FINITE ELEMENT SIMTLATION OF
CONTAMINATION TRANSPORT TIHROUGH AN AQUIFER

by
John B. Czarnecki

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science in BHydrology

New Mexico Imstitute of Mining and Technology
Socorro, New Mexico

December, 1978



ACKNOWLEDGEMENT

The author is grateful to Dr. Pongsarl Huyakorn of the Geoscience
Department for supervision and guidance. Thanks are extended to Dr. Lynn
Gelhar of the Geoscience Department and Dr. Allan Gutjahr(of the
Mathematics Department for their assistance and inspiration during the
course of this study. Acknowledgement also goes to Mr. Charles Mumma
for his kind assistance with several of the compﬁtcr plotting routines
used and to Mr. Wesley Young for his assistance with the two-dimensional

recteagular grid problew.




ABSTRACT

Two finite element formulations are presented based on hydraulic
head-concentration and stream function-concentration models. Transient
and steady-state cases are analyzed as well as the effect of concen-
tration on viscosity. The hydraulic head-concentration formulation is
incorporated into a computer code and the code is calibrated by run-
ning a pre&iously solved sea water intrusion problem. The model is then
used to solve hypothetical one- and two-dimensional contaminant trans-
port problems using irregular and regular meshes. A discussion of the

effect of Peclet and Courant numbers on oscillation is included.
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1. Introduction

1.1. General

The problem of contamination transport through an aquifer by
the movement of ground water is of major interest to hydrologists and
has been analyzed in various ways for several years now. The equations
governing the movement of ground water and the transport of a contami-
nant are of such a nature that analytical solutions can only be obtain-
ed for idealized one- and two-dimensional problems. To deal with more
realistic flow situations, it is necessary to obtain approximate sol-
utions via the use of numerical schemes such as the finite difference
or finite element methods. These governing equations are not restrict-
ed in their application to ground water flow and "pollutant' transport
problems; with a slight twist in the interpretation of a few parameters
present in these equations, it is possible to apply them toward problems
involving geothermal flow, where the "pollutant', instead of being
an undesirable or toxic substance, is temperature.

It is from this framework that the work presented in this thesis
is derived. A portion of the work presented here is a part of a
geothermal modeling study at New Mexico Institute of Mining and Tech-
nology, the aim of which is to formulate an effective model to simulate
geothermal flow in an area west of Socorro, New Mexico, using the

finite element technique,

1.2 Purpose and scope

The purpose of this thesis is to develop an effective numerical
model which will solve transport problems in two dimensions using

the finite element method. Since the development of any new model



necessitates some form of calibration, and since-this model is designed
to solﬁe problems involving contaminant transport as well as geothermal
flow (due to the generality of the governing equations), a calibration
problem involving sea water intrusion has been run and the results are
reported within the thesis.

As a demonstration of how this model could . be applied to an actual
aquifer situation, a problem was devised involving one-dimensional
and two-dimensional flow within the Rustler Formation of the Los Medanos
Area near Carlsbad, New Mexico. Since many of the parametecrs used in
the transport analysis are at best rough estimates or guesses, the
results obtained must be considered as hypothetical. The purpose of
using the model in this manner is not to supply definitive answers
for the "actual' transport problems analyzed; rather, these problems
have been used to test the effectiveness of the model and to identify
possible numerical difficulties within the model, such as oscillations,
which may occur for certain sets of values of some of the parameters

used.

1.3. Literature review

Various numerical schemes have been proposed by several workers
to solve problems involving contaminant transport or geothermal flow.
Among the more currently developed transport schemes arc the material
s . . 4
transport finite element Galerkin model of Duguid and Reeves ; the
coupled ground water flow and convective dispersion finite element
7 e . - s . '
model of Huyakorn and Taylor'; the three-dimensional convective disper-
. o : " . 3. .. . e
sion finite element model of Taylor and Huyakorn™7; and the transient

transport, upstream weighted, finite element model of Huyakorn and



(&N

Nilkuhaé. Work done in the area of geothermal flow includes the con-
vective heat transfer model of Domenico -nd Palciauskas and the
numerical analysis of Witherspoon et 3114.

The numerical model used in this thesis incorporates the upstream
welghting procedure of Huyakorns. The advantage o’ using upstream
weighting becomes apparent when numerical oscillation problems are
encountered. In addition, this model features a sequential iterative
solution scheme which treats the governing equations as being

uncoupled, thus reducing the size of the coefficient matrix and hence

the required computational time.



2. PFormulation of Coupled Ground Water Flow and Convective Dispersion

Equations

2.1. Genergl

The transport of a contaminant by the movement of ground water can
be simulated using three different models: (1) velucities-pressure-
concentration model; (2) hydraulic head-concentration model; and
(3) stream function-concentration model (Huyakorn and Taylor, 1977,

p. 1.131). The latter two models Tend themselves.more readily to
computer simulation than the first since they hafe fewer variables to
calculate. For this reason, the latter two models have been used in

this thesis and appear in the following sections.

2.2, Hydraulic head--concentration (h-c) formulation

2.2.1. Governing equations

The equations describing coupled steady ground water flow and

contamination transport may be written in the form

..p g
1]
V. = - = Lo, e.J (1)
I won pg 9OX. 1
1
2 (v, ) = 0 (2)
oX. 1
1 R
3 . oC ac _ ac
3w Pij o) T Visx, o *Et (3)
i 3 1

where v, denotes the components of the seepage velocity (L/T); k%j
i

£



is the intrinsic permeability tensor of the poroﬁs medium (Lz); uois
the dynamic viscosity of the fluid (M/LT); p is the fluid density
(M/LSJ; g is the gravitational acceleration (L/Tz); p is the fluid pres-
sure {M/LTZ); e denotes the components of the unit vector in the up-
ward vertical direction; Dij is the dispersion tensor (Lz/T); ¢ is the
concentration of pollutant, in this case salt (M/LS); X is the concen-
tration coefficient which is set equal to unity; and n is the effective
porosity of the porous medium. Egs. (2) and (3) are referred to as the
continuity and convective dispersion equations respectively (Bear, 1972,
pp. 017, 645).

Fluid density and salt concentration are related by

p = pgo*t (P1- Po) c/c1 : (4a)

.where Py iw a reference density at a reference concentration, €,»
usually taken to be zero; Py denotes density at a maximum concentration,
<y (i.e.»the highest concentration).

Assuming the dominant solute present to be sodium chloride, data
provided form Table 1 can be used in determining the weighted, least
square, fitted curve equation relating concentration and viscosity,
by using a computer code entitled CRVFIT (Appendix I). Thus, the rela-
tion between relative fluid viscosity and NaCl concentration, in grams
per liter, at 25°C is computed as

2

u/po = 1 + Ac + Be

il
o

- -6 2
+ 1.46 x 10 3 c + 3.1 x10 CQ (4b)

. . . 2
where the units of A and B are liters/grams and (liters/grams)



Table 1 Data relating relative fluid viscosity to sodium chloride concentration

(Irternational Critical Tables, 1929, p.15).

Sediuwn Chioride Concentration

Relative Viscosity

Viscosity Difference

per 1800 graws water, ¢ u/uo between 66° and 10° data
Formila Welght Grams e10°c  e25°C ~g§o°c
0.1 5.8 1,006 | 1.009 | 1.012 0,006 (0.6%)
0.7 14.6 1.016 1 1.022 | 1,030 0,018 (1.4%)
0.5 29.2 1.032 1 1,046 | 1,060 0.028 (2.7%)
1.0 58.4 1,071 ] 1,094 | 1.121 0.050 (4.7%)
2.0 116.8 1,175 1.205 | 1.249 06.076 (6.5%)
3.0 175.2 1.312 |.1.341 |} 1.39 0.078 (5.9%)
4,0 233.6 1.481 ] 1,509 | 1.54 0.058  (4.0%)
5.0 292.0 1.692 | 1.700 | 1.72 0.028 (1.7%)

Note: 1 formula weight of NaCl = 58.4 prams.
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respectiveiy.

In orawr to show the effect of temperature on relative viscosity
as a function of NaCl concentration, data for two temperature extremes
(1OOC and 6006) have been plotted in Fig. Z. Referring to Table 1, a
maximum difference i.. relative viscosilty occurs at a concentration of
116.8 grams which can be expressed in terms of & percent difference
as 6.5%.‘Since this maximum difference is small it is sufficient to
allow eq. (4b) to serve as the emperical relatioﬁ between relative
fluid viscosity and NaCl concentration for the entire expected range
of temperatures. Additional viscosity data for a wide range of NaCl
concentrations at 20°C is in close agreement with the values presented
in Table 1 (CRC Handbook of Chemistry and Physics, 1974, pp. D-224--
D-225).

In working with the flow equation, it 1is more convenilent to replace

pressure by the reference hydraulic head which is defined as
h = 4 g (5)

where z is the elevation above a selected datum plane. Taking the partial

derivative of eq.({5) with respect to X, amd rearranging, one obtalns

9P L gh 9z
9x%. pC)g ( X, 9X. )
i i i
seg (8 - e (6)
pog Bxi i

Eq. (6) can now be substituted into eq.(l) to yield



k
. lJ'pg o [5h
Vi TR o lex. T %1 T %
‘ ' (7)
which upon rearrangement becomes
o .
_ ijpog Yo 3h p
Vi T T Tun o ek, T %) TR G
0 | i o
Ho ( 3h (p ) po}

where (Kij]o is the reference hydraulic conductivity tensor defined as

(hij)o = Kijpog/(uon).

Substituting eq. (4a) into (8) yiclds

For isotropic porous media, eq. {9) reduces to
E |

1

v. = -k -2 &g (10)
i o ¥ Bxi Cl i

where ¢ = (pl - po)/pO . Substituting eq. (10) into (2), we obtain

H u

3 ., 0 ¢ 1 ., o oh _

9X. PK, TS J T X, Pk, uoex. | 0 (11
1 1 1
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If, as.a matter of convenience, an isotropic -dispersion tensor is

assumed, then the transport equation reduces to

sc _ 39c
AX. {D Bx4 ] " Yy 5?& Tt (12

Strictly speaking, however, the dispersion tensor will not be isotropic
since it depends on the longitudinal and transverse dispersivities which
are not necessarily equal. The governing equations forvthis problem then
are represented by Eqs. (4a), (10), (11), and (12).

2.2.2. Reduction of equations to dimensionless form

A better understanding of coupled groundwater flow and convective
dispersion may be obtained via dimensiomal analysis. To reduce the
governing differential equations to dimensionless form, the following

set of dimensionless variables and parameters are introduced:

- = . * = [ —— = — M 3
x3 xi/d, vi Vi/\, . T ot (13)
i i
Dot 2 Do ]
¥ o= . * o . % o POV AL B .
h* = h/d; c* = p/cl, t 55 5t 5 Spk O (14)
d d
* = . ¥ . H e . = - [ .
i w/ugs P p/ogs D D/D s e = (py p /o5 (15)

where d is the characteristic length of the flow system; V is the
characteristic velocity; DO is the characteristic dispersion coefficient
of the porous medium; and o is the dynamic viscosity of the fluid at the
reference concentration.

Eq. (10) can be non-dimensionalized by making the following substi-

tutions: substituting eq. (13) into eq. (10} gives
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K 3 | - o] )
; P M 1 3h P1 poJc
vE, o= e e T ="
i -V oqu d Bxi P c

(16)
_ 0 1 t

Substituting egs. (14) and (15) into eq. (16) yields

5 = . .0 | an .
Vi T e L axr TOE &y } (17)
which when substituted into eg. (11) vields
. P X . . p K )
L2 | pf "o o0 sh* 9 |pr o0 s .
xr | ur Td e | e | a ¢t e =0 (18)
i i i )
Since Py KO, and d are constants, we can write eq. (18) as
p K ] . b )
MY 9 | pr 3h” N A .
d ax¥ ( u* ey },+ ax¥ ( TCERE IR T 0 (19)
Eq. (19) may be expressed in the form
k[ [ o ah*} ; [p* ] ) . 209
- 3w | T mew| foTTw |Tw oecT| e = .
Vv _?Xi U Bxi axi M 1 )
Eq. (12) can be non-dimensionalized as follows: substituting eq. (13)
into eq. (12) yields
18 | plic Yi¥ae e
d axi d ox¥ d ox*¥

5t (21)
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Substituting eqs. (14) and (15) into (21) yields

T % *
1o [ PP ee | VY aer | Do e (22
d ox¥* d ax¥ d 1 9ax* 2 71 5t¥ )
i i i d

Since the quantities d, Do’ and 1 are constants, they can be brought

outside the parentheses. Eq. (22) can be simplified to give

3 . oc* vd ac* ac*
[D*"““ ] =5 Viwr T owtr (23)
4] 1

where the dimensionless parameter Vd/DO is referred to as the Peclet
number. Finally, eq. (4) may be made dimensionless. Substituting eq.

(14) into en. (4) yields

po= 1+ [(py - e )eqler (24)

Substituting eq. (15) into eq. (24) gives
p* = 1+ e ¢* (25)
where ¢ is refered to as the "density difference ratio'. Egs. (17),

(20), (23), and (25) form the set of governing equations in dimensionless

form.

2.2.%. Application of the Galerkin finite element method
The Galerkin finite clement method will be applied to the dimensional

governing equations, i.e. eqs. (11) and (12). To apply this method,
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trial solutions for hydraulic head and concentration are introduced as

o
t

>

NI(xi)hI(t) (26a)

c = NI(xi)cIFt) (26b)

The Galerkin criterion (Pinder

2 e}
j NI 3X. [pKo H €
R _

9 ac
J N e {D ”03?} }
i 1 1

and

R

After applying Grecn's theorem

becones

and Gray, 1977, p. 57) requires that

. Ky oo
ol 42 SR N P 27)
Cl 1 ax U oX
3¢ 3¢ _
v, AT dRo= 0 (28)

U S
N p K 2 £ Ege 2 n dB
I o U ¢y i oX. i
i
B - -
K u : u )
oo 2N, oo pN, N = )
- J P axe Ny Syt u pxl oo ngdR =0 (29)
1 1 1 1
R - -
Making use of the relation
K ~ ~ i
- 00 oh c 701
Vi T ol PTG (502)
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vin. o= - on BZ’ {30b)

eq. (29) beconmes

- Npe q dB (31)

It should be understood that the hydraulic head condition on Bl is

prescribed.

Similarly, application of Green's theorem to the second order

derivative term of eq. (28) leads to

w2 nan | [ o 2 8y Ly )
I™ ox, 71 X Bxi i X, J
B VR

X, I 2
1 i

de
. J 2 B
J N Ny HEJ di 0 (32}
R
Incorporating the boundary condition
b2 0 - q  on B (33)
ax, i 2 :
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where Q is the concentration flux on B!; and assuming that concentration

is prescribed on Bi, eq. (32) becomes

n Ny AN v NS R e v |, S5 ar
ax. 9X. 1 I 8x. J |
'"R 1 1 1 ~ R

= N,QdB ‘ (34)

For a steady state case, eq. (34) reduces to

oN. oN oN

LNy O AN

J {D 8x¥ qu * Vth qu ]dR
i 7% i

c; = J N. Q dB (35)
B

N~

2.2.4. Solution procedure

A, Steady-state case: For steady-state conditions, egs. (31)

and (35) can be solved independently. Eqs. (31) and (75) can be written

in matrix form as

[A]{h} = (R} : (36a)
[G]{c} = {F} (36Db)
where
) 5939- My My ar = | & oy My R (37a)
1J - 0 P axr ax - M Po XL s '
c (& 1 e 1 1



A Ko“o N, ¢
Ry = R J p e LTy dR + J Nyoq dB (37b)
e e i 71 e
- R B -
2
B 3N N aN
Gy =1 J [D 5l Ny 5&?} dR (37¢)
(6] 1 1
R
Fyo= ] J N, QdB ' (37d)
e 7,¢€ '
52

The solutiocn scheme begins by solving the fiow equation (36a) by
assuming an initial set of concentrations and taking account of the
symmetric nature of the coefficient matrix. Having chtained hydraulic
head values, velocities are calculated and fed into the convective
dispersion :cuation (36a) which is solved using an asymmetric equation
solver. Iteration is performed until satisfactory convergence is achieved.

As an alternative, egs. (31) and (35) can be solved simultaneously.

Combining these two equations in matrix notation yields
[H]{e} = {E} | o (38)

where the typical matrix clements are given as

- 1 (39a)

h E ,
{ SIS Ty =4 T (39b)
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and
Ky
_ 0 0 9N, 8N
c RC 1 4
K u
by = 7 J 0 CO Q¢ %gl N, e; dR (40b)
e Je ©1H i
R
- N, ON N,
dy; = ) J [D L 50 v vy Np 5T AR (40c)
e [~ 1 1 1
R
— { \l
E;p = ) J N, p g dB (404d)
(& Be
2
= ! '
. .
By

The coupled solution algorithm begins with the formation of the co-
efficient matrix [A] using a starting set of values for hydraulic head.

Iteration is performed until satisfactory convergence is achieved.

B. Transient case: Eqs. (31) and (34) form the required set of

nonlinear governing equations for the transient case. It is possible,

as in the avove solution procedure, to solve the flow equation, eq. (31),
by assuming an initial set of concentration values, which leads to a so-
jution set of hydraulic head values. These hydraulic head values in turn,
together with an initial guess of concentration values, are used in eq.

(30a) to obtain the required velocity values for eq. (34). These values
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of velocity are used in eq. (34) to obtain the nodal concentrations.
Iteration of the above procedure is performed within each time step until
the differences between successive iterates of hydraulic head and concen-
tration converge to prescribed tolerances. From the viewpoint of compu-
tational time, it is more advantageous to solve the two equations sequen-
tially rather than coupled. In a case where convergence difficulties are
encounitered, the time step size may be reduced to circumvent the problem.
Since eq. (34) contains the time derivative, we employ finite dif-

ferences to perform integration with respect to time. Prior to employing

this method, it is convenient to write eq. (34) in matrix form as

: 1
[Gl{c} + [M]{ é%—} = {F} (41)
where
olN_ 3N. oN. 13
Gy = ) f [D axb a0t VN 5 ] dr (42a)
e re i 7 i
R
Moo= ) L N, Ny dR (42b)
e pe
Fp = ZJ Ny Q dB . (42¢)
e 5@
2
Bg. (41) may be approximated by
- - ~oY el PRI - .
[G] (lel, e + (1 6){ct,) e M1 ( {C}t+At ek )
= 6{F}t+At + (l*e){F}t ‘ (43)
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where'{c,}t are known concentrations at time t; {c} are unknown values

t+At
of concentration at time t+At; 6 is the time weighting factor (0<e0<1);
and At is the time increment.

Eq. (43) may be rearranged, placing the unknown concentrations at

the current time level on the left hand side, yielding
ol6l{c), . + ~= MI{c}, . = -= [M]{c}, + B{F} (44)
‘ At t+AT At t

t+At trat

+ (1—9j{F}t - (1-0)[G]{el,

By setting 6 equal to 0, 1, or 0.5, eq. (44) corresponds to the ex-
plicit method, the implicit method, or the Crank-Nicolson implicit time
stepping scheme, respectively. The Crank-Nicolson scheme is second-
order accurgte but it requires slightly more computational effort than
the implicit method and offers a higher order of accuracy in the calcu-

lated solution (Pinder and Gray, 1977, pp. 47-49).

2.3, Stream function-concentration (Y-¢) formulation

2.3.1. Governing equations

It is also possible to solve the given problem in terms of the stream
function and concentration for a given flow domain. The governing equa-
tions relating the stream function with fluid velocity in two dimensions

is defined as

1 ax (45a)



For an isotropic porous
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oy

9x

medium, eq.

(452) and (41b) yielding

uo oh

Ko 7 | ox
[ S|

U o
e
ML 9%

(45b)

(10) may be substituted into eqs.

(46a)

(46b)

If we assume that Ko’ Mo and y are independent of spatial coordi-

nates, then the hydraulic head terms in egs.

inated by cross differentiation as follows

axlaxl

ax

UO 1_ 8211
271

;ax

(46a) and (46b) can be elim-

2 47
Cl el} J (47a)
c - !

It should be noted that for the above assumption to be valid, the porous

medium and fluid must be homogeneous,

Adding eqgs.

(47a) and (47b) together, and noting that the e

In addition uo/u must be unity.

1 term

can be dropped if the X, coordinate is pointed in the vertical direction,

vields
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0 I Y "8 [ c ] Fl
— | =1 = K | = |e= e 48
ax, { 3%,J o | 3% ¢ 25 (48)

Similarly, eqs. (45a) and (45b) may be substituted into eq. (12) to
yield

{D _a_c;_} ) };s_zz sc By Bc | Bc (49)

Fgs. (4), (48), and (49) form the required set of equations for the y-c

finite element formulation.

2.3.2. Reduction of governing eguations to dimensionless form

In addition to using eqs. (13), (14), and (15) to reduce the above
required set of equations to dimensionless form, an additional equation

is needed to describe the dimensionless stream function ¢*, where

pr o= ¥ u (50)

It is now possible to reduce eq. (48) to dimensionless form. Substitu-

ting eqs. (13) and (14) into eq. (48) yields

K
L 2 1| . © ac*
d ax¥ [ BXi} T d" % axj (51)

Substitution of eqs. (15) and (50) into eq. (51) yields

‘
R O R Ly
axt [SX§J = V% [3x#] (52)
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Similarly, substitution of eqs. (13) and (14) into eq. (49) yields

18 [D _a_c_;*J _1 [aw de* 8w e |, Do sex (53)
* %] T N S T gk
d2 X axi d2 "‘sz Bxl Bxl sz _ d 3t
Substitutiag eqs. (15) and (50) into eq. (53) and simplifying yields
3 [ne Be¥) _vd [ 0¥ ac*  ayr 3t |, 4 Bck -
AxF [D BX?J D I ot axr T axt axt | T 9 aee (54)
1 i o - 72 1 1 2 -

Eqs. (25), (52), and (54) form the required set of dimensionless equa-

tions for the Y¥-c* system.

2.3.3. Y-c finite element formulation

The Calerkin approach will be applied to the dimensional y-c gov-
erning equations, i.e. eqs. (48) and (49). The Galerkin criterion re-

quires that

PRl 2 (¢ 1w -
J N ’ X, [ ax.} - Ke { ax { c 62] J { R o= 0 (55)
- 7 i 1 1 -
R
and
3 e 59 8¢ 9 ac ac
\ 2 9= | . ey 2L oL 1 L -
J N [ OX. {D oX ] [ X, 9X X, OX } ot dR =0 (56)
i - 2 1 1 2 -
R
where
vooo= Np(xu, () (57a)
¢ N (57b)
c = I(xi)cI(L) R
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Applying Green's theorem to the sccond order term in eq. (55) yields

" e -~
|
No2Y oy aB - aNaJl}JdR— Ke 22 aqr=o0 (58)
I 6xi i 83Xy 0 ¢y axl
B R T R
Incorporating the fluid flux boundary cenditions,
o1
2 = gn
8x2 1
on B2 (59)
ax, 4™
1
where g is the outward normal fluid flux, eq. (58) becomes
. Ee -~
oN. 3N 2 8cC
‘_j = ; i dR-} wJ - LNIq(nln2 n,n )dB - J NIKO ) axl dR
R B~ R
[ "
o NK e =288 ar (60)
To ¢, OX
R 1771

Since the fluild flux boundary condition term (B2) vanishes, the remain-
ing boundary condition states that ¢ is prescribed on B,.
Applying Green's theorem to the second order derivative term in

eq. (56) yields

X J

J NI DQQ, n, dB - i J D gﬁ{ —TJ dR ¢
B t R
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i §ﬁ4~@£ @@‘ oN ! : de,
- lﬁJ N { ) Bx, T ax, Bxg]d5_CJ - f NpN; 53 dR = 0 (61)

R R

Incorporating the concentration flux boundary condition on Bé given in

eq. (33), eq. (61) becomes

(62)

2.3.4. Solution procedure

For steady state conditions, the uncoupled egs. (60) and (63) can be

written in matrix form as

[B]{v} = {P} (64a)
[E]{c} = {8} (64b)
where
- ON_ BN ' e
B o = Z J ng “B*J\*J dR (65a)
e i i



Solving eqs.

where

and

20

- ©2 3¢
Ppo= Le J NpKo € & ax, & (65h) |
e 1 9%
R ‘
{ {D axt e TV 5K Bk, T B BXJ] ]dR (65¢)
'Re 1 1 1 2 1 2 -
5 ¢ ZJ Ny QdB (65d)
e ,e
B3

(60) and (63) simultaneously results in the matrix equation

Mj{er = {T} (66)
T e, f
D] - 17 T (67a)
1J 0 .
. 1J -
Y T
) =4 7o - { H } (67b)
“J LT
e; = I J B & ar (68a)
: e pe TR
Ce o 2 aN
£15 = 3 NK e ==+ dR (68b)
e Re 1 1

+ NI {ANJ ay Y _@_N“J] }dR (68¢)
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11 = 0 ' (68d)

Tiy = ) [ N, QdB (68e)
o

For the simultanecus solution, the coefficient matrix [M] is formed
by guessing the initial value of y. TIteration is performed until satis-

factory convergence is achieved.
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3. Computer Code Implementation

The preceding finite element formulation has been incorporated
into computer code CLFEM5 (Appendix I). This code incorporates the
upstream weighted residual approach (Huyakorn and Nilkuha, 1978),
which due to its generality, can make use of either the Galerkin
basis functions (i.e. NI) or asymmetric weighting functions (i.e. WI).
By using asymmetric weighting functions, numerical oscillation asso-
ciated with high Peclet numbers can be diminished, as will be demon-
strated in the sea water intrusion calibration problem.

The discretization data used as input data in CLFEMS (i.e. number
of nodes and their locations, nodal connections, element numbering,
etc.) can either be generated tediously by hand or automatically by
using either of the codes, MGENET or MESHG. By supplying only a mini-
mal amount of information, MGENET can generate regular grids (i.e.
rectangular elements) with or without grading. For irrvegular grid
configurations, MESHG can be used to obtain discretization data such
as that used to generate the mesh for the two-dimensonal flow domain
in Fig. 18. It is also possible to generate simple, regular, rectangular
meshes using the built in mesh generator in CLFEMS.

Once the discretization data has been obtained, aquifer parameters
and boundary conditions are supplied, along with the discretization data,
as input data for CLFEMS. For problems involving steady flow, the nodal
hydraulic head values are obtained independently of the concentration
values by solving the flow equation fivst. These hydraulic “ead values
are then used as input data which are used to calculate nodal veloci-
ties needed in the transport equation to obtain the nodal concentration

values.



Once the nodal hydraulic heéd and concentraﬁion values have been
calculated, the output data can be read directly into plotting routines
TPLOT1, TPLT1G, HCPLTC, or HCPLTG to generate plots of discretization
data; hydraulic head or concentration contecurs; nodal velocity vectors;
and distribution of nodal hydraulic head or concentration values along
the top and bottom nodal boundaries (for regulay meshes only such as
as in the sea water intrusion problem).

A schematic of the order of implementation for these programs is

given in Fig. 3.



MESHG or MGENET

(Mesh Generator)

-

CLFEMS

(Hydraulic head and concentration solver)

L

TPLOT1 ' HCPLTC
or or
TPLT1C HCPLTG
(Mesh, contours, and gradient (Hydraulic head {(or concentra-
plotting routine in either tion) vs. horizontal distance
COMPLOT ox TECTRONIX format) plotting routine in either
COMPLOT oxr TECTRONIX format;
used for regular meshes)

Fig. 3 Ovder of implementation for the computer codes used to obtain
discretization data, hydraulic head and concentration nodal

values, and plots.




4. Applicafion of Computer Code to the Problem of Sea Water Intrusion

In order to check the performance of computer code CLFEMS, a
test problem identical to the sea water intrusion problem (Fig. 4(a))
of Huyakorn and Taylor (1977) has been run and a comparison of these
results appears in Table 2. The relatively minor differences in results
are due in part to the use of 4 node quadrilateral eiements versus
8 node quadrilateral elements, although both methods use the Galerkin
finite element approach.

From the boundary conditions depicted in Fig. 4(a), it is assumed
that the normalized sea water concentration occurs at the sea boundary
and that the flow is horizontal there. A more accurate set of boundary
conditions would be based on the pressurc and mass flux conditions at
the sea bohndary. It should be noted that the boundary conditions in
Fig. 4(a) are only approximate. A more complete discussion of the
appropriate boundary conditions may be found in Bear (1972, pp.622-624).

Plots of the element numﬁering scheme used, hydraulic head contours,
and velocity distribution appear in Figs. 5(a), (b), and (c). Fig. 6
shows the calculated hydraulic head distribution along the top and
bottom nodal boundaries.

Since this problem involves moderately convective-dominated
transport, due to a Peclet number of 10, numerical oscillation is
observed in the normalized concentration values at the top boundary
obtained using the Galerkin approach as seen in Fig. 7. In order to
damp out this oscillation, the upstream weighting finite element
technique described by Huyakorn and Taylor (1977) was applied and the

effect of its application is shown in Pig. §. The normalized concen-
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Node numbering scheme and boundary conditions for the sca water intrusion
preblem involving {(a) unsaturated salt water and () saturated salt water
(after fluyakorn and Taylor, 1877, p. 1.142}. The aYove conditions arc

compatible for use with the h-c model.
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Fig. 5  (a) Element numbering scheme uscd for the sca water

intrusion problem; (b) hydraulic head contours and

sca water intrusion problem, Pe =

(c) related velocity distribution obtained for the
10.
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tration contours obtained usingAthe Galerkin and‘upstream weighting
finite elemont techniques appear in Figs. 9(a) and (b). A numerical
solution obtained using the correct boundary conditions would be
much better as the approximate boundary conditions produce the un-
realistic vertical concentration contours near the upper part of the
outflow boundary.

Since this problem is in essence a test of CLFEM5, and since
CLFEM5 was modified to take into account the effect of viscosity
changes, a comparison can be made of the importance of this modifl-
cation before and after its introduction by running the problem of
Fig. 4{a) twice. The results of these two runs appear in Table 2
under the headings "Galerkin without viscosity effect' and ''Galerkin
with viscosity effect", A visual comparison reveals little difference
between tho values in these two columns, hence at low concentrations
viscosity effects do not play an important role.

In order to test the importance of viscosity in a situation of
saturated concentration, such as in a halite "aquifer™, the problem
in Fig. 4(a) was modified to simulate the intrusion of a saturated
NaCl solution into a fresh water aquifer. The conditions for this
problem appear in Fig. 4(b). The concentration values for this run
when viscosity was taken into consideration appear in Table 2 and
differ only slightly from the unsaturated-run values. This indicates
that viscosity effects are not signifiéant in the problem of sea watewr
intrusion, regardless of the degree of saturation.

One of the first field calibrations of a finite element model
related to the problem of contaminant transport was. dome by Pinder (1973)

in his analysis of ground water contamination on Long Island, New York,
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Fig. 9 Contours of normalized concentration for the sea water
intrusion preblem, Pe = 10, using {a) the Galerkin
approach and (b) asymnetric weighting functions.
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5. Contaminant Transport in the Los Medanos Area, Eddy and Lea Counties,

New Mexi~o

5.1. Introduction

The salt deposits of the Los Medanos area, iddy and Lea Counties,
New Mexico, have been studied since 1972 as a possible geologic unit
for a waste-isolation repository pilot plant. Bedded salt has the desir-
able repository properties of hydrologic and geologic stability,
plasticity, and favorable thermal characteristics (Mercer and Orr, 1977,

p.93}.

5.2, Hydrogeology

Previous investigations of the hydrogeology of the Los Medanos area
have been made by Mercer and Orr(1977) and Lambert and Mercer (1977).
Los Medan«.” is part of a gently sloping terrain that rises eastward
from the Pecos River to the “caprock! of the Llano Estacado (Fig. 10).
Topographic relief is generally less than 50 feet, and most geclogic
formatioﬁs are covered with smoothly rounded hills of dune sand. Vege-
tation consists of mesquite, scrub oak, and other plants found in the
- northern Chihuahuan Desert. The annual precipitation averages 1Z to 13
inches (Mercer and Orr, 1977, p.9).

The Los Medanos area is drained by the Pecos River, a perennial
stream with headwaters in north-central New Mexico. Most local tri-
butaries originate in the Guadalupe Mountains. The Pecos drainage sys-
tem trends southeast through the western margin of the study area. The
drainage east of the Pecos, which includes the Los Medanos area, is
very poorly developed (Mercer and Orr, 1977, p.9).

‘The main topographic features in the vicinity of the Los Medanos
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area include the Guadalupe Mountains on the west; the Pecos River val-
ley; the High Plains (Llano Estacado) and Mescalero Ridge to the east;
and the pediment and alluvial plains that slope eastward from the Guad-
alupe Mountai..s and westward from the High Plains to the Pecos River
(Fig. 10). The study area i1s mostly on pediment and alluvial plains
east of the Pecos River. Erosional surface features have been modified
extensively by solution, subsidence, and collapse. Locally, streams
have exposed caliche and other rocks, but most of the area is mrntled
by dune sands. Some surface water drains eastward into closed depres-
sions, but most of the precipitation is captured by sand dunes (Mercer
and Orr, 1977, p.11).

Laguna Grande de la Sal, a large salt lake in Nash Draw east of
Loving, contains water most of the year. Numerous small lakes (lagunas
and playas) contain water only after beavy rains. Small tailings ponds
have been extablished in closed depressions as a result of potash
mining. Lake McMillan and Lake Avalon north of Carlsbad, and Red Bluff
Reservoir on the Texas-New Mexico state line, are the only large
water bodies in the region (Mercer and Orr, 1977, p.11).

-The dominant sclution depressions near Los Medanos area are Clayton
Basin to the northwest, Nash Draw, which extends southward through
the west-central pért of the area, and San Simon Swale, which lies
on the eastern margin (Fig.10). These features strongly affect the

regional hydrolegy (Mercer and Orr, 1977, p.1ll}.

5.3. Regional setting

Late Permian limestones of the Capitan reef deliniate the margins

of the Delaware Basin where thick salt beds occur. The subsurface
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geology of the Delaware Basin includes rocks ranging from Precambrian
to Quaternary in age. Precambrian crystalline basement rocks at depths
up to 19,500 feet are overlain by approximately 14,000 feet of pre-
evaporite Pal-ozoic rocks. Four thousand feet of Delaware Basin evapo-
rites overlie these sedimentary rocks. Permian, Triassic, and Quaternary
rock units are summarized in Table 3 (Mercer and Orr, 1977, p.1l).

The basin evanorites (Ochoan Series) were accumulated during
Late Permian time (Table 3). They include the Castile, Salado, and
Rustler Formations. A thin fed siltstone unit, the Dewey Lake Red Beds,
overlies the evaporite sequence. East of Nash Draw along Livingstone
Ridge, Triassic sandstone of the Santa Rosa Formation umconformably
overlies the Dewey Lake Red Beds. Holocene caliche of the Mescalero
surface and Holocene dune sand cap this Permian-Triassic stratigraphic
sequence throughout much of Los Medanos area (Fig.1l). The Pleistocene
Gatuna Formation occurs as bolsoﬁmtype deposits filling chamnels and

steep-walled valleys (Fig.12) (Mercer and Orr, 1977, p.l1l1).

5.%.1. Rustler Formation

. Of particular interset in this study is the Rustler Formation.

The Rustler contains anhydrite, gypsum, red beds, dolomite, limestone,
and halite. The thickness of the Rustler generally ranges from 200 feet
in the western part of the Delaware Basin to 600 feet in the eastern
part (Mercer and Orr, 1977, p.22). Two dolomite beds are recognized in
the Rustler and range between 20 and 30 feet thick (Fig.13). The upper
dolomite member (Magenta) is a finely crystalline, dense dolomite. The
lower dolomite member (Culebra) is vuggy, and is commonly -associated

with some anhydrite. The Culebra member transmits water to wells at
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a rate up to a few hundred gallons per minute south and west of the
study area and is considered a major aquifer in these areas. The Mag-
enta transmits only minor amounts of water and is not considered an
important aquifer. Culebra water contains between 7,000 and 30,000
ppm dissolved solids, and the Magenta between 4,000 and 7,000 ppm.
(Lambert and Mercer, 1977, p.I1-2). Ground water from the Rustler dis-
charges into the Pecos River at Malaga Bend, the principal direction

of flow being toward the southwest.

5.4, Transport scenario simulated

The following transport scenario is strictly hypothetical and is
not intended to be a definitive answer to a real problem. It is de-
signed simply to test the effectiveness of the numerical model to
address a potential situation.

A potential location for the proposed nuclear waste repository
is within the salt beds of the Salado Formation. Ground water could
potentially enter the repository from the Delaware Mountain Group
through artesian flow. The hypothetical mechanism envisioned for the
establishment of hydraulic communication between the Rustler, Salado,
and Delaware Mountain Group might be through the inadvertent drilling
of an uncased exploration borehole. Such an event,it is assumed, could
cause water to flow up the borehole from the Delaware Mt. Group, become
saturated with nuclear-waste contaminant, andlcnter the Rustler Form-
ation from the borehole. The flow mechanisms within the Rustler could

then disperse the contaminated water as a time related process.
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5.5 Hydrologic parameters used and solution procedure

The numerical model presented in this thesis has been applied to
the above cointaminant transport scenario. It was assumed that the hydrau-
lic head dist=ibution could be approximated by the distribution shown
in Fig. 14. Two zones of hydraulic conductivity within the Rustler
Formation were assumed and their distribution and values appear in
Fig. 15, The hydraulic conductivity in Zone 2 (Fig. 15) was assumed to
be four times as great as that in Zone 1. The pbrosity of the Rustler
was assumed to be 0.25 and the flow rate through the borehole entering
the Rustler was set at 300 fts/day or 109,500 ftg/year. Instead of
using actual concentration levels, normalized concentrations were used
by setting the saturated concentration level equal to unity at the
borehole. This concentration was assumed to be constant with respect to
time. Instead of dealing with a complex of radioactive materials, the
contaminant was conservatively aésumed to be salt, which simplified the
problem by not having to deal with radiocactive decay chains.

Although the total thickness of the Rustler Formation varies
between 200 and 600 feet, the effective hydraulic thickness based on
the thickness of the Magenta and Culebra aquifer members (Fig. 13)
was set equal to 50 feet. Wﬁcn comparing this thickness with the overall
area ( 1296 sq.-miles), it is possible to neglect vertical flow
components, hence the problem reduces to one Qf two-dimensional trans-

port,

5.5.1. One-dimensional transport

As a prcliminary analysis, a one-dimensional transport problem

was solved along the line joining Los Medanos and Malaga Bend, shown
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within the Rustler Formation used to obtain the hydraulic head boundary

conditions for the one- and two-dimensional contaminant transport problems, -
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in Fig. 15. This 94,000 feet long line was equally divided into 40
equally sized elements., Ih order to give cach element a reasonablé
length to width ratio nearer to unity, the problem was artificially
transformed into a two-dimensional problem by giving each element a
"height'" of 1000 feet. Hydraulic head boundary corditions were identi-
cally specified for the top and bottom nodes at locations of 0 feet,
14,100 feet, and 94,000 feet away from Los Medanos using the undisturbed
potentials of 3,150 feet, 3,083 feet, and 2,930 feet respectively. The
hydraulic conductivity values shown in Fig. 15 were divided at 14,100
feet away from Los Medanos. The problem was run for two different
values of dispersivity in Zone 2 (300 and 1200 feet), while the disper-
sivity in Zene 1 was kept constant at 300 feet. Each problem was run
for 40 time steps, each step of length 250 years. The results of

these runs appear in Figs. 16 and 17.

The results in Figs. 16 {(a)} and 16 Cb) reveal similar results for
the two different values of dispersivity used. The higher value, how-
ever, causes the concentration front to be more highly smeared or
flattened. The analytical solution is represented by the sharp front
designated by dashed lines for the various times indicated. The dashed
lines pass through the center of mass of the approximate solutions
at times of 2,500 vears and 6,000 years. Fig. 17 indicates that at a
dispersivity of 300 feet, the breakthrough concentration at Malaga
Bend reaches the saturated concentration more quickly than for the
dispersivity value of 1,200 feet--i.e. the 300 feet value causes less
dispersion, and therefore less dilution, of the contaminant at times
later than 8,500 years. One-dimensional {low is the most conservative

analysis of the contaminant transport process since dispersion and
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convection are restricted to one dimension. A less conservative but
more realir+tic analysis will be shown for the case of two-dimensional

contaminant transport.

5.5.2. Two-dimensional transport using irregular mesh

The preceeding problem was run for the twofdimensional case using
the irregular mesh depicted in Figs. 18 and 19. The undisturbed
hydraulic head values and associated velocity values shown in Figs. 20
and 21 were obtained independently of the concentration values by
specifying the boundary hydraulic head values, obtained by interpola-
tion of the values of Fig. 14, and solving for steady-state hydraulic
head values. These hydraulic head values were then used to solve for
the nodal, normalized, concentration values shown in Figs. 23 through
29.

Numerical oscillation was observed when dispersivities of 2,400
feet and lower were used (Fig. 23). The plot of normalized concentration
versus horizontal distance at t = 32,000 vears in Fig. 23(b) not only
shows negative concentration values but alsc a violation of the boun-
dary condition, 9c/3x = 0, at node 16. As an attempt to damp out these
problems, upstream weilghting was applied, although unsuccessfully, and
the results appear in Fig. 24. From Fig. 23 it is seen that that an
acceptible numerical solution can only be obtained by using an exces- -
sively high dispersivity value (i.e. 24,000 feet ). It should be empha-
sized that the dispersivity vaiue of 24,000 feet 1s quite unrealistic
from a physical standpoint.

Concentration contours at various times using dispersivities of

300 and 24,000 feet appear in Figs. 25 through 29. As expected, the
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dispersivity value of 24,000 feet causes the concentration plume to
move more quickly than for the value of 300 feet.

The dimensionless parameters affecting the occurence of numeri-
cal oscillation are the Peclet number {(Pe = d/a, where d is the
characteristic length of the elements used and w is the dispersivity);
and the Courant number (Cr = VAt/Ax, where V is the characteristic vel-
ocity; At is the time increment; and Ax is the length of the element).
To minimize the occurence of numerical oscillation, the Peclet number
should be below 10 and the Courant number less than or equal to 1.

The large elements along the left and bottom boundaries of Fig. 18
produce imacceptible Peclet numbers and a poor approximation of the
boundary cendition, 3c/adx = 0,

In order to overcome these difficulties, it is possible to design
a new mesh consisting of uniform rectangular elements with a smaller
characteristic length. This has becen done and the results appear in
the following section.

Figs., 25 and 26 show the calculated normalized concentration
contours for times of 4,000 and 16,000 vears at a dispersivity of
300 feet. In order to fascilitate contouring, negative concentration
values obtained were set eqﬁal to zerc. Numerical oscillatipn at
t = 32,000 yeaTSVWas so extreme as to make contouring impossible.

The concentration contour of 0.05 does not reach Malaga Bend after
16,000 years (Fig. 26) although the principle direction of flow

should be along a line drawn from Los Medanos to Malaga Bend (Fig.l4).
By overlaying the velocity distribution of Fig. 21 over Fig. 14 it

can be seen that this flow direction has been distorted, probably due to

the selection of the mesh used.
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Disturbed hydraulic head distribution obtained
by wusing ~he mesh in Fig., 18 :;nd specifying
an incoming flux of 109,500 ft"/year at node 41
along with the boundary hydraulic head values
obtained through interpelation from Uig. 14
Values are in fect,
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As a modification of the aﬁove problem, a gteadyustate contaminant
injection rite of 108,500 fts/year (300 ftz/day) was introducedvat
node 41 of Fig. 18. The effect of this ncdal f£lux can be seen in the
diagrams showing the disturbed hydraulic hcad contours and associated
velocity distributic. as seen in Figs. 30 and 31. The effect on
contaminant concentration is a dramatic increase over £he previous
values obtained using undisturbed potentials (Figs. 32 through 35).

Although the 300 fts/day flow rate may be feasonable at early
times, it is extremely doubtful that this flow rate would be maintained

over the 32,000 year period of time used in these problems.

5.5.3. Two-dimensional transport using a regular, rectangular mesh

The preceding problem was successfully solved for a dispersivity of
300 feet u%ing the regular, rectangular mesh of Figs. 36(a) and (b).
The orientation of this mesh to irregular mesh of the preceding problem
is shown in Fig. 37. The problem was run using undisturbed hydraulic
head values and the distribution of these and their associated vel-
ocities is depicted in Figs. 38(a) and (b). The plot of the cross
sectional normalized concentration in Fig. 3%9(a) shows the successful
ellimination of numerical oscillation without the use of upstreanm
weighting. Table 4 shows that little change occurs in the nodal normal-
ized concentration values at times greater than 106,000 years.

Figs. 40(a) and (b) depict the advance of the concentration plume
at times of 4,000 and 16,000 years. These figures correspond well
with those of Figs. 25 and 26 where the irregular mesh was used.
Neither of the two cases can be considered to accurately represent

the real situation due to the distortion of the flow lines--1.e. the
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dirvection of flow should be directly toward the Pecos River, whereas

in this simulation, it 1is almost due soth.

1
i
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Normalized nodal concentration value
Node munber 4,000 years 16,000 years 32,000 ycars
1 ~0.00002 0.02128 0.02083
12 0.00000 0.04370 0.04958
23 0.00000 0.07284 0.07740
34 0.01070 0.31624 0.11897
45 0.08047 0.19278 0.19410
56 0.292062 0.37046 0.37103
67 1.00000 1.00000 1.00000
78 0.02876 0.05217 0.03023 )
89 0.00156 0.00150 0.00152
100 0.60013 0.00013 0.00013

Table 4 Normalized concentration values obtained using the »egular,
rectangular mesh at times of 4,000, 16,000, and 32,000 years

obtained using a dispersivity of 300 feet.
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6. Conclusions and Recommendations

Application of computer code, CLFEM5, to the sea water intrusion

preblem revealed the following:

1) The results obtained for unsaturated intrusion were essentially

2)

3)

identical to the published results of Huyakoyn and Taylor (1977),
which confirms the validity of the model for this type of problem.
The numerical oscillation encountered at the top nodal boundary
due to the Peclet number of 10 could be effectively damped out by
using upstream weighting functions,

The model gives essentially the same results for saturated and
unsaturated solutions, independently of whether viscosity effects
are taken into account.

Application of the numerical model to the transport problem in

the Los Medanos area problems revealed the following:

1

The one~dimensicnal analysis produced fairly close concentraticn
front approximations to the analytical solutions. A slight bit

of oscillation was detected using the dispersivity value of 300

~ feet (Fig. 16(a)) but was not severe enough to warrant the use of

2)

upstream welghting functions.

The two-dimensional analysis using the irregular mesh produced

numerical oscillation for dispersivities of 2,400 feet and less.

Application of upstream weighting was unsuccessful in preventing
: . : : . . 3,

this oscillation. Introduction of a flow rate of 300 ft™/day

at the borehole produced observable changes in the hydraulic

head, velocity, and concentration distributions.



79

3) The pfoblem of numerical oécillation was suécessfully overcome by
using : different mesh consisting of regular, rectangular elements.
Oscillation foxr the case of dispersivity equal to 300 feet was
successfully suppressed using this mesh,

Possible recomrendations for future work might consist of: 1) de-
termination of the effect of the time increment .selection on numerical
oscillaﬁion; 2) determination of the reason for the near steady-state
concentration results occuring for the later tiﬁes in Table 4; 3) de-
termination of the reason for the deviation in flow direction in Figs.
21 and 38(b) as compared with that expected for Fig. 14; and 4) ap-

plication of the model to problems involving geothermal flow.
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APPENDIX I

Computer Code CLFEM5 Data Input Instructions

Preparation of input data:

1. Problem card (I5)

One card

Col. 1-5

NPROB: Number of problems per run

2. Title card (2044)

One card

3. Controel card

1-80

One card

Col. 1-5
6~15
16-25
26-30

4. Control Card

TITLE: Title of prohlem

(I5, 4F10.4, 15)

NITMAX: Maximum nco. of mnonlinear iterations to be per-
formed

ERROR: Prescribed tolerance ratio. Suggested value =

0.05 or 0.10

RELAXF: Relaxation factor used to speed up convergence.,
Normally set = 1 for conventional iteration;
less than 1 for under-relaxation; greater than
1 but less than 2 for over~relaxation.

IMSHGN: Code for indicating if mesh data is to generated.
= 0 for no; =1 for yes. Mesh data may be auto-
matically generated 1f the domain is rectangtlar
in shape.

(1615)

NELIM: Total mo. of elements

NPOIN: Total no. of nodal points



Col.

11-15

16-20

21-25

26-30

31-35

36-40

4145

46-50

A
et
i
[
w

56-60

61-65

66--70

83

NNE: No. of nodes per element
NTYPE: Problem type ( =1 for plane problem; = -1 for
axisymmetric problem

NLI: No. of degrees of freedom per node

NDIM: No. of dimensions

NMAT: WNo. of different materials

NPROP: No. of material properties for each material set

NTS: No. of time steps

IDOUT: Code for specifying if discretization data is
to be printed out ( = 0 for no; = 1 for yes)

IBREAD: Code for dndicating if boundary node numbers
are to be read in ( = 0 for no; = 1 for ves)

ISOLVR: Code for selecting the type of algebraic
equation solver ( = 1 for symmetric banded
solver; = 2 for asymmetric banded solver)

IDVAR: Code for indicating if dispersion coefficient
depends on velocity ( = 0 for no; = 1 for ves)

JT5T: Code for indicating which dependent variables
are to be solved ( = 1 means to determine the
first dependent variable only or to-determine
both the first and second dependent variables;
= 2 means to determine the second dependent

variable only)

5. Control card (215, 4F10,4, 315)

One card

Col,

1-5

NONU: Number of nodes where initial values differ from

default values



Col. 6-10

11~20

21-30

3140

4150

51-55

56-60
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NSTEP: Code for controlling printout of computed nedal
values., When NSTE- = n, resulis are printed out
at eaéh nth time step.
TIN: Size of first time increment
TMUL: Time multiplier
TMAX: Maximum value of time increment
THETA: Time weighting factor. For steady state problems,
THETA = 1; for transent problems, THETA = 1.0
and THETA = 0.5 correspond to backward and cen-
tral time stepping respectively.
IVEL: Code for specifying if velocity computations and
printout are reguired
IPLOT: Code for specifying if control plotting data
are to be printed out for use in TPLOT1.TCR
JT: Dependent variable nﬁmber for which gradients are
required ( = 1 for first dependent variable;

= 2 for second dependent variable)

6. Wedghting function parameter card (215, 4F10.3)

One card

Col, 1-5

6-10

11-20

21-30

31-40

41-50

IUPWIN: Code for indicating if upsiream weighting
functions are to be employed ( = 0 for no;
= 1 for yes)
TCAL: Code for indicating if weighting factors are to
be calculated ( = 0 for no; = 1 for yes)
WFAC: Default value of weighting factor in z-direction
YFAC: Default value of welghting factor in y-direction
VCX: Default value of velocity component in x~direction

VCY: Derault value of velocity component in y-dirvection



85

7. Plotting control card (I5, 4F10.4)

%%% To be omitted if (IPLOT.EQ.Q)

One card
Col. 1-5 NCL: Nuwher of contour lines
6-15 HO: Maximum value of function to be plotted

16-25 HW: Minimum value of function to be plotted

8. Plotting parameter card (8F10.4)

% To be omitted Lf (IPLOT. EQ. 0)

One card

Col. 1-10 DXSCL: Scale in x~direction in actual units per inch
11-20  DYSCL: Scale in y-direction in actual units per inch
21-30 XMIN: Minimum value on x axis
31:&0 YMIN: Mindimom value on y axis

9. Default initial value card (8F10.4)

One card
Col. 1-10 HINV(1): Default initial value of the first dependent
variable
11-20 HINV(2): Default initial value of the second erendent
varialble

10. Matevrial property index card(s) (1615)

%% To be omitted if NMAT = 1

No. of cards = NELEM/16 -+ (1 or O)

Col, 1-5 1PROP (L) to IPROP(NELEM} = Material number(s) of first
6-10 through last elements

etc.
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11, Material property card(s) (8LE10,3)

This card set is to be prepared for each material. Number of cards in

each set = NPROP/& + (1 or 0)

Col. 1~10

11-20

ete.

PROP(I,1): First property belonging to material no. I

PROP(TI,2): Second property belonging to material no. I

12, Mesh parameter card (215, 2F10.3)

*%% This card type is to be omitted when IMSHGN = 0.

One card

Col. 1-5
6-10
11-20
21-30

NROWS: Number of rows in the mesh

NCOLS: Number of columns in the mesh

DXMAX: Maximum value of spatial Increment allowed in

the x-direction

DYMAX:; Maximum value of spatial increment allowed

in the y-direction

13. Mesh parameter card (8F10.3)

*%% This card type is to be omitted when IMSHGN = O

One card

Col. 1-10
11-20
21-30
3i-40

431~50

DX
DY:
X0:

YO

Delta-x of the first block
Delta~y of the first block
Maximum value of x-coordinate in the demain

Maximum value of y-coordinate in the domain

SCFX: Scale factor in the x—direction

SCTFY: Scale factor in the y-direction

KSTART: Minimum x-coordinate in the domain

YSTART: Minimum y-coordinate in the domaiv
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14, Coordinate cards (I5, 4F10.4)

*%% This card type is to be omitted v’ en IMSHEN = 1
Total no., of cards = NPOIN
Col. 1-5 N: Node number

6—-15 CORD(H,1): X—céordinate of node n-mber N

16-25 CORD(N,2): Y-coordinate of node number N

15. Element connection cards (16I5)

16.

17.

19.

)]

*%% This card type is to be omitted when IMSHGH = 1

‘'No. of cards = NELEM
Col., 1-5 N: Node number
6-10 LNODS(N,J): Nodal connections of element no., N

11-15 etc.

First type boundary value control card (I5)

Col, 1-5 NB: Total no. of prescribed boundary values of the
unknown functions (first type boundary condition)

Fivst type boundary value card{s) (2I15,2710.5)

No. of cards = NB
Col. 1-5 NDNO: Node number
6~10 MDEG: Dependent variable number
11-20 VALV(I): Prescribed value of unknown function

Second type boundary value control card (I5)

One card
Col. 1-D5 NDFLUX: Total pnumber of prescribed normal flux values

Second type boundary value card(s) (215, 2F10.5)

“%% To be omitted if NDFLUX = O

No. of cards = NDFLUX
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Col. 1-5 NDNC: Node number
6-70 MDEG: Dependent variable number
11-20 FLVAL(T): Prescribed flux value

20, Initial value card(e) (L5, 2F10.4)

®%% To be omitted 1if NONU = 0
No. of cards = NONU
Col. 1-5 N: Node number
6~-15 BINT(N,1): Initial value of first variable

16-25 HINT(N,2): Initial value of second variable
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Property values for the contamination transport problem:

1. h-c model

PROP (K, 1):
PROP (K,2) -
PROP (K,3):
PROP(K,4):
PROP (K, 5):
PROP (K, 6) :
PROP (K, 7):

PROP (K, 8) :

PROP (K, 9):

Bydraulic conductivity in x-direction or KO/U

Hydraulic conductivity in y-direction or KO/U

Storage coefficient of aquifer

Negative of density difference ratio, -¢

Set equal to zero

Set equal teo unity

Set equal to unity or Uod/DO

Diepersion coefficient DX or DX/DO; for IDVAR = 1, this
denotes dispersivity factor.

DiSparsioncoefficientDy or Dy/DO; for IDVAR = 1, this

denotes dispersivity factor.

PROP(IK,10): Mazimum solute concentration in say gm/liter

PROP(K,11): Minimum solute concentration in say gm/liter

PROP(K,12): set =qual to zero for steady state case

*%% Note: For the transient case, PROP(K,12) = the porosity of porous
medium,
2. Y~c model

PROP (K, 1) :
PROP (K, 2) :
PROP (K, 3)
PROP (K, 4)
PROP (K, 5) :
PROP (i1, 6) :
PROY (K, 7)

PROP(K,8):

Set‘equal to unity

Set equal to unity

Set to zero

Dengity difference ratio, €
Set equal to zero

Set equal to unity

Set equal to unity or Ud/DO

Digpersion coefficlent D ou Dx/Do
% .
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PROP(K,8): Dispersion coefficient DX or DX/DO

PROP(K,Y9): Dispersion coefficient DV or Dy/Do

ty factors.
PROP(K,10): Set equal to zero
PROP(K,il): Set equal to zero

1
|
|
|
l
For IDVAR = 1, PROP(K,8) and PROP(X,9) denote dispersivi-
PROE (K,12): Set equal to zero
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APPENDIX II

Qutline of Problems Run Using CLFEMS

Sea water intrusion, Pe = 10 (using the graded mesh of Fig. 4)

A, Unsaturated salt water (e = 0.025; Ko = 150); wifhout viscosity
effects (i.e. earlier version of CLFEM5); without using upstream
weighting.

B. Unsaturated salt water with viscosity effects; unweighted.

C. Saturated salt water (¢ = 0.198; KO = 19.2); without viscosity
effects; unweighted.

D. Saturated salt water with viscosity effects; unweighted.

3. Unsaturated salt water without viscosity effects; using asymmetric

weigiting functions.

One-dimensional transient transport (equal time steps of 250 years
adding up to 10,000 yeardjlin Los Medanos area (divided into 40
uniform rectangular elements, 2,350 feet by 1,000 feet; 82 nodes);
the hydraulic head boundary condition values were specified as
3,150 feet at nodes 1 and 2 (at Los Medanos); 3,083 feet at nodes
13 and 14 (14,100 feet southwest of Los Medanos on the cross section
in Fig. 15); and 2,930 feet at nodes 81 and 82 (at Malaga Bend).
Hydraulic conductivity values were specified as shown in Fig. 15.
The following cases were run:
A. Dispersivities in Zones 1 and 2 (Fig. 15) were set equal to

300 feet.

B. The dispersivity in Zone 1 was set cqual to 300 feet; the
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dipersivity in Zone 2 was set equal to 1,200 feet,
Two-dimensional transient transport (equal time steps of 800

years adding up to 32,000 years) in Los Medanos area (using the

irregular mesh in Fig. 18); the initial hydraulic head boundary

conditions were specified on the outside nodes of Fig. 18 using
interpolated head values form Fig. 14; hydraulic conductivities were
specified as shown in Fig. 15. The following.cases were run:

A. Longitudinal and transverse dispersivities were uniformly set
over the entire region in Fig. 15 as 1) 300 feet; 2) 2,400 feet;
and 3) 24,000 feet. The fluid flux boundary condition at the well
(Node 41) was specified as 0 ftB/yr. No upstream weighting was
used.

B. Longitudinal and transverse dispersivities were set at 2,400
feet; the fluid flux boundéry condition at the well was set at
0 ftg/yr; and upstream weighting was used.

C. Longitudinal and transverse dispersivities were set at 24,000 feet;
the fluild flux boundary condition at the well was set at 109,500
fts/year (300 fts/day); and no upstream weighting was used.

i

Two«dimensioﬁal transport (equal time steps of 400 years adding up

to 24,000 vears followed by equal time steps of 1,000 years adding

up to 64,000 years) in Los Medanos area (using the regular, rectang-

ular mesh of Fig. 36); hydraulic head values were specified using

interpolated head values from Fig. 14; hydrazulic conductivites were
specified using the division shown in Fig. 15. The foilowing cases

were run:
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A. Longitudinal and transverse dispersivities were uniformly
set over the entire area as 300 fc.t. The problem was run:
1) without using upstream weighting;

2} with upstream weighting applied.
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