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ABSTRACT

Helium plumes in air were imaged using lens-type schlieren and shadow-
graph, and background oriented schlieren (BOS) to observe plume behavior as
a function of Reynolds number. Helium plumes in lens-type schlieren systems
were imaged with horizontal cutoff, vertical cutoff, and circular cutoff, along with
focused and de-focused shadowgraphy in order to analyze the plume edge be-
havior in laminar, turbulent, and transitional regimes with jet Reynolds numbers
ranging from 200 to 2980. Fractal dimension was correlated to the jet Reynolds
number by performing box counting on isolated plume edges. BOS images were
taken using projected, laser speckle, and printed backgrounds to compare the
quality of BOS visualization of the plumes. Six different BOS sensitivities charac-
terized by the b/L length ratio were tested for each of the three background types
in order to determine at what background distance resolution was lost for BOS
systems. All BOS images were processed using both Horn-Schunck optical flow
and wavelet based optical flow analysis (wOFA). It was determined that wOFA
was the most effective method of optical flow for all background and b/L com-
binations. The methods explored here enable characterization of plumes and the
ability to detect plumes in non-ideal BOS imaging configurations for applications
such as evaluating building envelope efficiency.

Keywords: schlieren; background oriented schlieren; plume detection; optical
flow; sensitivity limits; fractal dimension
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ū local average pixel velocity in the horizontal (x) direction for optical
flow

v̄ local average pixel velocity in the vertical (y) direction for optical
flow

i iteration number
Ex partial derivative of pixel intensity with respect to x (horizontal dis-

placement)
Ey partial derivative of pixel intensity with respect to y (vertical dis-

placement)
Et partial derivative of pixel intensity with respect to t (time)
α smoothing parameter for optical flow

xiii



This thesis is accepted on behalf of the faculty of the Institute by the following
committee:

Michael Hargather

Academic and Research Advisor

Austin Mier

Kip Carrico

I release this document to the New Mexico Institute of Mining and Technology.

Maria N. D’Orazio –, 2025



CHAPTER 1

INTRODUCTION

1.1 Research Motivation

Air leakage out of buildings contributes to reduced building efficiency and
durability, and can cause both discomfort and health issues for building occu-
pants [1]. The current method for determining building efficiency is a blower
door, which returns an overall building efficiency but cannot locate leaks. There-
fore, an efficient method for locating building leaks to be sealed is of interest [2].
Due to internal temperature controls, a building leak will be at a different temper-
ature than the outside air, this difference in temperature causes a density gradient
that can be identified using refractive imaging techniques. The motivation of this
research is to develop these imaging methods to visualize plumes representing
building air leakage.

Schlieren is an imaging technique that visualizes refractive index gradients
and can be performed in several ways. Lens-type schlieren systems function by
creating a test section with parallel light that is bent by refractive disturbances.
Background oriented schlieren (BOS) is another method of schlieren imaging that
requires only a camera and a random background to visualize refractive distur-
bances against [3]. A lens-type schlieren system returns higher quality results,
however BOS is useful for the application of building leak detection because it is
non-intrusive and can be performed with minimal equipment. An ideal BOS sys-
tem has significant distance between the event, background, and camera, how-
ever in the case of building leakage, the background will be very close to the
event decreasing the sensitivity of the BOS system greatly.

Air escapes from buildings through small holes and cracks creating a plume
of air at a different temperature than the ambient air outside. A plume with a
different temperature, and thus different refractive index, than the ambient air
can be easily recreated in a laboratory setting to determine effective methods of
plume detection and identification for field applications. Here, the ability to de-
tect plumes and determine their characteristics in schlieren images is explored, as
well as the sensitivity limits of BOS in the context of building leakage detection.
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1.2 Refractive Imaging Techniques

Refractive imaging allows for the visualization of refractive index fields which
can be related back to densities. Here, schlieren, shadowgraph, and background
oriented schlieren (BOS) are explained in the context of refractive imaging.

1.2.1 Schlieren

Schlieren imaging is a method of visualizing the first spatial derivative of
refractive index [3]. A typical lens-type schlieren system consists of a point like
light source one focal length away from a collimating lens that creates parallel
light through a test section. A light ray in the test section is then bent by any
refractive disturbances present and collected by a second collimating lens that
focuses the light back down to a focal point. At the focal point a knife edge is
placed to cutoff any light that has been bent by refractive disturbances in the
test section. The light then enters a camera and is imaged. A lens-type schlieren
system is schematically illustrated in Figure 1.1.

Figure 1.1: Schematic of a lens-type schlieren system

When light is bent inside the test section it is no longer parallel and does not
focus to the same place as the rest of the light. So, bent light will either appear
darker in the schlieren image due to being blocked by the knife edge, or brighter
because light has been bent away from the knife edge and more light is collected
by the camera sensor in this area. The knife edge in a schlieren system can be
set up in several orientations, and will change the schlieren image accordingly.
A vertical knife edge will block light in the horizontal (or x) direction, causing
dark to light variation from left to right in the image. A horizontal knife edge
will block light in the vertical (or y) direction causing light to dark variation from
top to bottom in the image. A circular, or pinhole cutoff can also be used to cut
off light in all orientations so all changes in refractive index appear darker than
the background intensity. Changing the amount of cutoff will adjust the range of
intensities available in the schlieren system, and removing the knife edge from
the system completely will result in shadowgraphy [3].
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Schlieren can be used for imaging a wide range of flows from weak plumes
to strong shocks [4, 5], and it is possible to extract quantitative density field data
from schlieren images [6]. To accomplish this, a weak lens with a long focal length
( f ) is placed inside the test section of the schlieren system. Different points in the
lens will be bent at different angles depending on the distance from the center of
the lens (rc). This can be used to relate pixel intensities to angle of refraction (ϵ)
[7] as shown in Figure 1.2 using:

rc

f
= tan(ϵ) (1.1)

The angle of refraction is related to refractive index as follows, where x, y
and z represent spatial directions and n is the refractive index [3]:

ϵx =
1
n

∫
δn
δx

δz, ϵy =
1
n

∫
δn
δy

δz (1.2)

Figure 1.2: (a) An image of a calibration lens in a lens-type schlieren setup com-
pared to (b) an illustration of parallel light passing through a calibration lens with
focal length f , where R is the radius of the lens and rc is the distance from the cen-
ter of the lens for a given point. ϵR represents the maximum refraction angle at
the edge of the lens, and ϵ represents the angle of refraction for radius rc in the
calibration lens.

1.2.2 Shadowgraphy

Shadowgraphy is an optical technique that captures the second spatial deriva-
tive (Laplacian) of a refractive index field by imaging the shadow that a refractive
disturbance casts. Shadowgraphy can be conducted in multiple ways, the sim-
plest of which is direct shadowgraphy shown in Figure 1.3, where light is pro-
jected through an event, onto a background. This method of shadowgraphy only
requires a light source and a background suitable for imaging. Any flat uniform
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background that will suitably reflect light can be used in a direct shadowgraphy
system, though often plain white backgrounds or retro-reflective screens are used
[8]. Focused shadowgraphy can be performed in a lens-type schlieren system by
removing the knife edge and placing a background or camera behind the focal
point [3].

Camera 

 Background

Refractive 
Disturbance

b

L

Light 
Source

de d'e

ε 

Figure 1.3: Schematic of a direct shadowgraphy system, where the background is
a distance L from the camera and a distance b from the refractive disturbance, and
ϵ represents the angle of refraction caused by the disturbance. de represents the
actual length of the disturbance, and d′e represents the length of the disturbance’s
projection.

It is important to note that while a schlieren system images an actual refrac-
tive disturbance, shadowgraphy images a disturbance’s shadow. This means that
while schlieren images depict a gradient relating directly to angle of refraction, a
shadowgram shows ray displacements resulting from the deflection. Addition-
ally, it is important to remember that the size of a shadowgram is scaled relative
to the distance b, between the disturbance and the background, and if additional
optics are added to the system, the distortions they cause may need to be ac-
counted for. Ultimately, schlieren images are more sensitive and are capable of
returning more quantitative data, but shadowgraphy systems are more easily set
up and therefore applicable to a wider range of experiments [8].
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1.2.3 Background Oriented Schlieren

Background oriented schlieren (BOS) is a technique where refractive distur-
bances are imaged against a background with intensity variation in order to de-
termine angle of refraction using image correlation techniques. A conventional
BOS system consists of only a camera and a background as illustrated in Figure
1.4. Increasing the distance b between the background and the refractive dis-
turbance will generally result in a more sensitive BOS system. A BOS system’s
sensitivity is largely defined by the ratio of the distances t between the camera
and the refractive disturbance, L between the camera and the background and
b between the background and the refractive disturbance. The ratio t/L or b/L
can be used to describe the background placement in a BOS system and the two
quantities sum to one:

t
L
+

b
L
= 1 (1.3)

Ideally the ratio of the distance b and the distance L is greater than 0.25. For
proper BOS imaging, both the refractive disturbance and the background should
be relatively in focus, and this becomes hard to achieve for b/L greater than about
0.5 [9]. It has also been shown that increased camera lens focal length, and a
smaller lens aperture can increase the sensitivity of BOS systems [10–12].

The presence of a refractive disturbance between the camera and the BOS
background causes an apparent pixel shift in the background from the camera’s
perspective. By measuring this pixel shift it is possible to calculate the refractive
angle of a disturbance. If e is the measured pixel shift, b is the distance from the
refractive disturbance to the background, ϵ is the angle of refraction, and θ is the
angle from the center line of the camera as shown in Figure 1.4, the following
formula can be used to determine angle of refraction [9]:

e = b ∗ [tan(θ)− tan(θ − ϵ)] (1.4)

If one uses the small angle approximation for tangent, tan(θ) ≈ θ, and rear-
ranges to solve for ϵ the above equation becomes:

ϵ =
e
b

(1.5)

A BOS background can be any surface with sufficient intensity variation to
allow for the visualization of refractive disturbances. Often a random dot back-
ground is used [10], but one can use a color or gray scale gradient [9], laser
speckle [13], or even the surface of a hillside [14]. The versatility of BOS back-
grounds makes it ideal for experiments that cannot be conducted in a controlled
laboratory environment. Recently BOS has been applied to the visualization of
convective indoor flows, and ventilation flows inside of buildings [15, 16], as well
as air leakage out of buildings [1].
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Camera Lens

BOS Background

 Refractive 
Disturbance

t b

L

θ
ε e

Figure 1.4: General BOS setup where L is the distance between the background
and the camera, t is the distance from the camera to the refractive disturbance, b is
the distance from the refractive disturbance to the background, e is the measured
pixel shift, θ is the angle measured from the center line of the camera, and ϵ is the
angle of refraction.

6



The benefits of non-traditional BOS backgrounds have been explored in re-
cent research. Boudreaux et al. (2022) experimented with using the texture of a
building’s surface as the background for BOS images, rather than attempting to
insert a background [1]. Lyu et al. (2024) projected a background onto a screen
from behind so that the background could be manipulated in real time depend-
ing on the needs of their setup [17]. Weisberger and Bathel (2022) used a beam
splitter to project their BOS background simultaneously through their event and
at a reference camera so that they would have background images for each in-
dividual frame, allowing for real time BOS processing with perfectly accurate
background images [18]. Raffel et al. (2024) conducted BOS experiments with a
laser speckle background projected through a helium plume. Projecting this laser
light through the refractive event resulted in a ”forward BOS” image alongside
a standard BOS image. This ”forward BOS” image is a shadowgram cast by the
laser light. So, when processed, the images showed both a standard BOS pixel
shift, and a shadowgram of the event in different areas of the same image [13].
The wide array of BOS background possibilities allows for BOS to be applicable
in many different scenarios.

BOS systems can achieve relatively high sensitivity [19], be used to gather
quantitative data, and require minimal equipment. BOS’s versatility and accu-
racy make it an ideal candidate for building leakage detection.

1.3 Fractal Behavior and Box Counting

Fractals are complex shapes that exhibit self-similar or self-affine behavior,
meaning parts of a fractal object relate to the whole in some way [20]. Examples
of fractal behavior can be seen throughout nature including the surface/edge
patterns of mountains, clouds, or leaves [21]. In 1975, Mandelbrot coined the
term fractal dimension to quantify fractal behavior, and this value corresponds
closely to observable roughness of an object [22].

Box counting is a simple and common method of determining fractal dimen-
sion that divides an image into squares or ”boxes” of decreasing size, and counts
the number of non-zero pixels in each box. For each box length (r), the number of
boxes containing non-zero pixels (Nr) are counted and plotted on a logarithmic
scale, the slope of the line obtained from plotting log(Nr) against log(1

r ) returns
an overall fractal dimension for the image. The below equation is used to deter-
mine fractal dimension (D) at a specific r value [23]:

D =
log(Nr)

log(1
r )

(1.6)

The idea that turbulence is an example of fractal behavior was first suggested
by Mandelbrot in 1975. When observing turbulent flows it is easily observable
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that eddies swirling off of each other exhibit the self-affine behavior characteris-
tic of fractals [24]. Since then, many attempts have been made at characterizing
the fractal behavior of turbulence [25]. Prasad and Sreenivasan attempted to ob-
tain a value for the fractal dimension of turbulence by imaging the scalar surface
of two dimensional (2D) water jets in the axial direction. They accomplished this
by using a florescent dye to distinguish the jet from its surroundings and illumi-
nating it with laser induced florescence (LIF) [20, 26]. Lane-Serff conducted very
similar experiments soon after, with jets in the transitional and turbulent regimes
and determined a lower fractal dimension [27]. Sykes and Gabruk performed
fractal analysis on large-eddy simulations (LES) of plume dispersion, resulting
in a fractal dimension in between the values that Prasad and Lane-Serff obtained
[28]. Catrakis utilized LIF to visualize turbulent jets as well, but observed the
jets radially rather than axially, their work suggested that the fractal dimension
of turbulence was scale dependent and therefore did not report a specific value
for turbulent fractal dimension. Each of these experiments used box counting
on edges found in experimental images as a means of fractal analysis, and their
reported fractal dimensions are listed in Table 1.1.

Table 1.1: Previously published values for fractal dimension of turbulent plume
edges.

Fractal dimension (D) Re Range Citation Technique

1.23 800-1800 Lane-Serff
[27]

Axial LIF imaging
of water jet

1.36 4000
Prasad and
Sreenivasan

[26]

Axial LIF imaging
of water jet

1.30 - 1.35
Infinite Re
Simulation

Sykes and
Gabruk

[28]

Simulation of
turbulent

boundary layer

Scale-dependent D 4500 - 18000
Catrakis

[29]
Radial LIF
imaging of
water jet

1.4 Image Processing

A raw experimental image provides an initial amount of information on the
event that it captures, it is possible to extract further quantitative data from im-
ages by applying certain processing methods. Image processing encompasses a
wide range of techniques that are used to extract quantitative data from images.
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1.4.1 Optical Flow

In image processing, optical flow is the apparent velocity of objects moving
in an image based on shifts in pixel intensity. It can be used to determine flow
behavior from successive images of the flow. Optical flow is often applied to BOS
image processing because it allows for the calculation of the apparent pixel dis-
placement from one image to another [30]. A common optical flow method is the
Horn-Schunck method which assumes a flat surface with uniform illumination is
imaged, and that intensity variation is smooth everywhere. The Horn-Schunck
method uses an iterative approach to solve for velocity vectors in the x and y
direction, u and v respectively, at each point in an image using [31]:

ui+1 = ūi − Ex
Exūi + Eyv̄i + Et

α2 + E2
x + E2

y
(1.7)

vi+1 = v̄i − Ey
Exūi + Eyv̄i + Et

α2 + E2
x + E2

y
(1.8)

the variable α is a smoothing parameter chosen by the user to account for the
expected noise in an image. ū and v̄ represent local average velocities in the x and
y directions respectively, ui+1, and vi+1 represent new iterative guesses for the
local average velocity at a point. Ex, Ey, and Et represent the partial derivatives
of image pixel intensity with respect to x, y, and t respectively where x and y are
spatial directions and t represents time.

The Horn-Schunck method is a gradient based approach to optical flow, it
is also possible to take a wavelet based approach. In 2021, Schmidt and Woike
developed an optical flow algorithm using wavelet-based optical flow analysis
(wOFA), which solves for displacements in the wavelet domain rather than the
spatial domain, and has been shown to outperform gradient based approaches
for some applications [32]. The algorithm published by Schmidt and Woike solves
for displacements in BOS images, using their wavelet based approach, and out-
puts processed BOS images.

1.4.2 Edge Detection Techniques

Edge detection is a category of image processing techniques that are used to
isolate objects of interest in images. Here, an edge is defined as the outside limit
of an object in an image and is characterized by an abrupt change in pixel inten-
sity. The most basic method of edge detection is thresholding, in which all pixels
above or below a certain intensity are ignored. This method is useful only if the
object of interest has significant contrast from the image background in all areas.
For example, Sreenivasan (1991) and Lopez (2017) were able to use thresholding
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to find the edges of jets in their experiments because they used dyes to distin-
guish their jets from the ambient environment [20, 25]. In many cases edges are
not necessarily so distinct from the background of an image, for these cases edge
detection techniques that determine the gradient of pixel intensity at each point
are more widely applicable. For example, Prasad (1989) computed the Laplacian
of pixel intensity to locate edges in turbulent jet images [26], and Lazzaro devel-
oped an edge detection approach that combined iterative thresholding and pixel
intensity gradients to detect edges in schlieren images of turbulence [33, 34].

One of the more widely used methods of edge detection is Canny edge de-
tection, a robust method involving four main steps [35]. First the image is lightly
smoothed with a Gaussian filter, the strength of which is determined by the pa-
rameter σc. Next, intensity gradients and their directions are determined for ev-
ery pixel in the image. Then, pixels with gradients greater than their neighbors
in the same direction are marked as edges. Lastly a threshold, T, is applied to
eliminate weak edges [36]. This method is very effective at determining edges of
any strength, but it is important to remember that the smoothing step can cause
a loss of resolution for fine details.

Normally, images exist in the spatial domain, meaning that each pixel cor-
responds to a point in space and contains an intensity value to reflect that spa-
tial point. The previously described techniques are all applied in the spatial do-
main. Using a Fourier transform, an image can be converted from the spatial
domain into the frequency domain, where an image is represented as a series
of frequencies that are related to spatial rates of change in the image’s pixel in-
tensities. In the frequency domain, a sharp edge with high contrast from the
background would exist as a high frequency value, while a blurry edge or one
poorly contrasted from the background would exist as a low frequency value.
This makes the frequency domain useful for edge detection, because sharp edges
can be quickly and easily distinguished from low contrast areas of an image. In
order to accomplish this, high and low pass filters are used. A high-pass filter
attenuates low frequencies and leaves high frequencies unchanged, this results
in sharpened edges but reduced contrast. A low-pass filter does the opposite, it
attenuates high frequencies and leaves low frequencies unchanged, so it blurs the
details of an image. Both of these techniques can be useful, but high-pass filters
are often used for edge detection. Once image processing has been performed in
the frequency domain, an inverse Fourier transform can be performed to convert
the image back to the spatial domain for viewing [37]. Many programs such as
MATLAB have built in functions to convert between the spatial and frequency
domains [38, 39]. Figure 1.5 shows the difference between an image in the spatial
domain and an image in the frequency domain.
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Figure 1.5: The same lens-type schlieren image of bubbles in the (a) spatial do-
main and (b) frequency domain shifted so that the lowest frequencies are in the
center of the image

1.5 Research Objectives

The research here is a fundamental examination of methods to character-
ize plumes visualized with refractive methods, which will provide a basis from
which to develop technology to visualize air leakage in buildings. The two main
goals of this work are to:

• Detect edges in schlieren images of plumes and use them to determine the
flow regime and approximate Reynolds number of the flow.

• Find limits of detection for BOS with a background projected through an
event and compare to BOS with a physical background to determine at what
point the resolution needed for quantitative analysis is lost, and determine
what method of optical flow is most effective for the application of building
leakage.

• Develop recommendations for implementing a BOS method for detecting
building leaks and their characteristics.
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CHAPTER 2

EXPERIMENTAL METHODS

A schlieren system was set up to image helium plumes in air transitioning
from laminar to turbulent flow regimes over twelve Reynolds numbers. A BOS
system was set up with three different types of BOS background to image tur-
bulent helium plumes in air at six different b/L distances varying from 0.035 to
0.5.

2.1 Lens-type Schlieren and Shadowgraphy

Schlieren and shadowgraph images were recorded using a lens-type system
as illustrated in Figures 2.1 and 2.2. A white SugarCUBE LED with a 5 mm di-
ameter liquid light guide was used as the light source for this setup. Schlieren
lenses with 700 mm focal lengths and 127 mm diameters were used to collimate
and focus the light. For imaging, an 80-200 mm variable focal length lens was at-
tached to a Photron FASTCAM Mini high speed camera operating at 3000 frames
per second with a shutter speed of 1.1 µs, and the aperture set to f /2.8. A volu-
metric flow meter calibrated for helium flow between 0 and 500 L/min was used
to measure flow rates in the system. Flow rates were controlled manually using
the helium tank valve and monitored using the flow meter.

Five cutoff orientations were utilized for imaging: vertical cutoff, horizontal
cutoff, circular cutoff, and shadowgraphy (no cutoff) in and out of focus, these
cutoffs are represented in Figure 2.3. For each cutoff orientation, 12 Reynolds
numbers spanning laminar, transitional, and turbulent flow regimes were im-
aged: 200, 400, 600, 775, 800, 835, 895, 990, 1190, 1985, 2580, and 2980. Flows
for each of these Reynolds numbers are depicted in Figure 2.4, representative im-
ages for the flow regimes are shown in Figure 2.5, and the corresponding jet exit
velocities for each Reynolds number are listed in Table 2.1. At each cutoff and
Reynolds number combination 1000 grayscale images were recorded with a res-
olution of 1024 by 1024 pixels, which corresponded to a pixel resolution of 7.53
pixels/mm.

Reynolds number (Re) was calculated for each test from the measured volu-
metric flow rate (Q) and the known pipe diameter (d)

Re =
4Q
πνd

(2.1)
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CL
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Camera
SL2SL1

He TankVolumetric 
Flow Meter

Stanford Box

Figure 2.1: Schematic of schlieren setup used for imaging helium plumes where
LS represents the light source, SL1 and SL2 are the collimating and refocusing
schlieren lenses, respectively, KE represents the knife edge, and CL represents
the camera lens. The shadowgraphy system is identical to the schlieren system
with the knife edge removed.

Figure 2.2: Image of the experimental setup for schlieren and shadowgraph im-
ages of helium plumes.
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Table 2.1: Jet exit velocity values corresponding to individual Reynolds numbers
Reynolds Number Velocity (m/s)

200 2.76

400 5.53

600 8.29

775 10.75

800 11.06

835 11.60

895 12.44

990 13.82

1190 16.58

1985 27.64

2580 35.93

2980 41.46

The pipe exit diameter was 9 mm and the kinematic viscosity (ν) was 0.000122
m2/s based on the thermodynamic property relationships published by Peterson
[40] for atmospheric pressure and the measured temperature. The plumes were
analyzed from the jet exit to a distance of 10.5 jet diameters downstream.

10 mm
b edca

Figure 2.3: Examples of each type of cut off for a helium plume with a Reynolds
number of 1985: (a) vertical cutoff, (b) horizontal cutoff, (c) circular cutoff, (d)
focused shadowgraphy, (e) de-focused shadowgraphy.

A singular high resolution (4024 pixels by 6048 pixels) image with a pixel res-
olution of 27.67 pixels/mm was taken at Reynolds numbers of 895 (transitional),
1985 (turbulent) and 2185 (turbulent) for each cutoff type using a Nikon D780
camera. These images were used to determine if image resolution had a signifi-
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Figure 2.4: Vertical cutoff schlieren images representing each Reynolds number
imaged: (a) 200, (b) 400, (c) 600, (d) 775, (e) 800, (f) 835, (g) 895, (h) 990, (i) 1190,
(j) 1985, (k) 2580, and (l) 2980.
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Figure 2.5: Helium plumes with a vertical cutoff representing each flow regime
at Reynolds numbers of (a) 400 (laminar), (b) 800 (transitional), and (c) 2980 (tur-
bulent).

cant impact on the measured fractal dimension of the plumes. The shutter speed
for the camera in these images was 125 µs, and the same schlieren system was
used for imaging.
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2.2 Background Oriented Schlieren

Helium plumes were imaged against three different types of BOS backgrounds:
a printed background, a projected background, and a laser speckle background,
which are depicted in Figure 2.6. The printed background consisted of a ran-
dom dot background printed onto a 1.02 by 1.52 meter foam core board. The
projected background utilized the same random dot background printed on a
transparency sheet that was projected by an Apollo Horizon 2 overhead projec-
tor. Laser speckle was created by shining a green laser pointer through a glass
dispersion filter. A 7.1 megapixel Blackfly S USB3 camera with an 80-200 mm
variable focal length lens, recording at 50 frames per second with an exposure of
15 ms, was used for imaging in the setup as seen in Figures 2.7 and 2.8. Fifty BOS
images of plumes with Reynolds numbers of 1985 (corresponding to a jet exit ve-
locity of 27.64 m/s) were taken at b/L distances of 0.035, 0.1, 0.2, 0.3, 0.4, and 0.5
for each background type, where b was varied and t was fixed at 2.108 meters.

A shorter exposure time is more ideal for resolving the turbulent plumes
captured here because they are moving so quickly. The outlet Reynolds number
of 1985 corresponds to an exit velocity of 27.64 m/s. Because the camera exposure
could not be put lower than 15ms due to available light, points in the helium
plume were able to travel up to 414.6 mm in the time that it took the camera to
capture a single frame. The camera resolution was 2200 by 3208 pixels which
corresponds to a field of view of 239.75 by 349.60 mm in the plane of the plume,
meaning that it was likely that a single point in the flow was able to travel across
the entire imaging frame in the time that it took for the frame to be captured. This
is important to note when observing processed BOS images, as it means that the
paths that points in the plume traveled are likely being resolved rather than a
true instantaneous moment in the flow.

Figure 2.6: Types of BOS backgrounds: (a) printed background, (b) projected
background, and (c) laser speckle background.
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Figure 2.7: Two views of the BOS setup used to image helium plumes.

When imaging against the printed background, LED panels were used to
evenly illuminate the background without casting shadows of the event. For both
the projected and laser speckle backgrounds, the room lights were turned off and
all illumination came from the backgrounds themselves, which were projected on
to solid white 1.02 by 1.52 meter foam core boards. For tests with the projected
backgrounds and a b/L less than 0.4, the light projecting the background can be
seen casting a shadow similar to the ”forward BOS” observed by Raffel in 2024
[13], referred to here as a shadowgraph effect, and demonstrated in Figure 2.9.
The same phenomenon is seen in BOS images with a laser speckled background
and a b/L less than 0.2.

For all BOS images a focal length of 80 mm was used for the camera lens,
and the aperture was varied depending on available light, these aperture values
are tabulated in Table 2.2. The resolution of BOS images taken with the BlackFly
camera was 2200 by 3208 pixels, the pixel to mm calibration was performed for
the background at each b/L, these are listed in Table 2.3. In the BOS systems,
plumes are imaged from the jet exit to 23.2 diameters downstream from the pipe
outlet.

Table 2.2: Lens f /# used for each BOS experiment
Background

Type
b/L =
0.035

b/L =
0.1

b/L =
0.2

b/L =
0.3

b/L =
0.4

b/L =
0.5

Printed 11 11 11 11 11 11

Projected 8 8 8 8 8 8

Laser Speckle 11 11 11 11 8 8
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a

b

c

Figure 2.8: Schematic of BOS Setup for imaging helium plumes with (a) the
printed background, (b) the projected background, and (c) the laser speckle back-
ground.
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BOS Effect

Shadowgraph 
Effect

Figure 2.9: Demonstration of the shadowgraph effect caused by the projected
background at b/L = 0.3. The shadowgraph effect is offset down and to the right
because the light was above and to the left of the camera as shown in Figure 2.8b

Table 2.3: Pixel per mm ratio for the background at each b/L distance
Plume
Plane

b/L =
0.035

b/L =
0.1

b/L =
0.2

b/L =
0.3

b/L =
0.4

b/L =
0.5

pix/mm 9.176 8.843 8.239 7.371 6.312 5.348 4.466
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2.2.1 BOS Processing Optical Flow Methods

BOS images must be processed in order for the refractive disturbances they
capture to be visible. Here, optical flow methods are used to determine pixel
shifts in the image. First, the Horn-Schunck method of optical flow, described
in equations 1.7 and 1.8, is used to determine pixel shifts in the horizontal and
vertical directions of BOS images. Using the Horn-Schunck method, processed
BOS images can be created where each pixel intensity value in the image is the
magnitude of the pixel shift between a working image and a background image.
The overall pixel shift magnitude is found by combining the magnitude of the
shift in the horizontal and vertical directions. The difference between a raw BOS
image, and one processed using the Horn-Schunck method is demonstrated in
Figure 2.10. Ideally a flow off image would be used for the background image in
optical flow processing, however for the application of building leakage, it is not
possible to take a flow off image, so for all analysis here, an initial flow on image
is treated as the background image.

Figure 2.10: (a) Raw BOS image with b/L = 0.4 of helium plume with Re = 1985
compared to (b) the same image processed through Horn-Schunck optical flow
using a flow on background image.

The wavelet based optical flow analysis (wOFA) code developed by Schmidt
and Woike [32] is also used for processing here. For the inputs of the wOFA
code, an initial flow on image is used as the background image, shift correction is
used, and a section from the bottom right corner of the image is selected for shift
correction., No mask is used, and the smoothing parameter is left at the default
value of 50. Output images are saved as 16 bit displacement magnitude images
with an intensity range from 0 to 1. Figure 2.11 shows a raw BOS image compared
to one processed using the wOFA code.
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Figure 2.11: (a) Raw BOS image with b/L = 0.4 of helium plume with Re = 1985
compared to (b) the same image processed through wOFA using a flow on back-
ground image.
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CHAPTER 3

SCHLIEREN AND SHADOWGRAPHY PLUME DETECTION
AND RESULTS

Canny edge detection was applied to helium plumes imaged in the schlieren
system, in order to perform fractal analysis on the plumes. This was done in two
ways, an edge only edge detection where only the outside edge of the plume was
detected, and a full plume edge detection where the outer edges and everything
inside of them was detected. Results from each of these edge detection methods
for each cutoff type and flow rate tested are presented, as well as the methods for
box counting used. Vertical cutoff schlieren was found to yield the best results,
and fractal dimension was found to increase with Reynolds number as well as
distance from plume outlet.

3.1 Edge Detection Techniques

For each cutoff and flow rate combination in the schlieren setup, 1000 im-
ages were taken at a resolution of 1024 by 1024 pixels. Each individual schlieren
image was processed to find the fractal dimension at each flow rate through box
counting. For effective box counting, a binary image showing the plume’s edge
is ideal. To achieve this, each image was processed through a MATLAB code to
produce a binary image of the plumes’ edges. The image processing sequence be-
gan with background subtraction, for which a background image was recorded at
each cutoff with no disturbance in the test section, i.e., no flow through the pipe.
To perform background subtraction, the matrix of pixel intensities for the back-
ground image is subtracted from the matrix of pixel intensities for the working
experimental image. If desired, the average background intensity can be added
back to the image for viewing. The process of background subtraction helps to
remove noise present in the background of the image.

Once schlieren and shadowgraph images have been background subtracted
the edge detection process can then be performed. First, the image is shifted into
the frequency domain using MATLAB’s fft2 function, and shifted so the lowest
frequencies are in the center of the image, then a high-pass Gaussian filter is ap-
plied. This filter sharpens the edges of the plume and minimizes image noise.
MATLAB’s edge detection function edge with the input canny was then applied
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to the processed image to isolate the edges of the plume using σc = 4. The thresh-
old value for the Canny edge function was varied for each cutoff and flow region
combination to obtain the best detection as listed in Table 3.1. A representative
image of each of the image processing steps is shown in Figure 3.1.

Figure 3.1: Image processing steps demonstrated for a Re = 1985 plume with
vertical cutoff schlieren imaging: (a) background subtracted original image (b)
image after high pass Gaussian filter (c) canny edge detection.

Table 3.1: Threshold (T) values used for the MATLAB edge function based on flow
region, and cutoff orientation, where SG is shadowgraph

Region Vertical Horizontal Circular Focused SG de-focused SG
Laminar 0.1 0.5 0.15 0.3 0.25

Transitional 0.1 0.5 0.15 0.3 0.15
Turbulent 0.1 0.5 0.1 0.1 0.15

Noise was removed from the edge-detected images in two ways: noise out-
side the plume was removed to create a “full plume edge detection”, and the
edges detected inside of the plume were removed to isolate the outer edge of the
plume in an “edge only edge detection”. To remove noise outside of the plume,
a mask was created around the plume, and multiplied by the processed image
to delete all noise outside of the plume. To remove the interior edges, a MAT-
LAB code was written to detect edges that were located between other edges. All
edges that had other edges located on both sides were deleted, leaving only the

24



outer edges of the plume. The difference between the two types of edge detec-
tion is shown in Figure 3.2. It should be noted that the full plume edge detection
represents a projection of a three dimensional plume rather than a true two di-
mensional edge as is often used for box counting. The edge only edge detection
provides significantly less resolution (length of edge), but provides a more repre-
sentative 2D slice of the image. The full plume edge detection includes multiple
planes of the plume but provides enough resolution for effective box counting.
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Figure 3.2: The raw images of a laminar, transitional, and turbulent plume im-
aged with vertical cutoff shown with edge only and full plume edge detection, as
well as both edge detection methods overlaid on the raw image of the plume.
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3.1.1 Box-counting Methods

Once the edges of the helium plumes have been found for each image, the
fractal dimension of the flow can be determined using a box counting algorithm.
To determine the fractal dimension of a single image, the image must be subdi-
vided into boxes of decreasing side length r, in which the number of non zero
pixels Nr are counted. The local fractal dimension is then determined for each
box size, and plotted as shown in Figure 3.3. The overall fractal dimension of
the image is determined by calculating the slope of the line that can be fit to the
plotted local fractal dimension points, the ”Fitted Line” in Figure 3.3. The box
counting algorithm used here pads images with zeros to create an image that is
2n by 2n pixels before applying box counting so that the image can be properly
subdivided into perfect squares down to a side length of one pixel. Due to the
padding at different image resolutions, the fractal dimension tends to be more
accurate when the original image resolution is a power of 2, i.e., 2n by 2n pixels
[41]. For each 1000 image set, fractal dimension for a given Reynolds number and
cutoff combination was determined by averaging the fractal dimension found for
each individual image in the set. To avoid the pixel padding skewing results, the
processed plume images are cropped to a starting resolution of 512 pixels by 512
pixels before they are box counted.

ca b
Figure 3.3: (a) A binary image of turbulent (Re = 1985) plume edges on which
(b) box counting is visually demonstrated and a (c) plot of the log of the number
of counted boxes (Nr) versus the log of one over box size in pixels (1/r) for the
image shown.

The effect of resolution on the accuracy of box counting was analyzed using
the singular high resolution (4024 pixels by 6048 pixels) schlieren/shadowgraphy
images. The high resolution images were analyzed to determine the impact that
starting resolution had on the output fractal dimension. This was accomplished
by first processing a singular high resolution image at its native resolution of 4024
by 6048 pixels, then cropping it to a starting resolution of 3200 by 3200 pixels. The
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image was first box counted at the starting resolution, then down-sampled to a
resolution that was one pixel by one pixel smaller using MATLAB’s imresize func-
tion and binarized to maintain contrast. The image was then processed through
the box counting algorithm once again at the new resolution. This process was
repeated down to an image resolution of one pixel by one pixel. It was deter-
mined that starting resolution did not have a significant impact on the accuracy
of fractal dimension until it dropped below 128 by 128 pixels [41].

3.2 Plume Fractal Dimension

Fractal analysis results for the full plume edge detection of schlieren and
shadowgraphy images are presented in Figure 3.4. For the regions where lami-
nar behavior was observed, the fractal dimension stays close to one as is expected
due to the lack of complexity in laminar behavior. A fractal dimension of 1 cor-
responds to 1 dimensional behavior, laminar plumes have edges that are straight
lines so a fractal dimension of 1 is expected for them. This suggests that cutoffs
whose laminar fractal dimension values are at or very close to 1 are more ac-
curate. For transitional plumes, the fractal dimension increases quickly until it
levels out at a fractal dimension between 1.4 and 1.5 for turbulent plumes. Hor-
izontal cutoff images show an underestimation of fractal dimension at laminar
and transitional Reynolds numbers. This behavior is not unexpected because
the plume has a vertical density gradient, so regions that are laminar are not
observed. A similar underestimation can be seen with circular cutoff at higher
Reynolds numbers, as the top of the plume begins to mix out into the surround-
ing air and the refractive index gradient is not as prominent, a slight underesti-
mation in the fractal dimension is observed due to a loss of plume definition at
the top of the plume images. Based on the data gathered, vertical cutoff schlieren
and shadowgraph imaging illustrate the complexity of turbulent plumes the best,
while also being able to identify the smooth lines produced in laminar flow. This
is expected based on these cutoff orientations being best aligned with the refrac-
tive disturbance primary gradient direction as recommended for schlieren imag-
ing [3].

For the cutoff methods that were most promising, further image processing
was done to extract the edge only images shown in Figure 3.2, the fractal dimen-
sions of these plumes are presented in Figure 3.5. This type of edge detection
results in a significantly lower fractal dimension because there is not enough area
available for the box counting algorithm to evaluate the images properly. While
the fractal dimension is significantly lower, the same trend for laminar to turbu-
lent transition can be observed. However, the laminar results for this type of edge
detection do not begin at a value of 1 as would be expected. This suggests that
the edge only edge detection produces inaccurate fractal dimension.

For both edge detection methods, there is more fluctuation in the fractal di-
mension of the transitional region due to the nature of the transitional plumes.
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Figure 3.4: Mean fractal dimension of 1000 images vs Re for each cutoff type
using full plume edge detection.

Transitional plumes fluctuate between laminar and turbulent behavior consis-
tently, and this causes the noise that is observed between Reynolds numbers of
700 and 1000 in both graphs. The standard deviation between all of the fractal
dimensions in each set of images (σ) was found to be low, specific values are pre-
sented in Table 3.2. Table 3.2 also shows the average uncertainty in the linear fit
used to find the fractal dimension of each image (σB). The behavior of the fractal
dimension plot is not perfectly linear, so the extent of the uncertainty in the linear
fit was found using [42]:

σB =

√
1

nB − 2

nB

∑
i=1

(yi −
∑ x2 ∑ y − ∑ x ∑ xy

δ
− n ∑ xy − ∑ x ∑ y

δ
xi)2

√
nB

δ
(3.1)

where
δ = n ∑ x2 − (∑ x)2 (3.2)

Vertical cutoff images have the lowest standard deviation between calculated
fractal dimension values, this combined with its ability to depict laminar and
turbulent trends accurately, suggests that it is the best choice of cutoff for this
application. The vertical cutoff performs best here because the cutoff is oriented
to visualize the direction with the largest refractive index gradient, which yields
the qualitatively best schlieren image [3].

The histogram distribution of fractal dimension within the thousand image
sets for each Reynolds number in the vertical cutoff is shown in Figure 3.6. The
evolution from laminar to turbulent fractal dimension is illustrated there. The
ranges of the laminar and turbulent distributions are relatively narrow, while
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Figure 3.5: Mean fractal dimension of 1000 images vs Re for select cutoff types
using edge only edge detection.

the transitional distributions are more widespread and have less of a Gaussian
behavior. With more resolution at the transitional flows it may be possible to
resolve the effects of intermittency on the fractal dimension which would likely
show a bimodal distribution, with one spike that would be more laminar and one
that would be more turbulent.

The fractal dimension of transitional plumes also increases with distance
from the pipe exit. Figure 3.7 shows the fractal dimension of three representative
transitional plumes for vertical cutoff and both types of shadowgraphy. Regions
in the images that are observably turbulent reflect turbulent fractal dimension,
and laminar regions reflect laminar fractal dimensions. For the whole image the
fractal dimension yields an intermediate value between the laminar and turbu-
lent values based on the relative presence of laminar versus turbulent regions.
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Table 3.2: Standard deviations of fractal dimension in 1000 image sets for select
cutoffs and Reynolds numbers, as well as mean uncertainty in the linear fit to
find fractal dimension for each image in the set.

Cutoff type Re σ σB
Edge only Full plume Edge only Full plume

vertical
cutoff

200 0.011 0.014 0.0454 0.0546
800 0.018 0.018 0.0936 0.1264

2980 0.008 0.007 0.0999 0.1063

focused
shadowgraph

200 0.031 0.031 0.0519 0.0448
800 0.013 0.026 0.0473 0.0517

2980 0.010 0.123 0.1144 0.0976

de-focused
shadowgraph

200 0.057 0.080 0.0599 0.084
800 0.031 0.037 0.0773 0.1064

2980 0.010 0.012 0.1025 0.1142

Figure 3.6: Histogram distribution of fractal dimension for each flow rate in the
vertical cutoff. Each flow has 1000 images processed.
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Figure 3.7: Edge detection of transitional plumes with Reynolds number = 835
(a) vertical cutoff (whole image D = 1.3516) (b) de-focused shadowgraph (whole
image D = 1.4182) (c) focused shadowgraph (whole image D = 1.3960) (d) Graph
showing the variation of fractal dimension along the plume length.
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CHAPTER 4

LIMITS OF DETECTION FOR BOS IMAGES

The limits of detection for BOS are analyzed for the application of build-
ing leak detection where a projected background and a laser speckle background
are compared to a printed background to determine their efficacy. Both Horn-
Schunck optical flow and the wavelet optical flow analysis (wOFA) approach de-
veloped by Schmidt [32] are used for processing to determine which resolves tur-
bulent flows more effectively. Each background type is imaged at b/L values of
0.035, 0.1, 0.2, 0.3, 0.4, and 0.5 to determine the minimum b/L distance at which
it is possible to detect plumes in the BOS system.

4.1 Limits of plume detection for BOS

Figure 4.1 shows raw images of each BOS background type, from these it
is apparent that the projected and laser speckle backgrounds have significantly
less contrast than the printed background, which is not ideal for BOS as it makes
pixel shifts more difficult to track. Figure 4.2 shows individual images of plumes
processed using the Horn-Schunck method of optical flow for each tested b/L
value and background type. Printed BOS clearly visualizes the plume for each
b/L value down to the minimum of 0.035. The projected background only shows
the plume clearly for b/L = 0.3 and b/L = 0.5. The laser speckle background be-
gins to lose fidelity below a b/L of 0.3, but retains more fidelity than the projected
background. Due to the use of a low-powered laser, the laser illumination was
not uniform from the top of the BOS images to the bottom, so a loss of resolu-
tion can be seen near the top edge of the laser speckle plumes where laser light
became dimmer.

For both projected and laser speckle backgrounds, the background pattern
is visible in processed images even with larger b/L values, i.e. 0.4 and 0.5. This
may be due to a slight shifting in the backgrounds while recording, or simply
the fact that the observed pixel shifts from the projected backgrounds are smaller
overall, so the error in the Horn-Schunck optical flow code is more significant
by comparison. The decreased shift in the projected backgrounds may be due to
the lack of contrast in the projected and laser speckle backgrounds impacting the
Horn-Schunck processing.
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Figure 4.3 shows individual images of plumes processed using wOFA, it is
evident that this approach yields significantly cleaner results compared to the
Horn-Schunck approach. Once again, the printed background resolves the plume
at each b/L distance, but for this processing method, the laser speckle back-
ground resolves the plume at each b/L distance as well. The projected back-
ground shows promising results for b/L values down to 0.3, but loses almost all
fidelity below that, solidifying the idea that the projected background is less ef-
fective than the printed or laser speckle backgrounds. This is likely due to the
fact that the projector had a fan for cooling, which slightly shook the background
during testing. The projected background also had less contrast than the printed
background and blurrier edges than the laser speckle background, likely making
it more difficult for the optical flow codes to track pixels. It should also be noted
that for both processing methods the plume shape that is resolved does not look
as intricate as may be expected for turbulent flow, this is likely due to a smearing
effect caused by long exposure times.

In order to quantify how effective each BOS background was at each b/L
value for both processing methods, the average observed pixel shift was calcu-
lated. When averaging the pixel shift observed in the image, only the portion of
the image where the plume was expected to be was analyzed. The area of the
image where there was no flow was used to determine a baseline ”flow off pixel
shift” as a way to quantify the error present in the optical flow code. Figure 4.4
shows the section of the image that was used for averaging for the flow off and
flow on areas of the image. Each of these regions were manually selected on the
images. Mean pixel shifts were found by averaging the pixel shift values in the
area of interest for both flow on and flow off portions of the BOS images. To ob-
tain an overall average pixel shift for the background and flow rate combination,
the average pixel shift of the background was subtracted from the average pixel
shift for the flow on area of the image.

The projected and laser speckle backgrounds were projected through the
plumes from above and to the left, so that if a shadowgraph effect occurred in
the image it would appear on the lower right side of the image. To avoid this
skewing the results, the right side of the images was not taken into account when
determining the average pixel shift.

Figure 4.1: Raw BOS images of each background type: (a) printed, (b) projected,
and (c) laser speckle, all with a b/L value of 0.4.
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Figure 4.2: Singular BOS images processed using Horn-Schunck optical flow for
each combination of background and b/L distance, with Re = 1985.
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Figure 4.3: Singular BOS images processed using the wOFA approach for each
combination of background and b/L distance, with Re = 1985
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Figure 4.4: Depiction of the areas averaged in each BOS image to determine aver-
age pixel shift, showing a plume imaged with a b/L of 0.4 against printed back-
ground and processed using Horn-Schunck optical flow.
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For the images shown in Figures 4.2 and 4.3, average pixel shifts for both
flow on and flow off portions of the images were determined. These are graphed
in Figures 4.5 through 4.9. Ideally the average pixel shift should increase as b/L
increases until the camera loses significant focus for either the event or the back-
ground because increasing b/L increases the sensitivity of a BOS system, thus
increasing the observed pixel shift in the system [14]. For a good BOS system, it
would also be expected that the flow on pixel shift should be significantly higher
than the flow off pixel shift so that in processed images it is possible to distinguish
the event from the image background.

Figure 4.5 shows the average flow on pixel shift for the Horn-Schunck pro-
cessed BOS images compared to the average flow off shift. It is evident that the
printed background is the most effective BOS background, because the flow off
pixel shift is lower than the pixel shift observed in the plume for every b/L dis-
tance; at a b/L of 0.035 the values do become very close, which makes sense given
that the plume and the background are in almost the same plane in that case. A
slight decrease in pixel shift is seen for b/L = 0.5, which suggests that that b/L
distance may over range the system. The projected background shows the worst
results: it has a seemingly random average pixel shift distribution, and the flow
off pixel shift for these images is very close to, if not higher than, the flow on pixel
shift observed for most b/L cases. The laser speckle background does not show
the expected trend of decreasing average pixel shift with decreasing b/L, but the
average pixel shift of the plume area of the image remains consistently above the
average pixel shift for the background suggesting that it is a viable option for de-
tection, but shows little promise for any sort of quantitative analysis. Figure 4.6
shows the trend for average pixel shift for an individual image when the flow off
pixel shift is subtracted from flow on pixel shift to illustrate average pixel shift
more cleanly. Note that both Figure 4.5 and Figure 4.6 are graphed with a log
scale for the y-axis due to the variation in scales between pixel shift for varying
background types. For Figure 4.6, all negative pixel shift values are marked on
the x-axis of the plot.

Figure 4.7 depicts the average pixel shifts for the plumes processed using
the wOFA code. The trends seen here are far more expected for a BOS system.
The printed BOS background shows an ideal linear increase in pixel shift with in-
creasing b/L, and consistent flow off pixel shift over all b/L values. This suggests
that the wOFA code is a superior processing method. The projected background
still shows noisy results, and has an instance of negative overall pixel shift at a
b/L of 0.1, so even with better processing the projected background is not very
ideal. The laser speckle background has noisy results, but never a negative over-
all pixel shift, and trends similarly to the projected background suggesting that
it may be a viable alternative background for the application of building leak
detection. Figure 4.8 shows the trend of average pixel shift when flow off pixel
shift is subtracted from flow on pixel shift, note that when processed using the
wOFA approach all backgrounds share the same order of magnitude for baseline
background pixel shift.

Figure 4.9 compares the average overall pixel shift for processing using both
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Horn-Schunck and wOFA while plotting the negative values for both cases on
the x-axis. In this figure it is clear that wOFA processing has higher and more
consistent pixel shift values, fewer negative overall pixel shifts, and a more linear
increasing trend with increasing pixel shift, making wOFA the ideal processing
method for this data in terms of pixel shift. Figure 4.10 displays two processed
BOS images, both with a b/L of 0.3, and imaged against a laser speckle back-
ground, one image is processed using Horn-Schunck optical flow, and one using
wOFA, this figure demonstrates that wOFA is clearly superior for resolving the
plume visually in processed images.

Figure 4.5: The average pixel shift in the flow on area of singular BOS images
processed with Horn-Schunck optical flow plotted against the flow off pixel shift
for the same image for each background type at each b/L value. Larger pixel
shifts indicate more sensitivity and ability to visualize the plume.

Figure 4.6: The average pixel shift for singular BOS images processed with Horn-
Schunck optical flow with the flow off pixel shift subtracted at each b/L, where
negative values for the projected background are marked on the x-axis of the plot.
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Figure 4.7: The average pixel shift in the flow on area of singular BOS images
processed with wOFA plotted against the flow off pixel shift for the same image
for each background type at each b/L value.

Figure 4.8: The average pixel shift for singular BOS images processed with wOFA
with the flow off pixel shift subtracted at each b/L.
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Figure 4.9: The average pixel shift for singular BOS images processed with Horn-
Schunck optical flow compared to the same images processed with wOFA, both
with the flow off pixel shift subtracted at each b/L value, where negative values
for the projected background are marked on the x-axis of the plot.

Figure 4.10: Comparison of a BOS image taken with a b/L of 0.3 using the
laser speckle background processed using (a) Horn-Schunck optical flow, and
(b) wOFA
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While the wOFA approach is more accurate it required significantly more
processing time per image, the Horn-Schunck method takes about 8.7 seconds to
process a single image, and wOFA takes about 345 seconds, which is about 40
times longer. In an attempt to improve the noisier results from the Horn-Schunck
method, all fifty of the images taken in the BOS system were processed using
the Horn-Schunck method, and averaged to create an average BOS image. These
averaged images are shown in Figure 4.11, this process was found to be ineffec-
tive, because it blurs the edges of well defined plumes, and increases background
noise where it is present. The averaged images for higher b/L values still return
a relative shape, but background noise becomes visible for almost every test case,
and plume shape becomes less apparent.

The average pixel shifts were also calculated from the averaged images across
all fifty of the images in an attempt to improve the trends seen in the pixel shift
graphs. These pixel shifts are presented in Figures 4.12 and 4.13. Figure 4.13
shows a more expected trend for the printed background pixel shifts with b/L
continuing to increase, however the pixel shift remaining relatively constant for
a b/L of 0.1 through 0.3 is unexpected. The trends for the projected and laser
speckle backgrounds remain consistent from the analysis of singular BOS im-
ages. This further supports the idea that a wavelet based optical flow approach
is the ideal BOS processing for these turbulent images.

The wavelet based approach reconstructs the plume shapes so well, that
these processed singular images were run through the full plume edge detec-
tion code that was used for the schlieren images to determine if edges could be
extracted for more information about the BOS plumes. These results are shown
in Figure 4.14. Plumes imaged against the printed and laser speckle backgrounds
are reasonably reconstructed using this edge detection with b/L ranging from 0.1
to 0.5, but not at the minimum b/L. Projected plumes do not provide enough
resolution to effectively recreate their edges with Canny edge detection at any
background distance. For Canny edge detection a σc value of four was used, and
the threshold values for each background and b/L combination are listed in Table
4.1.

Table 4.1: Threshold (T) values used for the MATLAB edge function based on
background type and b/L value for full plume edge detection

b/L 0.035 0.1 0.2 0.3 0.4 0.5
Printed 0.15 0.15 0.15 0.15 0.25 0.32

Projected 0.29 0.27 0.27 0.35 0.35 0.4
Laser 0.3 0.4 0.35 0.35 0.35 0.35

A larger increase in pixel shift as background distance increases indicates
a more sensitive BOS system. For the graphs presented in Figures 4.5, 4.7, and
4.12 the linear slopes were calculated for each background type and method and
are presented in Table 4.2, and visualized in Figures 4.15, 4.16, and 4.17. Steeper
slopes of linear fit lines correspond to more sensitive BOS systems. Negative
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Figure 4.11: Averaged BOS images processed using Horn-Schunck optical flow
for each combination of background and b/L distance, with Re = 1985.
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Figure 4.12: average pixel shifts for the flow on portion of fifty BOS images pro-
cessed using Horn-Schunck optical flow plotted against the average pixel shift
for the flow off portion of those images, for each background type and b/L com-
bination.

Figure 4.13: average pixel shifts for the flow on portion of fifty BOS images pro-
cessed using Horn-Schunck optical flow with the average pixel shift for the flow
off portion of those images subtracted, for each background type and b/L com-
bination, where negative values for the projected background are ignored.

44



b/L = 0.035 b/L = 0.1 b/L = 0.2 b/L = 0.3 b/L = 0.4 b/L = 0.5

P
ro

je
ct

ed
P

ri
nt

ed
L

as
er

 S
pe

ck
le

Plume Closer to Background Plume Closer to Camera

Figure 4.14: Full plume edge detection applied to BOS images processed using
wOFA.
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Table 4.2: Slopes of linear fit lines for each processing method and background
type combination when average flow on pixel shifts are subtracted from average
flow off pixel shifts

Processing Method Background Type Slope of Linear Fit

wOFA
Printed 0.8826

Projected 0.4747
Laser Speckle 0.6791

Horn-Schunck:
Single Image

Printed 0.1793
Projected -0.0052

Laser Speckle -2.037*10ˆ-5

Horn-Schunck:
Average Image

Printed 0.1517
Projected -0.0159

Laser Speckle -0.0011

slopes were found for the projected and laser speckle backgrounds when us-
ing Horn-Schunck processing for both single and average images, indicating that
this processing method is not viable for projected backgrounds. All of the slopes
found for wOFA pixel shift lines were positive and reasonable, further indicating
that this method was more effective at resolving the plumes captured in the BOS
images. For wOFA processing, the printed background has the highest slope in-
dicating it is the most sensitive, the laser speckle background is the second most
sensitive, and the projected background was the least sensitive.

Ultimately, the printed and laser speckle backgrounds showed the most promis-
ing results for BOS background, and wOFA provided the best analysis. For the
application of building leak detection, a light and portable BOS system is needed,
making laser speckle backgrounds an optimal choice. For a well set up BOS sys-
tem using wOFA, plume resolution is retained down to a minimum b/L value of
0.035, and the ability to reconstruct plume edges from a BOS image is retained
down to a b/L value of 0.1, which supports that a BOS system with a projected
laser speckle background is feasible for the application of building leak detection.
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Figure 4.15: The average pixel shift in the flow on area of singular BOS images
processed with Horn-Schunck optical flow plotted against the linear fit for the
same data at each b/L value. Steeper slopes indicate more sensitivity and ability
to visualize the plume.

Figure 4.16: The average pixel shift in the flow on area of singular BOS images
processed with wOFA plotted against the linear fit for the same data at each b/L
value. Steeper slopes indicate more sensitivity and ability to visualize the plume.
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Figure 4.17: The average pixel shifts for the flow on portion of fifty BOS images
processed using Horn-Schunck optical flow plotted against the linear fit for the
same data, for each background type and b/L combination. Steeper slopes indi-
cate more sensitivity and ability to visualize the plume.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

A trend of increasing fractal dimension with increasing jet Reynolds number
was observed in schlieren and shadowgraph images of helium plumes transition-
ing from laminar to turbulent flow. Shadowgraph and vertical cutoff schlieren
visualized the details of turbulence most accurately for qualitative imaging and
yielded the most consistent results from the image processing used to find fractal
dimension. Vertical cutoff images resulted in the lowest standard deviation of cal-
culated fractal dimension suggesting that this cutoff type was ideal for this case,
which is not unexpected due to the orientation of the primary refractive index
gradient in the vertically aligned plume. The fractal dimension of the turbulent
helium plumes was found to be between 1.4 and 1.5, while laminar plumes had
a fractal dimension between 1 and 1.1, depending on cutoff. With the vertical
cutoff, the fractal dimension was found to be 1.05 +/- 0.1 for laminar flow and
1.48 +/- 0.1 for turbulent flow, suggesting that a fractal dimension greater than
1.45 corresponds to fully developed turbulence. Based on previously published
values, this method seems to result in a slight overestimation of fractal dimen-
sion in turbulence but may still be useful in determining physical properties of
plumes, including flow regime. Transitional plumes that exhibit behaviors seen
in both laminar and turbulent plumes are shown to have an intermediate frac-
tal dimension value, with the fractal dimension varying along the plume length.
The fractal dimension increases along the plume as it transitions from laminar to
turbulent in the ambient environment.

The laser speckle background was found to be the best projected background
alternative to the printed background for the application of building leak de-
tection. This background outperformed the projected background for detecting
pixel shifts and reconstructing plume images when processed. The projected
background provided noisy results, which can either be attributed to the shak-
ing of the background caused by the projector’s cooling fan, the lack of contrast
in the background, or a combination of the two. The wOFA approach for BOS
processing outperformed the Horn-Schunck method of optical flow, it resulted in
higher and more consistent pixel shifts that had lower background error when
compared to overall pixel shift. When processed using wOFA, both printed and
laser speckle backgrounds were found to retain qualitative resolution down to a
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the minimum tested b/L value of 0.035, and the ability to detect edges in these
images was retained down to a b/L value of 0.1.

For future implementations of BOS systems used for detecting building leaks,
it is recommended that a projected laser speckle background be used because it
is light weight, portable, and produces results comparable to BOS with a printed
background so long as wOFA is used for analysis. For future analysis it may be
possible to implement the fractal analysis shown for schlieren images to obtain
Reynolds number/flow regime data for detected building leaks. A BOS system
mounted to a drone may be feasible for building examination to locate leakage,
to accomplish this it is recommended that both the camera and the laser projec-
tion are well-mounted to the drone to compensate for jitter, and shift correction
should be used for the wOFA analysis to account for this as well.

5.2 Future Work

Future experiments should be conducted to better reflect real world condi-
tions. Rather than helium, turbulent plumes of air with a temperature difference
from the ambient air should be imaged to more accurately simulate building leak-
age. More backgrounds can be explored for this application, particularly the use
of building textures as explored by Boudreaux [1], would be helpful for elimi-
nating the need to insert backgrounds when performing building leak detection.
These experiments may also explore the feasibility of performing experiments
at night so that contrast from the laser speckle background is greater outdoors,
and in an effort to increase the temperature difference between indoors and out-
doors. It may also be interesting to look into the effects of humidity on schlieren
systems, and if a difference in humidity between indoors and outdoors increases
or decreases the sensitivity of BOS for this application. Ultimately a BOS sys-
tem will need to be tested while mounted from a drone to determine if the drone
movement impacts results.

Changes could be made to both the laser speckle and projected backgrounds
to improve BOS results. For laser speckle backgrounds, a higher powered laser
should be used to ensure more even illumination and better contrast in outdoor
environments. If projected backgrounds are further explored, a higher quality
projector should be used to reduce movement introduced from the cooling fan
and increase the contrast of the projected pattern. Future experiments may also
benefit from affixing the laser or projector to the camera so that when the back-
ground shifts the camera does as well, so the background remains stationary from
the camera’s perspective. Because it is not possible to obtain a true background
image for building leakage, it may be possible to create ”synthetic background
images”, or capture an image of how the background pattern should look for cer-
tain images, similar to the work explored by Weisberger and Bathel (2022) [18].

If it is possible to reasonably resolve the edges of plumes imaged using BOS,
the next logical step is to apply box-counting to these plumes so that their fractal
dimension can be related a Reynolds number or flow regime. There may be issues
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resolving more laminar or low Reynolds number flows with BOS because of the
lack of variation in these plumes, especially with the lack of a flow off background
image. Fractal analysis may offer a method of determining at what approximate
Reynolds number resolution is lost for BOS detected leakage plumes.
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A.1 Schlieren Edge Detection Code
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%Maria D'Orazio
%Detection of fractal edges of turbulent helium plume
%% Clear all
clear all
close all
clc
 
tic
%% Read in image folder
 
 num = 1001; %number of images to work through
 fold = imageDatastore("C:\Users\maria\OneDrive\Documents\Lab\helium 
plume\Fractals\Fractal_Images_and_code\20240105_Shadowgraph_InFocus_Tiffs\Shadowgraph_InF
ocus_150LPM_S0001");%load in folder and read all images
 IM = readall(fold);
 FD = zeros(num,1); 
 sigB = zeros(num,1); 
 THRESH = 0.1;
 sig = 4;
 x1 = [480 325 750 670];
 x2 = [355 335 405 395];
 %jx = [575 575 490 490; 575 575 490 490; 575 575 490 490; 575 575 490 490; 575 585 480 
490;575 615 450 490;575 685 390 490;575 685 390 490; 575 700 370 490; 575 720 330 490; 
575 800 300 490; 575 800 300 490;575 800 280 490;575 800 280 490; 575 800 280 490; 575 
800 280 490;595 800 280 470; 595 800 280 470; 595 800 280 470; 595 800 280 470];
 
 %% Image read in 
 
 for cnt = 1:num %for loop runs through FD process for all images
 
 B = 12; %Define Bit depth 
 % file_name = '100LPM_Plume.tif'; %Define file name 
 file_BG = 'Shadowgraph_InFocus_BG.tif'; %Define background image file name
 % Z = double(imread(file_name))./(2^B); 
 Z = double(IM{cnt})./(2^B); %double(imread('Circular_10_LPM.tif'))./(2^B); 
 BG = double(imread(file_BG))./(2^B); 
 z = Z - BG; %imsubtract(Z,BG);
 zr = rescale(z);
 zrs = zr(70:787,153:870);
 % figure (1)
 %imshow(zr)
 %imwrite(zr,'zz_Background_subtracted_plume.tif')
 
 %% FFT of image setup 
 
 % To Create a gradient of image 
 
 I = zr; %image to be used for FFT 
 
    FI = gradient(I,0.01); %imfilter(imfilter(zr,[1,-2,1]),[1,-2,1]); %gradient(gradient
(zr))
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    FIr = rescale(FI); 
    % figure 
    % imshow(FIr);
    %imwrite(FIr,'zz_Gradient_of_background_subtracted_plume.tif')
 
 
 
 f=uint8(FIr.*(2^8)); %reads the image in 
 [n,m] = size(f); %detmeines the size of the image 
 
 F=fft2(f, n*2 ,m*2);%does the FFT (binary image) 
 
 s=abs(F); %get rid of negatives bc you cant see them 
 sn=s/max(max(s));
 
 sa=imadjust(sn, [0 0.01], [0,1]); %histogram strech to see the image frequency better
 
 sas = fftshift(sa); 
 [r,c] = size(F);
 
 % figure, 
 %imshow(sas)
 %imwrite(sas,'zz_Fourier_transformed_image.tif')
 
 
%% Select Filter For FFT 
 
D_0 = 0.1; %turb: 1.5;
 
%highpass Gaussian 
H_hf = zeros(r,c);
N = 2; 
for k = 1:1:r
    for l = 1:1:c
 
        D(k,l) = (((k - (r/2))^2) + ((l - (c/2))^2))^(1/2);     
        H_hf(k,l) = (1 - exp(-(D(k,l))^2/(2*D_0^2))); 
 
    end 
end
 
 
% figure
% imshow(H_hf)
%imwrite(H_hf,'zz_highpass_Gaussian_filter_D0_0.1.tif')
 
 
% %highpass butterworth 
% H_hf = zeros(r,c);
% for k = 1:1:r
%     for l = 1:1:c
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% 
%         D(k,l) = (((k - (r/2))^2) + ((l - (c/2))^2))^(1/2);     
%         H_hf(k,l) = 1/(1+(D_0./(D(k,l))).^2*N);
% 
%     end 
% end
%% Put Image back to normal 
 
Fs = fftshift(F);
 
HH = H_hf.*Fs;
 
Gs = fftshift(HH); 
g = ifft2(Gs);
gu = (real(g(1:n,1:m)));
G8 = uint8(gu);
G8R = rescale(G8); 
 
% figure, 
%imshow(G8R,[])
%imwrite(G8R,'zz_Image_through_gaussian_filter_D0_1.5.tif')
 
%% Canny Method
 
threshold = [0,THRESH]; %edit the settings for the canny filter
sigma = sig;  
BWc = edge(G8R,'canny',threshold,sigma);
% figure
%imshow(BWc)
% title('Binary Gradient Mask')
%imwrite(BWc,'zz_Image_With_Canny_edge.tif')
 
%% Get rid of edge
 
MIN = 400; %restraints on im find circles 
MAX = 500;
S = 0.98;
SUB = 15;
% [cen,rad] = imfindcircles(BWc,[min,max],'Sensitivity',S);
cen = [536.02,527.52]; 
rad = 487; 
%imshow(BWc)
%viscircles(cen,rad);
CM = drawcircle('Center',cen,'Radius',rad-SUB,'visible','off'); %create mask to delete 
circle and everything outside of it
BWCM =createMask(CM,BWc);
% figure 
% imshow(BWCM)
 
NOC = BWc.*BWCM; 
% figure
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% imshow(NOC)
 
 
 
%% Get rid of noise 
 
x =x1; %20: [575 490 490 575]; %50: [290 480 570 750]; %100: [480 290 800 600]; verticies 
of trapazoid shape that noise will be deleted outside of 
y = [900 130 130 900];
TM = roipoly(NOC,x,y);
 
% figure
% imshow(TM)
 
TMN = NOC.*TM; 
 
TMN_b =TMN(130:900,175:945);
 
% figure 
% imshow(TMN)
%imwrite(TMN,'zz_Image_With_Noise_Removed.tif')
 
%% Show me whats happening 
ign = TMN+zr;
% figure
% imshow(ign)
% figure
% imshow(zr)
%imwrite(ign,'zz_Image_over_BGsuborig.tif')
 
%% Isolate outer edge 
[row,col] = find(TMN_b); %create matrix of all "1" pixels in TMN
RC = [row,col];
NEW = TMN_b; %set up a duplicate of our edge picture 
 
middle = 360; %define middle collumn of picture 
col1 = find(col==middle);
midedge = round(col1(1));
 
AP = 40; %Area around pixel
rightint = zeros(length(row),AP);
pf = 0.01;
 
for i = 1:midedge
for j = 1:AP
    v = TMN_b(row(i),(col(i)-j));
    rightint(i,j) = v;
end
end
 
pain = mean(rightint,2);
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for i = 1:length(pain)
if pain(i) > pf
    NEW(row(i),col(i)) = TMN_b(row(i),col(i))*0;
end 
end 
 
for i = midedge:length(row)
for j = 1:AP
    v = TMN_b(row(i),(col(i)+j));
    rightint(i,j) = v;
end
end
 
pain = mean(rightint,2);
 
for i = 1:length(pain)
if pain(i) > pf
    NEW(row(i),col(i)) = TMN_b(row(i),col(i))*0;
end 
end 
 
% figure
% imshow(NEW)
%imwrite(NEW,'zz_Attempt_at_middle_removal_4.tif')
% figure 
% imshow(NEW+zr)
%imwrite(NEW+zr,'zz_Best_Image_so_far_5.tif')
 
 
%% top 
% 
pft = 0.00;
APt = 2;
topint = zeros(APt,length(col));
NEWt = TMN; 
 
for i = 1:length(col)
for j = 1:APt
    v = TMN(row(i)+j,(col(i)));
    topint(j,i) = v;
end
end
 
paint = mean(topint,1);
 
for i = 1:length(paint)
if paint(i) > pft
    NEWt(row(i),col(i)) = TMN(row(i),col(i))*0;
end 
end 
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FIN = NEWt+NEW;
 
% figure
% imshow(NEWt)
 
c = NEWt+NEW;
 
% figure
% imshow(c)
% imwrite(c,'100LPM_OutterEdge.tif')
 
% figure
% imshow(c+zr)
% imwrite(FIN,'zz_better.tif')
% imwrite(c+zr,'100LPM_OutlineonPlume.tif')
% 
 
%% Remove noise again 
% 
GOD = NEW;
 
%xs = [360 320 440 400]; %20: [520 545 545 520];%50: [505 560 630 450]; %100: [485 575 
660 400]; 
y2 = length(TMN_b);
y = [y2 0 0 y2];
TMG = roipoly(GOD,x2,y);
% figure
% imshow(TMG)
TMT = imcomplement(TMG); 
TMNT = GOD.*TMT; 
% TMN_b = TMNT(70:787,153:870); 
[Nr,r] = boxcount(TMNT); 
LNR = log(Nr); 
LR = log((1./r)); 
p = polyfit(LR,LNR,1); 
FD(cnt) = p(1); 
 
sigb = 0;
N_sig = size(LR,2); 
delta = N_sig.*(sum(LR.^2)) - (sum(LR)).^2; 
for sigi = 1:N_sig
    sigb_c = sqrt((1./(N_sig-2)).*(LNR(sigi) - ((sum((LR.^2)).*sum(LNR))-(sum(LR).*sum
((LR.*LNR))))./(delta) - ((N_sig.*sum(LR.*LNR)-sum(LR).*sum(LNR))./delta).*LR(sigi)).^2).
*sqrt(N_sig./delta);
    sigb = sigb + sigb_c; 
end 
 
sigB(cnt) = sigb; 
 
disp(cnt)
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% figure 
% imshow(TMNT)
% imwrite(TMNT,'42LPM_OutterEdge.tif')
% figure
% imshow(TMNT+zr)
% imwrite(TMNT+zr,'42LPM_OutlineonPlume.tif')
 
end
 
toc
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% Maria D'Orazio
% HSOF AVG
 
%% Clear 
clear all
close all
clc
 
%% Define Variables
N = 50;
B = 8; 
filepath = "C:\Users\maria\Desktop\HE_BOS_02202025\T29"; 
bg_file = "C:\Users\maria\Desktop\HE_BOS_02202025\T29\T29-03062025123837-0.tiff";
TestNum = 'T29_';
xres = 2200;
yres = 3208;
 
%% HSOF 
bg = double(imread(bg_file))./(2^B); 
bg = bg(:,:,1); 
C = cellac(N,B,filepath);
[uOut,vOut] = HSOF(bg,C);
 
%% avg of imgs
 
avgau = zeros(xres,yres);
avgav = zeros(xres,yres); 
 
 
writematrix(abs(uOut{2}), append('singimu_',TestNum))
writematrix(abs(vOut{2}), append('singimv_',TestNum))
 
% figure; imshow(rescale(abs(uOut{2}))); 
% figure; imshow(rescale(abs(vOut{2}))); 
 
for j = 10:10:N
 
    avgau = zeros(xres,yres);
    avgav = zeros(xres,yres);
 
    for i = 2:j
        us = abs(uOut{i} - uOut{i-1}); 
        vs = abs(vOut{i} - vOut{i-1}); 
        avgau = avgau + us;
        avgav = avgav + vs; 
    end
    
    avgu = avgau./j; 
    avgv = avgav./j;
 
    writematrix(avgu, append('avgu_',TestNum, num2str(j)))
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    writematrix(avgu, append('avgv_',TestNum, num2str(j)))
 
     % figure; imshow(rescale(avgu)); 
     % figure; imshow(rescale(avgv)); 
end
 
avgtot = rescale((avgu+avgv)./2);
figure; imshow(avgtot); 
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function [uOut,vOut] = HSOF(coldIm,images,inputs,guess)
%% Summary
% Computs the HSOF solution between a cold image and a series of hot
% images.
 
%% Inputs
% coldIm - The image with no deflection.
% images - The series of images with deflection, saved as a cell array
% inputs - Controls for HS, in the format of a struct with subsets tol,
% pxpmm, alpha, and maxIteration.
 
%% Parse Inputs
[Ny,Nx] = size(coldIm);
 
switch nargin
    case 1
        error('Both cold and hot images are required')
    case 2
        tol = 0.00008;
        pxpmm = 1;
        alpha = 1;
        maxIteration = 100;
        u = zeros(Ny,Nx);
        v = zeros(Ny,Nx);
    case 3
        tol = inputs.tol;
        pxpmm = inputs.pxpmm;
        alpha = inputs.alpha;
        maxIteration = inputs.maxIteration;
        u = zeros(Ny,Nx);
        v = zeros(Ny,Nx);
    case 4
        tol = inputs.tol;
        pxpmm = inputs.pxpmm;
        alpha = inputs.alpha;
        maxIteration = inputs.maxIteration;
        u = guess.u;
        v = guess.v;
end
 
%% Initialize Variables
 
uOut = cell(length(images),1);
vOut = cell(length(images),1);
 
%% Solving
for i = 1:(length(images))
    tic
    
    % Make the intensity gradient matrix E
    [Ex,Ey,Et] = buildE(coldIm,images{i}(:,:,1));
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    % Initialize iteration parameters.
    iter = 0;
    err = 1;
    while max(max(err)) >= tol
        iter = iter+1;
        % Build the average u and v matricies
        [uBar,vBar] = buildbar(u,v);
        
        % Solve the iterative equation
        uNew = uBar - ( Ex.*((Ex.*uBar)+(Ey.*vBar)+Et))./(alpha^2+Ex.^2+Ey.^2);
        vNew = vBar - ( Ey.*((Ex.*uBar)+(Ey.*vBar)+Et))./(alpha^2+Ex.^2+Ey.^2);
        
        % Calculate convergence criteria
        err = sqrt((uNew-u).^2+(vNew-v).^2);
        
        % Update guesses
        u = uNew;
        v = vNew;
        if iter > maxIteration
            % End if max number of iterations mets
            break
        end
        if mod(iter,10) == 0
            % Update console feedback
            disp(['Iteration: ',num2str(iter)])
            disp(['Error: ',num2str(max(max(err)))])
        end
    end
    % Initialize new guess
    u = uNew;
    v = vNew;
    
    % Save out converged results
    uOut{i} = u/pxpmm;
    vOut{i} = v/pxpmm;
    disp(i);
    toc
end
 
 
end
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function [uBar,vBar] = buildbar(u,v)
%% Summary
% Laplacian filtering
h = [1/12 1/6 1/12;...
    1/6 0 1/6;...
    1/12 1/6 1/12];
[n,m] = size(u);
 
uBar = conv2(u,h,'same');
vBar = conv2(v,h,'same');
 
end
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function [Ex,Ey,Et] = buildE(im1,im2)
%% Summary
% Builds the brightness partial derivatives.
Ex = conv2(im1,0.25* [-1 1; -1 1],'same') + conv2(im2, 0.25*[-1 1; -1 1],'same');
Ey = conv2(im1, 0.25*[-1 -1; 1 1], 'same') + conv2(im2, 0.25*[-1 -1; 1 1], 'same');
Et = conv2(im1, 0.25*ones(2),'same') + conv2(im2, -0.25*ones(2),'same');
 
end
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function C = cellac(N,B,filepath)
 
S = dir(fullfile(filepath,'*.tiff')); 
imgs = {S.name}; 
C = cell(N,1); 
 
for k = 1:N
    im = imread(fullfile(filepath,double(imgs{k})));
    im1 = im(:,:,1); 
    imdif = double(im1)./(2^B); 
    C{k} = imdif; 
end 
 
end 
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