, the mean and the
variance or covariance. This kind of statioharity is also referred to
- as second-order stationary or weak?y stationary. In addition, we also
make the assumpt1on that the mean, variance and covariance of a single
realization of the process (a single t1me ser1es) are reasonable esti-
mates for the underlying stochastic process. This is known as the ergodic
hypothesis. |
An arbitrary input X(t) operated on by a Tinear system to yield an
output Y(t) can be written in terms of the convolution filter
Y(t) = { h(t-t) X() dr SR | (1.1)
where h(t-1) is the impulse response function of the system; When the
input to the filter is an impulse given by the Di?ac delta function,
X(t) = s(t) then
Ch(t) = | h(t-t)-s(x) dr | (1.2)

v 8 e————y 8

and we see that h(t) itself is a solution to the convoTution equation.
The properties of (1.1) are the usual ones for a time invariant Tinear
transformation (Koopmans, p.81, 1974), (i)vsqa1e’préservation, (if)
superposition and (iii) time invariance. The result in (1.1) can be
extended to the frequency domain by making use of the Fourier transform -

of h(t)
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H(w) = 1 ‘h(r) e 10t gt _ ' (1.3)

where H(w) is the complex frequency response function. The real counter-
part of H(w) is the transfer function given by [H(w)|2.
For a second order stationary process, the only condition necessary
for (1.3) to exist is (Koopmans, 1974)
J h2(t) dr < » . (1.4)

- OO

and

{ )2 de <= | R -~ (1.5)

Except for (1.4) and (1.5) we have so far done nothing that is
peculiar to a stochastic process, since (1.1) and (1.3) would apply
equally well to periodic or aperiodic functions. When we define X{t)
as a stationéry stochastic process we must introduce another complex
" stochastic process Z(w) such that

X(t) = | e az (u) | (1.6)

where the dZ(w)'s are complex Fourier amplitudes of the process (Lumley
and Panofsky, 1964). Equation (1.6) is the generalized Fourier-Stieltjes
representation for any second-order stationary stochastic process. Sub-

stitution of this representation for X and Y into the convolution yields



Y(t) = [ ei“tdzy = { h(t-) { eiwtdz; dr. (1.7)

Rearranging the order of integration and simplifying will produce the

frequency domain version of the convolution

dZy(w) = H(w) dzx(m) . | (1.8)

which illustrates that in the frequency domain the convolution is |
simplified to a multipTlication. An additional property of the dZ{w)'s
15 . 0, wy # wy :
E [dzx(ml) : de(_mz)] - | (1.9)
¢Xxdbj,'(u1 = wy

- where E(dZ dZ*)) indicates expected value, the * is the complex conjugate,

and ¢Xx(m).is the spectral density of‘simp1y the spectrum of X(t). The
spectrum describes how variations (variance) in the series are dis-
tributed over frequency. The spectrum is a property of the autocovar-

iance of the series given by . .

Reele) = E [ (X&) (K(t0)w) | )

where u is the mean of X and 't is the lag. The spectrum-covariance

relation is uniquely determined by the following Fourier transform pair

o0

(0)

1 -iwt , : -
¢XX Z;{e RXX(T)d”é : . C (1.11)

-0

pre)
o~~~
=y
~—
]

l eimT¢XX(m)dw. | | | (1.12)
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From (1.9) and (1.8) we can write an exﬁression for the transfer
fuhction in terms of the input-output spectral density functions
INON , ' o
W- [H(w) | | o (1.13)
which describes the amplitude filtering tharacteristics of the system és
a function of frequency. Since we are concerned here with differential
equations which have_impuise response funcﬁions h(t), (1.3) and (1.13)
tell us that as long as the Fourier transform of h(t) can be found, a
Spectral fdrm of the solution éan be found as well. Although we may not
always use the convolution as a means of determining the frequency re-
sponse function, the result does generalize the procedure to a wide class
of time-variable problems;
| So far we have limited our discussion.to the-aﬁtocorre]ated pro-
perties of the bivariate process, X(t) and Y(t). It is also useful to
consider the cross-correlated aspects of X.and~Y¢ We begin the develop-
ment with a definition for the Fourier amplitudes of cross-correlated

series (Lumley and Panofsky, 1964)

0, wy }‘wz

E [:dz (wy) - dz;(wz) ] = ’ o o (1.14)
-y . . : ¢yxdm’ wy = Wy -

e

which is similar to the case for a single variable (1.9). The function
¢yx(m) is the cross-spectrum. Makfng use of this result and (1.8) we

get

E [dzy(.m) . d;(m)] = E [dzx(w) . dZ:(w)] « H{w) | (1.15}
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which yields the cross-spectral form of the convolution filter

(@) * Blw) =Ly -0, (1.16)

¢yx(w) = ¢
where Lyx(m) and_QyX(w) are the real aﬁd imaginary parts of ¢yx(w), and
are known as the co-spectrum and quadrature spectrum respectively. The

phase is determined from Lyx(m) and ny(w) according to

Q o .
0 (w) = - Tan™t (XX . 1.17

where eyx(m) is the phase spectrum or.simply the phase.- Thé phase, as -
described by Jenkins and Watts (1968), shows whether frequency components
in the X series lead or Tag the cdmponents ét the same'frequency in the

Y series; |

An important consideration in current mode]ing}effqrts'invo1ves the
estimation of probability moments for sampled water qua]ity variables.
Estimates of the first two moments (the mean and the variance) are
particularly important when designfng site-specifi; water quality sampl-
ing networks, or evaluating the sensitivity of a particular model to
variations in the source strength or hydrologic parameters.

A natural result of the linear filter-spectral énalysis technique
is that the theoretical output vériance of a pafticular hydfo]ogic
system can be determined as a function of the source: (input) variance
and the transfer function. A basic property,of a stationary time series
is that the variance can be decomposed into contributions from a éoh-

tinuous range of frequencies

o

s - | ¢lw) do. | , | _ (1,18)'

- 00
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We can use this result to determine the output variance of the con-
volution filter (1.13) simply by integrating over frequency

2 = de = H 2dw. ' .
oy [ ¢yy(M) w ] ¢xx| (w)|?duw (1.19)

- 00

After the transfer function is determined the only thing that remains.
is to specify the functional form of the input épectrum. A convenient
form for ¢Xx(m) which will be used extensively (but not exclusively) in

this research is
A o2

¢Xx(w) =mﬁ%)'z)— e | | - (1.20)

This input spectrum assumes that the autocovariance for the input process
is given by

Ryle) =2 (1.21)

which supposes an exponential reduction in correlation as the interval
between samples is increased. A limiting case is the continuous time
white noise process for the input series.X(t). The autocovariance is
given by

0)2( § (tr) >0, =0

R - | ) | (1.2
SO N o

and the spectrum is

2 ; | _
byglw) = 55— - - (L2

Substitution of (1.20) or (1.23) into (1.19) and performing the inte-
gration will provide the theoretical output variance for the frequency

response functions to be developed next.
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The Linear Reservoir

A functional approach to distributed sources of groundwater con-
tamination makes use of the completely mixed assumption of the 1inear
reservoir model. Applications of the linear reservoir to groundwater
pollution problems has receiQed some attention in fecent years (Orlob.
et al., 1967; Gelhar and Wilson, 1974; McLin, 1981) and would seem to be
especiélTy useful in cases where only limited data and/or economic
resources are available. Because of the limited requirements of the
"Jumped parameter' technique, its use is also suitable for brder of

magnitude surveys, preliminary to detailed investigations. Whatever the

" situation, the model requires that the input and output characteristics

of the groundwater reservoir be known, and that’the outflow be linearly

related to the average 6r well mixed behavior of the groundwater éystem.'
When we view the hydrologic setting as a system which does not have

a complete spatial descriptfon, but has a wél] defined input and output,

we can propose a simple water balance of the form

dh _

SqE=--ata;t other squrces : o (1.24)
where B(t) = the average saturated thickness
S = specific yield

q = natural discharge/unit area
q; = recharge rate/unit area
The field setting is illustrated in Figure 1.1. Outflow from a linear

reservoir is approximated by (Gelhar, 1974)

q = a(h-h) o | (1.25)
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Figure 1.1. The iinear reservoir: h is the average water level, ¢ is
the 'well-mixed' concentration of solute in the aquifer and the outflow.

q; and c; are the recharge rate and its concentration respectively.
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where a is the outflow constant and h0 is the elevation at the stream or
drain.
The mass balance for a conservative contaminant of solute concen-

tration c(t) is
dM/dt = m - m0 + other sources . | (1.26)

where

M = nhc = average mass of solute c¢ per unit aquifer area

m, qic1'= input mass flux per unit area

gc = outflow mass flux per unit area

m
0
n = effective porosity

For the case of steady-state groundwater flow g =q; and (1.26) is

written | '

de/dt + ¢/Te = /T, | I T WY )

where T, = nﬂ/q is the average residence time or solute respohse time of
the system. Since the coefficients of (1.27) are constant a solution

for an arbitrary input is given by the convolution integral

c(t) = J h{t-t) Ci(T) dr. ' ‘ - (1.28)
" It was shown earlier that a unit impulse input C; ='6(t) produces the

following impulse response function
h(t) = (1/Tc) exp (-t/Tc) | | (1.29) -
which provides a basic solution or kernel to any particular input

concentration Cyie
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We would now like to construct a frequency domain solution to (1.27)
when ci(t) and c(t) are stationary stochastic processes. A decomposition
of the vafiables in time, separates each into a mean and a fluctuation
about the mean given by _

c(t) = E(c) + c'(t) . o (1.30)
ci(t) = E(ci) + c%(t) : -~ (1.31)

Substitution of (1.30) and (1.31) dinto equation (1.27) and subtracting

the mean part gives the zero mean equation
. A .
- dc'/dt + ¢'/Tc = ci/Tc . - (1.32)

which has the frequency domain solution

ch(w) : . i : ,

a—z—;'—('(;) = 1/(1+1wtc) = H(w) _ (,1.33)
. 1 .

where H(w) is the frequency response function. As pointed out earlier

H(w) can also be found by taking the Fourier transform of h(t)

H(w) = 't n(t)dt = elot o~ tTe 4t - 1/(1+imtc). (1.34)

- - ca

The spectral form of (1.33) is found by applying the properties‘of the
dZ process given in (1.9), which yields the amplitude characteristic of

the model, the transfer function

¢Cc(w)

QSC-__C-GT = 1/(1"‘sz%). . ) (1.35)
11 . :

The next step is to determine the phase behavior of the linear reservoir,

which is a property of the'cross—spectrum of input to output given by
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Figure 1.2. The theoretical transfer function and phase (radians)
for the Tinear reservoir model, plotted versus dimensionless

frequency ch = Q.
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%e.c, (@) 1 o (w)
¢ 1 _ . a~10 w
cc;lu) = (THiaT ) - (T?TZ) ¢ G

(1.36)

where ¢¢c (0) is the cross-spectrum for c(t) and ci(t), and the argumentv
of the complex exponential is the phase spectrum, or simply the phase

o(w) = - Tan—l(mTc). ' | - (1.37):

Equations (1.35) and (1.37) describe the amplitude and phase propertiég
of a simple linear reservior subject to a stoéhastic, distributed source
of contaminant or tracer. The transfer function and phase are plotted
against dimensionless frequency @ = wTC in Figure 1.2. The linear:
reservoir transfer function is typical of a '1ow pass' filter, whére
high frequencies in the input time series:are attenuated and low fre-
quencies pass through the filter una]tered,. The negativé phase spectrum
increases with freguency up to a maximum of n/2 radians.

| Using (1.20) along with the transfer function given by (1.35) we can

write down an expression for the output variance

[e2]

: Ao _ :

e _

Ué\ = {_ e - — duw O {1.38)
o ﬁ(1+kzw2)(1+w21é) ' . .

where A ié the correlation scale of the input process ci(t). Performing
the integration yields A’ |

i fez = U | | . (1.39)
THe variance ratio}shown in (1.39) and illustrated in Figufe 1.3 indicates
how input variations in water quality are attenuéted by the natural
filtering properties of the groundwater system. It is perhaps useful to

comment on the significance of the input-output variance ratio with



26

Figure 1,3. The variance ratio of output to input concentration.
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respect to ana1y5js of field data, It is readi]y'apparent in Figure 1.3
that, for systems with 1arge residence times T, and/or small input
correlation scales A, continuous solute inputs will produce little
variance in the outhoquQality. -This fact might have a considerable

impact on how one would sample this system under field conditions.

Transport by Convection

The contamination of groundwater from point and distributed sources
has recently been examined by the use of travel-time calculations based
on the velocity field (eg. Jury, 1975; Nelson, 1978). The approach
considers the effect of dispersion and.diffusion to be second order and
can thus be’neg1ected, while the solute is assumed to move along the

-streamline in a piston flow. If the contaminant is examined at a point
of discharge, say a pumping well or river, the concentration at the
discharge point would éxhibit a mixing of the individual stream tubes
disp]aying an 'apparent' dispersion of the solute which is actually due

- to the arrival of different travel paths. In the fol]owing analysis a
genera1»§olution for conVective transport in a curvilinear flow will be
developed. = The approach will transform fhe continuous time process

effecting water‘quality into the frequency domain making use of the
spectral representation theorem given earlier.

If we consider an arbitrary streamline in a steady, nonuniform flow

field with.velocity G(S);‘the equation for cbnvection only can be written

(Hoopes and Harleman, 1967)

ac/at + u(s) ac/es = - Ke ' ' (1.40)
where Sis distance along the streamline and dispersive transport has

been neglected. The coefficient K is a rate constant describing simple
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first order decay (i.e. radiocactive decay). The aquifer is assumed to
be homogeneous and isotropic with regard to all material properties.
Thus variations in the solute are entirely due to variations in the
source strength. Equation (1.40) can be expressed in another form,

where we make use of a travel-time coordinate

ac/at + ac/t = - K¢ - | (1.41)

with the new coordinate system defined as
S _

ds '
u(s)"

So

(1.42)

The continuous time input enters the grouhdwater system as a point source
boundary condition |
s = 0 ('\::O) . C(O,’t) = C'i(t) C ' ‘ (1.43)
prov1d1ng a complete descr1pt1on of the problem The impulse response
- function for (1.41) is given by (Thomann, 1972) |
h(e,t) = e " o(tc) o (1.48)

where the Dirac delta function §(t-t) implies a unit source strength at
s=0 (T40) To construct the frequency domain solution we again write
the water qua11ty variables in terms of a mean and perturbation

cs,t) = c(s) +c '(s,t) , ' ' (1.45)
- ' 7
ci(t) = ¢ ¥ ci(t)» | (1.46);
Substituting the perturbations into the convection equation we get

g%(5+c') + crc') = ~K(ctc') : o (1.47)
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with the boundary condition
=0 (s=0) , ctc' = c.+c) | (1.48)

Subtracting the mean equation from (1.47) and (1.48) we arrive at the

equation for the f]uctuations
ac'/at + ac'/t = -Ke' , c'(t) = ci(t),‘r=0 (1.49)

The spectral representation theorem allows us to write the input and

output perturbations in the following way

¢ (r,t) = J eglut dz _(7,u) . S (1.50)

c%(t) = J dZ (w) | : ‘ (1f51)

Substituting (1.50) and (1.51) into the convection equation yields

d . n '
i (dZC) + (iat+K) dZC =0 | - | - (1.52)
with the boundary condition
- dZ (0,m) dZ (w)s =0 _ ' (1.53)
¢ ' .

The solution to (1.52) is

dzc(T’w) —(1w+K)T

dZ (w
¢y

H( o) o " | (1.54) -

where H{t,w) is the frequency response“functidn for the convection
equation. An alternative way to arrive at H(T,m) is simpTy to take the
Fourier transform of h(t) in (1.44)

M) = | e 10t e KTs(tor) dt = o (HotKIT

- 00
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which provides a check on (1.54). Having determined the frequency
responsé of the system we can now apply the properties of the dZ's (1.9)

to arrive at the spectral form of the solution

beclTsw) = ¢cic%(w)lH(T’w)[2 o | (1.55)

‘where t is given by (1.42) and

H(rw)|2 = 72K - (1.56)

'_ It is immediately apparent that the transfer function does not depend

on frequency w. This is due to the fact that inputfvariations are
simbly displaced along a streamline unaltered, except for the factor
e_ZKT, which is characteristic of piston flow. In communications theory,
(1.55) is known as an 'ideal' filter, where the signal is either
amplified or attenuated by a constant factor. The phase for (1.54) is

given by
o{w)=-wt = - J %%E) g ' (1.57)

The negaﬁive phase spectrum, which does not depend on the rate constant
K, increases Tinearly with frequency and distance a]ong-the streamline.

Another aspect of interest is the output variance oé . Using

(1.19) and (1.20) the output variance is determined to be

0% = cr(zz._1 IH(T?w)lz

i (1.58)

| If we assume for the moment that the tracer is conservative then there

is no variance reduction as the solute moves through the aquifer and

cé /aé. =1, which is the expected result for piston displacement.
i _ _
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Because (1.55) lacks the filtering characteristics normally observed
in solute experiments in porous materials we might draw the conclusion
that the convection only approach is of limited interest. However in
many field situations it has been shown that the convective mode of
transport overwhelms the influence of dispersion. For example Hoopes
and Harleman (1967) show that the effect of dispersion and diffusion
play a relatively minor role in the case of artificial waste disposal
using recharge-discharge welis. Eldor and Dagan (1972) have shown fhat,
for a two-dimensional steady flow to a drain or ditch with uniform
recharge, dispersion has 1ittle effect at the point of discharge. They
conclude that since the f]éw is two-dimensional, as much.501ute is dis-
placed ahead of the»front as behind it, and thus at the_dfscharge point,.[
where contributions from all stream tubes are mixed, the dispersion
effect is canceled.

A specific example of convective tranéport in a curvilinear flow
field was examined by Kirkham and Affleck (1977). The flow system they
considered, which is shown in Figure 1.4 assumes a homogenebus, isotopic
aquifer iﬁ hydraulic connection with an adjacent river. The steady plane

flow is developed between the constant head boundary at the river and the

‘constant discharge well located a distance L from the river. The

hydraulic situation is identical to the pumping well fed by a Tine drive
shown by Muskat (1937). The velocity and potential field are determined
by superimposing the effect of an imaginary injection well Tocated a
distance -L from the axié of the constant head bouhdary. The Kirkham

and Affleck paper goes on to develop an analytical expression for the

travel time of a conservative solute entering the aquifer at the river
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Figure 1.4. A. Aquifer—river cross-section. B. A pumping well

adjacent to a river. C. Streamlines and equipotential lines for B.
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o= (X-L)2+Y2 | |
h-h, y Ln -(_XW ‘ (1.61)
The travel time in a curvilinear flow field is '
' s2
_ | _ds .
s1

Since on a particular streamline it takes a particle the same time to

move the distance dx as it takes to move the distance dy (1.42) can also

be written
: X2 yva _
dx d
r o= = VAN _ (1.62)
[ G/ J ay/n '
X1 - yi

The x component of the seepage velocity is determined from Darcy's law

3h o :
= e ) (1.63)

]
Slx

G, = -

or

qX = 2'rrnh<-, B

0 Y Y 1 | O (1.64)
| y2H{(x-L)2  y2H(x+L)? | - |

The travel time to the well is determined by integration of (1.62) and

evaluation of t at the well (x=L, y=0)

To B : ' :
Tm = -S—I'N-z—g lvl - T CoT C] (1.65)
where , _
L2 g
7, =0k ‘ _ _ . (1.66)

= Q/2nh,
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As shown by Kirkham and Affleck, and in a slightly different form by
Hoopes and Harleman, (1.65) describes the time for the solute to tfave]
from a point on the river (X=0, Y) to the well. ‘The shortest time for
the solute to reach the well is along the Stream]ine which passes through
Y=0. The minimum time can be expressed as Tw.= T./3.

To obtain the frequency response function at the well (r=rw(c)) it
is necessary to integrate the result in (1.54) around the point of dis-
charge (-m<g<m) | |

1 [ qzci(m} f “et (g)y
dZCw(w)=§;- dZCw(m,fm(C))dc = E e YT\ ldr | (1.66)
- °
where the first order rate constant K is taken.to be zero, dZC (m)‘is the
Fourier amp1itude for concentration <, at the we]]‘and dZC(m,Hig)) is the

Fourier amplitude for concentration along any streamline near the well.

The transfer function is then found to be

b . (w) _ w i 2 - i
e o1 xp(-i ) d o (1.67)
m = ;;2" exp(—mrw(c) g . | ‘. |
i o
where ¢c.c (0) is the spectrum for the solute. time series at the well,
W w : '
and be.c () is the spectrum for the river concentration (x=0). Likewise
i '

the phase function is found to be

™

7 smur ()
[ cosur,(e))ds

1

o(w) = - Tan . - (1.68)

The integral expressiqns in (1.67) and (1.68) were evaluated numerically
and the results are shown in Figure (1.5) plotted against dimensionless

frequency 9 = wl,. The frequency characteristics of this model behave
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Figure 1.5. Theoretical transfer function ¢ c~(w)[¢c c (w) and
if
phase 6(w) {radians) for the convective transport model of a pumping

well adjacent to a river.
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much differently than the linear reservoir case. The transfer function

- indicates significant amplitude filtering in the low frequency range

(2<1.0) while over the rest of the range (9>1.0) there is proportionally

less amplitude filtering. The phase for this model increases linearly
beyond @=1, while demonstrating some curuatufe near the origin. WUe can
say then that water quality variations in a curvi]inear’groundwatEr flow

display distintive behavior when compared to either the linear reservoir,

or for convection in the uniform flow case given earlier. An application

of. this method wi11_be examined in a later section.

Convective-Dispersive Transport

Recalling that the primary objective of the models in this section

is to characterize time variability in groundwater quality observations

which are affected by a continuous and stochastic source of solute, the

analysis now turns to the case of solute transport in a dispersive flow

field. The linear filter theory and spectral representation theorem are

again used to evaluate the frequency response characteristics of the

dispersive system. Dimensionless plots are constructed for the transfer

function, phase and variance ratio, each versus dimensionless frequency.

| The 1iMiting case of pure convection (a=0) is compared with the dispersion

‘vresult for a wide range of parameters. The influence of radioactive

decay is also examined.

The basic equation describing one-dimensional convective-dispersive

transport in a curvilinear steady flow is given by Gelhar and Collins

(1971) |
ac 3C . N 92cC _ i '
—B"E + U(S)3$ o U(s) —3~S—Z— Ke . ) (1.69)
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where K is a first order rate constant which could include the effect of
radioactive decay.or other first order reactions. The longitudinal
dispersion coefficient is assumed to vary linearly with the seepage

velocity u along the coordinate s and is expressed as

D= a-u _ (170)

where a is the dispersivity length. A complete description of the dis-
persion process would include the'éffects of molecular diffusion and
transverse disbersidn. However baséd on both theoretica] (de Josselin
de Jong, 1958) andkexperimenta1 evidence (Harleman and Rumer, 1963) the
magnitude of diffusive transport is small reTative to'longitudinal dis-
persion, and all transverse components are assumed to be lost in the
vertical averaging process imp]ied by (1;69)._ Another useful form of
(1.69) can‘be obtained by sUbstitutﬁdn of the travel time cbordinate

(Gelhar and Collins 1971)

S
«s) = | 55 @)

So

which transforms (1.69) ﬁnto the fol]owing form

5c . 8¢ _ & (d2C 38U 3C y_ B
_8_‘—+ 3t U (3'1'2 9S o1 ) Ke . _ (1'72)

where t is a moving coordinate repfesenting the time Qf travel for a
part§c1e to move from s, to s at a velocity u(s)fr

The most elementary application of (1.72) assumes 2 uniform flow
field or s=x and u=constant. It is assumed that the inf]uenhe of ﬁon-

parallel boundaries on dispersive mixing can be neglected, and that
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local perturbations in the velocity derived from medium variability are
represented by a statistical average u, and thué D=a.u=constant. The
case of uniform flow wf11 be developed in this section, however, the
result could be extended to particular situations of nonuniform flow as
well. Figure.1.6 illustrates a field setting where enviromnmental tracers
might be used in conjuhction with a regioha1 groundwater flow field.

The source of solute enters the groundwater system at the boundary

x=0, by the application of a concentration type boundary condition
clo,t) = ci(t) ‘ (1.73)

or a flux type condition

(-D%§-+ uc) | = uci(t). | | (1.74)
x=0+

A second necessary condition is ¢=0, x>~ . The impulse response function

for (1.69) is given by

hxt) = — [exp(— ot - K.t)] o (1.75)

with the condition ci(t) = cljadt = ¢y. Other time domain solutions can
be constructed from (1.75). To determine the frequency domain solution
we write c(x,t) and Ci(t) as a mean and pertufbation.as before-
ct) = elx) + et (x,t) | (1.76)
i

c.(t) = c; + ci(t) (1;77)

Substitution of (1.76) and {1.77) into (1.72) and then subtracting'the

steady~staté result produces the zero-mean equation
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Figure 1.6. 1Il1lustration of regional transport of environmental

tracers in a uniform flow.
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ac', ac' a2¢!
3t or - ez " KO 7).

Making use of the spectral representation theorem results in the ordinary

differential equation

o _d? d . - |
& 57 (A7) - 4= (dZ)) - (iwk) dZ_ =0 (1.79)

Solving for dZC(T,m) results in the frequency response function for (1.72)

dZC(T ,LO)

dZC.(w) _
S Y

Ht.w) ' | | (1.80)

S
T+4in]€%

le

where c,is evaluated using boundary condition (1.73) or (1.74)

1 ; B.C. (1.73)

N -1

Cyr = _ ‘. L
(é&? ! §'+ Vg?(§'+4KT+41wT)2 : B.C.(1.74)

and T = X/u 1s'the travel time from x = 0 to some point in the aquifer.

The spectral equation or transfer function is determined using (1.9)

o (t20) . s o |
¢cc ecp [H(s0) |2 ; (1.82)
COCE ; s ,
=lgﬁhbm[%—%;ﬂmm&ﬁm%]P
and ‘ 7 |
1, B.C.(1.73) o - (1.83)
lcy]? = -1 12

{%%— [;.+ C( c4detdin) 2 ] ] , B.C.(1.74)
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where z=x/a, =Kt and @=wt are the dimensionless dispersivity 1ength;
dimensionless rate constant and frequency, respectively. Recalling that

the spectrum for a given solute describes the distribution of variance

over frequency and that the transfer function is a ratio of the spéctrum
at an observation point X, to the input spectrum, then it is pdssib]e to
examine the amplitude fi1téring characteristics of the system as a
function.of the dimensionless dispersion parameter z=xf/o.. Figure 1.7
illustrates the transfer function for a wide range of ¢. Both boundary
conditions are showh; however there is essentially no difference when
t=xfo>10. It is 1mmédiate1y apparent that as the disperéivity length
increases (x/a-->0), increasingly more high frequency input variations
are filtered out. The corollary to this interpretation is that as the
effect of dispersion diminishes (x/a——>w) the transfer function approaches
| the situation of pure convection or a=0. |

The phase behavior for c(x,t) and ci(t) can be used to evaluate the

time lag for different frequencies in the input. The general form for

the phase spectrum (as shown previously) is given by

_QCC;(M) : ,
6 (w) = - Tan™? IT*;LCKT A S (1.84)

C.
4

where QCC , the quadrature spectrum,and LCc the'cd—spéctrum, are the
i ' i ' '
complex and real parts of the cross-spectrum which is given by

¢Cci(r,w) = ¢C1Ci(w) H{t,0) = Lcci(T’w)-chci(T’@). (1.85)

Both LCC and QCC were determined by using a complex algebra package on
i i '
a Dec-20 computer, and the phase was calculated from (1.84). A plot of
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Figure 1.7, Theorertical transfer function for convective-dispersive
transport versus Q. The dashed lines indicate a flux type boundary
condition (1.74) and the solid lines are the concentration type

boundary condition (1.73).
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Figure 1.8. Theovetical phase (radians) for convective-dispersive
‘transport versus Q. The dashed Tines indicate a fluxtype boundary
condition (1.74), and the solid lines indicate concentration type

boundary condition (1.73).
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the phase spectra versus dimensionless frequency fs shown in Figure 1.8.
Dispersion has the effect of decreasing the negative phase lag for high
frequency components of the input. _Thevlimiting case of pure convection
(0=0) is indicated as a straight line.’ |

For this simple case of convective—dispersive.transport_thé phéSe
and transfer function will describe the-dynamic relation between input
and output water quality variations.

The decay of a radioactive salute can have a significant impact on
the transfer function. -Figure 1.9 illustrates how}increasing the
dimensionless rate constanf k=Kt reduces the transfer function over the
entire range of>frequency. The effect of k can be>approximated simply
by multiplying (1.82) by~ekp(—2Kr). This simplification allows us to -

use the result in Figure (1.9) if the abscissa is replaced by

¢ (Tsw)
EXP( ZKT) —————(—7‘

It was found that this approximation was satisféctory for any value of :
: Kt when x/a > 50, and for Kr >'1 if,ZS < xfa ¥ 50;, \In the case of
}'the phase spectrum it was found‘that the parameter Kt had no effect at
all. Thus the phase ang]e-is.unaltered by rédioactive decay. |
The inflﬁence of"dispersion on thé concentration'variance can be-

‘evaluated with the general result demonstrated in Chapter 1 (1.19)

oé =J ¢CC(T,w)dw = [

H(T;m)‘z ¢Cici(w)§w_ L (1.19)

where H(w,t) is given by (1.80). To integrate (1.19) it is necessary to
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Figure 1.9. Transfer function versus dimensionless frequency for exact
and approximate form of convective-dispersive transport with chemical

interaction and/or radiocactive decay.
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know the form of the input spectrum c.c (w). A convenient form is given
i1 K

by

= i -
be.c. () = TmEy - (1.20)

The parameter X is the correlation stale of the input process ci(t).
Substituting (1.20) into (1.19) and rewriting the variance equation in

a dimensionless form we get

8

2
27 H(e)!? :
=55 | e @ (1.87)
2" |
1 °

where TT=T/A is a dimensionless travel time, 9=wt is dimensionless
frequency with K taken to be zero in this case. Evaluation of (1.87) was
accdmplished by numerical integration and is shown in Figure 1.10. The
figure points out that input variability iS'attenuated as the influence
of dispersion increases (x/a decreases), and that decreasing the input
correlation scale x will prbduce a reduction in the output variance for

a given x/a.
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‘Figure 1.10. Output/input variance ratio for convective-dispersivé

transport problem.
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Discussion of Results

The principal design of thié chapter 1is to demonstfate the applica-
tion Qf the spectral analysis procedure for analyzing continuous and
time variable water quality series, via frequency domain solutions to
equations of solute transport. In the case of time domain so]utions we
are generally restricted to simple forms of input events, such as a pulse
or step. These may be readily applied to contro]Ted»field experiments or
tracer tests, but they may not be easily applied to time variable situa-
tions of pollution or natural tracers already in the envifonment. By
going to the frequency domain and spectra]vmethods we can examine the
behavior of a continuous sequence of events over a widé rénge of frequen-
cies, to arrive at an 'average' estimate of the system pérameters. In
addition, the'hethod will provide a theoretical estimate of the input-
output variance ratio if the system parameters are known.

The second aspect of this discussion relates to the diagnostic
capabi]itieé of the frequency response function for éppraising the nature
of the groundwater flow system itself. That is, the shape of the fie]a
estimated transfer function and phase can be compared to the theoretical
curves for solute transport in several groundwater flow systems. If
the filtering characteristics of the different transpokt models are
unfque, fhen this wou1dvpresent a method for matching the most appro-
priate model to the fie]d‘situation.

Figure 1.11 illustrates the theoretical transfer function and
| phase for each system previously developed. The linear reservoir model
(Fig. 1.11a), which represents a distributed source of solute, has the
properties of a typical 'low pass' filter (Jenkins and Watts, 1968, p.42}).

That is, high frequency amplitudes in the transfer function are
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Figure 1.11. Frequency response characteristics for: (a) 1linear
reservoir, (b) convection in a curvilinear flow (pumping well adjacent
to a river), (c) convection in a uniform flow, and (d) convective-

dispersive transport.
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attenuated, and thé phase approaches a constant of -w/2 radians. The
case of pure convection in a uniform flow (Figure 1.ilc) demonstrates the
situation of an 'all pass' filter, where the amplitude of the signal
passes through the system unaltered, and the negative phase spectrum
increases linearly with frequency. For convection in a curvilinear flow
(Figure 1.11b), we observe an intermediate result. The filter would
still be termed 'low pass' but with significantly more amplitude filter-
ing in the Tow frequency range (w To,% 1),band slightly less attenuation
in the higher range (o T0 > 1). The hegative phase spectrum increaées
linearly for w T0>J; similar to Figure 1,11b, but the slope is much less.

To examine convective-dispersive transport (Figure 1.11d) under
uniform flow conditions it is necessary to include the dimensionless
parametér a/x. We see that increasing the dispersion parameter also
increases the amplitude filtering in the high frequency range; and the
negative phase spectrum is reduced as a/x increases. When d/x becomes
small, or dispersion becomes insignificant, the situation of convection
dominates. Overall Qe can say that convective-dispersive transport with
a plane source input does notvdfsp1ay the broad band filtering evident
in cases a and b. - |

Based on this éomparison it is reasonable to expect that individual
groﬂhdwater flow systems will havé distinctive frequency responsé
characteristics, and that spectral analysis and linear filters may pro-
vide an additional tooi for understanding the mechanisms of solute trans-

port in groundwater.
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2. " SPATIAL VARIATIONS OF WATER QUALITY

Introduction

In the last section a situation of convective-dispersive trénsport
subject to transfent changes in the source strength was examined. It was
assumed that the variables were depth-averaged quantities and tﬁe coeffi-
cients of the equation (u,D) were considered constants for a uniform flow
situation (ie. parallel flow boundaries, homogeneous and isotropic K and
constant hydraulic gradient (J) and porosity (n)). The purpose of this
chapter is to examiné the -effects of a nonuniform, vertically bounded
flow field on the transport process; where the vélocity u(x) is taken to
be a spatial stochastic process in x. The nonuniform velocity field is
assumed to be composed of a mean value and a perturbation.caused by local
changes in the longitudinal aquifer characteristics (ie. transmissivity,
thickness, hydraulic gradient and effective porosity) in the mean flow
direction. The analysis is fhought to apply to field situations subject
t§ natural groundwater flow variations on a regional scale, pernaps using
environmental isotopes as tracers. The approach is not felt to be suit-
able for local mass transport situations where the solute is measured
near the source. A derivétion of the depth-averaged mass tfansport equa-
tion is shown to produce terms which correspond to the asymptotic macro-
dispersion coefficient recently suggested by Gelhar et al. (1979) and
Matheron and DeMarsily (1980). From the stochastic theory, the effect of
a variable velocity on the meén transport equation produces an overall
reduction in the convective velocity, and a corresponding increase in the
dispersion coefficient. The stochastic theory also provides a means of

estimating the concentration variance for the mean transport equation.
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A brief review of research pertaining to tﬁe analytical description
of macrodispersion in ground water would include the recent work of Gel-
har et al. (1979), and Matheron and DeMarsily (1980) who have demonstrat-
ed by means of somewhat different techniques that the coefficient of dis-
persion can theoretically be related to the heterogeneities of the porous
media. Both authors consider a two-dimensional flow field ih a strati-
fied aquifer of infinite extent (x and z), with the mean flow parallel to
bedding. The stratification is assumed to produce a statistically homo-
geneous velocity field which varies in the vertica]ldirection, while re-
maining constant witﬁin a particular layer (u(z)=ﬁ+u'(z)). The stochas-
.tic velocity field is itself génerated by a likewise stochastic permea-
bility field K(z)=K+K'(z), from the Darcy equation and steady flow as-
sumption. Variations in the effective porosity aré taken to be small,
and thus n=¢onstant. In the paper by Gelhar et al. the transport equa-
tion is séparated into two parts by_meéns of a firstAorder perturbétion:
(1) the partial differential equation describing the global or mean dis-
persion process, and (2) the zero-mean stochastit differential equation
describing the locally fluctuating transport process. The Tattér_was
solved using a spectral analysis teéhnique for spatial variables (Lum]ey
and Panofsky, 1967). The results of the stoéhaétic analysis Were'used
to demonstrate the following effects of a stratified aquifer on the mean
or global dispersion process: |

(1). The mean transport proceés doés become Fickian (i.é.-the usual
| convection-dispersion equation would app]y), but only for
large displacement or time.
(2). Significant departure from Fickian behavior is expected in the
early and intermediate stages of mass transport as a résult of

the time dependence of the dispersivity during this period.
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(3). The asymptotic or large time value of the dispeksivity is
given by

where d is the effécfive or depth averaged dispersivity, a is the local
Tongitudinal dispersivity, a_ is the asymptotic (X or t-->large) disper-
sivity which depends on the statistical properties of the medium. The
asymptotic dispersivity a_ will always be much larger than a under field
- conditions, with the latter taken to be similar to.laboratory scale
meésurements. The dependence of a_ on the statistical properties is ex-
pressed by Gelhar et al. (1979) as

2 42
- Ck‘.p“z

a (2.2)

3K? a;
where (cﬁ_/kz) is the square of the coefficient of variation for K, %, s
the vertical length scale of the stratified medium, and ar is the local
~ transverse dispersion coefficient.
| The paper of Matheron.and DeMarsily (1980) constructs a problem sim-
ilar to the stratified aquifer of Gelhar et al. “However their analysis
uses an equiva]ent representation of the two—dimensibnal transport equa-
tion, which they call a random motion model (Kolmogorov, 1931). The con-
‘c1usions of this‘research relevant to the present work are:
(1). For flow parallel to stratification Fickian transport is not
possible unless Tocal transverse dispersion is significant.
.Under this condition the usual dispersion equatioh will apply
but only after 1arge displacement or time.
(2). For flow not strictly parallel to stratification fickian

transport will occur and the asymptotic dispersivity is great-

1y reduced.
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(3). The influence of vertical aquifer boundaries may reduce the
large time or displacement requirement for the Fickian trans-
port equation to apply.

It is evident from these results that the use of a Fickian form of
the dispersion equation (fe. a constant dispersivity) may not be suitable
for early time applications of the eqdation. The developing dispersion
process requires 'sufffcient‘ time for the asymptotic behavior to be
reached. In addition, according to these authors, even at large time
Fickian behavior may not be achieved unless a special form of the covari-
ance of Hydrau]ic conductivity is uééd (see Equation (27), Gelhar et al.,
1979). However, the theory'&escribing an early time dependence of the
dispersivity does provide a satisfying exh1anation of the 'scale' effect
observed in tracer éxpefiments, where the dispersivity apparently in-
creases with distance away from the source (Molinari et al., 1977).

In the present research we will restrict the analysis to a verticai;
Ty bounded, nonuniform flow where it is assumed that the transverse and
tongitudinal components of.ve1ocity and concentration will mix the solute
in a plane normal to the flow. Nir (1964) calls this a condition of com-
plete transverse mixing.. The following assumptions will also apply:

' (]). The usual convection-dispersion equation is applicable under
| the restriction that only 'large time' behavior is observed.-

(2). It is expected that boundary effects and local vertical veloc-
ity variations will tend to acce]éfate transyerse mixing and
thus somewhat reducé the 1arge time requirement in (1).

(3). That the statistical properties of the medium control the

magnitude of the effective dispersivity.
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Derivation of the-Depth—Ayéraged Transport Model

It is generally recognized that the concentration c of é dilute
solute (tracer or contaminant) in a steady, saturated flow can be de-

scribed by (Bachmat and Bear, 1964)

% = 3K (D1kan u;c) (2.3)

where X; (i=1,2,3) are cartesian coordinates, Uy ére the three componenis
or seepage velocity (L/T) and Dik is the dispersidn tensor of secbnd
order. We expect (2.3) to apply to any conservative solute (no reaction
or decay) which is neutrally buoyant in the fluid medium. For this study
molecular diffusion is taken to be a small part of the dispersion procéss
and will be neglected. | ‘

In the particular case of a two dfmensional flow in the vertical
plane, the eqﬁation of mass transport can be written

Bedeo g 30 eabd) o

where the 1ongitudina1 and . transverse components of the dispersion_tensor
are assumed to coincide with the principal axes x and z respectively,

with

Dsg =Dp LD =0 if]j
ADZZ =0 v
u and v are horizontal and vertical velocities respectively.
In the case of natural aquifers which are relatively thin in the
vertfca] dimension but extensive in axial extent, it is convenient to
consider a depth averaged version of (2.4). The-integration over the

aquifer thickness (a<z<b) is given by (Holley, 1975)
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b b b

ac ) 3
dz + J “(uc)dz + J =(vc)dz =
[aat 20X 202 ,
(2.5)

b b
| 3, ac 3 iy ac
| e + | Aoris)e

Applying Leibnitz's rule for differentiation under the integral sign we

get
b b
3c 3 ab 3a
JagE-dz+~§i Ja(uc)dz - uc| et u;!a5§»+ vely - vel,
b (2.6)
-3 [p8cy, _pac b, ac da, pac o |
T faDL§§dz Diaxibax * Duaxlasx * PrazlbPrszla

which is simplified by recognizing that each integral over z can be
written as

b
he = j adz
a

The overbar denotes depth average, and h is the aquifer thickness.

Rewriting (2.6) produces

3c 3 p——y 9 3C _
hig + gxlhuc) - 53hD 5 =

ab ) [, ka
cy [éb?i - VQJ t oy [Uaay t vq] : (2.7) r

3b ) ’a
¥ [Jxlb"a—i B ‘_]z‘b_l ¥ _'Jxla_a7+ lea_l

with
_ ' dcC - .n o€
Jx = "DLSQ' ; JZ DLSE' - (2.8)

The terms in brackets on the right hand side of (2.7) are the vector

components of dispersivebflux 5 and velocity u which are parallel to the
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boundarijes at a and b. These terms must vanish since
u-n = Jden =0 o (2.9)
where n is the normal vector at the upper and lower limits of the aquifer

given by

_ 3by =z
i z= b > 3x¢ 7 I
fi = (2.10)
' - oay S
| z=a, 54+

In order to express uc and DLSC in terms of individual depth averages

rather than depth averaged products, requires that we write each variable

in terms of a depth average and a local vertical fluctuation

= (T+u(z)) (C+c(z))=0C +u'c" (2.11)

b, 2€ + py ¢ (2.12)

D, 2€ = (D, + D] (z)) a (C+c'(2) = Lax Lax

Lax

keeping in mind that the averages are taken in the vertical. This allows
us to write (2.7) in the following form |

3C . 3 ypmy o aC o 19C
hﬁ*‘ ’a—i(hUC) {hDLB‘X} [ hu'c' + hDL3 } . (2.]3)

“To cdmblete the derivation, the perturbation products on_fhe right'hand
side of (2.]3)‘must be simplified to a more hsab]e form. For dispersion
in streams Holley (1975) suggests thaf mixing s comp1ete over the depth.
He then goes on to argue that the perturbat1on terms.can be absorbed into
respective gradient and diffusion terms, producing Fickian behavior. In
the case of ground water flow, recent evidence suggests that the pertur-
bation terms are the predominant mechanism determining macro-dispersivity
(Gelhar et al., 1979). For large displacement of time the terms can be

expressed as
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tel = o u ?_E. : ’ )

u'ch = -a U 5 | (2.14)
1 BC‘ — i - 32C

DL-B_; =5 aLuamﬁ—z— (2.}5)

where a_ was given in Equétion (2.2). Both (2.14) and (2.15) were evalu-
ated using the spectral analysis procedure, the details of which are given
in Gelhar et al. (1979).

To conclude the present development, all that remains is to deter-

mine the depth-averaged version of the continuity equation by integration

as before
i o, 8 (po
| sz =& i) = 0 | (2.16)
a °™
i=1,2

Inserting (2.14) through (2.15) into (2.13) and neglecting terms of order
three or higher, produces the classical form of the dispersion equétion
(with overbars deleted), which includes a physical interpretation of the

dispersion coefficient

d 3 32 '
STrus = DI . | | (2.17)

D is the depth averaged dispersion coefficient which can also be written
as (Gelhar et al., 1979)

D = a-u(x) = u(x)(aL+aw)

Thus o assumes the role of effective dispersivity, in the one dimensional,
depth-averaged mass transport equation, which is the subject of the

present research.

Formulation gf;the Problem

Having derived the equation of mass transport in such a way as to
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include the influence of vertical heterogeneities of the medium, we can
now consider how 16ngitudina1 changes in the depth-averaged ve]bcity may
influence the dispersion process. An appropriate geologic setting for
this analysis would be a gently dipping sandstone aquifer with outcfop
Tocated along the mountain front as shown in Figure 2.1 . For this sit;
uation the solute would encounter its verticé] boundaries in a short time
relative to the overall travel time of the tracer, making the vertica}]y
mixed condition a reasonable assumption. _

To conceptualize how variations in the velocity field are produced it
is only necessary to examine the Darcy equation for one-dimensional f]ow‘

T(x) J(x)

u(x) = n{x) b{x

(2.18)

where T is the depth averéged transmissivity, J‘is the hydraulic gradient
and nb is the cross-sectional area to flow, composed of the effective por-
osity and the saturated thickness. In natural aquifers it is conceivable
that nb, the transmissivity, and the hydraulic gradient will all combine
in some complex way to alter the velocity u(x) along the direction of flow.
It is also true that these factors will not necessarily compensate to pro-
duce a uniform flow condition as is usually assumed. Ih this manner we
will consider u{x) to be a spatial stochastic process composed of proper-
ties which can be measured in the fieid. | |
In the previous chapter on time series analysis the Fourier repre-
-sentation theorem was developed considering time as the indebendent vari-
“able, while the space dimension was carried along as a parameter. The
interpretation df spatial stochastic processes is idéntica], except that
x becomes the independent variable of ihterest with time held as a param-
eter. In addition, the necessary assumption.df stationarity in time is

now properly referred to as homogeneity in space.
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Figure 2.1. A. Regional solute transport in a nonuniform flow.

B. Conceptual displacement of a tracer in a nonuniform flow.
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In order to represent each depth averaged variable of the transport
equation as homogeneous'processes the solute concentration, velocity and
dispersion coefficient of (2.17) are each éxpressed in terms of a mean
condition (overbars now denote mean in x), and a fluctuation about the
mean

DL'= b + by (x)

u(x) = u + u'(x) | ‘ ’ (2.19)
c{x,t) = c(x,t) + ¢'(x,t)

with E(u')=E(D')=E(c')éO, and the expectatibn is with respect to x. The
mean solute concentration c(x,t) is assumed to be a slowly varying pro-

cess relative to the fluctuation c'({x,t). Substituting these expressions
into {(2.17) and taking the expected value produces the méan equation fo}

one-dimensional mass transport

ac + =0oC

By gk. - 2’ . (2.20)

=32¢ L ac’ L, 92¢!
° s o= Lyt 4
D%z u'sx t D5z

The right-hand side of (2.20) répresents the additional convective and
dispersive f1ux terms resulting from longitudinal heterogeneities in the
porous medium. | | -

The zero-mean equation is a stochastic differential equation with a

random forcing function and it is written

1 _ant n2pt
ac' . 53¢ 3%c

= '. .
55 % OLUW .- u'«g | (2.2.[)

_ f[ac . 3% .
g = [—-—a-)? + OL—BX—Z] o : . ] (2'22)
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The Stochastic Solution:

Solving the stochastic differential equation (2.21) proyides a means

of evaluating the influence of velocity variations on the mean_transport
equation. As will be shown later, the solution will also proyide a theo-
retical expression for the concentration variance.

In order to solve the stochastic differential'equation (2.21) we

first define the spectral representation theorem for any homogeneous sto-

chastic process as

«©

Y(x,t) = f e KX 4z, (k. t) ' (2.23)

-0

where the dZ is the Fourier amp1itude of the process with properties out-
Tined previously (Chapter 1.}, k is wave number, and the time dimension

is carried along as a parameter. This implies that Y is homogeneous in

space while varying in time. Substituting this representation for the

primed quantities in (2.21) yields

I dZC(k,t) + T dZC =g dZu(k) (2.248)
where

T = ulok? + ik) : {2.25)

and g is taken to be approximately constant for a slowly varying mean
concentration.
For a plane source boundary condition c¢'=0, (x=0) with the initial condi-

tion dZC = 0 (t=0), the solution to (2.24) can immediately be written as

az (ko) = 02,00 § [1-e7F). (2.26)

Applying the properties of the dZ's (1.9) and concerning ourselyes only

with the large time result produces the spectral relation between c¢' and u'
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bclk) = oy (K) + @M (42T . (2.27)

In the previous section on time series analysis it was demonstrated
that the spectrum decomposes the variance of the series into contribu-
tions from a continuous range of frequencies or wave number. Integration

of (2.27) produces the overall variance of the f}uctuating process ¢'

= | = g2¢,.,(k)
02 = [ b (K)dk = f o dk . -~ (2.28)
C _o CC _wu2k2(1+a2k2)

In order to remove the singularity at k=0 it is necessary to assume a

particular form for ¢ '(k) (Bakr et al., 1978)

o2 .93 k2
o (k) =2uX (2.29)
uu T (]+Z§k2)2

Using (2.29) implies that the autocovariance for u' is giyen by
ey =z 1o L) el
Ruu(g) o {1 , 2*9 e X _ (2.30)

where £ is the lag distance. Substituting ¢uu(k) into (2;28) and inte-
gratinQ yie]ds '

2 ’ -
o&. +20/2
02 = 4 g22 X
- C -2 X (

u (T+a/2 )2

(2.31)

Notice that g, depends on the coefficient of variation of the velocity, the
length sca]e, and the term g, whlch is a function of the f1rst and second ,
derivatives of the mean concentration. Similarly, the right-hand side of
the mean tranqurt equation can be evaluated by recognizing that thé terms

appear as covariance expressions which can be evaluated as follows:
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') . [T - -
E[uf——~} = f O = _np8C _ mpd?cC :
X o uc(k)dk = uAax - DABEE’ : (2.32)
and
E D'azc' a - ¢ (k)dk = DAl 4 ac (2.33)
x2 | = Lo uc Loy ax _ )
where
0’2 -]
_u ] 2
he ‘[] T (2.34)
%, = the length scale of u(x) and
| ¢uc = E(dZu-dZé) ' e (2.35)

is the cross—spectrum betweeﬁ u' and c¢’; 9 is the crdss-spectfum be- -
tween u' and 3c'/ox and Sy is the cross-spectrum between u' and 32¢'/ox2.
‘Details of the integrations are shown in Appendix 1. The significance of
a heterogeneous medium along the direction of flow is demonstrated by

substitution of (2.32) and 2.33) into the mean transport equation
3C 4 #3C . pad%C  (2.20a)
ot : v ’

~ where the coefficients u* and D* are now given by

2 : ,
u* = G (1 - Ofé]' | - (2.36)
u
Cs2 2 o
= G- u 1) |
D* = Qeq [U - {] o7t ] . (2.37)

Thus u* and D* represent the velocity and dispersion coefficients when
the medium is vertically bounded and longitudinally heterogenecus. In

addition, the effects of vertical stratification can be included when a
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is expressed as a macrodispersivity'By (2.1) and (2.2).

The Effect of u'(x) on Mass Transport

The process of disperéive transport for a longitudinally nonuniform
flow produces some interesting behavior Which deserves further discussion.
First of all, the resulting equation(2.20a) is cast in the usual Fickian
form for dispersive transbort. In addition, fhe coefficients of the equa-
tion (u* , D*) are interpreted in terms of the flow characteristics of
the.medium. The convective velocity term indicates_that a retardation of
the solute will occur as the degree of longitudinal nonuniformity (ou Ju) .
is increased. This reduction in the convective.ve]ocity can be attribu-
ted to the properties of the medium since u'(x) = f(T,Jd,nb). Thé disper-
sjon coefficient is altered by longitudinal heterogeneity as Well, with
D* increasing as ou/ﬁ increases. |

The above effects can be illustrated by solving (2.20a) for a pulse

input of solute (T(x,0) = Ms(x))

M ) -t ._.t 02 2 | T ) . )
c = —0 exp -1 X-ut Ut ~.—.l2-1— ‘ (2.38)
V21 o 9% g u
where o, = (2D”;’c)1/2 is the standard deviation of the normal probability

curve, and M is the mass per net area. MWriting (2:38) in terms of a

normalized concentration and the spatial coordinate x/x gives

- (]
L /g = 11- /5
o+ = g Ldmax )2 ] exp |-X 3 ‘u (2.39)
Vv B 4Ba/X ‘
where B is given by
52 . 2
B=1+_.t1[__~__) | 2.40
= v ~ (2.40)
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The standard deviation of concentration o (2.31) can also be written

in terms of c*

cc(ll'rrod‘()}/2 N B Zalzx i
O = —— = |g*¥] ;{'};‘ 17‘:7;73;)2 (2.41)
with
lg*] = |- ac* 4 o 3%c* (2.42)
2(%/5) % a(/5)?

The influence of u'(x) on the spatial distribution of c* is shown in

Figure 2.2 where (2.39) and (2.41) are plotted versus X[R. Case a is for
cs/az = 0, and case b is for cﬁ/ﬁz = 0.3. It is evident that even for

modest values of ou/ﬁ significant retardation of the maximum concentra-
‘tion relative to the mean fluid velocity would occur. In addition the

maximum concentration is attenuated by the factor 1/¥ B. The significance

of nonqniform flow to the dispersion prdcess can be observéd by writing
D* in terms of the rate of growth of the dispersed zone

o /% = V 2(a/X)B | . (2.43)

X

-where o is normalized by X to conform to (2.39). If the width of the
plume is defined as 20x/§,'then'the impact of oﬁ/ﬁz on the dispersion
process is

0.4

Case a: 20X/§

- Case b: ZUX/R = 0.44 |
or a 10% increase in the normalized width of the plume., The net result
is that convection and dispersion are effected by u'(x) in an inverse |
manner, with a smaller displacement of c* correspoﬁding to a wider dis-

persed zone when cu/ﬁ is increased.
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Figure 2.2. The spatial distribution of concentration c* versus the
normalized spatial coordinate x/X. Case a is for 05/62 = 0.0, and
~case b is for,aﬁ/ﬁz = 0.3. The dashed Tines in case b are = dc* given

by (2.41).
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For the case of a fixed ]ocatiéﬁ in space, say at an observation
well, fhe time distribution of the solute becomes impértant. Here we
use the transformation x = Uto, where to denotes the travel time to the
well located at point x. In this case the normalized concentration is

RS
- = T T ue) |

* = C (471'(1)()1/2 = ] .- 0 )
‘ M 5 5% | Bl | (2.44)

-

where the parameter o/x is a constant. The standard deviation of con-

centration in this case is written

1 1
o (4rax)? o L. [ 1+20/2 2 :
= _L—__.._. = *% __E.L_X. X
where
_ ac* a t 32¢c* ‘
gr* = 1~ a(t/to) ¥ E'E;'a t/t,)2 (2.46)

Figure 2.3 illustrates c* versus t/t, when cﬁ/ﬁ2 = 0 and 0.3. Case b
demonstrates the increased travel time that arises when there is nonuni--

form flow. Thus we can expect the time breakthrough at Cﬁax to be sig-

~nificantly later (t/t0 = 1.43) in this case. The 'tailing' of the pulse

for case b is much more dramatic than case a, indicating an even larger
retardation for the 75%-95% concentration breakthrougﬁ to pass the obser--
vation point. This additional spreading is due entirely to the effect
of nonuniform flow. The dashed lines again indicate * dc* calculated
from (2.45).

The significance of the dashed lines in Figures 2.2 and 2.3 becomes
apparent if Ok is thought of as a measurevof uncertainty in C(x,t) pro-

duced by a nonuniform, heterogeneous flow field. It is worthwhile then
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Figure 2.3. The temporal distribution of c* versus normalized time,

t/t,. Case a is for o2/u? = 0.3, and case b is for oZ/u? = 0.0, The

dashed Tines in case b are = 6c* given hy (2.45).
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to 1ist the factors which influence o

c*

1. e is strongly dependent on the meah concentration gradient
and, to a lesser extent, the second derivative of c¢*. That
is, we'can expect the solute fluctuations to be the greatest
in regions where 3c*/ax and/or 32c*/3x? are large. |

2. The correlation scale of the velocity variation is directly
proportional to the magnitude of Ok

3. cu/ﬁ, the coefficient of variation of the velocity is also
difect]y proportional to S

4, The magnitude of the‘disperéivity o has a smaller impact on
o« than factors 1-3.

From a practical point of view it is of considerable interest to

know whether the kind of phendmenon described by this theory actually

occurs under natural conditions, and if so to what degree. There are
several mechanisms which are known to produce retardation of a solute.
For example the transport of adsorbing chemicals has been studied using

one of several linear adsorption isotherms (Wierenga et al., ]975,;

Van Genuchten and Wierenga, 1976). However in these cases a reduction
in the convective velocity is accompanied by a reduction in the dispersion

coefficient rather than an increase, since the velocity element of the

dispersion term is reduced as well. It has been suggested (Schwartz,

1975) that the convection ve10c1ty may be reduced as the flow paths of

jons become more irregular (ie. the paths get 1onger), and/or the solute

is trapped in ‘dead end' pores. However a theory describing a reduced:

convective velocity along with an increase in the dispersion coefficient

for a longitudinally heterogeneous flow field has apparently not been

demonstrated previously.
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The average particle velocity is identical to the form of the con-

vective velocity u* in (2.36), thus providing an alternative argument

for the retardation effect. The corresponding increase in dispersion

observed in the stochastic nonuniform flow model can best be explained

by comparison with a more traditional nonuniform flow field, a sinusoidal
velocity field. Gelhar and Collins (1971) have given a solution for
dispersive transport in an oscillating flow field with u(x) given by

u=u/(1+g sin kS) , |8|«1
' kS = 2nm, n = 1,2,....

where g8 is a constant parameter controlling the amplitude of the oscilla-
tion. Their results show that an oscillatory flow produces additional

dispersion over the uniform flow case, that is dependent on the amplitude

of the oscillation but not on the wavelength. Table 2.1 illustrates the

influence of flow nonuniformity on dispersion using Oy the rate of
growth of the dispersed zone.

In terms of actual field experiments the results shown here have
apparently not been observed. However, this hay be_due to the fact that

the solute itself is generally used to calculate the velocity and thus

the effects presented here would be lost. A.recentvpaper by Smith and
Schwartz (1980) does suggest this kindof mechanism in the context of a two

dimensional Monte Carlo experiment. Their analysis points out that as

the heterogeneity of the medium is increased (UlogK increases) the mean

travel time of the particles (tsy) increases, or in other words the mean

convective velocity decreases. In addition an increase in o K produces

log
a corresponding increase in the width of the dispersed zone. Since the

hydraulic conductivity is directly related to the velocity, it seems

'reasonable that the theory presented here applies to some of their results.
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An alternate approach for describing the apparent decrease in con-
vective velocity can be illustrated by a simple Lagrangian experiment.
Consider a column of porous material with stratificatfon in a plane
normal to the mean flow direction. The stratifications ére constructed
in such a way that the fluid veTocity will vary along the Tength of the
column as |

u(x) =4+ u'(x)

where U is the average fluid velocity for the entire coiumn, and u'(x)
is a random process with mean, E(u') = 0, and variance, 03. If a series
of particles are introduced at x = 0 and allowed to travel a fixed dis-
tance X, the expected value of the travel time t for the particles is

~given by

E('t)Z—ZE[Ué‘—Y)ﬁE[ﬂ%T&T}

which can be expressed as

Taking the expected ya]ue insidé the brackets, the mean travel time for

particles to move the distance X is approximately
_ =
u
{14‘:‘2‘—— ....}

By the same token the average particle velocity can be determined from

t =

<X

- o 2
Cx. 1 = i_ vl u
t E[ 1+ %® S R

] e

u?

as long as 03/62 < 1.  This result indicates that the harmonic mean is

the appropriate way of averaging velocities along a streamline.
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Flow Field  u(x). . . . . o2
uniform u 200t
sinusoidal u/ (14B sin ks) 2aUtA ;A= (1+B2/2)
i - - o 1
) - 252
stochastic U+ u'(x) | 2qUutB - 3 B 1+cu/u (]+a/2x}

Table 2.1. The effect of the velocity field on oi.

Finally it should be.pointed out that thé.spectral procedure deé
veloped in this thapter will only apply for small perturbations of the
velocity field. It is expected that 03/62 < 0.5 might be a reasonable
maximum. It is clear that values greater than 1.0 will produce negative
convective velocities which would of course be unreasonable. As was men-
-tioned earlier in tﬁe introduction to this chapter, the spectral solution

will only be valid at a considerable distance downstream from the source.
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3. APPLICATION AND INTERPRETATION OF FIELD DATA

Introduction

In order to demonstrate how spectral methods‘can be applied to
field probiems of mass transport, several examples have been.taken from
the literature. Although a great deal of research effort has been
directed towards understanding mass transport in ground water, there
are still re]atively few studies with large enough recérd lengths
to app]y_the spectral procedure; A data set with one hundred samples
is probably the minimum length to produce a good spectral estimator.
However this will ultimately depend on the correlation scale and
variance of the series. Some of the data seté to be examined here
would be considered too short by the one hundred sample criterign Just
mentioned. However,.the data sets were chosen to demonstrate the
utility of the spectral method to a widé range of mass transport

problems, rather than as detailed case studies.

Transport of salts in an irrigated watershed: Rio Grande

Valley, New Mexico (a linear reservoir application)

The grouhd water below irrigated agricU}ture receives considerable
quantities of soluble salts which originate for the most part_from
irrigation water, but also from the natural geochemistry of the
regional groundwater system. In arid regions excess irrigation water
is applied over and above the crop requirements to prevent accumulation
of precipitated salts in the soil zone. With regard to the groundwater
reservoir, the contamination is considered a distributed or areal

source of pollution. The leaching process, although necessary for
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productive agriculture, has a significant impact on downstream users,
since much of the excess salt reappears in drains or rivers as
"irrigation return flow.' As a typical example, the seasonal application
of one meter of irrigation water with a total dissolved solids con- ;
centration of 500 mg/1 would supply 5000 Kg of salt for each hectare
under irrigation. It is easy to understand why it is necessary to

leach this salt below the roots. The central dilemma to management

of these watersheds is striking a balance between maintenance of a

suitable environment for crop growth, while exporting the minimum

amount of salt to downstream users.
In order to be able to predict how farm managément and irrigation

practices might affect the quality of irrigation return flow, it is

first necessary to have a model of the hydraulics and solute behavior

for the system. The most elementary model which can be applied to a

distributed source of contamination is the linear reservoir model. A

comprehensive study on the validity and application of this model for
‘non-point sources of contamination is given by McLin (1981). In this

study he has shown, by comparison with spatié]iy!distributed models,

that the 'well-mixed' assumption of the linear reservoir will provide

a'godd approximation for modeling input-output behavior as long as the

longitudinal extent of the aquifer is large compared to the saturated

thickness. The study also included two applicatiohs of the method to

large irrigated basins ih the Western United States.

In the present application we are interested in the interpretation

of time series of soluble salts in a small irrigated watershed. The

field site is located in the Middle Rio Grande region of New Mexico,

near the village of San Acacia. The geology of the Rio Grande val]éy



77 -

can be described as a down-faulted structure filled with alluvial
'sediments. Agricu]thre takes place on the alluvial sdi]s adjacent to
the river, which is the main.source of irrigation water. The agquifer
at the field site is composed of Quaternary alluvial deposits (0-20
meters of sands, gravels with some clay lenses or thin beds), overlain
by a thin layer of soil (~ 1.5 meters, typiéa]]y‘consisting of clay
loam-loam-sand). Figure 3.1 illustrates a plan view of the watershed,
which occupies a 20.2 hectaré area. A good deal of hydrologic informa-
tion is available at thisvsite, since it has been the object of a long
term study on the impact of agriculture on irrigation return flow (EPA
‘Grant No. R-806092, New Mexico State Environmental Improvement Div.
No. 66/665.52/04). Wierenga et al. (1979) have described the nature
of the groundwater flow and chemical quality at the field site.
Gelhar et‘al. (1980) have demonstrated several mode]ing applications
at the site, including a deterministic model of chloride jon using the
Linear Reservoir, and a stochastic model characterizing the hydraulics
of irrigation and drainage at the site. Recently Simonett (1981) in a
M.S. thesis at NMIMT examined a multi-celled linear reservoir model for
the purpose of including the influence of flow and chemical quality of
the regional groundwatef system. |

The result of these studies indicate a highly transient groundwater
flow system, with the hydraulic response time Th’ on the order of 5-7
days. The hydraulic response time Th indicates the averagé time for
the groundwater level to decay to the e".1 Tevel after a recharge event.
The small value of Th for this system is the result of permeable
alluvial soils, and a shallow depth to the groundwater table (<2 meters).

The solute response time or residence time for this system is
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Figure 3.1. Irrigated watershed at San Acacia, New Mexico showing

the effective drainage area of the middle drain (20.2 hectares).



ol On DR
mb

RAIN GAGE
Brysp 91.'%\'/ —_—~ -

SouINee_ =018

AN L0l

HERKENHOFF

®

saw et S
-t o

S
- g

- .
2> ACACIA

rLRCHANCS

4% 04014

ICO 200 300 400
1 1 TR

METERS




79

apparently much 1ahgér, with TC on the order of 2 years or greater A
(Simonette, 1981). The combination of large residence times with small
hydraulic response times, prodﬁces some interesting behavior in the
“time variability of the total mass of salts in the drain. Even though
the concentration of total disso?ved.solids (TDS) was found to remain
fairly constant over the irrigation season, the highly transient nature
of the flow system produces large changes in the mass flux of TDS.

This points out distinctly, that for we]]-hixed systems, the total mass
flux of salts is the important parameter for modeling thé salt load in
irrigation return flows. |

The objectives of this application are: (1) to deanstrate the.
mass flux approach to well-mixed groundwater reservoirs, (2) to illus-
~trate an application of the étochastic time series method by evaluating
the frequency characteristics of the system and (3) to determine the
appropriate parameters of the groundwater reservoir from (2).
The equation describing a linear reservoir for a particular solute

was previously given by (1.27). In the development of (1.27) we were
~ concerned with the time variations of the solute in a steady—state flow
system. In the present situation, groundwater recharge or deep
percolation is considered to be highly variable, and the steady flow
assumption is not suitab]e; Thus a modification of the equation is
necessary. The mass flux fokm of tﬁe linear reservoir equation is
written |

_.d_M. = - ! 3
T = mo-motm - (3.1)

where M, as given in Chapter 1, is the total mass of salts in the

aquifer, m is the applied irrigation water mass flux, My is the output
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or drain mass f]ux,'mr is the mass flux contribution from the regional
groundwater system. Recall now that the drainflow q is linearly
.re1ated to the average head in fhe aquifer by the expression

q=a(h - h)) o (3.2)
where a is the outflow coefficient and hO is the drain coefficient.
Writing (3.2) in terms 6f a mass flux of solute ¢ we get

m, = qé = ahc - ah c o (3.3)
Rearranging (3.3) in terms of the total mass Qf salts in the aquifer
produces |

| M(t) = nhc = T.-m, +nhc : (3.4)

where Tm = n/a is the response time for the mass flux of solute c. It

should be pdinted 6ut that the hydraulic response time T, = S/a

h
(S = specific yield) governing the Tinear reservoir flow model is quite
“similar to Tm. The difference between Tm and Thkstems from the differ-
ence between the effective pbrosity n and the specific yield, S. In
‘many situations this difference will be considerable. Substituting

(3.4) dinto equation (3.3) yields

: dm
dM _ o dc _
T Tm a€-+ nh0 ar - mo-my + m, & » (3.5)

the méss balance for.total-disso]ved so]idé.(TDS) in the system. ‘Figure

3.2 illustrates the mass flux version of the Tinear reservoir model.
Having modified the linear resefvoir theory to a mass flux form we

can proceed with the data analysis. The mass flux for the output series_ N

(m_ = g-c) was calculated by multiplying the average dai]y drainflow per

0
unit of irrigated area by the TDS concentration c(t). Drainflow is
continuously recorded at the site. Electrical conductivity (EC) was

used as a measure of total dissolved solids (TDS). Water quality
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Figure 3.2. Linear reservoir model for mass flux at the San Acacia

site.
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samples were taken on a monthly basis and analyzed for major ions, pH
and EC (see Wierenga et al., 1979, 1981). The relationship between TDS
and EC was established by performing linear regression on 104 drain
samples taken from four }ocations.in the vicinity of San Acacia during
the period, April 1977-March 1979. The regression equation was found
to be | ' ,
Drain: TDS (mg/1) = 660.6 « EC (mmhos/cm) +74.8
with.a correlation coefficient‘of r = 0.97. The same procedure was
.performed fqr the irrigation diversion water, with the following
results |
Diversion: TDS (mg/1) = 752.3 -_EC (mmhos/cm) - 18.49

The correlation coefficient was found to be r = 0.96.

| To_determine the time variability of EC, closely spaced samples in
time were taken at several periods during the irrigation season. It
was found tﬁat the groundwater compoﬁent of the drain concentration
showed very Tittle time variability, except during the initial stages
of an irrigation when some dilution would occur. The dilution was
priméri]y due to direct runoff (of "tailwater') into the drain, as well
as a contribution from ponded water whiéh accumulated adjacent to the
drain. Figure 3.3 illustrates an eight day period where EC and q were
measured at two-hour intervals. During the initial stages of the
irrigation, direct runoff from the field was logged by the field
technician at one location on the south side of the drain. This direct
runoff is shown in Figure 3.3. Since the EC concentration of the
dirrigation water is on the order of 1.0 (mmhos/cm), this produced a
maximum dilution in the drain of 1.5 (mmhos/cm). As more land became

irrigated, ponded conditions were observed at several locations



- 83

Figure 3.3. Electrical conductivity (mmhos/cm) and diScharge (1/sec)
at the outflow drain, demonStrating the various contributions to

salinity and flow before-during-and after an irrigation.
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adjacent to the drain. The ponded water infiltrates quickly and mixes
with the groundwater close to the drain, producing an EC concentration
“of about 2.1 (mmhos/cm). It was determined from experiments of this
sori, that overall, the groundwater contribution to drainflow TDS was
reasonably constant on a daily basis, and thus week]y samples of EC
were found to be suitable to describe the groundwater TDS concentrationQ
The daily TDS concentration was determined by interpolation. The mass
flux for the input series m. = q,C; was calculated by multip1ying the
average daily diversion volume per unit area by the’TDS concentration
of the diversion, the same as for mo(t). It is significant in this
case that nearly all the time variability in the mass flux quantities
is produced by the transient naturerof the flow system itse1f, and not
the TDS concentration. From the 1inear reservoir theory it can also be
demonstrated that during one 1rri§ation season the outflow solute
concentratidn wi]]kchangé very little, since the residence time TC in
this system is eXpected to be on the order of years.

Making use of the fact that TDS should not vary appreciably over
one irrigation season we can simplify (3.5) -by setting dc/dt = 0.
,Fo]]owfng.the procedure of Chapter 1, the perturbation form of (3.5) is
~given by ‘ |

d

S B - 1ty o om P s =
T (m0 +m') =/, +mi -F_ +m +0@ (3.6)

0 1 1 0 0 r

where the regional aquifer mass Flux m. = q.C. is taken to be constant
over the period of interest. Equation (3.6) can then be separated into

a steady-state or expected value contribution

1

ﬁo E(mo) = E(mi) + E(mr)

(3.7)

=M, + 0
1 r
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and a time variable process given by

Tm dmO/dt tmlo=mi. | | ; (3.8)

Notice that (3.8) does not depend on the regjonal mass flux into the
irrigated system, since E(m;(t))= 0. The perturbation equation for mass
flux (3.8) has the same form as the solute equation (1.27), except that
the Tm replaces the solute response time TC. The transfer function,

phase and variance results are respectively

¢m0mo(m) | : | |
= ' (3.9)
¢m.m.(w) 1+ o T“F .
11
o(w) = - TAN™ (T ) RN o (3.10)
and
02
z _ _
o 1 .
- = (3.11)
on T+ Tm/lm

;
where A is the correlation time scale of the inpﬁt process mi(t).

In Figure 3.4 is plotted the estimated daily time series of mass
flux my (Kg/ha/day) and TDS concentrationsc (g/1) at the 6utf]ow drain
for the 1978 irrigation season (214 days). Figure 3.5 illustrates the
applied irrigation mass flux (Kg/ha/day) for the séme périod. _The
. mean (ﬁ) and variance (@%} for each series is also given.

Estimation of the spectra and phase for the bivariate stochastic
processes mi(t) and mo(t) was accomplished using the Timanl Spectrai
and Cross-spectral analysis program developed at New Mexico Institute
. of Mining and Technology for a Dec. 20 computer. The estimated

spectra for mi(t) and mo(t) are shown in Figures 3.6 and 3.7. The
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Figure 3.4. The outflow drain mass flux and total dissolved solids

concentration for 15 March-15 October, 1978.
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Figure 3.5. Applied irrigation mass flux for 15 March-15 October, 1978.

The irrigations are numbered.
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Figure 3.6. Input spectrum for mass flux $om (f) versus ordinary
_ ‘ , i '
frequency f.
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Figure 3.7. Output spectrum for mass flux % m (f) versus ordinary
00
- frequency f. ’
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natural log of the spectrum is plotted versus ordinary frequency f
(cycles/day) in order to produce a constant confidencé interval for
each spectral estimate. Details bf the confidénce interval calculation
are found in Jenkins and Watts (p. 254). The input spectrum is
remarkably flat, and is not significantly differént from a 'white
noise' signal (independént events); The filtering characteristics

of the groundwater system on the input mi(t) is evident from the

~ spectrum for mo(t). Notice a gradual decrease in the estimated output
spectrum at higher frequencies. This is to be expected for 'low pass’
filters, where higher frequency variations tend to be attenuated while
low frequency variations tend to pass through the system unaltered.

To demonstrate the use of the spectral abproach for estimating the
system parameters, a curve matching procedure was performed using the
estimated and theoretical transfer function and phase. The result of
the curve métching procedure are shown in Figures 3,8Aand.3.9, with
the best fit (by eye) determined to be T = 5.5 days. Confidence
jntervals on both the transfer function and the phase are also given.
For some estimates the confidence'interval could not be determined due
to lack of correlation between input and output at these frequencies.
For details of these calculations see Jenkins and Watts (1968, p. 434).

The estimated transfer function behaves qufte similar to the
theoretical result except in the high frequency range. This points out
why a curve hatching procedure was used here, askopposed to a least
squares fitting technique. Since CI's are wide or nonexistent for the
high frequency spectral estimates, more weight was given to the lower
frequency range, where the confidenbe interval is tighter. The phase

estimates are reasonably close to the theoretical curve in the range
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Figure 3.8. The theoretical and estimated transfer function versus

frequency. The response time was estimated to be 5.5 days.
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3.9. The theoretical and estimated phase spectra versus frequency.

The response time was estimated to be 5.5 days.
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0 < me < 7.0, however much larger departures from the theory appear
again in the high frequency range me >7.0. In each‘case the high
frequency estimates provide no information, and appear to be noise,

'unexplainab]e by the kind of model assumed here. In terms of the field

site, 'tailwater' and ponded conditions are often observed in the vicinity

‘of the outflow drain. This ponded condition would be expected to

contribute to the early stages of drainflow; and thus might explain the

high frequency behavior. However, a more complicated model and much

more detailed temporal data would be necessary to examine this condition.

It is also of interest to examine the estimated and theoretical

input-output variance ratio. The estimated variances for input and

output are shown in Figures 3.4 and 3.5. The'théoretical variance

ratio plotted against Tm/xm is shown in Figure 3.10, along with the
field estimates. Using Tm = 5.5 days the corre]ation.time scale of |
the input sériés was found to.be 0.5 days. Although this value is
Tikely not accurate for the daily data given here, ft does point out
that very little‘(if any) autocorrelation exists in this input series.
'To summarize, the spectral technique was applied to a 'well-mixed’
>groundwater reservoir subject to transiént’changes in groundWater flow
and the mass f]ow‘of salts. 1t was demonstrated that the mass flux
approach is the only suitable means fordescribing the input/output salt

Toad in highly transient groundwater flow situations. Using the sto-

-chastic time series method it was possible to determine the response
time parameter Tm for.the maés flux of diséo]ved salts at this site.
Once the response time parameters is known, any time domain solution
can be constr&cted simply by returning to the convolution equation and

specifiying the input and initial cohdition. The spectral analysis
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Figure 3.10. The output/input variance ratio versus T /A . The

variance ratio from the field data is also shown.
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procedure provides an additional tool for analyzing the impact of non-

point sources of salinity in agricultural watersheds.

The influence of river salinity on the quality of municipal

wells: Strasbourg, France (a convective transport application)

An illustration of industrial contamination of a river in an

a]]uvia]’va11ey and the resulting influence on nearby groundwater
supplies 1is presented here and analyzed with the spectral theory for
convective transport previously developed. Application of the theory

for a pumping well adjacent to the contaminated river is shown to

provide a reasonable explanation for the variablé concentration of
Chloride ion in the well. The procedure demonstrates thatrboth the
transfer functioﬁ and the phase are necessary to fully evaluate the
frequency behavior of the system. The geometry ofvthe stream-aquifer
system is shown in Figure 1.4. |

. Contamination of the Rhine River between France and Germany and
the hydraulically connected alluvial aquifer of the‘Rhine valley, has
been the subject of intense study for some time, because of its impor-
tance as a source of municipal and industrial water supply (Bhuﬁotte

et al. 1970). Since 1945 a considerable increase in the sodium chloride

concentration of the groundwater has been observed. This increase is
due in part or in whole to the accumulation of potash mine spoils in

the region. There are apparently two mechanisms for salt contamination

of groundwater. An intense local pollution has occurred directly under

the mining spoils themselves from infiltration of dissolved NaCl. 'In
addition surface runoff gradually drains the Sa]ine effluent into the

Rhine River, which subsequently affects the salinity of the Rhine's
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alluvial aquifer through streambed inffltration. Thisbapplication is
primarily concerned with evaluating the influence of river quality on
édjacent municipal well water supplies, using the stochastic theory
previously developed. |

The impact of the river salinity on the aquifer can readj1y be
observed in Figure 3;11, where the monthly chloride concentration for
a municipal well and the Rhine River at Strasbourg} France are shown;
The data were taken from a report by the Institut de Mechanique des
Fluides, Universite Louis Pasteur, de Strasbourg (1977). The chloride
time series at the well, which is located some 450 meters ffom the
river, appears to be a smdothed and lagged version of the river series.
Spectr& 1 analysis was performed on the data, with the results shown
in Figures 3.12 and 3.13. The estimated 95 percent confidence
interval is also shown. The transfer function and phasé were estimated

from the data and are given in Figures 3.14 and 3.15. The parameter TO

‘was determined by visually matching the estimated transfer function

~and phase to the theofetica] curves, while also attempting to contain

the theoretical results within the estimated 95 percent confidence
interva]. This could only be accomplished for To % 6 months. The
estimated transfer function in this case is consistently higher than
the theoretica] result, although it is still within the confidence
interval. The phase estimates compare extremely well with the
theoretical result over the entire frequenéy range. It is likely that
the transfer function reéu]t is due.to a failure of»the model to pré—'
cisely represent the field situation in this case. It is known for
example fhat the Rhine River is naturally effluent, or it loses its
flow to the alluvial aquifer, in this region. Depending on the

magnitude of the river loss, this could produce a more complicated
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Figure 3.11. Monthly time series of chloride ion for a municipal
well and the Rhine River at Strasbourg, France. The record is for

January, 1972 through December, 1976.
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Figure 3.12. The estiméted spectrum for the Rhine River monthly

chloride time series, with the 95 percent confidence interval.
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Figure 3.13. The estimated spectrum for well No. 6.with the 95

percent confidence interval.
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Figure 3.14. The theoretical and estimated transfer function for

the Rhine River-aquifer problem.
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Figure 3.15. The theoretical and estimated phase for the Rhine River-

aquifer problem.
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potential flow field than has been assumed here. In fact by super-
imposing a uniform flow field with a curvilinear field, it is quite
possible that the transfervfunction would display less amplitude
filtering dépending on the magnitude of uniform flow component (recall
that uniform flow produces no amplitude filtering of the_transfer
function).

Recalling that the minimum travel time to the pumping well is
given by Ty = To/3, and using T0 = 6 months, we find that the first
arrival of solute should occur in approximate]y 2.0 months. Since the
phase describes the lead or‘1ag between the 1input and output, we can
make use of this fact to examine the average time lag for sd?dtes to
move from the river to the well as a function of frequency. In other
words, does the period of the input Qariation have any significance on

the tfave] time? The average time lag can be defined as (Kisiel, 1969)

- el) | e(f)

L w  Znf

where f is ordinary frequency in cycles/month. For T0 = 6 the
thecretical and experimental results are shownkin_Figure 3.16. It is.
interesting that for almost the entire range of frequencies encountered,
the average time Tag remains near two months; or the frequency of
chforide concentration in the river does not seriously affect the
-average time of travel to the well.

" This application of convective transport ih a curvi1ineér flow

~ system demonstrates the spectral input-output theory from a relatively
short data base (60 samples). It is encouraging that even series of

this length can be diagnostic of mass transport in specific groundwater
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Figure 3.16. The theoretical and estimated average travel time as

a function of the frequency.
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flow systems. The method might also be used to estimate the hydraulic

~ parameters of the system. To was previously show to be

TO = Q/Zih » (1.66)

or in terms of the effective porosity

= 2
n TOQ/ZnhOL .

The transmissivity is approximately given by (Kirham and Affleck, 1977)

_ _ Q
T = Khy = 2 (= Ln(2L/r 01q)-

‘These expressions provide a means of estimating the transmissivity or

the porosity if the average drawdown ho-hw, the average well discharge
Q and the distance to the well L are known. - In this application T and
n could not be determined since not all of these parameters were

available,

Transport of environmental isotopes in a karst region of

Rawil, Switzerland (a convection-dispersion application)

The use of environmental isotopes as natural tracers has been shown
to be of consfderable value to régional and local aquifer analysis
(IAEA, 1967). The areas of hydrologic investigation facilitated by
isotope methods include recharge estimation, groundwater velocities,
and the interrelation between surface and gfoundwater, to name a few.
Atmospheric tritium occurring both naturally and as a result of thermo-
nuclear testing, displays large temporal variations which can provide a
hydrologic marker for groundwater studies.

An isotope'study in a karst region of the high Alps in southwestefn

Switzerland (U, Schotterer et al., 1980) was carried out during the
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period 1973-1978. The study area was situated in a karstic-1imestone

formation at an altitude of 1200 to 3250 meters abdve sea level.

According to Schotterer et al., the karst water circulation in this
region is controlled primarily by synclines and secondarily by faulting.
The circulation of water in karst systems can be characterized as
occurring in fractured rock, in intergranular material, in dissolution
features, or in some combination of these three. However, the authors
did not explicitly differentiate between these flow mechanisms, instead
they referred to a 'fast' response and a 'slow' response system.

Data from several springs were used in this report. Only one, thé
Siebenbrunnen Spring, had a long enough data record to apply the time
series method. The recharge area for this spring is located a distance
of ~4.13 km from the odt]et. Precipitation and discharge measurements
were taken continuously during the study, with tritium samp]és for each
taken on a month]yand, in some cases, weekly basis. The tritiﬁm'in
precipitationvwa§>a]so measured at several sites, and the volume-

weighted tritium input concenfration was constructed. The monthly

.averaged tritium data taken from the report are shown in Figure 3.17.

In the present research we are concerned with the time variability
of tritium in the input (precipitation and recharée), and in the output
(spring), and whether it is possible to discern some elements of the
convective-dispersive transport mechanisms from the ffequency response
characteristics of the system. Estimation of the average travel-time,
the velocity and the magnitude of the karst reéervoir volume are also
of interest."

Spectral analysis was performed on’the 3H time series in precipi-

tation and springflow given in Figure 3.17, with the resulting spectral
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'Figure 3.17. A. Tritium input concentration constructed by averaging
several stations in the intake area of the karst region. B. Tritium
in the Siebebrunnen spring constructed using a flow weighted monthly

average.
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estimates shown in Figures 3.18 and 3.19. It is significant that the
spectral estimates of springflow 3H have a ten-fold reduction in
variation in the low frequency range, when compared with the input
spectrum. Since the flow-through time in the primary karst system is
known to be relatively fast (1 to 3 months), the large degree of
amplitude attenuation could not be attributed simply to radioactive
decay (K = 0.0565 years™! for ?H). Referring back to the report by
Schotterer et al., they had determined that 3H in the recharge water
was mixing with 'older' water which was Tow in tritium. Their analysis
éonc1uded that the primary karst system was being diluted with Tow
tritium inflows derived from another, and much more eXtensive ground-
water system. At this point it was necessary to alter the convection-
dispersion model developed previously to account for this ]atéra] in-
flow of 3H. The equation for convettive-dispersive transport which

includes ]atera] inflows can be written

-3¢ 3¢ _ pd%c , L ey
str U =D gl -c)-ke

where QL is the volumetric rate of lateral inflow to the primary karst
system, L is the lateral inflow concentraticn, ¥ is the total volume of
the primary system, and K is the coefficient of radioactive decay for
SH., If we assume that L is approximately constant or ci = 0, then the

~equation for the temporal fluctuation of tritium in this‘examplé is

given by
ac! PYol 32¢! .
—F e == -
ot Up T Do - KC
where

Q
Ke=<f§'1+l<>
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Figure 3.18. The estimated spectrum for the tritium input concen-
tration (3H-in tritium units?) with the 95 percent confidence

intervals indicated.
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Figure 3.19. The estimated spectrum for the tritium concentration

of springflow with the 95 percent confidence intervals indicated.
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ﬂ ‘ is the effective rate constant. The rate constant can be removed by

the following transformation on c¢'

¢t = &1 o Ret
which produces

ac' | ac' _ .»2¢!

— e T2

3t uax Dax2

In terms of the output spectrum the transformation is approximately
given by (see Chapter 1)
bee = ¢EE*8XP('2KeT)

Thus, the exponential term above can simply be multiplied by the usual

g‘ transfer function (Equation 1.82), thereby.adjusting the output for
steady, lateral inflow as well as radioactive decay.

The parameters of the convection-dispersion model were estimated
%? by curve matching both the transfer function and the phase. Since the
phase is unaltered by the rate constant Ke (see Chapter 1), it was
used initially to estimate the travel time . Figure 3.20 illustrates

the phase result for a range of values for x/o. A value of v = 2.2

months was determined by curve matching the theoretical and estimated
%w | values in the Tow fréquency range. The procedure indicated that the
dispersion parameter x/o should be in the range of lOe:X/aﬁ<25. The
, transfér function, also plotted for a range of x/a, is shown 1in Figure
3.21, with t again taken to be 2.2 months. In order to match the
ordinate of the estimated transfer function to the theoretical version,
éi © (1.82) was multiplied by exp(~2KeT) = 0.065. This allowed fhe éa]cu?a-
| tion of the parameter Ke’ which includes the lateral inflow term QL’ and

the reservoir volume ¥. Solving for Ke we get
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Figure 3.20. The theoretical and estimated phase spettra for tritium
transport in a karst region of Switzerland. The 75 percent confidence

interval estimate is given, except where it could not be calculated.
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“Figure 3.21. The theoretical and estimated transfer functions for
tritium transport in a karst region of Switzerland. The 75 percent
confidence interval estimate is given, except where it could not be

calculated.
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Ke = L < 065) /27t = 0.621 month~!

Using this result to evaluate QL/¥-g1ves
QL/¥-= Ke - K = 0.621 ~ 0.005 = 0,616 months~1

In the Schotterer et al. report, the characteristics of the spring
discharge for the perijod October 1973-September 1977 were:

Minimum - 0.01 m3/s

Mean - 0.50 m3/s

Maximum - 2.8 m3/s

From the spring discharge record given in their report (their

Figure 3), it appears that winter baseflow is consistently in the range
of the minimum, Q = 0.01 m3/s. Making the assumption that the baseflow
is a Constant, and identical to the lateral inflow QL, the volume of
the primary karst reservoir is determined to be on the order of 4.21 x
10% m3. The authors of the original report did not explicitly differ—
entiate between the volume of the primary éystem, which carries:the
'_ majority of the flow, and secondary system, which apparently contributes
much less. Instead, they attempted to estimate the total vb]ume of the
 karst reservoir, which they found to be 2.5 x 107 md. From the point
of view of the time series approach presented here, it was not possible
to determine the volume of the secondary system. The average velocity
computed from the travel time estimate of t = 2.2 months, is on the
order of 60 m/day, which would be much too high for an infergraﬁular :
or small scale fractured flow system. It is likely that transport
occurs predominately through dissolution features and larger scale

fracturing.



114

The dispersion characteristics of the system can also be examined
from the transfer function. The dispersivity parameter x/o ranges
between 10 and 25, for most of the estimates of the transfer function.
Based dn both the transfer fuﬁction and the phase,_the estimated
dispersivity range for this syStem is 165 < o < 410 meters. The meah
vé]ue for a is in the neighborhood of « =}250 m. It is exﬁected that
longer record lengths of the input-output time series, would improve
the spectfa] estimates, and lead to a refinement in the parameter

estimation.

The significant results of this analysis can be summarized as

follows:
1. Relatively short time series (<100 data points) may still be

useful for preliminary data analysis, and parameter estimation.

2. It is expected that small lateral inflows of constant tritium
concentration may drastically attenuate time f]uctuaffons in
“the primary flow system. This may have a significant impact

on using tritium peaks as a time marker in groundwater studies.

3. The phase function is unaltered by radioactive decay or

lateral inflow, provided that the inflows are steady and of

constant concentration.
4. The time series approach produced estimates: of the volume of
the primary karst reservoir, the velocity, the trave]ltime, and

- the dispersivity range of the system.



115
4. SUMMARY AND CONCLUSIONS

The primary purpose of this research has been the application of
spectraf analysis and stochastic differential equations to a variety
of problems of solute transport in grdundwater; In Chapter 1 the
spectral analysis approach is used to develop a theory for analyzing
continuous and stationary solute time series for three widely applied
solute transport models. Chapter 2 deals with the theoretical aspects
of convective-dispersive transport in a nonuniform, stochastic
velocity field. The third chapter presenfs an application for each
of the three time series models developed in Chapter 1. The'fo]Towing

discussion on Time Series Analysis deals witthhapters 1 and 3, while

the discussion on Spatial Variability deals with Chapter 2.

Timé Series Analysis: First of all, it is necessary to make some
general comments on the significance of the spectral analysis procedure
presented in Chapter 1. The results of this section indicaté that
analytical éo]utions to a vériety of solute transport mode]s‘can be
obtained using a first order perturbation procedure and the spectral
representation theorem for stationary, stochastic variables. 1In
addition, the spectral solutions are presented in terms of the
frequency response function, which is identical to the form which
results from traditional Fourier analysis of.periodic or aperiodic
- functions. The complex frequency response contains information about
the amplitude attenuation of the system (transfér function), as well
as the phase tag (phase spectrum), between each frequency componenf
in the input and output. It should be emphasized that, in order to

| completely specify the frequency characteristics of water qua]fty
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'signals,' both the transfer function and the phase shou1d be determined.
Determining one or the other, will only make use of one-half the
available information. A natural resu1f of the spectral analysis
method is that the output/input variance ratio can be determined
theoretically, a result which would be useful for predictive modeling
‘app]ications. The speétra] procedure also has the advantage that
higher order probability moments (3rd, 4th, etc.), as well as the
underlying jﬁint probability density funttions, do not have to be
determined. Thus, the spectral analysis procedure for second order
Stationary time series is completely specified by the mean, variance
and covariance.

The Tinear reservoir model provides us with the most elementary
approach to modeling diffuse or nonpoint sources of contamination;
Application of the linear reservoir model to the problem of total
salt ]oadiﬁg from irrigation return f]éw, indicates,that the spectral
analysis procedure can be a useful tool for interpreting the time
variable behavior 6f salinity. The response time parameter (Tm = 5.5
days) determined for this example was found to be reasonable, con-
sidering the large degree of tempora] variability encountered. It
was demonstrated that for é highly trénsient and 'well-mixed' grdund-
water system, that the mass flux form of the trahsport equation is
appropriaté. . |

The theoretical development and application of the convective
trahsport model in é curvilinear flow field, demonstrates a situation
where an explicit analytical solution for the frequency response

function could not be found. The transfer function and the phase
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were each'determined by numerical integration. - The spectral procedure
was used to calculate the minimum solute travel-time from the river to
the well (¢ = 2 months). The theoretical phase function provided a
very close comparison with field results, while the theoretical
transfer function considerably underestimated the field estimates.
The difference in the transfer function results were exp]aiﬁed as.due
to an over simplified flow field model, which did not take into accoﬁnt
the natural seepage from the Rhine in that area. Expressions were
given for computing the effective porosity and transmissivity, but
these parameters could not be determined due to lack of information on
field conditions at the site. | |

The theoryvfor convective-dispersive transport in a uniform flow
field was applied to environmental tritium isotopes in a karst region
of Switzerland. The results of this application demonstrate the effect
of steady,'lateral inflows of solute to the primary flow system. Even
small lateral inflows were shown to.drastically attenuate temporal
f]uctuations; and thus the transfer function of 3H in the spring.
The implication of this resu]t_is that even relatively large peaks in
.input 34 concentration may not be observed in the outflow from the
system, if a significant 1atera1 inflow of relatively constant con-
centration is present. It was shown however, that the bhase lag 1is
unaltered by this effect, and thus the phase interpretation takes on
a greater significance. The travel-time, velocity, dispérsivity and
volume of_the primary karst system were estimated for this application.

An important feature of the resufts of Chapters 1 and 2 is that
different groundwater flow fields produce distinctive frequency

response characteristics for solutes within these systems. This would
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indicate that the spectral analysis procedure may have a diagnostic
potential for helping to evaluate the flow system of a historical
water quality 'signal.’
| Spatial Variability: In Chapter 2 the effects of a stochastic,
nonuniform f1owvon the depth—averaged equation of solute transport is
examined. The velocity field is composed of a mean value and a
- perturbation caused by the longitudinal variability of aquifer
characteristics. In mathematical terms this implies that the
- coefficients of the transport equation beﬁome stochastic processes
in the direction of the mean flow. The effect of the stochastic
component of the velocity field on the mean solute transport equation
is examined by evaluating the additional convective and dispersive
flux terms which arise from the perturbation procedure. The significance
J6f a nonuniform velocity field on the average so1ute behavior can be
summarized.as follows: |
| (1) An overall reduction in the mean convective velocity of a
solute relative to the mean fluid veloéity may result, when
flow nonuniformity is significant. The'degree of flow non-
uniformity is measured by the coefficient of variation of
the velocity cu/ﬁ, |
(2) A corresponding increase in the effectfve dispersion
coefficient is Qbserved Qhere ou/a is increased.
(3) The feduction in convective velocity determined by the spectral
theory is supported by an elementary Lagrangian calculation
of the average travel-time and velocity of particles in a random

medium. Both the spectral analysis and lagrangian approaches
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indicate that the harmonic mean is the appropriate way to

average the velocity along a stream line.

(4) An increase in the dispersion coefficient for stationary non-

uniform flows is also shown to occur in a sinusoidally

oscillating flow field.

(5) The stochastic theory provides a means of estimating the

concentration variance for the mean transport process. The

variance in concentration is primarily dependent on the

‘mean gradient (3&/3x), but also on 92¢/3x2.

(6) A pulse input solution to the mean solute transport equation
demonstrates the retardation and attenuation mechanisms
which come into p]ay as cu/ﬁ becomes significant. The |
solution for the spatial distributidn of a solute at a fixed
point in time clearly illustrates the magnitude of the
feduced convective velocity and increased dispersion; even
for modest values of 5;/&1(=0.3). For a fixed location in
space, say at an observation well, it was found that the shape
of the solute pulse for nonuniform flow is significantly
é]téred, when compared fo the uniform flow case (cu/ﬁ = 0).
This is eSpecia]ly true for the tail of the concentration
breakthrough (when 75-95 percent of C* has passed the -
observation well). | '

(7) Some of the features of this research were previously

suggested by Smith and Schwartz (1980), from results on

Monte Carlo experiments. However, field studies have not

reported this kind of behavior. This may, however, be due
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to the fact that field tests make use of the solute to com-
pute the velocity, and thus the effect demonstrated here

would be lost.

(8) Because of the non-Fickian behavior observed during the

early stagesvof solute transport (ie. Gelhar et al., 1979),

it is felt that this theory is on]y applicable at large
distances from the sourcé. .An exact value fbr this distance
is not precisely known at present, but it is 1ike1y to be

on the ofder of a few kilometers. This would indicate that
environmental tracers would be the most suitable for

applications.
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5. RECOMMENDATION FOR FUTURE WORK

During the course of this research it became apparent that treatihg
spatial and temporal variabi]ity as separate entities-mightbnot be
entirely realistic. For example spatial variability of the medium
properties will obviously produce temporal variations when the soluté
is observed at an observation well. Time variations in the source
(inpﬁt)'afsolute will also be observed at the observation pofnt. To
differentiate between these mechanisms, a preliminary study of a
space and time spectral representatﬂnmwésmade. A]thdugh this form
of representation is not new (Lumley and Pahofsky, 1964), solving
differential equations where the variables remain stationary in space
and in time proved to be a considerable problem. ‘Although fime did
not permit a cafefu] analysis of this problem during the course of

this study, it is felt that future work in this area may be fruitful.
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~ APPENDIX 1.

EVALUATION OF THE VARIANCE AND COVARIANCE
| EXPRESSIONS OF CHAPTER 2;

c

The steady-state solution to the zero-mean stochastic differential

equation (2.21) is given by
- 5212 212
beelk) = 6, (K) 0/(T2K2(1 + a2k2)) . (2.27)
Integration of (2.27) produces the concentration variance of ¢’

> r (k) dk r g oy lk)
Ko} = d) = - - o
¢ et o G2k2(1 + a2k?)

dk . | (2.28)

To remove the singularity at k=0 in (2.28) we assume a particular form

for ¢uu(k) after Bakyr et al. (1978)

2 05 by k2
= & 2.29
¢uu(k) ™ (-l ¥ 2'2 k2)2 ( )
Substituting (2.29) into (2.28) yields
- o2 23 g2 - ,
.0(2:=-2—j . u_x dk (A.1)
o (1 + 02 k2)2(1 + a%k?) | |
which can be written as
2.2.3 o
2~'4g0ua dv
T T, ' 21702 o+ on2 (A.2)
T U QX o (T + v )(E§-+.v )

where v = ak.



134

A standard integral from Gradshteyn and Ryzhik (eq. 3.223-1, p. 289),

can be used to evaluate (A.2)

©. U=-& - T . = ‘__J," ’_ _*1». .
y e - [P - P esctn) (-3)

Differentiating (A.3) with respect to 8 yields

| r T { (_y-e)(u—1)s“'-2-+<s“"1-y“'1)}_ (A4)
o(B+%)2(v+1) (v-8)2

By another change of variables u = v2 (A.?) can now be expressed as

2 06 3 ® u2 |
C T =2 2
u X 0 (]+U)( 2! )

The integral (A.4) is equivalent to (A.5) when y=1 and B=u2/£§ . Per-

forming the integration produces the following variance expression

1+ Zoe/?,x—

0'2 92 £2
u-_ X (2.31)

.u2 _(T + a/ﬁx)z_

S TS
Evaluation of u o

To evaluate this term in the mean equation (2.20) we first expand

it into its derivatives

: y au'
ax x4 ¢ "¢ (A.6)

' ac’ = _3___'u|

¥

The first term on the right hand side is represented as

T - fw 6. (K)dk = gfw :—fﬂgﬁfz———-dk | (A.7)
-0 cu ~oo U(Olkz + 'ik) .
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. . (ak2=ik) ¢ (k)
- %J uu dk
u

_w (_o,ték”*&kz)

The form of ¢uu(k) for this case is again given by (2.29), which upon
substitution into (A.7) yields

— _ 4u u 9’ ® v2

u'ct = — 77 dv (A.8)
T
a2 Y

L) o fo (1+v2)2

where v + zxk. We again use the standard integral given by (A.4) to

arrivé at the result

e = a_qg :_§ Lrw—l/zxyz (A.9)
Taking the defivative with respect to x gives
2 G = wai 28 fﬁ {-17.177;n5_; i (8.10)
where:g is approximated by
g ~ ~3c/ax , | o (A.11)
The second term in (A.6) is evaluated in the same way
¢! %——-= Jm beqlk) dk = —S-J by () (1 #edk) dk (A.12)

U (1 + 02k?)
where ¢Cu(k)dk = E(dzc-(-ik)dzu*)

and dz, dZ e
u(ak2 + ik)
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Using the change of variable v + ¢ k along with (2.29) produces

2 22 . . ’
,BU' ) ,,.O'u,. X . 2 .
Cc ___.._ax = ﬂ.g-u :—2- _.._; \)12 - d\) (A-]?’)
us .o .-00(1'*'\)2)2["'& + VZJ
. a2

Again applying (A.4) the resulting form is

2 12

S TTRRN S )

“x T U o LW) (A.18)

act .
Thus u T is given by
2 r 12 2 r 2
1 oC" DSZE “u —aE U 1
Uex = %2 2 {}1 t o/t ) ;5 T+ a/s, (A.15)

152¢!
ax2

The second term on the right hand side of (2.20) can be evaluated

by expressing it in this form

21 e :
a'dE - J by (K)dk : : (A.16)
ax? ' | '

~-00

where - 7
| “ g(-1k)?¢,, (k)
¢u5(k)dk = E(dZu- (aik)dec*) = dk
u{ak2-ik)
with
dz, *g |
dz * = ——— . (A.17)
u(ak?-ik) '

Equation (A.16) can then be written as



dk . | (A.18)

If we again let ¢uu(k) be given by 2.29) and using the same procedure

as before, the integration produces

L a2 - 2702 ™

eZct _ -3¢ “u 20L/lxm /lx

aleg— = Uar = ¢ |~ (A.19)
_ u? B (1 + OL/RX)Z _

The expressions (A.15) and (A.19) will combine to produce the right hand
side of (2.20).
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APPENDIX 2.
DATA AND RESULTS OF TIME SERIES ANALYSIS

A Tisting of the time series data, spectral estimates, transfer
functions and phase functions are ,givenjin this appendix. Confidence
intervals on the estimated spectra were calculated with the following
expression taken from Jenkins andVWatts (see p. 82)

v

. » v o ~ '
Ln ¢Xx(f) + Ln m , Ln ¢Xx(f) + Ln m

A"
where v represents the degrees of freedom for a Hamming window, (1 - a)
is the confidence level, and Xy is the appropriate value of the Chi-
squared distribution.

Confidence intervais on the transfer function and phase were
determined by using the approximate expressions developed by Jenkins
and Watts (p. 434). In order to determine these confidence intervals
the square of the coherency function KZ(f) must be estimated from the
data. Kz(f) is analogous to the square of the corfe]ation coefficient
from linear regression, except K*(f) applies to correlation between

various frequency components of the input and output time series (see

Jenkins and Watts for details).
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April May July August . Sept. Oct.

1 16.58 60.47 108.49 140.56 142.24 34.69 27.47

2 12.44 68.31 115.62 124.40 217.36 . 34.69 23.15

3. 14,51 68 11 118.59 108.93 229.03 34.56 22.97

4  239.22 69.68 121.57 102.78 151.79 34.56 22.80

5 128.97 67.18 126.99 104.47 119.99 34.56 22.62 -
"6 89.45 - 66.96 129.76 120.98 98.49 32.40 20.40

7 74.89 64.48 134.80 112.91 124.90 32.16 20.56

8 64.26 61.82 114.21 109.34 92.62 29.68 18.58
9 60.11 61.58 115.13 - 139.71 84.00 31.56 20.80
10 59.87 61.38  120.04 144.36 75.81 260.02 20.89
11 80.19 56.15 235.06 109.79 69.37 142.45 21.04
12 63.51 53.21 212.60  95.90 63.25 133.17 19.01
13 57.37 52.22 212.20 84.30 63.25 109.34 18.50
14 53.05 328.97 168.60 76.97 63.03 90.41 17.94
15 45.07 101.24 132.99 321.95 58.96 71.76 17.43
16 45.23 111.63 111.00 317.99 56.69 61.53 22.49
17 39.23 105.50 103.13 © 211.55 - 78.96 55.14 14.54
18 35.24 101.82 ©95.15 144.70 154.52 49,02 14.03
19 35.36 100.43 87.93 116.62 312.18 42.79 11.89
20 33.42 101.24 . 97.12 103.67 219.23 38.74 12.27
21 29.34 99.50 145.46 107.62 141.87 32.66 16.36
22 25.80 . 100.03 91.57 101.17 99.50 33.33 239.88
23 20.52 97.95 193.36 96.86 76.97 38.17 165.94
24 19.29 92.56 131.42 92.56 60.78 34.83 89.32
25 94.79 85.47  90.85 87.91 54.93 41.77 69.66
26 94.45 86.62 82.26 79.33 48,95 34,19 61.02.
27  196.57 81.74 82.08 72.90 47.17 34.83 51.82
28 85.31 84.99 181.32 65.79 36.59 34.56 46,93
29 64.06 88.41 193.69 61.27 34.69 30.02 44 .36
30 539.91 95.56 156,53 58.58 34.69 27.67 37.71
31 ' 100.81 55.85 34.69

37.12

Table A2.1. The time series of the mass flux of total dissolved salts

at San Acacia, New Mexico (q-c - Kg/ha/day ) for the 1978 irrigation

season,
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April May June July August Sept. Oct.
1414.99

1170.9

355.23

WOONO U WM

459.09  1055.88
148.90 :

11 637.14

12 | 487.55

13. - - - 55. 34
14 928.41 237.85 -

16 : 1042.69

19 303.29 |
o 535.22 ' 1062.32

21 - 327.43

22 | 297.14

- 26 1160.48 509.74

29 e ' 559,78

= Table A2.2. The time series of the mass flux of applied irrigation
water at San Acacia, N.M. (q;c{— Kg/ha/day ) for the 1978 irrigation

season.
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freq. ¢ (f) o (f) ¢ /¢ o(rads) K2(f)
| mim]. momo momo mimi
.000 2396.78 3428.61 1.431 - -0.569 .004
.025 3622.03 2163.06 0.597 0.580 .300
.050 6385.99 1389.69 0.218 0.879 .506
.075 7921.61 1016.96 0.128 1.149 .521
.100 7309.21 820.82 0.112 1.457 .510
.125 8554.70 832.14 0.097 1.782 - .320
.150 8903. 38 560.70 0.062 1.932 .216
.175 7188.12 565.30 0.079 1.748 .329
.200 7140.12 371.34 0.052 1.956 .153
.225 7970.07 280.34 0.035 2.071 .035
.250 8714.55 221.92 0.025 2.772 .032
.275 8571.94 172.99 0.018 3.071 .013
.300 7969.53 167.03 0.021 4.248 .005
.325 8301.55 146.34 0.018 1.955 .008
350 6327.81 143.66 0.023 1.067 .026
.375° 6918.70 131.13 0.019 2.740 .013
.400 9613.77 145.33 0.015 2.842 .037
425 8020.89 153.52 0.019 2.564 .049
.450 8505.76 132.01 0.016 2.682 .037
.475 9390.69 153.03 0.016 2.411 .059
.500 9121.48 151.57 0.017 2.459 .079

Table A2.3. Estimates of the spectra, transfer function, phase and

coherency squared for the mass flux time series at San Acacia, New

Mexico.
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1972 1973 1974 1975 1976
Jan 194.9 174.7 139.3 118.7 233.0:
Feb 231.8 208.7 197.6 247.7 184.1
Mar 169.7 279.1 200.2 175.1 234.2
Apr 138.8 157.9 . 152.8 107.5 186.7
May 24.1 137.9 165.2 - 95.6 138.5
Jun 165.6 112.3 127.3 - 76.6 87.5
Jul 131.6 73.7 103.7 34.3 17.0
Aug 100.2 52.5 80.4 56.7 205.9
Sep 157.1 115.9 126.0 125.3 155.6
Oct 190.2 132.9 144.0 147.2 204.4
Nov 120.8 145.9 86.4 153.0 201.3
Dec 51.3 177.9 96.5 - 84.3 146.9

Table A2.4. The time series of chloride concentration (ppm)

in the Rhine River at Strasbourg, France.

1972 1973 1974 1975 1976

Jan ©179.2 100.4 141.0 120.0 140.2
Feb 176.6 83.2 144.0 132.3 145.5
Mar 183.8 101.6 '188.0 145.9 166.5
Apr 216.2 -.163.0 1178.4 202.3 - 174.0
May 210.0 206.7 197.6 177.6 215.0
Jun 204.0 183.2 175.0 130.8 188.4
Jul 189.0 144.0 192.7 109.6 156.2
Aug 166.5 138.0 157.0 80.0 155.0
Sep 148.4 . 95,2 127.1 - 79.8 116.3
Oct 123.0 96.0 113.3 96.0 143.0
Nov 128.8 123.0 145.1 123.2 156.0
Dec 162.0 152.0

137.0 134.4 171.4

Table A2.5. The time series of chloride concentration (ppm)

in the pumping well at Strasbourg, France.




freq ¢ ), . . (f 6. /¢ o{f)  K2(f)
Cici( ) chw( ) Clw GG

0.00 354,68 385.29 1.09 0.11
0.38 576.96 558.22 0.97 0.84
0.08 1289.46 660.41 0.51 1.31
0.12 1205.96 384,01 0.32 1.61
0.15 876.25 251.51 0.29 2.53
0.19 506.75 187.40 0.37 2.93 .
0.23 387.80 75.99 0.20 3.97
0.27 358.08 62.35 0.17 4.00
0.31 151.28 - 48,07 0.32 4.75
0.35 172.80 27 .42 0.16 4,68
0.38 181.97 19.12 0.11 4,72
0.42 285.03 36.88 . 0.13 5.93
0.46 288.20 31.30 0.14 6.28
0.50 108.53 20.70 0.19 6.21

Table A2.6. Estimates of the spectra,'transfer function, phase and

coherency squared for the chloride time series at Strasbourg, France.
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TIF Siebenbrunnen
1973 Sep 183 140
Oct 125 140
Nov 93 148
Dec 62 - , 142
1974 Jan 40 ' 141
Feb 60 _ 137 .
Mar v 107 ‘ : 141
Apr : 131 . 143
May 194 141
Jun 271 ' 149
Jul 239 137
Aug _ 132 : 133
Sep 146 121
Oct 128 119
Nov 189 134
Dec 303 140
1975 Jan 201 , _ 128
Feb 81 - : 133
Mar 870 129
Apr ' 282 131
May 300 165
Jun 270 161
Jul 233 200
Aug 179 173
Sep 156 : _ 145
Oct 94 146
Nov 122 _ 151
Dec 69 : 148
1976 dJan 80 147
Feb 100 135
Mar 133 141
Apr 178 : 133
May 378 172
Jun - 274 201
Jul 181 170
Aug 134 164
Sep 149 : 155
Oct : . 87 148
Nov ‘ 44 140
Dec - 101 142 -
- 1977 Jdan ' 52 146
Feb 50 142
Mar 32 129
Apr 47 132
May 81 132

Table A2.7. Time series of tritium concentration 3H (in tritium

units)Aof the tritium input function (TIF) and in the Siebenbrunnen

spring in the Karst region of Rawil, Switzerland.
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TIF Siebenbrunnen

Jun 98 103

Jul 180 90

Aug 163 92

Sep 118 97

Oct 104 _ 100

- Nov 43 104

i Dec 46 : 102
o 1978 Jan 80 108
Feb 71 109

Mar 78 o114

Apr ' 84 101

May 137 04

Jun 137 , 100

Table A2.7. Continued.
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freq. ¢ (f) ¢ () o /é o(f) K2(f)
(cycles/mo.) €5%4 ce € T C¢y
0.00 4729.47 446.56 0.09 0.98 - 0.27
0.04 5514.17 307.82 .0.56 1.22 0.41
0.08 4826.18 - 128,74 0.03 1.23 0.35
0.13 2131.55 65.94 0.03 - 1.78 - 0.09
0.17 800.87 50.62 0.63 2.51 (.18
0.21 : 1127.34 26.77 0.24 4,18 0.02
0.25 1478.82 ‘12.58 , 0.01 3.54 0.32
0.29 1648.06 13.32 0.01 4.15 0.19
0.33 1964.15 7.23 0.01 3.78 0.18
0.38 1782.48 11.77 0.01 4,11 0.49
0.42 1318.40 7.69 - 0.01 4.72 0.43
0.46 1357.63 4,97 0.01 5.55 0.58
0.50 1604.48 4,30 0.01 5.90 0.64

Table A2.8. Estimates of the spectra, transfer function, phase and
coherency squared for the'tritium time series in the Karst region of

Rawil, Switzerland.






