Numerical Analysis Qualifying Exam Mathematics Department, New Mexico Tech Fall 2011

(Answer all six problems)

1. Suppose that the sequence of points, x_k , generated by Newton's method converges to a root $f(x^*) = 0$. You may also assume f is twice continuously differentiable and that $f'(x^*) \neq 0$. Let $e_k = x_k - x^*$. Show that

$$\lim_{k \to \infty} \left| \frac{e_{k+1}}{e_k^2} \right| = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$$

This shows that the method has quadratic convergence to the root.

2. Suppose that you have been given the LU factorization of an n by n matrix A,

PA = LU

where P is an n by n permutation matrix, L is an n by n lower triangular matrix and U is an n by n upper triangular matrix. You may assume that A is nonsingular.

Describe how you would use the LU factorization of A to solve a system of equations Ax = b. Your solution should involve solving one lower triangular system of equations involving L and one upper triangular system of equations using U. Show that the computed solution satisfies the original equation.

3. Let $A \in \mathbb{R}^{m \times n}$, with $m \ge n$, be given by $a_{i,j} = t_i^{j-1}$ where $\{t_i\}_{i=1}^m$ are distinct real numbers. Use the fundamental theorem of algebra to prove that A is full rank.

Hint: We know that the $(n-1)^{th}$ degree polynomial $p(t) = \sum_{j=1}^{n} c_j t^{j-1}$ has exactly n-1 roots. Assume the columns of A are linearly dependent and obtain a contradiction.

- 4. Let Q be an n by n orthogonal matrix, i.e. the columns of Q are orthonormal.
 - (a) Show that $Q^T Q = Q Q^T$.
 - (b) Show that for any x and y in \mathbb{R}^n , the standard inner product is preserved, i.e. $\langle Qx, Qy \rangle = \langle x, y \rangle$, and, in particular, the Euclidean norm is preserved, i.e. $||Qx||_2 = ||x||_2$.
 - (c) Given $A \in \mathbb{R}^{m \times n}$ of rank $n \leq m$, use the fact that a $m \times m$ orthogonal matrix Q can be found so that $Q^T A = R = \begin{pmatrix} \tilde{R} \\ 0 \end{pmatrix}$ where \tilde{R} is a nonsingular $n \times n$ upper triangular matrix to solve the least squares problem: minimize $\|b Ax\|_2$ over all $x \in \mathbb{R}^n$.

- (a) Derive the 2 point Gaussian quadrature formula.
- (b) Approximate the following integral using the two-point Gaussian quadrature rule and find the relative error of the approximation:

$$\int_0^2 \sin(x) \, dx$$

6. Determine the parameters a, b, c, d, and e so that the following function S(x) is a natural cubic spline:

$$S(x) = \begin{cases} a + b(x-1) + c(x-1)^2 + d(x-1)^3, & x \in [0,1], \\ (x-1)^3 + ex^2 - 1, & x \in [1,2], \end{cases}$$

5.