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ABSTRACT

Equilibrium phase relations in the system CaO—MgO-Si02~H20-C02 can be
calculated if the necessary thermodynamic data for the phases involved is
available. Where éuch data is lacking, as for the minerals rankinite,
spurrite and tilleyite, it can be either estimated or computed with a fair
degree of accuracy using experimentally determined phase equilibria. The
thermodynamic data can then be utilized to construct temperature-pressure

and temperature - X topologies which, in general, correspond quite

CO2

closely to published experimental equilibrium curves. Activity-activity
diagrams can also be constructed with this data over a range of temperature
and pressure to illustrate isochemical processes such as dehydration and
decarbonation as well as to show the effects of the changing chemical
potentials of the components in the system upon mineral stabilities. The
phase relations depictéd in the activity diagrams compare favorably with
the phase relations commonly observed both in the laboratory and in natural
systems. In addirion, these diagrams reveal that the silicate minerals
monticellite, merwinite, Ca~olivine, rankinite, spurrite and tilleyite are
thermodynamically stable with respect to the carbonates calcite, dolomite
and magnesite only at temperatures 2'60000, total pressures <100 bars

and large chemical potentials of the Ca0 component.
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standard enthalpy of formation from the elements
of the ith species.

standard enthalpy of reaction at T and P.
coefficients in equations (10) and (11).
equilibrium éonstant.

coefficient in equation (13).

chemical potential of the ith species.



e - standard chemical potential of the ith species.
_ - number of moles of the ith species in the ¢th
1,0 phase.
Ni - mole fraction of the ith species.
vy - reaction coefficient of the ith species.
P ~ pressure (bars).
Pr - reference pressure (bars).
Qr,T,P - activity product of the resaction at T and P.
R - gas constant, equal to 1.987 cal/mole-deg.
S; - standard third law entropy of the ith species.
8598.15,¢ - standard third law entropy of the ¢th phase
at 298.15 K.
AS;,T,P - standard third law entropy of reaction at T and P.
T ~ temperature (Kelvin).
T, - reference temperature (Kelvin).
Vi - volume of the ith species.
V; - standard volume of the ith species.
v - partial molal volume of the ith species.
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INTRODUCTION

Metamorphism has been classically treated as the mineralogical and
gtructural response of rocks to changes in temperature and pressure in
systems which are closed, and therefore isochemical, with respect to all
components except HZO and COZ' However, geologic studies indicate that
many Tertiary intrusives in the Southwestern U.S. were emplaced at very
shallow depths and actually intersected regions of dynamic groundwater
flow. Consequently, the metamorphism occurring around these intrusions
would be indicative ¢f an open system in which composition is an additional
variable according to classical thermodynamics. The purpose of this thesis
is to study the effects of changes in both physical and chemical parameters
upon equilibria in the system CaO—MgO-—SiOz—HZO-CO2 through a series of
thermochemical calculations. Temperature ana pressure will be considered
as variables in the physical enviromment while the chemical envirconment
will be described in terms of the changing chemical potential of components
in the gystem. The effects of mixing H20 and CO2 in the fiuid phase will
also be studied. The range of conditions considered will parallel the
contact metamorphism of siliceous dolomitic limestones; namely, temperatures
and pressures up to 1100°C and 1000 bars. This thesis is not meant to be a
definitive study of the contact metamorphism of siliceous dolomitic lime-
Stones but is rather an appraisal of the thermodynamic methods that can
be utilized to model metamorphism.

The standard states adopted in this paper are: the pure phase at

any specified temperature and pressure for solids and liquids; for gases,



rhe hypothetical ideal gas at any specified temperature and 1 atm.
pressure; and, for components such as Ca0(c) and Mgl{c), the pure solid
oxide at the temperature and pressure of interest. The standard state for
ioms is a hypothetical one molal soluticon at 1 atm. and the temperature

of interest.

COMPOSITIONAL AND THERMODYNAMIC CHARACTERISTICS OF THE SYSTEM

The compositions of minerals in the system CaO—MgO-SiOZ—HZO-CO2
considered in this study are listed in Table 1 and plotted on the
compositional triangle CaO-—MgO--—SiO2 in Figure 1 assuming the presence

of ubiquitous H,0 and CO,. Most of the necessary thermcdynamic data for

2 2°
these phases is available in the literature (e.g., Robie and Waldbaum,
1968) and is tabulated in Appendix A; however, no thermodynamic data what-
soever is currently available for spurrite and tilleyite and only a value
of AHE has been established for rankinite. To include these minerals in

the following calculations, an estimation of their thermodynamic prop-

erties was first attempted as described below.

ESTIMATION OF THERMODYNAMIC DATA

Heat Capacity

It has been shown that the heat capacity of a mineral can be closely
approximataed by summing the heat capacities of its component oxides in
stochiometric proportions; similarly, the heat capacity power functionrof

a mineral can be estimated using the power functions of the appropriate




Table 1.

Composition of minerals in the system CaQ-Mg0-Si0

considered in this study.

Mineral Name

Quartz

Lime

Periclase
Portlandite
Brucite
Aragonite
Calcite
Magnesite
Dolomite
Huntite
Wollastonite
Ca-olivine
B-larnite
Rankinite
Clinoenstatite
Forsterite
Chrysotile (serpentine)
Talc
Monticellite
Diopside
Akermanite

Merwinite

Chemical Formula

2

—HZO—CO

2

Si

0

Cal

MgQ

2

Ca(OH)2

Mg (0H) ,

CaCo

3

CacCo

MgCO

3

3

CaMg (CO,),

CaMg3(00

CasSio

Y-Ca

R-Ca,510

3

2

2

Ca381207

MgSi0

3

Mg,S10,

Mg,51,0, (0H),

Mg

3

8140

34

S5i0

4

4

10(08)

Calgsi0,

Calgsi,0,

CazMgSiZO7

Ca

3

HgSi

298

2



Table 1, cont.

Mineral Name

Chemical Formula

Tremolite CaZMg5818022(OH)2
8 it .

purrite ZCAZS:LO4 CaCO3
Tilleyite

Ca581207(CO3)2




Figure 1. Triangular composition diagram (assuming ubiquitous

HZO and COZ) illustrating the composition of minerals

in the system CaO—MgO-SiDz—HZO—COZ.
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components (Helgeson, 1968). An alternate method of estimation would
result if the heat capacity contribution of each of the oxide components
;n the mineral to the mineral's total heat capacity was determined. That
ig, if the number of moles of the oxide in the mineral is known along with
the mineral's heat capacity at a specified temperature, there should be
some value for each oxide which could be multiplied by the number of moles
of the oxide and added to the contributions of the other oxides determined

in a similar manner to obtain the known heat capacity of the mineral., Thus:

Cpé = alnl,w + aznzrﬁ + a3n3,¢ F e (1)
= 7 a, 10y 1,6 (2)
where @ refers to the mineral under consideration, Cp is equal to the heat
capacity of that mineral at some specified temperature, nl,ﬁ’ nz’g and 1'13,9j
r epresent the number of moles of oxide components 1, 2 and 3 in one mole
17 3 and a, are the coefficients representing the

contributions of oxide components 1, 2 and 3 ﬁo the heat capacity of the

of the @th mineral and a

mineral at the specified temperature. The heat capacity contributions of
the component oxides obtained in this manner are not necessarily equivalent
to the published heat capacities or heat capacity power functions of the
pure oxides, but instead reflect the contribution of the oxides as integral
parts of a phase to the mineral's heat capacity.

For the minerals in the system under consideration, equation (1)

can be rewritten

P9 = *1%ca0,p T *2Mg0,8 T *3%si0,,8 T %Pu0,6 T 3%c0,.8 (9

such that the temperature dependence of the heat capacity is

(o (e (s (e (e 0



The coefficients airrepresent the contribution of the component oxides

ro the heat capacity of a mineral, and an expression of the conventional
form for heat capacities, viz. Cp = a + bT + c/Tz, can be formulated for
each. By doing so, the heat capacity power function of a mineral, usually
described by this polynomial because of its ability to portray the depen~
dence of heat capacity on temperature, can be obtained by the simple sum~-
mation of the heat capacity power functions of its component oxides in
stochiometric proportions.

In order to estimate the heat capacity contributions of the Ca0, Mg0Q
ana S:i.O2 components, experimentally detérmined heat capacity power func-
tions of minerals in the system CaO~-MgO-SiO2 were used to calculate numer-
ical walues of Cp at lOOOC temperature intervals. If n minerals are chosen,
n number of simultaneous equations in the form of equation (1) can be
written at each specified temperature. FEach of these sets of simultaneous
equations may then be solved for the heat capacity contributions of the
component oxides Cal, MgO and S:\’.O2 (representad by a;, a, and a3 in equation

1) at the temperature considered using a linear least square regression.
Subsequent regression of the oxide components' heat capacity contributions
as functions of temperature providesa heat capacity power function of the
form a + bT + c/T2 for each component oxide. This power function repre-
sents the contribution of the oxide component under comsideration to the
heat capacity of a mineral.

The minerals chosen for this part of the study were B-larnite,

clinoenstatite, merwinite, akermanite, forsterite, wollastonite and diop-

side. Robie and Waldbaum (1968) have published tables of HT~H298 values



for these minerals and this data was regressed to determine the heat

capacity power function for each because

- T i
By-Hygg = p9g CPy 4T , 5

- o b 2_ el _ 1

= a(T-T..,) + 5 (T T298) C(T T Yy {6)

298
The heat capacity power functions obtained in this manner are in good
agreement with the heat capacity power functions determined by Kelley

(1960) using the same H data and were therefore used to calculate

T 9298
the heat capacities of the minerals from 100° to 1200°C at 100°C intervals.
with this data and the coefficients of the oxides in the minerals, the
calculations described above were carried out to determine the temperature-
dependent contributions of the CaC, MgO and SiO2 components to the heat
capacity of a mineral. The results are shown in Table 2.

A comparison of the heat capacities of wollastonite and clincenstatite,
found to be representative of the minerals in the system, generated by
1) stochiometric summation of the heat capacity power functions of the
pure oxides as described by Helgeson (1%69), 2) summation of the heat
capacity contributions of the component oxides in the mineral in the
manner described above, and 3) the heat capacities calculated from the
data of Robie and Waldbaum (1968) for these minerals, reveals that at
lower temperatures, both summation methods seem to reproduce the data
from Robie and Waldbaum with the same degree of accuracy. As temperature
increases, the summation of the contributions of the component oxides

reproduces the measured heat capacities more accurately than the stoch-

iometric summation method outlined by Helgeson. This might be expected



Table 2.

10

Contribution of the oxide components Ca0, MgQO, Si0. and CO

to the heat capacity of a mineral (where Cp

Component Oxide

Ca0

o

8.38
8.22
19.85

14.68

3

b*10

3.91
3.69
-1.52

4.40

2 2
a + bT + c/TZ).

c*10°

2.55

1.12

-11.79

-8.23
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pecause, in addition to the fact that the oxide component contributions
were generated directly from the measured values of heat capacity, the
SiO2 component undergoes a phase change at 573°C. The heat capacity

power function for the S1i0Q, component in minerals takes this into account

2
automatically, but the stochiometric summation method described by Helgeson
pust use & or B —quartz in the calculations depending on the temperature
range in which the heat capacity is to be determined. 1In the preceding
calculations, the heat capacity power function of d~quartz was used to
estimate the heat capacity of minerals up to lZOOOC, which would account
for some of tﬁe error above 573°C. It is importaunt to note that Helgeson
never extended the use of this method above 300°C.

The heat capacity power function of rankinite listed in Appendix A
was estimated by the component oxide power function summation methed. This
summation procedure is illustrated in Table 3. The heat capacity power
functions for monticellite, merwinite and agkermanite that are used in the
following calculations were also estimated in this manner.

The estimation of the heat capacity power functions for spurrite
(2Ca28104-CaC03) and tilleyite (CaSSi207(C03)2) poses a special problem
because both minerals are "mixed" silicate-carbonates of calcium. The
simplifying assumption may be made that the contributions of the CaQ, Mg0
and SiO2 components to the heat capacities of these minerals and the
carbonates are equivalent to their contributions to silicates and, like-

wise, that the contribution of the CO, compoment to the heat capacity of

2

the mixed carbonate silicates is equivalent to its contribution to
carbonates. With this assumption in mind, the contribution of the CO2
component to the heat capacity of carbonate minerals was estimated in

the following minerals: calcite, dolomite and magnesite.
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table 3. Estimation of the heat capacity power functions of the form

a + bT + c/T2 for the minerals <rankinite, spurrite and tillevite.

Rankinite
Component Oxides a b*lO“3 c*lD5
3Ca0 3(8.38) 3(3.51) 3(2.53)
2810 2 2(19.85) 2(-1.52) 2(-11.79)
Ca381207 64.84 8.69 ~15.93
Spurrite
5Ca0 5(8.38) 5(3.91) 5(2.55)
25102 2(19.85) 2(-1.52) 2(-11.79) .
QQQ 14.68 4.40 -8,23
ZCazsiOA'CaCO3 96.28 20.91 ‘ -19,06
Tilleyite
5Ca0 5(8.38) 5(3.91) 5(2.55)
ZSiO2 2(19.85) 2(-1.52) 2(-11.79)
ZCOZ_ 2(14.68) 2(4.40) 2(-8.23)
C3581207(C03)2 110.96 25.31 ~-27.29
Therefore, Cp.__ .. .. = 64.84 + 8.69%10 °T- 15.93%10°/T°,
rankinite
= =30 5,.2 .
Cpspurrite 96,28 + 20.91#%10 ~“T-19.06%10"/T" and
Cptilleyite = 110.96 + 25.31*10_3T- 27.29*105/T2.
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The heat capacities of calcite, dolomite and magnesite were calcu-
lated using heat capacity power functicns obtained by regression of
HT—HZQS values tabulated by Robie and Waldbaum. By subtracting the heat
capacity contribution of the appropriate component oxides from the total
heat capacities of these minerals over the temperature range of 25° to
150000 using the previously calculated heat capacity contributions of
the oxide components Ca0 and MgO to silicates, the contribution of the
COZ component to each of the three minerals at each temperature is deter-
mined. Regression of these contributions using an expression of the form
a + T + c/T2 yields a heat capacity power function representing the
contribution of the CO2 component to the total heat capacity of a mineral,
The tesults are shown in Table 2.

A comparison of the heat capacities of calecite, dolomite and maénesite
calculated from the heat capacity power function derived from the data of
Robie and Waldbaum with those calculated from the power functions estimated
from the method of summation of the contributions of the component oxides
shows very good agreement as illustrated in Table 4. Thus, using the data
in Table 2, the heat capacity power functions of spurrite and tilleyite

were estimated as shown in Table 3 by summation of oxide component contrib-

utions,
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Table 4. Comparison of the heat capacities of calcite, dolomite and
magnesite as calculated from the data of Robie and Waldbaum
(1968) and from the summaticn of the heat capacity contrib-
utions of the component oxides.

Calcite
a b

X Cpp .y (cal/mole) EBCOMP(cal/mole)
298 19.60 15.15
400 23.17 22.83
600 : 26.36 26.47
800 28.19 28.82
1000 29.63 .30.80
1200 30.91 32.64
1400 32.11 34,40

Dolomite
298 36.01 36.46
400 43,89 44,53
600 52.07 52.25
800 57.64 57.08
1000 62.46 61.08
1200 66.98 64.75
1400 71.36 68.27

Magnesite
298 17.04 17.31
400 21.64 21.69
600 25.95 25.78
800 28.59 28,26
1000 30.75 30.28
1200 32.71 32.11
1400 34,59 33.86

a calculated from the data of Robie and Waldbaum (1968)

b . . , .
estimated by the summation of the heat capacity contributions
of the component oxides
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Entropy

According to the third law of thermodynamics, the standard entropy

of a mineral which is perfectly crystalline at O K is given by the

integral
e - f298.15
0

5298.15,4 (Cpd) dT 7

T
where ¢ refers to the mineral under consideration, if no change of state

o
298.15

standard third law entropy of the ®th mineral. However, the experimental

occurs between O and 298 K. S is commonly referred to as the
heat capacity data required to solve this equation is lacking for the
minerals involved in this study and the heat capacity power functions
estimated in the previous section are inapplicable below 298 K. Thus,
another method of estimation must be sought.

Latimer (1951) proposed a method of approximation which assigned key
values to the elements and the negative ions in solid compounds which
could be summed in appropriate proportions to estimate the standard third
law entropy of simple substances. However, this method of estimation
becomes increasingly less definitive as the compound becomes more complex
and therefore would be of limited value in the estimation of the entropies
of minerals as complex as spurrite and tilleyite.

Kelley (1965) also published tables of additive entropy constants
which could be used to estimate the entropy of a mineral. Table 5 lists
a number of entropies of minerals, estimated by summing the entropy
constants according to their stochiometric proportions in the mineral
under consideration, for comparison to the standard third law entropies
tabulated in Robie and Waldbaum (1968). The error in Kelley's method of

estimation genmerally ranges from + 1 to 7% for the minerals in Table 5.



16

Comparisen of standard third law entropies estimated by the
method of Kelley (1965) with the tabulated values from Robie and
Waldbaum (1968).

Table 5.

Mineral Name $0og.15-calculated 5‘2’92_ |5>tabulated
Akermanite 46.3 + 2 50.03 + 0.50
B-larnite 30.2 + 2 30.50 + 0.20
Ca-olivine 30,2 + 2 28,80 + 0.20
Clinoenstatite 16.1 + 2 16.22 + 0.10
Diopside 36.3 + 2 34,20 + 0.20
Forsterite 22.0 + 2 22.75 + 0.20
Merwinite 56.3 + 2 60.3 + 0.5
Monticellite 26,1 + 2 2.5 + 1.0
Talc 63.6 + 2 62.34 + 0,15
Tremolite 136.2 + 2 131.19 + 0.30
Wollastonite 20.2 + 2 19.60 + 0.20

8 saleulated using Kelley's (1963) tables of additive entropy
constants (in cal/mole-deg)

b from Robie and Waldbaum (1968) (in cal/mole~deg)
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Fyfe et al. (1958) observed that close approximations to the entropy
of certain minerals can be obtained by summing the tabulated third law
entropies of their component oxides. Estimating the eﬁtropies of a number
of Ca-Mg silicates in this manner and comparing the results to Robie and
Waldbaum's tabulated 8598.15 of the minerals in Table 6 shows that their
agreement can be quite good if the mineral's entropy is less than 30
cal/mole-deg but that the accuracy diminishes as the entropy and therefore
the structural complexity cof the mineral increases. Because rankinite,
gpurrite and tilleyite are all relatively complex, this method of esti-
mation would be of dubious value. However, Fyfe et al. were able to refine
this method of estimation by noting that there is a relationship between

the entropy and molar volume of a mineral, as evidenced by

(_aioz) _ % (8)
BV¢ T X¢

where ¢ and Y represent the ¢th mineral's coefficients of thermal expansion
and compressibility, respectively. They developed this relationship into
the following equation which cah be used to estimate the standard third

law entropy of a mineral:

) - 0.6 (ZniVi - V) (9)

5298.15,¢ ~ 9

where i represents the oxide under consideration and ny refers to the

n;5998.15,1

number of moles of the ith oxide in one mole of the mineral,

Beane (1975) suggested that the average correction factor of 0.6
proposed by Fyfe et al. might actually be a value which reflects changes
in the compositicn and/or structure of minerals. The replacement of 0.6

by a variable specific to minerals of certain mineralogical or structural




Table 6.
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Comparison of standard third law entropies estimated by the
summation of the entropies of oxides per Fyfe et al. (1958) with
tabulated values from Robie and Waldbaum (1968).

Mineral Name

Akermanite
B-larnite
Ca-olivine
Clinoenstatite
Diopside
Forsterite
Merwinite
Monticellite

Wollastonite

a

o
%

a

98.15,calcula§§g

45,
28.
28.
1s6.
35.
22,
54,
25.

19.38

20

88

88

32

70

76

70

82

o b
8298,15’tabulat5d

50.03 + 0.50
30.50 + 0.20
28.80 + 0.20

16.22 + 0.10

i+

34,20 + 0.20

I+

22.75 + 0.20

&

\JO,S + 0.5

24.5 + 1.0

19.60 + 0.20

calculated by summation of the entropies of oxides tabulated
by Robie and Waldbaum (1968) per Fyfe et al. (1958) (in cal/

mole-deg)

b from Robie and Waldbaum (1968) (in cal/mole~-deg)
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0
i resu in more accurate repro io f .
groups might then 1t reproduction o 8298‘15 values

~hig volume correction factor could be obtained from a group of minerals

es . o o

related by structure or composition with known 8298.15 and V, and the
A , o) -

average value of that factor could then be used to estimate 8298.15 for

other minerals belonging to that group for which entropies have not been
measured. Beane accordingly proposed two equations which could be solved
for k' and k" (the equivalent of 0.6 in equation 9) for similar groups of

minerals of known thermodynamic properties in order to calculate the

o}

5298 15 of a relatesd mineral or minerals:
(o] (o]
5198.15, p = k' » “™520g.15, 1 (10)
O
fo) _ o 1" Q )
S798.15, ¢ ~ *35)9g.15,4 = ¥ (Vg ~ InV9) 1)

o
298.15

and v° data for

To evaluate the accuracy of these equations in estimating S

o

. Y 1 i
of a mineral, k' and k" were calculated using 8298.15

a) a set of cyclosilicates and nesosilicates and b) a set of Ca-Mg
silicates. These values were then used to determine an average k' and
k" for each grouping. Utilizing these values of k' (equal to 0.99 and
1.03 for a and b, respectively) and k" (equal to =0.09 and =0.14 for a
and b, respectively) in equations (10) and {(11), the standard third law

entropies of the minerals were recalculated teo test each method's accuracy

0
298,15

mine whether grouping by structure or composition yielded the best estimates.

in reproducing tabulated $ values in Robie and Waldbaum and to deter-

The results are shown in Table 7 along with the estimates made using

equation (9) of Fyfe et al, for comparison.
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Beane's methods of estimation utilizing k' and k" values work reasonably
wsell for both groupings with an error of less than + 1.5 cal/mole~deg in
both cases when 5398.15 of a mineral is less than 30 cal/mole-deg. In general,
however, the error is quite variable, although there does seem to be a trend
toward greater discrepancies between the estimated and tabulated values of
5398.15 when the mineral becomes structurally complex. It appears, at least
in this case, that grouping by composition versus grouping by structure does
not result in significant differences between the estimated values of S°
The values of 8398.15 estimated by Fyfe et al. show about the same degree of
deviation from the tabulated valueé as the estimates using Beane's method.
But, again the error is quite variable and seems to indicate that there is
more than just a simple relationship between entropy and volume that affects
the standard third law entropy of some minerals.

Even if the aforementioned methods of approximation were accurate
enough for the purposes of this study, a problem is encountered when deal-
ing with the generation of data for spurrite and tilleyite because these
minerals contain CD2 for which entropy and volume data are lacking at 25°¢C
and 1 bar.

It may be pogsible to estimate the entropy contribution of the C02
component by subtracting the previously calculated entropy contributions
of the Ca0 and Mg0 components from a number of carbonates to isolate

the entropy supposedly comtributed to each carbonate by CO An average

2
of these values would then represent the average contribution of the CD2
component to the entropy of the carbonates. This procedure is illustrated
in Table 8 along with the entropies of the carbonates calculated in this

manner. Again, errors range from + 0.3 to 1.7 cal/mole-deg.

298.15°
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rable 8. Estimation of the entropy contribution of CO,. to carbonate

minerals. 2
Mi al Name g2 2 tab. s° b co 1
iner Spg.152580  Sygg jsaC0pcont. S0 o,cale.

Aragonite 21.18 + 0.30 9.21 20.68

Calcite 22.15 + 0.20 10.18% 20.68

Dolomite 37.09 + 0.07 8.92° 36.67

Huntite 67.0 + 1.5 8.29°% 68.68

Magnesite 15.7 + 0.2 3.41 16.00
AVERAGE 8.71

a

from Robie and Waldbaum (1968) (in cal/mole—deg)

b .0 o
5298.157C0 cont. = (5595 15, tab. i ¥45508.15,1) vhere

j refers to all oxides except CO2 (in cal/mole~deg)
in cal/mole-deg

omitted from average owing to its anomalous value

corrected to show contribution per each mole of C02 in the
mineral
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The method of "oxide contribution" developed earlier to estimate the
heat capacity power functions of minerals was relatively successful, and
therefore an analogous procedure was followed to calculate the individual

contributions of the Ca0, MgO, SiO2 and CO2 components as integral parts

of a mineral to a mineral's standard third law entropy. The minerals
akermanite, B-larnite, clincenstatite, diopside, forsterite, merwinite

and monticellite in the system CaO-Mg0-8i0, with experimentally determined

2

o . . . .
values of 5298 15 were usaed to set up a series of simultaneous equations in

the form

[8]
= + +
5598.15,0 ~ 21 "ca0,p  *2™Mg0, 9 *3%s10,,0 (12)

where 8298 15.6 is the standard third law entropy of the fth mineral,

ni,@ represents the coefficient of the ith oxide in the $th mineral, and
a, are coefficients representing the contribution of each of the component
oxides to the entropy of the mineral. These simultaneous equations were
then solved by means of a least square regression for the values of as
a, and 33 which represent the contribution of the Ca0, Mg0Q and SiO2
components, respectively, to the standard third law entropies of the
silicate minerals. Table 9 lists the results of these calculations and
also compares the experimentally determined values of 5298.15 of the
minerals involved in these estimatioms to the corresponding values of
5298.15 estimated using the calculated contributions of the Ca0, MgO and
SiO2 components as integral parts of a mineral to its entropy.

Equation (11) of Fyfa et al. states that there is a relationship

between the entropy and volume of a mineral and its component oxides.
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Contribution of the oxide components Ca0, MgO and SiO

the entropy of a mineral.

Entropy contribution of:

Ca0 = 11.97 cal/mole—-deg

Mg0 = 7.29 cal/mole-deg

S$i0,= 8.16 cal/mole~deg

2

Mineral Name g 8

Akermanite
B-larnite
Clinvenstatite
Diopside
Forsterite
Merwinite
Monticellite

Wollastonite

® in cal/mole~deg

298'15,calculated

47,55
32,10
15.45
35.58
22.74
59.52
27.42

20.13

2

ob
§298‘15,tabulated

50.03

1+

30.50

14

16.22

1+

34,20

e

22.75 +
60.5 +
24,5 +

19.60 +

b from Robie and Waldbaum (1968) (in cal/mole~deg)

to

0.50
0.20
0.10
0.20
0.20
0.5

1.0

0.20
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gecause the problem now encountered is one in which the entropy and
volume of one of the components (COZ) is unknown, it would be convenient

and Vgo terms from the main body of equation

the §°
to separate tae 298.15,¢0, )

(11) to obtain

o) )
-mV,.. )
298.15,C02 CO2

. o _ o]
z j) =m (VQ EnjVj) + (8 (13)

(s° - fn.5°
298.15,0 j 298,15,

in which k'' has been replaced by m and j refers to all oxides except Co,.
Equation (13) is, essentially, the equation of a line in the form y = mx + b
= © - o ' . 4 .
where b (3298.15,C02 mvcoz). A group of n minerals containing C02 with
known 5298 15 and V° can be used to set up n simultaneous equations in the

form of equation (13) which can be solved for m and b, In this manner,

o o )
298-15,C02 and VC02 is circumvented

by isolating these values in the b term, which is evaluated from available

the need to know the exact values of §

o
298.15

~bearing minerals can be calculated by evaluating equation (13).

data on carbonate minerals. Once m and b have been established, S
for C02
Table 10 lists the results of one representative calculation using this
method. Application of the constants derived in this manner to the
estimation of 8398.15 for spurrite and tilleyite requires the assumption
that the CO2 component of these minerals is thermodynamically similar to
the carbonates from which m and b were calculated.

To estimate the contribution of the CO2 component to entropy, the
data of a group of silicates and carbonates was regressed to simultaneously
determine the entropy contributions of the Ca0, MgO, SiO2 and CD2 components
in these minerals. The procedure followed is the same as described above.

Five carbonates (aragonite, calcite, dolomite, huntite, and magnesite)

and eight silicates (akermanite, B~larnite, clinocenstatite, diopside,
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forsterite, merwinite, monticellite and wollastonite) were included in
the calculations. The addition of the carbenates permitted the estimation

of the entropy contribution of the CO, component and served to refine the

2

estimation of the contributions of the Ca0 and Mg0 components, Results
are shown in Table 11. This and the previous method of estimation
generally involve errors ranging from + 0.5 to 3 cal/mole-deg.

The calculations above indicate that onme method of estimation does
not appear to be superior to the others; that is, each ﬁethod involves some
error in estimating the entropy of minerals and the error is inevitably

greater for some minerals than others.. Because there does seem to be a

correlation between the increasing entropy of a mineral and the increasing

)
298.15

seem to reflect upon the structural complexity of the mineral.

error in the rapreduction of the tabulated § values, the error would
The method of estimation of heat capacities by the summation of the

heat capacity contributions of the component oxides developed earlier in

this paper was found to be quite accurate in reproducing experimental

results; inherent in this method of estimation is the assumption that there

is no interaction between the component oxides which would affect a mineral's heat

capacity. However, when the same method of estimation was used to calculats

the standard third law entropy of a mineral, agreement between the calculated

and tabulated values was noticeably poorer. This would suggest that there

is significant component interaction that affects the entropy of a mineral,

and therefore average values of the contributions of the oxide components

cannot account for the varying amounts of component interaction in minerals

ranging from the structurally simple to complex.
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Contribution of the oxide components Ca0, MgO, SiO2 and CO
to. the entropy of a minexal.

Entropy contribution of:

CaQ = 12.09 cal/mole-deg
Mg0 = 6.88 cal/mole-deg
§i0, = 8.36 cal/mole-deg
CO2 = 8,80 cal/mole-deg

(Note: the entropies calculated in this manner must include
a factor of -0.11 cal/mole-deg which represents the
intercept generated by the method of multiple
regression used.)

0 a ob

Mineral Name §298.15,calculated §298'15,tabulated
Aragonite 20.78 21.18 + 0.30
Calcite 20.78 22,15 ¥+ 0.20
Dolomite 36.46 37.09 + 0.07
Huntite 67.82 67.0 * 1.5
Magnesite 15.57 15.7 * 0.2
Akermanite 47 .67 30,03 + 0.50
B-larnite 32.43 30.50 + 0.20
Clinoenstatite 15.13 16.22 + 0.10
Diopside 35.58 34.20 ¥ 0.20
Forsterite: 22.01 22.75 + 0.20
Merwinite 59.76 60.5 *+ 0.5
Monticellite 27.22 26,5 ¥ 1.0
Wollastonite 20.34 19.60 + 0.20

2 in cal/mole-deg

> from Robie and Waldbaum (1968) (in cal/mole-deg)
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This problem of estimation may also be viewed in a slightly different

manner. It is known that

éﬁ) = -s and (a_s_) - & @4, 18)
AT/ p . 3T/ p T

or, alternately,

S=I%P-dT+c and G = —f (fg%dT+c)dT+c (16, 17

1 1 2

where cl and c2 represent integration constants. According to these
equations, G, S and Cp form, in effect, a hierarchy of functions with

G of the highest and Cp of the lowest order. Earlier in this paper, it
was found that although the summation of individual oxide contributions
to the heat capacity of a mineral reproduces experimental results quite
well, the same method of estimation is not as accurate when dealing with
standard third law entropies, which inaccuracy was attributed to the
affects of component interaction. Equations (14) to (17) reveal that
although Cp might be a fundamental thermodynamic quantity, it must be
integrated over temperature and added to ;> an integration comstant, to
obtain the higher order function of entropy. This integration constant

cl can be thought of as the component interaction that contributes to

0
298.15°

the more complex the mineral or the greater its number of components, the

the entropy of a mineral. (It can alsc be considered § )  In general,
larger this term is going to be. S may be integrated in turn (equation 17)
to obtain G, a still higher order function,provided another integration

censtant, CZ’ is known. However, these integration constants have not been

determined, and thus it would be unrealistic to estimate G with the summation

methods used for heat capacities.
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Because the methods of estimation of the standard third law entropy
of a mineral result in, at best, rough approximations of the actual values,
the entropies of raﬁkinite, spurrite and tilleyite were calculated using
each method that was applicable and then averaged in hopesof reducing the
smount of random error; these calculations are shown in Table 12, The
estimations by simple summation of the pure oxides' entropies as tabulated
by Robie and Waldbaum (1968) were omitted from all the averages owing te
their discrepancy with the other values and the fact that this method
seems L0 becope significgntly less accurate as entropies increase in value.
Increasing values gene;ally correspond to more complex chemical formulas,
indicating increased compouent interaction and thus increased discrepancy
between the estimated and tabulated entropies.

The standard third law entropies of spurrite and tilleyite calculated
in this study are 81.63 and 91.81 cal/mole-deg, respectively. The esti-
mated entropy of rankinite was 52.23 cal/molé;deg because the other methods

of estimation took CO, into account and therefore introduced a possible

2

source of error in the estimation of the entropy of a CO,-poor Ca-silicate

2
mineral such as rankinite.

These preliminary estimates of the standard third law entropies of
rankinite (52.23 cal/mole~deg), spurrite (81.63 cal/mole-deg) and tilleyite
(91.81 cal/mole-deg) will be refined with actual experimental data after
AH; values have been established for spurrite and tilleyite by using the

relationship between the slopes of equilibrium curves and the entropy and

volume change of reaction (i.e., the Clapeyron equation).
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Table 12.. Calculation of the standard third law entropies of rankinite,
spurrite and tilleyite.
Method of Estimation 5398.15 (cal/mole-deg)
Rankinite Spurrite Tilleyite
1) 48.26% 75.97% 84.68%
2) 52.23 84,88 93.59
3) . 85.75 94.66
4} —_— 77.79 89.64
5) 1310 89.3%
"AVERAGE" 52.23 81.63 91.81

Key to methods of approximation:

1)

2)

3)

4)

5)

stochiometric summation of experimentally determined
entropies of the pure oxides from Robie and Waldbaum (1968)
per Fyfe et al, (1958)

stochiometric summation of the contributions of the Ca0
and $10, components to entropy (Table 6) and the average
entropy contribution of the CO2 component £o minerals
(Table 8)

stochiometric summation of the coantributions of Ca0, $i0

and CO, components to entropy with -0.11 correction factdr
2

(Table”7)

solution of equation (13) in text (Table 3)

same as 4) except for addition of cerussite to minerals
used to calculate m and b {m = 0.095, b = 9.08)

a , . .
omitted from average asg explained in text
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Enthalpy

A mineral's standard enthalpy of formaticon from the elements can be
determiHEd using experimental equilibrium curves for reactions in which
the mineral is involved, provided that complete thermodynamic data is
gvailable for all phases in the reaction except for the enthalpy of forma-

tion of the mineral under consideration. That is, if an equilibrium

mined for some reaction, knowledge of all the thermodynamic properties

of the phases involved except for one property of one phase allows the
calculation of that unknown thermodynamic property. For this study in
particular, the enthalpies of spurrite and tilleyite were calculated using
entropies and heat capacity power functions already estimated and which,
for the time being, are assumed to be reasonably correct.

At some temperature T and pressure P, the free energy change for

a reaction AG_ is written
r,T,P
0
= G + R
6. 1,p AGL r,p TRIIAQ 45 18
where AG; T.p is the standard Gibbs free energy of reaction at T and P
y b

and Q represents the activity product of the reaction at T and P, viz.

vV,
Uorp T Byt (19

in which i refers to the phases or species involved in the reaction and
V represents their reaction coefficients. If this temperature and pres-
sure is such that the reaction is at equilibrium, then

AG = 0 (20)

point at a specific temperature and pressure has been experimentally deter-
r,T,P
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and hence

AGS = - RT1ln Kr (21)

r,T,P ,T,P

o

where Q = K at equilibrium. AGr,T,P

may be calculated according to the

standard states chosen in this paper by evaluating

o = ° - o
AGr,T,P AHr,T,P TASr,T,P
= AR° + /I ACp_ 4T + fP (AV ) dP
r,Tr,Pr Tr r Pr sol,liq,T
o T a
- T (Asr,Tr,Pr + fTr(ACpr/T) dT) (22)

in which sol and lig refer to the solids and liquids involved in the

reaction and Tr and Pr represent the reference temperature and pressure.
However , in this case, AH% of one of the phases is unknown. If

equation (22) is evaluated at some equilibrium temperature and pressure

-]

assuming AH% = 0 for phase u, the AG g0 calculated and designated

r,T,P
as AGr,T,P,ZZ will be related to the true AGr,T,P by
Q Q = [+]
B p,p,22 T VuPE , T 860 1 p (23)

where vy refers to the reaction coefficient of the uth phase. Equation
(23) can then be combined with equation (21) and rearranged to yield the

unknown standard enthalpy of formation from the elements,

° - - -]
vuAHf’u = RTanr,T,P AGr,T,P,22 . (24)
The term AV is taken to be pressure independent based on

sol,1iq,T

the simplifying assumption that the net compressibility and thermal ex-

pansion of the condensed phases is negligible, and therefore fﬁr(AV )dp

sol,liq,T

can be approximated by AV (P—Pr).

sol,liq,T



35

when a dehydration or decarbonation reaction is studied,

r,T,P i (25)

where a, are the activities of the gases involved in the reaction raised
1

to the power represented by their reaction coefficients. If AG°
r,T,P,22

and the activities of the gases at the specified temperature and pressure
can be determined, it is possible, using equation (24), to calculate the
enthalpy of a.mineral because of the need to maintain equilibrium at that

temperature and pressure.

The activity of CO, will be approximated by its fugacity in the

2

following calculations because Yo, the fugacity coefficient for CO2 in
the standard state (i.e., any specified temperaturs and 1 bar), is nearly
equal to unity at the temperatures involved in this study. Later in the
paper this concept will be discusséd in more detail.

Harker (1959) published experimentally determined equilibrium points

for the reactions

) ™

0, + =
2 035103 3 CaCO3 CaSSi207(C03)2 + C0

and

Ca 81,0,(C0,), == 2Ca,5i0,°CaCO, + CO, ; (8)

Zharikov and Shmulovich repeated his high~temperature experiments in 1970.

A comparison of the two sets of decarbonation curves reveals that the
equilibria determined by Zharikov and Shmulowich lie at significantly
higher temperatures than those of Harker at a given pressure. This may

be a result of the fact that Harker, for some reason unknown to him,

could not synthesize tilleyite without the use of CaF, and Al.0, as fluxes,

2 273
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«hereas Zharikov and Shmulovich were able to synthesize tilleyite without
resorting to fluxes of any sort. Few workers have explored the system
Cao--MgO—SiOZ-CO2 experimentally at high temperatures, much less in the
getail that Zharikov and Shmulovich did. Because their work is the

most recent and complete, and did not depend on the use of fluxes which

could possibly affect equilibrium among the phases, their experimental

o

£ of spurrite and tilleyite as well as

data was utilized to calculate AH
to refine the 8298.15 values of these phases. It should be remembered,
of course, that the accuracy of the thermodynamic data calculated in the
panner described above is dependent on the accuracy of their experimental

data.

Inspection of Zharikov and Shmulovich's (1970) data yielded well-

2 CaSi0, + 3 (La CO_+Ca_.Si 07(CO3)2 + CO (7

3 3 5772 2 7
With the knowledge of all pertinent thermodynamic data for the phases
involved in the reaction except the AH? of tilleyite, equation (24) can
be used in conjunction with equation (22) as previously described to
calculate AH? of tilleyite at each of the equilibrium points. The results,
listed in Table 13, show that the calculated values of AH? of tilleyite
agree with each other amazingly well. The average of these three values,
-1524261 cal/mole, has an error limit of + 100 cal/mole, a very small
range when compared to the magnitude of the enthalpy of tilleyite. This

high degree of correlation would seem to indicate that the standard third

law entropy previously estimated for tilleyite is reasonably accurate.

o

f

for reaction (7) can now be calculated directly from thermodynamic data

Having estimated a value of AH_ for tilleyite, the equilibrium curve

defined experimental brackets at three pressures for the reaction
and compared to that curve determined experimentally by Zharikov and
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rTable 13. Estimation of the standard enthalpies of formation of
tilleyite and spurrite

2 CaSi0, + 3 CaCO, = Ca,51,0,(C0,), + O,
Temperature ( C) Pressure (kg/cmz} ég;ﬁﬁi&[&ﬁlﬁl

885+ 5 200 -1524368

955+ 5 350 ~1524183

995 + 5 500 ~1524232

AVERAGE  -1524261

CaSSJ“ZO?(COB)Z = 2Ca,S5i0, -CaCO., + CO

2 4 3 2
Temperature (OC) Pressure (kg/cmz) _A_g; (cal/mole)
855 +5 106 -~1395837
935 + 5 200 -1395326
995 + 5 300 -1394815
1050 + 10 500 -1394838
AVERAGE -1395204.

aKg/cm2 equated with bars because 1.0197 kg/c:m2 = 1 bhar.
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ShmulovichJ If the two curves coincide, the accuracy of the thermodynamic
gata estimated for tilleyite will be confirmed. However, if the two curves
do not coincide, whether in position or slope, thé estimated thermodynémic
data for tilleyite must be manipulated, observing various thermodynamic
restrictions, such that the two will coincide more closely. This procedure,
of course, requires the assumption that the thermodynamic data for the

other phases in the reaction is correct and that all the error is contained
in the estimated data. The means by which equilibrium curves on pressure-
temperature diagrams are constructed will be described in detail later in
the paper. For the time being, however, it is sufficient to note that it

is possible to calculate pressure-temperature topologies wholly on the basis

of thermodynamic data.

0
298.15

cal/mole-deg and AH; = -1524260 cal/mole for tilleyite, is shown in

The equilibrium curve for reaction (7), calculated using S = 91.81
Figure 8 along with the experimentally determined curve of Zharikov and
Shmulovich. The calculated curve does indeed go through all the experi-
mental brackets surrounding the equilibrium curve of Zharikov and Shmulovich
and thus the accuracy of the estimated thermodynamic data for tilleyite is

o

verified;: AHf = ~-1524260 + 100 cal/mole and $

0
298,15

AH; of spurrite was calculated using four well-defined equilibrium

= 91.81 cal/mole-deg.

points on the pressure-temperature curve for the reaction

CaSSiZO7(COB)2 = 2Ca25i04‘CaCO3 + CO2 (8)

as determined by Zharikov and Shmulovich. Table 13 lists the results:

0
AHf = -1395204 + 600 cal/mole. The equilibrium curve for reactiom (8),

0

298,15 = 81.63 cal/mole~deg

back calculated using AH% = -1395200 cal/mole and S
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for spurrite and the data just calculated for tilleyite, was found to be
greeper than the corresponding curve of Zharikov and Shmulovich on a plot
of temperature as the abscissa and pressure as the ordinate (see Figure 9).
The slope of an equilibrium curve on a pressure-—temperature diagram is

related to the entropy and volume change of the reaction by the Clapeyron

dP\ _ /ASr
(ET) B (AVr) ’ (26)

According to this equation, a change in the slope of the reaction

equationi

curve above may be affected by a change in the estimated 8398 15 of

spurrite. However, because we are working with a curve along which

equilibrium has been established, AHr must change accordingly to maintain

; . o . . .
equilibrium. This, in turm, means that AHf of spurrite must be adjusted.

That is, at equilibrium,

BG. pp “BHL 7 p " TS pp =0 (273

and if the entropy of spurrite is altered, the éstimated enthalpy of

r,T,P
dynamic data for all the other phases is assumed to be correct. There-

o

o . .
is chosen, a corrected AHf of spurrite must

298.15

be calculated using equatioms (22) and (24) and the method established

fore, as each new S

earlier for calculation of AH? 0of a mineral. The AH? obtained in this

) o
manner can be used with the revisad 8298.15

the pressure-temperature curve. If the curve fails to match the ex~

of spurrite to recalculate

perimental curve, the process must be repeated, and so on until the
curves correspond as closely as possible., However, because the entropy
estimated for tilleyite worked so well in reproducing the slope of the

spurrite must also change to maintain AG = 0 because the thermo-
equilibrium curve of Zharikov and Shmulowvich y it was assumed that the
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. Q .
estima;ed value of 5298.15 for spurrite would be of reasomable accuracy

also. Therefore, spurrite's entropy was assumed to be correct and no

attempt was made to equalize the slopes of the calculated and experimental .

3 3 3 0-—— — o =
equilibrium curves, leaving AH. = -1395200 + 600 cal/mole and Ss98.15

g1.63 cal/mole-deg.

Weeks (1956) lists AH; = =945435 cal/mole for rankinite, but there

. o R ,
appears to be no published value of 8298.15 available #or that mineral.
Assuming this enthalpy of rankinite to be correct, points along the
equilibrium curve of Zharikov and Shmulovich for the reaction

- 13 a s
Ca581207(CO3)2 + 4 CaSiO3 = 3Ca381207 + ZCD2 (9

were utilized to back calculate 3398.15 of rankinite in a manner analogous
to that used to calculate AH; of a mineral when all other pertinent
thermodynamic data is known. The entrowvy calculated in this manner was
48.3 cal/mole~deg as compared to the previously estimated value of 52.23
cal/mole-deg. The equilibrium curve for the above reaction calculated

with 52 = 48.3 cal/mole-~deg for rankinite corresponds very well

298.15
with the experimental curve of Zharikov and Shmulovich. Thus, the thermo-

dynamic data used for rankinite in this study is: 5398 15 = 48.3 cal/mole~

deg and AHS = -945435 cal/mole.
f
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DESCRIPTION OF MINERAL EQUILIBRIA AS A FUNCTION OF PHYSICAL PARAMETERS

Introduction

The influence of the physical factors of temperature and pressure
upon isochemical mineral equilibria is conveniently represented by means
of pressure-temperature diagrams. Metamorphic reactions among minerals
plotted on such diagrams serve to delineate changes in prevailing mineral
assemblages upon variation in these factors. The reactioms, reéresented
by equilibrium curves, are univariant because any change of temperaﬁure
or pressure requires a corresponding change in the other variable to
maintain a dynamic equilibrium between the reactants and products., If
002 or HZO is taking part in the.reaction, it is considered a pure phase
with a = 1.0. However, this approach is unrealistic in terms of natural
systems because ummetamorphosed siliceous dolomitic limestones contain
interstitial water and during the metamorphism of these rocks, 002 is
released to mix with the H,0 phase in varying proportions. Therefore,

2

one is not actually dealing with pure HZO or CO2 but rather a fluid
phase composed of a mixture of the two gases.
According to the phase rule,
P+F=C+2 (28)
where P is equal to the number of phases, F represents the number of
degrees of freedom and C is the number of components., Normally, the
thermodynamic degrees of freedom correspogd‘to temperature, pressure and

the number of moles of each of the components cccurring in the system.

A mixture of CO2 and HZO in the fluid phase, however, would add a degree
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of freedom to the reactipn bgcause the number of components has increased
py one while there is still a single fluid phase. This additional degree
of freedom corresponds to variation in the composition of the fluid phase.
Even if HZO or C02 does not appear specifically in a given reaction, it
gtill contributes to the total pressure. Thus, decarbonation reactions may

be considered bivariant in systems containing H.0 and CO2 (Winkler, 1974).

2
Workers such as Greenwood (1962), Metz and Trommsdorf (1968) and Winkler
(1967, 1974) have found it convenient to represent the effects of the
changing compcsition of the fluid phase with temperature-mole fraction
CO2 dlagrams. DBecause the reactions are bivariant and pressure, temper-
co ) are all possible

2
variables, total pressure must be fixed in such diagrams,

ature and mole fraction of CO2 {designated as X

Temperature-pressure and temperature—X diagrams can both be

CO2

constructed entirely with thermodynamic data. If the correspondence
between the thermochemical and experimental curves on these diagrams is
relatively good, the thermochemical calculations may serve to construct
equilibrium curves when experimental data is lacking, incomplete or of
dubious accuracy, and may even shed light on discrepancies between
experimental curves.

Pressure~Temperature Diagrams

The construction of univariant equilibrium curves on pressure-
temperature diagramiis relatively simple and will be illustrated with
the hypothetical decarbonation reaction

A =3+ 9002 . - (29)

For this reaction
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2 \ = log a 2 (3%

according to the standard state chosen in this paper. The activity of

COZ can be approximated by its fugacity at relatively high temperatures
and low pressures because YO, the fugacity coefficient of pure CO2 at
gome temperature and the reference pressure; is nearly equal to unity
under these comditions. That is,

a=f = o =f (31)

where f and £° represent the fugaeity of CO. at the temperature and

2
pressure (P) under consideration and at the reference temperature and
pressure (Po), respectively, because ?° is defined to be unity by the

choice of standard states in this paper and YO is equal to unity as

described above.

Therafore, N
log K = log £ COZ
t,T,P CO2 (32)
Log Kr r.p S0 also be calculated with equation (22) and the relation
Ll ] o
log R p = -AGr,TgP (21L)
1 2.303 RT

using thermodynamic data for the phases involved in the reaction. Equations

(213 and (32) show that the calculated value of log Kr p st equal log

T
\) ] L
fCO COZ at equilibrium. It is possible to plot log Kr T.P as calculated
2 ] ]

with equations (22) and (21) versus temperature at a specified pressure,

and then to compare that plot with another, at the same scale, of log

3

Co
fCO 2 versus temperature at the same pressure. The intersection of the

2 Vco

tWwe curves represents the temperature at which log Kr 2
2

,T,P = log fCO
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¢, to be more specific, the equilibrium temperature for the reaction at that
[+ D 4] . .

pressure. If this procedure is repeated at a series of pressures, a

sequence of equilibrium points will be obtained which, when plotted on a pres-
sure-temperature diagram, will represent the univariant equilibrium curve

for the reaction.

Necessary log fco values were obtained from the work of Ryzhenko and
2

volkov (1971) for temperatures from 100° to 1000°C and pressures from
1500 to 5000 bars. For pressures from 100 to 1400 bars over the same
temperature range, the P-V-T data of Kennedy (1954) for C02 was used to

solve for the fugacity of C02 according to the equation

_ 1 P
1nP - 1nf = T fo o dP (33)
where & = RT/P -V. Log fCO values for temperatures exceeding 1000°¢
2

were estimated by the extrapolation of the available data.

These calculations were completed for each of the decarbonation
reactions listed in Table 14 and the appropriate equilibrium curves are
shown in Figures 2 to 11.

Also illustrated in Figures 2 to;li'are experimentally determined
curves taken from the literature for direct comparison to the calculated
curves (a complete experimental curve for reaction 1 was not available
for comparison). Curves (7), (8) and (9) should correspond closely to
the experimental curves of Zharikov and Shmulovich because the thermo-
dynamic data for tilleyite, spurrite and rankinite was obtained from
their experimental data. A comparison of Zharikov and Shmulovich's
equilibrium curve for the reaction

2CaZSJ‘.04'CaCO3 + Ca381207 = 4B—CaZSiO4 + C02 (10)

with the calculated equilibrium curve shows excellent agreement between

them, This might indicate a discrepancy in Zharikov and Shmulovich's
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TABLE 14

UNIVARIANT EQUILIBRIA IN THE SYSTEM Ca.O—MgO---S:'LO2--‘302

Diopside + 3 dolomite &2 forsterite + 4 caleite + 2 CO

2
CaMg81206 + 3 CamMg(COB)2 =2 Mg25104 + 4 CaCO3 + 2 CD2
Dolomite s=calcite + periclase + 002
CaMg ({103)2 -,:-_*C.aco3 + MgO + CO2

Calcite + B—-quartz s=wollastonite + CO2

QI e .
CaCJO3 + B 8102 q,-—CaSlO3 + CO2

Diopside + forsterite + 2 calcite = 3 monticellite + 2 CO2

CaMgSi,0. + Mg,S10, + 2 CaCO,== 3 CaMgSi0, + 2 CO

2% 4 3 4 2

Didpside + calcite == akermanite + CO2

CaMgSi206 + CaCO3# CazMgSiZC)? + CO2

3 Calecite + 2 wollastonite =spurrite + 2 CO2

i s ‘A .
3 CaCO3 + 2 Ca5103\-20a2S:|.04 Ca.CO3 + 2 CO2

3 Calcite + 2 wollastonite s=tilleyite + CO2

+ CO

- .-_A .
3 CaCO0., + 2 CaSi0,=Ca_S1i 07(003)2 2

3 3 572
Tilleyite =2spurrite + 002

Ca55i207(C03)2 «-—2C328104'CaC03 + sz

Tilleyite + 4 wollastonite =23 rankinite + 2 CO2

C3551207(003)2 + 4 CaSiOB‘w“—“-B Ca351207 + 2 (302

Spurrite + rankinite &4 B-larnite + CO2

R . — _ .
2('1.3.25:1.04 CaCO3 + 83381207 =4 B Ca28104 + C02
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curve and the dashed line represents the experimentally deter-

mined equilibrium curve of Zharikov and Shmulovich (1970).
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experimental results that was first noticed in the calculation of the
thermodynamic data for spurrite, Even though the estimated thermodynamic
data for tilleyite reproduced the experimental curves to a high degree of
accuracy, the spurrite data yielded a curve noticeably steeper than that
of Zharikov and Shmulovich for the tilleyite-spurrite transition because
the estimated entropy of spurrite could not be used to generate a consistent
value of the enthalpy at Zharikov and Shmulovich's equilibrium points.
However, reaction (10) also contains spurrite and the calculated equilibrium
curve coincides almost exactly with the curve of Zharikov and Shmulovich.
This seems t§ indicate that the estimated data for spurrite was accurate
after all and that the equilibrium curve of Zharikov and Shmulovich for
reaction (8) was positioned incorrectly. This theory is supported by the
fact that the agreement between the calculated and experimental curves for
the reacticen
3 CaCO3 + 2 CaSiO3 #&ZCazsioa-CaCO3 + 2 CO2 (6)

as determined by different experimentalists, Tuttle and Harker in 1957,
is also quite good with the calculated curve falling 20°C or less below
the experimental one.

The calculated equilibrium curves for the reactions

CaMgS1,0, + Mg,510

, * 2 CaCo =3 CaﬁgSiOa +200, (&

and

CaMg81206 + CaCD3 == CazMgSiZO7 + CO2 (5

match the experimental curves of Walter (1963a,b) quite closely but the
calculated curve of equilibrium for the reaction
-g4 — :
CaCO3 + B §10, = CaS;LO3 + COZ (3

lies at a constant 50°C below the experimental curve of Harker and Tuttle



sociation of dolomite to calcite, periclase and CO, also lies at higher

57
(1956). The equilibrium curve calculated to represent the thermal dis-
2
temperatures than the experimental curve of Harker and Tuttle (1955),with

the deviation ranging from + 20°C at 100 bars to + 7006 at 3000 bars.

This might be a result of the fact that the thermodynamic data used in

this paper for dolomite is suspect although no revised values have been

published for it as yet.

Diagrams
2

Temperature-X

co

The effect of an added variable in decarbonation reacticms, that is,
the mixing of HZO and CO2 in the fluid phase, will be illustrated by

diagrams can be

means of temperature-X diagrams. Temperature—XCO

CO2 »

thought of as a bridge between the classical study of metamorphism from

a purely physical point of view and the more recent study of metamorphism
from a chemical point of wiew because the changing mole fraction of CO2
can be equated with the changing chemical potential of CO2 in the fluid

phase.

Consider the hypothetical reaction

A+B=C+D+ HZO + C02 (34)
According to the choice of standard states in this paper,
aaa, .3
0 Co
= CPD = . .
log Kr,T,P log ( 2 2) log (aHZO aCO% (35)

25 33
Because we are now dealing with mixtures of gases, consideration must be
given to the ideality, or non-ideality, of their mixing. Greenwood (1967)
states that according tq his experiments, CO2 and H20 appear to mix
ideally below 2 kbar and above 500°C—that is, each gas in the C02~H20

mixture is characterized by the same thermodynamic properties that it had as

a pure gas-and its properties are therefore independent of the composition
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of the mixture. This assumption of ideal mixing is expressed by the
Lewis—Randall fugacity rule

£,o= £ Ny (36)
where f; represents the fugacity of the pure gas i at some temperature

and pressure, fi is the fugacity of gas i in a mixture at the same

temperature and pressure, and Ni is the mole fractiom of gas i in the

[s] (]

£g =Yy Ppo (37)
and because

Pi = Ni PT , (38)

the fugacity in a mixture is, from equations (37) and (38),

Q
£, Yi P

N.
i i

T
=Y; P, (39

where PT is the total bressure, Pi is the partial pressure of gas i, and

Y; represents the fugacity coefficient of the pure gas i at some temper-

ature and pressure. Equation (39) seems to be relatively accurate if the

total pressure is low and if the mole fraction of the gas whose fugacity

is to be determined is high (Ryzhenko and Malinin, 1971).

However, in this paper we will be dealing with conditions for which
the Lewis-Randall fugacity rule is not applicable; namely, pressures up to
1000 bars, low mole fractions of C02 and HZO and temperatures below 500%¢
at which CO, and H.0 appear to form non-~ideal mixtures. Therefore, use

2 2

must be made of fugacity or activity coefficients for 002 and H20 which

mixture. The reference fugacity is related to the total pressure by:
take into account their non-ideal mixing. Greenwood (1973) lists activity
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coefficients for varying mole fractions of CO,. in mixtures with HZO

2
petween 450° and 800°C and from 0 to 500 bars, but owing to the limited

range of his data, the fugacity coefficients for mixtures of CO2 and H20

were chosen from the work of Ryzhenko and Malinin (1971), who used

p-v-T-X data on 002 - HZO mizxtures in the equation

P - _
RT1ln Y, = -_J‘O v, - vi) 4P (40

id

where Vi represents the partial molar volume of gas i at T,PT and Ni’ and

v., is the ideal volume of gas i at the same T,P_, and N,, in order to

id T i’
determine fugacity coefficients for each component in various mixtures
within the ranges of 400° to 750°C and 400 to 2000 bars.

Equation (40) reveals that Ryzhenko and Malinin (1971) have chosen
basically the same standafd state for gases as was adopted in this paper -
namely, the pure gas at 1 atm.and any specified temperature. Greenwood
(1973), on the other hand, chose as his standard state the pure gas at
any temperature and pressure, and was thué committed to determining
activity ccefficients for each gas in the mixture rather than fugacity

coefficients as determined by Ryzhenko and Malinin. This is a result of

the fact that when the standard state is a sliding one with respect to

Q
i

can be closely approximated by one only at high temperatures and low pressures

pressure, P; and thus f are not necessarily equal to one because Y;

(V1 atm). However, when the standard state of Ryzhenko and Malinin is
chosen, P; is equal to one atm. by definition. Consequently, fz is
approximately equal to one at high temperatures and low pressures and thus
the activity of CO, or H,O0 in a mixture can be approximated by its fugacity

2 2

in the mixture; i.e.,
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Wi g
T : @
i1 £
= a. .
1.

With the ability to determine the fugacities of CO2 and HZO at

some temperature, prassure and XCO ,» it is possible to evaluate log Kr
2
in terms of the fugacities of the gases involved in the reaction at a

series of temperatures at a comstant total pressure and XCO
2

the computed curve with a similar plot of log Kr as calculated from
equations (22) and (21) versus temperature, The intersection of the two
curves yields a point along the equilibrium reaction curve at a specified

temperature, total pressure and X Repetition of this process for

C02‘
varying XCO at a series of pressures will ultimately provide an equilib~
2
rium curve for the reaction on a diagram having temperature and XCO as
2

variables at each of the total pressures considered.

This procedure can also be employed to calculate temperature-XCO
2

equilibrium curves for decarbonation reactions which do not explicitly
involve HZO’ such as

CaMg(CO,), + 2510, == CaMgSi + 2 CO an

2 2% 2"
Even though the fugacity of H20 is not involved in the calculation of

log Kr T.p? its presence will have a definite effect upon the fugacity of
b ] b ]

€0,, and the fugacity coefficient of €O, utilized in calculating log

2

Kr T.p TUSt be the appropriate one for the conditions of temperature,
¥ L

total pressure and X .
CO2

Skippen (1971,1974) made an extensive experimental investigation

into the system CaO-MgO—SiOZ-HZO--CO2 and constructed temperaturewxco

2

by comparing
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ropologies at total pressures of 500, 1000, 2000 and 3000 bars. Slaughter,
gerrick and Wall (1975) utilized both experimental data and thermochemical
calculations to construct some of the same equilibrium curves at 1000, 2000
and 5000 bars total pressure. Metz and Trommsdorf (1968) have also pub-

i1ished detailed temperature-X tovologies but their equilibrium curves

C02

tend to lie at significantly higher temperatures than those of Skippen or

Slaughter et al. Because the temperature—xco topologies calculated im

this paper tended to agree with those of Skipien and Siaughter et al., the
equilibrium curves of Metz were considered no further in this paper except
to suggest that they are quite anomalous when compared to other experimental
data.

Because Ryzhenko and Malinin's fugacity coefficients for the CO2 -

H.0 system terminate at less than 2000 bars in the temperature range 400°

2
to 6SO°C, only 500 and 1000 bar total pressure temperature—Xco diagrams

2
could be constructed for the bivariant reactions listed in Table 15. They
are illustrated in Figures 12 to 21 along with the corresponding topologies
of Skippen and Slaughter et al. for purposes of comparison.

The equilibrium curves for the reactions

- . — .
Ca Mg5518022(0H)2 + 3 CaCO, + 2a8i0, = 5 CaMg51206

2 3 2
+ 3 002 + 3 H20 , (15)
and
, - \
3 CaZMg5518022(OH)2 + 5 CaCO3 = 11 CaMgSiZO6 + 2 Mg25104
+ 5 CO2 + 3H20 (16)

at 500 and 1000 bars total pressure match the equilibrium curves determined

by Skippen at higher XCO values but fall off slightly in accuracy at

2

lower XCO .  Slaughter et al. determined an equilibrium curve for reacticn
2
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TABLE 15,

BIVARIANT REACTIONS IN THE SYSTEM CaO-MgO—S.iOZ—HZO —C02

3 Dolomite + 4 Q-quartz + HZO +==talc + 3 calcite + 3 CO2

3 CaMg(C03)2 + 4aSio, + HZO :‘-Mg351 0 (DH)2 + 3 CaC0, + 3 CO

2 4710 3 2

2 Talc + 3 calcite s=tremolite + dolomite + HZO + CD2

(0H), + H,0 + CO, +CaMg(CO

2 Mg3Si 0 (OHL)2 + 3 CaCO3 +=Ca MgSS:L 2

4710 8722 3)2

5 Talc + 6 calcite + 4 a-quartz == 3 tremolite + 6 CO2 + 2 HZO

(oH),

5 Mg,S1,0, 4 (0H) , + 6 CaCo 5922

10 =>
3 + 4a8102 = 3 CaZMgSS:.

2 2
3 —
5 CaMg(CO3)2 + 8&.5102 + HZO v-Ca.zMgSSiS 22(OH)2 + 3 CaCO3 + 7 C()2
Tremolite + 3 calcite + 2aquartz+# 5 diopside + 3 CO-2 + H20
v 2 —d
Ca.2 Mg5818022(0H)2 + 3 CaCO3 +2a 8102 = 5 Ca.l".gSiZO6
+ 3 COZ + HZO
3 Tremolite + 5 calcite =211 diopside + 2 forsterite + 5 CO2 + 3 HZO
3 Caz))*.[gSS:I.s()zz(OI-I)2 + 5 CaCt‘)3 = llCaMgSi206 + 2 Mg25104
+ 5 C02 + 3 H20
Dolomite + 2 a-quartz == diopside + 2 CO2
CaMg(C03)2 + 2{15102 == CaMgSJ.ZO6 + 2 CO‘2

+ 6 C()2 + 2 HZO
5 Dolomite + 8 Q~quartz + H,0 = tremolite + 3 calecite + 7 CO
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Temperature—xco equilibrium curves for the reaction
2 :
3CaMg(C03)2 (dolomite) - 4a8i02 {a—-quartz) * HZO'(gaS) =
Mg3Si 0 (OH)2 ttalc) + BCaCO3 (caleite) + 3 002 (gas) (1D

at 1000 bars total pressure. The solid line represents the

calculated equilibrium curve and the dashed line represents

the equilibrium curve determined by Slaughter et al. (1975).
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Temperature~X equilibrium curves for the reaction

co

2 _
2 (ralc) T 3CaC04 (.1cire) ™ CayMEg5150,,(0H),

+ CaMg(CO

2Mg,S1,0, , (OH)

3)2 (dolomite) + COZ (gasg) * HZO (gas)

(12) at 1000 bars total pressure. The solid line represents

(tremolite)

the calculated equilibrium curve and the dazghed line repre-
sents the equilibrium curve determined by Slaughter et al.

(1973).
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Figure 14, Temperature~xco

2
Mg481,0,,(0H) ) 10y

= 3Ca,Mgs51g0,, (OH)) (1 ramorire) T 8C°

+ 6CaCo + 4a~510

3 (caleite)

2 (gas)

equilibrium curves for the rsaction

20

(13) at 1000 bars total pressure. The solid line represents

2 (a—quartz)

the calculated equilibrium curve and the dashed line represents

the equilibrium curve determined by Slaughter et al.

(1975).
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Figure 15. Temperature—xco equilibrium curves for the rsaction
2

5CaMg (CO + 8¢-3i0

b —
2 (a-quartz) HZO (gas) =

+ 3C&COB {(calcite) * 7CO2 {gas)

3)2 (dolomite)

Ca,Mg 5.0, , (OH)

(14) at 500 bars total pressure. The solid line represents

2 (tremolité)

the calculated equilibrium curve and the dashed line represents
the experimentally determined equilibrium curve of Skippen

(1974),
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(OH)
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2 {(a=-quartz) + Hzo (gas) =

Ca MgSSi + 3CaCo 7

2 8022 COZ (gas)

(14) at 1000 bars total pressure. The solid line represents

2 (tremolite) 3 (calcite) +

the calculated equilibrium curve, the dashed line represents
the experimentally determined equilibrium curve of Skippen
(1974) and the dotted line traces the equilibrium curve deter-

mined by Slaughter et al. (1975).
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Temperature~XCO equilibrium curves for the reaction
2
Ca MgSSlS 22(OH)2 (tremolite) + BCaCO3 (calcite) * 2&—8102
: +
(a=-quartz) = SCaMg31206 (diopside) * 3CO2 (gas) Hy0 (gas)

" {15) at 500 bars total pressure. The solid line represents
the calculated equilibrium curve and the dashed line represents
the experimentally determined equilibrium curve of Skippen

(1974).
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Figure 18. Temparature-XCO equilibrium curves for the reaction
2
CaZMgSSiSOZZ(OH)2 (tremolite) * 3caco3 {(calcite) * ZG’SlQZ
(a~quartz) = 5CaMgSi206 (diopside) - 3CO2(gas) + Hy0 (gas)

(15) at 1000 bars total pressure. The solid line represents
the ecalculated equilibrium curve, the dashed line represents
the experimentally determined equildibrium curve of Skippen
(1974) and the dotted line traces the equilibrium curve deter-

mined by Slaughter et al. (1975).
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Figure 19. Temperature—XCO equilibrium curves for the reaction
2 .
3CapMg 5505, (OB)) (rremolite) + 5203 (catcite)™ %02 (gas)
i CaMgSi206 (diopside) + ZMgZSiOA (forstérite) * 3H2O (gas)

70

(16) at 500 bars total pressure. The solid line represents -
the calculated equilibrium curve and the dashed line represents
the experimentally determined equilibrium curve of Skippen

(1974).
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Figure 20. Temperature-XCO equilibrium curve for the reaction
2
30a2M35518022(OH)2 (tremolite) + 5caC03 (calcite) =
llCaMg81206 (diopside) + 2Mg28104 (fors;erite)'+'5002 (gas)

+ 3H20 (gas) (16) at 1000 bars total pressure. The solid line
represents the calculated equilibrium curve and the dashed
line represents the experimentally determined equilibrium curve

of Skippen kl974).
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Calculated temperature—XCO equilibrium curve for the
2.
reaction CaMg(C03)2 (dolomite) + 2a—3102 (G-quartz) =
CaMgSi206 (diopside) + ZCO2 (gaS)-(17) at 1000 bars total

pressure.
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(15) at 1000 bars total pressure and their combination of experimental
and thermochemical data yielded curves almost identical to those cal-

The equilibrium curve for

culated in this paper even at low XCOZ’
reaction (14),
5 CaMg(CO,), + 8aSi0, + B0 = Ca Mg Si 0,,(0H),
+ 3 CaCo, + 7 CO, (14)

corresponds with that of Slaughter et al. relatively well at 1000 bars
total pressure but both the curves of Slaughter et al. and this paper

fall about 40°C below the temperature-X topology of Skippen. The

C02

‘s . o
deviation increases to ahout 50°C at 500 bars total pressure.

o topologies for reactions involving
2

talc presented a special problem. Bricker, Nesbitt and Gunter (1973)

Constructing temperature-X

point out that, according to the Gibbs free enmergy of talc cited by
Robie and Waldbaum (AG; = ~1324.386 + 1.720 kcal/mole), surface sea
water and interstitial pore fluids from marine bottom muds are super-
saturated with respect to talc, which does not seem to be the case in
nature.

Attempting to resclve this discrepancy, Bricker et al. estimated
AG? to be -1320 kcal/mole from three independent lines of evidence, a
value which they felt was consistent with natural occurrences of talc.
They also noted the difference between Robie and Waldbaum's tabulated
8298.15 of talc (62.34 cal/mole-deg) and the entropy predicted from
the summation of the entropies of the pure oxideg with a 0,6 volume
correction as proposed by Fyfe et al. in 1958 (67.0 cal/mole-deg).

Because the latter method usually predicts the entropy of a mineral to
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within + 5%, Bricker et al.decided to use 67.0 cal/mole-deg as the
gtandard third law entropy of talc in their calculations. Unfortunately,

they did not attempt to reproduce experimental equilibrium curves with

o =
298.15

67.0 cal/mole-deg and AGz = -1320 kecal/mole, AH? of talc is equal to

their estimated entropy data to check its accuracy. Assuming S

-1409000 cal/mole.

Hemley (1975) propesed a Gibbs free energy of talc of -1320323
cal/mole which is quite similar to that suggested by Bricker et al.
However, if 8298.15 of talc is assumed to be equal to 62.34 cal/mole~deg
this time, AH] = -1411041 cal/mole.

Other values of the thermodynamic properties of talc can be found
in the literature but, in general, all seem to designate a AH; of talc
that is more positive than the value published by Robie and Waldbaum.
When the revised data for talc, namely, AH? = -1409000 cal/mole,

= 67.0 cal/mole-deg and AH? = -1411041 cal/mole, = 62,34

Q [s]
8298.15 5208.15

cal/mole-deg, is used to calculate temperature-xco
2

(11), (12) and (13) in Table 14, equilibrium curves which are about 50°
to 100°C distant from the topologies of Slaughter et al. are obtained,
even though their curves matched those calculated quite closely in
reactions (14) through (16). In view of these discrepancies, it was
decided to use established tem.perature—-XCO2
thermodynamic properties of tale in a manner similar to that in which the
thermodynamic data for spurrite, tiileyite and rankinite was obtained.
After consideration of the available experimental data on reactions

involving talc, the equilibrium curves of reactions (12) and (13) deter-

nined by Slaughter et al. were utilized to calculate AH% of talc.

topologies for reactions

topologies to back calculate the
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glaughter et al. used a combination qf thermpchemical and experimental
data to construct their equilibrium curves using an experimentally deﬁer-
mined equiliﬁrium point from which they could base their calculations
without enthalpy data. However, in their calculations, they did assume
5298.15 of talc to be 62.34 cal/mole-deg.

Points along the equilibrium curves for reactions (12) and (13) were
chosen and AH; of talc was calculated at each using the entropy 62.34

cal/mole-deg assumed to be correct by Slaughter et al, An average value

of AH? of talc was then used to construct the same equilibrium curve from

which it was derived to evaluate its ability to reproduce the experimental

data; the value of AH? of talc that best fit the available data when

5398 15 of talc equalled 62.34 cal/mole-deg was -1415700 cal/mole. The
temperature—XCO2
using this computed talc data and therefore, at least in the case of

reactions (12) and (13), their correspondence with the equilibrium curves

of Slaughter et al. should be quite good.

topologies shown in Figures 12 to 14 were then calculated
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DESCRIPTION OF MINERAL EQUILIBRIA IN TERMS OF CHEMICAL VARIATION

Introduction
The change of the Gibbs free energy of a system can be expressed by
the relation

dG = V4P ~ SdT + Zuidni (42)
i

where G is the total Gibbs free energy of the system, My is equal to the

chemical potential of the ith component and n, is the number of moles of

the ith component. From this equation, it is clear that free energy is not

only a function of temperature and pressure but is also a function of the
changing composition of the system because chemical potential, also

known as the partial molal Gibbs free energy, is defined by

{9G
i/ T,P,n,
J
where nj represents the number of moles of each of the components in the
system except i. Chemical potential therefore reflects the dependence of
the Gibbs free energy of a system on the change in the number of moles of
a2 component in the system at constant temperature, pressure and-nj. In -
fact, the chemical potential of each component in the system may be re-

garded as that component's contribution to the system's total free energy.

Because changes in the total Gibbs free energy of a system are reflected

by changes in its mineralogy, a system's compositional change, represented

by changes in the chemical potentials of its components, is of as much

importance as temperature and pressure in defining mineral equilibria.
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EQEEQEEtion and Chemical Potential

Triangular composition diagrams in which tie lines are drawn between
coexisting pairs of minerals are often used to illustrate mineral equilib-
ria in a given system at a specified temperature and pressure. A series
of these compositional triangles constructed over a range of temperature
and pressure reflects the succession of equilibrium states attained in the
system. However, Helgeson (1968) also recommends the use of orthogonal
plots of mineral composition because of their relation to chemical po-
tential diagrams.

Helgeson pointed out that equilibrium between two minerals at a
given temperature and pressure requires that the chemical potential of
any given component must be the same in each phase. Extending this conse-
guence of equilibrium to all components in the two minerals results in

the equation

q g

o, o™ T P, Pace ™ (44)

n

where n¢1 and n¢2 refer to the number of moles of mineral phases ¢l and
¢2 in the equilibrium state, n, is equal to the number of moles of com-
ponent i1 in each mole of the mineral and My refers to the chemical poten-
tial of the ith component.

Assuming the presence of three components, equation (44) can be
expanded and rearranged such that

n, n - n, n n, n - n, n
Gy PeTeep) TReRaey  Mea) T ey

Ty T M) TR, e "6 T T, G, M
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1f i=3 is conserved in the solid phases, that is,

n, n =n, n . (46)
6,73(8,) T "6,73(6,)
equation (45) can be written as
n, n -n, n n /n - n /n
ay M) TRy MepTiey T ey
Wy P M) T 6,"160,) 167306 T P16, P36,

Equation (47) states that the negative reciprocals of the slopes of
tie lines on orthogonal composition diagrams constructed in this manner
are equivalent to the slopes on the corresponding chemical potential dia-
grams at the same temperature and pressure. An orthogonal composition
diagram illustrating the appropriate mineral stabilities at the tempera-
ture and pressure of interest can therefore be used to construct a diagram,
portraying the same equilibrium phase relations in terms of wvariations in
the chemical potentials of the components taken into consideration,directly
from geometric relationships.

Figure 22, a triangular composition diagram illustrating experimental
phase equilibria in the system CaO-—MgO-—SiO2 at 800°C and 1 bar, was ob-
tained from Brown (1971) and recast into the orthegonal plots shown in
Figures 23 and 24. Note that in Figure 23, Ca0 is conserved among the
solid phases but that in Figure 24 SiO2 is conserved. The choice of the
component to be conserved is one of convenience. It is usually one of the
least descriptive variables in the system,_such that little information
about the state of the system is lost upon its conservation. Therefore,
Figure 23 might conveniéﬁtly illustrate phase relations in impure but
CaO-rich limestones, whereas Figure 24 might be of great use in describing

Phase relations in systems rich in quartz or other silicates.
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Ca0

MGo“ or

Figure 22.

FO EN QZ Sioz

Iriangular composition diagram illustrating equilibrium phase

relations in the system Ca0-Mg0O-Si0O, at 800°C and 1 bar

2
(Brown, 1871). LI<lime, CO=Ca=-olivine, RA=rankinite, Wo=
wollastonite, QZ=quartz, PE=periclase, FO=forsterite, EN=

clincenstatite, DI=diopside, MO=monticellite, ME=merwinite ,

AK=akermanite.



80

Figure 23, Orthogonal composition diagram illustrating the same phase

*

equilibria as depicted in Figure 22 at 800°C and 1 bar in the

system Ca0-MgO-Si0, but conserving CaO in the solid phases.
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n..
SlOz

Figure 24. Orthogonal composition diagram illustrating the same phase
equilibria as depicted in Figure 22 at 800°C and 1 bar in the

system Ca0-MgO-Si0, but conserving Si0_. in the solid phases.

2

2
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The tie lines between wollastonite and merwinite and between merwinite
and rankinite denoted by question marks in Figure 22 are not well docu-
mented DY experimental data at this temperature and pressure and therefore
the equilibrium phase relations in this part of the diagram are unclear.
Thermodynémic data can be used to establish the equilibrium phase relations
among the minerals involved=- namely, wollastonite, merwinite, rankinite,
Ca-olivine and akermanite-- in order to determine which tie lines between
these minerals represent thermodynamically stable assemblages. It was
assumed that the experimentally determined sclid tie lines in Figure 22
are accurate.

There are a total of four mineral pairs that could exist in the com-
positional space within the area bounded by the minerals listed above:

1) wollastonite~merwinite, 2) rankinite-merwinite, 3) akermanite-rankinite,
and 4) akermanite-Ca-olivine. Consideration of the Gibbs free energy of
reaction at the temperature and pressure of interest (calculated by
evaluating equation 22) between any two of these mineral pairs whose tie
lines cross permits the identification of the stable pair—— that is, the
pair with the lowest Gibbs free energy under the prevailing conditions.
Repetition of this procedure for all possible combinations of the mineral
pairs using the thermodynamic data in Appendix A yielded the equilibrium
phase relations illustrated in Figures 23 and 24 at 800°€ and 1 bar.

According to equation (47), chemical potential diagrams drawn in terms
OfliSiOZ versus M Mg0 and Heao VETSUS Ly could be constructed from the
orthogonal composition diagrams in Figures 23 and 24, respectively. How-
ever, the diagrams would be merely schematic and would not reflect quan-
titative relationships which would facilitate their application to

natural systems. Therefore, a quantitative means of representing equilib-
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rium phase relations in terms of chemical potential or a related variable

is needed.

Activity-Activity Diagrams

Many mineral assemblages exist in equilibrium with an aqueous phase
and researchers, seeking a practical means of describing the chemical
variation of such a system, have found it convenient to represent the chem-
ical potentials of a system's components in terms of the composition of
the coexisting aqueous phase. If the solid phases comprising the mineral
assemblage are assumed to be in equilibrium with the aqueous phase, the
chemical potential of any given component in the mineral assemblage is
equal to its chemical potential in the associated aqueous phase. Therefore,
one can represent the changing chemical potential of the componments in the
mineral assemblage by the changing composition of the aqueous phase. As
a matter of convenience, the oxides are used to define the composition of
the phases in the system.

For example, consider the reaction

-

Ca0(c) + 207 == ca’t + 5,0 (48)

for which

aCaT+

(a0

vwhere aCaO(c) refers to the activity of the Ca0 component in the mineral

log K_ = log ~ log a (49)

,T,P Ca0(c)

assemblage at the specified temperature and pressure assuming 8y o = 1.
_ 2
Rearranging equation (49) yields

aCa++

log aCaO(c) = log z;—;;a— - log Kr,T,P . {50)
H
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Because
_ ©
LlCao(c) uCaO(c) + RTlnaCaO(C) ’ 6D
5 combination of this equation with equation (50) gives
aCa++
- ° -+ ettt s
Moao(e) = Meao(e) RT(1ln 5 = 1n Kr,T,P) »  (52)
(aH+)
which, when differentiated, yields
aca-H-
= RTdin — s . . (53)

duCaO(c)

(aH+) 2

Thus, the changing ratio of a a++/(aH+)2 in the aqueous phase can be used

C

to represent the changing chemical potential of the Ca0 component in the
solid phases.

Activity-activity diagrams are used to represent the equilibrium
relations among minerals and an aqueous phase in terms of the logaritﬁm
of the activity ratios chosen as the axes of the diagrams. The computer
program DIAGRAM (Brown, 1970) carries out the calculations involved in
constructing activity-activity diagrams and also includes a CALCOMP plot~-
ting routine to draw the diagrams.

For example, consider the construction of an activity-activity dia-

gram plotting log a a++/(aH+)2 versus log aMg++/(aH+)2 and the positioning

C

of the stability field boundary between wollastonite and diopside on this

diagram,conserving $i0, between the two solids. Equilibrium between wollas-

2

tonite and diopside in the presence of an aqueous phase can be expressed

by

omt + et 4 2CaS10, == CaMgSi,0, + ca™ + ot (54)

for which
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aCa++ a .  ++
log Kr = leg 7 = log

T,P (55)

. 2 )

(2,+) (2,
Upon rearranging equation (55) in the form of a straight line

(y = mx + b) on the appropriate activity-activity diagram such that

a, ++ ay ++

log —gé—ﬁ— = log =& __ 4 log K , (56)
2 2 ,T,P
(aH+) (aH+)

it is evident that log K represents the intercept (b) of the wollas-

r,T,P
tonite-diopside stability field boundary on the diagram and that the
slope (m) of this boundary is +1. Repetition of this procedure for all
possible mineral pairs in the system under consideration will yield a
mineral stability diagram such as Figure 34 which depicts stability fields
of minerals in terms of the composition of the aqueous phase. Only the
minerals that are stable under the prevailing physical and chemical con-
ditions will be represented.

Although the positioning of the stability field boundaries between
minerals on these diagrams will shift with changing temperature and pressure

owing to the change in the wvalues of log K the geometry of the field

r,T,P’
boundaries will remain the same because it is dependent only on the stoch-
iometry of the reactioms. It must also be remembered that even though the
aqueous phase does not appear explicitly in these diagrams, it is a co-
existing phase in all stability fields.

In order to justify the theoretical basis for constructing activity-
activity diagrams in terms of the composition of the aqueous phase, it was
necessary to assume that an aqueous phase coexists with such mineral as-

semblages. However, it is also possible to directly compute the chemical

bPotential of the oxide components in the minerals without specifving the
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presence of an aqueous phase. To accomplish this, the standard or reference
state for oxide components such as SiOZ(c), Ca0{c) and MgO{c) is assumed

to be the pure sclid oxide at the temperature and pressure of interest.
Thus, AG;,T,P of the pure solid oxide and the oxide component are identical

and AG for a reaction such as CaO(s) & CaO(c¢) is equal to RTlna

r,T,P
That is, AG; at any temperature and pressure for the reaction

Ca0(s) == Cal(c) (57)
is equal to zero according to the standard states chosen in this paper

and therefore

AGr,T,P = RTlnaCaO(c) (58)

which represents the free emnergy associated with the conversion of Ca0
from a pure phase to a component in a crystalline phase. Conseguently,
equilibria between minerals can be written in terms of their dissociation
to their component oxides instead of their hydrolysis in the aqueous phase.
A treatment similar to that described above will yield activity-activity
diagrams such as Figure 26 in which log aCaO(c) versus log aMgO(c) is
plotted. These diagrams, in contrast to those described earlier, can be
constructed at all temperatures and pressures irregardless of the presence
(or absence) of an aqueous phase,

A comperison of an activity-activity diagram constructed by assuming
the presence of an aqueous phase with a diagram at the same temperature
and pressure plotting the activities of the component oxides themselves
reveals that although the two have the same geometry, their stability
field boundaries differ numerically. Equation (49) shows that the propor-
tionality constant between the stability field boundaries is equal to
log Kr

- log £ where r refers to a reaction of the type
,T,P HZO

CaO(c)’
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Ca0(c) + 25 = Ca'' + HYO (48)
and therefore
aca++
log Kr,T,P - log fH o~ log —5 - log aCaO(c) (49)
2 (aP+)

pifferentiation of equation (49) yields

++
aCa

e (59)
(aH+) .

dlog a = dlog

Ca0(¢)

which demonstrates that the two types of diagrams, when determined at the
same temperature and pressure, are equivalent in derivative space, i.e.,

slopes of the tie lines:

aCa++
dlog
(a..+) dlog =
8y _ Ca0(c) . (60)
++ dlog '
dlog fmﬁ__z : aMgO(C>
(ag+)

In addition, a comparison of the slopes on both of these diagrams with
the slopes of the tie lines on the corresponding orthogonal composition
diagrams reveals that they are the negative reciprocals of each other.
The relationship between slopes on an orthogonal composition diagram and
a chemical potential diagram has been carried over to both of these dia-

grams because, according to extensions of equations (53) and (51), respec-

tively,
a. ++ a_ ++
RTdln —CE——E dlog ——C—%——z—
duCaO(c) _ (aH+) - (aH+) (61)
d aM ++ aM ++
UMgO(c) RTd1ln ——E——E- dlog ——&—ji
(aH+) (a+)
and
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RTdln a dlog a

duCaO(c) _ Cal(c) _ Ca0(c)

duMgO(c) RTd1ln aMgO(c) dlog aMgO(c)

The thermodynamic data used to construct the activity diagrams in

(62)

this paper is listed ip Appendix A. Several simplifying assumptions were
made both to facilitate calculations and because of the unavailability of
certain types of data at the time of ﬁhis study. For example, the net com-
pressibility and thermal expansion of a given reaction involving only
condensed phases were assumed to be zero. In addition, the net change of
the volume of ions involved in reactions between minerals was assumed to
be independent of temperature and pressure because of the lack of an
adequate equation of state for aqueous electrolytes. However, it is known
that volumes of ions vary significantly at elevated temperatures and pres-
sures and therefore activity-activity diagrams plotting the ratios of the
activities of ions were limited to temperatures and pressures below 300°C
and 1000 bars. To illustrate mineral equilibria above these limits, activ-
ity -activity diagrams utilizing the activities of the component oxides

as variables were constructed because these diagrams are not affected by

the phenomena described above.

The Utilization of Activity-Activity Diagrams in the Study of Mineral

Equilibria

A comparison of the activity diagrams in Figures 25 and 26 with the
orthogonal composition diagrams in Figures 23 and 24 drawn at 800°Q and
1 bar verifies the relationship described by equation (47); namely, the
slopes on diagrams plotting the activity of the oxide components are the

hegative reciprocals of the slopes on the corresponding orthogonal com-
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Activity diagram for the system Ca0-Mg0-SiO, at 800°C and

2
1 bar. Abbreviations used in this and all following diagrams

are: AQTZ= o-quartz, BQTZ= f-quartz, CA-O=Ca-olivine , CLIN=
clinoenstatite, DIOP=diopside, FORS=forsterite, MERW=merwinite,
MONT=monticellité, RANK=rankinite, SPUR=spurrite, TALC=talc,
TILL=tilleyite, TREM=tremolite, WOLL=wollastonite. Saturation
lines for the designated minerals are superimposed on the dia-

grams.
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Figure 26. Activity diagram for the system Ca0-Mg0-SiO. at 800°C and

2
1 bar.
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position diagrams. Because these activity diagrams were constructed wholly
from thermodynamic data, it is not surprising that they exhibit some equi-
1ibrium phase relations which are different than those suggested by anal-
ogous experimental data. The major discrepancies between the computed ac-
tivity diagrams and the corresponding experimental composition diagrams
are: 1) the absence of monticellite in Figure 26, and 2) the absence of
akermanite in both Figures 25 and 26. The absence of akermanite at 800°C
and 1 bar in contrast to its presence in the composition diagrams would
seem to indicate that the thermodynamic data for this mineral is not in
keeping with its natural occurrences. A similar explanation would account
for the absence of monticellite in Figure 26. However, it should be noted
that monticellite does occupy a stability field in Figure 25, drawn at
the same temperature and pressure. This apparent discrepancy is probably
related to the assumptions involved in comstructing the activity diagrams;
that is, both diagrams illustrate phase relations in the system CaO-MgO-
SiO2 but utilize changes in the activities of different components to do
so (i.e., descriptive variables). Minerals that occupy stability fields
on one diagram yet not the other at the same temperatufe and pressure
reflect the effects of changing the activity of SiOz(c) in one diagram
while maintaining it at a constant value in another and varying the ac-
tivity of Ca0O(c) instead.

The stability fields labelled lime in Figure 25 and g~quartz in Figure
26 represent chemical potential space in which none of the minerals in the
system are stable except for the pure oxide equivalent of the oxide com~
ponent conserved in the solid phases. If an aqueous phase is assumed to

be bresent, these fields refer to chemical potential space in which the
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aqueous phase 1s not saturated with respect to any minerals except that
component which was originally assumed to be conserved in the solid phases
and thus is in equilibrium with the aqueous solution. Note that the state
of the oxide component is the thermodynamically stable one at the temper-
ature and pressure of interest (i.e., B-quartz instead of g-gquartz at 800°C
and 1 bar, as in Figure 26).

Unfortunately, the log a versus log aMgO(c) diagrams cannot

Si02(c)

depict the stability of minerals which do not contain Ca0 because this
component is assumed to be conserved, and thus present, in all solid
phases. Therefore, the stability of minerals such as clinoenstatite and
forsterite must be represented by means of saturation lines instead. These

lines are constructed by calculating log Kr T.p for the dissociation of
» *

these minerals to their component oxides and then evaluating their slopes
on the activity diagrams in terms of the variables represented on the
diagram's axes. For example, consider the construction of the saturation
line for clinoenstatite for which leg Kr at 800°C and 1 bar is equal to
-1.68. The dissociation of clinoenstatite is represented by

MgSi0, w MgO(c) + 510, (c) (63)

3
such that

+ log a == 1.68 . (64)

= log & 510, (c)

log Kr

,T,P Mg0O(c)

The slope of the clinoenstatite saturation line on a diagram plotting

versus log a would therefore be -1, its iutercept -1,68.

1
°& aSiOZ(c) MgO(c)

This same procedure was carried out to determine the saturation lines shown
in Figure 25. When hydrous phases such as talc were involved in calculating

Saturation lines, necessary log fH 0 data was obtained from Helgeson (1974).

2
In all activity diagrams, there are certain mandatory restrictionms
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apon potential solution composition. For example, on the diagrams plotting
the logarithm of the activity of the oxide components, upper limits are
automatically imposed upon the activities of the oxide components as soon
as they achieve equilibrium with either their corresponding solid oxide
or hydroxide, Similar saturation lines serve to restrict possible solution
composition on activity diagrams plotting the ratios of activities of ioms.
For example, in Figure 34, drawn at 100°C, 1 bar and log fHZO = ~0,007,
the aqueous solution becomes saturated with respect to brucite at any value
of log aCa++/(aH+)2 when log aMg++/(aH+)2 = 13.08, such that the reaction

Mg (OH), + 2H ek Mg'' + 2H,0 (65)
is at equilibrium. Because

a, ++

log K = log——Mg——— + 2log £ (66)
r,T,P (aH+)2 5,0

for this reaction at equilibrium and log K and log fH o are fixed

27
at the temperature and pressure under consideration, log aMg++/(aH+)2 must

r,T,P

also be fixed. From this example, it is apparent that the equilibration

of minerals not otherwise occupying stability fields on the activity dia-
grams imposes upper limits upon the chemical potential of the components

in the system. Additional restrictions on component chemical potential as
reflected by solution composition may be incurred if the system contains

002 because the saturation lines of calcite, magnesite and dolomite must also
be taken into account. Saturation lines are thereforercrucial to the iden~
tification of stable mineral assemblages at a specified temperature, pres-

sure, log fH 0 and log fCO because mineral stability fields beyond the

2 2
limiting saturation lines cannot be reached in terms of component chemical

potential. Consequently, the minerals they represent are not thermodynamically
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gtable under the prevailing conditions.

Because activity diagrams plotting log aCaO(c) versus log aMgO(c)
and conserving SiO2 in the solid phases are perhaps most ﬁseful in defining
possible equilibria among the many silicate minerals in the system CaO-MgO-
siOz—HZO—COZ, this type of diagram was used to illustrate equilibrium phase
relations in the system mentioned above from 100° to 800°C and from 1 to
1000 bars in Figures 27 to 66. It should be noted that even though each
activity diagram at a specified temperature and pressure depicts the sta-
bility of minerals in terms of the activities of the components in the
system, a series of these diagrams over a range of temperature and pressure
will alsc reveal the influence of these factors upon mineral equilibria.

In fact, it is possible to trace a point of known chemical potential of

the oxide components on an activit§ diagram through temperature-pressure
space to study changing mineral stabilities from an isochemical viewpoint.
Because the information obtained in this manner is analogous to that ob-
tained from isochemical pressure~temperature diagrams, it should be possible
to discern the dehydration, decarbonation and solid-solid reactions affecting
mineral equilibria in response to changing temperature and pressure on

these activity diagrams.

Equilibrium phase relations inp the anhydrous system CaO-MgO—SiO2 will
be studied first as a function of temperature, pressure and component
chemical potential to introduce several basic characteristics of the
system. HZO and CO2 will then be added to the system to evaluate the effects
of each upon mineral equilibria.

Figures 27, 28 and 29 were drawn at 400°, 600° and 800°C at 1 bar

pressure to illustrate the response of minerals in the anhydrous system
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Figure 27. Activity diagram for the system Ca0~-Mg0-Si0, at 400°C and

2
1l bar.
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Figure 28. Activity diagram for the system Ca0-Mg0-Si0., at 600°C and

2
1 bar.
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Figure 29.
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Activity diagram for the system Ca0O-Mg0-SiO

1l bar.

2

at 800°C and
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caO—MgO-SiOZ to increasing temperature. They show that the stability field
of the conserved component SiO2 expands in size markedly with temperature.
This is related to the log Kr,T,P of reaction between quartz and the

minerals bordering its stability field because log Kr,T,P must become more

positive as temperature increases to cause the expansion of the Si0. sta-

2
bility field. However, if we assume an aqueous phase to be present, this
phenomenon more precisely represents the increasing solubility of minerals
with rising temperature, such that greater activities of the oxide com-
ponents are required to cause them to precipitate. The stability fields

of diopside, wollastonite and clinoenstatite decrease in size with increasing
temperafure as a result of the expansion of the quartz field. Whereas ran-
kinite becomes only slightly less stable as temperature increases, the
stability field of monticellite totally disappears from these diagrams

above 600°C, its stability field enguifed by that of merwinite which rapid-
ly becomes more stable as temperature rises.

Figures 30, 31 and 32 attempt to show the effect of pressure upon
the.same anhydrous system at 600°C and 1, 500 and 1000 bars. Because the
mineral stability fields depicted on these diagrams do not change appre-
cilably with increasing pressure at a comstant temperature, it appears that
pressure has very little effect on anhydrous systems. This is a result of
the fact that the volume change involved in solid-solid reactions is quite
small and therefore its contribution to the Gibbs free energy of reaction
(as shown in equation 22) is minimal. (As mentioned previously, it was
assumed in this study that the net compressibility of the solid phases in
solid-solid reactions was zero in order to facilitate calculations without
significant error.)

Figure 33 was included in this series of diagrams to illustrate the

result of omitting a phase such as rankinite from consideration on activity
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Figure 30. Activity diagram for the system Ca0-Mg0-Si0, at 600°C and

2
1 bar.
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Figure 31.
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Activity diagram for the system Ca0-Mg0-5i0

500 bars.

2

at 600°C and
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Figure 32. Activity diagram for the system Ca0-Mg0-Si0, at 600°C and

2
1000 bars.
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Figure 33. Activity diagram for the system CaO-—M.gO—SiO2 (excluding ran-

kinite) at 600°C and 1000 bars.
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diagrams. Rankinite, owing to its intermediate Ca:Si ratio with respect

to wollastonite and Ca-olivine, would normally occupy a stability field
between these two minerals. However, upon its omission in the 600°C, 1000
bar diagram, the stability fields of wollastonite and Ce~olivine simply
expand and converge to form a new wollastonite-Ca=-olivipne stability field
boundary.

Figures 34a,b to 50 represent the addition of pure H20 to the anhydrous
CaO—MgO—Si02 system in hopes of illustrating the effect of a fluid phase

upon mineral stabilities. The fugacities of H,0 at all temperatures and

2
pressures were taken from the work of Helgeson and Kirkham (1974). It is
immediately apparent from Figures 34a,b to 37 that the presence of H20

tends to stabilize hydrous phases such as serpentine, talc and tremolite

at the expense of forsterite and clinoenstatite at low temperatures (100°-
400°C). However, as temperature increases at a constant pressure (Figures
34a,b to 38), the stability fields of these hydrous minerals tend to

steadily décrease in size and become replaced by forsterite and clino-
enstatite., This is not unexpected because these minerals are known to under-
go dehydration and convert to the anhydrous phases which are seen to en-
croach upon their stability fields as temperature increases. Saturation

lines in this series of diagrams also illustrate the dehydration of brucite
to periclase. That is, at a specified temperature and pressure, the stability
of brucite as opposed to that of periclase is indicated by the positioning

of their saturation lines. For example, at 1 bar, the saturation iine of
brucite lies at lower values of log aMg++/(aH+)2 than that of periclase

at temperatures up to and including 300°C. However, at 400°C, the periclase

Saturation line represents the upper limit on solution composition rather

than the saturation line of brucite. In this manner, the dehydration of

%ﬁ\’\-; ,
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-]
,~H,0 at 100°C,

1 bar and log fH 0= -0.007 (fugacities of HZO in this and
2

all following diagrams are from Helgeson, 1974)."

Figure 34a. Activity diagram for the system Ca0-Mg0-SiO
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Figure 34b. Activity diagram for the system Ca0O-Mg0-SiO,-H,0 at 100°C,

272

1 bar and log fHZO = -0.007.
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1 bar and log fH 0" -0.002.

|

|

|

|

|

i

|

Figure 35. Activity diagram for the system CaOHMgO~Si02~H20 at 200°C,
2
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