Streamer inception imaged at 80 million frames per second

Luis Contreras -Vidal, Christian Peterson, Caitano da Silva, Michael Hargather, Richard Sonnenfeld

Dept. of Physics & Langmuir Lab
Dept. of Mechanical Engineering
New Mexico Institute of Mining and Technology
The lightning initiation problem
Production of runaway electrons during the streamer inception phase

Production of runaway electrons during the streamer inception phase

Negative discharge dynamics : Long exposure

Shot #0000 Exps: 120.0 ns Pk V: 81.82 kV

Exposure time

Distance (cm)

Langmuir Lab for Atmospheric Research
Negative discharge dynamics: Timelapse

Shot #0000 Exps: 120.0 ns Pk V: 81.82 kV

- HV electrode

Ground electrode
Negative discharge dynamics: Timelapse
Negative discharge dynamics: Timelapse
Negative discharge dynamics : Timelapse
Negative discharge dynamics: Timelapse
Negative discharge dynamics: Long vs short exposure
Positive vs negative discharge dynamics:

Positive

Negative
Summary and conclusions

❖ Runaway electrons are produced early on during the streamer inception phase. Therefore:
 ➢ Runaway electrons may influence the discharge development; &
 ➢ No complex mechanisms are necessary to explain their production.

❖ Positive discharges do not produce X-rays and have different morphological features.

Acknowledgements: This research has been primarily supported by NSF Grant AGS-1917069 to New Mexico Tech. The Spark Lab was largely built via DURIP Grant FA9550-19-009 from the Air Force Office of Scientific Research.
References

