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ABSTRACT

Arrays of high-gain, short-period seismographs were
used to record microearthguakes from April, 1975, through
January, 1978, in the wicinity of Socorro, NFNew Mexico. The
P- and S-wave travel times from 236 microearthgquakes were
selected from this recording period to model the P- and
S-wave velocity distribution, and thus the distribution of
Poisson's rato in this area, using linear inverse technigues
{Jackson, 1972). Hypocenter locations were obtained employing
a damped least squares inversion computer program; the
results were used to obtain the observed P- and S—-wave
travel times of the 600 raypaths from these selected micro-
earthquakes.

Seven different models were studied using this technique.
Models 1, 2, 3, 4, and 5 divided the same study area into 1,
4, 9, 16, and 25 blocks, respectively. The other two models
studied, Models 4" and 5', were the same as Models 4 and 5
with the exception that the P-wave solutions were chosen in
a different manner, such that the P-wave solutions for these
two models were more model dependent than the solutions
chosen for Models 4 and 5.

The quality factor R, which is a measure of the sum of
the sguares of the residuals, decreased towards 1.0 as the
number of blocks increased from 1 through 16, which indicated
that the more complex models provided better solutions.

Models 4", 5, and 5' showed increases in R relative to Model
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4, which indicated poorer solutions. MXodel 4 is regarded as
the best solution of the seven models studied because it had
a value of R closest to 1.0 {1.013). Models 4" and 5°
showed generally the same results as Models 4 ard 5 but had
lower standard deviations on the Poisscn's ratios because
the solutions were generally more rmodel dependent.

Though Model 4 had the best solution, it was not used
for the final interpretation becavse it was believed that
Model 5' would offer more detail for determining small areas
with anomalous Poisson's ratios. Though Model 5' was not
the best scluticn, the R value {(1.061) was still closer to
1.0 than Models 1, 2, or 3, and it offered the prospect cf
allowing more detail in the analysis because the block sizes
were smaller. This model showed six areas with anomalous
Poisson's ratios. ©Of those six, four are interpreted to be
definite anomalies at the 951 confidence level, and two are
considered to be only possible anomalies. The locations of
the four definite anomalies and their Poisson's ratios (V)
are; 1) the east-central Socorro basin ( ¥V = 0.309 #
0.006); 2) the east-central Socorro basin ( ¥V = 0.282 #
0.001); 3) the east Sccorro basin and west-central Los
Pinos Mourtains ( v~ 0.296 + 0.003); and 4) the south-central
Los Finoe Mountains ( v = (.281 ¢ 0.004). The locations of
the two possible anomalies are: 1) the west-central Los
Pinos Mountains north of anomaly 3, akove, (Vv = 0.281 =
0.001); and 2) the west-central Socorro kasin ( ¥V = 0.315 2
0.003}).
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The data set used here was not capable of providing
more detail than jis presented in this study, and cgould
neither confirm nor deny the presence of cther areas with
anomalous Poisson's ratios postulated in rreviovs studies.
Models with smaller (more numerous) blocks would be necessary,
and while such models would undoubtedly provide a better fit
to the data (smaller F), this decrease in the size of the
residuals would not ke justified, s=ince the residupals associated
with Medel 4 are already as small as the uncertainties in
the data. Thus, if more resclution (i.e.; smaller bleocks]
is desired using this technigue, then either more data,

and/or data with smaller errors must be employed.



I. INTRODUCTION

The purpose of this study iz twofold: 1) teo obtain
models of the P- and S-wave velocity distribution arcund
Socorro, New Mexico (and thereby estimates of the areal
distribution of Poisson's ratioc):; and 2) to evaluate the
usefulness of linear inverse technigques in obtaining these
distributions.

I have chosen to use linear inverse technigues (Jackson,
1972) to model the P- and S-wave velocity distribution using
the travel times of 600 raypaths from 236 microearthauakes
that occurred in the vicinity of Socorro, New Mexico. The
linear inverse techniques, described in detail within this
report, were chosen to be used because: 1) obtaining a
distribution of Poisson's ratioc for this area had not been
previcously attempted using these technigues and 2) this
method had advantages in that large amounts of data and
various models could be used along with more formal analyses
of the models. One disadvantage was the limitation on the
size of the anomalous areas that could be defined from the
data set used.

From these modelled velocity distributions, a map of
Poisson's ratio can be found for the study area. Poisson's
ratio is a dimensionless guantity representing a measure of
the general characteristics of a material. Poisson's ratio
has a range of values from 0.0 to 0.5, which corresponds to

a perfectly rigid solid and a perfect liguid, respectively.



Previous studies, vasing less formal technigues, have found
numerous small areas of anomalously high Foisson's ratios in
the vicinity of Socorro, Hew Mexico. It is believed that
these areas with anomalously high Poisson's ratios may be
associated with shallow (< 10 km) magma bodies. This study
evaluates the usefulness of linear inverse technigues in
resolving these small areas of anomalous Poisson's ratios as

well ag in resolving new anomalous areas.



II. GEOLOGIC SETTING

The area of study, delineated by the heavy lines in
Figure 1, is located in central Vew Mexico approximately 120
kilometers (km) south-southwest of Albuguergue, New Mexico.
A major extensional structure known as the Rio Crande rift,
is the dominmating structural feature of the study area. The
rift was formed by east-west tension which began approximately
25 to 29 million years (m.y.) ago and continuing to the
present (Chapin and Seager, 1975). The rift extends from
southern Hew Mexico in a northward trend inte southern
Colorado. Intragraben horsts, believed to be 9 to 10 m.y.
old (Chapin and Seager, 1975), appear as mountain ranges,
such as the Socorro-Lemitar and Chupadera Mountains (see
Figure 1); these separate deep, sediment-filled grabens,
such as the La Jencia and Socorro basins. For further
information, the reader is referred to Chapin and Seager

{1975), Sanford (1968), and Chapin, et al. (1978).



oo’

A STATION

=3 1 .
—— - .// )| 314
.wﬂ;/ B |
\ s f
VAR S
. '}_I_ L/;gg 'E."" ——‘34"15‘ .
ke ) { il ™
: \i ~
BTN L
A
{ AHC “ ‘M"T\j
E " 4 .ill ( BT
\ (/ = PE E ,gj %‘_F Jor nodo
| E ) } Hﬂ'n
a8 RE g i
o i '5.?; = ~ \ éi&
FREEE P
' T s 0N .
Figure 1. Location of study area and seismic stations;

study area delineated by heavy line.




III. FREVIOUS STUDIES

A study of Poisson's ratio and the P-wave velocity =
S-wave velocity ratio between Socorro and Albuguergue, New
Mexico was conducted by Sakdejayont (1974). His study used
32 well-recorded microearthguakes in the Ric Grande rift
within 45 km of the Socorroc seismic station (SHM). Sakdejayont
found a P-wave:S-wave velocity ratioc of 1.664 and a Poisson's
ratio of 0.217 for his study area, with associated standard
deviations of 20,022 and $0.0121, respectively. Sakdejayont
concluded that the values obtained, though somewhat low,
were, nevertheless, normal.

A second study of Poisson's ratio around Sccorro was
undertaken by Caravella (1%76). Caravella used a composite
wWadatil diagram, or raypath technigue, obtained from 50
microearthguakes located in and around the southern margins
of the Socorro and La Jencia basins, to obtain a spatial
distribution of Poisson's ratio for the Socorro region.
Caravella found an average Poisson's ratio of 0.262 with a
standard deviation of #0.034, He noted that his wvalue is
nearly 21 percent greater than that cbtained by Sakdejayont
for his study area further north. Caravella concluded that
the differences in the Poisson's ratios obtained from the
two studies can be attributed to the difference in the
S-wave velocities obtained, 3.30 km/sec versus 3.49 km/sec.
Caravella further attempted to determine a spatial wariation
of Poisson's ratio. However, he could not reach any definite

conclusions bacause hies data were insufficient. The data



were sufficient, however, to define three anomalous areas.
The areas, and their associated Poisson's ratios are: 1)
southern La Jencia basin with a Poisson's ratio of 0.292; 2)
Socorro Mountain with a Poisson's ratic of 0.289; and 3)
central La Jencia Basin with a Poisson's ratio of 0.284 (=zee
Figure 2).

A more recent study of Poisson's ratio near Socorro,
HNew Mexico was conducted by Fender (1978), who utilized
methods similar to those used by Caravella, Fender used a
weighted least-sguares linear regression on 277 Wadati
diagrams cbtained from 294 microearthguakes to cbtain an
average, as well as a spatial distrikution, of Poisson's
ratio. Pender cbtained an average Foisson's ratio of 0.251
with a standard deviation of #0.052. His results, as well
as Caravella's and Sakdejayont's, all fall within range of
each other when their respective standard deviations are
applied. Fender was able to describe four areas of anoma-
lously high Foisson's ratios. These areas are: 1) the
southern La Jencia basin with a Poisson's ratio of 0.280; 2)
east-central La Jencia basin with a Poisson's ratio of
0.275; 3) the northern tip of the Chupadera Mountains with a
Poisson's ratio of 0.279; and 4) east-central Socorrc basin
with a Poisson's ratio of 0.275 (see Pigure 2). The first
three anomalous areas lie near the same anomalous areas
found by Caravella. However, Fender's wvalues for Poisson's
ratios are about threes percent lower than those values

obtained by Caravella. The exact locations differ to
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the extent that none of the anomalies found by Fender
overlaps those of Caravella (see Figure 2).

A study using linear inversion technigues similar to
that of Aki et al. {1977) was conducted by Tang (13978) to
obtain a three dimensicnal crustal model using relative
travel-time residuals of P-waves. Tang concluded from his
model that minor low wvelocity zones appear to exist at
shallow depths (within nine km below the surface) roughly in
the area where shallow magma bodies were proposed by Shuleski
{1976} (see Figure 2). Tang's study is the only completed
study to date (June, 1979) in which linear inverse technigues
were used to obtain information about the upper crust in the

neighborhood of Socorro, New Mexico.



IV. APPLICATION OF INVERSION TECHNIQUES TO SEISMIC DATA

The linear inverse method (Jackson, 1972) is used in
this study to determine seismic P- and S-wave velocities in
a crustal model of the Earth. The data consist of 236
microearthguakes for which hypocenters and the P- and S-wave
arrival times are known. These 236 microearthguakes produce
600 rayraths.

Suppose that n cbservations are cbtained. Let these
observations, or data, which are the P- and S-wave travel
times, be dencted by ¥ir where 1 = 1,...,n. Construct an
Earth model that reasonably fit these data. This model will
have characteristic parameters or unknowns. Let these
unknowns, which are the P- and S-wave velocities, to be
determined in this study, be denoted as x; for § = 1,....m,
whera m is the number of model parameters.

Using the model, theoretical data are generated, i.e.,
th for i = 1,...,n. These are obtained from sclving the
forward problem. The theoretical data, generally, will not
have the same values as the corresponding cbserved data for
a variety of reasons. By adjusting the model parameters,
new theoretical data values are generated. This adjustment
is repeated until the theoretical data are as close to the
observed data as is possible or necessary. The final model
represents one possible earth model that would produce
theoretical values that are similar to those observed in the

field.



Arkbitrary adjustment of model parameters teo fit the
observed data may not be simple. The model may Le very
complex and large amounts of numeric manipulation may be
required. For this reason, some means of relating the data
to the model parameters is needed, i.e.

¥i o= oy, ¥yr .u. %) (1)
for 1 = 1,....:n.
Assume that the Fi 's may be expanded in a Taylor
series expansion about the :;'5 as follows:
m m 'ﬂfiixgl
?Eh = Zfiixi]d- T [xj-xghhighar order terms (2)
j=1 j=1
where the :r.j's are the new model parameters. By ignoring
the higher order terms, linearity is assumed and ecuation
(2) can be modified as follows:

th oy - .
SR i o0 = %) (3)
BRI i 73

Applying eguation (1) to eguation (3) yields:

th _ .. .

1
2%

oL

10
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:h.' are

where ﬂ,yi - f:h - y; is always known because the y
the calculated theoretical data and the y?'s are the measured
observed data; the llj's are the elements of the matrix
obtained from the 3£,/ El:tj'ﬂ and .|‘!'|.:|:.Jl =xy - :;. The only
unknowns in equation (4) are the xj's, the new model para-
meters. Because linearity is assumed, this procedure is
known as the linear inverse method.

Every inverse problem can be classified into one of
three categories: 1) Those problems in which the number of
data egual the number of unknowns, i.e., n=m; 2) Those
problems in which the number of data are less than the
number of unknowns, i.e., n<m, known as the underdetermined
inverse proklems; 3) Those proklems in which the number of
data are greater than the number of unknowns, i.e., n>m,
known as the overdetermined inverse problems. The overde-
termined case for computing seismic wave velocities in the
upper crust will be used in this study.

IV.l FORWARD FROBLEM
The travel time of a P-wave, the first arrival of a

seismic event, may be represented by the eguation

t =D 5

p -2 {5}
where D is the distance from the event to the recording
station and o is the velocity of the P-wave (see Figure 3).
Similarly, the travel time of the S-wave may be represented

by the eguation



(6)

Bl

where 3 is the velocity of the S-wave for the homogeneous
space in Figure 3.

TR

D
Figure 3 ® event
Example: Single A station

Homogeneous Space

For a space composed of two dissimilar blocks (see

Figure 4), eguations (5) and (6) become

t, =D . L,

and oy ey
t =D D

Pt

5 B
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Two Block Example A station

Any refraction of the raypath crossing the boundary is
neglected by assuming that the raypath crosses the boundary
at a point perpendicular to the boundary. An infinitesimal
section of the boundary is distorted in such a way as to
cause the raypath to intersect the boundary at right angles
(see Figure 4).

This procedure is expandable to any number of blocks.
By solving for the o's and 3's, given the travel times and
the distances travelled, Poission's ratio, ¥, for each block

is calculated from the eguation

-2 (7}

13
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Bullen {1963, page 213). Poisson's ratio is a dimensionless
value which may vary between 0.0 and 0.5 for different
materials. Usually, Poisscn's ratio is in the neighborhood
of 0.25 (Mettleton, 1940). The case where Poisson's ratio
is 0.0 corresponds to a perfectly rigid solid, while the
case where Poisson's ratio is 0.5 corresponds to a perfect
liguid, which has no rigidity ( 4 = 0). The Poisson's
ratios to be calculated for the blocks will provide a measure
of the general characteristics of the material that compose
the blocks.

The forward problem is solved by assuming initial
estimates for a{i and ;,rji and computing the theoretical
travel times. For the simple homogeneous case above, the

Ay term in egquation {(4) in matrix form is
ﬂtp
bt
th

where ﬂtp and ﬂta are the thecretical travel times, t—,

Oy =

obtained from the forward problem minus the observed travel
times of the P- and S-waves, respectively. The Ax term in
eguaticn (4) in matrix form for the simple homogeneous case

above is

ﬂﬁ{

ﬂ.x-ﬂlﬂ

where At =ei—of ana Ap =ﬂ—rﬂ°. ol and 3 are the new model

parameters to be determined. o and @° are the initial P-
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and S-wave model parameters, respectively. It has been
found from previcus studies (Caravella, 1976; Fender, 1978)
that the average crustal P-wave velocity in and near the
study area is 5.8 kilometers per second (km/sec). Fender
(1978) has found that the average Poisson's ratio in the
study area ie 0.25. Using this value yields a P- to S-wave
ratio of V3 : 1, and the S-wave velocity is thus

Bu o//F =5.8 km/sec = 3.35 km/sec.

These values, 5.8 km/sec and 3.35 km/sec for o and )5,
respectively, are assumed for each block of the initial
model .

The A matrix in eguation (4) for the simple homogeneous

cage becomes

o = — = = —

e Aok | |-

ats 2(0/o) il
20 | 3P B

The inverse problem (eguation 4) expressed in matrix

form for the simple homogeneous case thus is

D
ﬂ'tp ” g ﬂn At
.-'.'u-.- 0 ~ hp .

Kow consider a more complex theoretical study area
partitioned as shown in Figure 5. Suppose that within this

study area there are two events and two stations. The
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origin times, travel times, and event locations are known.
The raypaths are numbered as shown in Figure 5. The raypaths
are shown in map view, but depth of focus and station eleva-
tions must ke considered when the distances travelled in

each block are calculated.

ol
EE Taypars 3 [t P
.\ \ fﬁl/A
5 U "
% A 2 =
i el =
2 0, TP v P P
’ #i:::::___ i llﬁﬁh‘hhqd
Figure 5. * Event
Example: Theoretical Study Area A station

In matrix form for these two events, the problem is now

written
; ﬂt.:ﬂ b e oep eD B o 0 8 o | Fhs
1 (xF &F &

Ax . o o o o O 0 o0 %‘ -{%‘ -FEJ‘ A 48
-ﬂtg -ﬁ o,
ﬂtﬁ - A 3,
m:; etec. A =,
ﬂti A }'E'l-
ﬁt; 4 =,
.-‘l'.t: A B,
-ﬂt; A ol
Ae? A s
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The blocks which are not sampled by a given raypath will

have zero for their corresponding A matrix elements, since
their distances equal zero. It is not necessary for the

event or station to lie within the study area so long as a
portion of the raypath is within the study area. The total
length of the raypath is reguired to calculate the theoretical
travel time but only the distance in the study area is
recquired for the matrix A.

The procedure behind the linear inverse method iz to
produce a matrix by inverting the matrix A such that egquation
(4) can ke solved, i.e.

Ax = Hby (8)
where H can be considered as the “"generalized inverse™ of A.
If the matrix A is square (n=m) and nonsingular, then H =
a~l, which can be easily calculated.

For the overdetermined and underdetermined cases in
which the number of data points does not egual the number of
model parameters, the matrix A is not sguare. This means
that h-l is not defined by matrix theory. The generalized
inverse of matrix A (=H) must be cbtained in order to transform

equaticon (4) to a solvable form similar teo eguation (8).

IVv.2 LEAST SQUARES METHOD
Residuals will cccur due to noisy data andfor poor
model parameters. These residuvals, denoted as E.i. for

i=1,...,n, are defined as

Ej_ - ﬂ}ri— A ﬂ.xj
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for § = 1,...,m. These residuals can ke minimized in the
least sguares sense. In the least souvares measure, these
residuals are assumed to be random and normally distributed
and primarily due te noise. The residuals are minimized
with respect to the nl':'u:j's. Let

EtE = Ez t?-hx}t{y-hxl

= {y - x%a Hy-h:r.ll

:,r ¥=y Cax- xtnthtnthx (2)

where the subscripts and the deltas, &, have been omitted;
and the superscript "t" implies the matrix transpose. Let
yty = §, which is a scalar; .H.ty = V, which is a wector; and

t

A°A = M, which is 2 matrix. Eguation (9) becomes

RE = §=2 Zvj“j*'znjk“j“k (10}

Taking the partial derivative of eguation (10) with respect

to x, and setting it equal to zero yields

I A TR0 1 M P R ¥ X3

The & term drope out because it is a scalar. The Kronecker

delta, &, has the value of 1 when j§ = 1 = k and a value of

0 when j # 1 ¥ k. FEguation (11) can ke rewritten as

2 =
2R% -2V, +Z 1k “% E :|1 5 {12)

Ehxl
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M i=s a symmetric matrix because Ata is a symmetric sguare

matrix. Egquation (12) becomes

2
3R _ -2v, + EZHljxj =0

bxl ;|
which implies that
MX=V
ar
atax = aly
If htn is nonsingular, then its inverse ihth]+1 exists
and
2 = (a%a) " 1aby + x° (13)

where ¥ is the vector containing the new model parameters,
and x° are the initial model parameters. Egquation (13) is
the least squares solution similar to eguation (8) for the
overdetermined problem. The matrix [ﬁtnlﬁlht is the matrix
regquired to solve the overdetermined problem in the least

Squares Sense.

IV.3 EICERVALUE/EIGENVECTOR DECCMPOSITICN METHOD

Another method of solving eguation (4) is by the eigenvalue/
eigenvector decomposition method. The least squares method,
described above, for the overdetermined case, i.e., n>m is
valid provided that the matrix A®A is non-zero and the
inverse {atai'l exists. The eigenvalue/eigenvector decomposi-
tion method offers an alternative method for ckbtaining a
generalized inverse of the matrix A. For the overdetermined

t

problem, the matrix A is not square. The matrix A A, however,
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is square. If the matrix htn is singular, or nearly so,
then the eigenvalue/eigenvector decomposition is applied.

The eigenvalue eguation associated with an arkitrary n
X n square matrix A is

AU, = A0, (14)

where the scalars 11 for i = 1,...,n are the eigenvalues and
Ui for i = 1,...,n are the eigenvectors or principal axes,
The eigenvalues 11 satisfy the eguation

detla-l‘- a,, B3 X, ee- a,. = 0
®n1 ®nz  **t ZnE

If the eigenvalues are distinct, then

Ax = Ax
yields n distinct eigenvectors. These eigenvectors can be
normalized to the value one by

:tx = 1

If L is a solution to eguation (14), then so is (-A).

Mow consider an arbitrary m x m matrix A and the n x m
system

Ab = ¢
where b and ¢ are representative of the x and y forms in
equation (4). Taking the adjeint of this n x m system
vields the m X n system

ATd = c.

This m % n system can be written as one matrix eguation
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Fg = h
where
r—m—
0 R
"
F = I
m ]
aT: 0
i
I e
[h]
g = —
d
and

i

The matrix F is an (n + m}) x (n + m) system. The matrix F,
which is symmetric, will yield m + n eigenvalues in the

manner degcribed below.

The eigenvalue/eigenvector decomposition proceeds in

the following manner:

This yields
Av = Aqg (15)

and
u = Avw (16}
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Egquations (15) and (16) yield the "shifted eigenvalues"
{(Lanczos, 1961, p. 117). Eguations (15) and {(16) in
matrix form are

AV = Au (17)
and

atv =Av (18)
Postmultiplying eguation (17) by vt vields

H.Wt =0 A ?t-

Since YVv© = I, the identity matrix, then

a=uoAvt (19)
From eguation (13)

% = [(wAvE)® oav] Tt uavhty (20)
where the expression for the matrix 2, given by egquation
(19), is substituted into eguation (13) to yield equation
{20). Taking the transpose of T A vt in eguation (20)
results in

4 -[v.-'h vt u.ﬁvt] "1 wadhy. (21)

% - I, the identity matrix, and A are symmetric which

U
implies that A= ﬂ.t. Applying these relationships, eguation
{21) becomes

2 =[vaA?vt] 1 vathy (22)

Performing the multiplicaticn in equation (22) gives

2= (VAT oy
The matrix (v A™L %), designated as the matrix H, is the
generalized inverse matrix reguired to scolve the overdeter-
mined probklem, and is equivalent to the least sguares solution

given by eguation (13}).
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There are at most m non-zerc eigenvalues obtained for
this example. If p of the m eigenvalues are non-gero, then
this same formulation may be used by discarding the row or
rows of the eigenvalue matrix for which the zero eigenvalues
occur, The matrix A then becomes a p x m matrix. The
corresponding eigenvector or wvectors of the eicenvector
matrix V must alsc be discarded by omitting the corresponding
columns in matrix V. Matrix V then becomes an m x p matrix.
The same procedure must alsco apply to the matrix U.

The number of eigenvalues retained, p, corresponds to
the customary definition of the rank of the matrix. In this
method, p also corresponds to the number of degrees of
freedom in the problem. Eigenvalues and eigenvectors of
non-zerc value may alsc be discarded. However, discarding
eigenvalues reduces the number of degrees of freedom in the
problem, and the resulting soclution no longer corresponds to

that of the classical least sguares solution (eguation 13).

IV.4 UNCERTAINTIES - O

In any data acguisition procedure, there are always
some errors which occur in the actual readings or measure-
ments. The inaccuracies arise from a number of reasons,
such as noise, human reading errors, calculations and instru-
ment inaccuracies. In many cases, the size of these errors
may be known. In linear inversion, these errors are applied
te the matrix A. For each datum, y;, there is an assocliated
uncertainty called J;. These uncertainties are applied to

the rows of the A matrix in such a manner that each element



of row 1 of the matrix A, a4 is divided by the corresponding
431‘. These sama -:.:l]_'n are also applied to the data matrix Ay
in the same manner. The ﬁi': are applied prior to any
manipulation of the matrix A. Any uncertainties in the

data, then, are applied, carried through the calculations,

and are reflected in the final solution and variances. In

this paper, the uncertainties represented by the ﬁ;'t are

assumed to correspond to one standard deviation.

IV.5 A PRIORI ESTIMATES - T

A similar procedure can be applied to the model. If
some information about the model parameters is known, then
an a_priori estimate, T_'j, can be applied to the model. For
instance, if a certain model parameter is suspected to fall
within a certain limit determined from additional data or
previous studies, then that limit can be applied to the
initial model. These estimates are applied to the matrix A
in such a manner that each element of the column j of the
matrix A is multiplied by the corresponding T&.

A small Ta implies that 1) the corresponding model
parameter, “;* is well known and 2) the Ta will diminish the
corresponding column in matrix A and thus the final model
parameter will be more dependent on the initial model parameter
than on the data. A large T implies that 1) the corresponding
initial model parameter is not well known and 2) the cor-
responding parameter will be determined more by the data
than the model.
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The a priori estimates, like the uncertainties, are
applied prior to any manipulation of the matrix A. In this
way, the a priori estimates are carried through the calcula-

tions and are reflected in the final solution.

IV.6 VARIAKCE AND STANDARD DEVIATION

To speak of a firnal seclution without including a statement
akout the uncertainties in the final socluticn is useless.
The variances are easily obtained through the matrix H. The

t

diagonals of the matrix HH are the variances on the final

model parameters, xj. i.e., the variance on the parameter xj

is the element {Hﬁt} .« When the a priori estimates, fﬁ.

13

are applied to the matrix A, these same estimates must be

applied to the variances. The variances, var (% ), are thus

3
determined by the eguation
2
var (%,) = (BE%),.
ar ( j] { ]jj fj
The standard deviation is defined as the sguare root of

the variance.

IV.7 STANDARD DEVIATIOM ON POISSON'S RATIO

The lipear inverse method produces P- and S-wave veloc-
ities and associated standard deviaticns. When these velocities
are substituted into eguation 7, a Poisson's ratio is obtained.
To obtain a standard deviation on the Poisson's ratio, the
derivative of equation 7 is taken with respect to o and 4,

i.e.,
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Thus, an eguation relating the change in Poisson's
ratio with respect toc the change in the given & End!ﬁ is

obtained, e.g.

| 49]- @ o] - = |4]]

where d« is the standard deviation on the P-wave velocity
(et), d2 is the standard deviation on the S-wave velocity
(), and dv is the resulting change in the Foisson's ratio
for the given o and .?‘ﬁ

IV.8 FERFOFMANCE INMDEX "R"

The scalar R is an indication of the 'performance' of
the calculations in relation to the real data {(collected in
the field), the data created from the model, and the initial
uncertainties o3 of the real data. R is defined as

r=[1 Z"(Mi)z y

n i=l r.::

where n is the number of data points,
. th
Ay = s it R ﬁ?i
. th

where fi is the 1 observed data and y:h ig the :i.\""]‘jI

theoret-
ical data. &?1 is created by convolving the difference,
th

¥i= ¥i o+ with the matrix 5, where S = AH. &,

i iz the

uncertainty of the observed data yj.
A value of R that is moch less than the value 1.0
indicates 1) that the uncertainties G are too large and/or

2) there are too many model parameters to be justified by
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the data given. The reverse is true for an P value that is
much greater than 1.0. A value of R that is approximately
equal to 1.0 implies that 1) the uncertainties on the data
are justifiable and/or 2) the model is of sufficient size

ané number of parameters that an acceptable solution can be

resolved.
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V. DATA ACQUISITION AND REDUCTION

V.1 DATA ACQUISITION

The linear inverse technigues, described above, are
applied to microearthguake data to determine Poisson's ratio
by sclving for the velocities of the P- and S- waves in a
crustal model. Microearthguake data used in this study were
collected from the Socorro, Wew Mexico area between April,
1975 and February, 1978. The data were ceollected by the New
Mexico Institute of Mining and Technology (NMIMT) geophysics
group using wvarious arrays of four to six Spengnether Instrument
Company MEQ-800 analog recording units. Each station consists
of an MEQ-B800 uvunit, either a Mark Products L4C or Willmore
vertical seismometer having natural frequencies of 1.0 and
1.5 Hertz (Hz) respectively, a gain-stable amplifier, a
guartz-crystal-controlled timing unit, and a smoked-paper
helical recorder which operates at a recording speed of 120
millimeters per minute (mm/min). For further information on
these instruments, their specificaticns and additional data
acquisition procedures used in acguiring the microearthguake
data for this study, the reader is referred to the descriptions
offered by Caravella (1576), Rinehart (1976), and/or Fender
(1978).

The area of study is located in the viecinity of Socorro,
New Mexico, and includes portions of the Ric Grande Valley
and rift system covering about 1075 xmZ. The area, located

between north latitudes 34.25° and 33.95° and west longitudes
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107.1° and 106.75"°, was selected on the basis of previous
studies of this area and raypath coverage. Originally,
raypaths from events to stations which had more than 75
percent of their total length lying inside the study area
were used. Fowever, this produced more than 1800 raypaths
which proved to regquire too much computer storage. The data
set was reduced to only those events and stations which lie
entirely within the study area. This reduced the nurnker of
raypaths to 1108. This still produced an overload on the
computer when a model consisting of 16 or more blocks was
used. So the numker of raypaths was reduced to 620 by
retaining only those raypaths whose P- and S-wave travel
time residuals were less than 0.2 sec. and 0.5 sec., respeac-
tively. The wvalues of 0.2 gsec. and 0.5 sec. were suggested
by Sanford (personal communication, 1979) who felt that
after any reading error and station correction have been
applied to a travel time, any delay or advance in the observed
travel time due to crustal variations would affect the P-
and S-wave by not much more than 0.2 and 0.5 seconds, respec-
tively. ©Cf the 245 events comprising the 620 raypaths, 236
of these events had standard deviations on their origin
times of less than 1 second. Three events had standard
deviations on their origin times of greater than 6 seconds,
The nine events with standard deviations greater than one
gecond were eliminated. This reduced the number of raypaths
to 600 for 236 events. These events appear in Appendix A,

and a complete listing of the data set, including the P- and
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S-wave arrival times, appears in Appendix J. Eleven of
these 236 events showed calculated depths that were negative.
These events were not eliminated because it was assumed that
any discrepancies in the mieroearthguake location would be
reflected in the origin time standard deviations. Any
negative depths were corrected for within the subroutine
program TTYM (discussed below). The difference between the
depth of the microearthquake and the station elevation was
calculated in this subroutine and this value is seguared in
the calculations which eliminated the negative numbers
(Ward, personal communication, 1979).

The reduction of the number of raypaths to 600 had its
advantage in the fact that the problem could be handled by
the computer. The disadvantage lies in the fact that the
reduced data set greatly reduced the desired level of raypath
coverage of parts of the study area.

The seismic stations within the study area and which
recorded data used in the study are listed in Table 1 along
with their respective locations, elevations and station
corrections (see also Figure 1).

The event locations were calculated using a computer
program (CRUNCH, written by Roger Ward of N.M. Tech) which
utilized a damped least sguares method to determine the
longitude, latitude, depth, origin time, and the respective
standard deviations for a given event. The station locations
and an assumed P-wave half-space velocity of 5.8 km/sec, and

P-wave arrival times were used as input for CRUNCH. Only
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TRELE 1
Station Designations, Locations, Elevations and
Station Corrections Used in this Study

Station Station
Desig- Latitude Longitude Elevation Correction

Station Name nation {degrees) (degrees) {Jem) (secs)
Puerticito de
Bowling Green BG 34.2068 106.8205 1.516 0.00*
Corkscrew Canyon oC 34.1442 106.9812 1.649 -0,12
Chupadera Mine o 33.9501 106.9576 1.640 0.18
Duchess Mine M 34.1075 106.8079 1.536 =0.06
Fluorite Mine M 34.0829 106.38047 1.537 0.00*
Indian Cave IC 33.9870  106.9967 1.730 0.14
Nogal Canyon WG 33.9648 106.9933 1.730 0.13
South Canyon sC 34,0100 107.089%4 2.073 0.25
Stone House SH 34.1570 106.7802 1.577 U.Wt
San Lorenzo Canyon &L 34.2234 106.9510 1.615 -0.08
Tajo Arroyo TA 34,0498 106.7751 1.558 -0.05
Windmill W 34.0120 106.9929 1.673 0.12
Wood's Tunnel WT 34.0722 106.5459 1.555 =0.15

* calculated correction eguals 0.00 with respect to Station WI.

tmtm:j:infmtimmihhletnd&b&mﬂmam:mﬁm,th&r&fnm
correction set at 0.00.
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events recorded by four or more stations are used in this
study.

The P- and S-wave arrival times were obtained by reading
the seismograms with a Gaertner travelling microscope. This
microscope has a reading accuracy eguivalent to +0.003
seconds. Tests have shown that the human eye can read the
same record with an accuracy of ahout 0.02 seconds (Fender,
1978).

The uncertainties G; applied to the P-wave travel
times were cobtained directly from the standard deviations
cbtained from the computer-calculated origin times. Any
inaccuracies in the P-wave arrival times were assumed to
have been reflected in the origin time standard deviation
given by CRUNCH. Thus, if CRUMCF gives a standard deviation
on the origin time of 0.26 seconds, then the uncertainty
used for the P-wave travel times for that event is 0.26
gseconds. The uncertainties ﬁ; applied to the S-wave arrival
times are relatively harder to determine because the S-wave
phase, arriving after the P-wave, may not be clearly evident.
From experience, Sanford (personal communication, 1973)
indicates that the true S-wave arrival usually lies within
0.2 seconds of the arrival that is normally chosen as the
S-wave. Thus, the uncertainties ﬂI‘fur the S-wave travel
times are cbtained by adding 0.2 seconds to the respective
origin time standard deviations.

The a priori estimates, I&, were obtained in the following

manner: The depths of the events used in this study range
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primarily from near surface to depths of 12 km. It is

likely that the microearthguakes oricinated in the deeper,
more brittle Precambrian rocks rather than the overlying
softer sediments which tend to transfer stress by plastic
deformation more than by brittle fracturing. Thus, the
microearthguake depths and the high angles of emergence of
the raypaths at the stations indicate that the raypaths
travel primarily through the Precambrian. If the station
corrections account for the sediments that overlie the
Pracambrian rocks, then any variations of the velocity of

the seismic waves would be due to the variations in the
properties of the Precambrian rocks. Hughes and Maurette
(1957) have shown that the Poisson's ratio of a rock is
dependent on mineral composition of the rock. Thus, the
Foisson's ratio of a particular rock can be determined by

the percentage of its mineral constituents and the velocities
of these mineral constituents. By determining the mineral
percentages in the Precambrian rocks in and around the study
area, and multiplying these percentages by their respective
mineral velocities, and then summing the results, the probable
range in the P- and S-wave velocities can be determined,
Listed in Takle 2a are the laboratory-derived P- and S-wave
velocities for the individual mineral constituents
(Christiansen and Fountain, 1%75). The mineral percentages
for the Precambrian rocks near the study area are listed in
Table 2b. Assuming that these rocks are a fair representation

of the Precambrian material through which the raypaths



Table 2a’
Mineral Velocities and Mineral Percentages of Precambrian
Basement Rocks Near Socorro, New Mexico

P-wave Velocity S-wave Velocity
Mineral (km/sec) {(km/sec)
Cuartz 6.05 4.09
Microcline 6.01 3.34
Plagioclase
with 25% 6.25 3.41
Anorthite
Biotite-Muscovite 5.16 2.87
Magnetite 7.40 4.20
Hornblende 7.04 3.81

Christiansen and Fountain (1975)

FE



Basemant
Rock

Qtz-Monz. East
of Rio Grande,
Socorro, WM

Qtz . -Hﬂ-l'lz -
Oscura Mtne,
e

Otz .=Monz .,
Ladron Mtns,
M

Qtz.-Monz.-
Granite, Loe
Pinas Hills,
HH

GCranite-Gneiss,

La Joyita
Hills, MM

GCranite-Gnoeiss,

Polvadera
Mtns, MM

Percentage of Mineral in Basement Rock nsaumhlaggf

[ Microcli 1

Rocks Near Socorro,

Table 2b

2 PBudding (personal communication, 1979)

Mineral Assenblages and Associate
Mineral Percentages for Precambrian Basement
New Mexico and the Associate Velocities

gtz ne Plag An,. Biot-Musc. Magn Horn
32 34 25 8 1 0
31 31 30 1 1 0
31 29 33 6 0.3 0
38k 40 15k 3 1 1
30 45 17 b 1 0
35 45 10 B 1 0

Average P-wave velocity - 6.00 £ 0.04
Aveage S-wave wvelocity - 3.56 ¢ 0.03
Resultant Poisson's ratio - 0.23 & 0.01
calculated from average velocities

P=wave S=wavea
Velocity Velocity Poisson's
{km/sec) (km/sec) ratio
6.029 3.569 0.230
6.049 3.569 0.233
6.013 3.547 0.233
&.027 3.620 0.218
5.966 3.524 0.232
5.934 3.547 0.222
n
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travel, the average P- and S-wave velocities and standard
deviations are 6.00 ¢t 0.04 km/sec and 3.56 ¢ 0.03 km/sec,
respectively. The resulting Poisson's ratic for these
valocities is 0.23., These velocity standard deviations are

used as the values for the a priori estimates, T}.

V.2 DATAR IRVERSIOK

A conputer program was written to perform the calcula-
tions outlined in the section entitled Application of Inverse
Techniques. The master program (see Appendix B), designed
for use on the DEC-20 computer, is a FORTRAMN language program
that computes the matrices, eigenvalues, eigenvectors, and
does matrix inversions and matrix multiplications using IMSL
(International Mathematics and Statistics Library) subroutines.
A program for calculating the raypath distances in each
block was obtained from R. Ward of New Mexico Tech. This
program creates a grid pattern of specified dimensions which
then uses the station and event locations to calculate the
lengths of the raypaths in each block. This program was
incorporated into the master program as subroutine TTYM (see
Appendix B).

Five different models of the study area were constructed
for use in the inversion program. The first model consisted
of a single block (Figure 6a). The second model divided the
study area into four equal blocks (see Figure 6b). This
created four unknowns or model parameters to be cbtained

from the inversion program. The third model divided the
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study area into nine egual bklocks (see Figure 6c) creating
nine model parameters. Sixteen model parameters were created
in the fourth model, which divided the study area into 16
equal klocks (see Figure 6d). Finally, the fifth model
divided the area into 25 egual blocks (see Figure 6e). This
created 25 model parameters to be solved for by the inversion
pErocess.

Each of the models had initial P- and S-wave velocities
of 5.8 km/sac and 3.35 km/sec, respectively, for all of the
klocks. The same data set of 600 raypaths was used for each
model computation as well as the same 51'5 (listed in
Appendix A) and ‘i‘_"j's.

The model parameters, which are the wvelocities of the
P- and S-waves for each block, were designated as ”j and ;%,
respectively.

For computer efficiency, the program was designed to
set up the matrix A and calculate the dj's and g%'s separately.
The program calculated the respective eigenvalues and eigen-
vectors for the = and @ calculations and proceeded with the
decomposition; that is, the lowest eigenvalue and eigenvector
was systematically eliminated and the velocities, standard
deviations, and R value was calculated each time an eigenvalue
was eliminated. Thus, if m eigenvalues and eigenvectors
were calculated for the <t calculations, for example, then m
different sets of P-wave velocities and standard deviations

and m R values were obtained.
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The choice of the set of velocities to be used as a new
model was based on the following criterion:

1) If the R value was greater tham 1.0, then the alpha
and/or beta decomposition closest to 1.0 was used,

2) If the R value was less than 1.0, the velocity
distribution chosen was that which had the average of its
standard deviations closest to, but less than, the a priori
estimate, T. For example, if keeping p of the m eigenvalues
generated for the P-wave solution produced an average standard
deviation that was less than 0.04, which is the P-wave a
priori estimate, then these P-wave velocities obtained by
keeping p eigenvalues were used as new model velocities, if
R was less than 1.0. The upper limit of the average of the
standard deviations for the S-wave model was set a 0.03
seconds.

The two chosen sets of velocity distributions were
applied to eguation (7) to calculate a Poisson's ratio
distribution for this new model, which was created by the
chosen velocity distributions. This new model was again
applied to the program and the procedure repeated. Each
time that this procedure was repeated constituted one itera-
tion. The program was allowed to iterate in the manner
described above until no sionificant changes occurred in the

results. This was usually attained after two iterations.
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Vi. LCISCOSSION AND DATA ANALYSIS

Each of the five models described above were subjected
to the linear inverse procedure. Though the preferred
gsolutions for the five models differ, they exhibit similar
general characteristics.

Retaining all eigenvalues gives the classical least
gquares solution. This solution vields the largest changes
in the wvelocities from those of the initial model as well as
the largest standard deviations. This occurs because the
solution is most data dependent when all of the eigenvalues
are retained.

Systematically eliminating the lowest eigenvalues, that
is, proceeding with the decomposition, effectively eliminates
the data dependency of the model parameter or block that has
the least amount of data. The greatest effect of eliminating
an eigenvalue is evident in the block associated with the
eigenvalue that was eliminated. The standard deviation of
that block decreases and its associated velocity approaches
that of the initial model.

As eigenvalues are eliminated, the standard deviations
decrease and the velocities approach those of the initial
model. This occurs because eliminating eigenvalues decreases
the number of degrees of freedom. HNearly complete model
dependency is achieved when only the largest eigenvalue is

retained.
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R for all five models was initially 1.88 and 0.90 for
the < and 5 calculations, respectively. The initial R
values were the same for all five models because the =ame
initial P- and S-wave velocities of 5.8 km/sec and
3.35 km/sec, respectively, were assumed. Prior to each
decomposition seguence (iteration), an R value was calculated
for the model. The R value gbtained when all eigenvalues
were retained was initially much smaller than the R for the
initial model. As the decomposition proceeds, i.e,, as
eigenvalues are eliminated, the R walue increases until it
approaches the value of the initial model. This is because
model dependency is being approached. As expected, the R
values for the new initial models tend to decrease slightly
from iteration to iteration indicating hetter agreement
between model parameters and data is being attained.

Tha final R values for the preferred alpha solutions
for the five models are all greater than 1.0, Though the
values are not much larger than 1.0 (around 1.4), this does
imply that 1) the rmodels used for the P-wave calculations

are somewhat crude, i.e., the area could have profitably

been divided into more blocks, and/or 2) the uncertainties, O,

used are too small. Because R is greater than 1,0, the
P-wave velocities chosen to be carried to the next iteration
are based on the corresponding R that is closest to 1.0.
Since the R value is smallest when all eigenvalues are
retained, the P-wave velocities chosen are always those of

the least sguares solution, i.e., all eigenvalues retained.



45

This sclution alsc has the largest standard deviations of
any of the sclutions.

The R values for the S-wave calculations are consistently
less than 1.0. Again, the wvalues are not much less than
1.0 {(around 0.8)., However, this does imply that 1) the
model given for the S-wave iz somewhat too detailed, i.e.,
too many blocks are used, and/or 2) the uncertainties, ﬁ;,
used are too large. Because R is less than 1.0 the preferred
E-wave solution is based on the average of the standard
deviations that is less than, but closest to, 0.03 sec.

The same model, in terms of the number of blocks, is
applied to both the o and )3 calculations. The R values
indicate that a more detailed model could be used for the =
calculations and a model with less blocks could be used for
the 3 calculations in order teo obtain R values closer to
1.0. However, this would present prokblems when the two
models are combined to calculate Poisson's ratics because
of the difference in the number of blocks and block dimensions
of the two models. Thus, a smaller difference ketween the R
values of the of and jﬂ calculations may be achieved by
changing the uncertainties on the model. The y< uncertainties
are 0.2 seconds greater than the & uncertainties. By
lowering the uncertainties on the fﬁ calculations, the R
value would be increased. If the additional 0.2 secconds is
somewhat too large, then this would imply that the S-wave

arrival could be identified to better than $0.2 seconds.
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The Poisson's ratios produced for each model are reasonable
values. In other words, there are no extreme values such
as 0.1 or 0.4. The standard deviations on the Poisscn's
ratios are dominated by the large standard deviations on
the P-wave velocity solutions.

The preferred results for each of the five models are
examined in detail below, and summarized in Table 3.

Model 1 uses a single block of dimensions 0.35* x 0.3°
(longitude x latitude = 31.93 km x 33.68 km) to describe the
entire study area. This produces only one eigenvalue when
the linear inverse technigues are applied to the model. The
results of the iterative procedure appear in Appendix C.

After one iteration, the results are unchanoed, which
indicates that the best sclution has been attained. The
results show that Poisson's ratic for the entire study
area is 0.265 + 0.001 (see Figure 7). The R value of 1.390
suggests that the model is somewhat crude. This is under-
standable because this is the simplest model possible.
However, this R value is not unreasonable.

Model 2 divides the study area into four equi-area
blocks (see Figure 8). Appendix D gives the computed results
for model 2. Table 3 summarizes the results obtained for
this model. The R value calculated for the final model
gstabilizes after cne iteration (see Table 3).

The basic difference between thizs model and Model 1 is
that more model parameters are used in this model., This
results in lower R values for the 4-block model, indicating

that the process has found a better seluticn,



Model of blodks

4"

5I

KEumber

16
16
25
25

Block Dimersnions
{longitude x latitude)

degrecs

0.350 x 0.300
0.175 ® 0,150
0.117 x 0.100
0,088 x 0,075
0.088 x 0.075
0.070 x 0.060

0.070 x 0.060

kilometors

31.93 x 31,68
15,96 x 16.84
10,64 x 11.22
7.98 x 0.42
7.98 x 8.42
6.39 x 6.74

6.3 x 0.74

Table 3

Sumary of Model Results

Typical
Ehﬁﬁ:;ﬁﬂbﬂ

1075
269

119

67

67

43

43

Mmber of
Figenvalues Retained Murber of

o

==t

16
11
22
14

for Pinal Model

£

10
10

iterationa for

final model

i R Values

o~ j3  final model
1.751 0.893 1,390
1.620 0,867 1,299
1.429 0.810 1.169
1.216 0.759 1.013
1.225 ©.759 1.019
1.234 0,771 1,029
1.287 0.7 1.061
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The distribution of the resulting Poisson's ratios are
shown in the overlay of Pigure 8. It is evident that the
linear inverse method defines higher than average Poisson's
ratios (0.278 and 0.291) for the northern half of the study
area. These values are not significantly different even at
their 95% confidence limits.

Model 2 will serve as example of the effects that data
guantity has on the eigenvalues. The P- and S-wave csolutions
for Model 2 are chtained while keeping all eiganvalues and
eigenvectors (see Table 3). The eigenvalues produced from
the initial model are 5.06, 2.48, 2.26, and 1.567 (see
Appandix D). Eliminpating the lowest eigenvalue causes the
greatest velocity and standard deviation changes to occur in
block 1. This implies that Llock cne has the least amount
of data, Ficure 6b supports this implication. When the
next lowest eigenvalue is elirminated, block number 4 exhibits
the next greatest change indicating that bBlock 4 has the
next least amount of raypath travel distance. Elirinating
the three lowest eigenvalues causcs block 2 to take the next
plurnge toward model dependency. Block 3 ghows the least
drastic velocity and standard deviation changes which indicates
that block 3 has the rost data. Figure 6k confirms this
indicaticon that block 3 doez indeed contain the maximum
amount of data in terms of raypath travel distances.

Model 3 divides the study area into nine egqui-area

blocks {see Figure 9). This creates nine model parameters
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to solve and nine eigenvalues and eigenvectors to decompose.
Appendix E gives the results fer this rodel. The iterative
process cbtains an R value of 1.17, which indicates that a
rcre ccmplex model such as this one produces a better sclution
than Model 2. Takle 3 summarizes the results from Mcdel 3.

The firal mcdel chosen is that which is produced after one
iteration. Further iterations reveal riner changes in the
velecities and standard deviations, but the final model PR
value remains staktle.

The overlay cof Figure 9 shows the Poisson's ratio
distributiop oktained from the final model of iteration 1.

The Peisson's ratios remair above the previously assumed
value of 0.25, especially in the northwest and northeentral
portiens of the study area, with one particularly large
value for bleck 2.

The blocks in Model 3 are still too large to cdelineate
small areas of aromaloug Polisson's ratios, so Mcdel 4 is
created in an attempt to ketter delineate small anomalous
areas. Mcdel 4 divides the study area intec 16 ecvi-area

locks (see Figure 10). This creates 16 eigenvalues and
eicenvectors to decormpose anéd 16 model parameters to
solve when the linear inverse technigues are applied.
Appendix F gives, in more detail, the results of this model
while Table 3 summarizes these results. The R value calculated
for the final mcdel is 1.013. This R value indicates that
the final model has a better relation between the size and
number of parameters and/or the uncertainties on the data

are rore compatikle with this model than with Model 3.
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The only changes that occur after two iterations are minor
changes in the block velocities and standard deviations (see
Appendix F). Thus, the final velocities for dModel 4 are
chosen from the solutions of iteration 2. This solution
produces an R value on the final model of 1.013 (see Table
3).

The overlay of Figure 10 shows the Poisson's ratio
distribution obtained for this model. The standard devia-
tions on the velocities are larger than for the previous
model, especially on those blocks that have few raypaths.
£till evident is the large Poisson's ratio obtained for
bElock 2. At the 95% confidence level the minimum Poisson's
ratio that this block could attain is 0.324, which is still
anomalously high. It should ke noted that the standard
deviation on the Poisson's ratio of block 10 is about 2.5
times larger than that of block 2, yet block 10 has the most
data while block 2 is one of tha five blocks with the least
data (see Figures 64 and 10). It would be expected that the
block with the most data would have a lower standard deviation
than a block with less data. However, an inspection of the
number of eigenvalues retained for the chosen solution
reveals that, though all 16 eigenvalues are retained for the =
calculations, the solution for the @ calculations retains
only eight eigenvalues. Thus, the solution for bleck 2
would be more model dependent than data dependent, since its
eigenvalue has been eliminated, and thus, the standard

deviation on Poisson's ratio for block 2 could conceivably
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ke lower than that for a block with more data. Other blocks
with large Poisson's ratios are blocks 7 and B (see Figure
10). A low Poisson's ratio is associated with block 1.
However, its standard deviation range krings the value to a
maximum Poisson's ratio of 0.27 with 95% confidence.

Model 5 is created tc study the effects of additional
blocks on the inversion method, as well as to attempt to
further delineate smaller areas of ancmalous Poisson's
ratios. Appendix G gives the results of this model. The
linear inverse technique- creates 25 eigenvalues and eigen-
vectors for this model. Because of the large differences
between the largest and the three smallest eigenvalues
obtained for this model, and to save computer computational
time, the three lowest eigenvalues are immediately eliminated.

Takle 3 summarizes the results cbtained for this model.
This R value is slightly larger than that obtained for Model
4 (see Table 3), which indicates that no further improvement
in the model is gained by increasing the number of model
parameters. Furthermore, additional model parameters are
not justifiable unlesz a better distribution of data is
obtained because otherwise some of the blocks would not have
any data associated with them,

The final model solutions stabilize after two iterations
with only minor changes occcurring thereafter; therefore, the
final Model 5 is selected from the sclutions of iteration 2
{see Table 3). Any iterations thereafter produces only

minor changes in the Poisson's ratios and their associated
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standard deviations, with the R value remaining stable. The
overlay of Figure 11 chows the Poisson's ratio distributieon
for Model 5. Model 5 delineates three lower-than-average
Poisson's ratios in klocks 1, 6, and 23. At the upper end of
the 95% confidence interval, these values are 0.246, 0.244,
and 0.118 for klocks 1, 6, and 23, respectively, and thus
only bleck 23 can be considered t¢ have an ancmalously low
Poisson's ratic. PBlecks 2, 7, % ard 11 show hicher-thar-
average Poisson's ratics at the P25% confidence level.

All five models have the o eclutions for the next
iteraticon chosen on the kasis of R. Table 3 shows that the =
sclutions that are chosern for the final Models 1 through 4
have all eigenvalues retained. This causes the < solutions
to be totally data dependernt, ané produces large standard
daviations en the P-wave velccities which increase the
standard deviations on the Poisson's ratios as well. The 3
golutions for all five models are selected on the baeis of
the decomposition that is clesest to, but less than, 0.03
seconds, the calculated « a priori estimate (see Takle 3).
To determine what effects the standard deviation-based
solutions have on the final model, the five initial models
are again introduced tc the linear inversion program with
the modification that the o solutions are to be selected
using as a basis the average of the standard deviations of
the calculated P-wave velocities. The decompoesition sc¢lutions
that have an average of the standard deviaticns closest to,

bBut less than, 0.04 seconds, the = a3 pricri estimates, are
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selected as the initial model for the next iteration. The
solutions are based on an average of the standard deviations
of the calculated S-wave velocities of 0.03 seconds as
described for the previous models. The only =« models that
this new modification affects are Models 4 and 5. Models 1,
2, and 3 all have an average < standard deviation less than
0.04 gseconds when all eigenvalues are retained, and to rerun
these models would only produce the same results.

¥When these new modifications are applied to Model 4,
the sclutions selected for the ol calculations are those
obtained when 11 eigenvalues are retained. This put more
model dependency on bleocks 1, 4, 5, 15, and 16 than on the
other blocks. The 3 solutions, as before, are obtained
when eicht eigenvalues are retained. This put more model
dependency on blocks 1, 4, 5, 15, and 16 as well as blocks
2, B8, and 12 than on the other blocks. With nearly complete
model dependency, blocks 1, 4, 5, 15, and 16 would be expected
to exhibit wvalues similar to those of the ipitial model with
gmall standard deviations. Blocks 2, B, and 12 would be
expected to be cleose to the initial model, but with somewhat
larger standard deviations. The result for this modified
Model 4, herein designated as Model 4', are selected from
iteration 2. Listed in Table 3 are the results obtained for
Model 4'. Appendix H shows the computer cutput for this
model. The Poisson's ratios calculated for this final model
are shown in Figure 12. As expected, klocks 1, 4, 5, 15,
and 16 have Poisson's ratios of about 0.25, the assumed

initial model Poisson's ratio. These blocks also exhibit



the lowest standard deviations. However, blocks 2, 8, and
12 do not show model dependence to the degree that was first
expected.

Model 4' has an R wvalue slightly larger than that of
Model 4 (see Table 3) because some of the o solutions
chogen for Model 4' are more model dependent than those of
Model 4, which are all data dependent. This causes the
final Model 4' to be more model dependent than final Model
4. Being more model dependent implies that the final R
value on the Model 4' would be closer to the initial R value
for Model 4' than the final R wvaluve for Model 4 would ke to
its initial R value.

Comparing Figures 10 and 12, it is evident that the
lower than average Poisson's ratio associated with block 1
iz eliminated. Similarly, the relatively large Poisson's
ratios asscciated with blocks 4 and 5 are reduced. The high
Poisson's ratio assocliated with klock 2 is reduced, as well.
However, at the 95% confidence level, block 2 could still be
a higher than normal 0.313. The remaining blocks show
little or no chances in their Poisson's ratios or standard
deviaticons.

Considering the Poisson's ratios for both Models 4 and
4' at the 95% confidence level, the only blocks that show
ancmalous Poisson's ratios are blocks 2 and 8. Even at the
95% confidence level, these Poisson's ratios are higher than

normal .




61

I06°45'|

iozes:

Cara v:.“-. C1e7e)

Sholeski (1970)

Fender L1978 °

Fender Cid78) fuﬁh“r

' 3 Fht
: '-?.'&T 8 Vs
G.': % :I.ﬁ 1 ] =
k- : .05
N oY = e
- ? 3 Tk B il e
g k= N B [l , __|me
g \OFR or nodo .
b { 1 _€ - - e
FEAEEE PN R
ad "ME

mEEmE e

Figure 12. Locations of previously determined areas with high
Poisson's ratios in relation to the Poisson's ratio
distribution of Model 4" (overlay).




62

Model 5 was also rerun to obtain solutions based on an
average of the standard deviations. The o solutions for
each iteration for this new Model 5, herein designated as
Model 5', are selected from the decomposition that retained
14 eigenvalues., This eliminated the eigenvalues associated
with blocks 1, 2, 3, 4, 5, 6, 11, 15, 20, 24, and 25. The ¥
solutions are selected from the decomposition that retained
ten eigenvalues, This eliminates the eigenvalues associated
with the same blocks as those eliminated in the =4 calculations,
as well as blocks 7, 10, 21, and 23. Hence, the same argument
may be applied here as was applied for Model 4°', that is,
blocks 1, 2, 3, 4, 5, 6, 11, 15, 20, 24, and 25 should have
Poisson's ratios of approximately 0.25 which is the initial
model assumption. The final Model 5' is selected from
iteration 3 and the results summarized in Tabkle 3. Appendix I
shows the computer output for this model. The final R
value is 1.061.

Model 5" has a slightly larger R value than does Model
5 for the same reasons described above for Models 4 and 4°.

Figure 13 shows the Poisson's ratios (¥) calculated for
Model 5'. The lower than normal +'s associated with blocks
1 and 6 are eliminated because these blocks are more model
dependent than data dependent for this model. However, the
low Poisson's ratic associated with block 23, though higher
than that obtained for Model 5, is still evident in Model
5'. High v's are still associated with blocks 2, 3, 7, B,

9, 12, 15, and 17. Anomalously high Poisson's ratics are

associated with blocks 4, 10, 20 and 21 but are not evident
in Model 5.
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Comparing the two models in the 95% confidence level
the low Poisson's ratioc associated with block 23 would still
be low with a maximum of 0.156 for Model 5'. Blocks 3, 4,
7, 9, 10, 15, and 20 would still have +v's greater than
0.27.
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VII. INTERPRETATICN

If the average Poisson's ratio for the entire study
area is assumed to be that obtained from Model 1, i.e.,
0.265 £ 0.001, then the average could conceivably be as high
as 0.267 and as low as 0.263 at the 95% confidence level.
This value for Poisson's ratio may be large when compared
with the findings of Sakdejayont, (1974), and Fender (1978).
however, this average Poisson's ratio correlates well with
the Poisson's ratio of 0.262 obtained by Caravella (197€).
The wvalue of 0.265 is a good average for this total area,
however, the standard deviation is misleading because the R
value obtained for this model is greater than 1.0 (1.39). A
better standard deviation is attained by finding the average
Poisson's ratio of the model that has the R value closest to
1.0 for the final model. This is Model 4. Averaging the
Poisson's ratios obtained for this model gives an average
Poisson's ratio of 0.265 + 0.034. This is the same value
obtained for Model 1 and the same standard deviation oktained
by Caravella (1976). This standard deviaticon is not as
misleading as that obtained by Model 1. The average F-wave
velocity of 5.895 £ 0.006 km/sec cbtained for the study area
corregsponds well with an average P-wave velocity of 5.9
km/sec obtained by Ward (1979, personal communication), who
has a similar study in progress using linear inverse technigues
on nearly the same area. This average Poisson's ratic may

provide a good basis for determining anomalous areas. From
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the determination of the a priori estimates by mineral
percentages of the Precambrian basement near the study area,
an average Poisson's ratio of 0.23 * 0.0078 is determined

(see table 2). At the 95% confidence level, this value may
range from 0.214 to 0.246. Thus, let 0.214 be the lowest
accepted wvalue as an average. With these limits, let any
Poisson's ratios which are below 0.21 ke considered anomalously
low at the 95% confidence level. Similarly, let any Poisson's
ratios greater than 0.27 be considered anomalously high at

the 95% confidence level. It should be noted that these
limits, though supported by some evidence, are somewhat
subjective,

Of the seven models studied, Model 5" will be chosen as
the preferred model for further interpretation because 1)
the R value is very reasonable (1.061); 2) the blocks are
emall enough to determine small anomalous areas; and 3) the
relationship between model or data dependency of the blocks
with the amount of data in each block has the best correspond-
ence. Table 4 summarizes the anomalous areas found by Model
5'.

In any one block, the raypaths traversing the block
sample the block where the raypaths passes through it. For
example, block 22 of Model 5' (see Figure 6c) has raypaths
passing primarily through the northern two-thirds of the
block. Thus, the Poisson's ratioc calculated for the entire
block is actually representative of the northern two-thirds

of the klock.
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Block
Humber

23

10

20
15

Number of
Eigenvalues Retained
-] L2
14 10
14 14
14 10
14 10
14 10
14 14
14 10
14 10
14 10
14 10

TABLE 4
Results of Anomalies of Model 5'

P=wave
Velocity
{(km/sec
* St. dev.}
5.338 t 0,073
5.328 t 0.073
6.094 £ 0,072
5.952 + 0.049
6.049 + 0,055
6.04%9 0,055
5.792 ¢t 0.04
6.078B = 0,072
5.991 £ 0.040
6.415 + 0.021

S=wave
Velocity
(km/sec

£ 5t. dev.)

3.443
3.103
3.367
3.279
3.322
3.323
3.200
3.274
3.149

3.332

.S

0.029
0.011
0.011
0.022
0.007
0.074
0.046
0.023
0.058
0.033

Poisson's

Ratio

£ St. dev.)

0.144 £ 0.003

0.244
0.280
0.282
0.284
0.284
0.281
0,296
0.309
0.315

£

t

0.018
0.005
0.001
0.004
0.008
0.004
0.003
0.006
0.003

L8
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With this in mind, and Model 1 as a control, Figure 14
shows the posszible locaticns of the anomalies discerned by
Model 5' on the basis of raypath coverage in each bleck. It
is evident that the linear inversicn methcd describes only
one ancmalous area (D) that corresponds to any of the ancmalies
found from previcus studies. This is the anomaly found by
Fender (1978) which is located in the east-central Socorro
basin (bleock 9). Fender found that this anomalcus area had
a Poisson's ratio of 0.275. The linear inversicn method
cbtained a Poisson's ratio of 0,309 for this same area,.
BElock 9% from Model 5' shows a normal P-wave wvelocity and a
lower than normal S-wave velocity (see Table 4). This
indicates that the anomaly is due to crustal characteristics,
such as partial melt, that decrease the S-wave velocity., but
which have little or no effect on the P-wave velocity.
Figure 15 shows the anomaly D.

Area A, which has a low Poisson's ratio, corresponds tc
an anomalous area found by Shuleski (1976) (see Figure 14];
Shuleski defined this anomalous area on the basis of SV-wave
screening, which would imply that a high Feoisson's ratio
would be reguired. However, area A, which corresponds to
Shulegki's area, is a low anomaly, which would not screen or
delay any seismic waves. This low anomaly would imply an
increase in the seismic wave velocities. As previously
discussed, in the decomposition and selection of o and ﬁ
solutions for model 5', block 23 had < sclutions that were

data dependent, while the ;5 sclvtions were model dependent.



{ J tg I]]m Caravella €197¢)
% ] tﬂ (- Sholeski C1978)
. IQ B Feader (M78)
] (e | Fandes € 78 ?u;'rh M?-
2\ i 3
'l:!-'-,1L _
Besnordo O i ;
Y w
{ , u}% & >
P -_;‘/' ok ﬁ
r . " -
i ';1 = nEN dﬂ-& = 34?’[5'
KA 2
' -—‘_-ﬂuh = T i
L’—?"l ~
‘I ] P At
I‘ | i: .
X e
T 1‘ I “I“l )
3 E-' | T
! A \"\,.A-
1 =™ Lanll ;!
s dSccor® L
£ 1 wiF : s )
L 5 l )
| E i n il - =400 —
| . ﬁl}
g A - 0.14]< ¥=<0.15
0 g ) nk| B - 0-28<v=0.29
. -m.u | o ey |imel 197y E 4 EE ':':igg?
. k= : [ E-0.3)<v=0.32 | 5y0
AR VT E rom———
Figure 14. Locations of areas with anomalous Poisson's ratios '
found from Model 5' {overlay) in relation to the anomalous
futumn'uhrating fcg.r;d from previous atlﬁiau by Caravella .
1976), Shulesk 1976) and Fender (157E).
: st . == = .
< \j ~ 9 \ : ~ 11 T
. ™ 1 : . %
BRI S VAR R
SCALE

o H ow ]



70

This would produce a seemingly normal S-wave velocity for
Flock 23 and a P-wave velocity that may or may not fall near
the norm. In this case, the chosen P-wave velocity is below
a norm of 5.8 km/sec (see Table 4), producing a low Poisson's
ratio for block 23. If, however, the S-wave velocity for
block 23 had been chosen from the decomposition that retained
14 eigenvalues, the same number as the chosen o soclutions
{see Takle 4), then block 23 would be data dependent for
both the < and ;3 calculations, which weould produce a
Poisson's ratio of 0.244 ¢ 0.018. Even at the 95% confidence
level this new value for block 23 could be only borderline
between low and normal. If; on the other hand; the P-wave
velocity for block 23 had keen selected from the decomposition
that retained the same number of eigenvalues for the selected 3
solutions, then block 23 would ke nearly model dependent.
This would produce a Poisson's ratio for block 23 that would
be close to 0,25, Thus, because of the poor data distribution
in block 23, ancmaly A is eliminated as a definite anomaly.
Anomalies B and C of blocks 10, 15, and 20 may be
associated with the Los Pinos Mountain range (see Figure
14). BEowever, Table 2 implies that the gneiss-granites of
the nearby Los Pinos Hills has a Poisson's ratio of 0.22,
which is tco low to allow Precambrian basement composition
to ba the sole cause for these arnomalies. An inspection of
the velocities cbtained from Model 5' shows that the P-wave
velocities for these blocks range between 5.8 km/sec and 6.0

km/sec which fall within a normal range for the study area;
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while the S-wave velocities are somewhat lower than the

normal 3.35 km/sec, ranging from 3.32 km/sec to 3.20 km/sec
(see Takle 4). This may imply that the anomaly is due to a
structure or subsurface feature, such as partial melt material,
which tends to reduce the S-wave velocity, but has little or
no effect on the P-wave velocity. However, the decomposition
of blocks 10, 15, anéd 20, as previously discussed, implies
that the solutions for blecks 15 and 20 are more model
dependent than data dependent for both the ot and ¥ sclutions.
Thus, blocks 15 and 20 would be expected to exhibit nearly
normal Poisson's ratios while block 10 may or may not.

Because blocks 15 and 20 exhibit anomalous Poisson's ratios
and not normal ones as expected, ¢he indication is that the
elimination of the eigenvalues corresponding to these blocks
does not necessarily cause the solutions of these blocks to
be totally model dependent. For this reason, the ancmalies
associated with blocks 15 and 20 are not discarded as possible
anomalies. If the 3 solutions for block 10 had been chosen
from the decomposition that retained the same number of
eigenvalues (14 eicenvalues retained) as the o decomposition,
then the S-wave velocity associated with block 10 would be
3.323 £ 0.074 km/sec. This would produce a Peisson's ratio
of 0.284 ¢ 0,008 for block 10. At the 55% confidence level,
block 10 could not be considered anomalous. The azimuthal
distribution of Poisson's ratios determined by Fender (1978)
implied that the raypaths traveling through block 10 and
arriving at station BG (see Figures 6e and 16) traveled
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through a medium that had a mean Poisson's ratio between
0.24 and 0.25. With this as supportive evidence, the anomaly
associated with block 10 is disregarded as a definite anomaly
until further data and information can be provided. Thus,
the anomaly for block 10, in Figure 15, is dashed to indicate
enly a possible anomaly. For bleck 15, Fender indicated
that the majority of raypaths arriving at station DM (see
Figures 6e and 16) encountered a medium that had a mean
Poisson's ratic greater than 0.28, while the raypaths arriving
at station FM (see Figures fe and 16) indicated a normal
Poisson's ratio. Thus, an anomalcus area (see Table 4) may
be agsociated with block 15 near station DM as indicated Ly
the refined anomaly in Pigure 15. Fender also indicated
that the raypaths from the two events in bleck 20 to the
stations CC and BC (see Figures 6e and 16) implied that no
anomalous Poisson's ratios were encountered by these raypaths,
but the majority of raypathe arriving at station TA in block
20 encountered material with a mean Poisson's ratio between
0.27 and 0.28. This may imply that if an anomaly is associated
with block 20 (see Table 4), it, in all likelyhood, is near
station TA and is identified as anomaly B in klock 20 of
Figure 15.

Anomaly E in block 7 is somewhat difficult to explain.
The anomaly has a P-wave velocity which is above normal, and
a normal S-wave velocity (see Table 4). The exact cause for
such a solution is unknown; however, it may be speculated
that the azimuthal distribution of raypaths about Station CC
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{see Figure 16) may play an important part in understanding
the cause. As discussed previously, the = solutions for
EBlock 7 were more cdata dependent than the & solutions,
which had the eigenvalue corresponding to block 7 eliminated
in the decompostion, Had the S-wave velocity been selected
from the deconposition that retainmed the same number of
algenvalues as those for the o solutions, i.e., 14 eigenvalues
retained, (see Takle 4), the S-wave velocity assoclated with
kElock 7 would have been larger. This would have produced a
lower Foisson's ratio for block 7 {see Takle 4) which, with
95% confidence, woulé not ke considered anomalous. Hence,
anomaly E is disregarded as a definite anomaly , kut is
considered as a possible anomaly until further proof becomes
available to definitely clarify it.

Anomaly E of blocks 3 and 4 {see Figure 14) are anomalous
highs that are also somewhat difficult to explain. The P-
and S-wave velocities of block 3 (see Takle 4) are relatively
normal velocities and shouléd, therefore, produce a normal
Poisson's ratio, not an ancmalcus one. A closer inapection
of the Poisson's ratio of Mcdel 5' (see Takle 4) reveals
that, at the 95% confidence level, the anomaly could very
well be borderline ketween normal and ancmalous at G.270.
Therefore, the Poisson's ratio of block 2 is eliminated from
the model as an angmalous value and considerad to be 2 high
normal. Anomaly B of bleck 4 shows a normal P-wave velocity
and a slightly lower than norrmal S-wave wvelccity (see Table

4). This anomaly may very well be associated with the same
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ancmaly as that of block 9 (anomaly D). The anomaly isn't
as large as that of block 2. The reason for this may be
explained in the following manner: Suppose that a small
portion of a certain klock has an anomalous Poisson's ratio
and that some, not all, of the raypaths traversing this
block encounter this anomalous area. As a result, these
raypaths will reflect a2 different velocity for the block
than the remaining raypaths that do not encounter the anoma-
lous area. Thus, when the block is considered as a whole,
the resulting velocity will be an 'average' welocity for the
block. Thus, this averaging effect would tend to cobscure any
small anomalous areas.

The averaging effect described above may be one of the
reasons that none of the other previously determined areas
scattered throughcout the southwest guadrant of the study
area (see Figure 2) was detected or confirmed by this metheod.
The averaging effect of the large numkber of raypaths in the
bElocks in which the previously determined anomalies are
located may be masking these small areas.

Figure 17 shows the graph of the final model R value
versus the model number (and indirectly, the number of model
parameters). A model with an R value of 1.0 is the best
attainable model, as previously explained. It is evident
that maintaining the same respective uncertainties for the =
and ¥® calculations and increasing the number of model
parameters (blocks) consistently decreases the R value

toward a value of 1.0 up through Model 4, and then increases
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with Models 5 and 5'. indicating a movement towards a poorer
solution as the number of model parameters increases beyond
16 blocks. The effects that varying uncertainties, more
model parameters, and more data would have on R, and the
degree of detail that could be attained, would constitute

yet another study.
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VIII. CONCLOSIONS

Many factors enter into the interpretation of the
results, such as the degree of data and model dependency of
the results, the data distribution, and the interpretations
from past studies. It is a combination of these factors
which discerned the final anomalies shown in Figure 15,

The average Poisson's ratio (V) obtained from the single
block Model 1 for the entire area is 0.265 % 0.001. This
value corresponds well with the value of 0.262 + 0.034
obtained by Caravella (1976). The standard deviation is
significantly lower than that obtained by Caravella, probably
because the model is a2 poor fit teo the data, Thus, a standard
deviation of 0.034, obtained by averaging the Poisson's
raticse of Model 4, is considered to be a more realistic
standard deviation. The average P-wave velocity for the
entire area of 5.895 t 0.006 km/sec alsoc corresponds well
with the average F-wave velocity of 5.9 km/sec obtained by
Ward (1979, personal communication).

In this study, the number of model parameters are
altered to achieve better =solutions with the R parameter
used to indicate the quality of each final model. Model 4,
which divides the study area into 16 egui-area blocks shows
that it is a better model than the other models tested,
i.e., the R value is closest to 1.0 for the data set used in
this study. The R value for Model 5' indicates that Model

5' is not as good a model as Model 4, but the slight deviation



BO

from a better solution may have been a good sacrifice for
more detail because the R value is only slightly higher than
that of Model 4. Model 5', which has 25 model parameters,

is used in the final interpretation because the block dimen-
sions are smaller than those of Model 4, which allows smaller
anomalous areas to be defined.

With the average Poisson's ratio of 0.265 defined to be
normal, four anomalous areas are found using Model 5'. In
addition, two other areas are defined as possible anomalies.
These areas are shown in Figure 15. Only anomaly D of block
9 ( ¥ =0.309) is correlated with any of the anomalous areas
found by previous studies, namely, that located in the
east-central Socorrc basin by Fender (1978). Fender found
that this anomalous area had a Poisson's ratio of 0.275
while the findings of this study imply a Poisson's ratio of
0.309.

Anomaly B of block 4 is correlated with anomaly D of
block 9. Anomaly B is smaller than that of block 9 due, in
part, to the averaging effects of the other raypaths in
block 4.

Anomaly C of block 15 and anomaly B of block 20 are
interpreted as anomalies associated with their respective
blocks with the aid of the azimuthal distribution of Poisson's
ratios about stations M, PM, and TA (Pender, 1978).

The two possible anomalies B and E of blocks 10 and 7,
respectively, are included only as possible anomalies because
they lack any definite evidence to completely disregard them

as non-anomalous.
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The use of linear inverse technigues can be applied to
microearthguake data to obtain seismic wave wvelocity distribu-
tions of an area and a map of Poisson's ratiocs. The size of
areas with anomalous Poisson's ratios that can be defined
depands largely on the distribution of the data. A better
distributed data set than the one used could possibly allow
models with smaller (more numercus) blocks to be used to
examine the areas thought to contain the small ancmalies
found in previous studies and still maintain acceptable R

values,
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IX. RECCMMENDATIONS

This study was undertaken, in part, to determine the
possibility of using linear inverse technigues to determine
Poisson's ratio in the earth's crust around Socorro, New
Mexico. It is hoped that this study will serve as a good
base for future studies using these technigues., With this
hope, I outline the following recommendations for future
studies:

This study varied only the number of blocks or model
parameters to achieve better models. However, further
studies should be conducted to study the effects, if any,
that varying the initial uncertainties, O] ,may have on the
guality of the solutions. This study also assumed a homo-
geneous half-space for Model 1. It would be interesting to
see the effects that anisotropy, inhomogeneity, and/or
layered models would have on the final solutions and interpre-
tations of the other models,

It is recommended that any further studies of this kind
use more data and a better distribution of data in the study
area. This may include raypaths that lie partially outside
the area. If such raypaths are included, it is recommended
that a majority of the raypaths' total length lie within the
study area.

More and better distributed data could allow models
with smaller blocks to be used. If such a study produces

acceptakle models based on R, then smaller anomalous areas



which have been found from past studies may possibly be

confirmed or denied.
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APPEHDIX A
List of Events Used
Date, Origin Time, Location, and Stations

Uncertainties listed are the origin time
gtandard deviations which were used as the
uncertainties on the & calculaticns.
The 2 uncertainties are obtained by adding
0.2 seconds to the listed uncertainties.
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15
75
75
75
15
75
15
75
15
715
75
15
75
15
75
15
15
75
15
15
75
75
15
75

Origin Time  Longitude
hr:min:sec degrees
23:45:51.19%  186.995
4: 3: 1.1B 186.998
4:48:17.93 186.939
15:18:15.61 187.842
4:20:14.86 106.951
23:43:20.95 107.837
2:56:45.09 187.845
13:35:59.89 1807.837
2:12:24.57 186.931
9:16:48.87 186.927
14:56:42.04 107.8489
4:23:13.99 107.882
21:44:41.82 196.924
4:17:26.,41 106.991
14:19:;22.33 107.0848
20:12:33.12 106.981
10:53:57.88 106.923
19:57:22.25 106.925
7: 9:18.72 ld6.882
15:25:28.41 106.999
5:29:49.85 187.986
7:39:18.27 1¢6.930
11:22:26.45 186.981
28:18:25.25 1987.845

Location Stations
Latitude Depth Uncertainty Recording
degrees km seconds Events
34.867 7.27¢ «26 CC,CM,FM

34.826 3.382 85 5C

34.871 6.252 .85 CC,FM
34.017 6.876 .14 F¥,CC
34.836 4.525 17 FM,CC
34.9018 71.294 -14 FM,CC,CT
34.851 4.908 11 cTr,CC,FM
34.823 2.155 .86 sC

34.851 7.972 27 CH,CC
34.856 5.995 .21 FM,CM,CC
34.812 5.449 - 79 FM,CC,CH
34.851 6£.377 87 CH

34.875 9.627 BB WT,CC,FM
34.815 9.312 .18 CC,FM,WT
34.819 7.871 16 WT,CC,CM,FM
34.82¢ 6.856 87 FM,CC,WT
34.862 6.762 06 FM,WT,CC,5C
34.068 7.178 06 CC,WT,FM
34.920 1.987 -85 CC,WT
34,836 6.007 286 FM,CM,WT,CC
34.219 8.638 .14 FM,WT,CC
34.069 8.231 B85 CC,WT
34.084 9.984 .29 FM,CM,WT
14.879 6.927 «15 CC,WT,FM,CH
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Date

14
15
19
19
19
19
20
20
20
28
21
21
25
26
28
16
19
24
29
29
29
30

=
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15
13
75
75
15
75
75
15
75
15
15
75
15
15
75
75
75
15
75
75
15
13
75
75
15
15

Origin Time
hr:min:sec

Longitude
degrees

19: 3:28.12
6:36:45.93
8:11:46.62
8:12:44.51
16: B: 6.71
20:18:22.78
5:22:19.65
12:28:51.70
15:28:36.14
21:59:44.38

3:44:48.34

19: 4: 5.94

19:37:40.71
B:40:15.40
1:26: 1.81

13:38:52.68
B:42:57.25
2:17: 9.86
7:21:35.17
7:34:37.68
20:5B:49.51
7: 9:38.68
16:30:11.67

14:35: 4.51

22:28:26.38

11: 6:48.44

186.926
186.877
186.969
106.972
107.214
106.921
106.923
186.913
186.938
186.918
187.852
166.978
1806.922
186.936
106.942
186.936
186.860
186.949
1A7.886
187.883
167.814
107.641
187.069
107.084
187.046
166.878

Location Stations
Latitude Depth Uncertainty Recording
degrees km seconds _Events
34.879 8.988 .49 CC
34.113 3.181 .88  FPM,CC,WT
34.0845 8.946 08 CH,FM,CC,WT
34.647 9.79%4 .89 CM,FM,CC,WT
33.971 11.485 .21 CM
34.878 7.818B -86 CC,WT,SC
34.874 9.347 .88 CC,WT,S5C,FM
34.873 18.269 .89  SC,FM,CC
34.874 8.824 .87 WT,5C,FM,CC
34.869 7.754 .47  WT,CM,FM,CC
34.012 9.498 .19 CC,FM
34.840 9.912 .89  FM,WT,CM,CC
34.068 8.259 .B7 WT,FM,CC
34.971 9.678 .88 CC,FM,S5C
34.168 3.301 .11 FM
34.068 5.255 83 WT
34.811 5.243 .84 WT
34.818 1.156 04 WT
34.850 3.926 .85 WT
34.8308 -1.774 66 CC
33.997 1.768 .86 CM,WT,CC
34.624 7.393 .16 CC,WT,CM
34.834 7.321 -14 CC,CH,/WT
34.817 11.144 .21 CH
34.035 5.580 .11 WT,CC,CHM
33.999 6.025 86 CC,WT



Date Origin Time Longitude
Mo/Day/¥r hr:min:sec degrees
11 7 75 8:27:35.83 187.855
1 21 76 5:34:40.55 186.988
1 21 76 14:18:28.89 186.955
1 2276 15:58:47.71 187.826
1l 22 76 16: B:52.28 187.846
1l 23 76 2:53:33.13 187.832
1 23 76 7:22:14.75 187.842
1 27 76 B137:43.72 186.790
1 29 76 15: 6:40.22 i8b6.982
1 29 76 18:24:27.42 186.988
1 20 76 13:56:23.70 1806.993
2 17 76 6:17:49.22 187.865
2 17 76 17:34: 4.98 187.032
2 17 76 23:19:38.71 107.044
2 18 76 5:44:55.83 187.862
2 18 76 9:13:30.81 167.817
2 lq 76 23:25:35.31 187.876
219 76  0: 8:36.61 107.871
2.20 76 12:51:45.16 167.852
3 1B 76 14:45:16.77 186.758
3 18 76 18:34:50.54 187.896
1 23 76 12:58:26.74 186.766
3 2576 18:50:53.94 186.986
4 13 76 9:45:40.680 187.820
4 13 76 11:41:25.35 107.068
4 13 76 11:58:34.63 106.966

Location

Latitude Depth Uncertainty Recording

degrees

34,037
34.064
33.957
34,018
34.825
34.021
34.853
34.152
33.983
33,979
34.854
34.027
34.8 40
34.105
34.818
34.814
34.828
34.012
34.810
33.977
34.028
33.969
34.052
34,864
34.028
33.981

|

6.485
6.690
7425
4.483
T.727
6.003
2.577
13.797
4.484
6.048
5.518
6.528
9.141
5.705
8.235
0.447
6.769
8.470
B.511
3.524
6.951
8.220
8.893
1.5684
B.11l1
4.508

Stations

__seconds Events

12 WT,CM,CC

86 WT

12 CH

.69 TA,DM

18 ThA

«12 DM, WT,TA

.89 CM,DM,WT.TA

«28  WT,CC,TA

.88 WT

.59  DM,TA,WT

.66  DH,CC,WT

.13  IC,WT,WM

.13  WM,CC,CH,IC

.36 WT,CC,WH,IC

.13 CM,IC,WM,WT,CC

04 IC,vN,CC,HT

12 WT,CC,WHM,IC

13 WM, IC,CC,WT.

16 WM,WT,IC

.69 DM, ,IC,TA,WT

.65 WT,TA,IC,CHM,DM

.88 DM,TA

.29 TA,WT,CM,DM,IC

18 CC,IC,CH,WM

.13 CC,IC,WM,WT

.87  WT,WwM,CM,IC,CC
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13
13
14
14
15
15
16
16
16
20
25
25

14
15
15
10
12
12
12
24
25
25
21
27

76
76
76
716
76
16
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
16
76

Origin Time
hr:min:sec
13:31:59.84
23:15114.99
1:58:28.80
13:12:20,94
B:45:52.42
18:28:37.20
5:34139.45
9:33:42.83
141 7:33.24
8:32:19.35
3: B8:16.68
B:11:39.50
15:131:12.85
5:24:54.36
21:22:55.54
18:58:34.50
16:43: 7.97
12:18:42.29
#:59: 6.18
4:56:
23: 7:12.69
1:31:13.91
21: 43 9.72

S.43

22:32:23.43
1:44:39.98
Brl5:28.47

Location Stations
Longitude Laticude Depth Uncertaincy Recording
_degrees degrees 2] seconds = _Events
187.838 33.993 2.898 .24 WT,CC
167.833 34.023 2.529 .85 WM,WT,CC,IC
187.814 33,975 8,000 .18 WM,IC,WT
187.032 34.060 6.438 .11 WT,IC,HM
107.016 34.062 7.821 .18 SC,IC,CC,WM,WT
186.963 34.042 6.563 .12 IC,WM,WT
106.988 314,020 #.355 .83 WT
187.9819 34.857 5.661 .08  WM,WT,IC,CC,CM
106.994 34,062 6.863 .89 IC,CC,WT,WM
106,842 34.1@5 1.885 .18 nn.ut,:u,nﬂ,EE.
187.041 34.0480 -£.200 .32 WT,CM,TA
107.837 34.022 6.197 .69 TA,WT,DM,
107.023 34.038 7.356 .48  CM,TA,DM,WT
106.997 34.852 7.848 .16 CC,NG
167.830 34.012 3.232 .27 WY,
107.068 34.025 5.224 .85 WT
1¢7.066 34.026 5.880 .85 WT
187.209 34.044 5.152 .07 WT,NG
187.088 34.042 8.372 .87 WIT,NG
187.0810 34.040 6.875 .27 WY
107.087 14.045 7.465 .17 NG,WT
187.828 34.037 3.507 .04 KWT,NG
187.612 34.052 5.518 .86 WT
167.018 34.845 7.338 .11 WT,KG
187.013 34.040 5.793 .08 NG,WT
107.063 34,013 5.845 .06 WT




Location Stations
Date Origin Time Longitude Latitude Depth Uncertainty Recording

Mo/Day/Tr hr:min:sec degrees degrees _km  seconds Events

B 27 76 10:42:34.84 107.854 34.817 5.466 .86 WT

8 13176 6:45:56.52 186.998 33.971 5.337 86 WT

9 3 76 13:25:58.37 186.982 33.997 B.545 .69 WT,NG

18 5 76 19:26: 8.89 186.977 34.0839 6.88B5 85 IC,WT,DM
18 6 76 15:12:41.24 186.823 34.887 9.475 .16 WT,0M,IC
18 7 76 22:35:49.35 187.837 34.815 9,295 .11 ©DM,IC

18 7 76 22:37:37.71 187.839 34.025 7.583 -89  DM,WT,IC
18 7 76 23:21: %9.66 187.837 34.825 T.282 89 WT,IC,DM
121177 B: 6:15.69 187.883 33.962 12.631 .11 5C

1 21 77 16:38:11.26 197.861 34.085 7.758 .86 WT,CM

1 21 77 16:43:40.33 187.853 34.827 -8 .679 87 CH

1 22 77 4:24: 5.11 187.856 34.015 6.6356 .66 CC,DM,CM

2 B 77 21:15:59.28 187.829 34.03% -2.888 .83 CC,CH

2 977 1:36:16.90 107.824 34.832 -E.Béﬂ .83 DH,CC

2 9 77 1:42:32.45 186.946 34.147 4.253 12 DM,CC,CHM

2 977 8:38:47.18 106.980 33.984 6.886 .17 DM,CC,CM

2 % 77 18:59:58.98 186.998 34.818 4.156 16 CC,NG,DMH

2 9.?? 11: 7:13.58 187.887 34.8806 6.405 .23 KG,DM,CC,CH
2;'9 77 11:33:43.82 107.007 33.97¢ 7.662 .31 CC

2 9 77 11:38B:53.24 186.997 34.024 1.485 12  DM,CC

2 9 77 12:26:35.93 187.834 34.039 g8.118 .23 DM,CC

2 18 77 5:24:51.65 187.818 33.967 B.B35 .35 NG

2 18 77 7:33:28.04 186.927 34.138 6.355 .17 NG,DM,CM,CC
2 11 77 8:31:46.38 186.978 34.087 3.448 .45 CC

2 16 77 8:51:16.43 1687.867 34.814 9.396 .16 WT,DM,IC,CC,CH.
2 16 77 14:44:49.38 187.661 34.885 7.887 «14 DM, IC,/WT



Date
MHa/Da T

2 17 17
2 25 17
17
17
17
17
17
17
17
71
17

wWow W W oW W oo o

fr
- T -

117

=
=

17

B W W W W W e W W W e

12 717
13 77
13 77
13 77
13 77

[ T T T

15 77
15 77
19 77
26 T1
26 77
27 17
271 77

[ I N L

Origin Time

hr:min:sec

14:27:44.71
@: 7: 8,32
4:39:41.81
4:55: 6.16
11:25:44.42
11:49: 2.52
11:50:16.12
12:27:56.85
12:33:19.21
12:39: 0.29
1:29%:58.13
2: 3:42.72
13:27:33.54
19:34:31.44
3:25: 3.22
4:22:53.77
19:15:23.98
19:39:36.58
20:15:32.81
6:35:36.71
6:4P:24.87
16:48:20.04
2: B8:28.56
16:56: B.ll
L H 1:45.i?
11:52:58.40

Longitude
degrees

186.825
107.849
187.861
107.858
187.862
187.861
187.851
187.855
187.859
187.861
187.883
187.861
187.862
187.831
167.837
187.062
187.837
187.840
106.868
187.868
1987.067
1906.957
le7.228
187.852
187.823¢6
107.834

Location

Latitude
degrees

34.2212
34,815
34.082
34.812
34.08083
34.818
33.996
34.009
34.089
34.088
34.816
34.082
33.999
34.018
34.8861
34 .685
34.666
34.068
34.176
34.835
34.835
33.992
34.0859
34.847
34.828
34.865

_km

9.442
5.873
6.478
6.287
6.781
6.302
4.737
6.761
6.2084
6.358
T7.535
6.507
71.843
§.248@
3.834
-E.Eﬁﬂ
b.714
1.679
3.969
8.889
8.228
3.399
6.145
4.336
1.578

Stations

Depth Uncertainty Recording

seconds Events

.53  WT,DM,CC

.13 WT,CC

o:1: WT,DM

.65 CM,DM,WT

26 WT ,DM,CH

-85 WT,DM,CHM

-85 DM, WT

-B6 DM ,CM

B85 WT,DM

-85 WT DM

86 DM

.86 WT,CM,DM

06 WT,CH,DM

-85 DM, CC

.06 CC,DM

«13 SC

.63 CM,CC,DHM

.85 CC,DM

04 DM ,CC

BB (]

.87 SC,DH

.86 CM,WT,CC,DM

85 WT,CC,DHM

64 WT,CC

.04 WT,CHM,CC,DM

.86 WT,CC,.DHM

5-532



Date
Mo/Day/Yr

4 27 711
271 17
27 17
27 717
28 77
28 717

11 77
12 77
17
17
17

L S

17
17
17
17
17

(- SN - N - TR - TN - TN - . T - TR - TR - T T B T B . A T I

17
17

BB R R B R R

17
77
17
17
17
77
17

o & 3 ok h h A h
R L R W W W

Origin Time

hr:min:gec

12:15:56.26
12:23:27.39
13:49: 4.34
15:34:28.88
18:59:18.71
11: 3:31.17
19:43:18.38
17:45: B8.03
6:19:14.28
6:4D:44.84
6:45:50.86
6:48:16.11
6:50:24.32
6:51:56.55
6:55:21.48
B:11:47.69
11:42: 08.51
12: 7: 4.87
14:29: 6.75
17:39: 8.12
P:16: 4.30
3:49: 1.58
4:50:19.82
6: 2:45.96
19:38:38.21

28:45: 3.12

Longltude
degrees

187.060
lg7.858
187.834
187.888
187.854
187.A58
186.923
187.824
187.848
187.856
1A7.864
187.855
187.867
187.862
187.861
187.868
1897.864
187.864
187.0861
187.0865
187.061
187.860
187.864
187.861
1p6.894
186.981

Location

Latitude
degraes

34.811
34.822
34.060
34.132
34.048
34.841
34.194
34.628
34 .0 46
34.820
34.807
34.031
34.€13
33.993
34.012
34.008
34.8180
34.669
34.813
34.804
34.009
34.813
34.006
34.004
34.227
34.228

Btations

Dapth Uncertainty Recording
km seconds Eventsa

7.172
6.072
6.688
2.352
5.217
5.290
2.668
5.746
B.572
7.128
4.342
8.079
6.643
2.829
4,868
2.794
§.494
4.565
4.551
6.034
7.266
6.118
8.883
6.832
B.723
7.260

86
«B5
B85
.14
A5
87
-85
62
4.95
86
.85
«B5
85
.08
85
04
85
-85
-85
85
-89
-85
10
9.1
.89

.29

DM ,CM ,WT
WT,DM,CM,CC
WT,CC,DM
CC,WT
CM,CC,WT
WT,CC,DM
CC,DM
WT,PM
WV, WT,FM
WT,CM,5C
WT,DM
sC,CM,DM
WT,CM,DM
WT,DM
WT,DM

WT ,DM
WT,CM
WT,DH

DM

WT,DM
CM,WT, DM
WT,DM,CH,
CM,WT,DM
CM,WT,DM
DM, CH
CM,DM



Location Stations
O, e SEER LD Reiwmuaw tioea
€ 377 23: 1:19.19 107.818 33.984 6.8685 .88 CM,WT
6 477 l: 7:54.31 187.816 34.058 5.706 85 HWT,DM
6 4 77 6:18:51.58 1@86.9@8 34.227 -5.463 .06 DM,CM
6 4 77 7: 6:23.18 187.8€6 33.975 7.633 .89 WT.DM
6 T 77 12:25:27.89 187.063 33.972 9.437 23 DM
6 8 77 3:32:23.27 186,936 34.204 18.348 -16 WT,DK,
6 877 5130:29.53 187.852 34.812 9.707 «14 WT,DM.
6 18 77 4: 4:44.93 187.862 34.818 6.712 -85 CM,0M,WT
7 11 77 22:24:55.82 187.839 34.120 4,529 -84 ccC
7 11 77 23:52:34.82 187.838 34.128 5.854 -84 BG,CC
T 12 77 7:28:59.56 lé6.81e 34.116 8.436 14 BG,CC,S5C
7 14 717 1:28:56.59 lé6.884 34.158 2.583 «85 BG,CC
7 14 717 2:34: 1.99 l86.888 34.160 4.494 .86 CC,BG,DM
7 14 77 10: 9:32.65 186.870 34.158 6.034 .83 CC,BG,DM
7 14 77 11:31:151.38 186.893 34.157 8.971 .82 BG,CC,DM
T 14 77 20:24:16.69 187.854 34.836 7.661 .85 WT,CC,CH,BG
715 77 1l: 3: 1.39 187.806 34.016 1.391 26 cc
7 15 77 12:26:25.62 187.068 34.003 E;liﬁ N1 BEG,CHM,WT
719 M 6:16:54.90 186.876 34.159 2.435 86 CC,BG
7 21 77 3:12:27.81 187.866 34.034 4.119 .04 CH
T 22 77 7:19: B.78 186.880 34.163 2.017 B0 BG
7T 27 77 12: 7:30.35 186.950 33.960 4.7€8 14 CC,EBG
T 27 77 15:53:15.04 187.857 34.803 8.349 .87 CC
7 27 77 17:17:29.43 186.987 34.157 4.429 -84 ccC
7 29 17 12: 7:22.64 186.985 34.14% 5.423 B4 CC,BG
8 17 77 6: 3:19.95 186.871 34.165 4.930 .84 DK,BG,CC,WT



Location Stations
Date Origin Time Longitude Laticude Depth Uncertainty Recording

Mo/Day/Yr  brimin:sec degrees degrees _km __ seconds Events

4 19 77 9:28:22.69 187.870 34.009 B.629 BB DM,CM,BG

8 24 77 11:22:35.2% 187.862 34.0882 11.18@5 .08 NG,BG

B 26 77 108:32:57.9%0 187.0863 34.811 7.898 .85 CHM,BG,NG,CC,WT
B 38 77 18:37:28.93 187.684 34.839 2.387 .85 CC,CH

9 1 77 18:28: 2.21 186.758 34.856 7.116 .88 CC,NG,BG,WT
9 177 21:58:48.64 187.849 34.012 6.814 .85 CC

9 13 77 9:13:45.56 187.04¢ 34.185 16.838 .09 cc

9 14 77 4: 1:27.84 187.827 34.843 1.527 87 CC

9 15 17 @:53:35.32 187.861 34.034 6.995 .87 BG,CC

9 16 77 B: 4: B.1l6 187.081 34.871 4.934 .83 sC,CC

9 24 77 1:28: 8.B4 187.852 34.035 8.193 .86 FPM,CC

9 20 77 B:19:23.31 186.879 34.164 3.158 .03 BG,CC,FM
18 18 77 8:16:32.74 187.862 34.0830 7.884 .87 BG,CC,5C
18 28 77 13: 8:13.29 1g6.910 34.141 6.950 87 BG
18 28 77 13:26:51.34 186.911 34,133 “-1.,589 .85 cC,BG
11 15 77 8:42:39.21 186.804 34.p02 -1.787 B35 CC,5C,IC,HT
11 15 77 19: 2:41.77 166.885 34.139 3.452 .23 ¥T,FM,CC,IC,BG
11 18 77 9: D:38.45 187.815 34.8235 4.327 87 CcC,IC
11 18 77 14:22:18.21 186.762 34.854 -2.0080 24 CC.BG,WT,5C
12 & 77 B:43:45.,38 186.873 34.193 3.148 .87 SL,EG,CC

12 8 17 3:42:42.13 186.910 34.195 -1 .433 31 SL,BG,CC
12 22 77 18: 5:16.26 106.866 34.881 4.998 .12 cC,5L
12 23 717 1:37:408.15 187.829 34.126 5.821 «17 CC,BG,5L

1 578 13:27:47.81 186.912 34.218 -2.808 B3 CC,5L

1 6 78 1:49: 2.89 186.998 34.213 2.879 -84 CC,SL,BG

1 11 78 7:22:47.19 187.873 34.0814 6.8131 M CC,5L,BG



Date
Mo/Day/Yr

117 78
118 78
118 78
1l 18 78

Origin Time

hrimin:sec

13:18:14.89
12:24:32.88
12:49:42.97

14:55:58.85

Longitude
degrees

le6.288
186.859
186.865
186.858

Stations

Latitude Depth Uncertainty Recording
degrees km __ seconds Events
34.124 -8.979 .23 CC
34.167 1.933 .84 CC,BG,SL
34.171 3.485 .04 CC,BG,SL
34.166 1,788 .84 CC,BG,SL



APPENDIX B
List of Program IS.FOR

Dsed for linear inversion method



gelee INTEGER STA,STEST,XFILE

BEzag DIMENSION A(688,25),

gg3o0 1HT(25,688) ,ATA(408),

LR 1B (600,25) ,BIGR(25) ,DBIGR(25,2) ,DELY(688) ,D1(2),
geses 1p2({2) ,D3(2) ,D4(2) ,DUMMY (688),

Bocas lpTT(608,1) ,DX(25,1) ,DXCAP(25,1) ,DYCAP(6E0,1),
ge7ee 1EIGVAL(25,25) ,EIGVEC(25,25) ,EIGVLL{25) ,EV(25,25),
agsge 1GNOL(l@) ,H(25,688) ,INT(2) ,IVAR(25),R(25,25),
eg9ce 15(25,1) ,5Ta(20) ,5X(28) ,5¥(28) ,52Z(28),

B1808 1TAL (18) ,TAU(25,2) ,TD(5,5,2) ,TDE(5,5,2) +

gllge 1TTB(5,5,2) ,TTD(680,1) ,TTORS(688,2),

B1288 1TTT(608,2) ,U(680,25) ,UNC(660,2) ,UTEME(25,25),
Blipe 1VART(25,25,2) ,WP(28),

8lsee lwWs(20) ,WK(1088),2T(25)

81688 C

81788 EQUIVALENCE(HT(1,1) ,UTRP({1,1))

gl8ga c

81966 DATA INT/'ALPH','BETA'/

62008 TYPE 1

g21ee READ (5,2) VFN

82200 TYPE 3

p2300 READ (5,*%) GHLMAX,GHLMIN,TALMAX, TALMIN

82488 TYPE 4

22508 READ (5,*%) GHLINC,TALINC

B2sBe TYPE 5

g27ee READ (5 ,6) HBLK

g2s@e N1=NELK*NBLE

g29ee N2=HELK

B3gep Hi=HELK+1

a3leg PRINT 7 ,VFN

83200 PRINT & ,GHLMAX,GNLMIN,TALMAX, TALMIN

833ee PRINT 3 ,GHLINC,TALINC

23409 PRINT 1@,N2,H2

Bisee HAXDIM=GBE

Be36B8 NRA=MAXDIM

g37ee HCA=N1

83s@e NEDY=MAXDIM

g39gp HCDY=1

p4860 HRDX=NH1

g4l1ee HCDX=1

84288 IDGT=2

84380 EDUM=N1

g4408 IJOB=1

84508 ILA=MAXDIM

24600 IB=25

Bg4788 c

E*EHE C e iy i e o e o e ol o o o o iy o o ol ok i o e ol o o o e ol o o ol o o o e e ol o o o o ol o e o e ol e o e i e i
24908 c N I5 THE NUMBER OF ERAYPATHS

B5008 C N1l IS THE TOTAL NUMBER OF BLOCKS



gs51e8
85208
85360
85480
85588
85668
85788
85888
as5%e8
86000
geleg
6208
86300
6488
86560
ge6ER
86708
g6ER 8
B690 8
670688
87168
87200
87300
87400
87508
87608
87788
87808
87988
gspes
gslea
gs2oe
68300
o840
ag5ap
esce
gg7ee
gs8eg
gasee
25688
g9l
09208
89388
g940e
gasea
29680
89788
@9sae
g99¢e
lgges
leloes

AaOoNMOonNOonNOOonOOannOOanNnanNnannnn

lea

182

181

183

isEeNeReRpN g

N2 IS5 THE NHUMBER N WHEN AREA IS DIVIDED INTO N BY N
BLOCKS

MAXDIM IS5 THE MAXIMUM DIMENSION USED IN THE IMSL SUBRO
UTINES; MAXDIHM EQUALS THE NUMEER OF RAYFPATHS

NRA IS5 THE NUMEBER OF ROWS OF MATRIX A; HRA=N

NCA IS THE WUMEER OF COLUMNS OF MATRIX A; MCA=N1
NRDY IS THE NUMBER OF ROWS OF MATRIX DELTA ¥; =N
NCDY IS THE NUMEER OF COLUMNS OF MATRIX DELTA ¥; =1
NRDX IS THE NUMBER QF ROWS OF MATRIX DELTA X; =Nl
NCDY IS THE NUMBER OF COLUMNS OF MATRIX DELTA X; =1
IDGT IS A PARAMETER SET FOR THE IMSL SUEBRCUTIHES
KDOM IS A DUMMY VARIABLE THAT REMAINS FIXED AS

NCA VARIES TEROUGE THE DECOMPOSITION PROCEDURE

I1JOB IS SET TG 1 TO BE USED IN IMSL SUBROUTINE EIGRS
IA AND IE ARE PARARMETERS SET FOR IMSL SUEROUTINES

o & o i o i o o o o e o v i o e o o o o ok o o o ol o o o o ol o O o o i o o o o o ol o o o o ol o o o o o o i

o e o o ol ok e o ok i e ok ok e ok ok e o ok o ok ol e ok ol ok e ol i ol ol i oy o o ol ol ol ol oo o ol ol o o ol ok o e

READ IN TAUO, A PRIORI ESTIMATES ON THE MODEL
PARAMETERS FROM TAULl.DAT AND TAUZ.DAT

o i e o o o o o o o e ol ok o o o ol 0 ol ol e ol o o ol o o o o ol ok ol o ol o ol ol ol ol o o ol e ol e o ol o e ol e e

DO 18P I=1,Nl

DEIGR(I,1) =6.0

DBIGR(I,2)=0.0

IVAR(I)=I

Do 181 I=1,2

IF(I.EQ.1l) OPEN(UNIT=1,FILE="TAULl"])
IF(I.EQ.2) OPEM{UNIT=1,FILE="TAU2")
Do 182 J=]1,N1

READ(1,12) TAU(J,I)

CONTINUE

CLOSE (UNIT=1)

CONTINUE

DO 1é3 II=1,N2

DO 183 JJ=]1,N2

\F{II.JJ.I] =5.8

V{II,JJ,2)=3.35

CONTINUE

NT=1

e o e o e o o ol o ol e o ok e ol e o e ok o ok e o e o o ok e ol e ok ok o o e ol o e o e o o e ol el el

READ IN EVENT LOCATIONS & STATION LOCATIONS FROM

DATA SET
T T e R T R R AR R S R R R R T L R bl

CPEN({UNIT=]1,DEVICE="DSK' ,MODE="ASCII" ,ACCESS="SEQIN",
1FILE=VFN)
OPEN(UNIT=28,DEVICE="DSK' ,MODE="ASCII" ,ACCESS="SEQIN',
1FILE="STA")



18289 104 READ (1,*,END=185) WSTA,IMO,IDA,IYR

183088 READ(1,*) XE,WPl,YE,WP2,2E,WP3

18480 READ(1,*) IHR,IMIN,SEC,WP4

les0@ DO 118 I=1,MSTA

la6R@ READ([1,13) STA(I),ISPMIN,STPSEC,WP(I) ,ISSMIN,STSSEC,WS({I)
18708 REWIND 20

18808 186 CONTINUE

109ge@ READ (20,14,END=187) STEST,SY(I),SX(I),S52(I)

lleee IF({STEST.EC.STA(I)) GO TO 1l@8

11108 GO TO 1l@6

11208 187 PRINT 15,S5TA(I),IMO,IDA,IYR,IHR,IMIN

11300 GO TO 110

11498 1gs CONTINUE

11588 N=l+1

11688 ¢

117ﬂﬁ Q khkhkhkhkthkkbbbdbrdtdk bkt dtdd kbbb idEd ittt ird
11888 C CALCULATE OBSERVED TRAVEL TIMES

119&5 C hhkkhkhkth kiRt tERE bk hkd kbt khthhkthdabdihk bbb dndd
12886 C

12108 TTCBS(K,1)=({STPSEC+ ( (ISPMIN-IMIN)*60.8) )=-5EC

12208 TTOBS(N,2) = (5TSSEC+( (ISSMIN-IMIN)*68.8) )-5EC

i%::g E [P I T T IS T2 8333321 3 T T3 TS TR RS RIS T2 TR TS RIS IR IR R A SRR R 2.8
12588 C CREATE UNCERTAINTIES UNC

IEEEE E RS R EREREERE RSS2 R R AR RSRERE R ES RS 2]
1278e C

128080 UNC(N,1) =WP4

129908 UNHC (N,2) =sWP4+8.2

13080 C

13133 C I PRSP R SRR RS R R AR AR AR RS R R R R R AR R R R R RS L
13280 C CALCULATE RAY PATH DISTANCES FROM TTYM

13355 C ko hhk bbbt thbtbbkbdtedrtttdddhbrdr bbb eirdied
l34g0 C

13588 XP=XE

13600 YP=YE

13780 Ip=3ZE

13608 OPEN (UNIT=25,DEVICE="DSE")

139080 CALL TTYM(XP,YP,2P,SX(I),.S5Y¥(I1),52(1),TTB,V,TD,TALMIN,
14000 1GHLMAX,GNLINC,TALINC NBLK)

14188@ CLOSE (UNIT=25)

14288 C

1{355 C LT R RS RS R SRS R AR RS RS RSt RS2 R RS2 R XX R R Bt RS
14480 c WEED OUT GRID FOR SELECTED BLOCKS & PUT IN MATRIX
11555 C e o e i oo oy o o o o b o o o o ok o e ok ok o o o b g o ok o ok o o o ok o o o o o o ol o ol o ol ol e ol ol e ol o
14688 C

14708 KL=9

14600 DO 189 IL=1,N2

14900 Do 189 JL=1,N2

15800 KEL=KL+1

15100 189 B(N,EL)=TD({IL,JL,1)

15280 11e CONTINUE



ig:g: E ekttt stttk drtddbidddrdrdy
15588 C CREATE MATRIX A FOR INVERSION

lSEEE c kbR Ttk ik e R e e R
157808 C

15808 GO TO l@24

15988 185 CONTINUE

16860 CLOSE (UNIT=1)

16188 CLOSE(UNIT=2R)

16208 PRINT 16,M

16368 C Do 111 I=1:N

16408 C PRINT 17, (B{I,J) ,J=1,H1)

16568 ¢ 111 CONTINUE

l6608 DO 112 I=1,H

le708 Do 112 J=1,N1

16888 TTD(I,1)=TTD(I,1)+B(I,J)

16988 112 CONTINUE

17888 NITER=§

17188 113 CONTINUE

17208 EBIGR=8.8

17308 PRINT 18,NITER

17488 FRINT 19,INT(NT)

17588 GO TO 115

17688 114 NT=2

17788 PRINT 19,INT(NT)

17888 C

1?953 C ST R TR R SRR RA R AR RRERdtERiaREtER dddl )
18688 C DIVIDE ROWS OF MATRIX A BY ALPHA OR BETA SQUARED AND
181é@ C NEGATE ELEMENTS

IEEHB c  E S IR L2212 R 22333 TR IR T332 3 IR 3T 3333 8 R 822 8 3 )
la388 C

la4e8 115 CONTIHUE

18588 HCA=}1

l8c0E Do 116 I=1,H

le7e@ D1 (NT)=0.8

18888 D2 (NT)=8.8

159@8 DI(NT)=0.0

19888 D4 (NT) =8.8

19188 Tl=g.8

19288 E=0

13388 =1

19408 OO 116 J=1,H1

135498 BEIGR(J)=8.8

19608 E=K+1

15708 IF(K.LT.N3} GO T0 117

19808 E=1

19908 L=L+1

20808 117 T1=T1+(B(I,J) /V{L,E,NT})

28108 TTT(I,NT)=Tl

20288 116 A(I,J)==(B(I,J) /(VI(L,E,NT)*¥*2)})

28308 C PRINT 20



28408
285688
20600
28708
20680
28989
21888
21180
21280
21308
214080
21588
216808
217848
21888
21980
22088
22188
22200
22308
22488
22508
22608
22708
22808
22998
23008
23108
232008
23300
23488
23508
23600
23708
23808
23908
24809
24188
24208
243889
24488
24508
24608
24789
24800
24980
25868
25108
25288
25308
25480

oo nN o

(%
=

NMOoNOoOnNOOOanNOMONOnNOOOOQnNDONOanNOonOonDnNONnNeEn

0O 118 I=1,N

118 PRINT 21,TTD(I,l)
PRINT 22

DO 119 I=1,N

119 PRINT 21,TTT(I,NT)

L e e e et
CALCULATE DELTA TRAVEL TIMES, IE OBS, TT MINUS THEO.

i o o o i ol o o i o ol o o o o e ol o o o g il o o o o o ok e o o o o o o o ol o o ol o i o o ol o ol o e i e oy

Do 128 I=1,N
DTT(I,1)=(TTOBS(I,NT)-TTT(I,NT)}/UNC(I,NT)
DUMMY (I)=TTOBS(I,NT)-TTT(I,NT)

D1 (NT) =D1(NT) +DUMMY (I)

D2(NT)=D2 (NT)+(DUMMY (I} **2,8)

PRINT 21,DTT(I,1)

CONTINUE

PRINT 23

Do 121 I=1,H

121 PRINT 21, (B(I,J) ,J=1,HN1)

o o e i 3k ok ok o o e i ol e o ok o ok ke o ol i ol o ol ok o ok ok ol o ke ol ok e ol o ol ol e o ol ol e e ol ok ol o o ol o ok b

MAXDIM,DIMENSIONS ,NRA,AND NCA ARE DEPENDENT OHN
MATRIX DIMENSIOHS

o i o el e ok o o o o o ol e ol e o o o o o o o o e o o o ol o ol ool ol ol e o o o o ol o ol e o o ol o e ol o

o i o o o g ok o o o v o o e ol o e o o o o o o o o o e o o o o o e ol o ol ol e e ok o o o ol ol oy o o o o o ol o

DESIGHNATE MATRIX FPARAMETERS
HhkA kAR AN AR AR AR AR AR AR TR AR R A AR AR AR AR AR

Ekkhk kbt kb h bbbk bbbk kb hh A AR h
PRINT MATRIX A

o i o e okl o o o o o o e ol o e ol o ol o o o ol o e ol o o ol o o o o ol o e ol o ol ol o ol oo ol o e o e ol ol ok

PRINT 24
DO 122 I=1,HRA
122 BPRINT 21,(A(I,J) ,J=1,HCA)

co 123 I'lr“ﬂh
IF (UNC(I,NT).EQ.l.} GO TO 123

GO TO 124

123 CONTINUE

GO TO 125

124 CONTINUE

124 PRINT 25

PRINT 26

DD 126 I=1,HEA

126 PRINT 21,UNC(I,NT)
GO TO 127

125 CONTINUE

125 PRINT 27



25588
25600
257800
258080
25588
260880
26108
26208
26308
26400
265080
26688
26788
26808
26988
27888
27188
27288
27308
27408
27560
27688
27788
27888
27908
28008
28le8
282880
28300
28408
28580
28608
28708
28808
28908
29088
29108
29208
29388
29408
29568
29688
29788
29828
29%08
38e00
3glep
Jp2ep
38308
30400
38568

HOOOMOOOONOONOONONO R =000 00

33

=
Lad
e

DO nn

135

oD

(g

kTR A ek A Ak Rk kA kR k ok ok ok

APPLY UNCERTAINTIES, SIGMA, TO MATRIX A
T e e e L R e i it el i i at T

DO 128 I=1,NRA

DO 128 J=1,NCA
A(I,J)=A(I,J)/UNC(I,NT)

DO 129 I=1,NCA

IF (TAU(I,NT).EQ.l.) GO TO 129

GO TO 138

129 CONTINUE
GO TO 131

138 CONTINUE
138 PRINT 28
PRINT 2%

DO 132 I=1,NCA
132 PRINT 38,IVAR(I),TAU(I,NT)
GO TO 133

131 CONTINUE
131 PRINT 31

e i i e e e ol ok e ook e ol o o o ol ol e ol o e ol o e ol o ol o e o ok o ol o ol o e e o e ol o o ol o ol o e ol e i e o

APPLY TAU ESTIMATES TO MATRIX A
LI Y e e e P e e Y P T r R s RS2 R st s st

DO 134 I=]1,KHCA
DO 134 J=1,HRA
A{J,1)=A{J,I)*TAU{I,NT)

e e e e T
OBTAIN INITIAL MODEL BIG R

kT REEEN AR TR AR A A TR et A A e ekt ded

XBIGR=8.0

Do 135 I-lp“

XBIGR=XBIGR+ (DTT(I,1)**2)
YBIGR=XBIGR/N

ZBIGR=SORT(YBIGR)

PRINT 32,INT(NT) ,2BIGR

PRINT 33

DO 136 I=1,NRA

136 PRINT 21, (A(I,J) ,J=1,HCA)

R e e e e e e e R e A S E R e e e R L
OBTAIN ATA VIA SUBROUTINE VTPROF

o d i de o o o e o e e o e o o o o e ol o oy o o o o o o o o o o o o e o o o o e o o o o o e o o ol o e b o

OPEN(UNIT=6,DEVICE="DSK")
CALL VTPROF (A,N,N1,MAXDIM,ATA)



30688
jgjee
3ose@e
389568
31@88
3llee
31288
31308
3l4e8
3l5ee
31608
31708
3l8@8
31900
32088
32108
32288
32368
32488
32588
32668
32788
32800
32968
J3eee
33lea
33208
33388
33488
33508
33680
33708
3igee
33988
34000
34188
34208
34388
34480
34580
34608
34708
34888
34980
35808
351068
35208
35388
35408
35508
35688

OgOoOnoOonNOoooOoo Do n

138

10 M

141
142

142

143

144

146

T T e e S S TS L 22 2t 2 2112 22T
CBTAIN EIGENVALUES ANL EIGENVECTORS

i SIS 3L RS RS S Rt tRRRR LR AR AL R NIRRT

CALL EIGRS (ATA,NW1,IJOB,EIGVLL,EIGVEC,IE,WK, IER)

kekdkkdhkkhdhd bkt h bbbk bbbk kb kbbb bbb ATk dk ki

CONVERT EIGENVALUES TO MATRIX FORM, TAKE THE
SQUARE ROOTS, AND PRINT EIGENVALUES

i o i o e o o o o i o o ol e e ol o ol o iy e oy o o e ol ol e e o e ol i e e i e e i e el ol el

dkdkdhhkddhh bbb bbb bbbk b kd bt kb d R b d bk kd ik dh bk

CONVERT EIGENVECTORS TO MATRIX FORM AND PRINT
LRI R R I R A e R AR R S R L e i Lt s

DO 138 I=1,NCA
DO 138 J=1,KCA

KE=NCA+1-T
EV(J,I)=({EIGVEC(J,K))

CONTINUE

NP=N1

CO 167 L=1,HF

PRINT 34

DO 139 I=1:NH

138 PRINT 21,(A(I,J) ,J=1,H1)
E=NP-L+1

DO 148 I=1,NP

KE=NP-I+1

IF(EIGVLL(KK) .LE.8.8) GO TO 141
EIGVAL(I,I)=5QRT (EIGVLL(KK))
GO TO 142

EIGVAL(I,I)=8.8

DO 148 J=1,NP
EIGVEC(I,J)=EV(I,J)

CONTINUE

IF(EIGVAL(K,K) .EQ.8.8) GO TO 167
NCA=K

IF (NCA.LT.NP) GO TO 143

PRINT 35,NP

GO TO 144

143 CONTINUE

PRINT 36,NCA

PRINT 37

CONTIMUE

IF (NCA.LT.NP) GO TO 145

PRINT 38

DO 146 I=1,NCA

PRINT 2]1,EIGVAL(I,I)

PRINT 68,INT(NT)

DO 185 I=1,H2

PRINT 61,(V(I,J,NT),J=1,N2)



35788 185 PRINT 61, (VAR(I,J,NT),J=1,N2)

35500 145 CONTINUE

35988 c PRINT 39

36008 C DO 147 I=1,KDUM

36lap C 147 PRINT 21,(EIGVEC({I,J) ,J=1,HCA}

36288 C PRINT 48,1IER

363pd DO 148 I=],HCA

3cdp0 C

JEEEE .C e i W o o i o ok o i e o ok e o e ol o o o o e ol e e o o ol T ol ol o e o e i o o ol e o o e il o o ol ol ol ol el b
366808 C OBTAIN LAMBDA INVERSE

36780 C T EET T IR SR RS R R R RSN RREERERR IR R AR AR R TS
36880 C

36988 148 EIGVAL(I,I)=1./EIGVAL(I,I)

37088 C

37108 C hhhhhdd kb kb kb bk hd b ddk bk bk ddh bk bbbk dedE
37208 C OBTAIN MATRIX U

3?35& C LS ST R SRR R AR RS R R R R R R R R R SR R ER R R ]
37488 (4

37508 CALL VMULFF(EIGVEC,EIGVAL,KDUM, NCA ,NCA,IE,IE,UTEMP,IE,IER)
37608 CALL VMULFF(A,UTEMP,NRA,KDUM,NCA,IA,IB,0,IA,LER)

a77ee C

37888 C o o e o o o ok ol ok o o o o o e o o e ol ol o o e e o e o ot ol ok o e o o o ol ok O o T o o o o ol ok e el o
37984 cC OBTAIN MATRIX H

3EEBB c A AAAdhikdtddrdiddd ittt it e i bRl
jglae c

IB208 DO 149 I=1,NCA

38380 DO 149 J=1,NRA

38408 1489 UTRP (I,J)=U{J,I)

jgsee CALL VMULFF{UTEMP,UTRP,KDUM,NCA,NRA,IB,IB,H,IB,IER)
lB604 C

JHTEH C ST ST TR R R SRR TR SRR SRR SR RS RRERRRR R R R R AR 422 3]
3ggge C OBTAIN MATRIX R=(H) (A), WHERE ASAVE=A, VIA

3g50a C SUBROUTINE VMULFF

Egﬂﬂﬂ c LA P ST SRR ERE AR R LR R AR RN RIS ERERED SRS
islae C

39200 C CALL VMULFF (H,A,KDUM,NRA,KDUM,IB,IA,R,IB,IER)

39368 c PRINT 42

9460 C DO 158 I=1,KDUM

39560 C 158 PRINT 21,(R(I,J},J=1,EKDUM)

39680 C PRINT 48,IER

39708 DO 151 I=1,NRA

39888 DELY(I)=8.8

39908 151 CONTINUE

48088 C

48108 C e i o e o ok o b g o o ok o i o ok o o ol o o ol e ol o ol ol sl ol ok ke ol o e ol ok ol ol e o i
40200 C FRINT DELTA ¥ (DTT)

48388 ek kbR kAR Ak Rk kR Ak ko drdk el el e dr e g e ol e o e R
40460 C

408580 C PRINT 41

40608 C DO 152 I=1,NRDY

48788 c 152 PRINT 43, DTT(I,1)



48888
40908
41880
41108
41208
41308
414808
41588
41688
41708
416888
41988
420908
42108
42208
42308
424880
42508
42680
42700
428080
42998
43088
43108
43280
43388
43400
43508
43608
4370880
43808
43980
44808
441889
44208
443480
44408
44508
44608
44708
44880
44988
45808
451089
45208
453808
45408
455088
45608
457880
45808

noannne

OOOOnNOROEDNOROD0D oD OOOononNOnNOOOnNnoODnon e

53

Ln
[

Ln
(21

CALL VMUOLFF(H,DTT,KDUM,NRA,IJOB,IB,IA,S,IE,IER)
DO 153 I=1,KDUM
DXCAP{I,1)=5(I,1) *TAU(I,NT)

e e e e L
READ IN MATRIX DELTA X OMITTING VARIABLES

o o i i i R O i i O o o ok ol ol o 0 o o ol o o o o o o o O O ok ok o O O o o i O o o o o o o o i ol e ol

EEKE=8

DO 154 I=1,N2

DO 154 MM=1,N2
KEEK=EKE+1

DX (KEK,1) =V{I,MM,NT)
CONTINUE

PRINT 44

e e o ol e o ool o o e o o ol e o ok e o o ol o o ol o o ol o ol ol ol o o o o o ok o o o o e e ol ok o o ok o ol

PRINT MATRIX DELTA X
L2 2R3 R R RN R iR AR
DO 155 I=1,H1
155 PRINT 43, DX(I,1)

FhkhkhkEAtEERERErErErdt ke ekt et E kil

FIND VARIABLES A & B, IE, BY DXCAP (DELTA X CAP)=

H * DELTA ¥ AND SUBTRACTING DX FROM DXCAP
e o o 3k i o o ok o i o ol o e ol ol v o o o o e ol ok ol o o ol ol o ol e ol e o e ol e e o o ol o o o ol iy ol e ol o o o

It i e e T T R R e TR e T R Rt A e R R e
OBTAIN DXCAP

e o o o B e o i o o o o e o o o o o o o o e o e o o o o o o e o o ol ol o ol o ol o o ol o o o o e o i ol ok

PRINT 45
DO 156 I=1,NRDX
PRINT 43, DXCAP(I,1)}

Y2232t &322 2 2 2R 22222 2R 2R d iRt ER R AdRtRRARE DS

OBTAIN VARIAELES A AND B
Eohkk kA Rk h Rl i ok e ook o ko o el o ool o o ol oo ol ok ol o e ek ke ok

VARMTX (I,L,NT)=DXCAP(I,1)+DX(I,1)

Do 157 I=1,MRDX

PRINT 46,IVAR(I),INT(NT),VARMTX(I,L,NT)
157 CONTINUE

Ak AR RAA R AR AR R R AR R AN R AR AR AR R Rk bRk Rk
OBTAIN VARIAMCES OM A CAP AND B CAP

I T T T ISR E LA 2 LR AR AR IR AR AR SRR RN Rt Ry d)

DO 158 I=1,R
DO 158 J=1,N1



45568
460080
46100
46208
46388
46400
46508
46600
467880
468080
46908
47608
47188
47260
47368
47468
47508
47608
47788
47808
47988
480688
48188
482068
48308
48400
48588
48608
48708
48800
48908
49008
49108
49280
43388
49400
49508
496080
4978
49808
4998
SORe6
selep
s9280
58388
sP400
58588
Sée0e
58788
S5p8ee
s09g8

158

159

OO n
-
=

162
161

aaann

163

OO OOnNRORNRN

167
168

HT(J,I)=H{J,I)

CALL VMULFP(H,HT,Nl,N,N1,IB,I1B,R,IB,IER)
Do 159 I=1,Nl
VART(I,L,NT)=R({I,I)*(TAU(I,NT)**2)

DO 160 I=1,KDUM
VART(I,L,NT)=SQRT(VART(I,L,HNT))

PRINT 47,INT(NT) ,IVART(I) ,VART(I,L,NT)
CONTINUE

kkd btk kb kbbb bk ek ke ek

OBTAIN MEW DELTA ¥S
RAT AR AR AR AR AR A AR R AR AN R A AR AR A AR AR A d e bk ek h

TX=0 .6

DO 16l I=1,MRDY

DO 162 J=1,N1

TA=TX+(B(I,J) /VARMTX(J,L,NT))
DELY (I)=TX

=0 .08

AR AR ARSI AR N AR AN RN R AR AR AR A RN A A AR AR Rk kb
CALCULATE BIG R FOR EACH DECOMPOSITION

i e o e ol ol ol oy o g e ol e e o e ol e e o e e e i ol e i e i ol e e e i o e ol il o el e i i T o R ok

ABIGR=8.8

CBIGR=8.0

DO 163 I=1,HRDY
ABIGR=ABIGR+( [ (TTOBS(I,NT)-DELY(I)) /UNC(I, NT))**2)
DEIGR(L,NT) =ABIGR

CBIGR=ABIGR/NRDY

BIGR (L) =SORT(CBIGR)

PRINT 48,BIGR(L)

% 3 & & 3 o i o e o o o o ok o o o oy ol oy e ol gl o o e o o ok e o o e o e o o o ol e e ol e e o e ol o o ol

CALCULATION OF SMALL R
RER R R AR A AR AR AR R AR AR R AR ARk bk bR d kAR

DD 164 I=1,KDUM

SMLLE=@ .8

DO 165 J=1,KDUM

MJ‘R{I;J}

165 SMLLE=SMLLE+ (RIJ**2)
PRINT 49,IVAR(I) ,SMLLR

164 CONTINUE

FRIHT 58

PRINT 21, (VARMTX(I,L,NT),I=1,Nl)
PRINT 51

PRINT 21, (VART(I,L,NT),I=1,H1)
CONTINUE

CLOSE (UNIT=6)



?iig: {:: T FI TS TR RS RSS2 SRR RS R R F SRR AR R R SRR R0 B
512e8 C SORT TEST FOR BIG E OR AVE STANDARD DEVIATION
513gu .|: T E T ARSI RE SRS R AR R R RS R R SRR R R R R R R
51488 C

515g8 Do 169 I=1,N1

51608 169 IF(BIGR(I).GE.l.8) GO TO 179
51700 PRINT 59,INT(NT) ,TAU(Ll,NT)
51808 IF({NBLK.EQ.1) GO TO 166

519480 Do 178 I=1,Hl

520e8 El=@.8

52180 Do 171 J=1,NH1

52288 171 El=E1+VART(J,I,NT)

52388 EZ2=E1/Nl

52408 178 IF(E2.LE.TAU(1,NT)) GO TO 172
52508 166 I=1

52688 172 KEl=TY

52788 LL=H1=I+1

52800 GO TO 1B3

52988 179 FRINT 57,INT(NT)

53088 DO 188 I=1,N1

531808 ET{I)=1.-BIGR(I)

53200 188 2T({I)=ABS(ZT(I))

53388 IF({NBLE.EQ.1) GO TO 184

53488 Do 181 I=1,NMl

53588 K2=I+1

53600 181 IF(2T(K2) .GE.ZT(I)) GO TO 182
53708 184 I=1

53888 182 Kl=I

53908 LL=M1-I+1

54008 183 DBIGR(1,NT)=DBIGR(K1,NT)
541086 EI=0

54208 PRINT 58,INT(NT},LL

54388 DO 174 I=1,H2

54480 DO 174 J=1,H2

54588 EI=EI+1

54608 V{I,JNT)=VARMTX(EI ,K1l,NT)
54788 174 VAR(I,J,NT)=VART(EI,E1l,NT)
54884 PRINT 53

54908 DC 175 I=1,N2

55880 PRINT 54, (V(I,J,NT),J=1,N2)
55108 PRINT 54, (VAR(I,J,NT),J=1,N2)
55208 175 CONTINUE

55308 EBIGR=EBRIGR+DBIGR (1 ,NT)

55408 IF {NT.EQ.1l) GO TO 114

55588 DO 186 M=l,2

55608 PRINT 62,INT(M)

55788 DO 186 I=1,NM2

55800 PRINT 61,(V(I,J,M),J=1,H2)
554988 186 PRINT 61, (VAR(I,J,M),J=1,N2)

56088 C
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56200 C CALCULATIONS OF POISSON'S RATIOS AND STANDARD DEVIAT'N
553ﬂﬂ C 'Yttt tTtrtstatititssitisi izt 2 S22 R0 R R A R 0 0 4 & i
56408 C

56588 K=9

56600 DO 176 I=1,N2

567880 DO 176 J=1,N2

SGEQ R K=K+1

56908 Al=(VI(I,J 1)/ V(I,J,2))%*2,

57060 Bl=Al=-1,

57188 Al=Al-2.

57260 POI=Al/ (B1%*2.)

57300 PSTD1l=V(I,J,1)*V(I,J,2)

57400 PSTD2= ((V(I,J,1)**2.8)=(V(I,J,2)**2_B))**2.0

576088 PSTD4=({PSTD1*PSTD3) /PSTD2

577889 PSTD=ABS (PS5TD4)

57800 PRINT 55.IVAR(EK) ,POI,PSTD

57988 176 CONTINUE

S8000 0o 177 I=1,2

58108 DI(I)=((N*D2{I))=-(D1(I)**2.8))/(H*(K-1))

58200 D4{I)=SCQRT(D3(I))

58360 177 PRINT S56,INT(I).D4(I1)

58400 FRIGR=ERIGR/ (N*2)

58508 BIGR1=SQRT (FEIGR)

58600 FRINT 48,BIGR1

58708 HITER=NITER+1l

58808 IF{NITER.GT.5) GO TO 178

58908 NT=1

59908 GO TO 113

59168 178 CONTINUE

59288 1 FORMAT(1X, "IN WHAT DATA FILE ARE THE EVENTS?')

59300 2 FORMAT (AS)

59400 3 FORMAT(1X, "WHAT ARE THE MAX & MIN LONG & LAT OF AREA?")
59580 4 PORMAT(1X, "AT WHAT INCREMENTS ARE THE BLOCKS TO BE
59688 1 DIVIDED ALONG LONG & LAT?')

59788 5 FORMAT(1X, "THIS WILL CREATE A SQUARE AREA OF X BLOCKS
59808 1 ACROSS AND X BLOCKS HIGH., IKPUT X.')

599p8 6 FORMAT (13)

60060 7 FORMAT('1",///.5X, "THE DATA IS FROM DATA SET °,A5,'.DAT')
6elee 8 FORMAT(///,5X,"THE MAXIMUM LONGITUDE OF THE STUDY AREA
602680 115 '",F8.4,/,1X,"THE MINIMUM LONGITUDE OF THE STUDY AREA I
E [ ]

c03g@ 1,F8.4,/,1%, "THE MAXIMUM LATITUDE OF THE STUDY AREA IS '
60408 1,P7.4,/,1%, 'THE MINIMUM LATITUDE OF THE STUDY AREA IS '
60508 1,F7.4)

60600 9 FORMAT(///,5X, "THE BLOCK INCREMENTS ARE ',F4.3,' DEGREES
687880 1 ALONG THE LONGITUDE AND ',F4.3," DEGREES ALONG THE LATIT
UDE.")

60800 1@ FORMAT(///,5X, "THIS DIVIDES THE STUDY AREA IKTO ',I2,°
6890@ 1BLOCKS BY '",I2,' BLOCKS.')

6leee 12 FORMAT (1F15.5)

61168 13 FORMAT (A3,2(1X,I12,1X,F5.2,1X,F3.2))



61208 14 FORMAT(A3 ,1X,F7.4,1X,F8.4,2X,F5.3)

61309 15 FORMAT(1X, "STATION ',A3,' NOT FOUND ON DATE ',5I3)
61488 16 FORMAT(//,1%, '"THE TOTAL NUMBER OF RAYPATHS IS5 ',I4)
6l588 17 FORMAT(1X,9F9.4)

61688 18 FORMAT('1l" ,20X, "ITERATION NUMBER ",I2)

61768 19 FORMAT(/,28X, "THE FOLLOWING CUTPUT IS FOR ',Ad,'.")
61880 20 FORMAT(// ,2X, "THE TOTAL TRAVEL DISTANCES ARE')

6l5p@ 21 FORMAT (' *,10Fl19.4)

62000 22 FORMAT(//,2%, "THE TOTAL TRAVEL TIME I5")

62188 23 FORMAT(//,30X, "MATRIX A PRIOR TO MEGATICON & VEL. DIV.')
62280 24 FORMAT (//,36X,"MATRIX A IS')

62300 25 FORMAT(//,3%,"THE UNCERTAINTIES, SIGMA, ARE NOT UNITY")
62408 26 FORMAT(/,3X, "THE UNCERTAINTIES ARE")

62580 27 FORMAT(//,3X,"THE UNCERTAINTIES, SIGMA, ARE UNITY')
62680 28 FORMAT(//,3X, "THE TAU ESTIMATES ARE NOT UNITY')

62788 29 FORMAT(/,3X, "THE TAU VALUES ARE')

628800 30 FORMAT(/,3X, "TAU(",Al,") = ',1F1@.4)

62980 31 FORMAT(//,3%,"THE TAU ESTIMATES ARE UNITY')

63080 32 FORMAT(/,1X,"TEE BIG R ON THE INITIAL ',Ad4,"' MODEL IS5 '
63leg 1,F8.5)

63208 33 FORMAT('-",18X, "MATRIX A WITHE TAU AND SIGMA APPLIED IS5°)
63300 34 FORMAT(// 30X, "MATRIX A AFTER NEG. & VEL. DIV.")

634080 35 FORMAT({///,20%,"ALL EIGENVALUES AND EIGENVECTORS ARE RETAI
N

635080 1ED, 1E, P=',113,/)

63680 36 FORMAT(///.20X,"ONLY LARGEST EIGEN NUMBERS ARE RETAINED, I
63788 l1E, P="',113,/)

63888 37 FORMAT('-"'",18X, "THE EIGENVALUE MATRIX, LAMBDA CAP, I5")
63980 38 FORMAT(/,5X, "THE EIGENVALUES ARE')

64888 39 FORMAT('="',22X, '"THE EIGENVECTOR MATRIX, V, IS'")

Bd4lap 48 FORMAT (" '",3X,'"IER=",1X,1F18.2)

64200 41 FORMAT ('-',3X,'DELTA ¥ I5')

64388 42 FORMAT ('-',31X,"MATRIX R IS")

bd4d8 43 FORMAT (' ',3X,1Fl18.2)

54500 44 FORMAT ('-',3X,"MATRIX X IS')

64680 45 FORMAT ('=',3X,"MATRIX DELTA X CAP IS")

64780 46 FORMAT ('-',3X,"FOR BLOCK ",Al,',",lX,Ad," IS',1F10.4)
4888 47 FORMAT("-",3X, "THE STAMNDARD DEVIATION OF ",Ad4,"('",Al,") HA
T

64986 1 IS + OR - ",1F1@.4)

65088 48 FORMAT('-",3X, '"THE SCALAR BIG R IS',l1Fl6.6)

651@8 49 FORMAT{"-",3X,"SMALL R{',Al,") I5 ',1F10.4)

65200 50 FORMAT(/,25%, "THE VELOCITIES ARE")

65388 51 FORMAT(/,20X, "THE STANDARD DEVIATIONS ARE')

65408 53 FORMAT (//,9X,'SORT TEST',//)

65588 54 FORMAT (1X,5F19.4)

65608 55 FORMAT(1X, 'POISS0NS RATIO FOR BLOCE ',I2,"'" IS ',l1PB.S5,
65780 1' + OR - ",1F8.5)

65880 56 FORMAT(/,1X, 'THE STANDARD DEVIATION ON THE ',Ad,' RESI
65988 1DUALS IS ' ,F6.4)

Y1040 57 FORMAT(/,1%,"THE ",A4,' SOLUTION IS BASED ON BIG R.',/)
66188 58 FORMAT(/,1X, "SORTED CALCULATIOHS FOR *,Ad,' KEEPIKG ",

66200 1I12,"' EIGENMVALUES,.',/)



66308 59 FORMAT(/,1X,"THE ",Ad," SOLUTION IS BEASED ON AN AVERAGE

66408 1l STANDARD DEVIATION THAT IS CLOSEET YET LESS THAN
66500 1 ',F6.4,/)

66680 68 FORMAT(/,95X,A4,"' MODEL')

66700 6l FORMAT (BOX ,5F16.4)

66800 62 FORMAT(/,85X,Ad,"' SOLUTIONS FOR WEXT MODEL")
66988 STOP

67800 END

67188 SUBROUTINE TTYM(XP,YP,HPZ,85X,5Y,5E,TTE,V,TD, TALMIN,GNLMAX,
672080 1GHLINC,TALINC,NELEK)

67408 1TDZ (5,5,2)

67500 $ ,TTB(5,5,2)

67608 TAN(A)=5IN(A) /COS (A)

67708 HB=NBLE+1

67808 H5=HELK

67988 H6=HELE-1

68808 DO 780 MM=1,2

68108 DO 788 I=1,H5

68208 DO 780 J=1,NH5

68300 TDZ (I,J,MM)=D.

68400 jea TC(I,J.MH) =8,

68508 STO=@.

GEBGOD 2=HPZ

68700 M=2

68880 IF(Z.LE.10R.)K=]1

68900 DPP=HPZ+SE

69008 CTI=128.8

69100 DGU=Z-DTI

69208 II=@

69388 JJd=@

69408 NTAL=NB

65508 HGHOL=HE

63600 TAL (1) =TALMIN

69788 GNOL (1) =GNLMAX

69808 0o 1 I1=2,NB

69988 IMl1=I-1

jogee TAL(I)=TAL(IM1l)+TALINC

7elead 1 GHOL(I)=GNOL(IMl)-GNLINC

Jo2ee IF(SY.LT.TAL(1) .OR.SY.GT.TAL (NTAL) )GO TO 508
70308 IF(YP.LT.TAL(l) .OR.YP.GT.TAL (NTAL) )GO TO 588
Je4ee IF(5X.GT.GNOL(l) .OR.SX.LT.GMNOL (NGNQL) )JGO TO 508
Tasee IF(XP.GT.GROL({1l) .OR.XP.LT.GNOL(NGNOL) )GO TO 508
70608 GO TO 528

7e788 cee CONTINUE

Joses PRINT 511,TAL({l) ,TAL(NTAL) ,GNOL (1) ,GHNCL (NGNCL)
70988 511 FORMAT(18X,4F10.4)

7lpee PRINT 511,5X,5Y,XP,YP

71188 PRINT 518

71288 51@ FORMAT (18X, "INCORRECT ENTRY',/)

71308 GO TO 98



71488
71588
71688
71788
71888
71908
72080
12108
72200
723880
72468
72588
12668
12788
12880
72988
73888
73188
13208
13368
13408
73508
13608
13708
73888
13988
74088
74188
74208
74300
T4 488
T4508
74608
74708
T4800
74980
75868
75188
15208
75308
15408
15588
156060
15760
15880
75908
Teg8e
76168
76280
76308
76400

520

18
3@

48

58

PI=3.1415927

CF=PI/188.

XEDEG=( (SY+YF) /2.-34.1) *.618+110.922
XEKC=COS (CF* (SY+YP) /2.)*111.439%9
YTN=90.*CF

OETY=188.*CF

TSV=278.*CF

TsX=368.*CF

XX=ABS (SX-XP) *XEKC

Y¥=ARS (SY-YP) *XKDEG
IF(YY.LE..0@1)¥YY=.P01

TH=XX/YY

BRZI=ATAN (TH)
IF(SY.LT.YP,AND,.SX ,LT.XP) AZI=0DETY-AZI
IF(SY.LT.YP.AND.SX.GT.XP) AZI=0ETY+AZI
IF(SY.GT.YP.ARD.SX.GT.XP)AZI=TSX~-AZI
IF(S5Y.EQ.YP.AND.SX.GT.XP)AZI=TEV
IF(SX.EQ.XP.AND.SY.GT.YP)AZI=TSX
IF(SX.EQ.XP.AND.SY.LT.YP) AZI=0ETY
ANG=ABS (DPP) /JSORT (XX*XX+YY*YY])
ANG=ATAN { ANG)

IF(AZI.GT.YTN)GO TO 6@
IF(AZI.LE..0@01)AZI=.0601
DIF=YTN-AZI

IF(DIF.LE. .0@@1l)AZI=AZI-.0001

J=@

I=@

I=1+1

K=I-1

IF{XP.LT.GNOL(I))GO TO 38
IF(SX.GE.GNOL{I)) II=1

XE=ABS (GNOL(I)=XP)
XD=XE*XKC/SIN{AZI)

J=J+1

L=HTAL+1=J

IF(YP.GT.TAL({J) )GO TO 4@
IF(S8Y.LT.TAL(J) }JdJ=1

YE=ABS (TAL(J) =YP)
YD=YE*XKDEG/COS (AZI)

IPI=II+JJ

IF(IPJ.EQ.2)GO TO 7@
IF({YD.GT.XD)GO TO 58

¥YP=TAL (J)
XP=XP-YE*TAN (AZI) *XKDEG/XEC
TD(L,K,M)=¥YD/COS (ANG)

TDZ (L,K,M)=TD(L,K,M) *SIN(ANG)
CALL BLCHG (TDZ ,DGU,TD,L.E, M, ANG,H5)
I=I-1

GO TO 3@

CONTINUE

XP=GNOL{I)



16588 YP=Y P+ (XE/TAN (AZI) ) *XEC/XKDEG

76608 TD(L,K,M)=XD/COS (ANG)

76708 TDZ (L,E,M)=TD(L,K,M)}*SIN{ANG)

76808 CALL BLCHG(TDZ,DGU,TD,L,K,M,ANG,N5)
769880 J=J=1

77888 GO TO 3@

77108 7@ CONTINUE

77288 TD(L,K,M)=ABS { (SY-YP) *XKDEG/ (COS (AZI) *COS (ANG) ) )
77308 IF(YY.LT,.01) TD(L,K,M)=AES (SX-XP) *XKC/COS (ANG)
77408 TDZ (L,K,M)=TD(L,K,M) *SIH (ANG)

77588 CALL BLCHG(TDZ,DGU,TD,L,K,HM,ANG,N5)
717608 GO TO 9@

77788 (1] CONTINUE

77808 IF (AZI.GT.OETY)GO TO 168

77988 DIF=AZI-YTN

78808 IF{DIF.LE, .0@Bl)AZI=AZI+.0801

78108 DIF=0ETY-AZI

78288 IF(CIF.LE. .8@081)AZI=AZI-.0801

78308 J=NTAL+1

78408 I=8

78508 138 I=I+1

78688 E=I-1

78700 IF(XP.LT.GNOL(I))GO TO 138

788848 IF(SX,GE.GNOL(I))II=1

78900 XE=AES (GNOL{I)-XP)

79808 ED=XE*XEC/CO5(AZI-YTH)

79108 148 JuJ=1

79208 L=NTAL-J

79308 IF(YP.LT.TAL(J))GO TO 148

79408 IF(SY.GE.TAL (J) )JJ=1

79508 YE=ABS (TAL (J) =YP)

79680 YD=YE*XKDEG/SIN{AZI-YTH)

79788 IPJ=I1+JJ

79868 IF(IPJ.EQ.2)G0O TO 178

79988 IF(¥D.GT.XD)GO TO 158

BEddoe ¥P=TAL(J)

gelee XP=XP-YE*TAN (OETY=-AZI) *XEDEG/XKC
80200 TD(L,K,M)=YD/COS (ANG)

80380 TDZ (L,K,M)=TD(L,K,M) *SIN{ANG)

Ed408 CALL BLCHG (TDZ ;DGU,TD LK, M, BHNG,HN5)
BE5S08 I=I-1

go6eg GO TO 1389

8B7868 158 CONTINUE

B0BER XP=GNOL(I)

B2988 YP=YP-XE*TAN (AZI-YTN) *XKC/XKDEG
Blege TD(L,K,M)=XD/COE (ANG)

gl1l8e TDEZ (L,K, M) =TD(L,K,M) *SIN{ANG)

8l260 CALL BLCHG(TDZ ,DGU,TD L, K, M, NG ,HN53)
Blige Je=J4+1

Bl4ipe GO TO 138

81588 178 CONTINUE



g8ledg TD(L.K,M)=ABS(5Y-YP) *XKDEG/ (COS (OETY-AZI) *COS (ANG) }

81708 TDZ (LK, M)=TD(L,K,M) *SIN([ANG)

8lB@e CALL BLCHG(TDZ,DGU,TD,L,K,M,ANG,N5)
Bloge GO TO 9@

820008 l68 CONTINUE

B2lag IF(AZI.GT.TESV)GO TO 268

82208 DIF=AZI-OETY

B2388 IF(DIF.LE. .REBE1l) ASI=AZI+.0€81

824880 DIF=TSV-AZT

B2588 IF(DIF.LE. .00881)AZI=AZI-.0001
B2600 JENTAL+]

B2788 I=HGHOL+1

B2BEQ 238 I=I-1

B298@ E=I

23888 IF(XP.GT.GHROL(I))}GO TO 234

83198 IF(SX.LE.GNOL(I)}II=1

Bizeg XE=ABS (GNOL(I)-XF)

B33lge ED=XE*XKC/SIN(AZI-0ETY)

B34B0 249 J=J=1

B3isgs8 L=HTAL-J

B3cBQ IF(YP.LT.TAL(J) )GO TO 248

B3700 IF(SY.GE.TAL(J) }JJ=1

83800 YE=ABS (TAL(J) -YF)

839@@ ¥YD=Y E*XKDEG/COS (AZI-0ETY)

EdDE8 IRI=II+JJ

B4168 IF(IPJ.EQ.2)GO TO 270

B4280@ IF(YD.GT.XD)GO TO 258

E43088 YP=TAL(J)

g4400 XP=XP+YE*TAN (AZI-0ETY) *XKDEG/XKC
B4588 TD{L,.K,M)=YD/COS (ANG)

84608 IF(YY.LT..B81) TD(L,K,M)=ABS (SX-XP) *XKC/COS (ANG)
84788 TDZ (L,E,M)=TD(L,K,M) *SIN{ANG)

g4808 CALL BLCHG (TDZ ,DGU,TD,L,K,M,ANG N5}
84908 IF({XD.NE.GNOL(I))I=I+1

85Qe@ GO TO 238

B5lB@ 258 CONTINUE

85288 XP=GHOL(I)

85381 YP=YP=XE*TAN (TSV-AZI) *XKC/XKDEG
85400 TD{L,K,M)=XD/COS (ANG)

B558@ TDZ (L,K,M)=TD(L,K,M) *SIN(ANG)

85688 CALL BLCHG (TDZ ,DGU,TD,L.K,M,ANG,HN5)
85788 IF(YD.NE.TAL (J) })Jd=J+1

BSBER GO TO 238

85988 278 CONTINUE

G TD(L,K,M)=ABS (SY=YP) *XKDEG/ (SIM(TSV-AZI) *COS (ANG) )
86168 IF{YY,LT..01) TD(L,K,M)=ABS (SX-XP) *XKC/COS5 (ANG)
86208 TDZ (L,E,M)=TD{L,K, M) *SIN{ANG)

Bs3i08 CALL BLCHG (TDZ ,DGU,TD,L,K,M,ANG,NS)
BEc4EI0 GO TD 94

BeSAB 268 CONTIRUE

8ob80 J=8



86708
86808
ge9pm
87008
87168
87280
87388
87408
87580
8Ted 8
87788
g78e8
87988
88000
g8laée
88280
88388
88480
gsso0e
BBEED
g870@
gsse8
BE9E R
gspen
g3l
89208
89380
89480
B9508
896080
B978¢8
g9808
B99ed
Sp0ee
S8lp08
98280
Sp302
984680
9p586
90688
878e
S08pg8
sg%ee
91808
9llée
51208
9l3g8
91480
91588
Slegd
91788

338

348

se

378

96

aoOnNnonn

DIP=AZI=-TSV

IF(DIF.LE. .0@P01)AZI=AZI+ B8P0
DIF=TSX-AZI

IF(DIF.LE. .0081)AZI=AZI-.0001
I=HGNOL+1

I=I-1

K=I1

IF(XP.GT.GNOL(I))GO TO 336
IF(S5X.LE.GNOL(I))II=1

XE=ABS (GNOL(I)-XF)

XD=XE*XKC/COS (AZI-TSV)

J=J+1

L=HTAL+1-J

IF(YP.GT,.TAL({J))GO TO 348
IF(SY.LE.TAL({J) )JJ=1

YE=ABS (TAL(J) -YP)

Yo=Y E*XKDEG/SIN({AZI-TSV)

IPI=II+JJ

IF(IPJ.EQ.2)G0 TO 378
IF(YD.GT.XD)GO TO 358

YP=TAL (J)

XP=XP+YE*TAN (TSX-AZI) *XKDEG/XKC
TDZ (L, K,M)=TD(L,K, M) *SIN {ANG)
EELLIBLCHGITDE.DGH.TD.L.E;H,AHG,HS]
I=I+

GO TO 338

CONTINUE

XP=GNOL{I)

YP=YP+XE*TAN (AZI-TSV) *XEC/XKDEG
TD(L,K,M)=XD/COS (ANG)

TDE (LK, M) =TD({L,E,M ) *SIN{ANG)

CALL BLCHG (TDZ,DGU,TD,L,K,M,ANG,N5)
J=J=1

GO TD 338

CONTIKUE
TDO(L,E,M)=ABS (SY-YP) *YKDEG/ (COS (TSX=-AZI) *COS (ANG) )
IF(YY.LT..81) TD(L,K,M)=ABS (SX-XP) *i{KC/COS (ANG)
TD2 (L,K,M)=TD(L,K,H) *SIN{ANG)

CALL BLCHG {TDZ ,DGU,TD,L,EK,M,AHNG N5)
CONTIRUE

TTT=@,

TTD=8@.

oo 89 MM=1,2

DO 89 LL=1,N6

DO B9 KE=1,NB

TTD=TTIH+TD{LL, KK, MM)
TTB(LL,EEK,MM)=TD{LL,KK,MM) /V(LL,KK, MM}
89 TTT=TTT+TTB(LL,KE, M)
RETURN

END



9lsee SUBROUTINE BLCHG (TDZ,DGU,TD,L,K,M,ANG,NS)

91900 DIMENSION TDZ(5,5,2),TD(5,5,2)
92008 IF(M.EQ.1) RETURN

92108 STDEZ = @,

92208 DO 1 LL=1,H5

92388 DO 1 KEE=]1,HN5

92408 1 STDE=STDEZ+TDZ (LL,KK,2)

92508 IF (STDZ .LT.DGU) RETURN

92608 TZ=TDEZ (L,K,2)

92704 TDZ (L,K,2) =DGU-STDZ+TDZ (L,K,2)
92808 TD(L,K,2)=TDZ (L,K,2) /SIN (ANG)
$2908@ TDZ {L,K,1) =TZ-TDZ (L,K,2)

93800 TD(L,K,1)=TDZ(L,K,1) /SIN(ANG)
93108 M=1

93204 RETURHM

93388 END



AFPPENDIX C

Computer Output for Model 1

(Under Separate Cover)



AFFENDIX
Computer Output for Model 2

({Under Separate Cover)



AFFENDIX B
Computer Output for Model 3

(Under Separate Cover)



AFPFENDIX F
Computer Output for Model 4

{Under Separate Cover)



AFPPENDIX G
Computer Cutput for Model 5

{(Under Separate Cover)



AFFENDIX H
Computer Cutput for Model 4°'

{(Onder Separate Cover)



APPEHDIX I

Computer Output for Model 5°'

(Under Separate Cover)



APPERDIX J

Listing of Data Set Including P- and S-wave
Arrival Times

(Onder Separate Cover)



