NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY

" DRAWDOWN DISTRIBUTION AROUND A WELL PARTIALLY

PENETRATING A THICK LEAKY AQUIFER
: by
JOHN C. HALEPASKA

Submitted to the faculty of the
New Mexico Institute of Mining § Technology
in partial fulfillment of the requirements
for the degree of Master of Science
in Ground Water Hydrology

 May 1966




Abstract

- Acknowledgment . . « e ‘

Tables
Figures

Introduction

Table of Contents

General . e . . . . .
Previous work . . . . . . .
Purpose . e . . . . .
Figure 1 . . . . . .
Flow systems con51dered . . . . o
Theory
General assumptions and boundary conditions . .
Differential equation of motion . . . e

Methods of analysis

Case 1. Flow to a well, penetration I: perforation 1),
constant discharge . . . .
(a) Unsteady-state solution , . . .
(b) Steady-state solution . .
(c) Approximation of steady-state solutlon .

Case 2, Flow to a spherical, penetration 1 constant
discharge - . . . . .
(a) Unsteady-state solution , . . .
(b) Steady-state solution . .
(c) Approximation of the steady—state solutlon .

Case 3, Flow to a hemi-spherical cavity, zero pene-
tration, constant discharge . . .
(a) Unsteady-state solution . . .
(b) Steady-state solution . . . .

(c) Approximations of the steady-state solution
Case 4, Wells of finite depth, penetration (1 d) and
‘ constant discharge . . . .
(a) Unsteady-state solution v v .
(b) Steady-state solution . . . .
Discussion ° e N . ' . ° s .
Conclusions . . . o o e o .
Suggestions for future work . . . . .
Figure 2 . ° . . . . o

Graphs 1 - 15

- L3 * [ ] L » L

Page

N v o

N=RRTa RN |

10
10
16
17

18
18
20
20

21
21
21
22

22
22
22

23
26
27
28
29-43



Symbols

Appendix I

Appendix II

Table 1

Table 2

References

Page
44

46
48
50

51

52 .




ABSTRACT

Steady-state and unsteady-state solutions are found for
the potential distribution around wells that partially penetrate
thick leaky artesian aquifers. Several graphs illustrating the
tabulated function are coﬁtained in the thesis., The unsteady-
state solutions depend on a function &hat has to be tabulated if
it is to be useful in practical application. The steady-state so-
.lutions are obtained in terms of a functionrthat is herein tabulated
for a practical range of the parameters., Approximate relations for

this function that are useful in practical computations are pre-

sented also. - ik 1_"'<’ ‘5',.>' 0
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INTRODUCTION

General .

Drawdown equations are available for both confined and unconfined
aquifers and for completely and partially penetrating wells, The
leaky aquifer constitutes a transition case between the perfectly con-
fined aquifer and the unconfined aquifer. Leaky-aquifer theory has

" been developed for aquifers of finite thickness and completely and
partially penetrating wells,

A common occurrence is a thick leaky aquifer partially penetrated

by wells, No analytical description of thick leaky aquifers partially

penetrated by a well has been given, .An aquifervis "thick" when the
effect of pumping through a partially penetrating well is negligible

at the aquifer's bottom,

. Previous Work -

‘Leeky aquiferé have eeen recognized since before the turn of
‘the century (Jacob, 1946), It was only in the thirties, however,
that theoretical solutions forAvarious leaky cases began to appear.

The first readily ueable steady-state.eelutioh‘for a well com-

pletely penetrating a leaky aQuifer_was_introduced by Jacob in 1946,




Since that time leaky-aquifer theory has greatly increased‘in
sophistication (Hantush § Jacob, 1954, and-1955; Hantush; 1956, 1957,
1959, and 1960), In 1955, Hantush and Jacob devéloped the theory of
non-steady radial flow in an infinite leaky aQuifer. This series of
solutions, howéver, was for Completelygpenetrating wells,  In 1957,
Hantush developed the theory of non-steady flow to a weli partially
penetrating an infinite leaky aqﬁifef. In this theoretical develop-
ment the leaky boundary is in;orporated in the differential equation,
The leakage is then considered to be generated within the aquifer at
a rate directly'proﬁortionaiAto the drawdown at any place. The error
involved in the use of this equation'incréases as the ratio of pene-

tration to total thickness decreases,

Pungse

The purpose of this study is to develop a solution for the

case of a well partially'penetrating a thick leaky confined

‘aquifer, expressing the leakage across the interface as a boundary

condition,
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.Flow Systems

The following flow syétems are considered:

1) Wholly perforaied wells of penetraﬁibn I:‘This case is treated
~as purely axisymmetric flow of water discharginglinto a cylinder of
length f: |

2) Wells of penetration I’and,zero perforation, This case is con-
sidered as the burely radial flow of water into a spherical cavity of
ﬁhe sémezradius as the well,

3) Wells of zero penetration., This case is treated as the purely
»radial'flow of water to a hemisphericél cavity, the same radius as
the well,

4) Wells of penetration 1" and perforation.(fid). This case is
tréated by superposing a reéﬁarging well of penetration d on a dis-

charging well of penetration I: both wholly perforated.

Theory

General Assumptions and Boundary Conditions

In an aquifer which is partially penetrated by a well, if the
effects of pumpage are negligible at the lower confining layer of
‘the aquifer, it is considered an effectively infinitely thick aquifer,

A leaky aquifer is treated as one receiving "linear" leakage, or

leakage that is directly proportional to the drawdown, at the inter-

face between the aquifer and the overlying leaky semipervious layer.




The system under consideration is that of a "thick" aquifer
_overlain by a thin semipervious leaky layer, which is in turn over-
~lain by a pervious saturated bed., The assumptiqns made are: (1) the
head above the semipervious léaky layer is constant; (2) storage in

the semipervious er is negligible; (3) leakage through the semi-

pervious layer is vertical and proportional to the drawdown of the
piezometric surface at ‘the leaky interface--such a condition is realized
if the hydraulic conductivity of the semipervious layer is very much
less than that of the thick layer; (4) the well is discharging at a
constant rate; (5) flow to the well is axisymmetric; (6) the aquifer

is homoge;eous, isotropic, infinite in areal extent, and '‘thick"; (7)

1n1tiaily the drawdown distribution is zero throughout the aquifer;

(8) the hydraulic conductivity and specific storage of the aquifer

e

remain constant in space and time,




\ E

Differential Equation of Motion

The general differential equation‘of'motion-is

325 9%s 3% 1 Bs
+ + =
. 3x2  ay? 3z v oot

1
I

In cylindrical coordinates, the equation is

2 ' 2 2
3¢S . lads 123%s , 3%s _ 1 3s

or?2 rar 12382 3z%2 v 3t

For axisymmetric flow, the equation reduces to

s . L3s
v ot

Methods of Analysis

N

Seyeral érocedures can be employed in solving the problems
treated bélow, The one presented is considered to be the simplest.
The methods of Laplace, Fourier,and’Hankel transformations are used
to find the drawdown distribution around a fully perforated cylinder
draining a thick partially penetrated aquifer., The transformations
and integral relations used in‘the treatment are given in'Appendices

I and II,

* See 'Symbols,' p, 44, = ’ ‘ - : -
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Case 1. Flow to a well, penetration 1: peiforation f: constant discharge.
‘(a) Unsteady state
The flow SYStem beiﬁg radial, with the origin taken at the inter-
section of the axis of the well and the bottom of the semipervious layer,

the boundary value problem in (r, z, t) is  (see Fig. 1)

‘ 325 1as 82 13s
5 : , | e e o — e — ‘ - - = (1)
3r2 r 3r 9z2 v ot :
_3_5_(1‘,0,1:) = S(rloit) R ' ‘ DR . - - (2)
3z ' a ‘ : :
_8_5_(1‘,“’,11) 5 0“ | o O ‘ - e e ®
— g i
;- :
s(r,z,0) =0 - - - (4
s(»,2,t) = 0 N )
Limr 3s _ - Q AT | : [N
[ — - - <zz < 1 : “ - - 6
-0 or 27KT ' ’ Q z Sl (6)
=0 z > 1’

Using the Laplace transform with tespe;t to t and applying

equation (4), the transformed boundary value problem in (r,z,p) is

23 = 52s : S0 N
35, i.3§.+ s _ps . e SR R (7
ar2  roar  9z? v
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B0 _EEop .8
5z a LTt

380,20 |

- - - (9
- ()
{ l
§(=,z,p) = 0 - - - o0
ler.?—s--;-..j.:f ' Q_<z<1’ - - - (11)
>0 or 27Klp : '
=0 z> 1"

Uging the Fourier cosine transform with respect to z and applying
boundary conditions (8) and (9), the transformed boundary value prob-

lem in (r,w,p) is

325 1 9§ 2 3s(r,0,p) pPS
e LS L L - (12)

ar Tr or o '} 4 v
§.(»,w,p) =0 | - - - = (13

Lim..r asc /z-l- [siﬁwf] [ . __9_ ] T e - = (14)

0 or T W ~ 2nKip

Using the Hankel transform of zero order with respect to r

and using boundary conditions'(IS) and(14);bthe transformed boundary

value problem in (G,w,p) is '~ ‘l -
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A 2 1 1 i - ‘ bl "2 1 -
o/ lsine 1l -y it e @ Vc=/';'zvcu.o.p) (15)
- where
) 2aKY
‘Solving for Vc
- ‘ , - | ;
V.=4A /ZSJ.H w 1 1 /_'2:\/(1'!0,2) | 6
p T ow(p/v+w?+a?)  a ¥ 1 p/urw?sn? '

Using the Fourier cosine inversion formula,“equation (16) becomes

] 00

G eA2 | Sin(e 1) cos (wz) dw . _}_;_ V({5,0,p) Cos wz dw an
PT w(p/v+wl+a?) aT 0 p/vrwaal ,

Rewfiting equation (17)

o AL | ISin w(i%z) + Sin w(I-z)]dw

V=
prly  w(p/vew? + G2)
2V(3,0,p) .| Cos wz duw
am ] p/v+w?sa?
Using the inverse Fourier sine and cosine tfansforms from
Appendix I, equation (18) reduces.to’ (if 1> z)
. s’ - 7 - -2 |
- - (1%2)Vp/v+32 - (1-2)Vp/v+32 - -z/p/v+G
V=A (2-e (1+2)7p -e (1-2)7p ) - V(G,0,p) e : (19)

2p.

(p/v +32) | ' : a plveal
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Evaluating {’('&,O,p) of equation (19)

-1 p/v+a?

T(z,0,0) = A (e ) e | (203
» AL )

SubStituting equation (20) into equation (19) yields (if 1> z)

-(f;z)/p/v#az_e-(f:z)[p/v+&2)

V=A (2-e
2p (p/v + %)
| (21)
1 -zVp/v+a? --(fiz)fp/v+&2 |
- Ad(e -e )
p  (p/v+a?) (%*r p/v+a?)

Using the inverse Hankel transfdrm from Appendix I, equation (21) be-

comes : _ ‘
. : . v 7
. * - SoTors2 (1 =2
5 = if (2-e” (FFRVR/VEE_ - (1-2)Vp/Ve0y o ey da
2 jo plp/v + a2)
o R ) (22)
=2 _(T+z) /i =2
- A %‘(e-z P/\"“O‘ -e (1+Z) P/\”‘O’- )&Jo(&r)da
O ipp/vea?) (L + /p/vead)
' Rearranging equation (22) gives -
| 14 5 (.
S € 3 Y A L 2 W o
- N v o
s = Av (2-¢ - -8 JaJg(Br)da (23)
2 ' :

0 pp + va2)

, .
- :.Z- VG2 ~L1%2) Jpeva?
- Av | TE (e v e N )8 (3r) da
| 1 0 p(p+v&2) (ﬂ + W}

‘
!
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Using the convolution and translation theorems from Appendix I
on the 'integrand of (23) term by term yields

(-]

- _Av . -1 . e-(1¥2)E -1 . o~ (1-2)E
s=g Jo i (2-17 [&——] 17" ]
(24)
/S <zE N -(1%2)E R ‘
-l [ SR ' VEC ) o (anda
- [ -—7:’-————- ] + [ ’ /\—,— /_ ] ) e o(ar) o
Plz=+ ) (= + p)
- /5
Wherg E = 7%
Using Appendix Ii » equations (3, 4, and 6), equation (24) reduces to
t » v g ' ’
A 1 e lez 1 1-2
s=3 0F {1-5erfc (W) - 7 erfe (m)
Z ML /o '
' 2 VT Z z
a _a v
- |l ~-e e erfc ™+ = + erfc !—",___ : 25
[ (ab/Z\Tr) 4\)1'_)] ,(),
Dz vr , .
2 VT 1+z - 1+z :
a Q87 oy — e : :
+ [ -e e? erfc | St ftfﬁ) + erfe (m—) 1 1}dr & N
avT , i
Where F = ——meem and erfc(x) = 1 - erf(x) in which erf and erfc(x) are the
T : : ‘

- error function and complementary error function respectively,

. e 2 .
Simplifying and making the substitution Y = and
‘ 4wt ,

dx . A , equation (25) reduces to
T : - '
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=y Z =z =
s=-9¥-;[2 S 62 o4 erfe (E— + 2L ) gy
4nK1l y Z2avy T
u
o 1+2 r?
y 2 ’ ‘
-2 €l e ® %% orgc ( + (L+z)/y ) dy (26)
y 2avy T
u
f:z f;z

+ 2 M(u,D) + My, - M(u,~5) ]

D .
Where u = .:.1_1‘- and M(u,c) is a function available in tabular form
VT

(Hantush, 1961) and is defined by

M(u,c) = ey erf (cvy) dy
u v :
where ¢ is an argument in terms of 1’, z and T,
Equation (26) is the unsteady-state final solution when 1> z, When
4

1 <z, a process similar to that followed previously will, by substituting

(20) in (18) with I < z, yield the same result, hém_ely equation (26).

(b) Steady~-state
Using the final value theorem from Laplace transforms (Carslaw and
Jaeger, 1963) which is stated Lim f(t) = Lim pf(p), if pf(p) is analytic
’ -0 p>0

on the axis of imaginaries and in the right half-plane, equation (22) re-

duces to the form

c A e Uy yiEna
. 2 -

g |
o : 27)

- A

a (e"za-e' (1+z) a) Jo(@r)da

,O. » 6(%-&&)
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Using partial fréctions, equation (27) becomes

s Ay (1-e= (2% 5051745 ) (1-e=U-2% 5 aryda
2 - c - .
0o G o &
o | e gEna (1-e”1*2)8) 5 aryaa (28)
0 ¢ o o |

0 - ’ -
PR I i s ido N oL

]

1.
a

Using Appendix II (equation 7) and manipulating, equation (28) re-

duces to 5
- N b )
s=A[ce2 | Lo o (I*8)% 5 (n) & (29)
2 0 l.s
a
a1 (ltzy L el 13z -1 2
where ¢ = [sinh (-;rﬁ - sinh (—;70 + 2 sinh (;ﬂ ]_’
Manipulating further, equation (29) reduces to
seqmpler2lm-210,81 B G0
Where , o oy g L
I(a,8) = e | = T
e~Vdv
I = —
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Equation (30) is the steady-state final solution;,'j v
The function I(x,y) which is defined by

-V N
I(x,y) = e | SS% | (30a)

x yZev?
can be approximated as follows:
a) When y < 0,01x, the value of y integrand can be neglected in com-
parison to that of v, Consequently, for y < 0,01x, the function is

approximated by  ‘

e Vdv

X v

I(x,y) = &~

- fwe (30b)

where W(x) is the exponential integral cdmmonly termed the well
function in Hydrology.
b) When x > 10y. The function I(xX,y) can be written as follows:.
‘ (] X "
-l) " - .
: . dv e dv :
I(x,y) = e[ | & : ] (30¢)
o 0 VYﬂ+V 0 VyZ+v?

2
. b

When x > 10y, the value of v in the radical of the integrand of the
second integral éan be neglected in comparison with y. Consequently,

I(x;y) = e [ H(y) + 9——;‘—*-1

a9

s
= eH(y) + l;e T AT (304)
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ewhere H(y) is the first of the integrals of equatiqn>(3°)'Which is do-
‘fined (Erdlyi, 1954) by

. H(y) =3 [ HyO¥) - Yo(n) 1] ST (30e)

where i o |
. Hp(B) 'is the zero order Struve function

YO(B) is the zero order Bessel function of the second kind,

- (c¢) Approximations of the steady-state solution
When B < ,0la, equation (30), using (30b), can be approximated by

s =gyl o+ 26 - 2eM(m ] (31)

"in which the terms have been defined,

When 8 > 10 v, equation (30, using (30c), can be approximated by

s = -3-—-,[ ¢ + 2 (eMi(g) + —--} -2 {eYH(s) +'j3-9-} ] (32)
: 4ﬁ B B - ,

where H(B)‘is a function defined by equation (30e);

'Cese 2, Flow to a spherical cavity; penetration”I; constant discharge,
(a) Unsteadyistate :
The ensteady-state soiution of flow to a well perforated throughout
its depth of penetration, discussed'abeve,‘was the reéult of ayeraging

" the flow to a spherical cavity over the length 1 Differentiating with
p'}
: Tespect to T will therefore give the solutlon for the present case, if Q

I
5

is replaced with ql

leferentlatlng equation (22), or the correspondlng equat1on for

z > 1 with respect to 1 yields




g = E [ Q(&r)d&,
2 Jo p/p/veal 0 pYp/v+aZ
' ] 1 _ = N ‘ .
_ o, | Ze (1+2)Vp/v+a%e g (aryda ]

o p/p/vrER(k + Tvve?)

where B = E%E“ q being the discharge of the cavity,

‘Rearranging (33) and using the convolution and translation theorems

R -(I+2)E " w(I-2)E
B | -1 e -1 e
S = = { 1* (L [—-———-—.—] + L [ - ]

2 -1 e-(l’+z)E
PRI v v
T )

] ) } aJp(ar)da

_B 1 e 1 e vt
s=5 1 372 * 3/2
o 2057 T 2/5% >/
r2 e
-——+z v .
—_— & 4we a ézl erfc (/;? + 1+z]) } d
- . A ——-v-——q— 1‘
2a T : a Vvt

2 2.2 S
. . . . re + (l+z
-Making the substitution A2 = (-——zzé-—~l~ﬂ in the first two integrals
. 2
of equation (35) and making the substitution y =fz;;- in the last in-
, , vt : L
~ tegral, equation (35) reduces to:

19

(33)

(34)

(35)
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L8 = ﬁ-}z [ %grfc(u) + %»erfc(uﬁ

w T+z  r2

e™’ & daly r L (D) o ,
= e ¢ erfc + , (36)

’

R . R , .
i ich U = U= R = /rZ+(1+2)2, K = /72+(1- 2
_;n whic T Tios! e+ (1+2) <, r‘+(1 z)

Equation (36) is the final unsteady-state solution,

(b) Steady-state solution

The steady-state case is obtained from (36) as t + =, As t > =,

erf(M) = 1 and the third term becomes

(-]

. cs ol (%)
B [ e (I¥2)8, ~(I-2)3_ 2T e (1+z2)a

] Jo(ar)da (37)
0 | | 1,3 .
‘ N a

It can be shown'from the solutions of completely perforated wells that
‘ the integral of (37) is equal to I(y,B). Consequently;.the steady so-

lution becomes

seqxls + 22108 1 - (38)

Tl

(c) Approximations of the steady-state solution

. When B8<,0ly, equation (38), can Bebapproximated by

+

sed

== =ey) ] ST (39)

- When 8 > 10y, equation (38) can be appfoximatédﬁﬁ}

9

(40

o 1 2 l-e¥ . .
- e R .YH ———}
s 4wk [ T +(1+z)2 * 12+ (1-2)2 a,{‘e"(61}+ B ]
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g 1 L
Case 3. Flow to a hemispherical cavity, zero penegratioﬁ, constant
’disch‘a‘rge. The solutions to this case are obtained ‘f;roni those of ihe
épherical cavity with 7 equal zero, | |

(a) Unsteady-state

The solution to this case, obtamed from equatlon (36) with 1 equal

to zero, yields : , v

R o0 y. Z I‘2 : /_
q 1 1 e = T2 r Z
=5 [ RS erfc(:?dj—%—;) g B e? ea’y erfC(Za/i + -::X-) dy ] (41)
u : , ,
where R, = 12 + z2,
- (b) Steady-state solution
Equation (38) with 1 equal to zero gives s = 7R [_ - .... I(a,s)] | (42)
o a

(c) Approximations of the steady-state solution
When B8 < .0la, equation (42) can be approximated by
ed

i) } | N

When B > 10a, equation (42) can be approximated by

-‘l-[----ncsw———aj RO (48
2rK "Ry, a aB Lo
Case 4, Wells of finite depth, penetration (lid)"éﬁd constant discharge.
(a) Unsteady-state | o
(s -s@1 (45)
where s(l’)( is ec{uation (26);, the drawdown eqﬁation for complete perfor- |

; 4
ation 1f and s(d) is the same equation with d replacing 1.

Sk ;
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(b) Steady~state '
s = [ M(D) - M) ]

v . . » 4
where M(1) is equation (30) and M(d) is equation (30) with 1" replaced
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Discussion .

The zero-order Hankel transform is used W1th respect to T in

,solv1ng the dlfferentlal equation ’

=0

ny 1222 (235 - () + e —23) Jocm HCCRRCHOT)
The use of the transform is justified provided éhe two terms in the

’v right-hand brackets approach zero or a finite vaiueéwhen evaluated at
the limits, that is, as r approaches infinity an§ as it approaches zero.
Taking'the limit as r approaches zero,.we see.thgt the first term'in
brackets is eqﬁation (14), or the flow condifion on the inner boundary.
The second term in brackets approaches iepo as T approaches zero be-
cause J; is bounded. -Takiné the limit7of the fjfst term in brackets

" as r approaches infinity, we see that it approaches zero as r'3/2, for

‘%ﬁ acts as %.and Jo(ar) acts as r'1/2~for-1arge r, The last term
)T

-3/2 gor large values of r since Jj(or)

behaves as r1/2 and f(r) behaves as %5 Since the solution of the

in brackets also behaves as r

d1fferent1a1 equation checks graphically, and since for large r the

potent1a1 approaches hemlspherlcal potent1a1 whlch varies as ..for

large r, the use of the Hankel transform is justif1ed.

- The finalwvalue theorem is used to arrive~at the steady-state

. solutions for the various cases.l It can b ,st ted

' Lim pf(p) = Lim f(t)
P Q‘ , t
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This theorem holds provided the function treated;is éﬁalytic4along
t the. axis of the iméginaries and in the right-hand half ﬁlane;“-
Recalling equation (22), |

-(1+z)/§73;$r. -(1 2)/p 7v+az

( )uJo(ar)du‘r

é; p(p/v + a2) ‘ ar ]

5=

rd|>

oo

| PR 2
- A é{e'z p/V+E" -(1+z)/b/v+a YaJg (ar)da

0 p/vED) &+ BIER)

we observe that&both integrals have,negati#e exponentials and Jg
”  terms in the numerator which allow the integral to cOnvérge between the
limits of zero and infinity after we take leprp) Now p(p/v+a?) is
_analytic in the right-hand half plane énd.ggothe‘axls of 1mag1nar1es.

o Moreover, & + p/v+a ) behaves as _
o a . da

 }0 §_+ ;iif
and is also analytic on thé<axis of imaginariés and in the right-hand
half plane, ‘If the componentsbof an integral are analytic, the integral
is analytic, and we canvconclude that the use of Fhe final-value theorem’
is justified, é o

Tables 1 and 2, graphs 1 through 15, aﬁd FigureIZ, are all for
the sfeady-state, totally perforated case, . |

Tablg 1 contains the tabulation of‘fhe funcfion H(B) which is
containe& in the approximate steady-state solution for a totally per=~.
'foréted partially peﬁétrating well, o ’ |

Table 2 contains the tabulatxon of the fully perforated, steady-

state case, These are shown graph1ca11y 1n Graphs 2 through 5.
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Figure 1 deplcts the four cases analyzed in thlS the51s. Each
écase is treated individually and no attempt is ;;oe to analyze more
than one case at a time, |
Graphs 1 and 2 show the steady-state drawdovn distribution for
various horizontal sections taken through the aquifer, This technique
*vof horizontal sections over a rather large vertical span was used to
decrease the amount of computer time needed, It should be pointed
" out that the drawdown is greatest near the half-length of penetration,
Figure 2 utilizes the data compiled in TableIZ and is used as an
: example for e value of 173 = 1, The equipotential lines intersect
the leaky bed at an oblique angle, which'was exoeoted from the tangent
law of refraction. The dashed'portion of the'equiootential graph in-
= dicates data that had to be 1nterpolated
Graph 3 agaln 111ustrates drawdown taken at various points in a
- horizontal plane. Unlike graphsl'and 2, graph 3 is displayed on plain
~coordinates, |

Graphs 4 through 15 show the effects of the two 1ntegrals upon

the steady-state solutlon for varlous flxed values of z/a and l/a.
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Conclusions

The differential equation is solved by two téchniques. Both ¥
solutions reduce to Sgad% [1960] solution when the leakage term is
allowed to go to zero., Thus it isreasonably assured that the so-
‘lutions presented in this thesis are éorrect within the stated

' assumptions.

It is noted that a potential singularity varying as r-l or z-1
exists at r = 0 = z, We can, however, substitute the reciprocal
‘radius of the well, rw'l,'fér r~1 and obtain a useful solution for

" the potential at the well. This solution holds to a very high degree
as a close approximation is made in discounting the leakage over wrzw. : |
Since thelleakage over this area is extremely small in comparison to

bfthe total flow, it can be considered negligible,

An estimate of the drawdown for a finite cylindrical well can be
‘made by éﬁtrapolating the poteﬁﬁial distribution inward from the

smallest radiﬁs for which it:wasuéaiculatedQ:using the average po-
";ential'over thé¢yiindri§a1;§ﬁrféqé'§ortespoﬂding{fq.thap;smalleét

radius.




Suggestions for Future Work
The unsteady-state equation representing flow to a well'of‘
penetration and perforation 1’ would prove Very valuable if it were
. tabulated. This solution should bekprogrammed and tabulated in a
’computer. |
Also, the steady-stateisolution pould‘b§ taBu1ated more ex-

’tensively, in the following fashion:

s By o (3, Gy,
- Q/4nKY a I’ : a a

This would gregtly‘enhance the practical usefﬁlness of the solution,
Figure 2, showing the potential distribution around a well,
does not include stream linés. The fléw is axially symmetric or
"axisymmetric.'" The Stokes stream function could be obtained by
numerical integratioﬂ using digitél equipment,wthough thig might be

- needlessly time-consuming, HoWeyer,'the streamlinescan be obtained

‘to a‘good approximation by’gfaphicai»constructibhi'
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%- = Leakage fééfor, ETéb

b' = thickness of semipervibus layer - (L)Y

d = portion of penetration length £hat is not perforated  (L)

K = hydraulic conductivity of the aquifer.‘ B - opred

K* = hydraulic conductivity of -the semipervious bed ' LT‘1

1 = length of penetration of the well | (L)

P = time t transformed with respeét to the Laplace transform

Q = discharge L | | ’

q = ' discharge per unit area (L)

r = radialtdistance from the.axis of the pumping well to any
point in space (L)

s = drawdown at any foint3in the aquifer at any time t since
pﬁmping began | (L)

s = s transformed with respect to the Laplace transform

§. = § transformed with respect to the Fourier Cosine transform

Ss = specific storage, defined as the amount of water which a unif
volume of the aquifer releases from sforage under a unit
decline in head - - (™D |

V = the zero ofaer Haﬁkel,transforﬁ of §

Ve = the zero order Hankel transform.of §c

w o=z ﬁransformed with  respect to the Fourier Cosine transform

‘a4 = T fransfbrmed with respecf to the zero order Hankel transform

Jg = zero order Bessel function of the first kind

i}

symbol for convolution
o

symboel fox Inverse Laplace transform




erf(x)

erfc(x)

m(u,c)

= error function 2 e

X _,2
Y dy

YT 40

complementary error function (l-erf(x)}

[++]

i}

-8
e erf(c/g)ds, a tabulated function

[}

I(a,B) = e e Vdv , a tabulated function

W(a)

H(B)

Hyp (.B)

Yo (8)

% /BZ+y2

[+

g_ydy, well function, a tabulated function
ay ' '

[ Ho(B) = Yy(8) 1]
2 L

zero ordexr Struve function

zero order Bessel function of the second kind
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Appendix I o o <

The Fourier Cosine transform is

j oo

'(1) Fe[v(x)] & Ve(w) = /%J v(x) cos wx dx
0

and the inversion formula is

2 vx) = /__2: 1" Ve(w) cos wx du
“_ 0 .

and
() Rl = - Vel - f [ax 2
. ‘ x =

(4) Fourier Sine Inversion formula

o

v(x) = /‘3:{ vx(m)‘ sin wx dw |

0

The Hankel transform of order zero is

©o

(5) 'Ho[v(r)] = Vo(o) = J rJg(ar)v(xr)dr
. | 0o

-and the inversion formula is

feo |
(6) v(x) = | algler)Vp(a)da
Jo




and.
7 Hy [%_5% (r g_g_) ] = - a?F(a) + [rJ'O(ur)-g—i—-l- arJy (ar)£(r)] ;:;

The Laplace transform is

(8) L[£(t)] = £(p) - j e"Pte(t)dt
) 0 .

The convolution theorem is

T |
@ s mEe)] - [ Fy (t-T)Fp(n)dt
, 0 '

The addition theorem is

10) 1! [£(p-a)] = o¥TR(Y)
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Appendix 1T

Y

Laplace ‘Transforms

B S )
e ) S o
(2) erfe(- X))  (k>0) L xp
(2/5) pe
) —2—-exp(: Eiﬂ (k>0) : 1 -k/p
| /ﬁ-‘t 4t . : . t’? e
4) ~e¥Ke? terfc(a/€f+ _ﬁLJ ' -x/p
K 2Vt ' ‘ ae
+ erfe(L o0) )
(5) eakea terfc(aff'-r 3%:9 (k>0) ‘ é-kfg_
- ‘ /o (a+/)
Hankel Transforms
f(x) ‘,. : j f(x)Jv(xy)(xy)llzdx.
| | 0 C(y > 0)
xv+1/2e-ax2 . ’ 4 \)+l/2 LZ-
(©) (Rea > 0, Rev > -1) - (2a)vtl exp(- 4a)
;3/2 -ax ‘ |
7) X 1. 1/2 -
( (e ) s (@)

(Rea > 0)




49

(8)" e 1

Fourier Sine Transforms.

(-

£(x) ., gly) = . f£(x)sin(xy)dx (y>0)

-1 -1
(%) X~ (x%+a?) 2 -
‘ : 0 1/27wa 2(1-e ay)
Rea > 4

Fourier Cosine Transforms

oo

£(x) o B0 = | fcosGdx  (10)

-l e - . R '—1 -
(10) 2 + ad)”’ Cyzma e Y

(Rea > 0)
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12
13
14

o015

0

« 75461
.44061
. 31007
+23860
. 19368

.16273
.14027
.12331
.10996
.98959

(-1

.90163
.82780

76497

. 70999
66287

0.1

2,5095
. 70434
42286
.30112
.23326

. 19007

.16022
.13839
.12174
.10870
.98017

-1

.89377
.81995
. 75869
.70685

.65973

H(B)

0.2

1,8972
.66051
.40652
29264
.22824
. 18677

15771
.13650
.12032
10744
.97074

-1

.88592
.81366
+ 75240
.70214
.65501

= 5 [ Hg(B) - Yo(8) ]

0.3

1.5651
.62188
. 39144
28463
.22321
.18315

- 15535

13462
. 11891
.10634
.96289

(-1)

.87807
.80738
« 74769

- .69585

.65030

Table 1

0.4

1,3448

58732

37730
.27709
.21834
.18001

.15299
.13289
»11750
.10540
.95189

(-1)

87021
.80110
. 74141
69117
.64716

0.5

1,1845

+ 55653

. 36427
.26970
« 21394
17703

15064

13132
.11624
.10414
.94404

(-1)

.86236

.79481
73670
.68643
.64402

0.6

1,6091
52873
.35201
« 26295
,20954
.17389

.14844
.12959
.11482
.10304
293462

(-1

. 85608
.79010
.73198
68172
63774

0.7

96211
.50360
. 34055
«25651
.20530
. 17106

.14640
.12786
.11357
.10210
.92676

(-1)

.84979
.78225
.72570
67701
.63459

0.8

. 88090
.48082
« 32987
.25023
.20122
.16807

.14420
.12645
.11231
.10116
.91734

(-1)

.84194
« 77597
. 72099
.67229

.62988

0.9

.81273

45977

31966
24426
19745

.. 16556

.14231
.12488
11105
10006
.91105

-1

.83408
77125
71470
.66915
62517

IS
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