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UNSTEADY FLOW IN CONTIGUOUS AQUIFERS CF
DIFFERENT HYDRAULIC PROPERTIES
by

JAMES D, KERSHNER

Abstract

Non-steady potentisl distribution is found for Two
FTlow systems, Both systems are of uniform thickness and
are conbained in & single horizoutal layer. The layer
is composed of two homogeneous squifers bounded above and
below by impermesble boundaries, The first system con-
sidered ig "flow toward g slit"” (plene sink). Infinite
serieg solutions are presenbed for two cases {constant

drawdown at bthe slit and constant discharge at the slit).

-




The series converge rapidly for small wvalues of timej
however, for larger values of time an approximete solution
ig developed. Bpecial cases are developed from the genera.l
solutions by letting the formation constants assume specific
values. Orsphs, showing the behavior of the variation of
drawdown with time, are constructed.

The second system considered is that of "flow towsrd
a well in an infinite strip of constant width", Three
cases are considered: {A) An infinite strip héving Zero
drswdown maintained on both boundaries; (B) An infinite
strip with one boundsry mainteined at zero drawdown and
the other 2t zero flux; {(€) An infinite strip with both
boundsries meintained at zero flux. Graphs, showing the
behavior of the steadyfst&te solutions, unsing several
values Tor the ratic of the hydrsulic conductivities, are

constructkted,
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INTRODUCTION

Mathemsatical models have been used successfully iun
solving many flow problems in the gquantitative analysis of
groundfwater respurces, Applications of these solutions
depend on the assumption that the waterfbearing strata are
entirely homogeneous in character; most strata, however,
are more or less heterogeneous, If the hydraulic
properties of the material do not vary greatly, the medium
may be considered to have an average homogeneity that is
proporbtional to its average hydrauwlic propertiss, These
average properties can be obitained from several individual
measurements, thus making it advantageous to use mathef
matical solutions,

Commonly, waterfbearing media consist of alternate
layers anﬁ/%r contiguous deposits of markedly different
character, Albthough such layer or contigucus deposit
has its own average individusl homogeneity, to aesume an

average homogeneity for the whole aguifer is undoubtedly

erronecus




Mathematical models for steady flow of fluids
in such systeuws have been devised and sclved by several
authorities (e . g., Kirkham, 1951, 1954; Kochina, 1933,
1939, 1946, 1941, 1942; Muskat, 1946; Hantush and Jacob,
1954, 1955, 139553 Hantush, 1957, 1959), However, solutions
for nonsteady flow problems in such systems are not readily

available ,

PURPOSE

The purpose of this study is to set up mathe-
matical modelg and obtain sclutions for some nonsteady-
flow problems in contiguous aquifers of different
properties, Beveral problems cof practical interest
require the debtermination of the drawdown variation
with time and distance produced by the flow toward a
region of discharge, BSuch a region drains an aquifer
on whose boundaries the head and/%r flux are known,
Although solutions satisfying all possible field eonf
ditions are beyond the scope of this study, some

general solutions and, when possible, the correspond-

ing steady-state solutions are pregented,




STATEMENT OF THE PROBLEMS

The problems trested in the present study are:
{1) The flow toward s slit. Two cases are presented.
In case A, the drawdown g%t the slit is comstant; in

case B, the discharge at the slit ie constant.

(2) The flow toward a steadily discharging well in an ]
infinite strip. Three cases are presented, Case A is i
that of zero drawdown on both boundaries of the strip;

case B is that of zerc drawdown on one houndary and

zero flux across the obher; case € is that of zero flux

across bobth boundaries,

{1) Plow toward s slit

This system nay simulate the flow toward an
infinitely long slit parsllel to the surface of contact
between two aguifers in a single water-bearing layer., Each
squifer has different hvdreulic prceperties, The slit is
gufficiently distant from the contact, end the contsct

surface is considered normal tc the layeving. Such an

assumption may be valid if the layering is practically




horizontal, In ceonsidering the flow in such a systenm,
two cases of practical interest may be encounbered
(see Fig, 1), These are:

Case A, Constant drawdown at the slit

In practice, this system may correspond to the
flow toward & line of c¢closely spaced flowing wells
or natural springs, or toward a stream that cuts
through an aquifer, The head along the line of dis-
charge ig uniform, Aquifers draining into the sea
may fall under such a system of flow; likewise, with
certain restrictions, a deep open drain whose
hydraulic head is maintained counstant,

Case B, Constant discharge from the slit

This system may gimulate the flow towa?d a line
of wells or ¢enters of pumping, closely spsced and
pumping at a reasonably constant discharge, With
certain restrictions, it alsoc corresponds to the

flow toward a deep open drain whose discharge is

removed at a constant rate




(2) Plow toward a steadily discharging well in an

infinite strip

Consider a well located in an aquifer, The
aquifer is in the form of an lnfinite strip on vhose
boundaries the drawdown and/br flux is zero, The two
infinite parallel boundaries are perpendicular toc the
plane of contact between two facies of a waterfbearing
layer (Fig_ 2}, Three cases, in which either the draw-
down, the flux, or both wvanish on the boundaries, arise
in considering the flov to a steadily discharging well
in such & system, These are:

Case A, Zero drawdown on both boundaries

This system corresponds to the flow to a well

located between two parallel rivers or canals, The

streames may simulate straight-line boundaries along
which the head is essentially uniform; it is assumed
that they cubt completely through the aguifer and are
of large capacity and have small slopes, The flow
toward a well bebween a Ffairly long lake and & river

or canal parallel tc the lake may fall under sgwuch a

system,




Cose B, Zero drgwdown on one boundary and zero Flux

across the other

A well dreining an aquifer that is closed on
one side and open to & Ffairly long stream or to the
sea on the other side may fall under this system of
flow. The stream and the impermesble boundsry {(fault,
bedrock, wall, or ledge) sre parallel to each other.

Cose O, Zero flux across both boundaries

Thie system may simulste the flow toward a well
dreining an aquifer bounded by two paraliel faults,
or bedrock wells, or ledges, It may represent the
flow, with certain limitstione, in s falrly long
body of perched water,

Although the solubions obtained are necessarily

for srtesian conditions (confined flow), they can
still be used, with limitations, if the flow is under

water-table conditions (unconfined flow),

ABSUMPTIQNS

In eaddition to the usuasl assumpbtions concerning

elasticity, uniformity, homogeneity of each squifer,




and constancy of the formation consbanks in space and
time, the following additional sssumptions are made s

(1) The flow in the regions considered doss not vary with
depth, so that the ﬁhreefdimengion&l problem becomes a
problem of onef or two-dimensional flow, depending upon
the conditions of the problem. (2) The lateral boundaries
of the regions considered are vertical and cut completely
through the artesian aguifer, The conditions along these

boundaries are uniform in the vertical direction,

DIFFERENTIAL EQUATION OF GROUND-WATER MOTION

The differential equation (Muskat, 19463 Jacob,

13463 Hantush and Jacob, 1954, 1955, 19563 ete ) for

nonsteady flow of ground water is:

\728 =

[oY 107y
%[%

i
v
where s is the drawdown at any point (%, y) in the region
and at any time t since pumping stbarted; 8 is the storage
coefficient (volume of water that a unit decline of head
releases from storage in a vertical prism of aguifer of

unit eross-section); T = Kb is the transmissibility of

the aquifer (discharge per unit normal width per unit of




decline of hydraulic head}, v = T/@, and Vz is the
Laplacian operator,

The zolutions of this equation that appliy to an&
particular problem of interest depend upon the debailed
physical conditions imposed at the boundaries of the
flunid system and on the initial distribution of the
drawdown, In the steady state, the equation reduces to
(st = 0), the wellfknown Laplace equation, which fre-
gquently oeccurs in obther branches of physics,

The procedure in obtaining solutions is the
following: Elementary solutionsg of the partial d4if-

ferential equation are obtained separately for each

region and adjusted to fit the boundary conditions .

The method ¢f the Iaplace transformation in solving

differential egquations is used in solving the problems
under consideration, At the surface of contact sep-
arating the two reglons, the conditions which wust be

satisfied are: The drawdown acrcess it, aad the normal

veloecity must be continuocus,
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PART II
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PLOW BYSTEMS

PROBLEM 1, FLOW TOWARD A SLIT

Case A, Constant Drawdown at the S1it

The problem is Hto determine the wvariation with
time of the drawdown induced by a slit (plane sink) mainf
tained at a constant drawdown and draining an artesian
agquifer of two contiguous regions of different hydraulic
properties, The flow system of this case is represented
diagramatically by PFigure 1,

The slit can be considered, for analytical pur-

poses, as a plane sink placed parallel to, and at a dis-

tance L from, the interface between the two contiguous
regions, The required solution will be that of the

following system of eguations:

3 8 38
Fe et (2)
' B eerererenenn
o 2 v, ©
s (X’O) : 8: g é X é L - (b) % & @ - @ L] - (")
8 (a)t) = 8 2 -t a G . ¢ 3 ® (C)




~
o SZMLSSZ (a)
- -"t ...... »

ozt "2 0
SZ(XJU) = 03 Xal‘?»- (b) * L) . LY * (2)
sz(m,t) = 0, % >0 ., (e)
SI(L)t) = B (Lﬂt) 000 LR LRI LR . (3)
38 (L,%) o2 (L,%)

ax = B aX ° 6 % 8 9 ® 3 & s s e ks P hE e n ok (4)

where subscripis 1 and 2z refer to reglions ! and 2, re-

spectively; and 5 = Kz/kl = Tz/bg ig the ratio of the

transmissibilities of the two conbtiguous regions, The
other terms are as defined before,

Solution of the Problem -~ The Iaplace transforms of the

above equations with respect to time, under conditicns

(1) and (2b), are:




P —
2 : _.;‘“—gz ® 3 4 & 3 & ¥ @ ® * 3 @ & @ (a) I
o ’ ()
gz(m) p) = 0 € % ¢ 9 t 4 3 BB VIO A W (.b)
— S
8 (L = 52(’p) p =0 a 8 05 2 8% 8 3 o * ? » - ¢ e (7)
o8 (L, p) o8 (L, p)
poa =8 e B & 2

where §I and 52 are the Ilaplace transforms with respect
to time of SI and sz, and p is the parameter obtained by
using the Laplace Hdransformation,

Bquations (sa) and (sa) are satisfied by the following

solutions:

EI : c cosh (x ip/;l) e, sinh (X /P/;I) ee. 9)
52 ' ¢, exp (x }P/%z) + ¢ exp (-x P/@z) v.. (10)

in which cl, cz, c3, and 04 have the following values

3]

it

obtained by using the remaining boundary conditions:

8
W

1 P

C = -

S J/p/$1 sinh (L p/; 5 p V2 cosh(L/ P/E
/P/v

2 1Y S
p/@l cosh (L P/V rajfp/bz sinh{




/P/vl exp (L /;K:/vz )
[ T - .
P/vl cosh (L /1:/1/1 )f& p/v2 sinh (L /};/vl

Substituting these constants in equations (9) and (10} and

74 !zm

then simplifying, one obtains:

_ B / /@ cosh[{L-x} [/ p v +a /p/} sinh ( wa) )
= . (11)

1 P f“”“" /““““
v cosh(L p v, +6 J/h/w sinh (L pr/;

[5/v exsliza) [o/y, |
, T
[/u cosh{ f/v +8 /P/vz sinh{L P/vl

2]
|

0

If the hyperboelic functions in (11) and (12) are replaced

o]
by their exponential forums, inasmuch as 1/%1+z) :nga(—)

if jz| <1, 5 end 52 may finally be written as:




o .
W e n {(x-L) L{zn+1)
P

T

oty
foin I

It is easily seen that equations (13) and {1¢) satisfy

where y =

conditions (sb), (eb), (7), and (a).

The inverse transforms of equations (13) and (14) are
obtainable from tables of Laplace transforms [Churchill,
1938, p.328), The inverse transformations of (13) and (14)

can be reduced finally to:

SI - Sw [m o(“)nin erfe +2nl )
4v1t
by B () erpe (RRBELE g L )
f{!vlt
s = 8 (1+7 L (“)n?n erfc{(xmL) + blznel) }o.. (18)

41}1‘3 J/'Iv't
N 2 1




Bauations (15) and (1s) deseribe the drawdown dis-
tribution in the flow system, The series in (15) and (1¢)
are rapidly ccavergent for small values of time and lend

themselves to relatively easy calculation,

Solution for large Values of Time -- For relatively

emall values of time, the infinite series in (1s5) and (14)
converge fairly rapidly; however, for larger values of

time (t 2 100 Lz/;l), an approximate sclution can be ob-

/ ‘ 2
tained as follows: For (IL-x) p/%} £ .1 {(or t 2 100 L /}I),

H

GOSht(L—X) J/;/;zl Z 1, and sinh[(I~x) J’P/@IE = {(L-x) o/v .

Using these approximations in equations {11) and (12), one

obbtains:
51 = { : :}o-o--...ao-nnoo-;q- (17)
P
1 + 5L p/Lz
.8 D/v
- W exp[ - (x-1) =T ]
2 = T : A 1
; =35 A R X D

P/v

I + 8L 2

The inverse transforms of (17) and (18) are easily

found to be [Churchill, 1958, D.326):




Vzt v ©

s =8 [ 1 - (x/1) exp(—2—) erre 1} e, (19)
1 W 2_2
5 L
‘ -5
Sz = 8 { exfc( }
t
v,
x-1L vyt /vt =L
- exp (=) exp| ) erfe| + : 1. {20}
8L 521, &L
LRV
Approximate SBolution at the Interface -- At the inter-
face of the two regions, SL = sI = Sz and x = L, With these
substitutions, either {13) or (20) becomes:
vzt vzt
3] = - i
p = 8, [ 1 - expl{—) erfe{™—r) } Lol (21)
5 L
Discharge of the S81it —~- The discharge of the slit can

be obtained by using Darcy's law in the form:

;a_,,_sj(o,t)
1 ax
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Uzing equation (15}, one obtains:

?“

g
w1 o) non -2 2/
q = T [ & (=) yexpl-nL Sv B

An syproxiwats solution for the discharge of the silit

can be obtaiped by using sguation {18) and Darcy's law:

£ Ti . 'wzt
W
4 = 2 exply t/67L%) evre (At L L0 (20)
L &L

where ¢ is the flow per unit thicknegs of sqguifer for x = 0

s

Solubions Tor Special (ases —- Three solutions of prac-~

+ieal inberest ccaur when bthe Tormabion constants in

-

equabioas {135) and (1) assume specific values, These

oS

o -

{2} A howmogenecus region exbtending indefinlitely

o)
4
O
*e

from the siit; (b} =2 bhomogeneous region boundsd by ths

211t and by an dmpermeable boundaxy parallel to the planes
of the #lit; and {c) & homogensous vegion bounded by the

s1it and a region of infinite comductiviity, such as a river

or a lake of fairly straight and long shores,




Special Ceee {(a) -~ Dravdown distbribution in
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