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ABSTRACT

It has become increasingly apparent to investigators in the field
that there exists a large disparity between longitudinal dispersion coef—
ficients determined in the laboratory and those determined from field ex-
periments. This disparity is generally attributed to variability in hy-
draulic conductivity of the aquifer, allowing variable convection to mask
dispersion at atlocal, or microscopic, scale. This study utilizes a first-
order analysis_and properties of random stationary fields to analyze the
global, or macroscopic, dispersion for unstratified and stratified media.
The method necessitates that the investigator aribitrarily select a par-
ticular spectral form. Because of the first~order analysis, results are
limited to media in which the variance in‘hydraulic conductivity is small.

The results of the analysis generaliy indicates that a) given suf-
ficient travel time, global dispersion is Fickian; b) the global longi-
tudinal dispersion coefficient is a simple product of a global dispersiv-
ity and the mean specific discharge; and c¢) this dispersivity is propor-~
tional to the variance in hydraulic conductivity and the square of a cor-
relation length scale, and inversely proportional to a local transverse
dispersivity. Additionally, global dispersivities for the unstratified
case are found to be continuous functions of the ratio of local transverse
to local lonéitudinal dispersivities, and of the ratio of horizontal to
vertical correlation length scales. Comparisons are made between global
dispersivities resulting from stratified and unstratified medium conditions
and an attempt is made to determine the sensitivity of the results to the
local dispersivity ratio and to the léngth—scale ratio. Additionally, as-
pects of possible application of the resﬁlts to fiéld situations are dis—'

cussed.
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LIST OF SYMBOLS
Symbols listed here pertain to the body of the report: symbols used
in the appendices are arbitrary and, in most instances, independent of

those in the body.
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B, Constant [(TL)?], equation (4.63).
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INTRODUCTION

The success of attempts to solve problems

in turbulence depends strongly on the

ingpiration in making crucial assumptions.
—Tennekes and Lumley, 1974, p. 4.

Definition of Problem

In recent years, investigators have become increasingly concerned
with the effect of variation of aquifer properties on flow phenomena
within aquifers (e.g., Warren and Price, 1961; Warren and Skiba, 1964;
Freeze, 1975; Bakr, 1976; Gelhar, 1976). This concern is, in part, at-
tributable to the lack of conformity between the results of laboratory
tests and field experiments for similar phenomena, which indicates that
aquifer properties at the écale of the representative elementary volume
(Bear, 1972) cannot necessarily be extrapolated to represent the aquifer
itself. It is generally conceded that aquifer properties used in com-
puter simulations of flow phenomena, as welllas those obtained from in
situ field testing, are particular averages of point properties of the
aquifer. The validity and representation of these averages have been
examined by the above investigators; this report is largély concerned
with the effgct of medium variability on dispersion in porous media.

Considering that dispersion is, in the case of groundwater flow
systems, a medium-dependent phenomenon, it is to be expected that it
will vary in intensity from location‘to location in the aquifer. Indeed
since both hydraulic conductivity and dispersivity can be related to
grain size (Harleman and Melhorn, 1963), one can postulate a relation-
ship between dispersivity and hydréulic conductivity at the scale of the
representative elementary volume. Thus, if the large variances in hy-
draulic conductivity noted by investigators (e.g., Law, 1944) are

veritable, then it is only reasonable to expect that dispersivity, and



therefore dispersion, is also subject to similar variations.

Simplistically, one might qsk if it is not possible to average in
some way these local dispersivities. However, if aquifer properties
vafy as stated in the previous paragraph, theﬁ another problem can im-
mediately be discerned when attempting to describe dispersion in natural
porous media. 1In particular, as a consequence of variable convective
transport, hydraulic conductivity variations from point to point in an
aquifer will cause a random fingering of the tracer to appear along the
mean flow direction of the fluid. That is, the tracer will be displaced
varying distances with respect to a common front in response to varia-
tion in seepage velocity along the front. Thus, the concentration of a
comiposite sample of a £récer taken over the entire aquifer thickness,
as by a fully penetrating well in which fhe fluid within the bore 'is
well mixed, will be dominated by these random convective effects rather
than by dispersion at the local level. Indeed, if thg flow has three-
dimensional random components, then sampling at any point in the aquifer
will result in a more elongated breakthrough curve than could be pro-
duced without a random convective effect. That this phenomenon is in-
deed operative is exhibited by the fact that dispersivities galculated
from field tests over large areal distances will generally be larger
than dispersivities calculated from laboratory tests on cores (e.g.,
Fried, 1972), prompting some invesitgators to refer to the former dis-
_persion as "phenomenological" (Helier, 1972).

Thié type of phenomena has been studies rather intensively in the
petroleum industry, where attempts afe made to sweep oil from a reservoir
by injection of a miscible solvent. Thé process of sweeping out the

0il is frequently hampered by the formation of fingers, leading to an



early Ereakthrough of the solvent and an extended period during which
both solvent and oil are produced (Koval, 1963). Finger formation is
generally considered to be closely associated with variations in hydrau-
1ic conductivity within the aquifer, but may be obliterated if trans-
verse dispersion between fingers is sufficiently operative in comparison
to convectivé transport (Claridge; 1972). TPingering has also been noted
in supposedly homogeneous models, where'it has been attributed to un-
favorable mobility ratios (Slobod and Thowas, 1963). Even in these
cases, however, transverse spreading has been observed to obliterate
individual fingers. Similar phenomena have been observed in soil columms,
where fluid density contrasts are the primary driving force (Starr and
Parlange, 1976). Qakes and Edworthy (1976), investigating recharge in
the Bunter Sandstone, postulate the occurrence of a similar process to
account for the larger dispersivity values obtained when considering

the entire aquifer thickness as compared to smaller values for discrete
layers. In particular, the presence of.”large scale sfrétiform hetero-—
geneities" is suggested, along with mixing between layers by local
transverse dispersion, to account for this discrepancy. It may be con-
cluded, them, that there exists a growing body of evidence which ad-
.vances variations in hydraulic conductivity as the principal mechanisnm
promoting large scale dispersion in natural sedimentary aquifers.

If one were to model the traﬁsport of a tracer through an extensive
volume of an aquifer, it would be desirable to have a single parameter
which would describe the spreading of the tracer throughout the aquifer.
If it could be assumed that the spreading process were Fickian in nature
(that is, the solute flux is proportional to the concentration gradient)

then it would be possible to use the standard convective-dispersion



equation (see Appendix 3) in the modelling effort. Thus one of the
questions we must ask ourselves is whether the afore-described phenomena
are, in some average manner, Fickian in nature (see Zilliox and Muntzer,
1975). Assuming that the Fickian Model is suitable, it remains to be
seen whether, given the appropriate aquifer properties, some vehicle
exists for the determination of an effective dispersion coefficient which
would be applicable in conjunction with mean components of flow and con-
centration in the medium. If both of these questions can be answered
poéitively, one should be able to model the transfer of pollutants, in

4 mean sense, through an aquifer. These questions will be examined in
detail throughout the remainder of this report but, before leaving this
section, a portion Qf the literature supporting this concept for the
spreading of a tracer in natural aquifers will be examined iﬁ more de-
tail.

Stratified aquifer systems, that is aquifers which are composed of
continuous layers of contrasting hydraulic conductivity, have been the
preqccupation of a number of investigators studying dispersion in porous
media. Mercado (1967) developéd a model to estimate the longitudinal
spreading of a tracer in such aquifers, subject to several assumptions,
perhaps the most important of which is that mixing between layers is
negligible. Expanding on the work of Marle et al. (1967), Renault et al.
(1975) performed laboratory tests on scaled examples of stratified porous
media, in which longitudinal dispersion coefficients were calculated
from breakthrough curves as the fluid left the model. They found that
transverse mixing was an important aspect of the process, and that dis-
persion coefficients for layered aquifers, with large contrasts in hy-

draulic conductivity between layers, could be several orders of magnitude



greater than coefficients for individual layers. These results have
been verified to some extent by_the aforementioned in situ field work of
Oakes and Edworthy (1976). |

Attempts to examine the effect of multidimensional variations in
hydraulic conductivity on dispersion have, in large part, been studied
through computer simulation. Heller (1972), working with computer simu-
lations of the movement of a fluid through a cwo dimensional system of
cells in which hydraulic conductivities were assigned on a random basis,
also found finger-like frontal movements. His simulations did not con-
sider dispersion at a local scale which might attenuate the over-all
effect of convective transport. Simulation of flow through three-
dimensional random hydraﬁlic conductivity arrays were executed by Warren
and Skiba (1964), where dispersion coefficients were determined by track-—
ing particles through the flow system. Local dispersion was again
neglected but, significantly, the authors were able to conclude that
"macroscopic" dispersion, or the over-all dispersive effect, is related
to variations in hydraulic conductivity and scale of the heterogeneity.
These latter investigators also suggest that, within limits, the dis-
persion process is Fickian in nature. Both groups of investigators
assigned hydraulic conductivities randomly from lognormal distributions,
using Monte Carlo schemes.

Skibitzke and Robinson (1964) endeavored to model the passage of a
tracer through isolated heterogeneities in otherwise homogeneous media
by carefully constructing laboratory ekperiments. These experiments
demonstrated the magnification of spréading of a tracer upon entering
regions of contrastihg hydraulic conductivity. Transverse spreading of

the tracer away from channels of higher hydraulic conductivity was also



observed. Zilliox and Muntzer (1975) conducted similar experiments, in
which a heterogeneity consisting of a higher hydraulic conductivity was
positioned perpendicular to the direction of flow. A marked increase in
lateral spreading was noted as the tracer passed through the more con-
ductive zone. Thus, again the importance of conductivity variations
together Witﬁ the secondary effect of local dispersion of the entire
spreading phenomenon has been documenteA. This report will primarily

be concerned with the first-order analysis of a model with these features,
which will be described in more detail in a later section.

Length Scales in Sedimentary Aquifers

" In the preceding discussion a scale over which dispersion phenomena
operate was implied. Before proceéding further, it will be helpful to
discuss scales and their application to the problem at hand. A number
of investigators have devised classification schemes for scales of flow
and transport pehnomena in porous media, usually basing their scheme on
the size of heterogeneities to bé expected (e.g., Grouit et al., 1966;
Alpay, 1972; Claridge, 1972; Fried, 1975; F¥Freeze, 1975). TFor the pur-
pose of this report, a synthesis of the various schemes shall be at-
tempted, incorporating features as needed for the following discussion.

The smallest scale of interest to this discussion is the intrapore
size. At this scale, molecular diffusion is the dominant factor con-
tributing to the dispersion of a tracer in moest flow systems (Fried and
Combarnous, 1971). Beyond the dimensions of the pore channels them-
selves, we become interested in how particles move between pores. In
particular, as a particle.passes through a medium, it can be visualized

as traveling a certain average distance between intersections of the

various pore channels (e.g., Scheidegger, 1954). This aﬁerage distance



will be referred to as the'inFerporerscale. If sufficient pore space is
taken in union, then aquifer properties tend to become constant, at least
with regard to that volume of pore space. The quantity of pore space
necessary to reach this condition is called the representative élementary
" yolume (Bear, 1972), and represents fhe smallest scale at which aquifer
properties can be quantified and the aquifer itself construed as a con-
tinuum. TFor reasons discussed in the following paragraph, this scale
wili be referred to as the local scale. Beyond this dimension, a scale
caﬁ be conceived at which variations in aquifer properties, as defined

at the local scale, can be measured. That is, in accord with introduc-
tory discussion, it is not to be expected that aquifer properties at a
local scale will be spatially constant in natural aquifers. We will
refer, then, to the average distance necessary for these variations in
aquifer properties at a local scale to become evident as the aquifer
correlation scale (see Appendix 1). This scale, as noted later, can be
multidimensional and is a fundamental method of representing heteroge-
neities in aquifers (Bakr, 1976). Realizing that aquifer properties

are rather variable, we may ask ourselves what travel distance would be
necessary for us to obtain the average value of some flow or transport
parameter. TFor instance, if one were to attempt to determine the average
seepage velocity through a particular aquifer, then it would be desirable
to locate observation wells at a distance from each other equivalent to
several correlaﬁion lengths in order to allow for sufficient averaging

to occur along the flow path (e.g., Corompt et al., 1974). This dis-
tance will be referred to as the global scale in this thesis, and is
significant in that it is the scale over which most Teffective' aquifer

properties operate. Yet another scale can be defined from the average



distance over which statistical moments of aquifer properties, as defined
from the local scale, remain constant (or stationary). Over extensive
regions, it is only reasonable to expect that aquifer property moments
themselves will be subject to change (e.g., Aipay, 1976). The average
distance over which moments can be considered to be stationary will be
referred to as the regional scale.

The above classification scheme is based on the relative statistical
and flow properties of an aquifer. As with all classification schemes it
is lacking in some areas and will not be universally satisfactory. For
instance, it may be guite possible that the probability moments, defined
at the local scale, are a continuous function of space, preventing defini-
tion of a region where tﬁey are approximately stationary. In such a case,
the correlation scale would be a functioﬁ of spatial-variabies and the
regional scale would cease to be defined. Such possible models will be
“excluded from this study. Also, flow and transport phenomena at less than
the local scale will not be of concern to us. With regard to the term
"local" as used in the previous paragraph, Zilliox and Muntzer (1975)
noted that while simple homogeneous and isotropic models of transport
phenomena preserve the natural structure of the interconnection of pores,
they also represent '"local" configurations in more complex models. This
is also the sense of the term as used herein. Renault et al. (1975) used
the‘term "global" to connote dispersion influenced by variations in hy-
draulic conductivity. In a similar sense, ”global“ is used herein to
define a length scale over which averages in flow and transport parameters
are obtained from variations in aquifer properties. Because of the methgd
of analysis used, results from this research are only applicable within

that portion of the medium encompassed by the regional scale.



Tﬁe preceding discussion forms a basic framework for the development
of.a model equation to describe dispersion resulting from variations in
aquifer properties. These introductory statements indicate that disper-
sion in porous media occurs at two different scales in response to dif-
fering mechanisms. In the remainder of this report, dispersion phenomena
which resulté from the intricate geometry of the pore system will be re-
ferred to as local, while that attributed to variation in medium pro-
perties themselves will be called global. Thus, dispersion coefficients
will be referred to as either local or global; the effective dispersion
coefficient which quantifies spreading in natural aquifers is equivalent
to the global coefficient.

Review of Literature

Various approaches or methods have been proposed in the literature
to represent and analyze the dispersion process in pdrous media. These
models are generally constructed from a stochastié representation of the
medium at one scale, and are applicable at another, 1afge£ scale. It is
of interest to review these models with an eye toward application to
the problem at hand.

In the last two decades, considerable effort has been expended on
a group of models generally classified as random-tube models. Reviews
of these models are available in Greenkorn and Kessler (1969), Bear
(1972){ Wilson and Gelhar (1974), énd Fried (1975). Since it is impos-
sible to describe exactly the passage of a tracer through porous media
at an intrapore level because of the irregularity of disposition of
boundary conditions, inveétigatars have generally turned to models where-
in the pore openings are simulated by a network of randomly oriented

tubes. This approach enables investigators to treat the porous medium,
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at an interpore scale, as a statistical quantity with associated proba-
bility density functions. The earliest of these models, and perhaps the
most edifying in terms of understanding their probabilistic basis, was
proposed by Scheidegger (1954). He recognized that the sample épace for
the probability density of the displacement of a particle was actually
an “ensemble" of porous media, and considered that this density could
be related to.the physical density of the tracer concentration by "ergo-
dicity” (Appendix 1). By assuming that particle motion can be representéd‘
by.a Markov process, a probability density function was developed and
subsequently shown to be a solution of the convective-dispersion equa-
tion (applicable at the local scale), which allowed Scheideggexr to con-
clude that local dispersion coefficients are related to the variance in
partiqle displacement. By averaging Néwton's equation for particle mo-
tion, a form for the variance was derived. The same basic procedure
has been used by other investigators in the field, except that more em-—
phasis has been placed on the derivation of the variance term for parti-
cle displacement. Scheidegger concluded from this analysis that disper-—
sion at a local level was Fickian in nature and could be quantified by
an isotropic medium constant called a “"dispersivity.” Later investiga-
tors have found, however, that dispersivities should be tensor quantities,
even in otherwise isotropic media, as longitudinal dispersion is signifi-
cantly greater than transverse dispersion. This disparity created further
interest in this type of stochastic approach at an interpore scale.

Later investigato;s have mainly concentrated on predicting the dis-
placement variance from the random—walk scheme inherent to these models.
De Josselin de Jong (1958) devised a model with uniform capillary tube

length and diameter, but having tubes oriented randomly. Radial diffusion



1t

within tubes was assﬁmed to cause a particle to travel at the mean velo-
city of the fluid in tubes, which varies with respect to the mean flow
direction in the medium.‘ With the aid of Markov's method, de Josselin
de-Jong developed a three-dimensional density function for particle
displacements, from which both longitudinal and transverse dispersivities
are calculated. Saffman (1959) independently derived de Josselin de
Jong's results, and also considered the case where radial diffusion is
small, allowing for the occurrence of velocity variations over the tube
radius. Haring and Greenkorn (1970) extended this latter case to in-—
clude random variations in tube radius and length, as described by beta
distributions. They were able to conclude that for unconsolidated sedi-
mentary materials the fatio of longitudinal to transverse dispersivity
should range from threevto ten, but mighf be greater for consolidated
éediments.

In general, random tube models give us insight into the dispersion
phenomenon at the local level and, as in the case of Haring and Green-
korn's (1970) model, may be useful in predicting local dispersivities.
However, it would be difficult if not impossible to scale these models
up to the global level of interest in this study. The problem is similar
to that of attempting to model local dispersion with an intrapore-scale
model; the complex boundary conditions caused by random variations in
hydraulic conductivity would have to be taken into account when applying
these random-walk probability models. It is éuggesﬁed, then, that our
time may be more profitably spent looking at models constructed at the
local scale.

Another possible approach to study the dispersion phenomenon at a

giobal scale employs Monte Carlo schemes similar to those constructed
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by Helier (1972), Schwartz (1977), and Warren and Skiba (1964). Asv
noted previously, these models attempt to represent natufal media by
compartmentalizing a medium into equidimensional blocks in which the
model hydraulic conductivity is assigned randomly. In the case of Warren
and Skiba's investigation (which is somewhat enhanced over the work of .

the other inﬁestigators in that their model was three dimensional) hy-

porosities from a normal distribution. Global longitudinal dispersion
coefficients were determined from the variance of reference particles
tracked through the medium under a steady flow regime. The effect of

porosity on the global dispersion process was found to be second order

of block size and variance in hydraulic conductivity were investigated
(block size is roughly equivalent to the correlation length scale which
characterizes the size of‘heterogeneities in nmatural media). Monte
Carlo simulations of this nature have been criticized fof lacking an
autocovariance function for medium parameters (Gelhar et al., 1977) which
causes them to be incompatible with real-world aquifers. Additionally,
these model%ing efforts have neglected dispersion at the local scale
which, in the sense of Taylor's (1953) work (see section entitled "Ap-
proach'), may not allow the particle variance to become independent of
travel time. The effect of varyiﬁg travel times on dispersion coeffi-
cients has not been studied by any of the above investigators. These
defects could probably be rectifigd and further research employing these
schemes is encouraged. For example{ Boreli et al. (1977) have incorpor-
ated the convective-dispersion equation into their scheme, thus allowing

and was consequently neglected. In the modellihg effort, the effects
for local dispersion. The results from this study, however, are rather
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inconclusive. 1In general,.while lending themselves well to the study of
dispersion at a global scale, an analytical form for the process does
not evelve readily from such schemes.

Global dispersion in stratiiied aquifers, because of the inherent
simplicity of randomness in hydraulic conductivity involved, is more
amenable to a mathematical treatment. By assuming a local transport
model which is entirely convective, Mercado (1967) proposed a method of
aﬁalysis for stratified aquifers in which the hydraulic conductivity at
any point in a vertical cross section is normally distributed. A con-
stant porosity was assumed for the model and, plainly, local dispersion

has been neglected. As might be expected, a normal distribution was

standard deviation from this distribution was used to characterize global
longitudinal dispersion. If one postulates that the standard deviation
of the tracer concentration is directly related to the global coefficient
in much the same way as Scheidegger (1954) has done, then it can be
demonstrated that the resulting longitudinal coefficient is time de-
pendent. Time dependence of dispersion coefficients in these models is
probably closely related to assumptions concerning lateral spreading at

a local level (see Renault, et al., 1975; Fried, 1972). If no lateral
mixing is assumed, which is probably a reasonable supposition for early
time or small distance from the injection site, then time dependence of
the dispersion coefficient is to be expected. For large time, as will

be noted in the next paragraph, lateral mixing becomes significant and
the dispersion coefficient is independent of time. Thus, Mercado's re-
sults are probably valid only in a small area surrounding the injection

found to represent the depth-averaged tracer concentration and the
site.
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Marle et al. (1967) developed a method of predicting longitudinal
dispersion coefficients in stratified aquifers, provided that aquifer
parameters (porosity, permeability and dispersivities) fér each layer
aré known., Utilizing a method of moments devéloped by Aris (1956), where-
by the moments of longitudinal displacement are calculated from the rela-
tive tracer concentration distribution, Marle et al. derived an expres-
sion for the global longitudinal dispersion coefficient. Their analysis
consists of solving the moment equations inductively, neglecting certain
higher order, time-—dependent terms by assuming a long-duration process,
and results in a solution consisting of integrals where local pércsities
and dispersion coefficients form the arguments. The integrals must be
evaluated over the entire aquifer thickness in order to obtain the global
coefficient. The results are significanf in that they are valid only
for large time, indicating that lateral mixing between layers is fully
operative and that time dependence has been lost. Additionally, the
method of solution suggests that global dispersion in natural aquifers
is a Fickian process.

The results of the work of Marle et al. (1967) have been verified
to some extent by Renault et al. (1975) in laboratory experiments with
stratified‘models. The significance of the work, however, is largely
found in its applications toward the better understanding of the disper—~
sion process at a global scale, since it would be difficult to apply
these results to field situations»coasisting of muitiple strata because
of formidable data requirements involved.

For media in which aquifer prOpefties are randomly distributed in
all directions (or, for_that matter, in éne direction as would be the

case for stratified aquifers), the approach of Buyévich et al. (1969)
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to the problem of analyzing global dispersion holds promise. Using the
Navier-Stokes equation of motion, the continuity equatioﬁ, and the con-
vective-dispersion equation, all at a local scale, these invesitgators
considered the effect of three-dimensional porosity variations on mass
transport in statistically homogeneous, isotropic porous media. Cor-—
responding to the porosity variations, linear perturbations were assumed
for seepage velocity, pressure, and traéef concentration which, when
properly considered in a nondimensional form in the previous equations,
allowed for their transformation, in terms of perturbed quantities, into
a set of linear equations. With the aid of the well;developed theory

of stationary random processes (Appendix 1), these equations can be
solved simultaneously in terms of spectra and cross spectra. Correla-
tion functions can then be'derived by taking the Fourier transform of
the spectral equations (or transfer functions) and these fﬁnctions, in
turn, can be related to global dispersion coefficients for both long and
short time duratioms.

Approaches utilizing properties of second-order stationary processes
have the advantage that they treat the medium as a continuum in which
variations %n aquifer properties are represented by statistical moments
and length scales. In turn, fluid and transport phenomena can also be

conceived of as continuous processes which contain variations repre-

gg_gl,.(l969), porosity variations are associated with a correlation
length scale which is approximately equivalent to the distance over
which porosity can be considered constant. If, as in the case of their
large-time results, the global dispersion ceefficient is found to be

sented by statistical parameters.i With regard to the work of Buyevich
proportional to a correlation length gcale and velocity standard deviation,
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then one only need estimate these statistical parameters to obtain an

order—of-magnitude approximation of the dispersion coefficient. In
general, if a porous medium can be considered to be a spatially station-
ary random-field process, then an approach of this kind may be a prac-
tical method of aﬁalyzing dispersion in porous media. The approach is
not without pitfalls, however, as it necessitates that partial differ-
ential equations governing flow and transport be linearized before ap-
piication caﬁ be made.

While making an impressive contribution to the subject, the specific
approach used by Buyevich et al. (1969) is lacking in some respects. Tt
has been previously noted that variations in hydraulic conductivity are
considered to be the primary cause of globql dispersion. Thus, their
analysis depends on‘the degree of relationship between hydraulic conduc-
tivity and porosity. The quality of the result in this type of analysis
is dependent to a large degree on the nature of linearizing assumptions
used. In the case of Buyevich et al., it was assumed that the pertur-
bation was much smaller than the mean; a rather restrictive assumption
for.most porous media. For simplicity, the investigators used an ieo-
tropic porosity spectrum; yet most natural aquifers are stratified to
éome degree which would preclude this type of spectrum. Finally, their
long-term result, which we consider to be more significant, is rather
unprecisely reported as a simple proportionality. ‘Thus, we consider
that these investigators have not exhausted the possibilities of the
approach.

Before passing og to a more detailed description of the approach
to be taken in this paper, it should be noted that the theory of spa-

tially stationary random-field procesées has been applied previously to
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the analysis of groundwater flow in natural aquifers (Gelhar, 1976 and
1976a; Bakr, 1976). The principal objective of these investigators has
been the analysis of variance in hydraulic head caused by variations in
medium parameters. Application of the theory'has been achieved for one-,
two—, and three—dimeﬁsional flow schemes. Thus, considerable precedent
exists for “its applicvation to problems in flow through porous media.
Approach

The analysis followed in this thesis owes its spirit, to no small
degree, to an earlier work by G. I. Taylor (1953). While analyzing the
dispersion of a pulse of tracer injected into capillary tubes in which
laminar flow is occurring, Taylor considered the transfer of mass across
a plane which moves wi£h the mean flow velocity and is oriented perpen-
dicular to the flow direction. Taylor reasoned that, with sufficient
time lapse, convection of mass across the plane, as caused by the true
parabolic velocity distribution, would equal the amount of radial dif-
fusion occurring perpendicular to the direction of flow. That is, with
regard to the moving plane, radial mass transfer and mass transport in
the direction of flow at any point in the tube could be regarded as
being in equilibrium. Taylor obtained a solution te the differential
equation dgscribing this model and whence, given sufficient time lapse,
found an expression describing the distribution of a tracer at any point
in the tube. By integrating this distribution over the tube cross sec—

tion, an expression for the amount of tracer flux transferred across the

moving plane was obtained, and therebyAan expression for the longitudinal

dispersion coefficient for the meah tracer concentration. The assump-
tions leading up to this coefficient were verified by Taylor through

léboratory experimentation.
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If one considers an "average" stream tube within a natural medium
in-which a pulse of tracer material has been injected over its width,
then certain analogies exist between this model and Taylor's (1953) tube
model. For instance, if a moving coordinate for average motion of a
fluid through the stream tube is considered then, with respect to this
coordinate, an equilibrium may exist (undgr certain conditions) between
longitudinal and lateral transfer of maés. The parabolic velocity dis-~
tribution causing longitudinal transfer in the capillary tube could be
replaced, in the natural aquifer, by a random velocity distribution
about a mean which, with regard to the dispersive process, has the same
function but is caused by random variations in hydraulic conductivity
rather than by boundary effects. Similarly, rather than depend upon
diffusion for lateral spreading, dispersion at a local level could serve
this purpose. However, it is to be expected that trécer concentration
at aﬁy point within tke stream tube will contain random as well as de-
terministic components because of the random nature of.the medium. With
the existence of many analogies with Taylor's work, one could possibly
proceed immediately to write a partial differential equation which would
properly describe the dispersion process at a local scale and then eval-
uate this expression. Nevertheless, we shall proceed more formally in
the following chapter to derive a model equation which, in moving co-
ordina;es and for sufficient time éuration, will describe a balance be-
tween longitudinal transfer and dispersive lateral mixing in terms of
zero-mean random variables.

Once derived, the model equation must be solved and the amount of
tracer flux transferred through the moving plane found. As most of the
variables in the problem are random? it would be difficult to proceed
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in the same manner as Taylor §1953). Indeed, it will be shown that the
desired tracer flux is an expected value of the product of specific dis-
charge and concentration random variables. Thus, it would appear to be
necessary to knowAthe probability density functions of the variables in-
volved. These densities could be identified from an ensemble of reali-
zations of our experiment; that is, by investigating a very large number
of pulse injgctions of a tracer over the width of an average stream tube
in probabilistically similar porous media. Clearly, such an ensemble of-
observations, while representing the real probabilistic basis of the
random variables involved in the problem, would be difficult to obtain.
By taking advantage of the properties of stationary random processes
in much the same way as Buyevich et al. (1969), certain simplifications
result in the over—-all problem. In our case, this will imply that we
assume the medium to be spatially second-order stationary or, in other
terms, statistically homogeneous over a regional scale. Simply stated,
second-order statiomarity implies that all second moments of the joint
probability density functions of random variables are independent of
absolute spatial location (a rélative spatial dependence is considered,
however). -This assumption plus the properties of the process will allow
us to find expected values of products of random variables and in essence
solve the model equation, to a first-order approximation, for a tracer
flux through the moving plane. The method of solution involves assuming
a reagonable form for certain autocovariance functions of medium prop-
erties which will allow for the calculation of other second moments via
the representation theorem (Appendix 1). Additionally, it is assumed
that boundaries of the medium. are at sufficient distance to be incon-

sequential to autocovariance functions.
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In summary, the prototype proposed herein is one in which tracer
concentration, specific discharge, dispersion coefficients, porosity
and hydraulic conductivity are statistically homogeneous random varia-
bles at the local level. This probabilistic description is based on the
concept of the ensemble, and should not be confused with the results of
a single realization of the experiment. Utilization of the local scale
for definition of variables will allow, as noted previously, a continuum
treatment of flow and transport phenomena. It will be necessary to as-
sume that hydraulic conductivity of the medium is physically isotropic
at a local level. This assumption is not restrictive, however, since
statistical anisotropy can be introduced at the aquifer correlation
scale. These and othef éssumptions will be treated in morevdetail in
the following section.

With the approach outlined in this section, we will attempt to ob-
‘tain from the model equation an expression for the global dispersive
flux. If this expression has a Fickian form, we will then be able to
say that the convective-dispersion equation applies at the global scale.
Additionally, we may also obtain information concerning the applicabil-
ity of this expression which may have some impact on design of field
experiments for testing for global coefficients. Finally, the form of
the expressién itself may suggest some method of approximating global

longitudinal dispersion coefficients without extensive field testing.
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DERIVATION OF MODEL EQUATION
Pretotype

In introductory statements to this point, the problem of attempting
to apply dispersion coefficients determined from laboratory tests to
actual modelling of the transport of a tracer mass in natural aquifers
was discussed. Specifically, variations in medium properties (as mea-
sured at the local level) will augment fhe spreading of a tracer beyond
that which would otherwise be expected. Additionally, a few statements
were made regarding the method of solution and its rgmifications on as-
sumptions concerning the porous medium. We will now formally state the
nature of the prototype experiment, the equations for which will be de-
veloped and solved in subsequent sections.

We design a theoretical experiment with the expectation that, as in
the case of Taylor (1953), we derive information from it which is not
dependent on the experiment itself. In particular, we envision a con-
gsiderable "lump" of granular material, which has the minimum approximate
dimension of the global scale (Figure 2.1). Within the medium, steady
state flow is occurring such that its mean component is unidirectional

in the sense of the positive x, coordinate (this implies a mean hydraulic

1
gradient in the same direction). A tracer has been injected over a large
area perpendicular to the mean direction of flow at a distance equivalent
to several global dispersivities ﬁfstream from our present observation
point. For convenience, we may think of the injection as having occurred
instantaneously in time. The tracer is ideal and conservative in that

it travels identically as the transporting agent, unaffected by density

contrasts, and does not lose mass along its path of travel.

Medium properties, which shall be considered to possess a random
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component, can be characterized from a statistical description of the
medium, using the local scale as the sample space. For instance, the
prototype medium will be considered to be nonuniform, meaning that its
préperties possess a finite variance (Greenkofn and Kessler, 1969). We
note that this statistical description has its basis in probability
density functions founded on an ensemble of realizations of the medium.
There is no reason that these density functions (and therefore moments
of medium properties), in addition to having an underlying sample space,
could.not also be dependent on their location in the medium. For sim-
plicity and reasons noted previously we restrict joint density functions
of medium properties by allowing them to depend only on the separation
of points in space and nét on the absgsolute location of the points; a
‘restriction known as stationarity. However, we normally deﬁend on a
weaker condition that requires only the second mowent to be independent
‘of spatial location. That is, if the autocovariance function, which

can be thought of as the covariance of a property with itself at two
different locations, is dependent only on the separation vector between
two points and not on their actual locations, we characterize the medium
as being spatially second-order stationary or, as more frequently used
in this report, statistically homogeneous (Bakr et al., 1977). This
weaker requirement is not unreasonable as we shall work principally with
first and second moments in the subsequent analysis. By making this
assumption of the prototype medium properties, we implicitly extend
statistical homogeneity to the fluid régime itself, since medium prop-
erties govern motion and transport'in.the fluid. Thus, statistical
homogeneity is not ohly an important property,of‘the medium, but also of

fluid flow.
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Tﬁe autocovariance function will enable us to add anisotropy to the
prototype at a global scale. At the local scale, as noted previously,
we make the simplifying assumption that the medium is essentially iso-
tropic. This assumption is not precisely true for most sediments, but
does not appear to be extreme, especially for coarser grain sizes
(Pettijohn et al., 1973, p. 529). However, because there is correlation
between properties at different locations in the medium, and as this
correlation is less than perfect, it follows that local isotropy may not
be perpetrated throughout the medium. We examine this concept with the
correlation length scale, which can be thought of as-the average dis-
tance, along the three cardinal directions of the prototype medium,
over which medium properties are correlated (see section entitled "Length
Scales in Sedimentary Aquifers“). The correlation length scales can
formally be defined as integral scales of an autocorrelation function,
or éimply that distance over which a property is positively correlated
(Appendix 1). In either case, correlation lengthvscalés‘are medium con-
stants associated with every’autocorrelation'function. In summary, the
prototype mgdium is also characterized by correlation length scales ay s
ay, and aq vhich we assume to be oriented with the principal axes (Figure
2.1). (This assumption is necessary in order to maintain colinearity of
the hydraulic gradient and flow.) Although somewhat unprecise, these
length scales can be thought of aé defining an ellipsocidal region through-
out which a particular medium property is approximately constant. If
we allow the horizontal length scales to become very large with respect
to the vertical one, a stratifiedvgquifer is obtained. 1Indeed, in this

case the autocorrelation function reduces to one dependent only on the

vertical separation vector. In essence, if a length scale is rather
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1imited in any one direction, then we assume that the sedimentary struc—
ture is changing rather rapidly in that direction. On the other hand,
if the length scale is large, then we assume that few changes occur. .

At this point, we may opportunely discuss the physical significance
of statistical hoﬁogeneity. Does it, in fact, imply physical homogeneity
in some mean sense? Let us consider the case where correlation length
scales are equal in all directions (the case of unequal length scales is
a.simple exténsion of this case): .If the medium is statistically’homog-~
encous, will this isotropy be perpetuated throughout the aquifer? From
an ensemble point of view, and in agreement with the preceding paragraph,

A

statistical parameters such as the mean, variance, covariance and length

we would reply affirmatively that, in a mean sense, physical homogeneity
is implied. We may question, however, the applicability of this result
to a single realization of the medium. To investigate statistical homog-
eneity as applied to a single realization, we must resort to the princi-
pal of ergodicity (Appendix 1). By this principle, we should be able to
saméle one realization sufficiently to reproduce whatever statistical
parameter we desire. Thus, we can imagine sampling over a large volume
bf the aguifer at two different localities in the medium and, using the
appropriate estimators, calculate the statistical parameters in question
and assign them to these localities. However, it is obvious that, by
ergodicity, these parameters will asymptotically approach the ensemble
parameters. Whence, we again conclude that, in a mean sense, the same
expectations apply to Lhe single realization as to the ensemble, and we
would consider the single realization to be globally isotropic. This

scales will be the same at every point in a stationary medium; therefore,
result is not unexpected from the point of view of fluid motion, as
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there is obviously no preferential medium direction; only a random dis-
tribution of heterogenities which have some over-all average.
‘As indicated in the section entitled "Length Scales in Sedimentary

" the distance over which moments of medium properties remain

Aqﬁifers,
spatially stationary is referred to in this report as the regional scale.
Beyond this distance, the medium ceases to be statistically homogeneous
and, in a mean sense, it would be referred to as effectively heteroge-
neous. This heterogeneity is rather like that used by numerical modelers
when they divide two-dimensional horizontal models into regions of equal
effective hydraulic conductivity. In any one region the aquifer is con-
sidered to be homogeneous (even though the real aquifer probably contains
numerous heteroggneitiés‘of a correlation-scale size in e¢.ch of these
regions) but, oyer—all, the aquifer mustbbe considered to be heteroge—
vneous. The prototype medium Considered herein should be considered to

be of a dimension somewhere between the global scale and the regional
scale.

With respect to motion and transport in the fluid regime, we note
that the prototype medium is charécterized by three types of parameters:
porosity, hydraulic conductivity and dispersion coefficients. It is of
interest to define these quantities at a local scale, since this is the
scale around‘whichvquations of transport and motion are formulated. In
particular, we are especially concerned with the effect of variations in
hydraulic conductivity on tracer trénsport at a global sgale. Analysis
of multiple core samples from the same aquifer indicates that hydraulic
conductiﬁities at this scale are freqﬁently lognormally distributed (Law,
1944; Freeze, 1975). To the extent that>these results can be taken to

represent the local scale, we expect that hydraulic conductivities will
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frequeﬁtly possess a lognormal density function.

The question arises, then, of what consists the "average" hydraulic
conductivity which governs the aforementioned mean flow component in the
x, direction. This is a rather necessary question since, as a means of

1

simplification, we will subsequently assumé that the quantity K , de~-

23
fined as

R, = exp [ToK] (2.1)

where K is the local hydraulic conductivity and the bar indicates expec-
tation (the taking of an expected value), represents the effective hy-

draulic conductivity of other than stratified aquifers. The quantity Kl
is the population equivalent of the geometric mean which is equivalent to
the median of the lognormal distribution (Appendix 2). Three-dimensional

Monte Carle simulations have indicated that the geometric mean is the

best estimator of the effective hydraulic conductivity (Warren and Price,

1961). However, Gutjahr et al., (in press), using properties of a station-

afy‘random—field process to analyze three-dimensional flow, recently
concluded trhat the best first-order estimate of effective hydraulic con-~
ductivity is K£[6 + (1nK)? - (IEE)Z]/6. That is, Kz underestimates the
effective hydraulic conductivity by a factor of one-sixth the variance
of 1nK. This underestimate is about 14% for a variance of 1nK egqgual to
one. Thus, another characteristig of our prototype is that we shall
assume .that K£ is the effective hydraulic conductivity of unstratified

media, even though K, may not be the best estimator of this quantity in

L
all cases.
For stratified aquifers, the arithmetic mean (or its population

equivalent, the first moment) is a superior estimator of the effective

hydraulic conductivity for flow parallel to bedding (Bear, 1972). This

e
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difference in estimators is the result of suppression of flow in other
than the X direction, resulting in a model where flow has vector com-
ponents only in that direction. Indeed, we shall treat the stratified
aquifer as a separate case because of this single dimensionality of flow.
It is this same phenomenon which makes it difficult to compare results
of analyses from stratified and unstratified aquifers, even though, in a
limiting sense, we can extend correlation length scales to cause the re-
sﬁlts of thrée—dimensional flow analyses to approach the one-dimensional
or stratified case. Thus, in deference to this problem, we relinguish

the use of K, for one-dimensional flow through stratified aquifers and

L
simply use the expectation of hydraulic conductivity for this case.

Bulk dispersion coefficients will be used in the prototype to reb—
resent the dispersive process at the local level. 1In this case, the
term "bulk’ means that, in addition to being a function of seepage veloc-
ity and a dispersivity, we also include a porosity dependence. Following

Bear (1972, p. 612), we express these local bulk dispersion coefficients

Eij for an isotropic medium as

Ly = °<,n©1513 + (= ) qiqj‘/q (2.2)
where

oy local longitudinal dispersivity;

arg local transverse dispersivity;

a5 element of specific discharge vector, a3

q magnitude of q;
and Gij Kronecker Aelta.

The dependence of the local bulk dispersion tensor on the specific dis-

charge is significant in that it could force us to deal with nine different
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tensor components in our analysis. For, although we admit to a mean

flow component of the x. direction, the three-dimensional nature of

1
variations in hydraulic conductivity in most natural media will cause

flow at any point to have a three-dimensional aspect. Thus, we may

represent the specific discharge vector as

)= gl +9, (%) ] +d,00k (2.3)

¥

(8, + /)L +alea]+ayeok , x=(x,%, %)

where the primed quantities are zero-mean perturbation of the vector
components (Figure 2.1). We assign no restrictions on the size of the
perturbations at preéept, leaving that until a later section. However,
it should be noted that fhe variability in specific discharge is expected
to be proportional to that in hydraulic conductivity, and gfeatest in

the direction of mean flow (Xl). As al} vector components of sﬁecific
discharge are present in the prototype model, the local dispersion tensor
could be quite complicated.

An immediate question arising from equation (2.3) is whether equa-
tion (2.2) must be uéedrfor the principal diagonal of the local disper-
sion tensor, or whether the simpler form, utilizing only the specific
discharge component in the direction 6f mean flow, is not sufficient.

We may analyze the significance of the perturbed quantities on the dis-
persion tenéor by first approximating the magnitude of the specific dig-

charge vector with the binomial expansions
2 2 2‘/2 2 2
q= (q +q,+ 0\3> = o;l[w e (q,/q,) + ‘/2(‘313/0\,>+ ]

Y/} \
and = (qf+q§+ q;) :q[ \/z(qa/q) /2 (<1, /o, )+ ] (2.4)
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Upon truncating these expansions and substituting them into equation

(2.2), we obtain for the local longitudinal dispersion coefficient

Eum oo, [1=172 (g, /q,)- /2 (qa/q,ﬂJr &an‘[(q?_/q,)ﬂ (qs/qﬂ. (2.5a)

gimilarly, for the transverse ccefficient,

Eoox Mﬂq‘[‘ + (o(I/rxu—l/a)(qz/qf-a—x/e. (qs/q,)e] . (2.5b)

In both cases, it is apparent that the largest second order terms are

(q2/ql)2 and (q3/ql)2 and, in accord with the previous paragraph, they

probably contribute little to either coefficient. However, in the case
of EZZ,.it may be possible that (aII/aI) is of the same order magnitude
as (qz/qi), making it difficult to neglect the product (aI/uII)(qz/ql)2
Except in the case of global isotropy, this possibility seems remote to
us, and therefore will be ignored. TFor the main diagonal of the tensor,

we assume that the local dispersion coefficients take the form

Ey= Ep = %19, (2.6a)
and Fop= Ey5 = By = &g ¢ . (2.6b)

We note that this analysis does not mean that Gy and apqp are constant
throughout the medium; as with all local medium parameters, they are
subject to random variations.

In a manner similar to the previous paragraph, the off-diagonal

terms E23 = E32 are also negligible. However, if we proceed as before
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for the terms E12 = E21 and El3 = E31’ we find that

Eo = q‘;_ (“I+ D‘g) ‘ o ' (2.7a)
and E\szq;(ql”"“n)/ | \ (2.7b)

which indicates, to the accuracy of thelfirst—order analysis developed
éubsequently, that these terms may be significant. However, for aquifers
which are even moderately stratified, we expect that‘qz' and q3' will be
éxceedingly small, thus causing E12 and E13 to contribute little to dis-
persion at the local scale. Tn any case, because of the Fourier-Stieltje's
integral method with which the model equation is solved, we need only con-
sider that equation (2.6) represents the principal elements of the dis-
persion tensor. This will be demonstrated ex post facto at a latér point
in this report. For the present, we conclude that local dispersion in

the prototype can be characterized by the elements of éhevmain diagonal

of the\dispersion tensof, and that these elements have a simple linear

relationship with specific discharge in the mean flow direction.

Perturbed Quantities

As noted in previous discussion, we may conceive of medium properties
as having a mean value which, because of stationarity, is‘constant
throughout the medium. However, réther than thinking of the mean as be~
ing embedded in a continuum of randomness, we will consider that the
meaﬁ is a property common to the medium and that randomness has been

superimposed upon it. For example, porosity n can be written as

=1

n(x)=

+n(x), X = (%, X, Xs) (2.8)
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where n is the mean of the property and n'(g) is a random perturbation.
The perturbation will always be considered to be a zero-mean, spatial
stochastic process which is statistically homogeneous. Generally, it is
préferable to work with perturbzations which are small since linearizing
implies products of perturbations are small and can be neglected. How-
ever, it is mot always possible to -proceed in this manner because varia-
fions'in some properties, such as hydraulic conductivity, can be large.
When analyzing three-dimensional flow models, we will use the log-
arithm of hydraulic conductivity rather than hydraulic conductivity it-

self. TFormally, we express this quantity as

) = En[w;@] | (2.9)
and its perturbation as

for = T+ foo . (2.10)

Equation (2.1), the effective hydraulic conductivity KQ, then becomes

Ke=exp[T] . ' (2.11)

It is of interest to note that, by considering the logarithm of the
process, we numerically reduce the amount of QariaBility involved. How-
evef, the variaqce of the logarithm of the process, in the case of hy-
draulic conductivity, can itself be lérge (Freeze, 1975). When we must
work with K(x) itself, we can obtain an expression from equation {(2.10)

which, in the form of a truncated Maclaurin series, gives us the linear
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approximation
K(x) = Keexp{{f(gj] e Ke{wv ¥'(>ﬂ<,)]‘ . ' (2.12)

Thié approximation is severely limited if f' is large, possessing an er-

ror on the ofder of one-half the variance of the f process. ﬁowever,

it has approximately the same order~of—ﬁagnitude significancé as the

model equation, which results from a_similar kind of first-order analysis.
In order to utilize an equivalent of the arithmgtic mean. of hydraulic

conductivity for the stratified, unidirectional floﬁ caée, we shall

simply perturb hydraulic conductivity itself. That is,

K(xs) = K 4+ K'(%g) ' | | (2.13)

where K is the first moment of the K(x3) process. It is of interest to
note that, while the perturbed quantity in this case can be extremely

large -- much larger than the mean -- the size of the perturbation, be-

restrict the first-order approximation. If the equations with which we
are working are nearly linear, as in this case, then the size of the
perturbation becoﬁes less significant; only for those equations which
are initially nenlinear, as the th;ee—dimensional flow case presented
herein, does the size of the perturbation become important.

A similar perturbation scheme is used for the local bulk dispersion

coefficients. FExpressing equation (2.6) in tensor form, we obtain

EIJ(?S,) ""_"[Eij + E.;(Z(’):l 513 - (2.14)

cause of the one-dimensional nature of the problem, will not directly
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In this form, the local dispersion coefficients are functions of three
types of medium properties: porosity, seepage velocity, and local dis-
persivities. Equation (2.14) is adopted for the first-order analysis
rather than sorting out all the contributing factors to these coeffi—
cients, which would only further complicate an already complex analysis.
At a later.pdint, it will be necessary to define what Eij represents in
terms of a local effective dispersivity;

Since the medium is considered to contain random,variatioﬁs in both
hydraulic conductivity and porosity, flow of a fluid through the medium

will have similar variations. Thus, for the unstratified case, we - re-

express equation (2.3) as

!

q(x)=q+9'(X) = (34 ) +q ) ]+q )k . (2.15)

As the medium becomes .more stratified, the 4y and 45 vector components
lose significance until, for a completely stratified aquifer, we may ex-—

press specific discharge as

q (Xg) = (g +q/ (xg) T (2.16)

—

where the x3 dependence is the result of the total stratification (note
that the flow in this case is unif;rm). A similar conclusion can be
reached with regard to hydraulic head: for three-dimensional flow, the
perturbed head relationship is

Fx)= & (x,) + ¢'(>i)

(2.17)
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while for one-dimensional flow, we obtain

. gj(x,] = Q_S(x,) ) (2.18)

That is, under completely stratified conditions, flow is unidirectional
(variations in specific discharge are the result of variations in hy-

draulic conductivity in the x, direction). Conversely without benefit

3 .
of stratification, three-dimensional variations in flow must be accom-
panied by equivalent variations in head.

Finally, we must consider a perturbation scheme for concentration
of the tracer flux. As noted in the discussion of the prototype, we
will consider only the cése where the tracer has been injected instan-
taneously over a large area of the medium, perpendicular to the direciion
of flow.  If observations are made as the tracer passes another point in
‘the medium down gradient from the injection site, it will be found that,
from an ensemble viewpoint, the mean or first moment of concentration
will be invariant with respect to the X, and Xq directions, varying only
with the mean flow direction. TFor the three-dimensional case, fluctua-

tions in concentration remain three dimensional, resulting in the per-

turbation expression

b) = T(x,,t) + C(x,t) (2.19)

where E(xl,t) represents the ensemble mean. For the stratified case,
dependence of the perturbation on the Xl and x2 directions are suppressed,

resulting in

c(¥,, Xs,1) = Tlx,, t) + C'(xs,t) | , (2.20)
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where fhe reasoning behind this form parallels that of equation (2,16).
That is, spatial variations in concentration will be asséciated with
gpatial variations in specific discharge and hydraulic conductivity.
(With regard to the spatial dependence of the perturbation c¢', expres-—
sion (2.20) is only approximate, as c¢' will also be subject to longitu-
dinal spreading at the local level; however, we consider that for large
time this dependence is not substantial.) ©Note that the concentration
mean is not statistically homogeneous as it is dependent on the %y direc-
tion. However, the perturbation in concentration, after an initial start-
up time, is considered to be statistically homogeneoés. The‘startfup
period is necessary to establish a stationary autocovariance function.
That is, at the time of injection perfect correlation exists in the plane
perpendicular to flow and ﬁone in the % direction. It is necessary,
from a spatial or ensemble viewpoint, to allow sufficient travel distance
(which can be considered equivalent to the global scale) to take place
before the process becomes stationary, with an associate& autocovariance
function.

Equations (2.8) through (2.19) represent the working variables for
the subsequent first-order analysis. Again, we note that the perturba-

tions are considered to be zero-mean, stationary random-field processes,

amendable to representation by Fourier-Stieltjes integrals.

Global Longitudinal Dispersive Fldx

The primary objective of this report is the definition of longi-
tudinal dispersion in a medium which is randomly heterogeneous at the
correlation length scale. The thic;e that we will uge to accomplish
this objective is a probabilistic dispersive flux in the direction of

mean flow. Specifically, we can define the total flux in the Xy direction
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-

as the expectation of the product of the component of specific discﬁarge
in. this direction and concentration, EIE. However, the mean convective
flux in that direction is the product of expectations, az c. The dif-
ference between these two products must represent, then, the global
longitudinal disgpersive flux at any point in the aquifer. This difference

can be easily shown to bhe
‘=9c-gqcCc . ' (2.21)
qc = §¢ g | |

(This result applies equally to stratified and unstratified aquifers.)
Thus, it is the expectation of the product of perturbations in specific
discharge and concentration which must be analyzed for in subsequent
sections. If this product is subsequently shown to be Fickian in nature,

we will expect it to have a form

gl

i P ) 2.22
q‘C — ‘-q‘A'e‘—g—;(' ( )

where AQ is the global longitudinal dispersivity. Hence, our final ob-

jective will be the definition of A in terms of statistics of aquifer

£
parameters.

We must qualify the result of equation (2.21) by noting that it is
based on ensemble probabilities; fhat is, many realizations of the same
experiment in probabilistically similar porous media. How, then, does
the result apply to a single realization? Here, we must use the ration-
ale of Scheidegger (1954) and sgate that ergodicity will allow the re-

sults of equation (2.22) to be applied te any single realization. How-—

ever, if our observation point is not distant from the injection site,



38

traCerrpartiCles may not sample a sufficient portion of the medium to be
representative of all possible paths in order for the concentration auto-
covariance to become stationary. Thus, implicit in thisg usage of ergo-
dicity is the concept of the global scale - the distance over which
ensemble averages of flow and transport parameters become valid when
aprlied to a single realization.

There also exists a question as tolwhat constitutes the proper
gampling interval to obtain representative tracer concentrations from a
single realization of the experiment at some distance from the injection
site. For example, in a single realization of a stratified aquifer,
sampling at a single point would not Bé representative of the global
dispersive process occurring in the aquifer. We leave this question
until a later section of this thesis, where it can be answered more ap-
propriately.

First-Order Analysis

We proceed to develop the model equation in its mésf general form
in this section, and then modify it for analysis of both one-dimensional
and three;dimensional flow schemes. Specifically, we use the convective~
dispersion equation for three-~dimensional flow at the local level, which

can be written (Appendix 3)

[n (-yc(x,t)]+v.[c(ﬁ,£)3(>§)]+v.1\x=o (2.23)

—~

e

where N is the local dispersive flux vector. As the flow regime is

steady state with a unidirectional mean in the x, direction, we will im-

1

plement the following moving coordinate scheme (Appendix 4):

B D) = X -1 Ei /5, (2.24a)

N
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a —_ a ll _.a_ 2 24)
ot |X| \§ g \é ) ( . )

V —_— a M ‘;) ¥ a . . .
and :7 = Qzé = ( —_— 4 _>_<. l + ————X "( ) (2 24(:)

In addition we note that the steady flow assumption implies (all density

contrasts have been neglected)

V.g = 0. | | (2.25)

Then writing the convective-dispersion equation (2.23) in terms of mov-

pressions are substituted for porosity (equation (2.8)), specific dis-
charge (equation (2.15)), and concentration (equation (2.19)) to obtain

»

-aj

2 [erenien)]- & _a@.g[(ac')(ﬁ )

A+ (G +q ) Vg (CH+C)+V.N = O . (2.26)

Since, by analogy with Taylor's (1953) work, we desire an equation for
the amount of flux trgnsferred across a moving plane, and as the com-—
ponent of flux is a random quantity, we find the expected value of equa-
tion (2.26) and then subtract this mean equation from equation (2.26).

The mean equation is

dlehsom]-9 d [Tl+qv.¢ +T.N =0 . (2.27)
ﬁ[crwcnj _ﬁ_w[cn]Jrq.V%C + V.N

OF 1

ing coordinates, and making use of equation (2.25), perturbation ex-
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Although we may have suspected that the mean equation would contain only
mean quantities, it must be remembered that both the mean and the per-
turbation are governed by the same physical process. Hence, it is not
surprising to find covariances of perturbations of different parameters
occurring in this>expression. Subtracting equation (2.27) from equation

(2.26), we obtain

| b_ch {E n' + C’ﬁ} CH: [E, n' +-c’"ﬁ] + EJ: Y. ¢

+9. % C+VN-UN = O (2.28)

where the second-order terms

2 {c’n’w c,’n'] , - (2.29a)
2t

2D Tein' c‘n’] | 2.29b
ag [cn ) ( )

and q'.vgc'~q’.v§c’. | (2.29¢)

have been neglscted. It is unfortunate that we must neglect these terms
but, as mentioned in earlier sections, the solution method used to solve
the model equation does not permit their retention. In particular, term
(2.29¢) models convective transport due to randomness in the medium
which, in the sense of Taylor's analysis, probably permité more rapid
lateral mixing of the-tracer. This lateral mixing is responsible for
the attainment of equilibrium‘between longitudinal and lateral mass

transfer, which allows us to neglect the time dependence in the mean-
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removed equation (2.28). Ihenresult of neglecting this term will be
discussed in a later section of this report, although we may mention
now that the magnitude of the term is dependent on the degree of random-
ness of the medium.

Following Tavylor (1953), then, we neglect the time derivative, as-

suming that

Q_(E n’+c’ﬁ) ~ 0 . : . (2.30)
ot

Since expected values of medium properties and fluld parameters are in-
dependent of position (otherwise statistical homogeneity would not apply)

and time, we note that

o/
31
i

G

(2.31)

|

o
AN

With regard to concentration, the taking of derivatives is not so simple,
since the mean of tracer concentration is dependent upon the X1 direc-

tion (see discussion associated with equation (2.19)). Thus, the .gradi-

ent of the.mean of tracer concentration is

9 1
SE ~

ol

|

Vzc = . (2.32)

Using simplifications (2.30), (2.31), and (2.32), we rewrite the mean-

removed equation (2.28) as

S S ARSI

Y
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This result constitutes the most general form of the model equation for
subsequent analysis. The first_term on the left-hand side represents
the influence of variations in hydraulic conductivity (via the specific
diécharge perturbation), while the second repfesents the influence of
porosity variations. If we neglect the porosity term, then the equation
takes on a form much 1ike Taylor®s, whete random convection across a
moving plane is balanced by lateral mixing.

A gimilar analysis for the stratified or one-dimensional flow case
will give precisely the same expression as equation (2.33), the only
difference being in the second-order terms neglected. Since perturba-
tions in porosity and concentration are dependent only on the Xq direc-
tion, and the specific discharge vector gontains only a 4 cémponent
(see equation (2.16)), only term (2.29a) would be of significénce to us.
This term, however, would be negligible for a slowly varying process,
so that, with regard to the stratified case, equation (2.33) is linear
in perturbed quantities without the need to meglect any terms. It re-
mains, then only for us to analyze the local dispersive flux term on the

right-hand side of equation (2.33) before the final form of the model

equation can be obtained.

Local Digpersgive Flux
If a Fickian model can be assumed at the local level -- and this
model does appear to be generally acceptable (see Fried, 1975) -— then

we may write the local dispersive flux as

[a¥g

IV
VN = 2 By

—~

c - (2.34)
Xj .

o)

where Eij is the local bulk dispersion coefficient. Proceeding as before,
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we introduce perturbation expressions (2.14) and (2.19) into equation

(2.34), obtaining

TN = R |(Fy E-,’j)g%(a v ] (2.35)

and then take expected values}

VN = 2 F, € ¢ & [er0C | | (2.36)
v.-N R .

- I; - . 2 .
ivi ——V.N]::; ’_a,-Q-Jr@_E;u._a__@“ E. 0C . (2.37)
[rn-vR]=E G OX 0%y Y TRIaNy
where the term
J {E-/- o |/ oc L 2.38
exi Ll Wox; N X | 220

has been neélected. Neglecting this term is rather like neglecting term
(2.290), but is not considered to be as important as term (2.29c), since
convective transport is generally considered more significant than dis-
persive transport.

The first term on the right—hﬁnd side of equation (2.37) is taken
to be éero for a slowly varying process. That is, for large time, we

may consider

9€ —~ constant (2.39)
oX,
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because the mean tracer concentration changes slowly in the Xy direction.
This result is implicit in the process of neglecting the time derivative
in equation (2.33), for we are assuming that convective transport in the

mean flow direction -- and therefore 85/8& —-— is constant. Whence, we

can rewrite equation (2.37) as

; .
—— BE aE —_— 2y — 2 1 b?.!
—V.N—V.N}: ¢ dC L\ E, 0¢ L E,j0c 4 0¢C (2.40)
[ ~ T 2%, OX, g% ELONE T OXE .
where Ez equals Ell’ and Et equals E22 and E33. The unstratified model

equation, describing the random transfer of mass at any point in the

aquifer, can then be written

—_Q\
et

|
:l!:o‘

o/
O

g}% [E n’]

0By 0T L F 8¢/ 4 F Pa_%, L o (2.41)
3%, ox, towr  tlow d%% ‘

With regard to the stratified case, a term similar to equation (2.38),

but containing only an x, dependence, must also be neglected. Hence,

3

some approximation is introduced into the mean-~removed, local dispersive
flux equation for this case. Since the concentration perturbation is

only dependent on the %, direction (sece equation (2.20)), derivatives

3

with other than this variable are zero for the stratified equivalent of

equation (2.40). This equivalent can be written simply as

~[v.N-V.N

e V4

v e a’&. ;
] =b,2C& (2.42)
d X5

where, because of stratification, the derivative of EQr with respect
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to %y has also been dropped. The model equation for the stratified case

can therefore be written

[q’_n'_q.s_]@_a_ = E >c
oWy taxg

(2.43)

Equations (2.41) and (2.43) represent the final form for the model

equations to be used in the subsequent analysis. In the next chapter we

proceed to use properties of stationary random-field processes to eval-

uate these equations.
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~ SOLUTION OF MODEL EQUATTON

nggigggggﬁwgﬁ_Global Dispersive Flux Equation

We proceed in this section to analyze the model equation and to find
an interim form for the global dispersive flux equatieon. This will be
accomplished by means of the representation theorem (Appendix 1), of
which we shall assume that the reader has a working knowledge. Recalling

first the three-dimensional model equation (2.41),

o= — 2 —_—
= 2Ee oC 5C1+E£[bac'+52c’]
2 2 J
we proceed to replace random quantities by Fourier-Stieltjes integrals.
In this case, we will consider that the Fourier-Stiéltjes integrals pos-

sess a slightly different form than that indicated in Appendix 1. 1In

particular, using ¢' as an example, we let
o0 v T
(R WX kg Xz)
c'(g,xz,xw”fe | d7o(k) -
- O

Similar Fourier-Stieltjes integrals can be written for other random

the Xl dependence with the moving coordinate £, we maintain the proba-
bilistic description of the randomivariable in the general region of the
tracer front. In context of the discussion in the section entitled
"Perturbed Quantities” this transfer of dependence is necessary in order
for the perturbétion in concentfatiop to establish, for the unstratified

case, a stationary field. Then dropping all pretenses of integration,

I
|
quantities with a three-dimensional spatial dependence. By replacing
equation (2.41) can be written with primed quantities appropriately
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replaced by complex Fourier amplitudes:
1Zq (1)~ 2 dZ, )] 08 = 1k & 2z, (k)
9 n ~1og n

rikdZe, (1) 9C - [“\f&k? +E, (e ki)]dzc(@ ,

k= (ki koo ks) ' . .

Taking the complex conjugate of equation (3.1) and multiplying by dZ

b4

1
one obtains
C(l C | _1 = *
[dZqdZq - & dZqdZy ]gg = lk\[%cdzqun
+ 98 d7qdz%, [+ E, (1 T KE)dzZadZE (3.2)

We proceed to take expected values and apply the representation theorem

to obtain

_ o) '
k) = c_. (k)= = U,g)]

ik [ % 8 hqnlk) 4 3 fae, (0)]¢ 3.3)

At this point, we note that the inverse Fourier transform of the cross

spectrum ¢ c evaluated at zero lag will give us the covariance of the
1 .

qi and ¢' processes (qic‘). This is precisely the quantity we need in

order to evaluate the global dispersive flux (2.21) and find the global

longitudinal dispersivity Al' However, before we can proceed with this
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operation, it is necessary to develop a set of equations, known as trans-—
fer functions, which will allow us to relate spectra and cross spectra
of flow parameters to spectra of medium properties. This shall be done
in‘the subsequent section.

The adequacy of representation of processes in moving coordinates
(as opposed to stationary coordinates) within the Fourier;Stieltjes in-
tegrals may be subject to dispute. Although this investigator has as-
sumed that, for reasons cited previously, this representation is proper,
other investigators might prefer the stationary coordinate representa-
tion. However, use of stationary coordinatres will, if properly considered,
cause the inclusion of a time-derivative term in the three-dimensional
spectral form of the médél equation, and place the use of a Taylor (1953)
model for the three-dimensiomal flow casé in doubt. It appears, at the
fresent time, that use of a stationary_éoordinate representation would
cause the three-dimensional analysis presented herein to be restricted
to the cases where the aquifer is highly stratified.

Before leaving this section, we briefly develop a similar result
for the one-dimensional flow case. In particular, recalling equation

(2.43),

we can, as a consequence of the development in the previous paragraph,

imnediately write a spectral form for the global dispersive flux equation:

== _E.g < .
®qnc(k3) - E:sz; q)q,q,(kE) _':ﬁ_ (}Eo\lﬂ(kb)]%g . (3.4)



49

This equation must also be rewritten in terms of spectra of media prop-
erties. (Since the spatial dependence of the one-dimensional case is

entirely in the x., direction, the Taylor (1953) model should be appli-

3
cable without qualification.) However, note that the right-hand side is
presently a function of the mean concentration gradient; thus, the ap-
pearance of aAFickién process is already present in the equation. This
subject will be dealt with in more detail in subsequent analyses of the

one—-dimensional and three-dimensional cases.

Transfer Functions

As mentioned in the introductory chapter, it is generally believed
that global dispersion is the result of variations in hydraulic conduc-
tivity. Hence, we will strive to relate all spectra and cross spectra
of flow parameters to the spectrum of hydraulic conductivi&y. This will
necessitate, in the case of some cross spectra, the use of certain em-
pirical relationships -which may be questionable; however, because of the
strong dependence on hydraulic conductivity, this is cénsidered to be a
preferablie approach than attempting to develop and justify forms for all
the spectra in equations (3.3) and (3.4) individually.

For the- three-dimensional flow case, a transfer function relating
the specific discharge spectrum ¢ 4 to the hydraulic conductivity

(f = 1InK) can be developed from the local flow equation for

spectrum fo

steady state, saturated flow of an incompressible fluid through a rigid,

isotropic porous medium:

V.KVg=o0 . | (3.5)

Because of the steady state flow conditions, equation (3;5) can be

[
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rewritten
VB .V{+veg =0 , f=1InK . (3.6)

* Additionally, we will need the Darcy relationship for unidirectional flow

Q

|

q,= - 13 e

[N

X

in order to relate head ¢ to specific diécharge qq - We proceed as earlier,
finding mean-removed equations for both equations (3.6) and (3.7). 1In
particular, by substituting perturbation expressions (2.10) and (2.17)

into equation (3.6), we obtain

(F+8)e L (Fas)-0  ow

where tensor notation has been used for simplicity. Since we are working
with a statistically homogenecis medium with a mean flux oriented in the

Xy direction, we note that -

_.a__?_-_;o J t=1,2,3% (3.9)
¥

and é_fé =-13 , @:é = 0 9_5_5_—_ o . (3.10)
0%, OXp O Xz

Hence, upon expanding equation (3.8), we obtain

X, g gt as df (3.11)
0X; OX; O%; 0%, 0% A%y A%
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The mean equation for equation (3.11) is

X8 _ a8
S T T 5w oa | (3-12)

Subtracting, we obtain the mean-removed equation

FAx) ~ ] 3{'(x) | (3.13)
DX oXi O X,

where we have neglected terms

28' ot a8 af w (3.14)
OXi 0% OX; -a¥%;

Neglecting these terms may affect our ability to approximatevthe specific
discharge spectrum with a transfer function containing the hydraulic con-
ductivity spectrum. In turn, as we must assume some form for the hy-
draulic conductivity spectrum (see section entitled "Three-Dimensional
Flow Analysis'") we may choose an inappropriate form due to an extreme
influence of this approximation. These effects are difficult to assess
and we will generally pass over them, except to say that they probably
grow in importance as the degree of variability in the medium increases.
Passing to the Darcy relationship, we canlsimilarly express it in
perturbed form by making use of expressions (2.12), (2.15), and (2.17),

giving us the result

g +q = -K (1+ f')%?(wnL @'). - (3.15)

With an approximation similar to (3.14), we arrive at the mean-removed
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equation

q,(x) = Kz[J%'(z&)-—— M'QQ] . - | (3.16)
3

Writing .this equation in complex Fourier amplitudes, we obtain
dZq (k) = qdZe (k) -ik,KydZg (k) (3.17)

and similarly expressing the mean-~removed flow equation (3.13) in this

form, we have

4z () [k] = -k Dz ()

Substituting equation (3.18) into equation (3.17), we find

I W& |
_dzq(li) ~q‘[;_ﬁ}dz{(5) ) (3.19)

Multiplying both sides of equation (3.19) by their complex conjugate and

taking expected values, the representation theorem gives us

R - (3.20)
@qlq,(b) = 9, l Q’H(K) .

P S

This equation represents, for the three-dimensional flow case, the ap-
propriate transfer function for the specific discharge spectrum. It re-
mains for us only to find an apﬁropriate form for the hydraulic conduc-
tivity spectrum.

The one-dimensional flow case is considerably simplified by the
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occurrence of medium variations only in the x, direction. To write the

3
transfer function for this case, we need only consider the Darcy rela-

tionship (3.7) and perturbation expressions (2.13), (2.16), and (2.18),

from which we obtain the expression

F49 = —(R+K) %__g_ . (3.21)
1 1 | )

It is easily seen that the mean-removed equation for this case is

/ o . ‘
' (Xs) = - K'(%5) 22 = J K'(x) (3.22)
1 0 %,
which follows immediately from equation (3.21) without approximation.

In terms of complex Fourier amplitudes, equation (3.22) can be written
dZq (k) = JdZy (k) | (3.23)

from which it follows that the appropriate transfer function for the

one-dimensional case is

@)C\H,(ks) = JZ@KK ( ks ) ) : (3.24)

Again, ﬁhe innate linearity of thekone—dimensional case is to be noted,
which greatly simplifies the problem.

In order to develop transfer functions for the cross spectrum of
specific discharge and porosity @qln, we will need to use an empirical

relationship. As an initial possibility, we suggest that the logarithmic

relationship
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nxY=ME) + T, o= InKOox) (3.25)

where M and I are the appropriate regression coefficients, may be ac-
ceptable for the three-dimensional flow case. The validity of this re-
lationship has been investigated by Archie (1950) and more recently by

Bredehoeft (1964). The mean-removed equivalent of equation (3.25) is
n(x)=Mf{(x) . | (3.26)

However, this is not the only possible relationship we can use.
Another possibility for the three-dimensional flow case is the

Kozeny~-Carmen equation, which may be written (Bear, 1972, p. 166)

o
3
K(E)::Cn(ﬁx/b-n(&ﬂ ) (3.27)
Taking logarithms of both sides of equation (3.27), we obtain
f =4nC +38nn -28n(1-n) . (3.28)

The terms In n and 1n(l - n) are expanded in Taylor's series about n,

at which point equation (3.28) can be written

fefctncesfenns 2oy (2]

_,g[ﬁn(i—ﬁ)_ ﬂ’_ +,_:‘2__(%'¥_5)2m .. J . (3.29)

I—nN
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By neglecting products of primed quantities we obtain the approximation

from which the mean-removed equation

w ”“ !

() = BT ) (3.30)
3 -1 ~

is derived. Note that the approximation producing the linearization is

considered acceptable, as variations in'porosity are generally small.

Both equations (3.26) and (3.30) are simple linear forms which can be

represented as
nx) = PRI (3.31)

where P is either constant relating perturbations of the n' and f' pro-
cesses., Proceeding to write equation (3.31) in complex Fourier ampli-

tudes, one obtains
dzn(h):szf(g) C (3.32)

By properly combining the complex conjugate of equation (3.32) with
equation (3.19), we obtain, after taking expected values and applying

the representation theorem,

nlk)= PQILME——?]CIDH(&) : (3.33)

Equation (3.33), then, gives us an appropriate form of @q 0 for the
‘ 1
three-dimensional flow case.

For the one-dimensional flow case, we will again resort to an
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empirical relationship from which a first-order approximation must be
derived. Equation (3.25) couid be used for this approximation; howe?er,
it would entéil expanding 1nK into a Taylor's series about K. This
procedure generally does not produce favorable results (Bakr, 1976).
Instead we will rély on the Kozeny~-Carmen equation (3.27), considering
only an Xy spatial dependence. Equnding the right-hand side of this

equation in a Taylor's series about n, one obtains

T ook o~ w0 (3-7) o
K + K *_Cn[m)a+m%

2

3 N, i43n on? | :]

+ o+ 2 I . . (3.34)
(l'_an nl ({-—-n)s n5

By neglecting products of primed quantities, a first order approximation

is obtained, the mean-removed equation of which is
K (xs) . (3.35)

This approximation is adequate provided that variations in porosity are
not extreme -- the case with most moderately well-sorted sediments.
Equation (3.35) can be further modified by first taking the expected
value of equation (3.34) and substituting the result into equation (3.35).

This expected value can be expressed as

=2 _ K 1 3 S a
Cn= '*“ﬁ‘[(‘ ) T mr‘vw““"ﬁ‘a‘] 020

2, .
where o  1is the variance of the n' process. 0dd moments greater than

one have been neglected because porosity is commonly normally distributed
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(Law, 1944), or at least approaches a Gaussian distribution. Addition-
ally, powers of the variance, which should appear in higher order terms,
become insignificant. Thus, substituting equation (3.36) into equation

(3;35), one obtains

bN

n06) = S J) (R 65 ) K06

where - (3.37)

no,en ] = ' -n 2 _é:':"_a
) ) (3Hﬁ)[! T ﬁ’"]

which, when expressed in complex Fourier amplitudes is

dZn(ky) :72(?7 , )%dz (kg) . (3.38)

By properly combining the complex conjugate of this expression with

equation (3.23), the transfer function

@qln(l%) he ]O(ﬁ, 6;\) g CI)KK (ks) (3.39)

is obtained. Equation (3.39) constitutes the form of @q a which shall
' ' 1
be used in the subsequent analysis of the one-dimensional flow case.

In reference to equation (3.3), there remains to be constructed a
transfer function for the cross spectrum of specific discharge and bulk

longitudinal dispersivity @q E for the three-dimensional flow case.
172

Recalling equations (2.6a), the bulk longitudinal dispersion coefficient

is written
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Eg(X) = & IX)q(x) . 4 (3.40)

From equation (2.14), the perturbation of the coefficient can be expressed

as
Eg(x) =E,(x)-E, . ~ (3.41)

By appropriately substituting equation (3.40) into equation (3.41), we

obtain
/ — { L .
Ep™=opq +% 9 (3.42)
where the term [uI'ql‘ - aI'qli] has been neglected. Since the local

longitudinal dispersivity can vary significantly (Kletz, 1973), it is
difficult to assess the effect of neglecting this term; but it cannot be
worse than that of neglecting earlier terms (2.29). Replacing the primed
quantities in equation (3.42) by their complex Fourier amplitudes, that

is

dZg, () = XpdZq (k) + §dZa k) (3.43)

and then taking the complex conjugate of this expression and multiplying

by qul, we obtain, upon taking expected values,

() + 8, Qaeg (k) - .04
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The spectrum ¢ can be replaced by transfer function (3.20), but
171 ‘
another transfer function must be developed for ¢ e This may be ac-
171
complished through the empirical relationship (Harleman et al., 1963)

\/2
xp (%) = B[K(ﬁ)] (3.45)

where B is an appropriate constant. Substituting perturbation expres-
sion (2.12) and assuming an expression similar to (2.8) for Gps wWe ob-

tain

.521 + D(lI = B(\&,z)'/aexP[{’/g} . ; (3.46)

Expanding the exponential term in equation (3.46) into a Maclaurin series

and truncating, the first-order linear approximation
— / /2 , o
X+ X A B(Kg) (1+ f'72) (3.47)

is obtained. The mean-removed equivalent of this equation is

/ !
w (1) = & (Ka) (%) ' (3.48)

Replacing the primed quantities with their complex Fourier amplitudes,

equation (3.48) becomes

/ .
dzo(r(b>::—%-—(\(g)‘2dz¥(\§‘) . (3.49)

Taking the complex conjugate of this expression and multiplying both sides,
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appropriately, by equation'(3:19), one obtains

2 _ 2. 2
%.%(M = _%_ (Kg) q‘[_)i_z_,i_ﬁa__} C}HU@) (3.50)

2. 2 A
K4+ kg + Ky

upon taking expected values. It should be noted that, upon substitution
of equations (3.50) and (3.20) into equation (3.44), the cross spectrum

is entirely real and even valued, provided & is even valued.

¢ £f

4F,

In the following two sections the global dispersive flux equation
is solved utilizing these transfer functions for both the one-dimensional
and three-dimensional cases.

One-Dimensional Flow Case

We now proceed with the solution of the longitudinal dispersive flux
equation for the one-dimensional flow case. We note that this case
applies only to completely stratified aquifers with uniform flow in the
£y direction. Stratification, in this case, implies that medium prop-
erties are randomly distributed in the Xq direction. Analysis to this
point allows us to conclude that equatibn (3.4) is a close approximation
of a spectral representation fér the global dispersive flux equation for
this case. .

Allowing k to equal k3, we rewrite equation (3.4) in terms of trans-

fer functions (3.24) and (3.39):

¢1c(k):.éj; D-—??(ﬁ,eﬁﬂ %%.@KK(R) : (3.51)

Taking the inverse Fourier transform evaluated at zero lag, the covari-

ance of the ql' process and the c¢' process is obtained (Appendix 1):
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or

[

o/

=2}
- 2
q’c = - %%{u]}tﬁ,m]JLﬂ:f” dk . (3.52)
t

This result clearly defines a Fickian process; thus, for the one-~-dimen-
sional flow case, we have answered one of the questions put forth in the
introduction. If we proceed to define some local effective transverse
dispersivity G such that

Cy= o g (3.53)

then we may rewrite equation (3.52) in terms of the global dispersivity
(2.22) as

o0

Ap= ‘_a[n'_pm,m] %%@ak (3.56)

-0

where 72(ﬁ,cn) is defined in equation (3.37).

We will attempt to define e, with more thoroughness in a subsequent
section. Note that utilization of an effective local transverse dis-—
persivity -- which is rather‘like the effective hydraulic conductivity
in that it represents a particular average -- enables us to represent
the global dispersion coefficient as a linear function of the mean spe-
cific discharge. Thus, to at least a first-order approximation, dis-
persion at the global scale appears to have many of the properties of
dispersion at the local scale.

We add a note at this point COncérning the validity of equation
(3.54)., 1If the square of the coefficient of variation on/ﬁ is greater

than approximately 0.6 then this expression borders on becoming negative
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and therefore invalid. However, if this is the case, then the approxi-
mation leading to equation (3.35) is also invalid. 1In face, it would

be difficult to make this approximation if On/ﬁ were much greater than
0.25. Thus, there is no possibility of obtaining a negative global dis-
persivity if this approximation is adhered‘to. Tt should also be noted
that the effect of porosity variations on global dispersion are essen—
tially already encompassed in equation (3.54), in th;t, if porosity per—
turBations had not been included in the model equation, then the term in’
brackets would simply equal one. As it is, A2 has been reduced by ap-
proximately one-third through the inclusion of these effects.

In the remainder of this section, we shall be primarily concerned
with selecting an appropriate form for the hydraulic conductivity spec-
trum @KK. Note that, as perceived in equation (3.54), this spectrum in
addition to accounting for medium properties, must also remove the sin-
gularity occurring at the origin in the integrand. In choosing a spec-
trum, it is frequently advisable to look at the form of its associated
autocovariance (or autocorrelation) funétiém. For example, i1t is generally
desirable to seiect an autocovériance function which decreases in .cor-
relation with increasing lag distance, much as one would expect in natural
sediments. However, any spectrum which is absolutely integrable and
piecewise continuouswill, as a conseguence of the Riemann-Lebesque theorem
(Titchmarsh, 1948, p. 11), have an autocovariance function with this
property. Thus, we must concern ourselves with the shape of the function
itself. The negative-exponential is a function which, because of its
inherent simplicity, is frequently used to model natural phenomena. It
does not, however, possess a spectrum which will remove the singularity

in equation (3.54). A related autocovariance function is the function
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(Bakr et al., in press)

1512
Ruk () = 6% (1 — 1sl/2) &V ) = S4 (3.55)
which has the spectrum
3,2
K= 2 a2 2K | (3.56)
@KK( ‘} T KK (‘ Q’g_‘k?.)?..

. ; . . . 2 . ..
where ¢ is the correlation scale in the Xq direction and % indicates
N

)

the variance of the K' process. This spectrum will adequately remove
the singularity in equation (3.54); buﬁ'the autocorrelation function
indicates that the proceés is negatively correlated at distances greater
than £ (Figure 3.1a). Bakr (1976), in eétimating gpectra and autocor-
relation functions from core data taken from wells, found several in-
stances where such models would be acceptable for vertical arrays of
hydraulic conductivity data (whether they are generally acceptable has
not vet been determined). Thus, one possible spectrum for use in de-
termining the global longitudinal dispersivity for the one-dimensional
flow case is equation (3.56).

Another possible form arises when we attempt to develop from equa-
tion (2.43) an expression for the variance in tracer concentration. As
will be noted in a subsequent section, this integral expression will
contain, in the integrand involviqg the spectrum of hydraulic conduc-
tivity, a fourth-order singularity at the origin., Thus, if we desire a
spectrum which will also produce a fiﬁite concentration variance, it

becomes necessary to consider a spectrum of the form
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0 5 4
.CI)KK (k) = ﬁﬂfﬂlﬁzT ©(3.57)
30T (14 a" )P
which has an autocovariance function of (Oberhettinger, 1973, p. 20, no.
33)

2 -isl/d
Rir (8) = -—2—_‘& (3-51sl/a + 5 Gia)e\s/ .

(3.58)
Note that this expression has an integral scale equivalent to 2a/3,
while the previous autocorrelation function of eqﬁation (3.55) has a
correlation scale of &, but does not possess an integral scale. The
autocorrelation‘functiﬁn‘of equation (3.58) is rather more complex than
function (3.55) and hence is not as amenable to modelling of natural
processes (Figure 3.1a).

In order that the global dispersivity equation (3754) be acceptable,
it is not required that the same spectrum for hydraulic conductivity
produce a finite variance for the tracer concentration, although it would
be desirable. Therefore, we have solved eqﬁation (3.54) for both spectra
(3.56) and (3.57). Thus, by simple integration, we obtain for the one-

dimensicnal flow case a global longitudinal dispersivity of

2
Ay, =0 (&N, _1(H @)] (3.59)
£ =, ( = ) [\ 72( ) |
where
i’.a for Specitr“um (3.56)
b = _

q?@ for spéc{ruww($-57) .




66

Equation (3.59) concludes the'analysis of the one~-dimensional flow case.
Notable in this expression is the dependence of A2 on the coefficient of
variation of hydraulic conductivity OK/E, a correlation length-scale
parameter, and the local transversive dispersivity; two of which repre-~
gent statistical parameters.quantifying the variability of the medium,
and the third representing mixing at the local scale. We defer further
discussion oﬁ the expression until a later section. However, befpre
leaﬁing thié chapter, we note again that, for this case, global disper-
sion can be regarded as Fickian, and the global longitudinal dispersion
coefficient is linearly related to the mean specific discharge.

Three-Dimensional Flow Case

In this section, we solve the spectral form of the global disper-
sive flux equation (3.3) for the three-dimensional flow case; This
equation was developed for the more general case where spatial varia-
bility in medium properties is dependent on all three coordinate direc-
tions. The equation is approximate in that it is applicable only to
relatively small variations in the f' pfocess. This approximation will
be discussed in more detail in-a later section; in this section, we ap-
ply the inverse Fourier transform to obtain a solution to equation (3.3).
In particular, evaluating the transform at zero lag, this equation can

be written, after substitution of transfer functions (3.20) and (3.33),

o 2

0 =- 2T 3 UU[ \& 5 kS l G ge (k)
| °F R [oczkﬂrxt(kﬁkza)]

— o

—MWJJ ka+ ks } Pps (k) die L Q  (3.60)
WrkEe g [%kﬁqt(kﬁk‘;)]
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where
M , Archie’s equation (3.2%)
P = _
E,LL::"ll_ , Kozeng - Carmen equation (3.27)
3 -n
and
o0
2= j ”k‘[_;ga@q,,(m L S| F 3.6
- o0 ‘

Note that effective local longitudinal dispersivity Gy and transverse dis-

persivity G of the form of equation (3.53) have been utilized to replace

the local mean longitudinal and transverse coefficients in equation (3.60).

gpectra @q and @q B in equation (3.61), then the quantity in brackets
1 178

is an even function, provided that ®ff is an even function. Since spectra

are always even functions, Q adds nothing to the dispersive flux because

evaluation of equation (3.61) in the kl direction will result in a null

integral. Thus, we may express the glcbal longitudinal dispersivity as

8 .

2

A23 = [ k?; +\<‘23 ] bef (\s‘)dk'v
[u

z k2 k?,
Ko+ K+ K ekaljr..o(f(kz.;. ki):(

-0

-~ P
7

2
ki‘* ks l @F? (Mdb (3.62)
Ko+ G G [

O(Q\(z‘ + Xy (kaz—‘r ki)]
-0 .

where the first integral represents the effects of hydraulic conductivity

If transfer functions (3.33), (3.44), and (3.50) are used to replace
variations. Note that the global dispersive flux (3.60) is again Fickian
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_in nature and that it is a linear function of the mean specific discharge.
Before evaluation of equation (3.62) can be contemplated, however, we are
jeft with the difficult task of selecting a form for the spectrum of the
f' process.

is

As in the one-dimensional flow case, selection of a spectrum ®ff

largely based on the form of its autocovariance function. A particularly
well~behaved function which is widely applicable tolmodelling of mnatural

phenomena is the three-dimensional negative-exponential function:

B 2 ¢* 2 <2 /2
RHQE)-— oF exp[_(_,h_{Jr_S;‘a_z;%,_A;ﬁg) (3.63)

which has the spectrum (Appendix 5)

(3.64)

Beelk) = L 67 ARz )
8 W e R 4]

where sz ig the variance of the £' process and Al, AZ’ and KB are inte~-
gral scales in the principal coordinate directions (see Appendix 1). If
we allow the horizontal length scales (Al and Xz) to become inordinately
large, the equation (3.63) approaches the one-dimensional negative-
ekponential autocovariance function. This asymptotic result plus the
asymptotic approach of three-dimensional local heterogeneities to the
stratified case discussed in the sgection entitled ”frototype " suggests a
method of testing the utility of the autocovariance function (3.63). 1In
particular, from equation (3.18) we can construct a spectrél relationship
between hydraulic head and the f' process. As will be demonstrated in

the chapter entitled "Hydraulic Head Variance in Globally Anisotropic

Media," this relationship allows us to evaluate the variance in head



69

resulting from variations in hydraulic conductivity. However, by con-
sidering the limit where the horizontal length scales become large, the
stratified case with flow parallel to bedding is approached. From our
preﬁious discussion of perturbed quantities, it is to be expected that
this one-dimensional case should have zero head variance. Hence, it would
also be desirable if- the spectrum chosen for the solution of the global
dispersivity equation would also produce this limiting case for head
variance as the.horizontal length scales become very large. Asg noted in
the chapter on head variance, spectrum (3.64) does not have this limit

for the asymptotic one-dimensional flow case; indeed, as X, and Kz be-

1
come large, the variance in hydraulic conductivity will increase infi-
nitely. Admittedly, théré remains a problem in that one is dealing with
differing effective hydraulic conductivities between the one-~dimensional
énd three~dimensional cases, but this disparity should not hinder attain-
ment of the over-all limit. Tn general, we believe that it is desirable
to use an autocovariance function which will produce this null limit for
head variance in the asymptotic one-dimensional flow case.

From the discussion in the chaptér concerning the variance in hy-
draulic head, an autocovariance function which has a spectrum that will

produce a solution giving the limiting case presented in the previous

paragraph i1s
R:F(E’) = 6" [‘ - 525/(32 ’S)]exi‘-"[~§] ' (3.65)

where

[ QRS S S
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The autocorrelation function for equation (3.65) has been plotted by con=~

touring omne quadrant of a vertical plane through the axes (S, = 0) in

2
Pigure 3.2. Clearly, it contains both elements of -a simple negative-
exponential function (Sl axisg) and a modified negative-exponential func-

tion (83 axis) similar to equation (3.55). The spectrum for this auto-

covariance function is (Appendix 6)

Qt);(\;): L ST . (3.66)
m [e’,/\«%+2§\<§+ €§k§+i]

In this case, 21 and 22 are integral scales while 23 is a correlation
length scale.

We might also consider developing an equation for variance of tracer
concentration by utilizing equation (3.1). If we were to consider, for
this concentration variance equation, the same limiting case presented
in preceding paragraphs, we would find that a three-dimensional autoco-
variance function which has an asymptotic onemdimensionai form similar to
equation (3.58) would be necessary to obtain a finite concentration
variance in the limit. This result is only reasonable, as a spectrum
which has the autocovariance function (3.58) is required to obtain a
finite variance in the one~dimensional flow case. Hence, if we desired

a finite concentration variance for the asymptotic one-dimensional case,

it is only reasonable to expect that the asymptotic one-dimensional spec-

trum should remove the same order singularity as the actual one—dimensional

spectrum. Clearly, the three-dimensional autocovariance function (3.65)
does not have an asymptotic one-dimensional autocovariance function equi-
valent to (3.58) which, in turn, has the minimumn spectrum to remove a

fourth~order singularity at the origin.
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1.0 s, /74,
|

Figure 3.2, Isopleth contour of modified negative-exponential
autocorrelation function in vertical plane.
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We consider, however, that it is too much to expect that the auto-
covariance function chosen to analyze equation (3.62) should produce a
finite variance for every limiting case; indeed, we have yet to show that
the autocovariance function should do more than-reflect the correlation
structure of the medium and yet remain a viable form to solve equation
(3.62). Our only fear is that one of the more complex negative-exponen-
tial fofms may better reflect the correlétion structure because they
represent forms which allow for the solution of perfectly valid expres-
sions. It may also happen that none of the above forms are exact esti-
mators of the correlation structure, perhaps, because of the approxima-
tion involved in deriving the model equation and transfer functions. In
summéry, we close this discussion by noting that, while the simple three-
dimensional negative~exponential form (3.63) is thought to belthe generally
preferable autocovariance function with.resﬁect to correlation structure,
it will not result in a zero head variance for the asymptotic one-dimen-
gional flow case, nor will it, for'any case, produce a finite concentra-
tion variance. It can be shown that the modified negative-exponential
form (3.65) will produce a result which generally gives a finite concentra-
tion variance, except for certain cases (in particular, the asymptotic one-
dimensional parallel flow case), and will always produce a finite head
variance.

We proceed, then, to use both spectra (3.64) and (3.66) in solving
the global longitudinal dispersivity equation (3.625. Our experience
has been that it is generally very difficult to completely integrate
these expressions analytically, and numerical integration must be re-
sorted to in order to obtain a complete evaluation. As a matter of

simplification, the horizontal length scales have been set equal to each
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other (ﬁl = QZ and A, = Az) which, we believe, does not result in a great

1
loss in generality. Additionally, the vertical length scale is taken to
be less than or equal to the horizontal length scales. In particular,

for the spectrum of the simple negative-exponential autocovariance func-

tion (3.64), we obtain the expression (Appendix 7)

2 2 -
A - >‘36\; — _.E R 3.
23 < [F(P \R) = G(p, )] (3.67)

where

,P:: N{/MQ ) R = %/%3 s %t:)y:%a

The factor F{(p,R) represents the solution of the first integral and is
representative of the effects of variation in hydraulic conductivity,
while G(p,R) represents the second integral and is representative of
porosity variations. This result indicates a‘dependencé éf the global

dispersivity A_, on a length scale, variance in the £' process, and ef-

L3
fective local transverse dispersivity. The factors F(p,R) and G(p,R)
are presented graphically in Figures 3.3 and 3.4, respectively, for two

different values of the local dispersivity ratio g. TFor any particular

o and R, the values of F(p,R) and G(p,R) are nearly identical; thus, the

importance of a good estimator for the porosity factor P (equation (3.60))

is noted. Also note that as R becomes large (and therefore we approach
a stratified medium condition), both F(p,R) and G(o,R) factors grow in-
finitely. The explanation for this growth is identically that of the
Previous paragraphs; if there is such a thing as a valid asymptotic one-

dimensional equivalent of the global dispersivity equation (3.62), then



(9'¢) wniyoeds 10} 10400} A}IAILONPUOD 21 NnDipAH '¢'¢ 3inbi4

(4 )4
000! 00t 0l oM 'O
] I l | i I | | | 1 1 | '
TT T T T T 7 S L T S L S O S S i o T oy
—ol
M I|||
/=y
— 00!
L———000!I




y
I~

0001

($9'¢) wniposds Jo) 4oy

oD} K}1sou0d ‘p'¢ 24nbi4

(499

OO0l
L !

Ol o'l
L !

o0

LR

Ol .o“No\ ‘o

L L R T ATTT T 1T 7 1 _ [TTTT

56'0=T0, o

| A L A ! iy 1t

l oot t1

Lt

GOl

1

I

!

11111

000l



of equation (3.63) is not sufficient to solve this expreséion. Indeed,
at least an asymptotic autocovariance function equivalent to equation
(3.56) would be necessary. Further comparisons between one~dimensional
and three-dimensional results will be carried out in the next chapter:
we will confine ourselves in the remaihder of this chapter to the solu-
tion of the global dispersivity equationlwith spectrﬁm (3.66), which
~does give a finite result for this limiting case.

The solution result with spectrum (3.66) is essentially identical
to equation (3.67), the major difference being in the-graphical repre-

76
the spectrum of the asymptotic one-dimensional autocovariance function
sentation. TIn particular, the solution form can be given as (Appendix l

8)
o 2‘6\_’2 o <
ns = B () - 2605, )]
X n
where

RO= £/85s , 2

il
o
I
>

equation (3.67). The graphical presentation of F°(p,R°) and G°(p,R°)
are to be found in Figures 3.5 and 3.6, respectively. ©Note that, as R°
becomes large, a definite limit is reached for both cases. Again, we
note the importance of adequate determination of the porosity factor P.
Finally, it is to be noted that ﬁhe cprrelation length scales AB and Q3
are not necessarily equal; hence, it is rather difficult to compare the

and F°(p,R°) and G°(p,R°) are the counterparts of F(p,R) and G(p,R) of
graphic results from the two spectra. We will undertake such a comparison
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in the ﬁext chapter: this chapter is completed with a technical note
about the derivation of the global lengitudinal dispersivity equation
(3.62). Before leaving this section, however, we emphasize again the
basic results of the three-dimensional flow case: the Fickian form of
the global longitudinal dispersive flux (3.60) and its linear relation-
ship with the mean seepage velocity.

Note to Derivativn of Global Longitudinal Dispersivity Equation

in the section entitled "Prototype," it was noted that the off-

diagonal bulk dispersion tensor components E_ , and E13 {equation (2.7))

12
might be significant to the model equation. Indeed, if we had retained
these terms in perturbation expression (2.14), then the model equation

(2.41), resulting from a first-order analysis, would have contained the

additional terms

DEz 0T _ EL 3E ., 8¢ ,E. dc (3.69)
9z 0C 5 2 F + .
5 X2 9%, T TR d% ¥ Ixg %, YR

on the right-hand side. We argue heuristically, at this point, that E2l

and E,. are second order in comparison to E,, and E Hence, when com-

31 i1 22°

pared to similar terms already retained in model equation (2.41), terms
containing these mean off-diagonal components can be neglected. Specif-
ically, let us assume that, in equation (2.2), we can use effective local

longitudinal and transverse dispersivities oy and o Then, to obtain an

estimate of E21’ we simply take expectations on both sides of equation

(2.2), where i and j have been properly designated. This process involves

evaluating the expected value of the term g /q. This expectation can

2%

be approximated by first substituting binomial expansion (2.4b) for 1l/q

in this term. However, to a first-order approximation, this expectation



12

of diagonal tensor components would indicate the existence of a form
comparable to equation (3.53). Whence, we may conclude that the mean of

diagonal components must be significantly larger than either E or, for

21

that matter, E3l'

We are left, then, with only the first two terms in expression (3.69)

to analyze. These terms can be written in spectral form as

[}kaéﬁEa(KJ”*iks@qlgy(&i§§%- (3.70)

after which we proceed to find appropriate transfer functions for ¢

43551
and @q g - Rewriting equation (2.7a) as
1731
E, /
2 = P9, , p= (g~ g ) (3.71)
we obtain the mean-removed equation
. f ~ / .
Eay = 3 9 (3.72)

where a first-order approximation has been made. Similarly, from equa-

tion (2.7b),
bl X
Ea =B 9, - (3.73)

Equations (3.72) and (3.73) can be written in terms of complex Fourier

amplitudes as

80
~is zero, causing E to also be zero. A similar analysis for the mean |
dZg, (k) = pdZqg (k) (3.74a)
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~and
dZg (k) = ﬁqug(\i) : . (3.74b)

‘respectively. The Darcy ralationship for q2' can be written

ro_ | YA (3.75)
i = - Kaexp[1] 22 . |

a first-order approximation of which is
e —K, 08 - (3.76)
qz ~ L <5 '
Similarly, for q3',

q w08
9, < g 5%, | . (3.77)

Equations (3.76) and (3.77) can be written in terms of complex Fourier

amplitudes as
dZq, (k) = —ik,KpdZg (k) | (3.78a)

and dZq, (k) =-iksK,dZg(k) . (3.78b)

respectively. Finally, using equation (3.18), we obtain the following
relationships for the E'21 and E'Bl processes in terms of complex Fourier

amplitudes:

dzg, (k) = =%k g P dZe(k) (3.79a)
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end dZg, (k) = ~K ks § BdZc(k) . (3.79b)

From equations (3.79a) and (3.79b), we obtain transfer functions for

spectra ¢ and ¢ by properly combining their complex conjugates
91%91 d1F31

with equation (3.19) and taking expected values:

- | 2 Ko + K
.@%Ez‘(lf,)* - \<.\<2 Fi, ﬁ [m;} q)w (\1) (3.80a)

|

(3.80b)

and @C’\«E-s,(li) = k,ksqlzp[ kz +‘r<_3> | )EPH“,S} .

2 2 2
K4 1S+ ke
From transfer functions (3.80), and our knowledge of various forms avail-

we conclude that expression (3.70) is an odd function with

gble for ¢ff

regard to the kl variable. Therefore, in the final analysis of the global
longitudinal dispersive flux, expression (3.70) would suffer the same

fate as the Q equation (3.61) rand have a null integral. Thus, we con-

clude that inclusion of terms in expression (3.69) in the model equation

would have no effect on the final result of our three-dimensional analyeis,
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EVALUATION AND APPLICATION

Linitations of First-Order Analysis

Throughout much of the analysis presented to this point, it was
noﬁed that the one-dimensional flow (or complétely stratified) case con-
tains fewer approximations than the three-dimensional case. We consider,
however, that the three-dimensional flow case is, in most instances,
more representative of actual transport phenomena in porous media. The
one-dimensional case represents an ideal model that forms a reference
point with which comparisons can be made, but is seldom realized in its
full idealization in actual field situations. Hence, much of the an-
alysis in this chapter will concern itself with the three~dimensional
flow case.

A moderately severe restriction to fhe three-dimensional flow case
has already been indicated in the section entitled "Prototype,' where it
was noted that the population equivalent of the geometric mean would be
used to estimate the effective hydraulic conductivity. Surprisingly,
error resulting from use of the logarithm of hydraulic conductivity in
the calculation of head variance appears to be small over most ranges
of the variance of the f' process. In particular Gutjahr et al. (in
press) found that, for a one-dimensional case with flow perpendicular to
stratification, the error in estimation of head variance amounts to ap-

proximately 10% for a o_ equal to one. In three-dimensional situations,

f
where flow paths are less restricted, it is expected that even less er-
ror will be produced. Thus, with regard to variance in flow, it is
generally expected that the approximate solution utilizing the logarithm

of hydraulic conductivity will produce a respectable solution except

when g is significantly larger than one (e.g., on the order of 1.5).
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Throughout the first—qrder-analysis presented in the preceding
chapters, a number of second-order terms were neglected in order to
obtain a linear model equation. Perhaps the most significant of these
terms is expregsion (2.29¢), since it represents convective transport
resulting from randommess in the medium. As discussed previously, this
‘term could represent an important cqntributor to lateral mixing -- a
phenomenon very necessary to the Taylor (1953) model. Thus, we attempt
té attain a reasonable estimate of the significance of this term.

Term (2.29c) actually contains three components corresponding to
the three cardinal directions. Since we are principally interested in
the lateral mixing aspect of the problem, an estimate of the term

q;vv’—-q;vﬂ w' = 9¢//a%y (4.1)

}

in comparison to the retained convective term
q‘w ) o= bC/ag . . . (4.2)

would be desirable. We assume that the derivative of the c¢' process,
w', has zero mean and is second-order stationary. As the standard de-

viation is a generally accepted measure of the variability of a random

process, we will attempt to derive variance expressions for both of the

above terms. These variance expressions will generally be evolved from

transfer functions which have been developed in previous sections: If
they are not available, then appropriate expressions will be developed
by the same kind of first-order analysis used in the previous chapter.

Thus, the expressions developed in this section for the variances of
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processes will themselves be approximations since second~order terms of
the same type as those we wish to approximate have been deleted. Obvi-
ously, these approximations will not be valid for media which are highly
variable; but as an order-of-magnitude estimate of what we wish to ap-
proximate, this iterative procedure is considered acceptable.

For expression (4.1), we shall assume that both the q3' and w'
processes are approximately jointly normal. Then we will examine their
corfelation coefficient agTﬁT/cq O& and determine its magnitude. If

3
the correlation coefficient is small, we shall conclude that the product

" process and w' process is a sufficient esti-

of the wvariances of the q3
mate of the variance of their product (Ross, 1972, p. 41). The cross

spectrum @q v of these two processes is, by the representztion theorem,
3 :

@qgw (}5) = dzqs(\i)dzw (\i) . (4.3

- However, since the w' process is the derivative of the c' process, it

may be represented, in terms of compleX'Fourier amplitudes, as
dZo (k) = ikgdZe (k) . (4.4)

T

A first order approximation of the qs term is
28 (X
q;(Zi)”—Kz—-—("‘ (4.5)

0 Xz

which, in terms of complex Fourier amplitudes, is

dzﬂsl(@:mskamdzgé(g)} | o



‘is obtained. To obtain the cross covariance q3'w
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By properly combining this result with transfer function (3.18), and

then comparing it with transfer function (3.19), we can relate the com-

1

plex amplitudes of the ql' process and the 44  Process:

Kk
dZq, (k) =- ks dzg (k) - 4.7
ks + K
_ 2t Mg :
Finally, we use equation (3.1) to relate the c' process to the f' pro-
cess. For simplicity, we drop consideration of the effect of porosity

variations on the process, obtaining the equation

_dZalk)~ikdZel (k) 9T (4.8)
[+ B (v1)] 28

dZe(k)=

By proper substitution of equations (4.4), (4.7) and (4.8) into equation

(4.3), the spectral relationship

Do ) = 218, Do i) =ik G bag () (4.9)

’ (e kS ] [Ep i + B¢ (0 412
" the inverse Fourier
transform of equation (4.9), evaluated at zero lag, is obtained. How-

ever, since only even integrands will produce other than null integrals,

we need only evaluate the expression

ol
57"\7' _ JJ[ \<\2 \é (}CMEL(K) di . (4.10)
3 - —_ z 2

(15 4 2][Eg I+ E )]

- o0

Replacing @ with transfer functions (3.20), (3.44), and (3.50), one

48,

finds the expression

qlswl - [O(il L+B (Ka’/aIa ‘/L*'J E‘* %% } R
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oo o
I‘"‘JH 1S [115] Byp ()i | 120
) [ﬁwiw%] [wzk.?”+o<tg\<§+k?g)1 |
o0

and IZ

2
J { [ 1212 Gee () ke o

' [khk?; 4 k;] (o(ﬂ \<3+ oy (5 4 ‘«gﬂ

where we have assumed o, s aI. To facilitate evaluation of integrals

(4.12), we use the simplified spectrum

2 pS & ‘
(k)= 48t 2 (4.13)
q){?{ N) L [ﬂa(\<‘2+\<§"+k§)+ ‘]3

which is the spectrum of the modified negative-exponential autocovar-—
iance function with all length scales set equal to £. With spectrum

(4.13), integrals (4.12) can be solved by straight-forward integration,

after conversion to spherical coordinates, giving the results

2
=05 6% (16,0 ys8 42y
8 (X,e—O(t 35 5 5

— [H%’f%’l/g%an—’ [\/w'/ﬂg

(4.14a)
dI-~'C-"-——»-«——~'6:C2 B2y gyt
ame te g ETYR R
—~2 w2 e
_[Hﬂ Y tan [n/w ] (4.14b)

where
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Y o= oy /(uﬁ-o({)

Thus, substituting equations (4.14) into equaﬁion (4.10), the cross co-

variance becomes

Of

N 29 \p \5 6 [} 2 2 3
.qS\X/ — C{‘G{? r"‘"{-g*[%g“\?W‘*—%—w + ¥

[¥agl

3 vz, - t/e} 2 2
- (14 tan | 9_/5_;”—4[_8’_ 5
(1+9) ¥ Li/v 1+\+5612/8 B 2yt

- (1 oY ¢ ton' [1/ L{,‘/ZH (4.15)

where p = ut/a2 and, in consideration of equation (3.45), we have made

the assumption
2.
oy = B (Ky) (1+56:%/8) . (4.16)

If we assume that V¥ is small in equation (4.15) (uz is generally con-
sidered to be an order of magnitude larger than qt), such that any Y of
power one or greater can be neglected, we may, with regard to the

quantity within the outer brackets use the approximation

— \2
— —~ 2 dC Y .
q1VJ ~ qléﬁ %\ *Tz—‘g (4.17)

in place of equation (4.15). To complete our correlation coefficient,

we need to obtain estimates of the variance of both the q3' and w'
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processes.

A spectral relationship for the w' process can be constructed from
equation (4.4) by substitution of equations (4.8); (3.19), (3.43), and
(3.49). Upon multiplication by the complex conjugate and taking ex-

pected values of the resulting equation, we obtain

& 2 - Vo 2
_1aC k 2 2l 2 = B(K) B &K \(4.
@ww(\l) = "‘g) —%% EF) + ki [D(L@ + f_(@__é_ﬁfr_ﬂ_ﬂ_% _Té_ﬂ_ﬂ}jii)w(&i(ll 18)

where

.p:[ki-vk;]/[k?Jfk:-{»k;]
and
¥ o= owy kot wy (K4 KE)

Thus the variance of the w' process can be found by evaluating the in-

. tegral expression

2

S = @5—) L o+l, + b3 Lo L z} o a9

0% | e(+567%/8)  16(1+5657/8)
Lo | 3° B oo (K)dk (4.20a)

‘ \62 A~ ~. !
o0
2, 2 A

o] | | R g gy o0
Ly = cxz JJ/ k?\;:(ﬁ %#Md& ) ' (4.20c)
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and L, = o ”[ kf’\f B (k) e | (4.204)
¥

where we have again made use of equation (4.16) and the assumption that

G, T Oy As in the previous paragraph, the simplified spectrum (4.13)

is used to evaluate integrals (4.20) which, after conversion to spheri-

cal coordinates, gives the results

£
8 L9

q‘ .
L =3 g2 8 [ 204y 2{15_ ez §
‘ 2 R T 3 J
n (W'/Z/Z)[l -~y —\skv?xew?’—f-w“j tan' [Mw"ﬂ% ;o (4.212)

. ) . .
L?. = _%_ 6‘1: E-—&i{_ [33 \46\P+\\\{J +l_+\y } \P [\+“P]
25 15

8 PZ 2.
/2
+ ;—VP j+12W¥ 4+ 30Y “yogy oy ]Jccm [\/‘\‘\/1% ) (4.21b)

3/2 _
+ gp [|+‘3w+\5\v2+7‘¥7’] {on[\/\v‘/q% ) (4.21¢)

2

and Ly = %ng_f[i_fgq;]_ﬂ’_{‘*'w]

By making the same assumption leading to equation (4.17), we obtain the

approximation

—\2 2
6:,3-/\1 0C \ g=% 0.3 " L+ 4 s (4.21)
N

: E P

3/2
W - \/g:{ ' (4.21d)
+ 5 pE [\+6‘~P+5“§’]{0n [\/LV
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for equation (4.19).

T

The variance for the qg' process can be obtained from equation

(4.6) by substituting for dZ, from equation (3.18). After multiplying

¢

this result by its complex conjugate and taking expected values, one

obtains the spectral relationship

?_.,.Z

! (4.22)
q)qs%( ) [\<2+k&+k2] q)ﬁ i .

where we again use the simplified form (4.13) for the spectrum of the
f' process. VForming the inverse Fourier transform evaluated at zero

1

lag, the integral form for the variance of the qq process is found:

o0

6.7 = 2 __i__‘ff____ (k) dk (4.23)
A q -[[[f[ka+\< 4\(51 @ N) ~

o

which, upon evaluation, gives the result

— (4.24)
105

We are now.in a position to form the correlation coefficient for the

q3' process and w' process. Using approximations (4.17) and (4.21), as

well as equation (4.24) we find

Va
BC - 6\’2[\ J
q;vu’
6. 6%, - 2, V2 e
4z — W ocC 2— [03{ Y 4 r:j
0.3 2= 67 e A L 2D
St §F 9 =2 E
6 Xt (4.25)

£yt
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As we suspect that in general 2 >> e, (see Glahar, et al., 1977, for an
estimate of £), the quantity on the right-hand side of equation (4.25)
ghould be much less than one. Thus, we can now argue that the product
of.the standard deviations is a valid estimatér of term (4.1). Even if

' process were perfectly correlated, by assum-

the w' process and the dq
ing joint normality of the two processes, we could demonstrate, through
the use of moment generating functions (Ross, 1972, p. 44), that this
type of estimate for the vaviance of q'w' could not be in error by more
than a factor of two.

Proceeding, then, to estimate term (4.1), first by disregarding
o

Gy W (the variance of a constant is zero), and then by using the square

root of approximation (4.17) and equation (4.24), we expect

O,IBW’ is on the order of
— 2 N2 V/2

G'q_be“\x/r\/ 0.3 Q.S’__ 6';:26{ [9;3_6__1]____* 3 b ] . (4.26)
ag t 0<£2- P\/?_

This term must be compared with retained term (4.2). We therefore must
obtain a variance estimate for the ql' process. From equation (3.19) we

obtain the spectral relationship

: : 2
_ k2 4 K
045,10 = T (g Bl - .

| 2 2 2.
ko k5 + kg

. . . . 2 .
Evaluating this equation for the wvariance ¢ , using spectrum (4.13) as

1
before, the expression
& = 24 g%ey® (4.28)
t 55 { .
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{g obtained. The standard deviation from this expression is used to
extimate ql' in the retained term (4.2). The retained term should be
significantly larger than the neglected term (4.1) in order that the-

first-order analysis be valid. 1In particular, we expect

/ / ’
G — Ggw is on the order of fiﬁéégﬁi <: P (4.29)
q;:; G'Chw

A reasonable approximation of the ratio is

l/lf_

)

BasOv 52 6 R : (4.30)
@’q\w X ¢

1f we assume values of & = 1.0 meter, Ay = 0.0l meter and ¥ = 0.2 then,

upon solving for Cps We find

67 L 0.075 (4.31)

which is very restrictive (cf. Freeze, 1975), 1In part, the excessive
nature of this restriction'mayAbe related to the first-order analysis
upon which.it is based. Nevertheless, for an aquifer in which the
heterogeneities are completely isotropic, we doubt that the analysis
pursued in this dissertation is viable. However, as the heterogeneities
become more stratiform, one would expect the numerator in ratio (4.29)
to become small since perturbations in specific discharge for other than
the X, direction do ngt exist in stratified aquifers. Thus, for quasi-
stratified aquifers we suspect that the variance in the f' process éver

which the first—order analysis is applicable would be larger .han that

indicated by (4.31). In reality, the region of applicability of the
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three~-dimensional analysis is a. function of both the correlation length
scales as well as the variability of the medium. For a moderately
stratified medium, the author suspects that a O on the order of one-
half will allow use of the three-dimensional analysis outlined in this
report in order fo predict global dispersivities. The region of accept-
ability for the three-dimensional analysis, however, is a point which
warrants further invesitgation.

For tbe'one—dimensional flow case, only a term similar to expres-
sion (2.38) was neglected. As the perturbation in concentration may

change rapidly in the x, direction, this term could be significant if

3
the variance in medium properties is also great. In general, however,
we believe that neglecting this term is less important than neglecting
term (2.29c), as it represents mass transfer which is Fickian in nature,
and not convective. If one were to hﬁzard an estimate, we suspect that

neglecting this term may restrict us to media which have a coefficient

of variation [GK/K] of unity or less.

Qualification of Long-Term Process

' it was noted that,

In the section entitled "First-Order Analysis,'
because of the slowly varying nature for the long-term process of the
aispersion phenomenon, the time derivative (2.30) could be neglected.
The deletion of this term from the model equation is effected through
the assumption that changes in tracer concentration are more dependent
on convective tramsport, when considered with respect to a moving co-
ordinate system, than on time (provided sufficient time has elapéed).
We find it desirable té estimate, roughly, what travel time or travel

distance is involved before the slowly varying concept is acceptable.

To form an estimate, we consider that the neglected term (2.30) is
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much smaller than the convective term
[q"» f‘__'_n’} I (4.32)
n .

Thus, noting that medium properties are independent of time, we form

the ratio

nooc’/ot \ |
[q«’— ”'?,/ﬁ] 9T/ << (4.33)

where we have taken the term 0'9c/9t to be second order. As in the

previcus section, we form variance approximations for both numerator
and denominator of ratio.(4.33) in order to estimate the primed quanti-
ties. In this regard, we resort to use bf the.equatiéns for the strati-
fied or one-dimensional flow case in oxder‘to simplify the analysis.

As noted previously in the section entitled ”OnefDimensional Flow
Case," one can construct, for the one-dimensional flow case, a spectral
relationship to predict the variance in concentration from the model
equation (2.43). Writing this expression in terms of complei Fourier
amplitudes, multiplying by its complex conjugate and taking expected

values, we arrive at the spectral relationship:

. | . 2
[pe/2k] g
@cc(k) =TEE kR @Q.q‘(“) - Z(bq.ﬂ(k)' Qi (1) W (4.34)
Et k ‘ .

where k = k3. The spectrum ¢ q can be replaced by transfer function
' 1°1

(3.24). We replace spectrum @q n‘by transfer function (3.39) and can

1 , .

easily construct a transfer function for @nn from equation (3.38); how-

evelr, wWe assume On to be small in both cases. Substituting these
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transfer functions into equation (4.34) and then proceeding to take the

inverse Fourier transform evaluated at zero lag, we obtain the integral

expression
7" 2 [
622:_[3F/3§] { 2- ] @kk(k)dk . (4.35)
K oG 3-1 k*
-0

As noted previously, a spectrum of the form (3.57) is necessary to

evaluate this integral. Precigely, this spectrum gives the result

A
_ 2 2
522 [Bc/aE,] [ 2 ] QL*{G;; /R—J . (4.36)
z “T
=g 3
Similarly, from transfer function (3.24) and a transfer function con-
structed from equation (3.38), we can derive variance expreséions for

the ql' process and n' process, giving the results

2 .
& = g [61 /ﬂ (4.37)

2 @ 2 |
- o _
and 67,7 = |1 =1 ] A {61/\&] . (4.38)
: 3 -n
The standard deviations, .obtained by taking the square root of variances
(4.36), (4.37) and (4.38), become estimators for the primed quantities
in (4.33).

With the information in the previous paragraph, an estimate of the
ratio in equation (4.33) can be constructed by noting that c'(t),

linearized in t for small time, is approximately t[dc'/dt]: hence
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Ge=t6% , T = oc' /ot

and 6% = d[6c]/¢ . ‘ (4.39)

After substitution of appropriate estimators for primed quantities, we

expect

Aoc/ot is on the order of ;gfw . (4.40)
JCESEZY R
Plainly, we will need estimates for derivatives of c before we can com-
plete the ratio. These estimates may be obtained by considering the
solution of the convective-dispersion equation for uniform flow with no

sources or sinks:

. —_ & —
RS .G 3 o p,dC | (4.41)

where D2 is the effective global longitudinal dispersion coefficient.

A solution of this equation for a pulse input is

-4/2

c=54 exP[_g?-/qDQ{] (4.42)

where S is a constant. Taking the appropriate derivatives of equation

(4.41) and substituting into equation (4.39), we expect

a dc'/at is on the order ﬁqz [252*\22£t] . (4.43)
I g%
[q:_n;ql/ﬁ]ac/ag it BD‘Q'E
From equation (4.41), 62 must be on the order of 4D2t in order that the

solution concern itself with the principal part of the longitudinal
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mass transfer. Thus, we approximate the term in brackets on the right

hand side as t—l, allowing us to write ratio (4.33) as

(4.44)

From our solution (3.59) for the global longitudinal dispersivity using

spectrum (3.57), we may rewrite inequality (4.44) in terms of the dis-

:cu_>> 3 A
n ~

[2/(5-7)][ S /RT

or simply

qt >> eb /K 12 : (4.45)

Thus, it is apparent that before the Taylor assumption.beéomes valid,
it is necessary for the‘tracer to have traveled a distance equivalent to
several global longitudinal dispersivities.

Result (4.45) is significant also from a planning point of view.
To the extent that the analysis presented in this study caﬁ be ergodically
applied to a single realization, longitudinal dispersivities calculated
from a field situation will only bé valid if the experimental apparatus
meets this criterion. TIf this condition is not allowed for in field
installations, then the dispersivity obtained from tracer recovery tests
may be time dependent because thé lateral component of mass transfer has
not had sufficient travel time in which to establish itself.

tance alt/ﬁ necessary for a slowly varying process to become established:
Finally, we note that expression (4.45) could serve as an alternate
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definition of the global length scale mentioned in the introductory
chapter. As noted therein, tﬁis scale is defined as the travel distance,
in a globally heterogeneous medium, which is necessary before many medium
parameters become meaningful. With respect to a field longitudirnal dis-
persivity, inequélity (4.45) is a criterion for obtaining this conditionm.

Comparisons Between Results

As mentioned earlier in the section entltled "Three-Dimensional
Flow Case," équation (3.68) gives a global longitudinal dispersivity
for the unstratified case which has an asymptotic one-dimensional limit
for flow parallel to stratification. Trom Figures 3.5 and 3.6 we see
that the factors F°(p,R°) and G°(p,R°) become unity as R° becomes large,
which is equivalent to forcing the medium to become stratified. TIf the
porosity term P resﬁlting from the Kozeny-Carmen equation is used in
the asymptotic equivalent of equation (3.68), then we obtain the result
lihﬁ %QLS = 5&;:5&3 ._ié.__

o (4.46)
Rz oo D(t 3 -0

On the other Land, if o, is taken to be small, then the global longitu-
dinal dispersivity (3.59) for the one-dimensional flow case, using the

simpler spectrum (3.56), can be written

Ap= £ S = (4.47)

Since the autocovariance function of spectrum (3.56) is the asymptotic
one-dimensional equivalent of the function of spectrum (3.66), which was
used to solve the three-dimensional equation (3.59), we may assume that

length scales & and QS are equal. Thus, the principal difference between
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the direct and asymptotic one-dimensional results (4.46) and (4.47) is

a factor concerning the variability in hydraulic conductivity of the
medium.

If it is assumed that hydraulic conductivities are lognormally
distributed then, with the aid of Appendix 2; we may make a comparison
between the coeffﬁcient-of*wariation‘UK/E and the variance Opr In par-

ticular, from equation (2b) in Appendix 2, we write
— 2
6‘Ka/1<2 _ exp[@% 1 ~ . (4.48)

Expanding the exponment in a Maclaurin series and truncating all terms

with powers greater than two, the approximation
2 J2 2 4.49
6w /K" x 6 | » (4.49)

is obtained. Thus the standard deviation of the normal process [ is an
estimate of the coefficient of variation of the lognormal K process,
provided O¢ is small.

We recall that the derivation of the one-dimensional equation
necessitated very few linearizing assumptions. Hence, the fact that the
asymptotic aﬁd direct.onewdimensional results differ by the same order-
of-magnitude approximation used in the derivation of the three-dimensional
case indicates the validity of thié latter case. Indeed, as indicated

' as the

in the section entitled "Limitations of First-Order Analysis,'
medium becomes more stratified, we expect the three-dimensional results
to become more representative of the global dispersivity over a larger

range of o For this extreme asymptotic case, by assuming that our

£
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direct one-dimensional result is essentially exact, we can estimate its
associated error by comparing equations (4.48) and (4.49). 1In particular,

for a o, of unity, this error is about 42%; for Of equal one-half, the

f
error is about 12%. Thus some justification for citing O¢ of approxi-
mately one-half as an appropriate upper limit (for moderately stratified

media) for the range of o_ over which our three-dimensional results are

f
valid is found here.

We also wish to make a comparisqn between the three-dimension re-
sulte (3.67) and (3.68) which use spectra of the simple and modified
negative-exponential autocovariance functions, respectively. We have
noted, however, that the vertical profiles of these autocovariance func-
tions have shapes which are rather different (see Figure 3.2). If
actual field data were available such that either shape, due to the
scatter in data points, could be fit to the data with a fair degree of
confidence, then we would find that the condition

must be satisfied (Bakr, 1976, p. 129). Since this is a desirable con-
dition to approximate when making comparisons between results using

° to re-

different spectra, we will modify the global dispersivity Ag3
flect equation (4.50). After deleting the porosity factor G°(p,R%) in
order to simplify the comparison, equation (3.68) becomes

AV AN

2
A%y = 235 F°(p,R) | (4.51)
Xy

where
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which we compare to a similar porosity-deleted version of equation (3.67):

2 2

Ae.gzj}&%_if (p,R) . (4.52)
Thus, by plotting hydréulic conductivit& factors %O(Q,R) and F{(p,R) for
the same values of p and R, we may compare A£3° and AQS (note that the
horizontal length scales are equal for spectra of bo;h cases). This
procedure has been followed in Figure 4.1 for p = 0.1. It is seen that
the hydraulic conductivity factors are reasonably similar in the region
of R equal unity, but when.the ratio of horizontal to vertical length
scales become larger than a factor of 10.0, their difference grows
rapidly. These results, plus the restrictive oc limitations discussed
previously for R equal to unity and the natural one-dimensional limit
for A£3° lead us to favpr the spectrum of the modifiedlnagative—
exponential sutocovariance function for the solution of the three-
dimensional flow case. However, until comparisons have been made be-
tween experimental results at field sites and spectral analyses of con-
tinuous hydraulic conductivity data from these same sites, no potential
spectrum should be ruled out.

As a final comparison in thisisection, we do a sample calculation
using what we consider to be typical parameter values that might be en-
countered in a field situvation. Additionally, we make use of approxi-
mation (4.50), as we wish to assume that all data, including our spec-

tral estimates, are equivalent. Thus, we base our analysis around equa-

tion (3.67) and adjust equation (3.68) (as was done for equation (4.51))
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so that all calculations have a common correlation length scale ratio

R = A/AB. We also use equation (4.50) to adjust the one-dimensional

case (3.59), solved with spectrum (3.56), to the same data base. These
results are noted in Table 4.1, along with acfual values used in the
solution process. We have intentionally chosen, for the three-dimensional
flow case, an aquifer in which the medium is moderately stratified (R =
10.0) and have selected a maximum standard deviation for the logarithm

of conductivity (Gf = 0.5) in order that a comparison can be made between
the one-dimensional case and the three-dimensional cases. We note im-
mediately the two-fold difference between the three~dimensional cases
using spectra of modified and simple autocovariance functions. However,
the result A23 for the spectrum of the simpler function is rather close
to the one~dimensional case. These sample calculations tend to reinforce
the conclusion of the previous paragraph: even for this moderately
stratified case, which the author suspects to be in an acceptable region
of application, the spectrum of the modified autocovariance function
gives results which are significantly different from and, in light of the
previous discussion, probably more acceptable than the results from
spectrum of the simple function. However, for a simple order-of-magnitude
estimate of the global dispersivity, the one-dimensional result (3.59)
may be sufficient. This last subject shall constitute part of the dis-
cussion of the next section.

Sensitivity of Results

In this section, we wish to explore the effects of variations in p
and R (or R°) on our results. In particular, as our solution mode has
provided for continuous variation in R, we desire to examine the effect

of other values of the effective local dispersivity ratio p. Again, in
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. Table 4.1. Sample Calculation Comparison between Various Dispersivity
Equations.
F(p,R) G(p,R)
~ Or ~ OY global dispersivity
equation spectrum F°(p,R) G°(p,R) {meters)
(3.67) A23 (3.64) 5.96 6.46 99
(3.68) A23° (3.66) 2.96 3.07 50
(3.59) Al (3.56) 1.0 1.0 122
P o= L.n s o taken small ,
- n
3 -n
Gf = 0,50 s p 0.1 . 13 = .0 meters s
a,. = 0.0l meters s n = 0.1 s = 10.0
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order to simplify the analytical procedure, we assume all length scales
to be equal (R = 1.0) and will neglect the porosity factor G(p,R). Then
using the spectrum of the simple negative-exponential autocovariance
fuhction (3.64), we write the global dispersiQity equation (3.67) for

the above conditions:

0
A, = Net [ e+ & |
BT WK ARE | [ 2 o are
T )Tl ke s o ko (6 4 k3]
di

(4.53)

: 2
2 2
[ (12 G+ W3+ 1]
The solution of equation (4.53) can be cbtained by transforming to

spherical coordinates, after which the expression

S (p) | (4.54)

X ¢

Ay =D

where

(T ]2 _ e, (—w)‘/2+l
et [-v) @”[W;’T]‘“’[%”} s

F(P){. 8 o P’:\

15

Z [1+w]z[q)])/atur{'[ﬂv_”2]—‘%’[%4-.\?] y £

and Y = P/~ 5]

is obtained. The hydraulic conductivity factor F(p) has been plotted
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in Figure 4.2, From theoretical (Haring and Greenkorn, 1970) and ex-
perimental (Blackwell, 1962; Harleman and Rumer, 1963) results, we sug-
gest that the local effective dispersivity ratio could range f?om about
0.03 to 0.3. In this range, the largest change in F(p) occurs; however,
because. of the logarithmic nature of the change, F(p) only varies by a
factor of abdut 2.0 over this entire range. Thus, we conclude that A23
is not extremely sensitive to p and thaﬁ a sufficient estimate of the
hydraulic conductivity factor for values of p at other than those values
given in Figures 3.3, 3.4, 3.5, and 3.6 can be obtained from interpola-
tion between these figures and Figure 4.2.

* Finally, we wish to ascertain what the relative error would be if
the global dispersivity (3.59) with spectrum (3.56) from the one-
dimensional flow case were used in place of A£3° (equation (3.68)) uni-
formly, for all R°., 1In order to construct this comparison, we have used
-therparameter values from Table 4.1 in the previous section, with the
exXception that we have taken 23 equal to one meter, an& Have calculated
A .° for multiple values of R°. These results are plotted in Figure

23

4.3, showing ° versus R° (some error has been introduced by using a

- AQB

maximum value of o, over the entire range of R®). Additionally, by

f

using the same parameters for Az, we have calculated the relative error

involved in using A, instead of AQ °, placing this result on the same

L 3

figure. Tor R° greater than 20, ghe error is generally less thap 20%;
however, for R° equal to two, the error is approximately 250%. Thus,
to the extent that the spectrum of the modified negative-exponential
autocovariance function can be used to solve the three-dimensional flow
cdse, we can conclude that, for most obviously stratified aquifers, the

one-~dimensional equation (3.59) using the simpler spectrum (3.56) will
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Relative Error= Ef.\lwf_\ozg/;\fh
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Figure 4.3, Comparison between one-dimensional and three-dimensional results,
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give a sufficient estimate of the global longitudinal dispersivity. For
aquifers which fall into the nebulous region around R® equal to ten, an

estimate of the horizontal correlation length scale should be obtained.

This subject will be pursued further in the next section.

Appliczation of Results

Throughout much of the discussion in this section, we make liberal
use of the concept of ergodicity (Appenéix 1). We simply do not have
data from, nor are we interested in, multiple realizations of tracer
experiments in probabilistically gimilar media, Typically, we are con-
cerned with the spreading of a pollutant in a particular aquifer.
Ergodicity allows us to assume that statistical parameters obtained from
intensively sampling a single realization are equivalent to ensemble
parameters. Thus, in the following paragraphs, we will concern our-
gselves with data obtained from a single realization,‘keeping the con-
cept of ergodicity in-the back of our minds.

In the section entitled "One-Dimensional Flow Case,” it was assumed

from equation (3.53) that a quantity o, exists such that
x,=t, /g, . (4.55)

The quantity o, was referred to as the effective local transwverse dis-
persivity and represents the average local transfer of mass resulting
from local dispersion. As the global longitudinal dispersivity is in-
versely proportional to this quantity, it is imperative to have a good
estimator of o, We will‘suggest a number of possible means by which
this quantity could be estimated; however, we feel that this is a point

which merits further investigation if the method is to obtain acceptance.

J
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An obvious method of obtaining transverse dispersivities is to make
laboratory measurements on cores. This suggestion is fraught with dif-
ficulties as it is usually necessary to inject two fluids at the same
time in order that a steady-state distribution of tracer concentration
be obtained. A,dévice which may be adaptable for undisturbed cores has
been developed by Hassinger andRcsenberg (1968), provided that the grain-
size distribution is such that the beundary conditions of the solution
are not exceeded. Assuming that it is indeed possible to obtain cores
and measure transverse digpersivity at this scale, then yet another
question remains concerning the methed of averaging necessary to pro-
duce an "effective" local dispersivity necegsary to sustain equation
(4.55). (We assume throughout this discugsion that measurements at a
core scale are representative of the local phenomenon.) In particular,

from equation (4.55), we note that

- 5ga, /8, = [T d o 55 /A .56)

after the appropriate perturbation expressions have been substituted

for Oy and qq- If we assume that the covariance between %y and 4q is

small, then the appropriate estimator for o is simply the arithmetic

mean of 511 (note that a similar approximation was made in the formula-

tion of equation (4.12): o, & QI). We suspect that this assumption is
a reasonable approximation when variability in medium properties is
small; however, it may be advisable for future investigators to examine
this covariance in detail.

As undisturbed cores are frequently difficult to obtain, we also

look at other methods of predicting G Frequent attempts have been
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made to relate both lateral and longitudinal dispersivities to the median

(50%) grain size, d_., which could be determined from sieve analysis

50
of material obtained from the medium. In particular, because of the
frequently proposed linear relationship between oy and dSO’ we propose

that a similar relationship

where Bl is a material constant, could be used for the transverse dis-
persivity. Harleman and Rumer (1963), from results of laboratory ex-

periments have indicated that the relationship between Crq and d50 may
be other than linear. However, because of the limited number and type

of data points used, their results cannot be considered conclusive.

Another frequently noted relationship in the literature is

K= A[d50]2 (4.58)

(Bear, 1972, p. 133). TFor the one-dimensional case, using equation

(2.6b), we'may estimate the mean transverse coefficient Et as

E, = AB.J{(dBOf] . (4.59)

If we assume a perturbation expression for d similar to equation (2.8),

50
then upon expanding expression (4.5%9) and truncating the cubic term, we

obtain

E{, _7-2’, ELE)\E;(J {l + 3 (6';150 /C—i—;—o)g] ! | (4.60)
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Thus, the effective dispersivity o, can be expressed as

—m . 2 ,
X, = Bl dgo [\ + 3 (G'drs,o/d%) ] . : (4.61)

Equation (4.61) indicates the importance of not assuming a direct rela-
tionship between the effective parameter o and the mean of the median

grain size d For the three—dimensional case, a similar expression

50°
can be developed using the logarithm of the K process; however, the
analysis would entail finding an expression for the covariance of the
dSO‘ and a@/axl processes.

" Before the above method could be applied to a particular aquifer,
it would be necessary to dgtermimé the material constant B1 for the
medium in question. This may be a rather tedious process until a suf-
ficient body of literature is built up. Indeed, it may even be futile,
as Klotz (1973) also notes a strong influence of the uniformity coef-
ficient u ("Ungleichfdrmigkeitsgrad’) on the 10ngitudiﬁai coefficient.
We suspect the existence of a similar influence of u on the transverse

coefficient., In fact, it may be more profitable to investigate the

possibility .of the form
X = Bideot By p (4.62)

in an effort to incorporate this additional factor.
Another method, which might be more utile, would be the develop-
ment of an expression,for‘the transverse dispersivity similar to equa-

tion (3.45):

xg = By (k) IR (4.63)
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(the intyinsic permeability rather than hydraulic conductivity could
also be used). This equation is particularly attractive as we must
collect some hydraulic conductivity information for the medium in any

case. In particular, for the one-dimensional flow case, we note that

|

F,= w59 = Bsyd[K72] (4.64)

after substituting equation (5.7) and (4.63) into equation (2.6b) and
taking expected values. By substituting perturbation expression (2.13)
for the quantity in brackets on the right-hand side, and then expanding
this result in a binomial series and truncating after the third term,

we obtain

Fome 8.9 K71+ srene/m)] - (4.65)

An estimate for G s then, is

— iz

= BR[04 (3/8) (s /R) | (4.66)

A similar expression can be developed for the three-dimensional case by
using the logarithm of the K process; however, the analysis would also

entail finding an expression for the covariance of ' and 3¢/9x, pro-

1
cesses.

Tinally, we note that if a sufficiently accurate estimator for the
effective dispersivity ratio p were developed, then the mass of data
already in the literature for logitudinal dispersivities could be used

to estimate an effective local longitudinal dispersivity ey which
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could then be transformed into G- Indeed, if an accurate estimate of
p were available, then onme could use the simpler laboratory methods and

obtain g directly from cores, averaging these values to obtain o and

/Q,’
useé p to obtain G It appears to us that, for any particular uniform-
ity coefficient u, estimators such as (4.57) and (4.63), and their al-

ternate forms for o should be consistent. Thus, p is probably more a

1
function of p than of some average medium parameter. In any case, for

a few particular values of yu, there is already sufficient data in the
literature to estimate p (e.g., Harleman and Rumer, 1963; Blackwell,
1962); then, we have a fair idea of what to expect for typical values

of p and have used these values in the construction of Tigures 3.3,

3.4, 3.5 and 3.6. Howevér, before even the single decimal-point ac-
curacy required for the prediction of global longitudinal dispersivities
can be obtained, more work will be required in this area.

For the most part, we have recommended the estimator developed from
the Kozeny-Carmen equation (3.30) to estimate the porosity term P in
either three-dimensional global dispersivity equation. This recommen-
dation is based mostly on ease of use and not on accuracy. The slope
term M in Archie's equation (3.25) may, in reality, be a more satisfac-
tory estimator of this factor. Archie (1950) cites a slope factor of
3% on a loglo scale; this slope translates into a slope M of about
0.013 for a natural logarithmic scale. On the other hand, P is approx-
imately equal to 0.3 n from the Rozeny-~Carmen equafion. Thus, a con-
siderable reduction in the significancé of the porosity factor G(p,R)
(or G°(p,R°)) results if the slope M‘is used for P. This estimator (M)
for P is also more sensitive to the value choosen for n. If the mean

porosity for the medium is high (i.e., n * 0.25), then we might conclude
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that we could neglect the porosity term G(Q,R) altogether. Only in

cases where mean porosities are low (i.e., m * 0.1) does the porosity
term, when M is an estimator of P, significantly decrease the global
longitudinal dispersivity. The choice of an estimator for the factor
P will probably evolve from the experience of the investigator while
using the method.

The global dispersivity equations fequire the estimate of at least
a vertical correlation length scale, and possibly an estimate of the

ratio R (or R°) of horizontal to vertical length scales. The province

of estimation of length scales is largely found in the theory of spectral

estimation, which has been dealt with extensively by Bakr (1976). Suf-
fice it to say that, given a sufficient array of evenly spaced data
from a single realization of an experiment, methods exist to extract

an estimate of the gpectrum and autocovariance function of the process
in question. Then, by a process of curve fitting, a length scale can
be extracted from these estimates for a particular autécovariance func-
tion or spectrum. Thus, we need not concern ourselves with the actuél
mechanics; the knowledge that it can be done is adequate. Instead, we
turn to quesations more directly related to the problem at hand.

In most field situations, a single vertical array of data as ob-
tained from a well will be available to the investigator. This array
will enable him to determine a veffical length scale; however, his
manner of dealing with the horizontal length scale will largely depend
on his geologic knowledge of the aquifer. For dinstance, this knowledge,
perhaps drawn from the mode of deposition, will enable him to decide
whether he can neglect the horizontal length scale altogether and rely

on a global dispersivity from the stratified case for his predictor.
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On the other hand, if he must use one of the three-dimensional cases,
something in the depositional record may enable him to obtain a rough
estimate of what the ratio of horizontal to vertical length scales
should be. Fdr example, he may decide that a particular bar or channel
deposit may be indicative of this ratio. If all else fails, the in-
vestigator may find it necessary to drill additional observation wells
(which may Be available to him in any cése) and attempt to statistically
correlate data as, for imnstance, obtained from geophysical logs between
the various wells. If a reasonable correlation is obtained, he may
decide that the horizontal length scale is greater than the separation
distance of these wells. On the other hand, if a poor correlation is
obtained, he may decide that the length scale is less than this separa-
tion distance. Admittedly, all of the above suggestions for estimating
the horizontal correlation length scale, or the ratio R, are only
quasi-analytic; however, we feel that few alternatives exist in this
matter as it would be prohibitively expensive to drillltﬁe necessary
array of wells to estimate both of these length scales via spectral
analysis. Indeed, the above suggestions certainly are not the only
possible schemes to obtain this information. Electrical resistivity
measurements, taken over a gridded area of the aquifer, provided that
there are no extraneous influences, may also give an idea of the hori-
zontal scale, or could be subject_to spectral analysis themselves.
Thus, we do not comsider the lack of a ready-made horizontal length
scale as an impediment to the application of the equations developed in
this study.

To obtain our estimate of the vertical length scale, and therefore

an estimate of the spectrum, it is preferable to have a vertical array
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of hydraulic conductivity measurements, or at least estimates thereof.
Data of this nature are also necessary to predict the variance in
hydraulic conductivity (or its logarithm) which is another necessary in-
put into the global dispersivity equation. These data can be obtained
directly from perﬁeameter analysis of cores, which would also enable
one to measure other parameters such as porosity. If core data is not
available, then goephysical logs have a large potential for providing
both estimatés of hydraulic conductivity and porosity. 1In particﬁlar.
some companies can computer process certain suites of geophysical logs
and obtain an estimate of hydraulic conductivity (Schlumberger, 1974).
If these services are not available, it may be possible, with a minimal
number of hydraulic conductivities obtained from cores, to calibrate a
particular log, or suite of logs, of one's choosing. Rabe (1957) has
reported some success in this regard with respect to gamma ray logs of
argillaceous petroleum reservoirs. Thus, we suspect that geophysical
logs may develop into a useful tool in the estimation of hydraulic con-
ductivity spectra and deserve further consideration as a-method of ob-
taining the necessary data'for'making these estimates.

One direct application noted in the section entitled "Qualifica-
-tion of Long~Term Process' is the travel distance criterion expressed
in equation (4.45). This criterion is of practical concern in the de-
sign of any field installafion to obtain tracer information for the
purpose of calculating global dispersion coefficients., Another related
design problem is the sampling interval over which an observation well
will extract tracer from the medium. If the travel-distance criterion
has been satisfied, then we should expect that the tracer mass will be

well mixed vertically in the flow system. However, as we are in reality
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dealing with a single realization, if we were to sample only at a single

point in the medium, we would, in effect, also be sampling the comnsequence
of sume local hetervogeneity on the tracer distribution. In order to

avoid this problem, we suggest that observation wells should be designed
with sampling intervals equivalent to three or four vertical correlaticn

length scales.
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HYDRAULIC HIAD VARTANCE IN GLOBALLY ANISOTROPIC MEDIA

Background

Although not of direct interest to .this report, we cover this topic
for two reasons: First, it has direct application in clarifying the
choice of spectré used in the section entitled "Three-Dimensional Flow
Case.'" Second, it is of interest as an important aspect of inverse
problems and parameter estimation. Bakr (1976) and Bakr et al. (in
press) have étudied this aspect of .flow phenomena in porous media; using
both one-dimensional and three-dimensional flow cases; however their
three—-dimension solution was obtained by using an isotropic spectrum
similar to equation (3.64) {(i.e., all length scales were taken to be
equal). We propose to solve the three-dimensional flow case with a
spectrum which has variable lengthlscales in all directions. For his

isotropic spectrum, Bakr found that head variance ¢ is proportional

2
¢

2 .
to the variance of f process . , to the gsquare of the mean gradient J

f

and to the square of the length scale A; that is
(A 2\2 :
65 oC I 6 N . (5.1)

>This result, however, gives us little indication if a reasonable limit
can be reached for the asymptotic one-dimensional flow case. We re-
alize, from previous discussion, that the variance in head should be
zero for this asymptotic case. This condition will form the principal
criterion for selection of a spectrum in this analysis.

Derivation and Choice of Spectrum

From equation (3.18), and our (by now) intimate familiarity with

the representation theorem, we can immediately write the spectral.



121

relationship between hydraulic head and hydraulic conductivity:

2 K>
[k? %

Ppplk) =73 ]z@g{(\i) : - (5.2)

We note that this relationship applied to three-dimensional flow and is

suitable in the range of . < 1.0 (Gutjahr et al., in press). Putting

£

equation (5.2) in variance form, then, we obtain

The spectrum of the negative-exponential autocovariance function

%)
] . ka .
2 1
G :]] ( L O (k) dk (5.3)
g (evewg 20 ~
which puts us in a pesition to investigate various forms for spectrum |
;,
|
Dep- |
|
]

(3.64) will be investigated first. Putting the horizontal length scales

equal (O = Al = kz), equation (5.3) in terms of spectrum (3.64) can be
written
w B
2
2 326};2 AZP\ 3
G_b ZWT 3 2 2
w PRI P
. 00
dk . (5.4)

2
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212 2
1}\ (\<\+ka)+?‘3\<3+‘]
Now, in order to simulate the one-dimensional case of flow parallel to

stratification, we take X, small in comparison to A in the denominator

3

of equation (5.4). Then, upon transforming to cylindrical coordinates
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k, = ¢ Sine
and kg.—_k

equation (5.4) can be written

2 : drdedk
Gy = 2 @_A Nyl rLose rdrdock (5.5)

(r? 4 K ) (K re 4 1)

O Is} 0
which, after evaluation, gives the result
pid 2. 2
65 =T o632 . (5.6)
8 a¥? ,

S

To obtain the asymptotic one-dimensional case, we examine the ratio
| 2

can become infinitely large. This is not a desirable limiting result.

}\/)\3 as it becomes large; however, this quantity has no bounds and o

Using a procedure similar to that outlined in the previous para-
graph, it can be demonstrated fhat the spectrum of the modified negative-
exponential function (3.66) will give a zeré limit for the asymptotic
one~dimensional case with flow parallel to stratification. However, as
the modified negative-exponential autocovariance functions contains
both elements of one-~dimensional function (3.55) and the simple, one-
dimensional negative-exponential function, its length scales are not
equal to each other Wﬁen we take Ql = 22 = 23. This is essentially the
same phenomenon discussed in the section entitled "Comparisons of Re-

sults." A spectrum which would produce an autocovariance function with

equal length scales is
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where Yi0 Yoo and‘y3 represent equivalent corfelation length scales.
This spectrum will, by an analysis similar to that presented in the
preceding paragraph, produce zero head variance for the asymptotic case
with flow parallel to stratification and finite head variance for flow
perpendicular to stratification. However, it will not produce the
equivalent one-dimensional result for flow parallel to stratification
for the global longitudinal dispersive flux equation (3.62) that spec~
trum (3.66) does. To demonstrate this conclusion, we examine a gen-

eralized form of the integral expressions in equation (3.62):

[e o]
2 n
K2k ;
I — fl’.aqa}{l}’z‘o’s _,..f_?_'_.__}_.,
D T K24 Wi G 2 2 2
; [o%k‘«;- o U<z+k5>]
- 00 .

Xlz k\z+ B’?_’zk—; + X; \KSE_ dk (5.8)
z Ak .
[x:"k? PR YNG4 1]

Transforming to coordinates

X=¥ke o, X = hk, and  xg= ¥k (5.9)
one obtains
N

(<o}
’ ) 2.2
T, = & 6° JI RIRE X5 + Ry %3
RS X2+ R? RS Xo+ RT X2
o .
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ol RS
2 2 .2 2
2 2
X+ %G 4 %z dx (5.10)

[X‘+X2+X5+\]

where Rl = al/,a2 and R3 = a3/a2. We now take the limit of this expres=-

sion as Rl goes to unity and R3 goes to zero, giving us the result

o0
2 2 2 2
4+ Ky 4+ X :
I, = ,&6%2 Clgz Xy + 22 3; Sd}i . (5.11)
T2 o xE [XF 4 %E & Xg+]]
- 0O

Equation (5.11) is, in effect, an integral form of the asymptotic one-
dimensional result. This equation is transformed into spherical co-

ordinates
X, =r Sing Sine
XZ:\AS\“¢ CDSG 5

and Xz = I C05¢ | p (5.12)

giving the result

20 00
16:“%_ _9_; Z[J ZS\n(Zﬁdrdséde
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o 0 O
X n
= % g° Sn? dy = (5.13)
S Xy Cos?;?j
0
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as we are integrating across a singularity at 1/2. Thus, spectrum
(3.66) is the only spectrum we have found in our investigation which
produces the proper limits for the asymptotic case of flow parallel to
stratification in both head and dispersion applications. Since we con-
sider that the limiting case of flow parallel to stratification is a
reasonable condition to place on both applications, we will proceed to
solve equation (5.3) with spectrum (3.66). However, for future inves-
tigations where head variance in three-dimensional flow is the primary
concern, because of its more symmetric form, we recommend that spectrum
(5.7) be seriously considered.

Solution of Head Variance Equation and Discussion

The actual mechanics of solving hydraulic head variance equation
(5.3) with spectrum (3.66) are to be found in Appendix 9. We need con-
cern ourselves merely with the general form of the solution, noting only
that, in order to completely evaluate the triple integral, numerical

integration was again used. The general form of the solution is
2 42 2 O ¢ ©
6= 45 1 67 H (R R;) (5.14)

where R,°

1= &lliz and RB = R2/£3. The head variance factor H(Rl ,R3 )

is plotted on Figure 5.1 for continuous values of R3° and for three

discrete values of R1°. Note the consistent approach of H(Rl°,R3°) to

zero as R,° increases in value. This consistent approach to zero vari-

3

ance as R,° increases is in agreement with our concept of the one-

3
dimensional parallel flow case. Surprisingly, the highest variance of

those cases plotted occur when the length scales 21 and £3 are equal

and 22 is ten-fold greater than either of these scales. Thus, if flow
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can be visualized as being perpendicular to the major axis of ellipsoidal-
shaped local heterogeneities, equation (5.14) indicates that the variance
in head will be greater for this configuration than for any other ori-
entation of flow with respect to this medium. This configuration of

flow and lacal heterogeneities may occur, for instance, for flow in a
medium containing numerous bar or channel deposits. We also note that
for values of Rl = 0.1 and R3° = 1.0, Qe are beginning to simulate a
case of flow perpendicular to stratification. We would expect that

flow perpendicular to stratification would be associgted with the
greatest head variance in porous media. That we should find the great-
est variance agsociated with another case suggests that the spectrum

we have chosen for this solution is not general enough for a complete
study of head variance in three-dimensional flow. Thus, we end with a

recommendation that, for the three-dimensional flow case, future in-

vestigators may wish to solve equation (5.3) with spectrum (5.7).



Conclusions
Our principal conclusions concern the forms of global longitudinal
dispersivity equations (3.59), (3.67) and (3.68). Within the limits of
the first-order analysis leading up to these equations, their derivation
indicates that global longitudinal dispersion is Fickian in nature.
This result is of advantage to the modeiler of transport phenomena in
porous media, as it means that he can continue to use the convective-
dispersion equation, provided certain travel-time regtrictions are
satisfied. In relation to this basic result, we note the solution of
the global dispersive flux equation (2.21) indicates that the global
longitudinal dispersion coefficient DQ is a simple product of the mean

specific diecharge al and a global dispersivity A ; that is,

9
Dez Ae—q—‘ . ) , (6-1)

With regard to the actual form of the global longitudinal disper—
sivity, we note>that the first-order analysis and properties of sta-
tionary processes generally give us a form that is dependent on the
variance in hydraulic conductivity 02, a correlation length scale £ and

a local effective dispersivity oL such that

2
Ay oc L7678/, (6.2)

In addition while the effect of porosity variations on the global dis-
persivity is gemerally small, it acts to reduce the size of the coef-
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ficient by as much as 30%.
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The spectrum of the modified negative-exponential aﬁtocovariance
function (3.66) appears to give a preferable solution (3.68) to the
three-dimensional global disperéivity equation (3.62). This conclusion
is'largely based on the existence of asymptotic one-dimensional equiva-—
lents for the solution, with this spectrum, of both the global disper-
givity equation (3.62) and the head wariance equation (5.3). However,
we do recognize the greater utility of the siaple nepgative-exponential
autocovariance-function in spectral estimation.

For many stratified aquifers, the one-dimensional equation (3.59)
with spectrum (3.56) is suggested for use in estimation of global dis-
persivities. Otherwise, for less stratified cases, equation (3.68) is
suggested, provided thét the variance of the logarithm 1s not great

(Gf = 0.5). This latter case will necessitate estimation of horizontal

correlation length scale, which may call upon the ingenuity of the in-

vestigator. Additionally, there remains to be resolved the question of

the Fourier~Stieltjes representation of random variables for the three-
dimensional flow case.

Perhaps the greatest obstacle to the application of the global
dispersivity equation to prediction is the estimation of the effective
local transverse dispersivity o - -Several suggestions have been ad-
vanced as to how this problem can be approached; however, it will
probably take more experimental work of the nature performed by Klotz
(1973), but expressly oriented at prediction of thé local transverse

parameter o__, before this problem can be resolved. Other parameters,

II
such as vertical correlation length scales, hydraulic counductivity

variance and porosity, can be adequately estimated from core analysis or

geophysical logs.
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Another inference we can deduce from these results is that, because
of- the complicity of erogodicity, there exists a travel distance, equi-
valent to expression (4.45), which must be satisfied before the disper-

sion process in natural aquifers is classically Fickian. TIf this dis-

which we wouid model the procéss, is not independent of time. Thus, a
travel distance equivalent to several dispersivities should be considered
in any design of field apparatus to measure global dispersivities. This
travel distance is necessary for sufficient lateral gransfer of tracer

to occur, after which Taylor's (1953) assumption becomes valid.

Recommendations

tance criterion is not satisfied, then the global dispersivity, with
One of the major restrictions on the use of these results for un-

stratified media is that they can be applied only in cases where O is

relatively small. This restriction arises from the first-order analysis

used in derivation of.the three-dimensional model equation. We suspect,

however, tﬁat he approach of Buyevich et al. (1969), ﬁith appropriate

modifications to their first—ordet analysis, may produce better results

is large (i.e., o. = 1). In particular, if the La-

for cases where o c

f
particle position (Taylor, 1954), then the function itself might be de-
duced from the continuity equation. However, we suggest that the log-
arithm of hydraulic conductivity 5é used in the first-order analysis of
this equation which, we believe, will produce a superior result than
that obtained by Buyevich et al. In any case, it should be noted that
this suggested analysis is not simple.

With regard to the results presented in this report, we strongly
recommend that they be subject to rigorous scrutiny in a field situation.

2

|
rancian autocorrelation function were used to derive the variance in
o
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In particular, if a site is available where field determinations of
global dispersivities have.beén realized, and where sufficient hydraulic
conductivity or geophysical log data are available from a well bore, we
suggest that these equations be applied and comparisons be made. Even
if no estimate of the effective local transverse dispersivity @ is
available, then this parameter can be backed out of the equations and
compared to the few values available in the literature.

‘ Finally; as we have noted extensively, the effective local dis~
persivity parameter o, should be examined more closely. Several sug-
gestions have been put forth for its evaluation already; however, it
might be advisable to pursue equation (4.56) in order to analyze its
structure in more detail. Additionally, the laboratory work to quantify
the empirical equations relating local dispersivities to medium properties

should not be neglected.
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Appendix 1 -
SOME PROPERTIES OF STATIONARY RANDOM FIELDS

Much of the notation for this appendix (and report) was drawn from
a book.by Lumley and Pancfsky (1964), which also serves as a basic
reference for many of the concepts of random~fields processes. It is
suggested thét the reader may wish to review the first chapter of this
reference before proceeding further. Iﬁ ﬁhis appendix, properties of
three-dimensional processes (m = 3) will be reviewed, realizing that the

one-dimensional case (m = 1) can be obtained by elimination of two di-

mensions in lag space and frequency space.

Equations which repute to model natural phenomenon frequently con-
tain random coefficients or variables. Theselrandom differential equa-
tions can often bylanalyzed by means of the represénta%ion theorem if
they are linear, or at least are amenable to some linearizing assump-
tions. Our primary objective, then, is to introduce enough concepts .
from random~field processes go that we may state this theorem without
proof.

A Variable f'(g) is called a stochastic process on X if it is a
random variable for every x contained in ¥X. When x is a spatial variable
in some region X, then f*(§) is a random field. The stochastic process

is considered to be statistically homogeneous or spatially second-order

stationary if the autocovariance function

—~

Ny /
Covfix), flixvs)| = Res(s),
is a function only of the separation vector s and if the expected values

> :(51:52;53} (1)
of £'(x),
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Flix) = p, (2)

is independent of x. The autocovariance function is frequently normalized

by the variance ¢ of the process to form the autocorrelation function

£
P (8) = Rep(2) /677 @

When the autocovariance function is transferred from lag space to fre-
quency space by means of the Fourier transform, it is commonly refexred

to as the power spectrum fo:

o0
" ik

e

- s .
q)¥{(\§> = (2m) e Res(2)dg |, k= (k% ,ky) &
~00
where E is the wave number vector. While the autoccvariance function is
a measure of correlation at any particular lag, the power of a spectrum
is a measure of how variability of the process is spread over frequency

space. If the power of ¢ ¢ is.spread over a large portion of the fre-

£
quency space, then the process is highly correlated at small spacings.
On the other hand, if the power is concentrated about the origin, then
the process tends to be uniformly correlated in lag space. Note that

the inverse Fourier transform of ¢ evaluated at zero lag (s = 0) is

ff
equivalent to the variance of the process.

A similar set of definitions exists for the cross correlation and
cross spectrum of two processes; that is, the correlation function and

spectrum calculated for two different stationary random variables ['(x)

and g'(ﬁ) are given by
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Rgl2) = Cov[?’(&%s'izs—@)] /f? = Rygls) /19 (5)

and

M

@{9“5,) = (27)

é“&%'R{8(§)d%’ . (6)

- O

With the above definitions in mind, we state the representations
theorem without proof: If f'(g) is a zero-mean statistically homogeneous
random field, then there exists a distribution function F(g) such that

fots)

Rmé)—:JHé"“‘* dF (k) o8

- O

"

In addition, there exists a complex, three-~dimensional random distribu-~

tiom, Zf(k), such that

o0

{/(M"ZH(;E&M{(‘Q (8)

- OO

where de(k) are complex Fourier amplitudes. The spectrum ®ff is re-

lated to the complex Fourier amplitudes by

0 §3 + \°

—~

dZ (k) dZ{ (k') = | | (9)
Gee(k)dk k=K

-~ ——

where the star and bar indicate a complex conjugate and expectation,
respectively. The integrals in equation (8) are Fourier-Stieltjes in-

tegrals. A similar result holds for cross spectra of two different
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processes; that is

0 kK
dZi (k) dZq(K) = (10)
Geq ()l h =

Manipulation'of many random differential equations by means of relations
(9) and (10) allows for the determinatibn of transfer functions between
spectra and/or cross spectra.

In the three-dimensional case, it is logical to explore the relative
amount of correlation along each of the major axes. A measure of this

correlation is the integral scale, which for three dimensions may be

defined

il
o
o

o0
>\'| :JPH.{Q\)dSI (11)
O -
. . .th -
where the separation vector s contains only the i component, the others
having been set equal to zero. This expression gives us the average
volume over which correlation occurs and is related to the correlation
. Lth . , .

length scale in the 1™ .direction. It should be noted that integral
scales do not alwavs exist along every principal axis of all autocor—
relation functions.

Correlation-scale parameters are contained in every spectrum and

autocovariance function. If an integral scale exists, then correlation

scales are some constant multiple of the integral scale. That is

, 2,3 (12)
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where ay is the correlation 1§ngth scale and ¢ is a constant {(when c¢ is
equal to unity, the integral scale Ai will generally be used to connote
the correlation scale). If an integral .scale does not exist, then the

correlation scale is usually equivalent to that lag distance over which

the autocorrelation function is positive. That is, if p__(s) has no

fi
integral scale, but pff(Si)»iS equal to zero on the Xi axis, then ai is
taken to equgl 549 provided that s, is unique. Correlation length
scales determine isotropy of the correlation structure of the process.
If a, is not equal to aj (i # i), the process is considered to be statis-
tically anisotropic in space.

As a final note to this appendix, it should be acknowledged that
the probabilistic basis for the above formulae is an ensemble of reali-
zations of the experiment in question. An ensemble is the cbllectign of
all possible realizaticns of the process over the entire space. An en-
semble average (or probability average) at a fixed point would be the
average of all observations taken at that point —- not duplicated mea-
surements but results from a new experiment or ensemble member taken
repetitively. As an ensemble,'in this sense, is seldom available . to us
in hydrology, a question arises as to our ability to transfer information
to and from a éingle realization of the experiment. As it happens,
spatial averages are asymptotically equivalent to ensemble averages,
provided that the spatial sampling domain is sufficiently large. The
concept of interchangeability of spatial and ensemble averages is
generally referred to as ergodicity, and will be used extensively in

this report to explain the transfer of informationm.
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Appendix 2
GEOMETRIC MEAN AND LOGNORMAL DISTRIBUTION
In this appendix, the priméry objective is to point out the relation
between the geometric mean and the lognormal distribution. TFor a more
detailed analysis of the lognormal distribution, the reader may find the
book by Aditchison and Brown (1957) to be helnful.
The moments of a lognormally distributed random variable X can be

most easily determined by utilizing the transformation
Y = Qn{)(] (1)

where Y is a normal random variable. The mean Ux and standard deviation
O of the lognormal distribution follow directly from the law of the

unconscious statistician (Ross, 1972, p. 35):
.
\JX :-:QXP{\JY“{‘G\\}/Z] . (2a)

/e
and Gy = Py {exp[@f}-\g (2b)

where uy and GV are the mean and standard deviation of the normal random

variable Y, respectively.

The geometric mean is commonly defined as

Xs:[ﬁxa}% . " (3)

i=y
This expression can be equivalently written in terms of logarithms as

ngexP[G] , G:if@%& . (&)

:
=
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However, if Xl, X2, ... are independent, identically distributed random
variables, all greater than zero, with mean M and standard deviation
O then, by the central limit theorem (Ross, 1972, p. 53), G is an ap-
proximately normally distributed randem variable with mean Uy and
standard deviation oy/n. In turn, Xg must then be a lognormally dis-

tributed with the approximate mean

Xy = exP{p\(ﬁL 6‘:{2/2n2] . (5)

As n becomes large, the expected value of the geometric mean is simply

the exponent of Uy’ or

Xq = exp[\JY] , N-—»o (6)

Thus ig is the population equivalent of the geometric mean. Note that
the above derivation is not dependent on the underlying distribution of
Xi' However, if Xi is lognormally distributed, then Xg is equivalent

to the median of this distribution.
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Appendix 3
CONVECTI&E—DISPERSION EQUATION

A rather nice derivation of the convective-dispersion equation for
flow through porous media is to be found in Wilson and Gelhar (1974).
The following defivation is largely excerpted from this source.

Consider a fixed elementary volume V, defined as the interior sur-
face 8, containing a sclute ¢ in a porous medium with porosity n. The
liquidvsolid.matrix is regarded as.a continuum. A balance for thé 80~

lute mass in V may be written

_%Jncol\f = »J qc QdS—JfN».gdS—erdV (1)
Y

v S S
where
q specific dischaige vector;
n unit normal to surface;
n porosity;
r source or sink of solute in V;
and N local dispersive flux of solute.

By applying the divergence theorem to the surface integrals, and by

assuming that V is not time dependent, we may write equation (1) as

J%{nc}d\f - -~ jv. (qc + Tf\}vjd\f 1-Jr av - (2)
v v v

Since the volume V is arbitrary, equation (2) yields

%[ﬂC]+V»[¢i—1— [}J\’]w(\ __: o -' (3)
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Most commonly, a Fickian model is chosen for the local dispersive flux

vector, in which case

N=-F.Yc = -nD Ve (4)
where
E local bulk dispersion tensor;

el

and mechanical dispersion tensor.

Note that the local bulk dispersion tensor E is reduced from the mechan-
ical dispersion tensor D by a factor of the porosity. The mechanical
dispersion tensor is considered to represent the total dispersion in

the fluid phase due to a Fickian process. Equations (3) and (4) repre-—

sent the principal vehicles for the analysis presented in the text.
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Appendix &4
MOVING COORDINATES
For steady state, mean uniform flow in the Xy direction, the moving

coordinate &£ can be defined as

E= % —-1q/n (1)
where
X, Fulerian coordinate;
al mean seepage velocity in Xl direction;
n mean porosity;
and t . travel time.

The moving coordinate & represents the location x, with respect to the

1
average particle position after some specified time t. (To obtain the
entire effect of this.coordinate, consider £ to be constant. Since 51

and n are flow system constants and time t continues to operate under

any circumstances, %, must increase at a rate equivalent to tql/n.

1

Thus, £ is a moving coordinate in the sense that it "moves" with the

mean velocitv.)
If £(&,t) is a function of both time and peosition, then its total

derivative is
ngﬁh%%« dy + 4 dt (2)

Hence, the partial derivatives of f(£,t) with respect to time and space

in Fulerian coordinates are
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l

AEL| Y. 3 |+ 2 3
ot hxoeg e oty
_M(g,ﬁ\ - Qj_k _ g, ot \ (4)
0t x(b ot 1 A ' 5.§ t
and
R0 | pflsl) e
bx\ + ag t

Transformations of this type are frequently employed to reduce the number

of wvariables in first-order partial differential equations.
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Appendix 5
NEGATIVE-EXPONENTIAL AUTOCOVARIANCE FUNCTION
To derive the negative-exponential autocovariance function in three

dimensions, we first assume ths spectral form

N
(b(l{g}: T -y 2 (L)
[uf"k?wa ke 4003 kg ‘]
where N is some normalizing constant, and then take its Fourier trans-

form

ol
R(g) =N explits eldk . (2)

{c:, kv\a WG4 IJ ¢

The three-dimensional transformation

(3)
K= Q\\f(‘ ; Ko = C!?_\'i?_') ancdl Xz, = q?ﬁ)ks

is adopted, from which equation (2) can be rewritten as

Ny + Xz Mg
3

RS +><a+x3+s]

where

CJl Oa £

A transformation to spherical coordinates
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[ NG
A

= pCos ¢
M = P Sin® Cos®
Py = P Sing Sine 59
and
rt o= xZexE a4 xE
» = v CLosx
X, = v Sinx Cosp
Xy = T Sina SR - (6)

is adopted. The argument of the exponent can be written

AR o= féi %Cog(ng-D()Jr Cos(@g+x)

+ Cos (9—@)[Cos(¢—o<)— Cos (& + I{ ) (7)

Because of the symmetric nature of the function being transformed, we
may choose the radius vector p to occupy any position we please. In

particular, we let p lie along the Al axis and chooge 8 equal to §.

This causes the simplified form
A.X = prlosx (8)

to appear in the argument of the exponent. Equation (4), in spherical

coordinates, then becomes
o0 T 2T
R(S) N exp[\PF‘COSD{] TaS‘m\xdf})do(dp

.9
G, 9 Uy . fre o+ :\a
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Integration of the first integral is obvious. Integration of the second

yields
I
. . . 2_ R l
f&mxx exp[\pr Coscx]do« = &F Sinpr . (10)
o
Thus,
o0
R =4TN 1T Sinprde (1)
a, a9, P [\"?‘—\—.l]
o]
which is the Fourier sine transform of the function r[r2 + 1] 7. Erdélyi

(1954, p. 67, no. 2.2 (35)) gives this transform as

| /2 ,
Rig)= L exp{_(ifm_\_ Sz 4 %’_}_)‘ J . (12)
G, G, Oy

- . . 2
The normalizing constant can be obtained from the variance o of the
process (i.e., when the autocovariance function is evaluated at zero lag)

and is found to be

— 2 d, d, s
N B S T\-ZZ““ ) (13)

Substitution of equaticn  (13) into equations (L) and (12) gives the

proper form of the spectrum and autocovariance function.



153

Appendix 6
MODIFIED NEGATIVE-EZPONENTTAL AUTOCOVARIANCE FUNCTION
To derive the modified negative~exponential autocovariance function,

we first assume the spectral form

22
N oz ks

2 2 s L
2
{O\? KP4 ad kg + ay Kk + l]

G

where N is a normalizing constant, and then take its Fourler transform:

oo
N a?Wlexplik.gldk . (2)

R(S> 0 2 24y 2 2, 2 -5
[ai k,+q2\<2+qg\<,§+aj
-0

o~

il

The three-dimensional transformation

Xi=ak , =k, , and xy = Oy Ky (3)

is adopted, from which equation (2) can be rewritten as

o0
2 .
R(s) =N x& exp 1% A0+ %503)] e “
@G 9y [X.?“ tOXg o+ Xa + |]5 -
- OO

where

N, = =1 ) hZ: Sz , and /\3:: EE .

o a, a.

Equation (4) can be written

o0

Rig)=-N__ ><g,°‘1(><5)e><p[a>mg,><5}ol><1_,> (5)




where

(X+X—+F\1

2
and A“"_'Xz,'&“!

The integral I(x ) can be solved by using the polar ccordinate trans-—

formation

2 2

: 2 2 . 2
P = >\; +>\g (6)
which gives the equivalent integral
oo 2T
T(xs) = exg[mp Cos_@]rc}iedr 7)
[rz-x- 92]3 o

where 8 is the relative angle between p and r Integration with respect
to 8 results in a zero-order Bessel function J (pr) (Abramowitz and
Stegun, 1965, p. 360, no. 9.1.21), allowing equation (7) to be written

I(xy) = ”2J[/a (r2)” Jo(pr)dr . (8)
N

5
+A2

Equaticen (8) is a zero-order Hankel transform which, when evaluated

gives (Frdélyi, 1954a, p. 360, no. 8.5(2))

I(xg) = I_Ef,_‘izé(_‘\@ (9
: 4 XE4 |
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where Kz(Ap) is a second-order modified Bessel function. Thus, equation

(5) can be written

2 .
R(s) = TPN | xZKalaplexplinsXs]dx, (10)
40,9, Oz xS+
pays )
or
<D
L K, (Ap) A
<) = N ol ,
Rig ha o, 2 (AP e%P[‘ 3><5]dy5
_ :
‘Ka(Ap)eX$)[;h3X3]‘ix5 ' (11)
Xz + |

-0
The recurrence relationship (Abramowitz and Stegun, 1965, p. 376, no.
9.6.206)

Ko (z) = & K (2)+ Ko(2) (12)

is used to rewrite equation (11) as

00
R(S):IPQN 2 K\(Ap>exp[i>\5X3JdX3
- L}'C]‘(jadg P [X; <+ |]‘/2'
oo i oo
+(KO(AP)8><P [ir\sxs]dxfjKZ(A@E”jT[iMxﬂdx% (13)
3
-0 - OO

which is the Fourier transform of three different modified Bessel func-

tions. These transforms are available in Erdélyi (1954, p. 56, nos.

1.13 (43, 44, and 45)), allowing equation (13) to be written
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2. a5 l/Z
SY) = m le [— Nyt 5 ]
Rig) fasal )3 OP (7%t &)

-\/z

/2
T2t eve - (38 4t
+ED‘549] cx\o[ (W% +9Y) ]
2 25/4 2 2‘/2
B} L (5T K[ (S ST (14)
Using the identity (Abramowitz and Stegun, 1965, p. 444, no. 10.2.17)

Kajp(2)= (L .1;)'/% + “‘z“) exp[-2] S

equation (14) can be written

4 (pagjg’l) e><P[- 5‘]» (16)

l{-d\(}203
where
o 8a? ¢ ST P 2 /5%
5 = vJa; + 2/U2+ %5/05
and )Oa = sy /af + sz /ar

The factor N can be found by evaluating R(s) at zero lag. In particular,

N= % qaq,q,6% | (17)

vﬁz

which, when substituted inte equations (1) and (16), gives the proper
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form for the spectrum and autocovariance function.
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Appendix 7
EVALUATION OF INTEGRALS WITH SPECTRUM OF SIMPLE
NEGATIVE-EXPONENTIAL AUTOCOVARTANCE FUNCTION

In this appendix, integrals of the form

o0

[kz + k;]a

I, =N '
[ T T s b ) ]

ks )
[afkd + ol + ob kS + 1 ]°
and
: 0
T _Njg »\<§+kz
2 ‘ [kﬁek§+kéjgxﬂk?+0%(k§+k§ﬂ
dk |

' =2
Talki+ af ke + otk +1]

where N is the normalization constant from Appendix 5, are evaluated.

Throughout the evaluation process, a, is assumed to be smaller than or

3
equal to either ay or a,- Transforming to spherical coordinates
ki, = rCos @
k, =vr SingCose
ky = SinG Sino - 3)

equation (1) can be written
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T o0

L:J it d 1ar
N [opCos®¢ 4+, Sin® ] /

de

. - _ . 2
J Eagle Cos®d + r?Sin*g (af Cos?p + af Sin®8) + \]
@]

Letting J(¢,r) equal the last integral on the right-hand side, this

integral is rewritten as
we

de
](glr) - q‘ i
[Az 4 82C0%2@]2
o

where

2 .
and B = e [Cj% - Gi] 51ﬂ2¢

Although simple in appearance, the integral is net

To solve, one applies the transform

BCOE’JQ.: Atan v

which allows equation (5) to be written as

g, r) =

A = T‘a[czla(loszﬁ + ng S'xh2¢] +

where

,_1[ oo U[B ﬂ?{ " U]Va

(4)

(5)

simple in solution.

(6)

(7)
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o = tad {B/F\]

After further adjustments, equation (7) becomes

. Cos®ud
SJ
Bor) = b os”uduy S (8)
[B (1—%in U) AeSinzu]
Yet another transformation
V= Sinu (9)
is applied to equation‘(S) to obtain
‘ .
(1~ dv |
(o, = _&g ' s (10)
R [B5- (At+ BV ] |
where
B/A
e
D+ &%/R%]
Equation (10) is split into two integrals
¥

vedv

J _
) = A?’EJ[B A+B)VL](/Q J[&—(MB R e

which can be solved by straight~forward integration:

T 2N+ B
3(¢,r) - AS § E¥L+ Balsﬂzg ’ ‘ | (12)
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Putting L{¢) equal to the penultimate integral on the right-hand side of

equation (4), one obtains, after proper substitution for A and B,

. [d?_ra 4 2} dr 13
L = Ls
(8) | n [ [(barawL (et ria l)]s/cz

where

be = aZCos?g + q§ Sin?g

CZ

th

a® Codg + dg Sintd

2 2 2
and © d_ = b™ + ¢

Splitting equation (13) into the two integrals

'- 2dr
L(®) =T dQJ A N
o [(bar'm)(czr“- ‘ﬂy

o

4+ 2 { dr (14)
[(*r241) (cPre+ ﬂwa

o]

two Mellin transforms are obtained. From a book of Mellin transforms

(Erdélydi, 1954, p. 312, no. 6.2(35)), one obtains the solution (after

substitution for b, ¢, and d)

L(p) = g_g_g[\_ ot~ g Smegﬂ

2 a%
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2 2
. At -d L2 .
+ ?DZF (-—- -‘z- 3, ~—-——2-n(—3—a—3~ Sin ¢)} (15)
where
q: CJ\‘:ua
and 9 1(3 bscsz) is Gauss' hypergeometric function. The solution could

also have been obtained in terms of unequal length scales a, and a,s

however, setting these scales equal simplified the final integration.

In particular, this integral can be written

T/ . '
= ZJ ) s (16)

[otg Cos™ + ¢ Sin® %]

to which the transformation

U= Sin°g : (17)

is applied, obtaining

I, j [L(sin'm)] v* gy | a8
~ ~ Ve
N [! O(Q O({- U:’ (\wu)
We allow
co= ez P ‘ (19a)
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and [ = T3 = | — = (19b)
where P = D({:/o(ﬂ and R =— a/as

Expanding equation (18) in terms of eguationg (15) and (19) and equation
(13), ‘Appendix 5, one obtains

2 2

[, = F(p, R) (20)

Xy

where

. oF (3/2,3/2; 3; Du)du

{

2.
+5J_,__L__Wﬂ._~.m F (2/2,1/2; 3, Du du} . (21)
e ’

Equation (21) was integrated numerically with a standard program package.

Values for Gauss' hypgrgeometric function were obtained by summation of
Gauss' hypergoemetric series (Abramowitz and Stegun, 1965, p. 556, no.
15.1.1). Results were checked against the case p = 1 and R = 1, which
has a simple anglytic solution.

Integral (2) was similarly converted to spherical coordinates (3),

giving the result
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oo
L
o3
I _ S d o dr
N ? Sincd
4 [vxECosﬁ-x-o«{.t )
2T
3 de - (22)
[g';’-racos};a” +r2 gty (Q%Cos;ae + Q%Siﬁae)—l- \]
O

The last two integrals on the right-hand side are the same as the last
two in equation (&). Therefore, evaluation of these integrals will give
precisely the same result as equation (15). Hence only the solution

form for the final dintegration is noted:

w/e. o
l.@.:aj ] Sin'e e (23)
N e Co 4wy Sin ]
Using transformation {(17), the form
| .
loe 1 [L(sm"Wﬂ v cdu (24)

N Xy i [\ w‘(%_ﬁ&iﬁi)u] ‘ [I "U]\/?_

is obtained. From equation (19) and other results of the previous in-

tegration, a solution of the form

2 2
= 229 G(p,R) (25)
e X 4 |

where
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N J (\~Du/2)u
R

ER ) [-cfi-u]”

G(p,R) =

F (3/2,3/2, 3, Du)du

- _F (3/2,\/2,3;Du)du

A-E)J—| & 2 g fze)
J [- -]

is obtained. Integration of this expression was carried out numerically

in a fashion similar to integral (21).
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Appendix 8
EVALUATION OF INTEGRALS WITH SPECTRUM OF MODIFIED

NEGATIVE-EXPONENTIAL AUTOCOVARIANCE FUNCTILION

In this appendix, integrals of the form

. 2
non (] (iG]
e fo”dr kS 4 \<§f [CXQ o o (WG k;):(
ag ks di | (L
[ci,akla + o \é + o k: + ‘jz |
and
00
I, =N S+ kG

J

) [ G + k:][«ikﬁw o (5 + \«';):I

.

a; & dk

2 % 2)
24,2 A
[G\Qk? # kG + Ak ¥ \]

where N is the normalizing constant from Appendix 6, are evaluated.

Throughout the evaluation process, a. 1s assumed to be smaller than or

equal to either a; or a,. Transforming to spherical coordinates

lﬂ = Cwas ¢
ka =r Sin@ Cose
k% = ¥ Siﬁ g Sine )

equation (1) can be written
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i ' 2T
7

I, = NG;;?;J Singdg Sinfede

: [wlCo§¢—+u£SW3¢]

© o

re dye

5 (4)
[(G?Coe?‘;ff 4 Sinf (0F Cos?e + af Sine)e®+ ‘]

o

Letting J(¢,0) equal the last integral on the right-hand side, this in-

tegral is rewritten as
co

' r2dr
- - _ (5)

where
' p . 2 2 ..
E= o Cos®& + SWFﬁ{dzCofe + d55W@6}

which bas the solution

g, 0) = “/[165‘3/2] : , (6)

Putting L(¢) equal to the penultimate integral on the right-hand side,

one obtains

/2
5in® o de

L(g) =T
4 ) [a+ Esacoe?e]s/a

(7

where

2

A

i

af Cos?@ + of Sin®
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and B {Ci - JSH’\

after proper substitution of equation (6). To solve equation (7), the

transformation
B Cose = Atonu ' (8)

is applied, which allows equation (8) to be written

Ve
L(g) = J[Es Costu — A Sivd u] du (9

(¢}

ABz

where
an [(5,/ﬂ]
A further transformation of this type
V= Sinu ' (10)

allows equation (9) to be written as

/2 3 2 5 I/?_
L(g) = WLA+BJ LA dv (11)
e T 0 -vE

where

¥ = E’/[A2+ B?,]\/a
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The solution to this integral, as given by Gradshteyn and Ryzhik (1965,

p. 276, no. 3.169.9), is

)/2 T

L(¢):_~uii_,_e’__#

¥ (12)
L AT R AZ 4 B

where E(y) and K(y) are complete elliptic integrals (Byrd and Friedman,

1954, p. 9). Setting length scales 2y and & equal, this result can be

written in the form (after substitution for A and B)

T a Bt K [ @3)
L(¢) = 5 2 e . 2 AN B o
4[0~*Q3]S”“ & [q Cosﬁﬁ+d55wl¢]

where

e
b= {x — cxé/c{&] Sin ¢

Thus, equation (4) can be written

/e ,

o [w Cos?@f + &, 510 Qj]

to which the tramnsform

U = COB@/ ) (15)

is applied, obtaining

I P NCBJ [‘ U?'] \ COS U) di ' (16)
|
l"—°(£/°(§,>+ OQ{;/OQ_’
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We allow

C=1-xy /oy =1 =p (17a)
and D= - agy/af = - /R (17b)
where

p = Mé/Mﬂ ond R = Q/dg

Expanding equation (16) in terms of equations (13) and (17) and eguation

(17), Appendix 6, one obtains

r= %00 F(p,R) as)
Xt
where
T
F(P,R)mz_ijtwﬁ E (%)
T DR [CU**P] [Du?‘~1 l/R2]

- K (’t)g du , (19)

Equation (19) was integrated numerically with a standard program package.
Values for complete elliptic integrals E(t) and K(t) were obtained from
very accurate polynomial approximations (Abramowitz and Stegun, 1965,

p. 591, no. 17.3.34 and p. 592, no. 17.3.356). Results were checked
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against the case p = 1 and R = 1, which has a simple analytic solution.
Integral (2) was similarly converted to spherical coordinates (3),
giving the result

T AL

5'\"15® dg
© [‘qﬂ Cos® @ + %4 szg]o

I, = NaZ Sintede

rz dr (20)

- ' 3
5 [(G,?"Cos?;é + Sin’g (di Costo + dgsmze))rzir 1]
The last two integrals on the vight-hand side are the same as the last
two integrals in equation (4). Therefore, evaluation of this integral
will give precisely the same result as equation (13). Hence, only the
solution form for tﬁe final integration is noted:
/2

- J
Ia - 2‘\1(:#;&\ L((D’) 5”’1 qufé . (21)

/ [NECOszQS + 0 Sih?@j

Using transformation (15), the form

{ 2 »
2 _Grl L Ces'y) du
[, = 2N9s (v ) (22)

) / {\ﬁ(\— Y /oxg )+ 0<{/o<£]

is obtained. From equation (17) and other results of the previous in-

tegration, the solution is of the form

e e
I, = C‘;G G(p, R) (23)
£ .

where
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G(pR):.?:mif[ |- u” E ()
. ¥ ™ DR ) D:&%“P] [Dua+\/R2]

- K(i)g du. (20)

Integration of this expression was carried out in a fashion similar to

integral (19).
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Appendix 9
SOLUTION OF VARIANCE FQUATTION FOR HYDRAULIC HEAD

In this appendix, an integral of the form

o0

k?
T = : . k Yelk (L)

is evaluated where the spectrum from Appendix 6 is chosen to represent

¢(k). Substituting for o(k), then, one obtains

o0
2
e %Q'QZ%GQJ([ k‘z 2
n e [kla + Kk, o+ k:]
) .
q?? K3 —-—o‘.k . ' (2)

- 2, 2 <
{d?kﬂ% ks + og ks ‘*‘]

A transformation into srherical coordinates
ak = r Cos g

qékzzzr Sing Cose

it

gz ky = r Sing Sine (3)

gives the result

il

N ‘
1= & B%dfia2) Co?gsin®gdy
T oaf _

<

2n

Sinede

2 2 2 2.2 2 2.2 ¢t Gitole U‘+Q5
[qa o Costd + o Ay Sin'g Cos'e +a; O Sint@ Sin J
[4}
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The last integral on the right-hand side is easily solved, giving the

numerical result w/16. The penultimate integral can be written

w2
Sint0de
J(g) =4 s (5)
: [ A2 sin o+ 8]
(=]
where
% AN 2 2
A= af Sintg (Qa*dgj
and B = Cl; O‘.:% Cos® ¢ + C?% o{% Sint g .
The transformaticn
ASine = B Ltan v . (6)
is applied to equation (6). This transformation gives'the result
-8 ) "L.
1( @) = l Cosu Sintuduy (7)
BA’Z

v
[ cogu-pisintu] '
O .

where
~1
& = tan {A/EJ ;
Integral (7) can be further simplified by applying the transformation

-\/2. '
AR R ] Sinx = Sinu (8)
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which gives the much reduced integral

w2

2-3/2 .

1(B) = %[Aam“a] Sin“xdx . (9)
[»]

Evaluation of integral (9) gives the form
_ 2N\B/2
) = w/[B(R+8) ] ' (10)

Substitution of this results into equation (4) produces the rather com-

plex expression (after substitution for A and B)

T
| J Cos? @ Sinfgdp
[a]

2.2 2 12T ‘ 2 5 T
(0505 Cos®@ + alcl Cosp] " [afal sin’g + o o Cos's ]

Finally, making the additional transformation

v= Cos ¢

(12)
one obtains the form
I = ale?H( R,, Ry) (13)

where
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\
f ! ve— Ut
H(R,,R;) =

TR T
3 ) [ﬁ?+(\ﬂ-R?)Jj

du
[R‘?_H (R‘z— l/R;) 02]5/2

(14)

/

and R, = a./a, and R, = This last expression was evaluated nu-

17 %1% 3 T 8yl

merically using a standard program package. The results were checked
against the values Rl = 1.0 and R3 = 1.0, which is easily evaluated

analytically.
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